RAIRO-Theor. Inf. Appl. 55 (2021) 7 RAIRO - Theoretical Informatics and Applications
https://doi.org/ 10.1051/ita/2021005 Www.rairo-ita.org

SYNCHRONIZING SERIES-PARALLEL DETERMINISTIC FINITE
AUTOMATA WITH LOOPS AND RELATED PROBLEMS

JENS BRUCHERTSEIFER® AND HENNING FERNAU”®

Abstract. We study the problem DFA-SW of determining if a given deterministic finite automaton
A possesses a synchronizing word of length at most k for automata whose (multi-)graphs are TTSPL,
i.e., series-parallel, plus allowing some self-loops. While DFA-SW remains NP-complete on TTSPL
automata, we also find (further) restrictions with efficient (parameterized) algorithms. We also study the
(parameterized) complexity of related problems, for instance, extension variants of the synchronizing
word problem, or the problem of finding smallest alphabet-induced synchronizable sub-automata.

Mathematics Subject Classification. 68Q25, 68Q45.

Received January 2, 2020. Accepted March 25, 2021.

1. INTRODUCTION

Cerny’s conjecture is arguably the most famous open combinatorial problem concerning deterministic finite
automata (DFA), somehow dating back to [9]. Recently, a particular Special Issue was dedicated to this conjec-
ture being around for more than five decades; see [51]. This Special Issue also contains an English translation of
Cerny’s paper [10]. The key notion is that of a synchronizing word. A word x is called synchronizing for a DFA
A, if there is a state sy, also called the synchronizing state of A, such that if A reads x starting in any state, it
will end up in sy. Good reviews of this and related notions can be also found in [43, 49]. The Cerny conjecture
states that every n-state DFA can be synchronized by a word of length (n — 1)? if it can be synchronized at all
[8]. Although this upper bound was proven for several classes of finite-state automata, the general case is still
widely open. The currently best upper bound is cubic, and only very little progress has been made, basically
improving on the multiplicative constant factor in front of the cubic term, see [22, 37, 44, 46].

The notion of a synchronizing word is not only important from a mathematical perspective, offering a nice
combinatorial question, but it is quite important in a number of application areas, simply because synchro-
nization is an important concept for many applied areas: parallel and distributed programming, system and
protocol testing, information coding, robotics, etc. Therefore, it is also interesting to compute a shortest syn-
chronizing word. Unfortunately, as it was shown by Rystsov and Eppstein in [15, 40], the corresponding decision
problem DFA-SW is NP-complete. We only refer to [30] for explaining several possible applications of this
problem. The problem has also been considered from the viewpoint of approximation [2] and parameterized
complexity [19, 36]. Let us now define this problem central to our paper.

Keywords and phrases: Synchronizing words, series-parallel graphs, parameterized complexity.
Theoretische Informatik, Abteilung Informatikwissenschaften CIRT, Fachbereich 4, Universitat Trier, Germany.

* Corresponding author: fernau@uni-trier.de

© The authors. Published by EDP Sciences, 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/ 10.1051/ita/2021005
https://www.rairo-ita.org
https://orcid.org/0000-0003-3536-3082
https://orcid.org/0000-0002-4444-3220
mailto:fernau@uni-trier.de
https://creativecommons.org/licenses/by/4.0

2 J. BRUCHERTSEIFER AND H. FERNAU

DFA-SYNCHRONIZING WORD (DFA-SW)
Input: DFA A, keN

Problem: Is there a synchronizing word w for A with |w| < k?

The practical importance of this question can be also seen by the fact that since decades, heuristics for solving
this problem have been published; we only mention one publication of Rho et al. [39] at one of the major circuit
design events. Also, its importance in relation to testing is seen by publications like [11].

It is important to note at this point that we are working with complete DFAs in our definition, i.e., a DFA
can be specified as A = (Q, %, 9, qo, '), where @Q is the finite state alphabet, X is the finite input alphabet,
0:Q x ¥ — @ is the complete transition function, and gy € Q and F C @ specify the start state and the
final state set that are actually inessential for the task of synchronization. While DFA-SW is NP-complete, the
complexity picture actually changes if we allow undefined transitions (i.e., if we move over to partial DFAs);
the corresponding synchronization problem then becomes PSPACE-complete; see [34].

Several papers deal with subregular classes of languages and discuss both combinatorial and computational
aspects of synchronizing words with respect to these classes; the papers [1, 15, 24, 29, 32, 33, 36, 38, 41, 45, 52]
form only an incomplete list of such investigations. Restrictions to automata based on graph-theoretic properties
are less frequently considered compared to other possibilities for defining subregular classes. Here, we study
series-parallel automata graphs and related concepts. One of our motivations was that the inductive definition
of series-parallel graphs often allows for efficient algorithms for problems on such graphs that are NP-hard on
general graphs. The situation is quite diverse (and hence interesting) when considering DFA-SW restricted to
such-defined automata classes, as we will see.

Throughout this paper, we assume the reader to be familiar with basic notions related to automata theory,
graph theory and complexity theory. Yet, the crucial concepts of this paper will be introduced below whenever
needed in order to keep this paper self-contained. Having said this, we highlight the main results.

— We introduce two-terminal series-parallel automata (graphs) with loops (TTSPL) and give several
characterizations and properties thereof.

— We show that DFA-SW remains NP-complete on TTSPL automata.

— Several parameterizations of DFA-SW are studied (also with a focus on TTSPL automata), the most
interesting one arguably being the length upper bound k, where besides W[2]-hardness also membership
in WNL is shown and discussed, linking to other problems studied in the literature. This could also raise
further interest in the parameterized complexity class WNL, defined by Guillemot in [25], as mostly formal
language problems are known to be complete for this class.

— In another paper [5], we studied other aspects of parameterized complexity in connection with DFA-SW,
parameterized by a length upper bound % on the synchronizing word. For instance, we could prove FPT
equivalence to MONOID FACTORIZATION (as defined in [7]: Given n mappings f; : X — X and a target
mapping g : X — X, can g be represented by composing at most k mappings, i.e., is g = fi, o---0 f; ,
for some k' < k7) and to BOUNDED DFA-INTERSECTION (Given a finite set of DFAs, is there a word
of length k accepted by all of them?). This might yield an interesting (new?) parameterized complexity
class between W[2] and WNL which we suggest to call Wisync| in [5]. Without going into details here,
we mention that we could prove the further inclusions W[sync] C W[P] and W([sync] C A[2], which also
suggests that W([sync] should be considered as a complexity class on its own.

— Supplementing [20], we show some more results on extension variants of DFA-SW. In particular, with
respect to some length-lexicographical ordering, the extension variant of DFA-SW, parameterized by the
length of the string that is to be extended, is hard for co-W([sync] and contained in co-WNL, but it is
unclear if it is contained co-W([sync]. With respect to the subsequence ordering, we obtain a W[3]-hardness
results for the extension variants, even on TTSPL graphs. This is interesting, as few natural problems are
known to be hard for higher levels of the W-hierarchy of parameterized complexity.

SYNCHRONIZING SERIES-PARALLEL DETERMINISTIC FINITE AUTOMATA 3

— Finally, we turn to the MINIMUM SYNCHRONIZABLE SUB-AUTOMATON problem introduced in [47]. We
again look at parameterized complexity aspects and prove that its natural parameterization leads again
to a problem between W[2] and WNL, where we do not know its exact position, nor its relation to the
previously considered problems in a similar situation.

Only (most of) the results mentioned in the first three items have been contained in the conference version
of this paper, presented at NCMA 2019 in Valencia. Further results (on parameterized complexity mentioned in
this paper) are presented with more details in [5]. The paper concludes with listing the most interesting open
problems mentioned throughout the text.

2. SERIES-PARALLEL AUTOMATA GRAPHS AND GENERALIZATIONS

The study of series-parallel multi-graphs as automata multi-graphs was mainly undertaken by Gulan [26, 27],
extending them to so-called SPL multi-graphs. In this section, we will first see that this concept does not make
good sense in a classical treatment of synchronizability. Yet, a slight variation, namely, allowing self-loops in
automata multi-graphs, in particular to the source and sink nodes, helps overcome this problem. In fact, we
show that automata with such multi-graphs always have relatively short synchronizing words.

We first introduce some general terminology for directed multi-graphs. A directed multi-graph is specified as
G = (V, A), where V is the finite set of vertices and A is a finite multi-set of arcs. Each arc is an element (u,v)
of V x V, where u is called the tail and v is called the head vertex. An arc of the form (x,z) is called a loop. If
A is in fact a set (all elements occur once), then G is a directed graph. Two directed multi-graphs Gy = (V, Ay)
and Go = (Va, Ay) are called disjoint if V3 NV = (. The union of the two disjoint multigraphs G1, G2 yields
the multi-graph G = (V4 U V,, A1 U As). The two composition operations defined next can be thought of first
producing the union and then identifying certain vertices.

Now, we are ready to introduce a class of directed multi-graphs that has been studied for quite some time,
mostly under algorithmic aspects. Many graph problems that are hard on general graphs can be efficiently
solved on such recursively defined graph classes; refer to [16] for further discussions.

Definition 2.1. A directed multi-graph G is two-terminal series-parallel, or TTSP for short,! with terminals
s (the source) and t (the sink), if it can be produced by a sequence of the following operations:

1. Create a new graph, with two vertices s and ¢t and a single arc directed from the source s to the sink ¢.

2. Given two disjoint TTSP multi-graphs X and Y, with sources sx and sy, respectively, and sinks tx and ty,
respectively, form a new multi-graph G = P(X,Y), with source s and sink ¢, by identifying s = sx = sy
and t = tx = ty in the union of X and Y. This is known as the parallel composition of X and Y.

3. Given two disjoint TTSP multi-graphs X and Y, with sources sx and sy, respectively, and sinks tx and
ty, respectively, form a new multi-graph G = S(X,Y), with source s and sink ¢, by identifying s = sx,
tx = sy and t = ty in the union of X and Y. This is known as the series composition of X and Y.

As an aside, let us mention that there is an equivalent characterization of TTSP multi-graphs by an internal
inductive definition, starting again with G = ({s,t},{(s,t)}) and allowing to either subdivide any arc or to add
parallel arcs to existing ones. Gulan rather follows this definition in his works.

An automaton (multi-graph) is called TTSP if the directed multi-graph obtained by removing all arc labels
from an automaton graph is TTSP. Observe that TTSP automata have a sink state which should be the
synchronizing state (if the automaton would be synchronizable at all), but as there is no loop attached to the
sink state, synchronization is not possible. Therefore, we consider the following slight generalization of TTSP
multi-graphs:

Definition 2.2. A directed multi-graph G = (V, A) is two-terminal series-parallel with loops, or TTSPL for
short, with terminals s (the source) and ¢ (the sink), if it can be produced from a TTSP multi-graph G’ = (V, A’)
by adding any number of loops (z,x) to G’, i.e., A\ A’ has loops only.

TValdes, Tarjan and Lawler called such directed multi-graphs edge series-parallel (ESP) multidigraphs in [48].

4 J. BRUCHERTSEIFER AND H. FERNAU

Notice that Gulan defined so-called SPL multi-graphs by allowing another arc operation, namely the con-
traction of an arc to form a loop, paying special care not to produce loops at the source or sink states. Hence,
SPL multi-graphs and TTSPL multi-graphs differ in two ways:

— TTSPL multi-graphs may possess loops at terminal nodes, while SPL multi-graphs may not.
— SPL multi-graphs may possess bigger cycles than just loops, because arcs added as loops can be further
processed, for instance, they may be subdivided, in further inductive steps.

There is an alternative way of introducing loops into TTSP multi-graphs, giving a characterization of TTSPL
multi-graphs, following the inductive definition of TTSP multi-graphs:

Definition 2.3. A directed multi-graph G is two-terminal series-parallel with loops, or TTSP with loops for
short, with two dedicated vertices, called terminals s (the source) and ¢ (the sink), if it can be produced by a
sequence of the following operations:

1. G=({s,t},{(s,t)}) (create a new graph).

2. Build G = P(X,Y) (parallel composition) or

3. build G = S(X,Y) (series composition) from two given TTSP multi-graphs X, Y with loops. Notice that
when identifying vertices, we collect all possibly existing loops attached to the original vertices, which is
possible as we deal with multi-graphs.

4. Add a loop to a terminal node of a given TTSP multi-graph with loops.

TTSP multi-graphs with loops have no cycles but loops. By induction, the next result follows.

Proposition 2.4. A directed multi-graph G is a TTSPL multi-graph if and only if it is a TTSP multi-graph
with loops.

Notice that the special nodes s and t of TTSP multi-graphs, characterized by having in-degree 0 and out-
degree 0, respectively, may lose these properties when building TTSPL multi-graphs out of them; yet, we will
still maintain these two designated vertices s and ¢ for TTSPL multi-graphs, as well. The following combinatorial
characterization is rather easily seen by induction.

Lemma 2.5. A directed multi-graph G = (V, A) with two dedicated vertices s,t is a TTSPL multi-graph with
source s and sink t if and only if the multi-graph G' = (V, A) obtained from G by removing all loops is a TTSP
multi-graph with source s and sink t.

This lemma is important, as it shows that we can recognize if a given directed multi-graph G is a TTSPL multi-
graph in linear time, based on the well-known linear-time algorithm for recognizing TTSP multi-graphs ([48],
Sect. 3.3).

Recall that we can obtain a directed multi-graph from the automaton graph of a finite automaton by dropping
the arc labels (typically signifying single letters). If we start out with a complete DFA, then it is clear that the
resulting multi-graph is out-regular, or more precisely r-out-regular for some positive integer r, meaning that
every vertex is the tail vertex of exactly » many arcs. Namely, take r as the size of the input alphabet 3. The
converse is also true by an arbitrary X-labeling f of the arcs that satisfies the property that f, restricted to
the set A, of arcs emanating from any vertex v, is a bijection. This reasoning shows in particular the following
consequence.

Corollary 2.6. It is decidable in linear time if a given directed multi-graph is both a TTSPL multi-graph and
resulting from the automaton multi-graph of a complete deterministic finite automaton by dropping arc labels.

Another interesting combinatorial observation comes from the fact that TTSPL automata have a single
sink state, namely, ¢, and hence they possess a synchronizing word of length upper-bounded by a quadratic
bound, see [50], because they are clearly synchronizable if they arise from deterministic finite automata. We can
strengthen this consequence as follows.

SYNCHRONIZING SERIES-PARALLEL DETERMINISTIC FINITE AUTOMATA 5

Proposition 2.7. Let A be an n-state DFA with input alphabet Y whose multi-graph is TTSPL. Then, A
possesses a synchronizing word of length upper-bounded by (n — 1) - min{ %, |X[}.

Proof. Assume that the DFA A has a shortest synchronizing word of length k. The bound k < @ follows
from [50]. Let wy, contain every symbol from the input alphabet ¥ exactly once, in any order. Apart from the
unique sink state t, for every other state g, there is a state ¢’ # ¢ that can be reached from ¢ by reading one
symbol. As loops are the only cycles in TTSPL multi-graphs, w§71 is synchronizing. O

Considering automata whose automata multi-graphs are acyclic (DAGs) after removing all loops gives a
natural generalization of TTSPL automata. Notice that this type of generalization has been considered before
by Ryzhikov and others in the context of synchronization before [42]. Ryzhikov termed these automata weakly
acyclic, but other names have been also used for them in the literature. For instance, they correspond to so-called
partially ordered automata as studied in [6].

Remark 2.8. In view of the inductive definition of TTSPL automata, it is tempting to introduce a class
Rspr of regular expressions (over ¥) as follows. (a) Each letter a is in Rgpr. (b) If r1,70 € Rgpr, then
rire, (r1+72) € Repr. (¢) If r € Rgpr and a € X, then ra* € Rgpr. However, this (only) describes a superclass
of languages recognizable by TTSPL automata because of missing determinism and completeness conditions.
Consider for example a*(a + b). Adding such conditions to the definition of Rgpr would make it look more
clumsy.

So, in a combinatorial sense, DFAs whose multi-graph is TTSPL behave quite nicely. However, this impression
changes a bit when turning towards the natural complexity questions related to synchronizing words, as we will
do in the next section. In order to properly speak about certain aspects of TTSPL, we introduce some further
notions now.

A vertex-induced sub-multi-graph G’ = (V’, A’) of a TTSPL multi-graph G = (V, A) with source s and sink ¢
is called a strand if s,t € V/ and G’ — s is also a TTSPL multi-graph. This implies that there is a vertex s’ € V'
that has only one predecessor, i.e., if (x,s") € A, then x = s. Notice that in general a TTSPL multi-graph
possesses several strands; they will always share (only) the vertices s and ¢ and a possible arc from s to ¢. If
there is a path of length at least two from u to v in G, but also an arc a from u to v, then a is called a shortcut
in G.

3. CLASSICAL COMPLEXITY ASPECTS

As the main result of this section, we prove that it is NP-hard to determine if a DFA with a TTSPL automaton
multi-graph has a synchronizing word of length at most k.

The aforementioned proof of Rystsov and Eppstein uses very simple multi-graphs, which is adapted as
follows in order to produce TTSPL multi-graphs. Let ¢ be a Boolean formula in conjunctive normal form with
n variables 1, xa, . .., 2, and m clauses. The corresponding automaton is constructed as follows (refer to Fig. 1):
The state set () contains mn + n states ¢; j for 1 <i <mand 1 < j <n+1, astate ¢; and in addition to the
original construction, a state ¢;. The alphabet 3, which originally only contains o1 and o9, is extended with m
new symbols 03,04, ...,0m+2, whereas the transition function § is characterized by the following properties:

— It encompasses 6(q; n+1,0p) = q¢ for p € {1,2}.

— If the i-th clause of ¢ contains the literal z; (i.e., if variable z; is contained as a positive literal in this
clause), there will be a transition d(g; j,01) = ¢, otherwise §(g; j,01) = ¢; j+1. In case that it contains -z ;
(i.e., if variable x; is contained as a negative literal in this clause), there will be a transition §(g; j, 02) = qt,
or else §(qi j,02) = ¢ j+1.

— In addition to the original construction, there will be transitions
o 6(qs,01) = gs for k € {1,2},
® 3(qs,01) = qr—2,1 for 3<k <m+2,
® 6(qij,0%) = qij for all ¢; ; and 3 <k <m+ 2 as well as

J. BRUCHERTSEIFER AND H. FERNAU

(z1 Va2 V-zs) A (z1V-xeVoxs) A A (mziVasV-oz,) A (z1Vas V)
4 4 4 4

<4444 e< e

R

\\ e€ eg-—_i

FI1GURE 1. Structure of the extended Rystsov-Eppstein graph: Transitions with o; and o9
are labeled by black solid and dashed lines, respectively. Edges created by new input symbols
are colored gray and labeled with the corresponding symbol. The loops classified with “oy/”
represent all loops which result from the symbols oy, for 3 < k < m + 2.

SYNCHRONIZING SERIES-PARALLEL DETERMINISTIC FINITE AUTOMATA 7

hd 6(Qtaak)ZQt fOI‘3Sk§m+2

The initial state and the final states are of no relevance for DFA-SW, so we omit them here. We call the
resulting multi-graphs Rystsov-Eppstein. The following is quite obvious:

Lemma 3.1. The extended Rystsov-Eppstein multi-graphs meet the definition of TTSPL multi-graphs.
With the extended construction, it is possible to state the following result.
Theorem 3.2. DFA-SW remains NP-complete on DFAs with a TTSPL automaton multi-graph.

Proof. As in the construction of Rystsov and Eppstein, we will present a reduction from 3-SAT to DFA-SW, but
this time the synchronizing word is exactly one symbol longer than before. Let ¢ be some Boolean formula with
n variables x1, 2, ..., x, as well as m clauses and A = (Q, 3, 9, qo, F') the automaton built with the extended
Rystsov-Eppstein construction. There is always a synchronizing word of length n + 2; for all states except sy,
there exists even a (partially) synchronizing word of length n + 1. So a synchronizing word for A, of length of
n + 1 or less, has to use at least one shortcut before arriving at ¢;. Due to the construction, the synchronizing
word has to start with oy, for 3 < k < m + 2, followed by a sequence of o1 and o5. This requires that at least one
path from ¢; ; for each 1 < ¢ < m needs to take a shortcut if there is a synchronizing word of length n + 1. The
strands going through each ¢; ; represent the clauses again, while the states within a strand depict the variables.
Therefore, after removal of the first letter we can read off the corresponding assignment. We give some more
details in the following.

If the assignment « : {x1,...,2,} = {0,1} evaluates ¢ to true, there has to be a literal in every clause which
is evaluated to true. The synchronizing word is oxw,, where oy, for 3 < k < m + 2 is an arbitrary input symbol
and w, € {01,02}™ corresponds to the truth assignment « as explained in the following. Let w,, = a1as - - an.
Let a; = o1 if ¢(z;) =1 and a; = 09 if ¢(z;) = 0. Consider clause ¢;. Let x; be the first variable (with respect
to the ordering z1 < x9 < -+ < x,, on the set of variables) that appears in ¢; (either positive or negative)
and that is set by the assignment o such that ¢; becomes true. Then, §(g; 1,0i+204) = 8(gi,1,a102 - an) =
3(gi2,a2---an) = -+ = 6(¢ij,a; - an) = 6(qi j,a;) = g The assumption that z; is the first variable that
makes the clause ¢; to evaluate to true means that 6(g; ¢, ar) = ¢;¢+1 by our construction for £ =1,...,5 — 1.
Moreover, if ; appears in a positive literal, then a; = 01 and §(g; j,a;) = ¢ by construction of §, while if z;
appears in a negative literal, then a; = o9 and again §(g; j,a;) = ¢; by construction of §. The self-loops at ¢;
guarantee that 6(g; ;,a; - - an) = 6(¢;5,a;) = ¢;. Because of the connections from ¢; ,11 to g, it is clear that
for € > 1, §(gi e, okwa) = @, because |wy| = n. Finally, as 0(¢s, oxwa) = 0(gk—2,1, W), this again leads to ¢; by
our discussion on starting in g; ;.

Similarly, a truth assignment «,, satisfying ¢ can be read off from any word w synchronizing A that is of
length n + 1 or less. Namely, as §(gs, w) = ¢¢, by construction we can assume that w starts with oy, for some
3 <k <m+2. As any further occurrences of symbols from ¥\ {01, 02} would lead to loops within states from
Q\ {gs}, we can assume that w € {0}, | 3 <k <m+2}-{o1,02}*. Then, we can observe that in each strand S;
given by {¢s, ¢t} U{qi¢ | 1 < ¢ <m}, aword w from {o1,02}* would synchronize all states in S; \ {gs } iff |w| > n
or there is some ¢; < n such that w drives the automaton through ¢; 1, ¢i2, ..., ¢, ¢ By construction, a
switch from g; ¢, to ¢; is possible only if the assignment o, defined next satisfies the clause ¢; that corresponds to
strand .5;. First observe that we can exclude long synchronizing words by setting the upper bound accordingly.
Then, for any clause ¢;, by construction we find that the ¢;-th letter of w is oy if zy, occurs as a positive literal
in ¢;, and the ¢;-th letter of w is o9 if x4, occurs as a negative literal in ¢;. This setting is consistent as the
automaton is deterministic. Then, we set the variable z,, to true if the ¢;-th letter of w is o1, and we set the
variable z,, to false if the /;-th letter of w is oy. For variables not set to true or false in this way, we can
(arbitrarily) decide to set them true. This defines an assignment «,, that satisfies the given formula ¢, because
each clause ¢; is satisfied by construction.

The NP-completeness follows, as a simple guess-and-check approach would work in polynomial time. O

When dealing with (directed multi-) graphs, sometimes further structural properties are useful, as they
might lower the computational complexity of certain computational problems. One such structural (or rather

8 J. BRUCHERTSEIFER AND H. FERNAU

topological) aspect is planarity. However, this is not very helpful because of the following observation that can
be easily deduced by induction.

Proposition 3.3. TTSPL multi-graphs are planar.

Hence, in particular the extended Rystsov-Eppstein multi-graphs are planar, as can be also seen by looking
at the drawing in Figure 1. Our studies hence fit into the considerations on planar instances of automata
multi-graphs undertaken in [36] in the context of DFA-SW.

4. ASPECTS OF PARAMETERIZED COMPLEXITY

In view of our previous observations, let us now try to find parameterizations that allow us to characterize easy
aspects of finding short synchronizing words in TTSPL automata. For reasons of space, we only refer to recently
published textbooks [12, 14], in particular for the discussion of parameterized complexity classes that we will
make use of in the following. Appropriate for parameterized algorithms is using the O*-notation; for instance,
a problem solvable in time O*(f(k)) refers to an algorithm running in time O(f(k)p(n)), where n is the input
size, p is some polynomial, f is some arbitrary (computable) function and % is the so-called parameter, some
secondary measurement of the input. A problem (with parameter k) is in FPT (or, fized-parameter tractable) if
it can be solved in time O*(f(k)). We will also present lower bound results based on the (Strong) Exponential
Time Hypothesis, or (S)ETH for short, which basically assumes that SATISFIABILITY cannot be solved (much)
faster than currently known. For details, we again refer to the mentioned textbooks. A brief introduction into
this area, more tailored towards the theory of formal languages, can be also found in [17].

In [19], several natural parameterizations have been studied for arbitrary automata graphs. We will discuss
these results next and then see how they translate to our more restricted scenario.

— As DFA-SW remains NP-hard for binary input alphabets, || is not an interesting parameter on its own.

— An upper bound k on the length of a synchronizing word as the sole parameter is known to lead to some
hardness results. More specifically, it was first shown in [19] that this problem is W[2]-hard.

— Combining both parameters, one arrives at a rather trivial FPT-result by enumerating and testing all
words up to length k. However, assuming SETH, it was observed in [19] that there is no O*((|X] — ¢)*)
algorithm for any ¢ > 0. This proof is based on the Rystsov-Eppstein construction, so that it carries over to
our restricted scenario. By the same type of argument, it could be shown that there is no polynomial-size
kernel for our problem, parameterized by |X| and &, unless an unlikely collapse of the polynomial-time
hierarchy occurs. Again the argument builds upon Rystsov-Eppstein graphs and can be hence carried over.
We will make this explicit below.

— Another natural parameter choice is the number of states |@Q| of the automaton. Basically, by following
the well-known subset automaton construction, also see [43], it is clear that a shortest synchronizing
word can be found in time ©*(2/9l) and in Lemma 11 from [19], a modification of the Rystsov-Eppstein
construction was used to prove a matching lower bound, based on ETH. We will see below that the same
lower bound still holds for TTSPL automata graphs.

4.1. More on the length parameter k: an excursion into parameterized complexity

Let A be some DFA with state set @, input alphabet X, transition function § : Q x ¥ — @. A word w € ¥*
is called P-synchronizing for a state subset P C @ if w drives P into a single state sp . Obviously, a Q-
synchronizing word is just a synchronizing word. Montoya and Nolasco considered in [36] the following problem
variant:

DFA-SUBSET-SBSW (where sB indicates a size bound)
Input: DFA A with state set @ as well as k,m € N and subset P C Q with |P| =k

Problem: Is there a P-synchronizing word w for A with |w| < m?

SYNCHRONIZING SERIES-PARALLEL DETERMINISTIC FINITE AUTOMATA 9

Notice that if m is given in binary and the restriction |P| = k is missing, then this problem is even PSPACE-
complete, because subset synchronization in itself (without the length bound) is already PSPACE-complete; see
[18] for more discussions. However, if m is presented in unary, as implicit in the problem definition, because the
input DFA comes with a list of its states and this list contains more elements than k, then the problem is ‘only’
NP-complete, as it also follows from [36], but this also follows when considering P = Q. However, Montoya and
Nolasco focused on the parameterized complexity of DFA-SUBSET-SBSW and could prove the following result:

Theorem 4.1. DFA-SUBSET-SBSW, parameterized with the set size parameter k, is complete for the class
WNL, even when restricted to planar graph instances.

Recall that the parameterized complexity class WNL was introduced by Guillemot in [25].2 Consider the
following problem:

NONDETERMINISTIC TURING MACHINE COMPUTATION (NTMC)
Input: Nondeterministic single-tape Turing machine M, k, q € N, where k and ¢ are given in unary

Problem: Does M accept the empty string in at most g steps, visiting at most k tape cells?

With the parameter ¢, this problem is known to be W[1]-complete. Guillemot defined WNL as the class
of parameterized problems that can be reduced (by a parameterized many-one reduction) to NTMC with
parameter k. Interesting formal language problems complete for WNL include BOUNDED DFA-INTERSECTION
—given k DFAs, with parameter k, plus the length of the searched word that should be accepted by all k automata
— or LONGEST COMMON SUBSEQUENCE, parameterized by the number of given strings. WNL is situated above
all levels of the W-hierarchy, because the last two mentioned problems are known to be hard for W([t] for any
t > 1, see [4, 54]. Each level of the W-hierarchy can be characterized by specific weighted satisfiability problems;
we refrain from giving details here but refer to textbooks like [12, 14]. Furthermore, if a parameterized problem
IT can be solved in time n/(¥) for instances (z, k) of size n for some function f, then IT € XP. Let us now return
to our problems related to synchronizing words. Notice that for general graphs, the WNL-hardness result from
Theorem 4.1 also holds for binary input alphabets (on general graphs) or for four-letter input alphabets (on
planar graphs). As we are more interested in the parameterized complexity of the basic problem DFA-SW, we
are now going to prove, supplementing the work of Montoya and Nolasco:

Theorem 4.2. DFA-SW, parameterized with the length parameter k, is contained in the class WNL.

Proof. Notice that membership in WNL does not follow with the arguments presented in [36], because that
argument makes explicit use of the fact that the given set P of states contains k elements. However, we now
describe a nondeterministic Turing machine that visits at most f(k) many cells (ever), providing the required
reduction. Given a DFA A with state set @ and input alphabet X, where, w.l.o.g., Q N = (), together with a
bound k on the length of a synchronizing word, a Turing machine M is constructed that works as follows:

1. M writes a word of length at most k£ over the alphabet ¥ on its tape, followed by some letter from the
alphabet Q; this means that M starts with making (at most) k 4+ 1 nondeterministic guesses.

2. For each ¢ € @ (this information can be hard-coded in the finite-state memory of M), M first moves its
head to the left end of its tape and then starts reading the tape content from left to right. Each time a
symbol a € 3 is read, M updates the current state it stores according to the transition function of A.
Finally, M will read a symbol from @, and it will only continue working if this symbol equals the current
state stored in the finite memory of M. Notice that (2) works deterministically.

3. Only if M has completely processed the loop described in (2) (without abort), M will accept. This verifies
that the guessed word over ¥ is indeed synchronizing, always leading into the state that was also previously

2Let us remark that WNL is one of the less known parameterized complexity classes, but we have the impression that this class

is quite interesting in particular for classifying parameterized problems dealing with strings, automata and formal languages.

10 J. BRUCHERTSEIFER AND H. FERNAU

guessed. Hence, M will accept the empty word if and only if there is a possibility to guess a synchronizing
word of length at most k. It is also clear that the Turing machine makes at most (|Q| + 1)(2k + 1) many
steps.3

O

Unfortunately, we do not know if our problem is WNL-hard.*

4.2. Discussing TTSPL automata

Let us now try to transfer the reported hardness results (lower bounds) from the case of general (planar)
automata graphs to the much more restricted scenario of TTSPL automata graphs. Let us start with the
alphabet size as a parameter.

Proposition 4.3. DFA-SW is NP-complete on TTSPL automata with four input symbols.

Proof. We can modify the construction of Theorem 3.2 by replacing the forking into m successor nodes from g,
by a binary tree, using only two new letters, say, 71 and 72, on top of o1 and o5. This will introduce (only) m
additional nodes into the construction. We add loops with the original symbols o1 and o2 to the internal nodes
of this tree. To nodes where previously loops were added on these m new symbols, now we add (only) loops
with 7 and 7. It can be seen that the resulting automaton graph is TTSPL. O

This means that the alphabet size on its own is not a very useful parameterization. More technically speak-
ing, this proves that there is no XP-algorithm (with parameter input alphabet size) for DFA-SW on TTSPL
automata, unless P = NP.

In the following proposition we make use of the parameterized problem HITTING SET that is defined as
follows.

HIiTTING SET
Input: A family F of sets over a universe U and an integer k, where k is considered as a parameter.

Problem: Does there exist a set S C U such that

1. |S] < k and
2. FNS # for each F € F?

A set S satisfying (2) is also called a hitting set. HITTING SET is W[2]-complete with respect to parameter
k [14].

Proposition 4.4. DFA-SW, parameterized by an upper bound k on the length of a synchronizing word, is
W 2]-hard, even when restricted to DFAs with TTSPL automata multi-graphs.

Proof. Adapting a construction from [19], we can create a DFA-SW instance from a given HITTING SET
instance with universe U = {ey, ea,...,e,}, set family F = {Fy, Fy,..., F,,,} and k as an upper bound on the
size of the hitting set S. We take k£ + 1 as the upper bound on the length of a shortest synchronizing word. The
state set @ of the DFA A consists of

— set family states f; for 1 < j < m, denoting in which set F; an element of I/ is located, and
— terminal states qs and q;, the latter one being a trap state.

3Here, some definitorial details might change the constants, e.g., how ‘fast’ can a Turing machine detect that it is at the tape
end and turn back?

4This was claimed to be the case in the conference version of this paper, but this was due to a mis-interpretation of the
literature. In [5], we exhibit quite a number of problems that are equivalent to DFA-SW under parameterized reductions, justifying
the introduction of a new parameterized complexity class that we call W[sync|. From that discussion, some indications follow why
our problem DFA-SW is probably not WNL-hard.

SYNCHRONIZING SERIES-PARALLEL DETERMINISTIC FINITE AUTOMATA 11

ep €Y

I
6h€2“ €n+t2

i
ey
€n ! ethl

€h ¢ Fm

ep € Fm

ep €Y

FIGURE 2. An example for the structure of the transition graph from the proof of Proposition 4.4
(containing a second extension with s;, 1 < i < k, as discussed in Prop. 4.10) derived from
a HITTING SET instance (U = {e1,...,en}t, F = {F1,..., Fn}), k). Grey edges depict new
symbols e, for n+1 < b < n+m (resp. n +m + 1). For space reasons, they are only labeled if
the transition is not carried out with each of the added symbols.

Note that the original construction contained one long strand which can be omitted so far and will be of
importance only in the further course. The input alphabet ¥ = U/ contained the elements e for 1 < h < n in
the original construction, to which e,11, ..., €,1m are added to form the input alphabet X’ of our automaton A.
The transition function § of A is defined as follows.

12 J. BRUCHERTSEIFER AND H. FERNAU

fisen) = fi for every e, ¢ F; and 1 <i < m, as well as
fisen) = q for each e, € F; and

qi,en) = q for all e, € 35

s, enyj) = fj for 1 < j < m and

(gs,en) = gs for all e, € .

o
o
_ 6(
o
)

The remaining transitions (which are caused by the new symbols, not belonging to) are added as loops. If
there is a synchronizing word for A, it has to meet the following conditions:

— Since ¢; is a trap state, there can be no other state in which such a word could end.
— In order to synchronize f;, some symbol e, € F; has to be part of any synchronizing word.

Therefore, a shortest synchronizing word has to be of the form w = ogoy - - - 0, where 09 ¢ ¥ and 0, € for
1 < p < owith o <k . Considering the reasons listed above, we can read off a hitting set of size at most k from
such a synchronizing word after removing the first symbol of w if it is no longer than k + 1. Notice that o; = 0}
is possible for 1 < < j < k.

For the other direction, we assume that S = {01, 09,...,0;} with 0; € ¥ for 1 < i < k is a hitting set with
|S| < k. Let 0g ¢ X. Consider the word ggoy - - - 01 and observe that it is a synchronizing word.
With the reduction above and HITTING SET being W|[2]-hard, the claim follows. O

We do not know if DFA-SW, parameterized by an upper bound k on the length of a synchronizing word,
restricted to DFAs with TTSPL automata multi-graphs is as hard as the problem is on general graphs. As
shown by Mohring in [35], there are quite close connections between TTSP(L) graphs and so-called series-
parallel partial orders. Without going into too much detail here, observe that the mappings @@ — @ that can be
associated to input letters are monotone with respect to the series-parallel partial order corresponding to the
TTSPL automaton multi-graph. This allows us to conclude the following result with the help of our constructions
and observations above. In this result, we refer to a restricted variant of the problem that we discuss in more
detail in [5].

MoNOID FACTORIZATION (see [7])

Input: A finite set @, a collection F' = {fo, f1,..., fm} of mappings f;: Q@ — Q, k€N

Problem: Is there a selection of at most k& mappings f;,,..., fi,,, k' < k, with 4; € {1,...,m} for
j=1,... K such that fo = fi, o fi,0---0 f;,,?

Corollary 4.5. DFA-SW, parameterized by an upper bound on the length of a synchronizing word, restricted to
DFAs with TTSPL automata multi-graphs, is polynomial-time equivalent to MONOID FACTORIZATION, param-
eterized by an upper bound k on the generator length, restricted to collections of mappings F' that are monotone
with respect to a given series-parallel partial order on the finite ground set Q.

In other words, these problems might belong to yet another class of parameterized problems, lying between
WI2] and WNL. We summarize some further parameterized results below, where the hardness result follows with
the proof of Proposition 4.3.

Corollary 4.6. DFA-SW, parameterized by input alphabet size |X| and an upper bound k on the length of the
synchronizing word, belongs to FPT, but it cannot be solved in time O*(((|Z| — 2) — &)*) for any € > 0 under
SETH, and there does not exist a polynomial-size kernel, unless the polynomial-time hierarchy collapses to the
third level, even if we restrict the instances to DFAs with TTSPL automata multi-graphs.

Recall that a parameterized problem is in FPT if and only if it allows for a kernelization, i.e., a parameterized
self-reduction whose output has size upper-bounded by a function in the parameter. However, this bounding
function could be arbitrarily bad. Of particular practical interest are polynomial-size kernels. The question of the
existence of such small kernels has been one of the driving forces of the research in Parameterized Complexity

SYNCHRONIZING SERIES-PARALLEL DETERMINISTIC FINITE AUTOMATA 13

in the last decade. Typically, the non-existence of polynomial-size kernels is based on the assumption that NP
is not a subset of the advice class co-NP/poly. By famous results of Yap [55], this non-existence of polynomial-
size kernels could be also based on the assumption that the third level X% of the polynomial-time hierarchy is
different from PSPACE, which is putting the assumption on more common ground. More details can be also
found in [12, 14].

Observe that the SETH lower bound is weaker here compared to the case of general graphs, because we
seem to need four letters in our hardness constructions. We leave it as an open question if DFA-SW is NP-
complete also on TTSPL multi-graphs with binary input alphabets. Notice that we cannot simply re-use the
two letters o1 and o5 in the forking process described in the proof of Proposition 4.3, e.g., by setting 7 = o3
and 79 = 09, because we have to ensure that each of the start nodes of the strands which correspond to clauses
are synchronized by reading the same word that is actually a suffix of the synchronizing word of the whole
TTSPL automaton.

Proposition 4.7. Let ¢ be a CNF formula with n variables and m clauses. It is possible to construct from
v a DFA A= (Q,%,0,q0, F) with a TTSPL transition graph in time O(mn), such that |Q| =n+m + 2 and
|2| = 2n 4+ m + 1, which possesses a synchronizing word of length (n + 1) if and only if ¢ is satisfiable.

Proof. The construction from [19] can be extended as follows: Let ¢ be a given CNF formula, where V =
{z1,...,z,} denotes the set of its variables and C' = {cy, ..., ¢;, } the set of its clauses. Without loss of generality,
it is assumed that no variable occurs twice in any clause, whereby every c¢; can be viewed as a subset of the set
of literals L = {x1,...,x,} U {—x1,..., 2, }. From this formula, a DFA A = (Q, %, 4, qo, F) is constructed (as
seen in Fig. 3): The set of input symbols ¥ contains 2n symbols z; and —z; for 1 <i <n (one of these always
corresponds to a literal, so they will be referred to as [) and additionally m + 1 symbols gy for 1 <b < m + 1.
The state set @@ consists of n + m + 2 states listed below:

e variable states q; for 1 < i < n,
o clause states cj for 1 < j <m and
e terminal states qs and ¢, the latter one being a trap state.

The transition function ¢ is defined as follows:

® 6(gi,zi) = 6(qi, ~Ti) = gi1 With ¢ni1 = qu,

8(qi, xir) = 0(qi, ~wir) = qi for i # 7,

(¢j,1) = ¢; for every literal | ¢ c;,

(¢j,1) = q; for every [€ ¢;,

(qt,1) = g for all literals. Compared to the original construction, this one is extended by
(gs,yp) = cp for 1 < b <m,

(gs, Ym+1) = q1 as well as

5(gs, i) = 8(qs, ;) = qs for 1 < i <.

The remaining transitions (which result from symbols y;) are loops.

SHh D9 & &

Since ¢; does not have any outgoing transitions, there is no other state in which a synchronizing word could
end. Due to the strand containing ¢, . . ., gn, & synchronizing word must be at least of length n and of the form

(1lyal - - [ymer) (@1]721) T (o] —a2)t - (a]—an) T (1] - wa—2a| - |20 —2n) ™.

Such a synchronizing word represents the assignment of the variables ®: V' — {0, 1} if the first letter is cut off.
After this removal it can be generated by the assignment function

€T;) =
0, if ll = TT;.

14 J. BRUCHERTSEIFER AND H. FERNAU

a1 and # 1y a
Ym

T1, T1 h Yo

l¢cm

79 Tn—1 and 7é TTn—1

Tp—1, " Tn—1

x, and # -z,

leX¥

FIGURE 3. Structure of the automata graphs from Proposition 4.7: Solid edges indicate edges
from the initial construction, dashed edges are added with the new construction. Grey edges
result from one of the added input symbols ¥, black edges from one of the already existing
symbols [. If there is no label on an edge, this transition is performed by all of the symbols
or [, respectively.

Considering that this word leads into ¢; from every state c; and that this transition is not possible with y, for
1 <b<m+1, it is clear that every clause and therefore the formula ¢ itself is satisfied.
For the reversed direction of this proof it should be observed that it is possible to create a word w = l1ls - - - [,

with

v X5, if (b(.’lﬁl) =0.

SYNCHRONIZING SERIES-PARALLEL DETERMINISTIC FINITE AUTOMATA 15

Let y» € {y1,-..,Ym+1} now be chosen arbitrarily but fixed. Obviously, the word w’ = yplils - - - 1, leads from
every state ¢; with 1 < i < n into ¢;. Since every clause c;, 1 < j < m, is satisfied, the same holds for every
state c;. It should be noted that y;, acts as the identity for g; as well as for all states ¢;. Taking into account
that every possible value for y;, leads from ¢, into a state that is directed to ¢; by w’' = il -+ -1, it also directs
gs into q;. Therefore, w’ represents indeed a synchronizing word for A. O

With that result it can be stated:

Corollary 4.8. DFA-SW on automata with a TTSPL transition multi-graph cannot be solved in time
O*(2°0RD) | unless ETH fails.

Proof. As proven in Proposition 4.7, an arbitrary 3-SAT instance with n variables and m clauses can be reduced
to an instance A = (Q, 3, d, qo, F) of DFA-SW with |Q| =n+m+2, || =2n+m+1 and k = n+ 1. With the
existence of an algorithm solving DFA-SW in time O0*(2°(%D), 3-SAT would be solvable in time O*(2°("+m)),
contradicting ETH. 0

Unfortunately, we cannot claim any lower bounds on kernel sizes for the parameterization by state set
size, because the constructions by Vorel and Roman [53] seem to destroy the TTSPL automaton multi-graph
properties that we need.

So far, we looked at the question if parameterizations studied previously for general automata graphs lead to
the same results when considering TTSPL multi-graphs only. Now, we discuss several ideas of parameterizations
that are genuine for TTSPL. Notice that the theory of width-parameters for directed graphs is much richer than
for undirected graphs (see [23, 28, 31]), and we are not aware of any further studies on width parameters for
TTSP multi-graphs, something one might have considered not necessary to do, as most classical graph problems
are easy on such restricted graph classes. Our studies reveal this necessity when considering automata problems.

One problem when computing a synchronizing word for an automaton with TTSPL multi-graph consists in
different lengths of paths. This necessitates having shortcuts which might motivate to bound the complexity
by an accordingly created parameterization. As the graph from the Eppstein-Rystsov construction contains at
most three shortcuts per strand if we start out with a 3-SAT instance, a simple parameterization with the
number of shortcuts per strand nevertheless seems quite hopeless:

Corollary 4.9. DFA-SW remains NP-complete on TTSPL automata graphs where each strand has at most
three shortcuts.

Another feature in all our reductions is that all strands contain loops. Let us be a bit more precise: In our
definition of TTSPL multi-graphs, it is pretty clear that the terminal nodes will contain loops. Therefore, when
counting the number of loops in a TTSPL multi-graph, we ignore loops at terminal nodes. With a modification
of a construction from [19] it is possible to state:

Proposition 4.10. The problem DFA-SW on automata with TTSPL automata graphs remains NP-complete,
even if there is one strand which must not contain loops (except for the terminals).

Proof. We extend the construction from Proposition 4.4 with a strand containing k& nodes s; as well as the
mandatory g5 and ¢; (¢f. Fig. 2). There will be a new input symbol e, 4,,+1. The transitions s; to ;41 with 1 <
1 < k and sgy1 = q; are performed on every input symbol. Another added transition will be 6(gs, €ntm+1) = S1.
The other transitions with e, 41 are added as loops again in all states except the s; states and g¢;. It is obvious
that this automaton is still a valid reduction from HITTING SET. As it contains one strand without loop nodes
(not counting the terminals), the claim holds. O

Hence, the number of strands that must not contain loops (except for the terminals) is not an interesting
parameter, either, as the previous proposition shows that DFA-SW does not belong to XP for this parameter,
unless P = NP.

As strands are also TTSPL multi-graphs by definition, but it is required that the multi-graph obtained from a
strand by deleting the source node is again TTSPL, the number of strands that contain at least four nodes with

16 J. BRUCHERTSEIFER AND H. FERNAU

loops might be an interesting parameter. In some of our reductions, this actually coincides with the (generally
larger) parameter number of long strands, i.e., strands containing at least four nodes.

Corollary 4.11. The problem DFA-SW on automata with TTSPL automata multi-graphs remains NP-
complete, even if there is only one long strand.

Hence, this does not give an interesting parameter, either. Since the connectedness of the graph determines
the complexity to some degree, it might be tempting to use it as another parameter. However, a simple param-
eterization like for example the number of nodes with large indegree similar to the weft in the W hierarchy
might not be very promising when taking into account that the extended Eppstein-Rystsov construction uses
only one node with indegree > 3.

Corollary 4.12. DFA-SW, parameterized with the number of nodes with indegree > 3, is NP-complete for
parameter value 1.

In view of the reductions we have seen so far, which are promising parameterizations—in the sense of allowing
for FPT-results? We discuss some concrete points below in the conclusions.

5. PROBLEM VARIATIONS

In this section, we consider several variants of our basic problem DFA-SW and study them again for automata
with TTSPL automata graphs. We will see that in most cases, the hardness results known for general automata
graphs transfer to this case, as well.

5.1. Extension variants

Extension variants of DFA synchronization have been examined in [20]. The notion of extension relies on the
chosen partial order on the set of all words:

— y|w, meaning that y is a (possibly scattered, but ordered) subsequence of w, i.e., there are subwords
Y1, .-+, Yr and wo, w1y, ..., w, such that y = y; -+ -y, and w = woyrwy - - - YWy

— vy sub w, meaning that y is a subword of w, i.e., there are words x, z such that w = zyz;

— y C w, meaning that y is a prefix of w, i.e., there is a word z such that w = yz;

— y J w, meaning that y is a suffix of w, i.e., there is a word x such that w = xy.

— ¥ <jex w (lexicographical ordering) means that either v C w or w is the longest common prefix of v and w
and ua C v, ub C w, and a < b for some a,b € X.

— v <y w (length-lezicographical ordering) means that either |v| < |w| or that |v| = |w| and v <jep w.

In the last two cases, we assume that a total order < is given on the alphabet . Based on our previous
discussions, we are now defining so-called extension problems, depending on the chosen partial order < on X*.
As we will see, the complexity status of these problems will heavily depend on this choice.

ExT DFA-SW-<
Input: DFA A with input alphabet ¥, u € ¥*

Problem: Is there a w € ¥*, u < w, such that w is minimal for the set of synchronizing words for A
with respect to <?

Observe that we automatically face a NO-instance if the given DFA A is not synchronizable. Let us clarify
this problem by a small example. Consider the automaton A displayed in Figure 4. Let b be the word given in
addition, so the question is if b can be extended to a minimal synchronizing word. If < = C, then ba is indeed a
synchronizing word that extends b (as b C ba) such that no proper prefix of it is synchronizing. Hence, (4,b) is a
YES-instance of EXT DFA-SW-L. Similarly, it can be seen that (A, b) is a YES-instance of ExT DFA-SW-J,
because ab is a J-minimal synchronizing word. However, (A, b) is a NO-instance of EXT DFA-SW-| and of EXT

SYNCHRONIZING SERIES-PARALLEL DETERMINISTIC FINITE AUTOMATA 17

b a,b

FIGURE 4. Synchronizing a small automaton.

DFA-SW-sub, because any synchronizing word w must contain at least one a, and a itself is a synchronizing
word. Hence, in particular any synchronizing word w that extends b (with respect to | or sub) cannot be minimal,
because both a|w and a sub w. For the (length-)lexicographic ordering, we observe the following: if @ < b, then
clearly no extension of b (as b itself, or ba, or bb, or bab etc.) can be minimal, as a is always smaller, i.e., we face
a NO-instance (4,b); if b < a, then ba is indeed a minimal synchronizing word that extends b, so that (A,b) is
a YES-instance. This small example already shows that this class of extension problems could be quite diverse
and rich.

In [20], the following results on general automaton graphs have been shown. We also highlight open questions
for this general case.

— ExT DFA-SW-C and EXT DFA-SW-J are solvable in polynomial time.

— ExT DFA-SW-| is NP-hard, allowing arbitrarily large input alphabets. For binary input alphabets (for
instance), this question is open.

— EXT DFA-SW-sub poses an open question.

— ExT DFA-SW-<, is solvable in polynomial time.

— EXT DFA-SW-<j; is co-NP-hard, even on binary input alphabets.

— Membership of EXT DFA-SW-|, EXT DFA-SW-sub and EXT DFA-SW-<j; in interesting complexity
classes is open. We will resolve one of these questions below, proving membership of EXT DFA-SW-<j;
in co-NP.

For the (co-)NP-hard problem variants, it is again interesting to study aspects of parameterized complexity.
The most natural parameter appears to be the length of the provided string u. Let us summarize again the
findings from [20].

— EXT DFA-SW-|, parameterized by |ul|, is W[3]-hard. Membership in W3] is open, but let us remark that
this is one of the few parameterized problems that might find its home on a higher level of the W-hierarchy;
see [3].

— The case of EXT DFA-SW-<,;, parameterized by |u|, was not discussed. The construction for showing NP-
hardness is not helpful, as it is basically a modification of the construction already presented by Rystsov
and Eppstein (and also used throughout this paper), starting out from SATISFIABILITY, so that the length
of u is the number of Boolean variables of the original instance.

We are first describing another proof of co-NP-hardness of ExT DFA-SW-<;; that also shows some param-
eterized complexity result; this is the way we state our theorem in the following. However, notice that this
reduction is not a parameterized many-one reduction, because the YES- and NO-answers are switched.

Theorem 5.1. EXT DFA-SW-<;;, parameterized by |u|, is contained in co-WNL, but one can reduce DFA-
SW, parameterized by a length upper bound k, to the complement problem of EXT DFA-SW-<;;, parameterized
by |ul.

Proof. For membership in co-WNL, we can modify the proof of Theorems 4.2, constructing a nondeterministic
Turing machine M as follows, given A and w. As in the previous construction, the machine can first guess a
possible word w <j; u and verify if it is synchronizing. If such a word is found, then (A, u) is a NO-instance. The

18 J. BRUCHERTSEIFER AND H. FERNAU

reduction itself checks if A is synchronizable at all, which can be done in polynomial time according to [43, 49].
We also have that if M does not find a synchronizing word w <j; u, then (A, w) is a YES-instance, because as A
is synchronizable, there must be a synchronizing word v. Remind that according to the previous tests, u <;; v
must hold.

We are now turning to the the second claim. Consider a DFA A on the input alphabet ¥, together with
a number k, as an instance of DFA-SW. We can first check in polynomial time if A is synchronizable at all.
If A is not synchronizable, then (A, k) (clearly) is a NO-instance of DFA-SW, so our reduction will produce
some fixed NO-instance of EXT DFA-SW-<;;. Hence, we now assume that A is synchronizable. Let ¢ ¢ X be
a fresh letter. Consider an arbitrary ordering < on X, extended by ¢ < x for all x € ¥ towards an ordering
on¥=3%U {c}. We are going to define the DFA A as an extension of A, working on the same state set Q.
Let ¢ simply act as the identity on (). Hence, no word from ¢* is synchronizing for A As Ais synchronizable,
A is also synchronizable. Consider A together with u = ¢**! as an instance of EXT DFA-SW-<;;. If A has
a synchronizing word w of length at most k, then clearly u is not extendible, as |w| < |u|. Otherwise, as A is
synchronizable, A must have some synchronizing word w with |w| > |u|, and any synchronizing word of A is of
length at least |u|. As w is the smallest of all words in % of length at least |ul, any synchronizing word will
hence extend u. Hence, if A has no synchronizing word of length at most k, then u is extendible. O

Notice that the last reduction in the previous proof is not a many-one reduction, as it reverses YES- and
NO-answers. Hence, this reduction proves that EXT DFA-SW-<;;, parameterized by |u|, is hard for the
parameterized complexity class consisting of all complements of parameterized problems FPT-equivalent to
DFA-SW.

It is not so clear if one can solve EXT DFA-SW-<;; with the help of DFA-SW. Clearly, given A and u,
one can check with the instance (A, |u| — 1) if there are synchronizing words shorter than w, which would
automatically imply that is not extendible. If (A, |u| — 1) is a NO-instance of DFA-SW and if (A4, |u|) is a
NO-instance of DFA-SW, then (A4, u) is a YES-instance of EXT DFA-SW-<; if and only if A is synchronizable
(at all), although we are not necessarily in the position of producing a witness of this fact in polynomial time.
But, as A is synchronizing but has no synchronizing word of length at most |u|, any synchronizing word is an
extension of u, and we can freely choose (but not efficiently compute) the length-lexicographically smallest one.
What remains is the case when (A4, |u| — 1) is a NO-instance of DFA-SW and (A, |u]) is a YES-instance of
DFA-SW. We should now check somehow all words w of length |u| that are length-lexicographically smaller
than u. If and only if none of them is a synchronizing word, then (4, u) is a YES-instance of EXT DFA-SW-<;.
However, there could be exponentially (up to |X|*) many of such strings w; we did not see a way to quickly
check all of them. Hence, it remains open if this extension problem is as hard as DFA-SW in the parameterized
sense.

Corollary 5.2. EXT DFA-SW-<;; is co-NP-complete, even on binary input alphabets.

Proof. The co-NP-hardness was shown in [20]. Membership in co-NP follows with the same arguments as the
ones from the previous proof, yielding membership in co-WNL. O

For the parameter |X|, i.e., input alphabet size, the situation is different. This is not explicitly stated in [20],
but can be easily deduced from the discussions in that paper. Let us make this explicit in the following.

— EXT DFA-SW-|, parameterized by |X|, poses an open question.
— ExT DFA-SW-<;;, parameterized by |%|, does not possess an XP-algorithm, unless P = NP.

When we restrict our attention again to TTSPL multi-graphs, the positive algorithmic results immediately
transfer. So, the question is if the (co-)NP-hardness (or parameterized hardness) results still hold and if we
might tackle some of the open questions in this more restricted setting.

Proposition 5.3. EXT DFA-SW-<;; is co-NP-complete, even for TTSPL automata.

Proof. Membership in co-NP immediately follows from the more general case stated in Cor. 5.2. For the co-
NP-hardness, recall that the proof of the corresponding statement for general automata could be deduced from

SYNCHRONIZING SERIES-PARALLEL DETERMINISTIC FINITE AUTOMATA 19

the hardness proof presented in Theorem 5.1. This construction modifies a given DFA instance of DFA-SW by
adding self-loops. Hence, it preserves the TTSPL property. Therefore, the claim follows with Theorem 3.2. [J

As an aside, notice that Theorem 3.2 was not working for fixed input alphabet sizes, and so the previous
proposition does not work for fixed input alphabets, either.

Proposition 5.4. EXT DFA-SW-|, parameterized by |u|, is W|[3]-hard, even for TTSPL automata.

Proof. Bléser et al. [3] have shown that EXT HITTING SET, parameterized by the size of the given set U, is
hard for W[3]. More formally, instances of this problem are formed by a family F of sets over a universe & and
some set U C U, and the question is if there exists a set S with U C S C U that is an inclusion-wise minimal
hitting set. Theorem 27 in [20] converted an instance of EXT HITTING SET into an instance of EXT DFA-SW-|,
parameterized by |u|. This construction did not produce a TTSPL automaton, but it can be modified to do
S0, in a similar way as in the construction from Proposition 4.4 resulting in an automaton A which would be
clearly TTSPL. Moreover, from U = {e;,, ... €ipy| }, we construct the word v = e, 1€, - - - €., - Finally, observe
that the given instance of EXT HITTING SET is a YES-instance if and only if (A4, u) is a YES-instance of EXT
DFA-SW-|. In particular, the first letter e,41 moves to the node corresponding to the first hyperedge, which
must be covered by some e € U (as any other hyperedge) and hence u will lead from the source state g5 to the
target state ¢;. O

Unfortunately, again there is no bound on the size of the input alphabet. This is also true for the following
result in classical complexity, which is obtained with the same reduction.

Corollary 5.5. EXT DFA-SW-| is NP-hard, even for TTSPL automata.

Let us conclude by remarking that the situation both of ExT DFA-SW-<;; and of ExT DFA-SW-|,
parameterized by |X|, is open when restricted to TTSPL automata.

5.2. Minimum synchronizable sub-automata

In [47], the authors asked to extract a synchronizable sub-automaton that is as small as possible, obtained by
deleting letters from its specification. This notion of a sub-automaton is of particular interest to us, as we are
dealing with completely specified deterministic automata, and DFAs are not closed under most other notions
of sub-automaton one might come up with, because they tend to produce incomplete automata. Ttirker and
Yenegiin formalized this idea as a weighted minimization problem. For our purposes, it is sufficient to consider
the following unweighted variant:

DFA-MSS (referring to a minimum synchronizable sub-automaton)
Input: DFA A with input alphabet ¥, kK € N
Problem: Is there a sub-alphabet » cy, |2| < k, such that the restriction of A to Y is synchonizable?

Interestingly, Tiirker and Yenegiin used nearly the same reduction as Fernau, Heggernes and Villanger in [19]
for a different purpose to prove the following result.

Theorem 5.6. DFA-MSS is NP-complete.

In actual fact, in [47] only NP-hardness is proven, but a simple guess-and-check approach shows membership
in NP, as well. Due to the simplicity of the reduction, inapproximability results follow, as already stated in [47],
although even stronger results can be obtained by using more recent results from Dinur and Steurer [13].
However, in the context of our study, it is more interesting that we can also deduce the following parameterized
complexity result from this reduction.

Corollary 5.7. DFA-MSS, parameterized by the upper bound k on the size of the selected alphabet, is W[2]-
hard.

20 J. BRUCHERTSEIFER AND H. FERNAU

As with the other W[2]-hard problems considered in this paper, membership in W[2] is open. Also in this
case, we can prove membership in WNL, although this is not completely trivial this time.

Theorem 5.8. DFA-MSS is contained in WNL.

Proof. Let (A, k) be an instance of DFA-MSS. Notice that in a first preprocessing step, we can eliminate letters
a’ that act the same on the state set () as another letter a that we decide to keep. Such a rule can be implemented
to run in polynomial time, as we simply loop over all pairs of letters, so that we can now assume to face an
automaton A with input alphabet ¥ and state set @ such that |2| < |Q|/9l. Moreover, we can assume that 3
contains more than log(|@Q|) many symbols, as otherwise we can test all subsets of ¥ (for synchronizability) in
polynomial time. Finally, we can test in polynomial time if A itself is synchronizable at all [43, 49]. Recall that
the algorithm checking synchronizability tests if any pair of states can be synchronized within at most |Q| steps.
We adapt this strategy in the following.

Now, we hard-wire the DFA into a Turing machine M as described in the following. In particular, this means
that this Turing machine can keep track of pairs of states, say, (¢, p) and update this information towards (¢, p’)
in its finite memory (alternatively, on the tape, using state letters) upon reading a symbol a € ¥, such that ¢’
is reached from ¢ (in the given DFA) and p’ is reached from p upon reading a. We also assume a fixed linear
ordering < on the state set @ and moreover, we assume that Q N'Y = (). Let g, and g, be the smallest and
second-to-smallest states in Q.

The Turing machine M first guesses a sub-alphabet ¥’ by writing the corresponding k input letters on its
tape. Moreover, it writes down ¢, next to g,. After reading (and memorizing) the current state pair (g, p),
initially (¢,p) = (¢a, @), the machine (nondeterministically) reads one of the & guessed input letters on its tape
and transfers to (¢, p) in its internal memory. It continues doing so until it reaches a pair (r,r) for some r € Q.
If it reaches such a pair, it is verified that the pair (¢, p) written on the tape can be synchronized. It continues
by incrementing p on the tape (according to the linear order <), and then testing the synchronizability of the
new pair of states on the tape with respect to the guessed sub-alphabet. M loops until the largest element of Q)
(with respect to <) is reached. Then, it would increment the first component ¢ of the pair and set the second
component of the pair of states to the smallest state larger than the first component’s state; then, again the
inner loop is entered. Finally, when reaching the largest state in the first component, the procedure terminates,
this way verifying that the automaton is indeed synchronizable when restricted to the guessed alphabet.

Obviously, the machine M uses only k + ¢ space for some constant ¢, depending upon details of the
implementation. This proves that DFA-MSS belongs to WNL. O

Although we found similar parameterized complexity results for DFA-MSS as for DFA-SW, we are not aware
of further close links between both problems. In particular, it remains unclear how to solve one problem with
the help of the other (respecting our choice of parameters). Recall that we have previously used the reduction
leading to W[2]-hardness for DFA-MSS also in our studies, see Proposition 4.4. Hence, it is tempting to look
at this problem on TTSPL automata multi-graphs. There is one technicality why we cannot simply take the
construction from Proposition 4.4: there, quite a number of new symbols were added (from the start state), and
we cannot do so, since we like to keep up the TTSPL property and aim at parameterized complexity results in
the end. Therefore, we need to add some tree-like gadgets on top (to keep the alphabet extension small), as we
detailed in the proof of Proposition 4.3. This means that we only need two additional symbols to maintain the
TTSPL property.

To be clear, let us explicitly state the problem and the consequences.

TTSPL-DFA-MSS
Input: TTSPL DFA A with input alphabet ¥, k € N

Problem: Is there a sub-alphabet)y c 3, |f]| < k, such that the restriction of A to Y is TTSPL and
synchonizable?

SYNCHRONIZING SERIES-PARALLEL DETERMINISTIC FINITE AUTOMATA 21

TABLE 1. Complexity results for DFA-SW [‘ETH’/‘SETH’/‘PH’ < assuming (Strong)
Exponential-Time Hypothesis/Polynomial-time Hierarchy non-collapse].

Parameter(s) (Parameterized) Complexity Further Bounds

- NP-complete

k in WNL, W[P] and A[2]; W[2]-hard SETH: not in O((|Z] — €)F)Ve > 0
|2 NP-complete for |3| = 2

k, |X] FPT with O*(|2|*); PH: no polyn. kernel SETH: not in O((|X| — £)*)Ve > 0
Q| FPT with O*(2/9!); PH: no polyn. kernel ETH: not in 0*(2°(2D)

Corollary 5.9. TTSPL-DFA-MSS, parameterized by the upper bound k on the size of the selected alphabet,
is W[2]-hard. Moreover, viewed as a classical decision problem, it is NP-complete.

Clearly, we also inherit inapproximability results from the source problem HITTING SET.
Let us allow two side-notes here:

1. It might be interesting to combine the questions from this subsection with that of the previous one,
which would lead to questions to extend a given sub-alphabet such that the resulting automaton becomes
synchronizable. Again, as we have related this question (previously) to HITTING SET, it is quite straight-
forward to see that this decision problem is NP-hard, as well as W[3]-hard, when parameterized by the
size of the given sub-alphabet.

2. It is not clear to us how difficult it is to find, given some DFA A, a sub-alphabet 3 such that the
restriction of A to this sub-alphabet results in a complete automaton that is TTSPL. This might lead to
other interesting problem variants.

6. CONCLUSIONS

We have considered the classical automaton problem DFA-SW restricted to quite constrained types of
automata graphs; most constraints still lead to NP-complete decision problems. The reader might have wondered
why we did not touch more usual constraints, like bounded treewidth (or other width parameters) or bounded
outerplanarity (in the already specialized case of planar graphs). However, observe that both reductions that
we started out with (Rystsov-Eppstein or HITTING SET) are already hard on outerplanar graphs and hence on
graphs of bounded treewidth, which makes it NP-hard on basically any width measure for directed graphs, as
well, see [21, 23].

As an overview, the currently known complexity results from this paper (and from [5], including definitions
of A[2] and WI[P]) can be found in Table 1. It should be noted that by the constructions presented before, some
hardness results for the problem DFA-SW arise for the problem restricted to certain graph classes. By the
structure of the graphs created in [15, 40] and [19], the following holds:

Proposition 6.1. Apart from the kernel lower bound with respect to |Q|, the results presented in Table 1 also hold
if we restrict the problem DFA-SW to bipartite, planar, outerplanar, f-outerplanar and TTSPL multi-graphs
as well as multi-graphs of bounded treewidth.

Please note that the parameterized complexity results do not change if the treewidth or the parameter f
from the definition of f-outerplanarity are used as an additional parameter. The construction from [53] seem
to destroy some of the nice graph properties we need to preserve, therefore we formulated one exception in the
proposition. Further parameterized results for DFA-SW restricted to automata with a TTSPL transition graph
can be found in Table 2.

Let us finally mention some open problems and suggestions for further research.

22

J. BRUCHERTSEIFER AND H. FERNAU

TABLE 2. Complexity results for DFA-SW on automata with TTSPL graphs.

Parameter(s) (Parameterized) Complexity
Number of shortcuts per strand NP-complete for values > 3
Number of loop-free strands NP-complete for values > 1
Number of long strands NP-complete for values > 1

. From the viewpoint of parameterized complexity, it might be very interesting to study problems that are

as hard as DFA-SW, parameterized by an upper bound on the length of the shortest synchronizing word.
This line of research has been continued in [5]. One of the problems proven to be equivalent to DFA-SW
is MONOID FACTORIZATION (as defined above).

We have shown that the W[2]-hardness proof for the parameter k upper-bounding the length of the
shortest synchronizing word carries over to TTSPL multi-graphs, but we do not know if this restricted
synchronization problem is as hard as the unrestricted one mentioned in the previous item. Again, this
might also form an interesting new complexity class, also hosting a variation of MONOID FACTORIZATION,
as we have explained.

Generalizing the observations mentioned in the previous item further, one could also look at more general
(but not completely general) scenarios for automata multi-graphs, for instance, the general situation of
being ordered (also sometimes called weakly acyclic), i.e., assuming that the automaton graph is acyclic
after removing all loops. In terms of transition monoids, this restriction is tightly linked to R-trivial
monoids, see [6]. So, we might even find some connections to basic monoid theory, as exemplified by
Green’s relation. This might give a particular algebraic taste to the corresponding restrictions of MONOID
FACTORIZATION.

Based on the inductive definition of TTSPL, we can observe: roughly speaking, if automaton A is produced
by a series or parallel composition of automata A; and Ay with synchronizing words w; and ws, then
wyws is a synchronizing word for A.%> Can such ideas lead to good approximations of synchronizing words?
What happens if we consider the number of strands or the number of series or the number of parallel
compositions needed to construct the automaton graph as a parameter? Observe that on the one hand the
gadget graphs presented in this paper have relatively large parameter values for each of these parameters,
but on the other hand the problem on graphs consisting only of parallel compositions remains solvable in
constant time.

It is unclear if the parameterization with the number of loops leads to better results. This also applies to
the parameterization counting nodes with loops.

We also discussed several extension variants; in particular, with respect to the length-lexicographical
ordering, we might find another problem candidate that finds its home in the parameterized complexity
class suggested in the first item, but also this is not completely clear, even if we restrict our attention to
TTSPL automata.

Also for the extension variants, the parameter “input alphabet size” is not well understood and remains
to be studied.

In the case of DFA-MSS, we can likewise ask about membership in W[2], even when restricted to
the setting of TTSPL-DFA-MSS. As discussed above, the (parameterized) reducibility to DFA-SW
is unclear.

Acknowledgements. We are grateful to Stefan Hoffmann for comments on the very first versions of this paper.

50ne has to be careful with loops and completeness conditions; we skip the corresponding technical details.

(1]

(2]
(3]

(4]
(5]
[6]
[7]
(8]
(9]
[10]
(11]
(12]
(13]
[14]
(15]

[16]
(17]

(18]

(19]
20]
21]
(22]
(23]

[24]
25]

[26]
27]
(28]
[29]
(30]
(31]
(32]
(33]
(34]

(35]

SYNCHRONIZING SERIES-PARALLEL DETERMINISTIC FINITE AUTOMATA 23

REFERENCES

M. Béal, M.V. Berlinkov and D. Perrin, A quadratic upper bound on the size of a synchronizing word in one-cluster automata.
Int. J. Found. Comp. Sci. 22 (2011) 277-288.

M.V. Berlinkov, Approximating the minimum length of synchronizing words is hard. Theory Comput. Syst. 54 (2014) 211-223.
T. Blasius, T. Friedrich, J. Lischeid, K. Meeks and M. Schirneck, Efficiently enumerating hitting sets of hypergraphs arising
in data profiling, in Algorithm Engineering and Ezperiments (ALENEX). STAM (2019) 130-143.

H. Bodlaender, R.G. Downey, M.R. Fellows and H.T. Wareham, The parameterized complexity of sequence alignment and
consensus. Theor. Comput. Sci. 147 (1995) 31-54.

J. Bruchertseifer and H. Fernau, Synchronizing words and monoid factorization: a parameterized perspective, in Theory and
Applications of Models of Computation, 16th International Conference, TAMC, edited by J. Chen, Q. Feng and J. Xu, eds.,
vol. 12337 of LNCS. Springer (2020) 352-364.

J.A. Brzozowski and F.E. Fich, Languages of R-trivial monoids. J. Comput. Syst. Sci. 20 (1980) 32-49.

L. Cai, J. Chen, R. Downey and M. Fellows, On the parameterized complexity of short computation and factorization. Arch.
Math. Logic 36 (1997) 321-337.

J. Cerny, A. Pirickd and B. Rosenauerovd, On directable automata. Kybernetika 7 (1971) 289-298.

J. Cerny, Pozndmka k homogénnym experimentom s konecnymi automatmi. Matematicko-fyzikdlny casopis 14 (1964) 208-216.
J. Cerny, A note on homogeneous experiments with finite automata. J. Autom. Lang. Combinat. 24 (2019) 123-132.

H. Cho, S. Jeong, F. Somenzi and C. Pixley, Synchronizing sequences and symbolic traversal techniques in test generation. J.
Electr. Testing 4 (1993) 19-31.

M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk and S. Saurabh, Parameterized
Algorithms. Springer (2015).

I. Dinur and D. Steurer, Analytical approach to parallel repetition, in Symposium on Theory of Computing, STOC, edited by
D.B. Shmoys. ACM (2014) 624-633.

R.G. Downey and M.R. Fellows, Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer (2013).
D. Eppstein, Reset sequences for monotonic automata. SIAM J. Comput. 19 (1990) 500-510.

D. Eppstein, Parallel recognition of series-parallel graphs. Inf. Comput. 98 (1992) 41-55.

H. Fernau, Modern aspects of complexity within formal languages, in Language and Automata Theory and Applications - 13th
International Conference, LATA, edited by C. Martin-Vide, A. Okhotin and D. Shapira. Vol. 11417 of LNCS. Springer (2019)
3-30.

H. Fernau, V.V. Gusev, S. Hoffmann, M. Holzer, M.V. Volkov and P. Wolf, Computational complexity of synchronization
under regular constraints, in 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019),
edited by P. Rossmanith, P. Heggernes and J.-P. Katoen. Vol. 138 of Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik (2019) 63:1-63:14.

H. Fernau, P. Heggernes and Y. Villanger, A multi-parameter analysis of hard problems on deterministic finite automata. J.
Comput. Syst. Sci. 81 (2015) 747-765.

H. Fernau and S. Hoffmann, Extensions to minimal synchronizing words. J. Autom. Lang. Combin. 24 (2019) 287-307.

H. Fernau and D. Meister, Digraphs of bounded elimination width. Discr. Appl. Math. 168 (2014) 78-87.

P. Frankl, An extremal problem for two families of sets. Eur. J. Combin. 3 (1982) 125-127.

R. Ganian, P. Hlinény, J. Kneis, D. Meister, J. Obdrzalek, P. Rossmanith and S. Sikdar, Are there any good digraph width
measures? J. Combin. Theory B 116 (2016) 250-286.

W. Géhring, Minimal initializing word: a contribution to Cerny’s conjecture. J. Autom. Lang. Combin. 2 (1997) 209-226.

S. Guillemot, Parameterized complexity and approximability of the longest compatible sequence problem. Discr. Optim. 8
(2011) 50-60.

S. Gulan, On the Relative Descriptional Complexity of Regular Expressions and Finite Automata, PhD thesis, Fachbereich
IV, Universitat Trier, Germany (2011).

S. Gulan, Series parallel digraphs with loops—graphs encoded by regular expression. Theory Comput. Syst. 53 (2013) 126-158.
F. Gurski and C. Rehs, Comparing linear width parameters for directed graphs. Theory Comput. Syst. 63 (2019) 1358-1387.
J. Kari, Synchronizing finite automata on Eulerian digraphs. Theor. Comput. Sci. 295 (2003) 223-232.

A. Kisielewicz, J. Kowalski and M. Szykula, Computing the shortest reset words of synchronizing automata. J. Combin. Optim.
29 (2015) 88-124.

S. Kreutzer and O. Kwon, Digraphs of bounded width, in Classes of Directed Graphs, Springer Monographs in Mathematics.
Springer (2018) 405-466.

P. Martyugin, Complexity of problems concerning reset words for some partial cases of automata. Acta Cybern. 19 (2009)
517-536.

P.V. Martyugin, Complexity of problems concerning reset words for cyclic and Eulerian automata. Theor. Comp. Sci. 450
(2012) 3-9.

P.V. Martyugin, Computational complexity of certain problems related to carefully synchronizing words for partial automata
and directing words for nondeterministic automata. Theory Comput. Syst. 54 (2014) 293-304.

R.H. Mohring, Computationally tractable classes of ordered sets, in Algorithms and Order: Proceedings of the NATO Advanced
Study Institute on Algorithms and Order, edited by I. Rival. Vol. 255 of NATO Science Series C. Springer (1989) 105-194.

24

(36]
37]
(38]
(39]
[40]
[41]
42]
[43]
44]
(45]

[46]

(47]

(48]
(49]
[50]
[51]
[52]
(53]

(54]

[55]

J. BRUCHERTSEIFER AND H. FERNAU

J.A. Montoya and C. Nolasco, On the synchronization of planar automata, in Language and Automata Theory and Applications
— 12th International Conference, LATA, edited by S.T. Klein, C. Martin-Vide and D. Shapira. Vol. 10792 of LNCS. Springer
(2018) 93-104.

J.E. Pin, On two combinatorial problems arising from automata theory. Ann. Discrete Math. 17 (1983) 535-548.

E.V. Pribavkina and E. Rodaro, Synchronizing automata with finitely many minimal synchronizing words. Inf. Comput. 209
(2011) 568-579.

J. Rho, F. Somenzi and C. Pixley, Minimum length synchronizing sequences of finite state machine, in Proceedings of the 30th
Design Automation Conference, DAC, edited by A.E. Dunlop. ACM Press (1993) 463-468.

I.K. Rystsov, On minimizing the length of synchronizing words for finite automata, in Theory of Designing of Computing
Systems. Institute of Cybernetics of Ukrainian Acad. Sci. (1980) 75-82. (in Russian).

I.K. Rystsov, Reset words for commutative and solvable automata. Theor. Comput. Sci. 172 (1997) 273-279.

A. Ryzhikov, Synchronization problems in automata without non-trivial cycles. Theor. Comput. Sci. 787 (2019) 77-88.

S. Sandberg, Homing and synchronizing sequences, in Model-Based Testing of Reactive Systems, edited by M. Broy, B. Jonsson,
J.-P. Katoen, M. Leucker, and A. Pretschner. Vol. 3472 of LNCS. Springer (2005) 5-33.

Y. Shitov, An improvement to a recent upper bound for synchronizing words of finite automata. J. Autom. Lang. Combinat.
24 (2019) 367-373.

B. Steinberg, The Cerny conjecture for one-cluster automata with prime length cycle. Theor. Comput. Sci. 412 (2011) 5487—
5491.

M. Szykuta, Improving the upper bound on the length of the shortest reset word, in 35th Symposium on Theoretical Aspects
of Computer Science, STACS, edited by R. Niedermeier and B. Vallée. Vol. 96 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik (2018) 1-13.

U.C. Tirker and H. Yenigiin, Complexities of some problems related to synchronizing, non-synchronizing and monotonic
automata. Int. J. Found. Comput. Sci. 26 (2015) 99-122.

J. Valdes, R.E. Tarjan and E.L. Lawler, The recognition of series parallel graphs. STAM J. Comput. 11 (1982) 298-313.
M.V. Volkov, Synchronizing automata and the Cerny conjecture, in Language and Automata Theory and Applications, Second
International Conference, LATA, edited by C. Martin-Vide, F. Otto and H. Fernau. Vol. 5196 of LNCS. Springer (2008) 11-27.
M.V. Volkov, Synchronizing automata preserving a chain of partial orders. Theor. Comput. Sci. 410 (2009) 3513-3519.
M.V. Volkov, Preface: Special issue on the Cerny conjecture. J. Autom. Lang. Comb. 24 (2019) 119-121.

V. Vorel, Complexity of a problem concerning reset words for Eulerian binary automata. Inf. Comput. 253 (2017) 497-509.
V. Vorel and A. Roman, Parameterized complexity of synchronization and road coloring. Discr. Math. Theor. Comput. Sci.
17 (2015) 283-306.

H.T. Wareham, The parameterized complexity of intersection and composition operations on sets of finite-state automata, in
Implementation and Application of Automata, 5th CIAA 2000, edited by S. Yu and A. Paun. Vol. 2088 of LNCS. Springer
(2001) 302-310.

C. Yap, Some consequences of non-uniform conditions on uniform classes. Theor. Comput. Sci. 26 (1983) 287-300.

	Synchronizing series-parallel deterministic finite automata with loops and related problems
	1 Introduction
	2 Series-parallel automata graphs and generalizations
	3 Classical complexity aspects
	4 Aspects of parameterized complexity
	4.1 More on the length parameter k: an excursion into parameterized complexity
	4.2 Discussing TTSPL automata

	5 Problem variations
	5.1 Extension variants
	5.2 Minimum synchronizable sub-automata

	6 Conclusions

	References

