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ACCEPTING NETWORKS OF EVOLUTIONARY PROCESSORS

WITH RESOURCES RESTRICTED AND STRUCTURE LIMITED

FILTERS∗

Jürgen Dassow1 and Bianca Truthe2,**

Abstract. In this paper, we continue the research on accepting networks of evolutionary processors
where the filters belong to several special families of regular languages. We consider families of codes
or ideals and subregular families which are defined by restricting the resources needed for generating
or accepting them (the number of states of the minimal deterministic finite automaton accepting a
language of the family as well as the number of non-terminal symbols or the number of production
rules of a right-linear grammar generating such a language). We insert the newly defined language
families into the hierachy of language families obtained by using as filters languages of other subregular
families (such as ordered, non-counting, power-separating, circular, suffix-closed regular, union-free,
definite, combinational, finite, monoidal, nilpotent, or commutative languages).
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1. Introduction

Networks of language processors have been introduced in [3] by Csuhaj-Varjú and Salomaa. Such a network
can be considered as a graph where the nodes represent processors which apply production rules to the words
they contain. In a derivation step (an evolutionary step), any node derives from its language all possible words
as its new language. In a communication step, any node sends copies of those words to other nodes which satisfy
an output condition given as a regular language (called the output filter) and any node adopts (copies of) words
sent by the other nodes if the words satisfy an input condition also given by a regular language (called the input
filter).

Inspired by biological processes, in [1] a special type of networks of language processors was introduced. The
nodes of such networks are called evolutionary processors because the allowed productions model the point
mutation known from biology. The productions of a node allow that one letter is substituted by a letter, letters
are inserted, or letters are deleted; the nodes are then called substitution nodes, insertion nodes, or deletion
nodes, respectively.
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Networks of evolutionary processors can be defined as language generating and language accepting devices.
In case of a generating device, the processors start working with finite sets of axioms and all words which are in
a designated processor at some time form the generated language. In case of an accepting device, input words
are accepted if there is a computation which leads to a word in a designated processor.

Results on generating networks of evolutionary processors can be found, e.g., in [1, 2, 14]. Accepting networks
of evolutionary processors were introduced in [13]. Further results, especially on accepting networks where the
filters belong to certain subclasses of the family of the regular languages, were published in [6, 12].

In [5], the generative capacity of networks of evolutionary processors was investigated for cases that all filters
belong to a certain subfamily of the set of all regular languages. In [20], networks of evolutionary processors
were investigated where the filters are restricted by bounded resources, namely the number of non-terminal
symbols or the number of production rules which are necessary for generating the languages or the number of
states of a minimal deterministic finite automaton over an arbitrary alphabet which are necessary for accepting
the filters.

In [12], the computational power of accepting networks was studied in which the filters are languages from
certain subfamilies of the set of all regular languages. It was shown that the use of ordered, non-counting, power-
separating, suffix-closed regular, union-free, definite, and combinational languages as filters is as powerful as
the use of arbitrary regular languages and yields networks which can accept all the recursively enumerable
languages. On the other hand, when the filters are restricted to finite languages, nilpotent languages, monoids,
commutative or circular regular languages, then not all recursively enumerable languages can be accepted. The
results obtained and methods used are different to the case of generating networks.

In the present paper, the research on accepting networks of evolutionary processors is continued as in [20]
for generating networks, namely the computational power is investigated when the resources for generating or
accepting the filters are bounded. Further, we study accepting networks of evolutionary processors where th
filters are ideals or codes. The language classes obtained by these types of filters are compared to those defined
by structural properties (obtained in [12]).

2. Definitions

We assume that the reader is familiar with the basic concepts of formal language theory (see, e.g., [15]). and
recall here only some notations used in the paper.

2.1. Languages, grammars, and automata

Let V be an alphabet. By V ∗ we denote the set of all words (strings) over the alphabet V (including the
empty word λ). For a natural number k, we denote by V k the set of all words over the alphabet V with length
k. The cardinality of a set A is denoted by |A|.

A phrase structure grammar is a quadruple G = (N,T, P, S) where N is a finite set of non-terminal sym-
bols, T is a finite set of terminal symbols, P is a finite set of production rules which are written as α → β
with α ∈ (N ∪ T )∗ \ T ∗ and β ∈ (N ∪ T )∗, and S ∈ N is the axiom. A grammar is right-linear if, for any rule
α→ β, the left-hand side α consists of a non-terminal symbol only and the right-hand side β contains at most
one non-terminal symbol and this is at the right end of the word: α ∈ N and β ∈ T ∗ ∪ T ∗N . A special case
of right-linearity is regularity where each rule contains exactly one terminal symbol (with the only possible
exception S → λ). Let G = (N,T, P, S) be a grammar. A word v ∈ (N ∪ T )∗ is derived in one step from a word
u ∈ (N ∪ T )∗ by the grammar G, written as u =⇒G v, if there are a rule α→ β ∈ P and two subwords x and y
of u such that u = xαy and v = xβy. By =⇒∗G, we denote the reflexive and transitive closure of the derivation
relation =⇒G. The language L(G) generated by the grammar G is the set of all words which consist of terminal
symbols and which are derivable from the axiom S:

L(G) = { w | w ∈ T ∗ and S =⇒∗G w }.

If G is clear from the context, we write =⇒ and =⇒∗ instead of =⇒G and =⇒∗G, respectively.
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Regular and right-linear grammars generate the same family of languages (the regular languages). Therefore,
also right-linear grammars are often called regular. In the context of descriptional complexity, when the number
of non-terminal symbols or the number of production rules which are necessary for generating a language are
considered then there is a difference whether a language is generated by means of regular or right-linear rules.
We use in this paper right-linear grammars.

By REG and RE , we denote the families of languages generated by regular and phrase structure grammars,
respectively.

A finite automaton is a quintuple A = (V,Z, z0, F, δ) where V is an alphabet called the input alphabet, Z is
a non-empty finite set of elements which are called states, z0 ∈ Z is the so-called start state, F ⊆ Z is the set of
accepting states, and δ : Z × V → P(Z) is a mapping which is also called the transition function where P(Z)
denotes the power set of Z (the set of all subsets of Z). A finite automaton is called deterministic if every set
δ(z, a) for z ∈ Z and a ∈ V is a singleton set.

The transition function δ can be extended to a function δ∗ : Z × V ∗ → P(Z) where δ∗(z, λ) = {z} and

δ∗(z, va) =
⋃

z′∈δ∗(z,v)

δ(z′, a).

We will use the same symbol δ in both the original and extended version of the transition function.
Let A = (V,Z, z0, F, δ) be a finite automaton. A word w is accepted by the finite automaton A if and only

if the automaton has reached an accepting state after reading the input word w, i.e., δ(z0, w) ∩ F 6= ∅. The
language accepted by A is defined as

L(A) = { w | δ(z0, w) ∩ F 6= ∅ }.

The family of the languages accepted by finite automata is equal to the family of the regular languages.

2.2. Ideals and codes

In the sequel, let V be an alphabet. We first introduce the notion of an ideal in V ∗ from the theory of rings
and semigroups.

A non-empty language L ⊆ V ∗ is called a right (left) ideal if and only if, for any word v ∈ V ∗ and any word
u ∈ L, we have uv ∈ L (vu ∈ L, respectively). It is easy to see that the language L is a right (left) ideal if and
only if there is a language L′ such that L = L′V ∗ (L = V ∗L′, respectively).

We now present some notions from coding theory, especially some special codes. For details, we refer to
[11, 16].

For a word x ∈ V ∗, let

E(x) = { y | y ∈ V +, vyv′ = x for some v, v′ ∈ V ∗ },

(i.e., E(x) is the set of all non-empty subwords of x).
A language L ⊆ V ∗ is called

– a code if and only if, for any numbers n ≥ 1, m ≥ 1, and words

x1, x2, . . . , xn, y1, y2, . . . ym ∈ L

such that

x1x2 . . . xn = y1y2 . . . ym,
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we have the equalities n = m and xi = yi for 1 ≤ i ≤ n (i.e., a word of L∗ has a unique decomposition
into code words.

– a solid code if and only if, for any numbers n ≥ 1, m ≥ 1, words

x1, x2, . . . , xn, y1, y2, . . . ym ∈ L,

and words

v1, v2, . . . , vn+1, w1, w2, . . . , wm+1

with E(vi) ∩ L = ∅ for 1 ≤ i ≤ n+ 1, and E(wj) ∩ L = ∅ for 1 ≤ j ≤ m+ 1 such that

v1x1v2x2 . . . vnxnvn+1 = w1y1w2y2 . . . wmymwm+1,

we have n = m, xi = yi for 1 ≤ i ≤ n, and vj = wj for 1 ≤ j ≤ n+ 1;
– uniform if and only if L ⊆ V n for some n ≥ 1 (all words have the same length);
– prefix if and only if, for any words u ∈ L and v ∈ V ∗ such that uv ∈ L, we have v = λ (i.e., any proper

prefix of a word in L is not in L);
– suffix if and only if, for any words u ∈ L and v ∈ V ∗ such that vu ∈ L, we have v = λ (i.e., any proper

suffix of a word in L is not in L);
– bifix if and only if it is prefix as well as suffix;
– infix if and only if, for any u ∈ L, and v, v′ ∈ V ∗ such that vuv′ ∈ L, we have v = v′ = λ (i.e., any proper

subword of a word in L is not in L).

Note that uniform, prefix, suffix, bifix, and infix languages are codes.
A code L ⊆ V ∗ is called

– outfix if and only if, for any words u ∈ V ∗ and v, v′ ∈ V ∗ such that vv′ ∈ L and vuv′ ∈ L, we have u = λ;
– reflective if and only if, for any words u, v ∈ V ∗ such that uv ∈ L, we have vu ∈ L.

By rId , lId , C , SC , PfC , SfC , BfC , IfC , OfC , RC , and UC , we denote the families of regular right ideals,
regular left ideals, regular codes, regular solid codes, regular prefix codes, regular suffix codes, regular bifix
codes, regular infix codes, regular outfix codes, regular reflective codes and uniform codes, respectively.

In [4], it is proved that any uniform code, any regular outfix code, and any regular reflective code is finite.
Further relations, expecially those depicted in Figure 1, are proved in [4, 11], and [16].

Lemma 2.1. The hierarchy of the classes REG, rId, lId, C , SC , PfC , SfC , BfC , IfC , OfC , RC , and UC is
presented in Figure 1.

2.3. Other subregular language families

For a language L over V , we set

Comm(L) = { ai1 . . . ain | a1 . . . an ∈ L, n ≥ 1, {i1, i2, . . . , in} = {1, 2, . . . , n} },
Circ(L) = { vu | uv ∈ L, u, v ∈ V ∗ },
Suf (L) = { v | uv ∈ L, u, v ∈ V ∗ }.

In [12], the following restrictions for regular languages are considered. In order to relate our results of this
paper to the results there, we explain here those special regular languages. Let L be a language and V = alph(L)
the minimal alphabet of L. We say that the language L, with respect to the alphabet V , is

– monoidal if L = V ∗,
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Figure 1. Hierarchy of regular ideals and codes (an arrow from X to Y denotes X ⊂ Y ; if two
families are not connected by a directed path, then they are incomparable).

– combinational if it has the form L = V ∗A for some subset A ⊆ V ,
– definite if it can be represented in the form L = A ∪ V ∗B where A and B are finite subsets of V ∗,
– nilpotent if L is finite or V ∗ \ L is finite,
– commutative if L = Comm(L),
– circular if L = C irc(L),
– suffix-closed if the relation xy ∈ L for some words x, y ∈ V ∗ implies that also the suffix y belongs to L or

equivalently, L = Suf (L),
– non-counting (or star-free) if there is an integer k ≥ 1 such that, for any x, y, z ∈ V ∗, the relation xykz ∈ L

holds if and only if also xyk+1z ∈ L holds,
– power-separating if for any word x ∈ V ∗ there is a natural number m ≥ 1 such that either the equality
Jmx ∩ L = ∅ or the inclusion Jmx ⊆ L holds where Jmx = { xn | n ≥ m },

– ordered if L is accepted by some finite automaton A = (Z, V, δ, z0, F ) where (Z,�) is a totally ordered set
and, for any a ∈ V , z � z′ implies δ(z, a) � δ(z′, a),

– union-free if L can be described by a regular expression which is only built by product and star.

Among the commutative, circular, suffix-closed, non-counting, and power-separating languages, we consider
only those which are also regular.

By FIN , MON , COMB , DEF , NIL, COMM , CIRC , SUF , NC , PS , ORD , and UF , we denote the families
of all finite, monoidal, combinational, definite, nilpotent, regular commutative, regular circular, regular suffix-
closed, regular non-counting, regular power-separating, ordered, and union-free languages, respectively.

In this paper, families of languages are of special interest which are defined by bounding the resources which
are necessary for accepting or generating these languages.

Let RLG be the set of all right-linear grammars and DFA the set of all deterministic finite automata. Further,
let

G = (N,T, P, S) ∈ RLG and A = (V,Z, z0, F, δ) ∈ DFA.

Then we define the following measures of descriptional complexity:

Var(G) = |N |, Prod(G) = |P |, State(A) = |Z|.

For these complexity measures, we define the following families of languages (we abbreviate the measure Var
by V , the measure Prod by P , and the measure State by Z):

RLVn = { L | ∃G ∈ RLG : L = L(G) and Var(G) ≤ n } ,
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Figure 2. Hierarchy of further subregular language families. An edge label refers to the paper
where the respective inclusion is proved. The proper inclusions where no reference is given as
well as the incomparabilities are proved in [19].

RLPn = { L | ∃G ∈ RLG : L = L(G) and Prod(G) ≤ n } ,
REGZ

n = { L | ∃A ∈ DFA : L = L(A) and State(A) ≤ n } .

The relations between the considered families are investigated, e.g., in [9, 10, 17–19, 22]. They are illustrated
in Figure 2.

Regarding the families defined by bounded resources, we note the following relations: Ki ⊂ Ki+1 for
K ∈ {RLV ,RLP ,REGZ} and i ≥ 1 as well as RLP2i ⊂ RLVi and REGZ

i ⊂ RLVi .

Lemma 2.2. The inclusion relations presented in Figure 2 hold. An arrow from an entry X to an entry Y depicts
the proper inclusion X ⊂ Y ; if two families are not connected by a directed path, then they are incomparable.
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2.4. Accepting networks of evolutionary processors

We call a production α→ β a substitution if |α| = |β| = 1 and deletion if |α| = 1 and β = λ. The productions
are applied like context-free rewriting rules. We say that a word v derives a word w, written as v =⇒ w, if there
are words x, y and a production α→ β such that v = xαy and w = xβy.

A production λ→ a, where a is a letter, is called an insertion. The application of an insertion λ→ a derives
from a word w any word w1aw2 with w = w1w2 for some (possibly empty) words w1 and w2.

In order to indicate also the applied rule p in a derivation step, we write v =⇒p w. For a set P of rules, we
write v =⇒P w if and only if v =⇒p w for some rule p ∈ P . The reflexive and transitive closure of the relation
is denoted by =⇒∗P : we write x =⇒∗P y if there are rules p1, . . . , pn (n ≥ 0) in P and words w0, . . . , wn such
that x = w0, wi =⇒pi+1

wi+1 for i = 0, . . . , n− 1, and wn = y. If at least one rule is applied, we write x =⇒+
P y.

We now present the basic concept of this paper, namely accepting networks of evolutionary processors (ANEPs
for short).

Definition 2.3. Let X be a family of regular languages and n a natural number.

1. An accepting network of evolutionary processors of size n and with filters from the family X is an (n+ 5)-
tuple N = (V,U,N1, N2, . . . , Nn, E, ni, no) where
• V is a finite alphabet, called the input alphabet of the network,
• U is a finite alphabet with V ⊆ U , called the working alphabet of the network,
• Ni = (Mi, Ii, Oi) for 1 ≤ i ≤ n are the processors where

◦ Mi is a set of rules of a certain type: Mi ⊆ { a→ b | a, b ∈ U }
or Mi ⊆ { a→ λ | a ∈ U } or Mi ⊆ { λ→ b | b ∈ U },
◦ Ii and Oi are languages from the class X over some subset of the alphabet U ; the set Ii is called the
input filter and Oi the output filter of the processor,

• E is a subset of {1, 2, . . . , n} × {1, 2, . . . , n}, and
• ni and no are two natural numbers from the set {1, 2, . . . , n}; the processor Nni is called the input node

and Nno
the output node of the network.

2. A configuration C of an ANEP N is an n-tuple C = (C(1), C(2), . . . , C(n)) where C(i) is a subset of U∗

for 1 ≤ i ≤ n.
3. Let C = (C(1), C(2), . . . , C(n)) and C ′ = (C ′(1), C ′(2), . . . , C ′(n)) be two configurations of N . We say

that C derives C ′ in one
• evolutionary step (written as C =⇒ C ′) if, for 1 ≤ i ≤ n, C ′(i) consists of all words w ∈ C(i) to which

no rule of Mi is applicable (no left-hand side of a rule is present in the word w; note that insertion rules
can always be applied since the empty word is always a subword) and of all words w for which there
are a word v ∈ C(i) and a rule p ∈Mi such that v =⇒p w holds,

• communication step (written as C ` C ′) if, for 1 ≤ i ≤ n,

C ′(i) = (C(i) \Oi) ∪
⋃

(k,i)∈E

(C(k) ∩Ok ∩ Ii).

The computation of an ANEP N on an input word w ∈ V ∗ is a sequence of configurations
Cwt = (Cwt (1), Cwt (2), . . . , Cwt (n)), t ≥ 0, such that
• Cw0 (ni) = {w} and Cw0 (j) = ∅ for j ∈ {1, . . . , n} \ {ni},
• for any t ≥ 0, Cw2t derives Cw2t+1 in one evolutionary step,
• for any t ≥ 0, Cw2t+1 derives Cw2t+2 in one communication step.
The computation of an ANEP N on an input word w ∈ V ∗ is said to be accepting if there exists a step
t ≥ 0 in which the component Cwt (no) of the configuration representing the content of the output node is
not empty.
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4. The language L(N ) accepted by N is defined as

L(N ) = { w | w ∈ V ∗ and the computation of N on w is accepting }.

In the sequel, we also use the terms evolutionary network or network or net instead of ANEP.
Intuitively, an accepting network with n evolutionary processors is a graph consisting of n nodes N1, . . . , Nn

(also called processors) and a set of edges given by E such that there is a directed edge from node Nk to node Ni
if and only if (k, i) ∈ E. Among the processors, two are distinguished: an input processor Nni

and an output
processor Nno . Any processor Ni consists of a set Mi of evolutionary rules, an input filter Ii, and an output
filter Oi. We say that Ni is

• a substitution node if Mi ⊆ { a→ b | a, b ∈ U } (by any rule, a letter is substituted by another one),
• a deletion node if Mi ⊆ { a→ λ | a ∈ U } (by any rule, a letter is deleted), or
• an insertion node if Mi ⊆ { λ→ b | b ∈ U } (by any rule, a letter is inserted).

Every node has only one type of rules. The input filter Ii and the output filter Oi control the words which
are allowed to enter and to leave the node, respectively. We say that an accepting network has filters from a
subclass X of regular languages if both filters of any processor belong to the class X. With any node Ni and
any time moment t ≥ 0, we associate a set Ct(i) of words (the words contained in the node at time t). Initially,
the node Nni

contains exactly one word – the input word; all other nodes do not contain any word. In an
evolutionary step, we derive from Ct(i) all words by applying rules from the set Mi to the present words (all
words, for which there is no rule applicable, survive an evolutionary step; to the others, any applicable rule
is applied). In a communication step, any processor Ni sends out copies of all words from the set Ct(i) ∩ Oi
(which pass the output filter) to all processors to which a directed edge exists; only the words from Ct(i) \Oi
remain in the set associated with Ni, and, moreover, it receives from any processor Nk such that there is an
edge from Nk to Ni all words whose copies are sent by Nk and pass the input filter Ii of Ni, i.e., the processor
Ni gets in addition all words of Ct(k) ∩Ok ∩ Ii. The input filter of a node controls which words are allowed to
enter the node and the output filter controls which words are allowed to leave the node. Those words which do
not leave a node remain there. Those words which leave a node move to every adjacent node. There, a word
enters the processor if it passes the input filter, otherwise it is lost (it vanishes from the network). We start
with an evolutionary step and then communication steps and evolutionary steps are alternately performed. An
input word is accepted by a network if and only if there exists a step in the computation in which the output
processor contains at least one string. The accepted language consists of all accepted words. In what follows,
we do not distinguish between nodes and processors. If two ANEPs accept the same language, we say that the
networks are equivalent to each other.

For a family X, we denote the family of languages accepted by networks of evolutionary processors where
all filters are of type X by A(X). In this paper, we assume that a filter language belongs to some family X
if it belongs to it with respect to its smallest alphabet, not necessarily to the alphabet of all letters which
might occur in the node or even in the entire network. A word passes a filter if it is an element of the language
representing the filter otherwise it does not pass the filter.

The following theorem is known (see [12]).

Theorem 2.4 ([12]). We have A(REG) = RE.

This result appeared already earlier in other publications, however, [12] is the first paper where the evolu-
tionary step is defined as here (in the present paper, in an evolutionary step, a word remains only in a node
if there is no rule which can be applied to it or, for some letter a in the word, a → a is a rule associated to
the node; this is in contrast to earlier literature, where a word also remains, if there are a rule which cannot be
applied and a another rule which can be applied).

Also the following two lemmas are from [12] and will be used here as well.
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Lemma 2.5 ([12]). Let X and Y be two families of languages such that X ⊆ Y . Then the inclusion
A(X) ⊆ A(Y ) holds.

Lemma 2.6 ([12]). Let X be a subclass of REG. Then the inclusion X ⊆ A(X) holds.

3. Results

We investigate the impact of filters defined by restricting resources or by properties as being an ideal or a code
for the computational power. We compare the language families obtained in such a way to those investigated
earlier in the literature (see [12]).

3.1. Resources restricted filters

We first consider the number of non-terminal symbols sufficient for generating a language. We obtain that
any recursively enumerable language is accepted by a network of evolutionary processors were each filter is
generated by a right-linear grammar with only one non-terminal symbol.

Theorem 3.1. We have A(RLVi ) = RE for all natural numbers i ≥ 1.

Proof. Every combinational language can be generated by a regular grammar with only one non-terminal
symbol: For generating a language V ∗A, the rules S → vS for every letter v ∈ V and S → a for every letter
a ∈ A are sufficient ([19]). According to Lemma 2.5, the chain of inclusions

COMB ⊆ RLV1 ⊆ RLV2 ⊆ · · · ⊆ REG

implies the chain of inclusions

A(COMB) ⊆ A(RLV1 ) ⊆ A(RLV2 ) ⊆ · · · ⊆ A(REG).

In [12], the relation A(COMB) = RE was proved. Hence, together with Theorem 2.4, we also have
A(RLVi ) = RE for all natural numbers i ≥ 1.

We now consider networks where the filters are accepted by deterministic finite automata with a bounded
number of states. Analogously to Theorem 3.1, we obtain a similar result.

Theorem 3.2. We have A(REGZ
i ) = RE for all natural numbers i ≥ 2.

Proof. Every combinational language can be accepted by a deterministic finite automaton with two states only:
A language V ∗A with an alphabet V and a subset A ⊆ V is accepted by an automaton whose transition graph
is as follows ([19]):

z0start z1

V \A
A

A

V \A

According to Lemma 2.5, the chain of inclusions

COMB ⊆ REGZ
2 ⊆ REGZ

3 ⊆ · · · ⊆ REG

implies the chain of inclusions

A(COMB) ⊆ A(REGZ
2 ) ⊆ A(REGZ

3 ) ⊆ · · · ⊆ A(REG).



10 J. DASSOW AND B. TRUTHE

Since A(COMB) = RE = A(REG) (by [12] and Thm. 2.4), also the relation A(REGZ
i ) = RE holds for every

natural number i ≥ 2.

For networks with filters which are accepted by deterministic finite automata with one state only, the situation
is different.

Theorem 3.3. We have A(REGZ
1 ) = A(MON ).

Proof. The inclusion MON ⊂ REGZ
1 ([19]) implies the inclusion

A(MON ) ⊆ A(REGZ
1 )

(according to Lem. 2.5). We now prove that the inverse inclusion

A(REGZ
1 ) ⊆ A(MON )

holds as well.
Every language of the family REGZ

1 is the empty set or a monoidal language. A network with filters in REGZ
1

which contains empty sets as filters can be transformed into an equivalent network which has only monoidal
languages as filters, which can be seen as follows.

If the input filter of a node N is the empty set, then no word can enter this node. Thus, we can remove all
edges that lead to the node N and set the input filter to an arbitrary monoidal language without changing the
possible communications. If the output filter of a node is the empty set, then no word can leave this node. If
this is the case for a node N which is not the output node, then this node N is useless in that sense that it
does not contribute to the acceptance of a language. So, we can eliminate this node together with all incident
edges without changing the language accepted. If the output node has an empty output filter, then we replace
this filter by any monoidal language and cancel all its outgoing edges (once a word is present in this node, the
input word is accepted, so there is no need that the computation continues; hence, the output filter has no effect
on the acceptance of a language). This new network accepts the same language and has only monoidal filters.
Hence, also the inclusion A(REGZ

1 ) ⊆ A(MON ) holds, and, thus, also the equality A(REGZ
1 ) = A(MON ).

We finally investigate networks where the filters are restricted by the number of production rules necessary
for generating the filters. Here, we obtain an infinite hierarchy. Further inclusion relations and incomparability
results are proved in the sequel.

First, we give a lemma regarding the number of production rules Prod(L) (for some regular language L)
which are necessary for a right-linear grammar generating the language L. Note that

Prod(L) = min{ Prod(G) | L = L(G) }.

Lemma 3.4. Let T and T ′ be two alphabets and h : T ∗ → (T ′)∗ be a homomorphism. Then, for every language
L ⊆ T ∗, we have Prod(h(L)) ≤ Prod(L).

Proof. Let G = (N,T, P, S) be a right-linear grammar such that L(G) = L and Prod(G) = Prod(L). Then the
grammar G′ = (N,T ′, P ′, S) with

P ′ = {A→ h(w) | w ∈ T ∗ and A→ w ∈ P } ∪ {A→ h(w)B | B ∈ N and A→ wB ∈ P }

is right-linear and satisfies L(G′) = h(L). Thus,

Prod(h(L)) ≤ |P ′| ≤ |P | = Prod(G) = Prod(L).
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The next lemmas give lower bounds for the number of rules of right-linear grammars generating special
languages (these will later be used to prove that some output filters cannot be generated with fewer rules).

A rule in a right-linear grammar is called a T-rule if and only if it has not the form A → B or A → λ,
where A and B are non-terminal symbols, (i.e., by the application of a T-rule, at least one terminal symbol is
produced).

Lemma 3.5. Let a1, a2, . . . , ai be i pairwise different letters and T an alphabet with aj ∈ T for 1 ≤ j ≤ i. For
every natural number j with 1 ≤ j ≤ i, let zj ∈ {aj}∗T{aj}∗ be a word over T with |zj | ≥ 3. Further, let L ⊆ T
be a regular language such that {z1, z2, . . . , zi} ⊆ L. Then it holds Prod(L) ≥ i.

Proof. Let everything be defined as stated in the lemma and let G = (N,T, P, S) be a right-linear grammar
generating the language L. Further, let I be the subset of all indices j ∈ {1, 2, . . . , i} such that there is a
derivation Dj of the word zj by rules of a subset Pj ⊆ P such that all T-rules of this set Pj are not used in
any derivation of any other word zk with 1 ≤ k ≤ i, k 6= j. For j ∈ I, we choose qj as the first T-rule which is
applied in the derivation Dj .

Let j /∈ I. Then there is a derivation D′j of zj in which a T-rule A→ wB or A→ w with w ∈ T+ is applied
which is also applied in some derivation of another word zk. But then w is a subword of zj as well as of zk.
By the structure of the words zp with 1 ≤ p ≤ i, we obtain that |w| ≤ 2 (a longer subword of zj contains at
least two letters aj but no other word contains aj twice). Hence, in the derivation D′j , a T-rule is applied which
produces a word of {aj}+ (the word w itself or a subword of the remaining part of zj). We choose qj as this
rule.

By construction, the rules q1, q2, . . . , qi are pairwise different. This implies for the number of rules Prod(G) ≥ i.
If the grammar G is minimal, we obtain also Prod(L) = Prod(G) ≥ i.

Lemma 3.6. Let a1, a2, . . . , ai be i pairwise different letters and T an alphabet with aj ∈ T for 1 ≤ j ≤ i.
Moreover, let t > 0 be a natural number and, for every natural number j with 1 ≤ j ≤ i, let zj ∈ {aj}∗T{aj}∗
be a word over T with |zj | ≥ 3t. Further, let L ⊆ T be a regular language such that {z1, z2, . . . , zi} ⊆ L and
let G = (N,T, P, S) be a right-linear grammar which generates the language L and where the longest right-hand
side of a rule in P has a length of at most t. Then it holds Prod(G) > i.

Proof. Let everything be defined as stated in the lemma. For every word zj with 1 ≤ j ≤ i, there is a derivation

S =⇒∗ wj,1 =⇒∗ wj,2 =⇒∗ zj

where 1 ≤ |wj,1| ≤ t and |wj,1|+ 1 ≤ |wj,2| ≤ 2t. If wj,1 consists of the letter aj only, we denote the first T-rule
applied in the derivation by qj . Otherwise, we take as qj the first T-rule which is applied in the sub-derivation
wj,1 =⇒∗ wj,2. In this way, the right-hand side of any rule qj is from the set {aj}+N (any rule qj is not
terminating since |wj,2| ≤ 2t whereas |zj | = 3t). Additionally, we take as qi+1 the terminating rule applied in
the derivation D1.

By construction, all rules q1, q2, . . . , qi+1 are pairwise different. This implies for the number of rules
Prod(G) ≥ i+ 1. If the grammar G is minimal, we obtain also Prod(L) = Prod(G) ≥ i+ 1.

We now present some witness languages for separating language families.

Lemma 3.7. Let L = {a, aaa}. Then L ∈ (A(FIN ) ∩ A(RLP2 )) \ A(RLP1 ) holds.

Proof. The language L is finite and can be generated by a right-linear grammar with two rules. According to
Lemma 2.6, it holds L ∈ A(FIN ) ∩ A(RLP2 ).

Assume that also L ∈ A(RLP1 ) holds. Then there is an ANEP

N = ({a}, U,N1, N2, . . . , Nn, E, ni, no)
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with L(N ) = L and where every filter contains at most one word. If the input and output node coincide
(ni = no), then the language {a}∗ is accepted which contradicts the assumption L(N ) = L. Hence, the input
and output node are different. We distinguish now the possibilities for the input node Nni = (Mni , Ini , Oni):

1. The node has no rules. Then L(N ) ⊆ Oni
. Since the output filter Oni

contains at most one word, the
language L is not accepted.

2. The input node is a deletion node. If Oni 6⊆ {a}∗, then L(N ) = ∅, which is a contradiction. Hence, the filter
Oni

contains a word which consists of letters a only. Then L(N ) ⊆ {a}∗{w}{a}∗. Due to the assumption
that L(N ) = L, we have w = a (in case that a is not deleted in this node) or w = λ (in case that the rule
a → λ exists). In the first case, the word input word aaa cannot be changed. Since, it cannot leave the
node, it is not accepted. In the second case, both the input words aa and aaa are derived to w by deletion,
and hence, both are accepted, which is also a contradiction.

3. The input node is a substitution node. If Oni = ∅, then L(N ) = ∅, which is a contradiction. Otherwise,
Oni

= {w} for a word w ∈ U∗. Since am with m = |w| is the only input word which can be derived to
the word w by substitution rules, this is the only word for which it is possible that it is accepted. This is
again a contradiction.

4. The input node is an insertion node. If Oni = ∅, then L(N ) = ∅, which is a contradiction. Otherwise,
Oni = {w} for a word w ∈ U∗. The only input words which can be derived to the word w by insertion
rules are am with m < |w|. Hence, L(N ) ⊆ { am | 0 ≤ m < |w| }. Since, by assumption, L(N ) = L,
it follows |w| ≥ 4. Furthermore, aaa is a scattered subword of the word w (because aaa ∈ L and, by
insertion rules, only letters can be added to obtain the word w). Since also a must be derived to the word
w, the node contains the rule λ→ a. But then, also the input word aa can be derived to the word w (by
one insertion of a more than for the input word aaa). Thus, it holds aa ∈ L(N ) if and only if aaa ∈ L(N ),
which is also a contradiction.

Since every possibility yields a contradiction, the assumption is wrong. Hence, we obtain the claim L /∈ A(RLP1 ).

The language from the previous lemma serves as a witness language for some inclusion relations.

Theorem 3.8. The proper inclusions A(RLP1 ) ⊂ A(FIN ) and A(RLP1 ) ⊂ A(RLP2 ) hold.

Proof. The inclusions A(RLP1 ) ⊆ A(FIN ) and A(RLP1 ) ⊆ A(RLP2 ) follow from Lemma 2.2 and Lemma 2.5. A
witness language for the properness is in both cases the language L = {a, aaa} as shown in Lemma 3.7.

We now consider a sequence of languages which will also serve as witness languages.

Lemma 3.9. For any natural number i ≥ 2, let Vi = {a1, a2, . . . , ai} be an alphabet with i letters. Further, let

Li =

i⋃
k=1

{ak}∗.

Then Li ∈ (A(RLPi+1) ∩ A(MON )) \ A(RLPi ).

Proof. Let i ≥ 2 be a natural number. The language Li is generated by the following network with i+ 2 nodes
where the index of the input node is ni = 0 and that of the output node no = i+ 1:
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M0 = ∅,
I0 = V ∗i ,
O0 = V ∗i

ss ++M1 = ∅,
I1 = {a1}∗,
O1 = {a1}∗

++

· · ·
Mi = ∅,
Ii = {ai}∗,
Oi = {ai}∗

ssMi+1 = ∅,
Ii+1 = V ∗i ,
Oi+1 = V ∗i

The language accepted is Li because any word amk with 1 ≤ k ≤ i and m ≥ 0 moves from the input node
to node Nk and further to the output node and any other word is lost in the first communication step. Each
filter in the presented network is a monoidal language and belongs to the family RLPi+1 (the language V ∗i can
be generated by the i+ 1 regular rules S → xS for x ∈ Vi and S → λ; any language {ak}∗ for 1 ≤ k ≤ i can be
generated by the two rules S → akS and S → λ). Hence, Li ∈ A(RLPi+1) ∩ A(MON ).

Assume that also Li ∈ A(RLPi ) holds. Then there is an ANEP

N = (Vi, U,N1, . . . , Nn, E, ni, no)

with L(N ) = Li and where every filter is generated by a right-linear grammar with at most i rules. If the input
and output node coincide, then the language V ∗i is accepted which contradicts the assumption L(N ) = Li.
Hence, the input and output node are different. We consider the input node Nni

= (Mni
, Ini

, Oni
) and prove

that already the output filter Oni
of this node cannot be generated by a grammar with at most i production

rules. Let Gni be a right-linear grammar which generates the filter Oni .
We distinguish some cases with respect to the rule set Mni :

1. No rule x → λ with x ∈ Vi, no rule x → y with x ∈ Vi and y ∈ U , and no rule λ → y with y ∈ U is
contained in Mni

. Then input words cannot be changed in the node Nni
, but have to leave it in order to

yield a word arriving in the output node after some steps. Thus, especially all words a3tj with 1 ≤ j ≤ i
are contained in Oni . Since the generation of these words by a right-linear grammar requires at least i+ 1
rules (one for each first letter and a terminating rule because these words cannot be derived in one step
due to the choice of the length), we obtain a contradiction to our assumption.

2. The set Mni
contains a rule for deleting a letter of the input alphabet. First, we discuss the case that Mni

contains only one such rule ak → λ. The words aj with 1 ≤ j ≤ i and j 6= k cannot be changed in the
node Nni

. Each such word must leave this node such that it can be accepted by yielding a word zj which
arrives in the output node. Thus, all these words aj belong to Oni . But then a mixed input word akaj
derives aj which leaves the node Nni and also yields the word zj which arrives in the output node. Thus,
the word akaj /∈ Li is accepted in contrast to our assumption.

If there are two rules ak → λ and a` → λ in Mni
with 1 ≤ k < ` ≤ i, then we derive in the first step in

the node Nni
the word ak both from the input word a2k as well as from the input word a`ak. Since a2k is

accepted, also a`ak is accepted, but a`ak /∈ Li. Thus, we have a contradiction, again.
3. The set Mni contains insertion rules. Let t be the length of the maximal number of letters of Vi in the

words z occurring on the right-hand sides of rules of Gni
. Since Mni

contains only insertion rules and a
word obtained from a21 has to leave the input node, t > 0 holds. We consider the word a3tj for an index j
with 1 ≤ j ≤ i. Since this word is accepted, there is a sequence of words uj,1, uj,2, . . . , uj,rj such that

a3tj =⇒ uj,1 =⇒ uj,2 =⇒ · · · =⇒ uj,rj−1 =⇒ uj,rj (3.1)

is a derivation in the node Nni where uj,p /∈ Oni for 1 ≤ p ≤ rj − 1 and uj,rj ∈ Oni and uj,rj is transformed
in the sequel into a word arriving in the output node.
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If all letters inserted into the word a3tj in the derivation (3.1) to get uj,rj are not in Vi \ {aj}, we set
zj = uj,rj . Obviously, zj contains aqj for some natural number q ≥ 3t as a scattered subword (q > 3t occurs
if aj is inserted in some steps) and the other letters do not belong to Vi.

If a letter of Vi \ {aj} is inserted, then let uj,sj =⇒ uj,sj+1 be the first step where such a letter is
inserted and let ak be this letter. Then the word aq1j aka

q2
j for some numbers q1 and q2 with q1 + q2 ≥ 3t

is a scattered subword of uj,sj+1 (the case q1 + q2 > 3t occurs if aj is inserted in some earlier steps)

and the other letters of uj,sj+1 do not belong to Vi. We now consider an input word u = a
q′1
j aka

q′2
j such

that q′1 ≤ q1, q′2 ≤ q2, and q′1 + q′2 = 3t, and then we start to insert the letters inserted in the first sj steps
of the derivation (3.1) at the corresponding positions in u such that uj,sj+1 is obtained if all insertions can
be performed (i.e., the intermediate words do not leave the input node). If all steps can be performed, we
obtain the word uj,sj+1 where we insert further letters as above to produce the word uj,rj in the input
node. This word uj,rj leaves the node and is transformed into a word arriving in the output node. But
then u /∈ Li is accepted which gives a contradiction. Therefore, a word u′ produced in less than sj steps
has to belong to Oni

(the word u′ leaves the node Nni
and does not yield a word arriving in the output

node after transformations). Then, we set zj = u′. Note that zj contains a scattered subword a
q′′1
j aka

q′′2
j

with q′′1 + q′′2 ≥ 3t such that all other letters of zj do not belong to Vi.
By our construction, we have {z1, z2, . . . , zi} ⊆ Oni . We consider the homomorphism h which

maps every letter of Vi onto itself and every letter not in Vi onto the empty word. Then
{h(z1), h(z2), . . . , h(zi)} ⊆ h(Oni

). Let Hni
be a right-linear grammar constructed from the grammar Gni

as in the proof of Lemma 3.4. Then L(Hni
) = h(Oni

) and the maximal length of the words z′ occurring on
the right-hand sides of rules of Hni

is t. By Lemma 3.6, we obtain that Prod(Hni
) > i. By the construction

of Hni , we get Prod(Gni) > i, too. Since the above argumentation is valid for any right-linear grammar
generating the output filter Oni , we obtain that also Prod(Oni) > i holds. Thus, Oni /∈ RLPi which is a
contradiction to our assumption.

4. The set Mni
contains a rule for substituting a letter of the input alphabet.

For every natural number j with 1 ≤ j ≤ i, we set Yj as the set of all letters which can be obtained in
the input node from the letter aj by substitutions and only from this letter and which do not belong to
the alphabet Vi:

Yj = { x | x ∈ U \ Vi and aj =⇒∗ x and ∀k 6= j : ak 6=⇒∗ x }.

We further set Y as the set of all letters which can be obtained in the input node from two different letters
of the input alphabet by substitutions and which do not belong to the alphabet Vi:

Y = { x | x ∈ U \ Vi and ∃j, k : 1 ≤ j < k ≤ i and

aj =⇒∗ x and ak =⇒∗ x }.

Let t be the maximal length of the words z occurring on the right-hand side of rules of Gni . Since the
length is not changed by the application of substitution rules and an infinite set is accepted, it is clear
that t > 0. We consider the word a3tj for an index j with 1 ≤ j ≤ i. Since this word is accepted, there is a
sequence of words uj,1, uj,2, . . . , uj,rj such that

a3tj =⇒ uj,1 =⇒ uj,2 =⇒ · · · =⇒ uj,rj−1 =⇒ uj,rj (3.2)

is a derivation in the node Nni
where uj,p /∈ Oni

for 1 ≤ p ≤ rj − 1 and uj,rj ∈ Oni
and uj,rj is transformed

in the sequel into a word arriving in the output node.
If the word uj,rj consists of letters from the set {aj} ∪ Yj only (the letters different from aj do not

belong to the set Vi and cannot be obtained from another letter ak), we set zj = uj,rj .



ACCEPTING NETWORKS OF EVOLUTIONARY PROCESSORS 15

If a letter of the set (Vi ∪ Y ) \ {aj} appears after a substitution, then let uj,sj =⇒ uj,sj+1 be the first
step where such a letter appears and let x be this letter. Then we have

uj,sj+1 ∈ ({aj} ∪ Yj)q1{x}({aj} ∪ Yj)q2

for some numbers q1 and q2 with q1 + q2 = 3t− 1. If x ∈ Vi, then x = ak for some index k with 1 ≤ k ≤ i
and k 6= j. If x ∈ Y , then there is a letter ak with 1 ≤ k ≤ i and k 6= j and ak =⇒∗ x.

We now consider the input word u = aq1j aka
q2
j . We first substitute the letters as in the first sj steps of

the derivation (3.2) at the corresponding positions in u ignoring those derivation steps which substitute the
letter at position q1 + 1 and then we execute the substitutions at position q1 + 1 according to the derivation
ak =⇒∗ x such that uj,sj+1 is obtained if all substitutions can be performed (i.e., the intermediate words
do not leave the input node). If all steps can be performed, we obtain the word uj,sj+1 where we substitute
further letters as above in the derivation (3.2) to produce the word uj,rj in the input node. This word
uj,rj leaves the node and is transformed into a word arriving in the output node. But then u /∈ Li is
accepted which gives a contradiction. Therefore, a word u′ produced earlier than uj,sj+1 belongs to Oni

(such that the word u′ leaves the node Nni but does not yield a word arriving in the output node after
transformations). Then, we set zj = u′. Note that zj belongs to the set ({aj} ∪ Yj)q1U({aj} ∪ Yj)q2 .

By our construction, we have {z1, z2, . . . , zi} ⊆ Oni
. We consider the homomorphism h which maps

every letter of Vi onto itself, every letter of a set Yj with 1 ≤ j ≤ i onto aj , and all letters from Y onto a
new letter b. Then {h(z1), h(z2), . . . , h(zi)} ⊆ h(Oni

). Let Hni
be a right-linear grammar constructed from

the grammar Gni
as in the proof of Lemma 3.4. Then L(Hni

) = h(Oni
) and the maximal length of words z′

occurring on the right-hand sides of rules of Gni is t. By Lemma 3.6, we obtain that Prod(Hni) > i. By the
construction of Hni , we get Prod(Gni) > i, too. Since the above argumentation is valid for any right-linear
grammar generating the output filter Oni

, we obtain that also Prod(Oni
) > i holds. Thus, Oni

/∈ RLPi
which is a contradiction to our assumption.

Our assumption is false in any case and, thus, Li /∈ A(RLPi ) holds.

The previous lemma is now used to prove an infinite hierarchy.

Theorem 3.10. For all natural numbers i ≥ 1, the proper inclusion

A(RLPi ) ⊂ A(RLPi+1)

holds.

Proof. The proper inlusion A(RLP1 ) ⊂ A(RLP2 ) was already proved in Theorem 3.8.
Let i ≥ 2 be a natural number. The inclusion A(RLPi ) ⊆ A(RLPi+1) follows from Lemma 2.2 and Lemma 2.5.

A witness language for the properness is the language Li as was shown in Lemma 3.9.

The inclusion results obtained here and in [12] are illustrated in Figure 3. Whenever there is no directed path
from an entry X to an entry Y , the families X and Y are incomparable. Before we prove the incomparabilities,
we give some helpful lemmas.

Lemma 3.11. Let L be the family of the regular commutative languages or the family of the regular circular
languages, then A(L) = L holds.

Proof. Let L ∈ {COMM ,CIRC} and

fL =

{
Comm, if L = COMM ,

Circ, otherwise
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be the function which maps a language to its commutative or circular closure. By Lemma 2.6, we have the
inclusion L ⊆ A(L). Hence, it suffices to show that also the inclusion A(L) ⊆ L holds. Let N be a network
where all filters belong to the class L and let L = L(N ) be the accepted language. If the input and output
node of the network N coincide, then L = V ∗ where V is the input alphabet and L ∈ L. We now consider the
case, that the input and output node are different. Assume that L /∈ L. Then there are a word u ∈ L and a
word v ∈ fL({u}) \ L. Every operation on u in an evolutionary step leading to a word u′ can be executed also
on v at an appropriate position such that the resulting word v′ belongs to the set fL(u′). Since all the filters
belong to the family L, both words u′ and v′ leave the node and enter the same nodes or both remain in the
node. This argumentation can be repeated for all further steps in a computation which leads to the acceptance
of the input word u. This implies that there is also a computation which leads to the acceptance of the input
word v but this is a contradiction to v /∈ L. Thus, fL(L) = L(N ) and, therefore, L ∈ L.

Lemma 3.12. Let L = {ab}. Then L ∈ A(RLP1 ) \ A(CIRC ) holds.

Proof. Since L ∈ RLP1 , it follows L ∈ A(RLP1 ) by Lemma 2.6. According to Lemma 3.11, it holds
A(CIRC ) = CIRC . The language L is not circular and, therefore, L /∈ A(CIRC ).

Lemma 3.13. Let L = {a}∗{b}. Then L ∈ A(RLP2 ) \ (A(NIL) ∪ A(CIRC )) holds.

Proof. The language L can be generated by a regular grammar with two rules (for instance, S → aS and S → b).
By Lemma 2.6, it follows L ∈ A(RLP2 ). By Lemma 3.11, it holds A(CIRC ) = CIRC . The language L is not
circular and, therefore, L /∈ A(CIRC ). We now prove that L /∈ A(NIL).

Assume that L ∈ A(NIL). Then there is a network

N = ({a, b}, U,N1, N2, . . . , Nn, ni, no)

with L(N ) = L where each filter is finite or its complement is finite. Let m1 be the length of a longest word
occurring in a finite filter of the network N and let m2 be the length of a longest word occurring in the
complement of an infinite filter of the network N . Further, let m = max{m1,m2} be the maximum of these two
lengths.

Any word of length at least m+ 1 can be communicated to another node only by passing infinite filters. For
any such word, also every permutation goes the same way (it is too long for passing the finite filters and too long
for not passing the infinite filters). A substitution or insertion of a letter in a permutation yields the same words
as first substituting or inserting a letter and then permuting the words. Thus, as long as the network N does
not apply deleting rules, it works on a word with at least m+ 1 letters in the same way as on every permutation
of it. Hence, especially the word amb is accepted if and only if also the word am−1ba is accepted. Since this
contradicts L(N ) = L, at some moment during the computation, a deleting rule is applied which reduces the
original length. Hence, this deletion or a deletion in an earlier step effects a letter of the original input word –
possibly after some substitutions. Let us consider the two words w1 = amb and w2 = am−1ba as input words. If
that letter will be deleted which was originally the b and all other operations regarding the letters a before are
applied in both words w1 and w2 at the same positions, then the computations on the words w1 and w2 lead to
the same word. If, in continuation, the word w1 is accepted then also w2 is accepted which is a contradiction.
If the considered deletion effects a letter which was originally an a, then there is a derivation of the word amb
in the network before the mentioned deletion of the i-th a for some i with 1 ≤ i ≤ m such that these letters are
only substituted or not changed (xi ∈ U for 1 ≤ m, y ∈ U) and letters are inserted, which are later maybe also
substituted and deleted (leading to words wi ∈ U∗ with 1 ≤ i ≤ m+ 2):

a a . . . a a a . . . a a b

w1x1w2x2w3 . . . wi−1xi−1wixiwi+1xi+1wi+2 . . . wm−1xm−1wmxmwm+1ywm+2
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All intermediate words in this derivation have a length of at least m+ 1. Thus, the same evolutionary and
communication steps are also possible, if we start with the word am−1ba and operate on the last a as on the
i-th a of the word amb:

a a . . . a a . . . a a b a

w1x1w2x2w3 . . . wi−1xi−1wiwi+1xi+1wi+2 . . . wm−1xm−1wmxmwm+1ywm+2xi

Then we delete the letter xi and obtain in both cases the same word. Hence, also in the case that a letter
is deleted which was originally an a, the computations on the words w1 and w2 lead to the same word. If, in
continuation, the word w1 is accepted then also w2 is accepted which is a contradiction as before.

By these contradictions, we obtain that a network with nilpotent filters cannot accept the language L. Thus,
we also have L /∈ A(NIL).

Lemma 3.14. For any natural number i ≥ 1, let Vi = {a1, a2, . . . , ai} be an alphabet with i letters. Further, let
Fi+1 be the following language over the alphabet Vi+1:

Fi+1 =

i+1⋃
k=1

{a3k}.

Then Fi+1 ∈ (A(RLPi+1) ∪ A(FIN )) \ A(RLPi ).

Proof. Let i ≥ 1 be a natural number. Since the language Fi+1 is finite and can be generated by a right-linear
grammar with i+ 1 rules, we know from Lemma 2.6 that

Fi+1 ∈ A(RLPi+1) ∪ A(FIN ).

Assume that Fi+1 ∈ A(RLPi ) holds. Then there is an accepting network

N = (Vi+1, U,N1, . . . , Nn, E, ni, no)

with L(N ) = Fi+1 and where every filter is generated by a right-linear grammar with at most i rules. If
the input and output node coincide (ni = no), then the language V ∗i+1 is accepted which contradicts the
assumption L(N ) = Fi+1. Hence, the input and output node are different.

We consider the input node Nni = (Mni , Ini , Oni) and prove that already the output filter Oni of this node
cannot be generated by a grammar with at most i production rules. We distinguish some cases with respect to
the rule set Mni

:

1. No rule x→ λ with x ∈ Vi+1, no rule x→ y with x ∈ Vi+1 and y ∈ U , and no rule λ→ y with y ∈ U is
contained in Mni . Then input words cannot be changed in the node Nni , but have to leave it in order to
yield a word arriving in the output node after some steps. Thus, especially all words a3j with 1 ≤ j ≤ i+ 1
are contained in Oni

. Since the generation of these words by a right-linear grammar requires i + 1 rules
(one for each first letter), we obtain a contradiction to our assumption.

2. The set Mni
contains a rule for deleting a letter of the input alphabet. First, we discuss the case that Mni

contains only one such rule ak → λ. The words a3j with 1 ≤ j ≤ i+ 1 and j 6= k cannot be changed in the
node Nni . Each such word must leave this node such that it can be accepted by yielding a word zj which
arrives in the output node. Thus, all these words a3j belong to Oni

. But then a mixed input word aka
3
j

derives a3j which leaves the node Nni
and also yields the word zj which arrives in the output node. Thus,

the word aka
3
j /∈ Fi+1 is accepted in contrast to our assumption.

If there are two rules ak → λ and a` → λ in Mni
with 1 ≤ k < ` ≤ i+ 1, then we derive in the first step

in the node Nni the word a2k both from the input word a3k as well as from the input word a`a
2
k. Since a3k

is accepted, also a`a
2
k is accepted, but a`a

2
k /∈ Fi+1. Thus, we have a contradiction, again.
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3. The set Mni
contains insertion rules. We consider the word a3j for an index j with 1 ≤ j ≤ i + 1. Since

this word is accepted, there is a sequence of words uj,1, uj,2, . . . , uj,rj such that

a3j =⇒ uj,1 =⇒ uj,2 =⇒ · · · =⇒ uj,rj−1 =⇒ uj,rj (3.3)

is a derivation in the node Nni where uj,p /∈ Oni for 1 ≤ p ≤ rj − 1 and uj,rj ∈ Oni and uj,rj is transformed
in the sequel into a word arriving in the output node.

If all letters inserted into the word a3j in the derivation (3.3) to get uj,rj are not in Vi+1 \ {aj}, we set
zj = uj,rj . Obviously, zj contains aqj for some natural number q ≥ 3 as a scattered subword (q > 3 occurs if
aj is inserted in some steps) and the other letters do not belong to Vi+1. If a letter of the set Vi+1 \ {aj} is
inserted, then let uj,sj =⇒ uj,sj+1 be the first step where such a letter is inserted and let ak be this letter.
Then the word aq1j aka

q2
j for some numbers q1 and q2 with q1 + q2 ≥ 3 is a scattered subword of uj,sj+1

(the case q1 + q2 > 3 occurs if aj is inserted in some earlier steps) and the other letters of uj,sj+1 do not
belong to Vi+1.

We now consider an input word u = a
q′1
j aka

q′2
j such that q′1 ≤ q1, q′2 ≤ q2, and q′1 + q′2 = 3, and then

we start to insert the letters inserted in the first sj steps of the derivation (3.3) at the corresponding
positions in u such that uj,sj+1 is obtained if all insertions can be performed (i.e., the intermediate words
do not leave the input node). If all steps can be performed, we obtain the word uj,sj+1 where we insert
further letters as above to produce the word uj,rj in the input node. This word uj,rj leaves the node and is
transformed into a word arriving in the output node. But then the word u /∈ Fi+1 is accepted which gives
a contradiction. Therefore, a word u′ produced in less than sj steps has to belong to Oni

(the word u′

leaves the node Nni
and does not yield a word arriving in the output node after transformations). Then,

we set zj = u′. Note that zj contains a scattered subword a
q′′1
j aka

q′′2
j with q′1 ≤ q′′1 ≤ q1 and q′2 ≤ q′′2 ≤ q2

such that all other letters of zj do not belong to Vi+1.
By our construction, we have {z1, z2, . . . , zi+1} ⊆ Oni . We consider the homomorphism h which maps

every letter of Vi+1 onto itself and every letter not in Vi+1 onto the empty word. Then

{h(z1), h(z2), . . . , h(zi+1)} ⊆ h(Oni
).

By Lemma 3.5, we obtain that Prod(h(Oni)) ≥ i + 1 holds. From Lemma 3.4, we also know
that Prod(Oni) ≥ Prod(h(Oni)) holds. Thus, we obtain also in this case Oni /∈ RLPi which is a contradiction
to our assumption.

4. The set Mni
contains a rule for substituting a letter of the input alphabet.

For every natural number j with 1 ≤ j ≤ i+ 1, we set Yj as the set of all letters which can be obtained
in the input node from the letter aj by substitutions and only from this letter and which do not belong
to the alphabet Vi+1:

Yj = { x | x ∈ U \ Vi+1 and aj =⇒∗ x and ∀k 6= j : ak 6=⇒∗ x }.

We further set Y as the set of all letters which can be obtained in the input node from two different letters
of the input alphabet by substitutions and which do not belong to the alphabet Vi+1:

Y = { x | x ∈ U \ Vi+1 and ∃j, k : 1 ≤ j < k ≤ i+ 1 and

aj =⇒∗ x and ak =⇒∗ x }.

We consider the word a3j for an index j with 1 ≤ j ≤ i + 1. Since this word is accepted, there is a
sequence of words uj,1, uj,2, . . . , uj,rj such that

a3j =⇒ uj,1 =⇒ uj,2 =⇒ · · · =⇒ uj,rj−1 =⇒ uj,rj (3.4)
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is a derivation in the node Nni
where uj,p /∈ Oni

for 1 ≤ p ≤ rj − 1 and uj,rj ∈ Oni
and uj,rj is transformed

in the sequel into a word arriving in the output node.
If the word uj,rj consists of letters from the set {aj} ∪ Yj only (the letters different from aj do not

belong to the set Vi+1 and cannot be obtained from another letter ak), we set zj = uj,rj .
If a letter of the set (Vi+1 ∪ Y ) \ {aj} appears after a substitution, then let uj,sj =⇒ uj,sj+1 be the first

step where such a letter appears and let x be this letter. Then we have

uj,sj+1 ∈ ({aj} ∪ Yj)q1{x}({aj} ∪ Yj)q2

for some numbers q1 and q2 with q1 + q2 = 2. If x ∈ Vi+1, then x = ak for some index k with 1 ≤ k ≤ i+ 1
and k 6= j. If x ∈ Y , then there is a letter ak with 1 ≤ k ≤ i+ 1 and k 6= j and ak =⇒∗ x.

We now consider the input word u = aq1j aka
q2
j . We first substitute the letters as in the first sj steps of

the derivation (3.4) at the corresponding positions in u ignoring those derivation steps which substitute the
letter at position q1 + 1 and then we execute the substitutions at position q1 + 1 according to the derivation
ak =⇒∗ x such that uj,sj+1 is obtained if all substitutions can be performed (i.e., the intermediate words
do not leave the input node). If all steps can be performed, we obtain the word uj,sj+1 where we substitute
further letters as above in the derivation (3.4) to produce the word uj,rj in the input node. This word uj,rj
leaves the node and is transformed into a word arriving in the output node. But then the word u /∈ Fi+1

is accepted which gives a contradiction. Therefore, a word u′ produced earlier than uj,sj+1 belongs to Oni

(such that the word u′ leaves the node Nni but does not yield a word arriving in the output node after
transformations). Then, we set zj = u′. Note that zj belongs to the set ({aj} ∪ Yj)q1U({aj} ∪ Yj)q2 .

By our construction, we have {z1, z2, . . . , zi+1} ⊆ Oni
. We consider the homomorphism h which maps

every letter of Vi+1 onto itself, every letter of a set Yj with 1 ≤ j ≤ i + 1 onto aj , and all let-
ters from Y onto a new letter b. Then {h(z1), h(z2), . . . , h(zi+1)} ⊆ h(Oni). By Lemma 3.5, we obtain
that Prod(h(Oni)) ≥ i+ 1 holds. From Lemma 3.4, we also know that Prod(Oni) ≥ Prod(h(Oni)) holds.
Thus, Oni

/∈ RLPi which is a contradiction to our assumption.

Our assumption is false in any case and, thus, Fi+1 /∈ A(RLPi ) holds.

We now prove the incomparability results.

Theorem 3.15. Every family A(MON ), A(COMM ), A(REGZ
1 ), and A(CIRC ) is incomparable to A(RLP1 )

Proof. Due to the relations

A(MON ) = A(COMM ) = A(REGZ
1 ) and A(COMM ) ⊂ A(CIRC ),

it suffices to show that there is a language in the set A(MON ) \ A(RLP1 ) and that there is a language which
belongs to the set A(RLP1 ) \ A(CIRC ).

From Lemma 3.9 with L2 = {a1}∗ ∪ {a2}∗, we know that L2 ∈ A(MON ) but L2 /∈ A(RLP2 ) and, by
Theorem 3.10, we also have L2 /∈ A(RLP1 ).

For the language L = {ab}, the relation L ∈ A(RLP1 ) \ A(CIRC ) was proved in Lemma 3.12. Thus, this is a
witness language for the other case.

Theorem 3.16. Each of the families A(FIN ), A(MON ), A(COMM ), A(REGZ
1 ), A(NIL), and A(CIRC ) is

incomparable to every family A(RLPi ) for i ≥ 2.

Proof. Due to the equality A(MON ) = A(COMM ) = A(REGZ
1 ) and the inclusion relations A(FIN ) ⊂ A(NIL),

A(COMM ) ⊂ A(CIRC ), and A(RLPi ) ⊂ A(RLPi+1) for all i ≥ 1, it suffices to show that the following sets are
not empty:

A(MON ) \ A(RLPi ) and A(FIN ) \ A(RLPi ) for i ≥ 2
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as well as

A(RLP2 ) \ A(NIL) and A(RLP2 ) \ A(CIRC ).

According to Lemma 3.9, we have Li ∈ A(MON ) \ A(RLPi ) for all i ≥ 2 which proves the first case.
From Lemma 3.14 follows that Fi ∈ A(FIN ) \ A(RLPi ) for all i ≥ 2 which proves the second case. The last
two cases follow from Lemma 3.13 where L ∈ A(RLP2 ) \ (A(NIL) ∪ A(CIRC )) was shown for the witness
language L = {a}∗{b}.

3.2. Ideals and codes as filters

We start with accepting networks of evolutionary processors where the filters are either all left ideals or all
right ideals and prove that this restriction does not decrease the computational power compared to the use of
arbitrary regular languages as filters.

Theorem 3.17. We have A(lId) = RE.

Proof. In [12], it was shown that, for every recursively enumerable language Z, there is an ANEP with definite
filters only which accepts the language Z. Each filter in the constructed network has the form V ∗L for some
alphabet V and a finite language L ⊆ V ∗. Hence, all these filters are also left ideals which proves that also the
equivalence A(lId) = RE holds.

The symmetry between left and right ideals can be used for showing that also right ideals as filters do not
restrict the computational power.

Theorem 3.18. We have A(rId) = RE.

Proof. Let L ∈ RE be a recursively enumerable language. Then also the language LR of all reversed words,

LR = { wR | w ∈ L },

is recursively enumerable. According to Theorem 3.17, this language is accepted by a network with left ideals as
filters. If we change, in an accepting network for LR, every occurring filter F to FR, this new network accepts
the language (LR)R which is L and has right ideals as filters. Hence, A(rId) = RE holds.

We now consider codes as filters. In order to have a better readability, we recall that by C , SC , PfC , SfC ,
BfC , IfC , OfC , RC , and UC , we denote the families of regular codes, regular solid codes, regular prefix codes,
regular suffix codes, regular bifix codes, regular infix codes, regular outfix codes, regular reflective codes and
uniform codes, respectively.

Theorem 3.19. For any L ∈ {C ,PfC ,SfC ,BfC , IfC ,SC}, we have A(L) = RE.

Proof. Let L ∈ {C ,PfC ,SfC ,BfC , IfC ,SC}. We mention that, for any regular language R and two additional
letters A and B not occurring in the alphabet of R, the language {A}R{B} belongs to the class L.

Let L be a recursively enumerable language. By [12], Theorem 3.1, there is an accepting NEP

N = (V, V ′, N1, N2, . . . , Nn, E, ni, no)

with regular filters and Nni
= (∅, V ∗, V ∗) such that L(N ) = L. Let A and B be two new symbols not occurring

in V ′. We modify the net to

N ′ = (V, V ′ ∪ {A,B}, N ′0, N ′1, N ′2, . . . , N ′n, N ′n+1, E
′, 0, no)
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where

N ′0 = ({λ→ A, λ→ B}, {B}V ∗{A}, {A}V ∗{B}),
N ′n+1 = (Mni

, {A}V ∗{B}, {A}Oni
{B}),

N ′k = (Mk, {A}Ik{B}, {A}Ok{B}) for Nk = (Mk, Ik, Ok), 1 ≤ k ≤ n,
E′ = {(N ′0, N ′n+1)} ∪ { (N ′n+1, N

′
k) | (Nni

, Nk) ∈ E }
∪ { (N ′k, N

′
l ) | (Nk, Nl ∈ E }.

Let w ∈ L. By definition, using the insertion rules λ → A and λ → B of the initial node, we produce words
which cannot leave the node or AwB which is send to the node N ′n+1. Note that this node N ′n+1 behaves on
a word AxB as Ni on the word x. Now let AxB with x ∈ (V ′)∗ be a word in some node N ′k. Then the word
can be changed to aAxB or AxBa for some letter a ∈ V ′ if Mk contains the insertion rule λ→ a or to Ax′B.
In the former two cases, the words and all words which can be obtained by further applications of Mk cannot
leave the node. In the latter case, the word Ax′B remains in the node N ′k if and only if x′ remains in Nk or
the word Ax′B arrives in all nodes N ′l if x′ moves from Nk to Nl. Essentially, this situation also holds for N ′n+1

which behaves as Nni
. The difference is that in the sequel no word can be send to N ′n+1 by the structure of E′.

Thus, it is easy to see that a word AyB arrives in the new output node N ′no
if and only if y arrives in node

Nno
(starting with w). This proves L(N ′) = L. Hence, RE ⊆ A(L) and, since L ⊆ REG and A(REG) = RE

(Thm. 2.4), we also have A(L) = RE .

The next lemmas present witness languages for proving incomparabilities of language families or the
properness of inclusion relations.

Lemma 3.20. Let x ∈ V ∗ be a word over some alphabet V such that there is a circular shift of x which is
different from x. Then {x} ∈ (A(UC ) ∪ A(RLP1 )) \ A(CIRC ).

Proof. We consider the network

(V, V, (∅, {x}, {x}), (∅, {x}, {x}), (1, 2), 1, 2),

which accepts {x}. Since {x} is a uniform code and can be generated by one rule, we get {x} ∈ A(UC )∪A(RLP1 ).
By Lemma 3.11, we know that A(CIRC ) = CIRC . By our assumption, we have {x} /∈ CIRC , and thus, we

obtain {x} /∈ A(CIRC ).

Lemma 3.21. Let L = Circ({abc}). Then L ∈ (A(UC ) ∪ A(RC )) \ A(COMM ).

Proof. The language L is uniform and circular. Therefore, it is also a reflective code. By Lemma 2.6, it fol-
lows L ∈ A(UC ) ∪ A(RC ). According to Lemma 3.11, it holds A(COMM ) = COMM . The language L is not
commutative and, therefore, it holds L /∈ A(COMM ).

Lemma 3.22. For any natural number i ≥ 1, let Vi = {a1, a2, . . . , ai} be an alphabet with i letters. Further, let
Fi+1 be the following language over the alphabet Vi+1:

Fi+1 =

i+1⋃
k=1

{a3k}.

Then Fi+1 ∈ (A(UC ) ∪ A(RC )) \ A(RLPi ).

Proof. Let i ≥ 1 be a natural number. The language Fi is uniform and circular. Therefore, it is a uniform and
reflective code. Hence, Fi ∈ A(UC )∪A(RC ) according to Lemma 2.6. As proved in Lemma 3.14, we also know
that Fi+1 /∈ A(RLPi ).
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Lemma 3.23. Let i be an integer with i ≥ 5 and

Ci = { an1ban2 | n1 ≥ 0, n2 ≥ 0, n1 + n2 = i }
∪ { bm1abm2 | m1 ≥ 0,m2 ≥ 0,m1 +m2 = i+ 1 }

and

Li = { x0y1x1y2 . . . yrxr | xs ∈ {c}∗ for 0 ≤ s ≤ r, y1y2 . . . yr ∈ Ci }.

Then Li ∈ A(RC ) and Li /∈ A(UC ).

Proof. Let i ≥ 5. The network

({a, b, c}, {a, b, c}, ({c→ λ}, Ci, Ci), (∅, Ci, Ci), (1, 2), 1, 2)

accepts the language Li. Since Ci is a reflective code, we get Li ∈ A(RC ).
Assume that Li ∈ A(UC ). Then there is an accepting network

N = ({a, b, c}, U,N1, . . . , Nn, E, ni, no)

with filters in UC such that L(N ) = Li. We get ni 6= no since otherwise all words over {a, b, c} are accepted.
Therefore, any word of the language Li is possibly changed by some applications of rules of Mni

and then it
leaves the input node Nni

= (Mni
, Ini

, Oni
). Since especially the output filter Oni

is a uniform code, we get
Oni
⊆ Uk for some natural number k. We distinguish two cases:

1. Let k ≤ i+ 1. Since bm1abm2 of length i+ 2 is in Ln, it has to leave the input node after some transforma-
tions. Consequently, Mni contains deletion rules, i.e., a→ λ ∈Mni or b→ λ ∈Mni or both these rules are
in the set Mni

. We discuss the situation where a→ λ ∈Mni
(the other cases can be handled analogously).

Then we consider the input word w = abi+1a. By deleting the first a, we obtain the word w′ = bi+1a. The
word w′ cannot leave the input node since its length is i+ 2 > k. Since w′ as an input word is accepted
(because w′ ∈ Li), we get that w is accepted, too, which contradicts L(N ) = Li.

2. Let k ≥ i+ 2. Since bm1abm2 of length i+ 1 is in Ln, it has to leave the input node after some transfor-
mations. Thus, Mni contains insertion rules. However, since the word ck+1bi+1a has to be transformed
to a word of length k, too, the set Mni

has to contain also deletion rules. This is a contradiction to the
definition of a network.

Since there is a contradiction in any case, we have Li /∈ A(UC ).

Lemma 3.24. Let Z1 = { w | w ∈ {a, b}∗, |w|a ∈ {1, 3} }. Then

Z1 ∈ (A(FIN ) ∩ A(COMM )) \ A(OfC ).

Proof. The network

({a, b}, {a, b}, ({b→ λ}, {a, aaa}, {a, aaa}), (∅, {a, aaa}, ∅), {(1, 2)}, 1, 2)

accepts the language Z1 (by deletion of all the letters b in the input node, we get a or aaa and this word is sent
to the output node). Since the filters are finite and commutative, we have Z1 ∈ A(FIN ) ∩ A(COMM ).

Let us assume that there is an accepting network

N = ({a, b}, U,N1, . . . , Nn, E, ni, no)
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with filters in OfC such that L(N ) = Z1. Since Z1 is a proper subset of {a, b}∗, the input node and output node
are different. We distinguish the cases for the input node Nni

= (Mni
, Ini

, Oni
):

1. The set Mni
is empty. Then a and aaa are in the output filter Oni

since these words are accepted and
thus they have to leave the input node. But this contradicts the code property of Oni

.
2. The set Mni

contains deletion rules. If a→ λ is a rule of Mni
, then we obtain a =⇒ λ in the input node

Nni . Moreover, λ cannot be changed by applications of rules of Mni . Hence, λ ∈ Oni since a is accepted.
But the empty word is contained in no code. Thus, a → λ is not in Mni . Therefore, the input words a
and aaa cannot be changed by Mni

. Since these words are accepted, they both belong to the output filter
Oni

. However, this is a contradiction to the code property of Oni
, again.

3. The set Mni
contains substitution or insertion rules. Since Oni

is finite, only a finite set of words can leave
the input node and can finally be accepted, because the application of the rules of Mni cannot decrease
the length of the words. This is a contradiction because Z1 is infinite.

Since every case yields a contradiction, the assumption is wrong and Z1 /∈ A(OfC ).

From the previous results, we obtain the following proper inclusions.

Theorem 3.25. The proper inclusions

1. A(UC ) ⊂ A(OfC ) ⊂ A(FIN ),
2. A(RC ) ⊂ A(OfC ), and
3. A(RC ) ⊂ A(CIRC )

hold.

Proof. The inclusions follow from the inclusion relations UC ⊆ OfC ⊆ FIN , RC ⊆ OfC , and RC ⊆ CIRC
together with Lemma 2.6. Their properness follows from the existence of witness languages:

1. According to Lemma 3.24, we have Z1 ∈ A(FIN )\A(OfC ) for the language Z1 = {w | w ∈ {a, b}∗, |w|a ∈ {1, 3}}.
From Lemma 3.23, we have the relation L5 ∈ A(RC ) \ A(UC ). Since A(RC ) ⊆ A(OfC ), the language L5

is also a witness language for the properness of the inclusion A(UC ) ⊂ A(OfC ).
2. From Lemma 3.20, we know {ab} ∈ A(UC ) \ A(CIRC ). We also have the inclusions A(UC ) ⊂ A(OfC )

and A(RC ) ⊆ A(CIRC ) (since RC ⊆ CIRC ); hence, the language {ab} is also a witness language for the
properness of the inclusion A(RC ) ⊂ A(OfC ).

3. By Lemma 3.24, it is Z1 ∈ A(COMM ) \ A(OfC ). Since A(RC ) ⊆ A(OfC ) and A(COMM ) ⊆ A(CIRC ),
the language Z1 is also a witness language for the properness of the inclusion A(RC ) ⊂ A(CIRC ).

Before we prove the proper inclusion A(RLP1 ) ⊂ A(UC ), we give some characterization of the languages in
the set A(RLP1 ).

Lemma 3.26. A language L ⊆ V ∗ is in A(RLP1 ) if and only if one of the following cases holds:

1. There are an alphabet U with V ⊆ U , a word w ∈ U+, and a set M of deletion rules, insertion rules, or
substitution rules over the alphabet U such that L = { v | v ∈ V ∗, v =⇒+

M w }.
2. There is a subset V ′ of the alphabet V such that L = (V ′)∗.
3. It holds L = ∅.
4. It holds L = {λ}.

Proof. Let L = L(N ) for some network N = (V,U,N1, N2, . . . , Nn, E, ni, no) where all filters are in RLP1 . If the
input node and output node coincide, then we obtain L(N ) = V ∗ which belongs to case (2).

We now assume that input node and output node differ. Let (Mni
, Ini

, Oni
) be the input node. Because any

language in RLP1 contains at most one word, we have one of the following cases especially for the output filter
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of the input node: Oni
is empty, Oni

= {w} for some non-empty word w ∈ U , or Oni
= {λ}. We discuss these

cases.
If Oni is the empty set, then no word can leave the input node, and consequently, L(N ) = ∅ which corresponds

to case (3).
IfOni

= {w} for a non-empty word w ∈ U+, then all and only the words of the setK = {v | v ∈ V ∗, v =⇒+
Mni

w}
lead to w and, hence, to a word which can leave the input node. If the outgoing word w leads to a word arriving
in the output node (after some transformations), then L(N ) = K and case (1) holds. If the outgoing word does
not lead to a word arriving in the output node, then L(N ) = ∅ and case (3) holds.

If Oni = {λ} and the input node is a substitution or insertion node, then no other input word than λ leads
to a word which can leave the input node and we get L(N ) = {λ} or L(N ) = ∅, i.e., case (4) or case (3) holds,
respectively. If Oni

= {λ} and the input node is a deletion node, we set V ′ as the set of all letters of the input
alphabet V which can be deleted in the input node, V ′ = { a | a ∈ V, a→ λ ∈Mni

}, and obtain that all words
of (V ′)∗ and only these words of V ∗ yield a word which can leave the input node. Thus, we obtain L(N ) = (V ′)∗

or L(N ) = ∅ (depending on whether the outgoing empty word leads to a word arriving in the output node or
not). Thus, case (2) or case (3) holds.

On the other hand, for each of the cases (1) to (4), we see in the above consideration how such a language
can be accepted by a network where all filters belong to the class RLP1 .

We now prove the mentioned proper inclusion.

Theorem 3.27. We have A(RLP1 ) ⊂ A(UC ).

Proof. Let L ∈ A(RLP1 ). Furthermore, let N = (V,U,N1, N2, . . . , Nn, E, ni, no) be a network such that
L = L(N ) and all filters belong to the class RLP1 . By Lemma 3.26, there are four cases for L.

If L = { v | v ∈ V ∗, v =⇒+
M w }, by the proof of Lemma 3.26, M = Mni

and {w} is the output filter of the
input node of N . Then we construct the network

N1 = (V,U, (Mni
, {w}, {w}), (∅, {w}, {w}), {(1, 2)}, 1, 2).

It is easy to see that L(N1) = L. Since all filters are uniform, we get L ∈ A(UC ).
If L = (V ′)∗, we consider the network

N2 = (V ′, V ′ ∪ {§}, (∅, {§}, {§}), ∅, 1),

where § /∈ V ′ which accepts (V ′)∗. Since all filters of N2 are uniform codes, we have L ∈ A(UC ) also in this
case.

If L = ∅, we consider the network

N3 = (V, V ∪ {§}, (∅, {§}, {§}), (∅, {§}, {§}), {(1, 2)}, 1, 2),

which accepts the empty set because no word of V ∗ can be transformed into a word which can leave the input
node. Since all filters of N3 are uniform codes, we have L ∈ A(UC ) in this case, too.

If L = {λ}, we consider the network

N4 = (V, V ∪ {§}, ({λ→ §}, {§}, {§}), (∅, {§}, {§}), {(1, 2)}, 1, 2).

If w ∈ V +, then w cannot be transformed into § by the rules of the input node. Hence w is not in L(N4). On
the other hand, by one application of the insertion rule to the empty word, § is obtained and will be successfully
sent to the output node, which gives λ ∈ L(N4). Therefore L(N4) = {λ}. Since all filters of N4 are uniform
codes, we have L ∈ A(UC ).
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Thus, we get the inclusion A(RLP1 ) ⊆ A(UC ). The properness follows with the language F2 = {a31, a32} which
belongs to the class A(UC ) but not to A(RLPi ) according to Lemma 3.22.

We now prove the incomparability results.

Theorem 3.28. The classes A(UC ) and A(RC ) are incomparable.

Proof. From Lemma 3.23, we have the relation L5 ∈ A(RC ) \ A(UC ). From Lemma 3.20, we know
{ab} ∈ A(UC ) \ A(CIRC ). Since A(RC ) ⊆ A(CIRC ), we also have {ab} ∈ A(UC ) \ A(RC ).

Theorem 3.29. The class A(RC ) is incomparable to each of the classes A(MON ), A(COMM ), and A(REGZ
1 ).

Proof. Due to the equality A(MON ) = A(COMM ) = A(REGZ
1 ), it suffices to show that there is a language in

the set A(RC ) \ A(COMM ) and a language in the set A(COMM ) \ A(RC ).
In Lemma 3.21, we have shown for L = Circ({abc}) that L ∈ A(RC ) \ A(COMM ).
From Lemma 3.24, we know further that Z1 ∈ A(COMM ) \A(OfC ). Due to the relation A(RC ) ⊆ A(OfC ),

we also have Z1 ∈ A(COMM ) \ A(RC ).

Theorem 3.30. The class A(RC ) is incomparable to each of the classes A(RLPi ) for i ≥ 1.

Proof. Due to the inclusions A(RLPi ) ⊂ A(RLPi+1), it suffices to show that there is a language in the set

A(RLP1 ) \ A(RC ) and, for each i ≥ 1, there is a language in the set A(RC ) \ A(RLPi ).
We know that {ab} ∈ A(RLP1 )\A(CIRC ) by Lemma 3.20 and, together with the relationA(RC ) ⊂ A(CIRC ),

we also have {ab} ∈ A(RLP1 ) \ A(RC ).
In Lemma 3.22, we showed that Fi+1 ∈ A(RC ) \ A(RLPi ) for any natural number i ≥ 1.

Theorem 3.31. The class A(UC ) is incomparable to each of the classes A(MON ), A(COMM ), A(REGZ
1 ),

and A(CIRC ).

Proof. Due to the equality A(MON ) = A(COMM ) = A(REGZ
1 ) and the inclusion A(COMM ) ⊂ A(CIRC ),

it suffices to show that there is a language in the set A(UC ) \ A(CIRC ) and a language in the set
A(COMM ) \ A(UC ).

We know that {ab} ∈ A(UC ) \ A(CIRC ) by Lemma 3.20.
From Lemma 3.24, we know further that Z1 ∈ A(COMM ) \A(OfC ). Due to the relation A(UC ) ⊂ A(OfC ),

we also have Z1 ∈ A(COMM ) \ A(UC ).

Theorem 3.32. The class A(UC ) is incomparable to each of the classes A(RLPi ) for i ≥ 2.

Proof. Due to the inclusions A(RLPi ) ⊂ A(RLPi+1), it suffices to show that there is a language in the set

A(RLP2 ) \ A(UC ) and, for each i ≥ 2, there is a language in the set A(UC ) \ A(RLPi ).
We know that {a}∗{b} ∈ A(RLP2 )\A(NIL) by Lemma 3.13 and, together with the relation A(UC ) ⊂ A(NIL),

we also have {a}∗{b} ∈ A(RLP2 ) \ A(UC ).
In Lemma 3.22, we showed that Fi+1 ∈ A(UC ) \ A(RLPi ) for any natural number i ≥ 1.

Summarizing, we have proved the hierarchy which is shown in Figure 3.

Theorem 3.33. The relations shown in Figure 3 hold.

4. Conclusions

We have investigated accepting networks of evolutionary processors where the filters belong to subregular
language families which are defined by restricting the resources needed for generating or accepting them or
which are ideals or codes. We have inserted the newly defined language families into the hierachy of language
families obtained by using languages of other subregular families as filters which was published in [12]. The
hierarchy with the new results is shown in Figure 3.
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Figure 3. Hierarchy of language families by ANEPs with filters from subregular families. An
arrow from a language familyX to a language family Y stands for the proper inclusionX ⊂ Y . If
two families X and Y are not connected by a directed path, then the families are incomparable.
The labels at the arrows or equality signs refer to the theorems where the respective relation
is shown. The other relations were proved in [12].

In [8], generating networks of evolutionary processors were investigated where the filters are ideals or special
codes. In [20], generating networks of evolutionary processors were considered where the filters are determined
by restricting resources. In [7], the two hierarchies obtained in the aforementioned papers were merged.

In the present paper, we have continued this research and considered the same language families for the filters
in accepting networks of evolutionary processors. It is an extension of the paper [21].
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