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ON RESTARTING AUTOMATA WITH AUXILIARY SYMBOLS AND

SMALL WINDOW SIZE∗

Frantǐsek Mráz1 and Friedrich Otto2,**

Abstract. Here we show that for monotone RWW- (and RRWW-) automata, window size two is
sufficient, both in the nondeterministic as well as in the deterministic case. For the former case, this is
done by proving that each context-free language is already accepted by a monotone RWW-automaton of
window size two. In the deterministic case, we first prove that each deterministic pushdown automaton
can be simulated by a deterministic monotone RWW-automaton of window size three, and then we
present a construction that transforms a deterministic monotone RWW-automaton of window size
three into an equivalent automaton of the same type that has window size two. Furthermore, we
study the expressive power of shrinking RWW- and RRWW-automata the window size of which is
just one or two. We show that for shrinking RRWW-automata that are nondeterministic, window
size one suffices, while for nondeterministic shrinking RWW-automata, we already need window size
two to accept all growing context-sensitive languages. In the deterministic case, shrinking RWW- and
RRWW-automata of window size one accept only regular languages, while those of window size two
characterize the Church-Rosser languages.
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1. Introduction

The restarting automaton was introduced in [6] as a formal model for the linguistic technique of ‘analysis by
reduction’. A restarting automaton, RRWW-automaton for short, is a device M that consists of a finite-state
control, a flexible tape containing a word delimited by sentinels, and a read/write window of fixed finite size.
This window is moved along the tape by move-right steps until the control decides (nondeterministically) that
the contents of the window should be rewritten by some shorter word. In fact, the new word may contain
auxiliary symbols that do not belong to the input alphabet. After a rewrite, M can continue to move its window
until it either halts and accepts, or halts and rejects, or restarts, which means that it places its window over
the left end of the tape and reenters its initial state. It follows that each computation of M can be described
through a sequence of cycles and a tail computation. Here a cycle is a part of a computation that begins after
a restart step (or by the first step from an initial configuration) and that ends with the next restart step, and
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the tail is the part of a computation that begins after the last restart step, that is, it ends with either an accept
step or with M getting stuck in a configuration to which no transition applies.

By requiring that an RRWW-automaton always performs a restart step immediately after executing a rewrite
operation, we obtain the so-called RWW-automaton. Within any cycle, such an automaton cannot scan the suffix
of the tape contents that is to the right of the position at which the rewrite operation is performed. Although
the definition of the RWW-automaton is clearly much more restricted than that of the RRWW-automaton, it is
a long-standing open problem whether the class of languages L(RWW) accepted by RWW-automata coincides
with the class of languages L(RRWW) accepted by RRWW-automata.

In [7], it was shown that the monotone variants of the nondeterministic RWW- and RRWW-automaton
(see Sect. 2 for the definitions) accept exactly the class CFL of context-free languages, while the corresponding
deterministic automata characterize the class DCFL of deterministic context-free languages. As a restarting
automaton has a read/write window of a fixed finite, but otherwise arbitrary, size k ≥ 1, it is only natural
to ask for the influence that the window size has on the expressive power of the various types of restarting
automata. In [18], it is shown that for those types of restarting automata that do not admit auxiliary symbols,
the window size yields infinite ascending hierarchies of language classes. In fact, the increase in the descriptional
complexity when turning a restarting automaton without auxiliary symbols that has window size k + 1 into
an equivalent automaton of window size k can in general not even be bounded from above by any recursive
function [12].

On the other hand, in [29], Natalie Schluter presents a construction that allows to simulate a monotone
RRWW-automaton of window size k ≥ 3 by an automaton of the same type that has only window size k − 1.
In addition, she presents a construction that shows that each monotone RRWW-automaton of window size
k ≥ 2 can be simulated by a monotone RWW-automaton of window size k. This implies that the context-free
languages are already accepted by monotone RWW-automata of window size two.

By combining these constructions, one can transform a given monotone RWW-automaton Mk of window size
k > 2 into an equivalent monotone RWW-automaton M2 of window size two. Indeed, one can easily interpret
Mk as a monotone RRWW-automaton of window size k. Then one can iteratively apply the former of Natalie
Schluter’s constructions k − 2 times to obtain a monotone RRWW-automaton M ′2 of window size two, and
finally, one can apply the latter of her constructions to get the monotone RWW-automaton M2. However, both
of Natalie Schluter’s constructions are technically quite involved and therefore not easy to follow. Here we
describe a direct way of accepting any context-free language by a monotone RWW-automaton of window size
two by presenting a simulation of the derivations of a context-free grammar in Chomsky normal form by a
monotone RWW-automaton of window size two.

Next we turn to the deterministic case. Here we first present a construction that turns a deterministic
pushdown automaton (PDA) into a deterministic monotone RWW-automaton of window size three that accepts
the same language. Then we describe a construction that shows how to simulate a deterministic monotone
RWW-automaton of window size three by a deterministic monotone RWW-automaton of window size two.
Here the crucial point consists in observing that each deterministic RWW-automaton of window size two is
already monotone. Together our results on the deterministic case show that the class DCFL is actually already
characterized by deterministic monotone RWW-automata of window size two. It is well known that RWW-
automata of window size one only accept regular languages [18]. Thus, based on the window size we have just
two classes of languages that are accepted by monotone RWW-automata, both in the nondeterministic as well
as in the deterministic case.

In order to investigate the relationship between RWW- and RRWW-automata, a generalization of the
restarting automaton, called shrinking restarting automaton, was introduced in [10]. A shrinking restarting
automaton M is defined just like an RRWW-automaton with the one exception that it is no longer required
that each rewrite step u→ v of M must be length-reducing. Instead, there must exist a weight function ω that
assigns a positive integer ω(a) to each letter a of M ’s tape alphabet Γ such that, for each rewrite step u→ v
of M , ω(u) > ω(v) holds, where the function ω is extended to a morphism ω : Γ∗ → N as usual.

Here we also study the expressive power of shrinking RWW- and RRWW-automata of window size one
and two. We shall see that nondeterministic shrinking RRWW-automata of window size one are already as
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expressive as nondeterministic shrinking RRWW-automata in general, which are known to be equivalent to
the finite-change automata of [30]. On the other hand, for nondeterministic shrinking RWW-automata, window
size one is not enough, as we already need window size two to accept all growing context-sensitive languages.
However, window size nine suffices to again obtain all language accepted by finite-change automata. In fact,
it remains open whether window size nine is the smallest possible, that is, whether nondeterministic shrinking
RWW-automata of window size eight are really less expressive than those of window size nine.

Finally, we consider shrinking RWW-automata and monotone shrinking RRWW-automata of window size
one and their deterministic variants. It turns out that deterministic shrinking RWW- and RRWW-automata
of window size one just accept the regular languages, while with window size two, these automata characterize
the Church-Rosser languages. Furthermore, also the monotone shrinking RWW-automata of window size one
just accept the regular languages, while shrinking RWW-automata and monotone shrinking RRWW-automata
of window size one are strictly more expressive.

This paper is structured as follows. After presenting the necessary definitions and notation in Section 2, we
restate in short the known results on the influence of the window size on the expressive power of restarting
automata. In Section 3, we then concentrate on nondeterministic monotone RWW- and RRWW-automata, in
Section 4, we study deterministic monotone RWW- and RRWW-automata, and we discuss the influence of the
window size on deterministic RWW- and RRWW-automata that are non-monotone. Then we turn to shrinking
restarting automata in Section 5, in which we investigate the expressive power of nondeterministic shrinking
RWW- and RRWW-automata of window size one and two. Finally, in Section 6, we consider the deterministic
case. The paper closes with Section 7 in which we summarize our results using a diagram that depicts the
relationships between the various language classes considered and state a number of open problems.

2. Definitions and notation

Throughout the paper, λ will denote the empty word, and N+ will denote the set of all positive integers,
while N is used to denote the set of all non-negative integers. Furthermore, for any type of automaton X, we
use the notation L(X) to denote the class of languages that are accepted by automata of type X.

Definition 2.1. A (one-way) restarting automaton, RRWW-automaton for short, is a one-tape machine that is
described by an 8-tuple M = (Q,Σ,Γ, ¢, $, q0, k, δ), where Q is a finite set of states, Σ is a finite input alphabet,
Γ is a finite tape alphabet containing Σ, where the symbols in Γ r Σ are called auxiliary symbols, the symbols
¢, $ 6∈ Γ, called sentinels, serve as markers for the left and right border of the workspace, respectively, q0 ∈ Q is
the initial state, k ≥ 1 is the size of the read/write window, and

δ : Q× PC(k) → P((Q× ({MVR} ∪ PC≤(k−1))) ∪ {Restart,Accept})

is the transition relation. Here P(S) denotes the powerset of the set S, PC(k) is the set of possible contents of
the read/write window of M , where

PC(i) := ({¢} · Γi−1) ∪ Γi ∪ (Γ≤i−1 · {$}) ∪ ({¢} · Γ≤i−2 · {$}) (i ≥ 0),

and

Γ≤n :=

n⋃
i=0

Γi and PC≤(k−1) :=

k−1⋃
i=0

PC(i).

The transition relation contains four different types of transition steps:

1. A move-right step is of the form (q′,MVR) ∈ δ(q, u), where q, q′ ∈ Q and u ∈ PC(k), u 6= $. If M is in state
q and sees the word u in its read/write window, then this move-right step causes M to shift the read/write
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window one position to the right and to enter state q′. However, if the contents u of the read/write window
is only the symbol $, then no shift to the right is possible.

2. A rewrite step is of the form (q′, v) ∈ δ(q, u), where q, q′ ∈ Q, u ∈ PC(k), u 6= $, and v ∈ PC≤(k−1) such
that |v| < |u|. It causes M to replace the contents u of the read/write window by the word v, thereby
shortening the tape, and to enter state q′. Furthermore, the read/write window is placed immediately to
the right of the word v. However, some additional restrictions apply in that the sentinels ¢ and $ must not
disappear from the tape nor that new occurrences of these symbols are created. In addition, the read/write
window must not move across the right sentinel $, that is, if the word u ends in $, then so does the word
v, and after performing the rewrite operation, the read/write window is placed on the $-symbol.

3. A restart step is of the form Restart ∈ δ(q, u), where q ∈ Q and u ∈ PC(k). It causes M to place the
read/write window over the left end of the tape, so that the first symbol it contains is the left sentinel ¢,
and to reenter the initial state q0.

4. An accept step is of the form Accept ∈ δ(q, u), where q ∈ Q and u ∈ PC(k). It causes M to halt and accept.

If δ(q, u) = ∅ for some q ∈ Q and u ∈ PC(k), then M necessarily halts when it is in state q with the word u in
its window, and we say that M rejects in this situation. There is one additional restriction that the transition
relation must satisfy. This restriction says that, when ignoring move operations, rewrite steps and restart steps
alternate within any computation of M , with a rewrite step coming first.

Let M = (Q,Σ,Γ, ¢, $, q0, k, δ) be an RRWW-automaton. A configuration of M is described by a word of
the form αqβ, where q ∈ Q, and either α = λ and β ∈ {¢} · Γ∗ · {$} or α ∈ {¢} · Γ∗ and β ∈ Γ∗ · {$}; here
q represents the current state, αβ is the current contents of the tape, and it is understood that the window
contains the first k symbols of β or all of β when |β| ≤ k. By `M we denote the single-step computation relation
that M induces on its set of configurations, and `∗M is the computation relation of M , which is the reflexive and
transitive closure of `M . A restarting configuration is of the form q0¢w$, where w ∈ Γ∗; if w ∈ Σ∗, then q0¢w$
is an initial configuration. Thus, initial configurations are a particular type of restarting configurations.

A phase of a computation of M , called a cycle, begins with a restarting configuration. The window is moved
along the tape by MVR operations and a single rewrite operation until a restart operation is performed and,
thus, a new restarting configuration is reached. Accordingly, a computation consists of a sequence of cycles that
is followed by a tail, which is the part of a computation that comes after the last restart operation. By `cM we
denote the relation on restarting configurations that is induced through the execution of a cycle, and we use
`c∗M to denote its reflexive and transitive closure. The above restriction on the transition relation implies that
M performs exactly one rewrite operation during each cycle – thus each new phase starts on a shorter word
than the previous one – and that it executes at most one rewrite operation during a tail computation.

An input word w ∈ Σ∗ is accepted by M , if there is a computation which, starting with the initial configuration
q0¢w$, finishes by executing an accept step. By L(M) we denote the language consisting of all (input) words
accepted by M ; we say that M accepts the language L(M).

In general, an RRWW-automaton is nondeterministic, that is, for some pairs (q, u), there may be more than
one applicable transition step. If this is not the case, then the automaton is deterministic. We use the prefix
det- to denote classes of deterministic restarting automata.

Many restricted classes of restarting automata have been introduced and studied. An RWW-automaton is
an RRWW-automaton that is required to execute a restart step immediately after performing a rewrite step.
Accordingly, for RWW-automata we combine a rewrite step with the subsequent restart step into a single
combined rewrite/restart step to simplify the notation.

• A combined rewrite/restart step is of the form v ∈ δ(q, u), where q ∈ Q, u ∈ PC(k), u 6= $, and v ∈ PC≤(k−1)

such that |v| < |u|. It causes M to replace the contents u of the read/write window by the word v, thereby
shortening the tape, to place the read/write window over the left end of the tape, so that the first symbol
it sees is the left sentinel ¢, and to reenter the initial state q0.
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An RRW-automaton is an RRWW-automaton which does not use any auxiliary symbols, that is, its tape
alphabet coincides with its input alphabet. An RR-automaton is an RRW-automaton the rewrite steps of which
can be viewed as deletions, that is, if (q′, v) ∈ δ(q, u), then v is a scattered subword of u. Obviously, the
restrictions on the rewrite operations can be combined with the restriction on the restart operations (requiring
to restart immediately after each rewrite step), which leads to the RW- and the R-automaton. The size of the
read/write window is an essential parameter of a restarting automaton. For each k ≥ 1, we use the notation
X(k) to denote those restarting automata of type X that have a read/write window of size k.

Recall that the computation of a restarting automaton proceeds in cycles, where each cycle contains exactly
one rewrite step. Thus, each cycle C contains a unique configuration of the form αqβ in which a rewrite step is
applied. Now |β| is called the right distance of C, which is denoted by Dr(C).

A sequence of cycles S = (C1, C2, . . . , Cn) is called monotone if Dr(C1) ≥ Dr(C2) ≥ · · · ≥ Dr(Cn). A com-
putation is monotone if the corresponding sequence of cycles is monotone. Observe that here the tail of the
computation is not taken into account. Finally, a restarting automaton is called monotone if all its computations
that start with an initial configuration are monotone. The prefix mon- is used to denote the various classes of
monotone restarting automata.

The following result extends the characterization of the context-free languages by monotone restarting
automata that is presented in [7] to window size three.

Theorem 2.2. [23] CFL = L(mon-RRWW(3)) = L(mon-RWW(3)).

Concerning the monotone deterministic restarting automata, the following results have been derived in [7].

Theorem 2.3. DCFL = L(det-mon-RRWW) = L(det-mon-RWW)
= L(det-mon-RRW) = L(det-mon-RW)
= L(det-mon-RR) = L(det-mon-R).

On the other hand, it is easily seen that each RRWW-automaton (RWW-automaton) with a read/write
window of size one is just an RR-automaton (R-automaton), as its rewrite operations must be length-reducing.
Concerning window size one, the following results are known. Here REG denotes the class of regular languages.

Theorem 2.4. [13, 18]
(a) REG = L((mon-)RWW(1)) = L(det-(mon-)RRWW(1)).
(b) REG ( L(mon-RRWW(1)) ( CFL.

Thus, window size one restricts the expressive power of monotone deterministic and nondeterministic RWW-
and RRWW-automata considerably.

In [29], Natalie Schluter established the following results concerning the window size of monotone restarting
automata. These results were already announced in [27, 28].

Theorem 2.5. For all k ≥ 2,

(a) L(mon-RWW(k)) = L(mon-RRWW(k)).
(b) L(det-mon-RWW(k)) = L(det-mon-RRWW(k)).

Theorem 2.6. For all k ≥ 2, L(mon-RRWW(k + 1)) = L(mon-RRWW(k)).

As a consequence, we obtain that CFL = L(mon-RRWW(2)) = L(mon-RWW(2)). Unfortunately, the construc-
tions used by Natalie Schluter to prove her results are technically very involved and, accordingly, very hard to
follow. In the next section, we provide a direct and much simpler proof for the characterization of the class CFL
by monotone restarting automata of window size two.

3. On nondeterministic monotone RWW-automata

Our first main result states that each context-free language is accepted by an RWW-automaton of window
size two.
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Theorem 3.1. CFL = L(mon-RWW(2)).

Proof. Obviously, L(mon-RWW(2)) ⊆ L(mon-RWW(3)). Hence, because of Theorem 2.2, it remains to show
that each context-free language is accepted by a monotone RWW-automaton of window size two.

Let L ⊆ Σ∗ be a context-free language, and let G = (N,Σ, S, P ) be a context-free grammar for L. Without
loss of generality, we may assume that the production rules in P have the following form, which is easily obtained
from the Chomsky normal form:

(1) S → λ, if λ ∈ L,
(2) S → a, if a ∈ Σ ∩ L,
(3) A→ BC, where A ∈ N and B,C ∈ (N r {S}) ∪ Σ.

Below we use the notation ⇒∗G to denote the derivation relation that is induced by the productions of G on the
sentential forms (N ∪ Σ)∗.

Now we define an RWW-automaton M = (Q,Σ,Γ, ¢, $, q0, 2, δ), where Q = {q0, q, q+} and

Γ = N ∪ Σ ∪ { (A,B) | A,B ∈ N ∪ Σ },

and we define a morphism π : Γ∗ → (N ∪ Σ)∗ by taking

π(A) = A and π((A,B)) = AB for all A,B ∈ N ∪ Σ.

Thus, M uses the nonterminals A of G and the pairs of the form (A,B) with A,B ∈ N ∪ Σ as auxiliary symbols
that represent the words A and AB, respectively. The transition relation δ of M is defined as follows, where
A,B,C ∈ N ∪ Σ and X ∈ N :

(1) δ(q0, ¢$) = {Accept} if (S → λ) ∈ P,
(2) δ(q0, ¢γ) 3 (q+,MVR) for γ ∈ Γ such that S ⇒∗G π(γ),
(3) δ(q+, γ$) = {Accept} for γ ∈ Γ such that S ⇒∗G π(γ),
(4) δ(q0, ¢γ) 3 (q,MVR) for all γ ∈ Γ,
(5) δ(q, AB) 3 (A,B) for all A,B ∈ N ∪ Σ,
(6) δ(q, AB) 3 C if (C → AB) ∈ P,
(7) δ(q, (A,B)γ) 3 (q,MVR) for γ ∈ Γ,
(8) δ(q, (A,B)C) 3 (A,X) if (X → BC) ∈ P,
(9) δ(q, (A,B)C) 3 X if (X → AZ), (Z → BC) ∈ P for some Z ∈ N.

Obviously, M is an RWW-automaton of window size two. The encoding of two letters A,B ∈ N ∪Σ as a single
letter (A,B) is used to mark the position in the actual sentential form that has to be examined in the next step.
Thus, the tape contents always consists of a sequence of pairs followed by a sequence of letters from N ∪ Σ,
where any of these two subsequences can be empty. Since each rewrite step is performed at the border between
these two subsequences, it is easily seen that M is monotone.

It remains to verify thatM accepts the context-free language L. It is easily seen that an accepting computation
of M constructs a G-derivation for the given input in reverse order. Hence, we have L(M) ⊆ L.

On the other hand, let w ∈ L. If w = λ, then w ∈ L(M). So assume that |w| ≥ 1. Then there exists a
rightmost G-derivation

S ⇒G α1 ⇒G α2 ⇒G · · · ⇒G αn = w.

Claim. For all i = 1, 2, . . . , n, q0¢αi$ `∗M Accept.
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Proof. At first, we prove the claim for n = 1, then for any n > 1. If n = 1, then |w| ≤ 2 and α1 = w. For |w| = 1,
we have

q0¢α1$ `M ¢q+α1$ `M Accept

by rules (2) and (3), and for |w| = 2, we have w = ab for some letters a, b ∈ Σ and

q0¢α1$ = q0¢ab$ `M ¢qab$ `M q0¢(a, b)$ `M ¢q+(a, b)$ `M Accept

by rules (4), (5), (2), and (3).
For n > 1, we proceed by induction on i. If i = 1, then α1 = AB for some A,B ∈ (N − {S}) ∪ Σ and

(S → AB) ∈ P , and

q0¢α1$ = q0¢AB$ `M ¢qAB$ `M q0¢(A,B)$ `M ¢q+(A,B)$ `M Accept

by rules (4), (5), (2), and (3).

Now assume that q0¢αj$ `∗M Accept has already been shown for all j ≤ i and some i, 1 ≤ i ≤ n − 1. We
consider the sentential form αi+1.

If i = 1, then either α1 = Ab⇒G B1B2b = α2 for some A ∈ N , b ∈ Σ, and (A→ B1B2) ∈ P , or α1 = BA⇒G

BB2B3 for some A ∈ N , B ∈ (N ∪ Σ), and (A → B2B3) ∈ P . There is no other possibility, as we consider a
rightmost derivation. In the former case,

q0¢α2$ = q0¢B1B2b$ `M ¢qB1B2b$ `M q0¢Ab$ = q0¢α1$

by rules (4) and (6), which implies q0¢α2$ `∗M Accept by the induction hypothesis, while in the latter case,

q0¢α2$ = q0¢BB2B3$ `M ¢qBB2B3$ `M q0¢(B,B2)B3$
`M ¢q(B,B2)B3$ `M q0¢(B,A)$

by rules (4), (5), and (8), which yields q0¢α2$ `∗M Accept by rules (2) and (3).
Finally, assume that i ≥ 2. Then αi−1 ⇒G αi ⇒G αi+1 is a part of the above rightmost derivation. The latter

step implies that

αi = B1B2 · · ·BmAam+3 · · · ar−1ar

for some B1, B2, . . . , Bm ∈ N ∪ Σ, a nonterminal A ∈ N , terminals am+3, . . . , ar−1, ar ∈ Σ, and a production
(A→ Bm+1Bm+2) ∈ P such that

αi+1 = B1 · · ·BmBm+1Bm+2am+3 · · · ar.

Furthermore, αi−1 = XCY ⇒G XDEY = αi for a production (C → DE) ∈ P and some words X ∈ (N ∪ Σ)∗

and Y ∈ Σ∗. As αi−1 ⇒G αi is a part of the above rightmost derivation, it follows that either the distinguished
occurrence of the nonterminal A in αi is produced by the above application of the production (C → DE)
implying that DE = BmA or DE = Aam+3, or that X = B1B2 · · ·BmAam+3 · · · am+s−1, DE = am+sam+s+1,
and Y = am+s+2am+s+3 · · · ar for some s ≥ 3.

Using instructions (4), (5), and (7), M can convert the configuration

q0¢αi+1$ = q0¢B1 · · ·BmBm+1Bm+2am+3 · · · ar$
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into the configuration

¢(B1, B2) · · · (Bm−1, Bm)qBm+1Bm+2am+3 · · · ar$ (3.1)

or

¢(B1, B2) · · · (Bm−2, Bm−1)q(Bm, Bm+1)Bm+2am+3 · · · ar$ (3.2)

depending on the parity of the index m.
In the former case, Bm+1Bm+2 is then rewritten into the nonterminal A by rule (6), and as the derivation

step αi−1 ⇒G αi either produces the displayed nonterminal A or occurs in the suffix following this letter, we can
conclude that the computation q0¢αi$ `∗M Accept starts with the encoding of the prefix B1B2 · · ·Bm into the
word (B1, B2) · · · (Bm−1, Bm). Hence, the configuration obtained in one step from (3.1) appears in an accepting
computation that starts from q0¢αi$ and q0¢αi+1$ `∗M Accept follows.

In the latter case, (Bm, Bm+1)Bm+2 is either rewritten into (Bm, A) by rule (8) or into C by rule (9), if
DE = BmA. Here it follows analogously that the computations q0¢αi$ `∗M Accept and q0¢αi−1$ `∗M Accept
start with encoding the prefix B1B2 · · ·BmA into the word (B1, B2) · · · (Bm, A) or B1B2 · · ·Bm−1 into the word
(B1, B2) · · · (Bm−2, Bm−1), respectively. Hence, the configuration obtained in one step from (3.2) appears in an
accepting computation starting either from q0¢αi$ or from q0¢αi−1$. Therefore, also in these cases q0¢αi+1$ `∗M
Accept follows.

For i = n, the claim above yields that q0¢αn$ = q0¢w$ `∗M Accept, which means that w ∈ L(M). Thus, in
summary, we have shown that L(M) = L.

As each RWW(2)-automaton can also be interpreted as an RRWW(2)-automaton, the above result yields
the following consequence.

Corollary 3.2. CFL = L(mon-RRWW(2)).

From a given monotone RWW-automaton M of window size k ≥ 3, we can first construct a pushdown
automaton P for the language L(M) as shown in the proof of Theorem 2.2 in [7]. From this PDA, we can derive
a context-free grammar G in Chomsky normal form for L(G), and then, using the construction above, we obtain
a monotone RWW-automaton of window size two for L(M). Furthermore, as for all k ≥ 3, L(mon-RWW(2)) ⊆
L(mon-RWW(k)), we see that, for each k ≥ 3,

L(mon-RRWW(k)) ⊆ CFL ⊆ L(mon-RWW(k)) ⊆ L(mon-RRWW(k)).

Hence, we obtain the following result.

Corollary 3.3. For all k ≥ 2, CFL = L(mon-RWW(k)) = L(mon-RRWW(k)).

4. On deterministic RWW-automata

Here we show that Theorem 3.1 carries over to the deterministic case. The proof consists of two major steps
that we present in the following two subsections. In a third subsection, we consider deterministic RWW- and
RRWW-automata that are not monotone.

4.1. On deterministic monotone RWW(3)-automata

Let L ⊆ Σ∗ be a deterministic context-free language. Then there exists a deterministic pushdown automaton
(DPDA) A = (QA,Σ,∆A,#, p0, δA, FA) that accepts L by final state. Here QA is a finite set of states, Σ is the
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input alphabet, ∆A is the pushdown alphabet, # 6∈ ∆A is the bottom marker of the pushdown, p0 ∈ QA is the
initial state,

δA : (QA × (Σ ∪ {λ})× (∆A ∪ {#})) ↪→ QA × ({#, λ} ·∆∗A)

is the (partial) transition function, and FA ⊆ QA is the set of final states. We assume without loss of generality
that the bottom marker # occurs only as the bottommost symbol on the pushdown and that this symbol is
never popped from the pushdown.

A configuration of A is written as (p, u,#α), where p ∈ QA is the current state, u ∈ Σ∗ is the suffix of
the input that has not yet been processed, and #α ∈ # ·∆∗A is the current contents of the pushdown. Here
we assume that the bottom (top) of the pushdown is on the left (right). A word w ∈ Σ∗ is accepted by A if
the computation of A that starts from the initial configuration (p0, w,#) reaches a configuration of the form
(p, λ,#α) for some final state p ∈ FA and some word α ∈ ∆∗A. We use the notation `A to denote the single-step
computation relation that A induces on its set of configurations, and we use `∗A to denote the corresponding
computation relation. Here we establish the following technical result.

Theorem 4.1. Each DPDA A can be simulated by a deterministic monotone RWW-automaton of window size
three.

Proof. Let A = (QA,Σ,∆A,#, p0, δA, FA) be a DPDA, and let L = L(A) ⊆ Σ∗ be the language accepted by A.
Without loss of generality we can assume that each λ-step of A pops a symbol from the pushdown, that is,
if δA(p, λ, x) = (p′, y) for some p, p′ ∈ QA, x ∈ ∆A ∪ {#}, and y ∈ {#, λ} ·∆∗A, then x ∈ ∆A and y = λ (see,
e.g., [1], Prop. 5.4). Thus, given a word w = a1a2 · · · an ∈ L(A) as input, the computation of A begins with
a reading step that reads the first letter a1, and then there is a sequence of n − 1 phases that each consists
of a (possibly empty) sequence of λ-steps during which some symbols are popped from the pushdown that is
followed by a reading step. Finally, after the last reading step, which reads the letter an, another sequence of
λ-steps that pop some symbols from the pushdown may follow taking A into a final state.

For constructing an RWW-automaton M = (Q,Σ,Γ, ¢, $, q0, 3, δ) of window size three that simulates the
computations of A, we need the constant

cA = max{ |γ| | ∃ p, p′ ∈ QA, a ∈ Σ, x ∈ ∆A ∪ {#} : δA(p, a, x) = (p′, γ) },

that is, cA is the length of the longest word that A can push onto its pushdown in a single step. Furthermore,
let c = 2cA − 1.

The idea of the construction of M is as follows. Using code symbols of the form [α] and [α, p], the con-
tents #α1α2 · · ·αm of the pushdown of A and the actual state p of A are encoded by a word of the form
[#α1][α2] · · · [αm, p], where |#α1| = |α2| = . . . = |αm−1| = c and 1 ≤ |αm| ≤ c. Thus, the contents of the push-
down is compressed by the factor c, and its topmost part is stored together with the current state of A. Processing
the input w = a1a2 · · · an from left to right, M tries to simulate a (possibly empty) sequence of λ-steps together
with the next reading step. This sequence of steps causes a change in the contents of the pushdown, that is,
some symbols may be popped from the pushdown and a new word may be pushed onto the pushdown. If the
corresponding change of the pushdown contents can be stored in the rightmost code symbol, then M can sim-
ulate these steps by removing the input letter read and by replacing the rightmost code symbol. However, if
the rightmost code symbol does not have sufficient storage space left, then an additional code symbol must be
used. This causes a problem as each rewrite step of M must be length-reducing. To overcome this problem, M
combines the above steps with the next sequence of λ-steps. If these λ-steps decrease the size of the contents
of the pushdown sufficiently enough, then the simulation can continue by just manipulating the rightmost code
symbol. Finally, if that is not the case, either, then M moves its window one more step to the right and simulates
another reading step, reading the next input symbol as well.

To realize this strategy, the RWW(3)-automaton M is now defined by taking
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− Q = {q0},
− Γ = Σ ∪ { [ν#] | ν# ∈ {#, λ} ·∆∗A, |ν#| = c}

∪ { [α#, p] | α# ∈ {#, λ} ·∆∗A, 1 ≤ |α#| ≤ c, p ∈ QA },
and the transition function δ is defined by the following table, where a, b ∈ Σ, p, p1, p2, p3, p4 ∈ QA, x, y ∈ ∆A,
α, β, γ, η, η1, η2, µ, ν ∈ ∆∗A, α#, ν# ∈ {#, λ} ·∆∗A, 1 ≤ |α#| ≤ c, and |ν#| = c:

(1) δ(q0, ¢a$) = Accept for all a ∈ (Σ ∪ {λ}) ∩ L,
using this rule M accepts inputs of length at most one,

(2) δ(q0, ¢ab) = ¢[#αγ, p3], if δA(p0, a,#) = (p1,#αxβ),

(p1, λ, xβ) `|β|A (p2, λ, x),
and δA(p2, b, x) = (p3, γ),

(3) δ(q0, ¢ab) = ¢[#γ, p3], if δA(p0, a,#) = (p1,#α),

(p1, λ,#α) `|α|A (p2, λ,#),
and δA(p2, b,#) = (p3,#γ),

rules (2) and (3) create the first code symbol on the tape,

(4) δ(q0, ¢[#αxβ, p]a) = ¢[#αγ, p2], if (p, λ, xβ) `|β|A (p1, λ, x),
δA(p1, a, x) = (p2, γ),
and |#αγ| ≤ c,

(5) δ(q0, ¢[#αxβ, p]a) = ¢[#αγ, p3], if (p, λ, xβ) `|β|A (p1, λ, x),
δA(p1, a, x) = (p2, γη),
|#αγ| = c, |η| > 0, and

(p2, λ, η) `|η|A (p3, λ, λ),

(6) δ(q0, ¢[#α, p]a) = ¢[#γ, p2], if (p, λ,#α)`|α|A (p1, λ,#),
and δA(p1, a,#)=(p2,#γ),

rules (4)–(6) read the next input symbol if the whole new
pushdown contents fits into a single code symbol,

(7) δ(q0, ¢[#αxβ, p]a) = (q0,MVR), if (p, λ, xβ) `|β|A (p1, λ, x),
δA(p1, a, x) = (p2, γη),
|#αγ| = c, |η| > 0, but

(p2, λ, η) 6`|η|A (p3, λ, λ),

(8) δ(q0, [α#xβ, p]ab) = [α#γ][η1µ, p4], if (p, λ, xβ) `|β|A (p1, λ, x),
δA(p1, a, x) = (p2, γη),
|α#γ| = c, |η| > 0, η = η1yη2,

(p2, λ, yη2) `|η2|A (p3, λ, y),
and δA(p3, b, y) = (p4, µ),

rule (8) preceded by (7) or (17) reads the next two input symbols as
after reading the first symbol another code symbol is needed,

(9) δ(q0, ¢[#α][β, p]) = (q0,MVR),
(10) δ(q0, ¢[#α][β]) = (q0,MVR),
(11) δ(q0, [ν#][β][γ, p]) = (q0,MVR),
(12) δ(q0, [ν#][β][γ]) = (q0,MVR),

rules (9)–(12) move the window over a sequence of code symbols,

(13) δ(q0, [ν#][α, p]a) = [ν#, p1]a, if (p, λ, α) `|α|A (p1, λ, λ),

rule (13) removes the last code symbol by a sequence of λ-steps,
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(14) δ(q0, [ν#][xβ, p]a) = [ν#, p2], if (p, λ, xβ) `|β|A (p1, λ, x),
and δA(p1, a, x) = (p2, λ),

rule (14) removes the last code symbol by a sequence of λ-steps
followed by reading the next input symbol,

(15) δ(q0, [ν#][αxβ, p]a) = [ν#][αγ, p2], if (p, λ, xβ) `|β|A (p1, λ, x),
δA(p1, a, x) = (p2, γ),
and |αγ| ≤ c,

rule (15) reads the next input symbol if no additional code symbol
is needed,

(16) δ(q0, [ν#][αxβ, p]a) = [ν#][αγ, p3], if (p, λ, xβ) `|β|A (p1, λ, x),
δA(p1, a, x) = (p2, γη),
|αγ| = c, |η| > 0, and

(p2, λ, η) `|η|A (p3, λ, λ),

rule (16) reads the next input symbol if no additional code symbol
is needed because of a subsequent sequence of λ-steps,

(17) δ(q0, [ν#][αxβ, p]a) = (q0,MVR), if (p, λ, xβ) `|β|A (p1, λ, x),
δA(p1, a, x) = (p2, γη),
|αγ| = c, |η| > 0, but

(p2, λ, η) 6`|η|A (p3, λ, λ),

rule (17) realizes a move to the right as reading the next input
symbol would require an additional code symbol – this rule can
be followed by (8) or (21),

(18) δ(q0, ¢[#αβ, p]$) = Accept, if (p, λ, β) `|β|A (p1, λ, λ)
and p1 ∈ FA,

(19) δ(q0, [ν#][αβ, p]$) = Accept, if (p, λ, β) `|β|A (p1, λ, λ)
and p1 ∈ FA,

rules (18) and (19) accept when the whole input has been read,

(20) δ(q0, [ν#][α, p]$) = [ν#, p1]$, if (p, λ, α) `|α|A (p1, λ, λ)
without entering a final state,

rule (20) removes the last code symbol by a sequence of λ-steps
after the whole input has been read,

(21) δ(q0, [α#xβ, p]a$) = Accept, if (p, λ, xβ) `|β|A (p1, λ, x),
δA(p1, a, x) = (p2, γη),
|α#γ| = c, |η| > 0, η = η1yη2,

(p2, λ, yη2) `|η2|A (p3, λ, y),
and p3 ∈ FA,

rule (21) accepts if reading the last input symbol would require
an additional code symbol, but a subsequent sequence of λ-steps
leads to an accepting state.

As each accepting computation of M obviously simulates an accepting computation of the DPDA A, it follows
that L(M) ⊆ L = L(A) holds. On the other hand, we can prove the following claim by induction on the length
of the input word w.
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Claim. For all p ∈ QA, w ∈ Σ∗, and α ∈ ∆∗A, if (p, w,#α) `∗A (pf , λ,#γ) for some pf ∈ FA and γ ∈ ∆∗A, then

q0¢[#α1][α2] · · · [αm−1][αm, p]w$ `∗M Accept,

where α = α1α2 · · ·αm, |#α1| = |α2| = . . . = |αm−1| = c, and 1 ≤ |αm| ≤ c.

Proof. We proceed by induction on |w|. If w = λ, then the computation (p, w,#α) = (p, λ,#α) `∗A (pf , λ,#γ)
consists of a (possibly empty) sequence of λ-steps, where α = γγ′ for some γ′ ∈ ∆∗. Thus, γ = α1 · · ·αi−1α

′
i

and γ′ = α′′i αi+1 · · ·αm for some α′i, α
′′
i ∈ ∆∗A, where αi = α′iα

′′
i .

If |#γ| ≥ |#α1 · · ·αm−1|, then M can execute the following computation:

q0¢[#α1][α2] · · · [αm−1][αm, p]$
`∗M Accept (by rule (18) or by rules (9)–(12) and (19)).

Otherwise, |#γ| < |#α1 · · ·αm−1| and M can execute the following computation:

q0¢[#α1][α2] · · · [αm−1][αm, p]$
= q0¢[#α1] · · · [α′iα′′i ][αi+1] · · · [αm, p]$
`c∗M q0¢[#α1] · · · [αi−1][α′iα

′′
i , p
′]$ (by rules (9)–(12) and (20))

`cM Accept (by rules (9)–(12), and (18)
or (19)),

where p′ ∈ QA is the state reached by A from the configuration (p, λ,#α) after popping the suffix αi+1 · · ·αm
of α.

Now assume that the claim above has been proved for all words w of length up to some n ≥ 0 and let w = aw′

for some letter a ∈ Σ and a word w′ ∈ Σn. Then the accepting computation (p, w,#α) `∗A (pf , λ,#γ) of A can
be written as follows:

(p, w,#α) = (p, aw′,#α) `∗A (p1, aw
′,#ω) `A (p2, w

′,#ω′) `∗A (pf , λ,#γ).

From the induction hypothesis, we obtain that, for any p′ ∈ QA and α′ ∈ ∆∗ such that (p2, w
′,#ω′) `∗A

(p′, w′,#α′) `∗A (pf , λ,#γ), the following holds:

q0¢[#α′1][α′2] · · · [α′m−1][α′m, p
′]w′$ `∗M Accept,

where α′ = α′1α
′
2 · · ·α′m, |#α′1| = |α′2| = . . . = |α′m−1| = c, and 1 ≤ |α′m| ≤ c.

Furthermore, the above A-computation from the configuration (p, aw′,#α) up to the configuration
(p′, w′,#α′) consists of (at most) three parts: a (possibly empty) sequence of λ-steps, then a step in which
the letter a is read, and then possibly another sequence of λ-steps. Thus, it can be written as follows:

(i) either there exist α′, γ′ ∈ ∆∗ and p1, p2 ∈ QA such that η = α′γ′, δA(p1, a,#) = (p2,#η), and

(p, aw′,#α) `|α|A (p1, aw
′,#) `A (p2, w

′,#η) `|γ
′|

A (p′, w′,#α′),

(ii) or α = βxζ for some β, ζ ∈ ∆∗A and x ∈ ∆A, δA(p1, a, x) = (p2, η), and βη = α′γ′:

(p, aw′,#α) `|ζ|A (p1, aw
′,#βx) `A (p2, w

′,#βη) `|γ
′|

A (p′, w′,#α′).
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In case (i), M can execute the following computation:

q0¢[#α1][α2] · · · [αm−1][αm, p]aw
′$

`c∗M q0¢[#, p1]aw′$ `cM q0¢[#η, p2]w′$ (by rules (9)–(13) and (6))
`∗M Accept,

where the last part follows from the induction hypothesis for α′ = η and p′ = p2.
In case (ii), M can execute the following computation:

q0¢[#α1][α2] · · · [αm−1][αm, p]w$
= q0¢[#β1][β2] · · · [βixζ1][ζ2] · · · [ζj ][ζj+1, p]aw

′$ (as α = βxζ)

`c∗M q0¢[#β1][β2] · · · [βi−1][βixζ1, p
′′]aw′$ (by rules (9)–(13)),

where p′′ ∈ QA is the state that A reaches from the configuration (p, aw′,#α) = (p, aw′,#β1 · · ·βixζ1 · · · ζj+1)
after popping the suffix ζ2 · · · ζj+1 of ζ from its pushdown.

If |βiη| ≤ c, then this computation continues as follows:

q0¢[#β1][β2] · · · [βi−1][βixζ1, p
′′]aw′$

`cM q0¢[#β1][β2] · · · [βi−1][βiη, p2]w′$ (by rules (9)–(12) and
(4) or (15))

= q0¢[#α′1][α′2] · · · [α′m−1][α′m, p
′]w′$

`∗M Accept,

where the last part follows from the induction hypothesis for α′ = βη and p′ = p2.
If |βiη| > c, but |#α′| ≤ |#β1β2 · · ·βi−1|+ c, η = η′η′′ and |βiη′| = c, then the above computation continues

as follows, where the state p′2 is reached by A from the configuration (p2, w
′,#β1 · · ·βixη′η′′) by popping η′′

from the pushdown:

q0¢[#β1][β2] · · · [βi−1][βixζ1, p
′′]aw′$

`cM q0¢[#β1][β2] · · · [βi−1][βiη
′, p′2]w′$ (by rules (9)–(12), and

(5) or (16))
`∗M Accept,

where the last part follows from the induction hypothesis for α′ = β1 · · ·βiη′ and p′ = p′2.
Finally, if |βiη| > c and |#α′| > |#β1β2 · · ·βi−1|+ c, then either

(a) w′ = λ, or
(b) w′ 6= λ.

In case (a), we obtain

q0¢[#β1][β2] · · · [βi−1][βixζ1, p
′′]aw′$

`∗M Accept (by rules (9)–(12), and (21)).

In case (b), we also have to consider the next part of the above computation of the DPDA A, in which the
first letter of w′, say b, is read:

(p′, w′,#α′) = (p′, bw′′,#α′) `∗A (q, w′′,#α′′) `∗A (pf , λ,#γ).
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Then the above computation of M continues as follows:

q0¢[#β1][β2] · · · [βi−1][βixζ1, p
′′]aw′$

= q0¢[#β1][β2] · · · [βi−1][βixζ1, p
′′]abw′′$

`cM q0¢[#β1][β2] · · · [βi−1][βiη1][η2, q]w
′′$ (by rules (9)–(12),

then (7) and (8)
or (17) and (8)),

where #β1β2 · · ·βi−1βiη1η2 = #α′′. Then the induction hypothesis can be applied to the configuration
(q, w′′,#α′′), which yields

q0¢[#β1][β2] · · · [βi−1][βiη1][η2, q]w
′′$ `∗M Accept.

Let w ∈ L(A). If |w| ≤ 1, then M accepts on input w by rule (1). So assume that |w| ≥ 2, and let w = abw′

for some a, b ∈ Σ. Then

(p0, abw
′,#) `A (p, bw′,#α) `∗A (p′, w′,#α′) `∗A (pf , λ,#γ)

for some p, p′ ∈ QA, qf ∈ FA, and words α, α′, γ ∈ ∆∗A. It is easily seen that |#α′| ≤ c, and hence, M can
execute the following computation:

q0¢w$ = q0¢abw′$
`cM q0¢[#α′, p′]w′$ (by rule (2) or (3))
`∗M Accept (by the claim above).

It follows that L = L(A) ⊆ L(M), and hence, L(M) = L = L(A).

During a computation, the tape contents of M is always of the form

¢[#α1][α2] · · · [αm−1][αm, p]arar+1 · · · an$,

where α1, α2, . . . , αm ∈ ∆∗A, p ∈ QA, and ar, ar+1, . . . , an ∈ Σ. As each rewrite step involves the rightmost code
symbol on the tape, and as it processes the leftmost input symbol (or the two leftmost input symbols), it follows
that M is monotone. Thus, M is a deterministic monotone RWW(3)-automaton for the language L(A).

From this simulation and from Theorem 2.3 we obtain the following consequence.

Corollary 4.2. DCFL = L(det-mon-RWW(3)) = L(det-mon-RRWW(3)).

In addition, we get the following, as for each k ≥ 4,

L(det-mon-RRWW(k)) ⊆ DCFL = L(det-mon-RWW(3)) ⊆ L(det-mon-RWW(k)).

Corollary 4.3. For all k ≥ 3,

DCFL = L(det-mon-RWW(k)) = L(det-mon-RRWW(k)).
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4.2. On deterministic monotone RWW(2)-automata

Here we show that each deterministic monotone RWW-automaton of window size three can be simulated
by a deterministic monotone RWW-automaton of only window size two. This simulation will be based on the
following important observation.

Proposition 4.4. Each deterministic RWW- or RRWW-automaton of window size two is monotone.

Proof. Let M = (Q,Σ,Γ, ¢, $, q0, 2, δ) be a deterministic RRWW-automaton of window size two. Each rewrite
transition of M replaces a factor of length two of the tape contents by the empty word λ or by a single letter.
Thus, if M executes a cycle of the form

q0¢a1a2 · · · ai−1aiai+1ai+2 · · · an$ `cM q0¢a1a2 · · · ai−1ai+2 · · · an$,

by deleting the factor aiai+1, where a1, a2, . . . , an ∈ Γ, then this cycle begins with a sequence of i MVR steps
that shift the window to the factor aiai+1 and a subsequent rewrite step that deletes this factor. As M is
deterministic, the next cycle begins with a sequence of i − 1 MVR steps that shift the window to the factor
ai−1ai+2, which implies that the latter cycle has a smaller right distance than the former.

If M executes a cycle of the form

q0¢a1a2 · · · ai−1aiai+1ai+2 · · · an$ `cM q0¢a1a2 · · · ai−1bai+2 · · · an$,

by replacing the factor aiai+1 by the letter b, where a1, a2, . . . , an, b ∈ Γ, then this cycle begins with a sequence of
i MVR steps that shift the window to the factor aiai+1 and the subsequent rewrite step. As M is deterministic,
the next cycle begins with a sequence of i − 1 MVR steps that shift the window to the factor ai−1b, which
implies that the latter cycle has at most the same right distance as the former.

Together these two cases show that M is indeed monotone. Obviously, the same arguments apply if M is a
deterministic RWW-automaton of window size two.

Thus, we have the following inclusion.

Corollary 4.5. L(det-RWW(2)) ⊆ L(det-RRWW(2)) ⊆ DCFL.

The proof of Proposition 4.4 rests on the fact that, in each cycle, a restarting automaton with a window of size
two replaces a factor of length two by a word of length at most one. Thus, this result also extends to deterministic
restarting automata of any finite window size k ≥ 3, provided that each of their rewrite operations rewrites a
factor of length k by a word of length at most one. However, if a deterministic restarting automaton of window
size k ≥ 3 contains a rewrite operation of the form δ(q, a1a2 · · · ak) = (q′, b1b2), where a1, a2, . . . , ak, b1, b2 are
letters, then after performing a cycle of the form

q0¢c1c2 · · · cma1a2 · · · akd1d2 · · · dn$ `c q0¢c1c2 · · · cmb1b2d1d2 · · · dn$,

it could happen that in the next cycle the factor of length k that ends in cmb1 is rewritten, which means that
the cycle containing this rewrite step has a larger right distance than the previous cycle. Hence, this restarting
automaton would not be monotone.

Below we need the following technical result that is based on Lemma 3 of [4] (pages 1806–1808).

Lemma 4.6. Let A be a deterministic finite-state acceptor with input alphabet Σ. For each word x = x1x2 · · ·xn,
where xi ∈ Σ, and each integer i, 1 ≤ i ≤ n, let qx,i denote the state entered by A after processing the prefix
x1x2 · · ·xi. Then there exists a deterministic two-way finite-state acceptor A′ such that, for each input x =
x1x2 · · ·xn and each i, 2 ≤ i ≤ n, if A′ starts its computation on x in state qx,i with its head on xi, then A′

finishes its computation in state qx,i−1 with its head on the symbol xi−1. Moreover, during this computation A′

only visits (a part of) x1x2 · · ·xi.
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Now we come to the main result of this subsection.

Theorem 4.7. Each deterministic monotone RWW-automaton of window size three can be simulated by a
deterministic RWW-automaton of window size two.

Proof. Using Lemma 4.6 we can show the following. Let M = (Q,Σ,Γ, ¢, $, q0, 3, δ) be a deterministic monotone
RWW-automaton, and let F (M) be the set of all words x ∈ Γ∗ such that, after starting from the restarting
configuration q0¢x$, M will accept eventually, but the first rewrite/restart step within this computation is
performed at the right end of the tape (that is, with the right sentinel $ in its read/write window). Then F (M)
is a regular language.

In fact, if x ∈ F (M), then all rewrite/restart steps within the computation of M that starts from the
configuration q0¢x$ occur at the right sentinel $, as M is monotone. In addition, we can assume without loss of
generality that the accept step is also performed at the right sentinel. Furthermore, observe that the move-right
steps of M can be simulated by a deterministic finite-state acceptor AMVR. Based on Lemma 4.6, we obtain a
deterministic two-way finite-state acceptor A′MVR that can simulate the reverse transitions of AMVR.

Now we construct a two-way finite-state acceptor A1 for the set F (M). The acceptor A1 simulates the RWW-
automaton M while scanning the tape from left to right. If M is to execute a rewrite/restart step before reaching
the right sentinel, then A1 halts in a non-final state. When M reaches the right end of its tape (that is, when
the right sentinel $ appears in the read/write window), then, instead of executing the rewrite/restart step of M ,
the acceptor A1 simulates the rewrite step within its finite-state control and

(a) it remembers the contents of the rewritten tape between the leftmost letter in the window of M and the
right sentinel, and

(b) by using the deterministic two-way finite-state acceptor A′MVR, it computes the state that M enters when it
reaches the first symbol that was produced by the rewrite step within the previous cycle. Then it continues
the simulation of the computation of M from this point onwards. When M halts accepting or rejecting,
then A1 accepts or rejects as well. Otherwise, A1 simulates the next rewrite step in its finite-state control
and continues.

Obviously, the computation of A1 is finite for any input word x. Thus, it follows that F (M) is a regular
language. In addition, from A1, we can construct a (one-way) finite-state acceptor A = (QA,Γ, δA, qA,0, FA) for
the language F (M).

We now show how to construct a deterministic RWW-automaton M ′ = (Q′,Σ,Γ′, ¢, $, q′0, 2, δ
′) of window

size two that accepts the same language as M .
The read/write window of M ′ is smaller than the read/write window of M . Hence, in order to simulate a

cycle of M , the automaton M ′ may have to perform more than one cycle. Accordingly, its state will be used to
represent not only the current state of M , but also the symbol immediately to the left of its current window
position and the corresponding state of the finite-state acceptor A. Hence, the set of states of M ′ will be

Q′ = { [q, x, p] | q ∈ Q, x ∈ Γ ∪ {¢, λ}, p ∈ QA }.

The initial state of M ′ is q′0 = [q0, λ, qA,0], and the first step performed by M ′ from a restarting configuration
with a word x on its tape is

[q0, λ, qA,0]¢x$ `M ′ ¢[q0, ¢, qA,0]x$.

A series of move-right steps of M can be simulated easily. For each move-right step δ(q, u1u2u3) = (q′,MVR)
of M , the automaton M ′ has the move-right step

δ′([q, u1, p], u2u3) = ([q′, u2, p
′],MVR)
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for all states p, p′ ∈ QA such that δA(p, u2) = p′.
However, the simulation of the rewrite steps of M is more complicated. First of all, no rewrite at the right

end of the tape of M needs to be simulated, as all the remaining rewrite steps by M must then also occur at the
right end of the tape. Instead, M ′ can inspect the state of A after scanning the last letter of the current contents
of the tape and accept or reject immediately. Thus, M ′ will only simulate a rewrite of M if the corresponding
contents of the window of M does not contain the right sentinel $. Any combined rewrite/restart step of M
according to

δ(q, u1u2u3) = v, where u1, u2, u3 ∈ Γ and v ∈ Γ≤2, (4.1)

will be simulated as follows:

(i) If v = λ, the automaton M ′ rewrites u2u3 by a special symbol ∆ 6∈ Γ and restarts. When in a subsequent
cycle the symbol ∆ appears in the read/write window of M ′, the automaton deletes ∆ and the symbol
immediately to the left of ∆. This completes the simulation of (4.1) by M ′.

(ii) If v = v1 for some v1 ∈ Γ, the automaton M ′ rewrites u2u3 by the pair [∆, v1] and restarts. When [∆, v1]
appears as the second symbol within the read/write window of M ′, the automaton rewrites the contents
of its read/write window by v1, in this way completing the simulation of (4.1).

(iii) If v = v1v2 for some v1, v2 ∈ Γ, the automaton M ′ cannot simulate this rewrite step in two cycles, as two
cycles would shorten the tape by at least two symbols. The automaton M ′ must first read the tape until it
sees u2u3 (preceded by u1). If v1 = u1, the automaton simply rewrites u2u3 into v2 and the simulation of
(4.1) is complete. Otherwise, M ′ rewrites u2u3 into the symbol [v1, v2] with the meaning that the contents
of the corresponding tape field is v2 and its left neighbour should be v1. Because of the monotonicity
of M , after performing the combined rewrite/restart step using (4.1), M cannot perform another rewrite
within the next cycle before its window contains the whole factor v = v1v2 (otherwise the right distance
of the latter cycle would be larger than that of the former). Therefore, the simulating automaton M ′ will
scan the tape until it sees u1[v1, v2]. It can then interpret the contents of both fields containing u1 and
[v1, v2] properly as fields containing v1 and v2. Of course, the transition relation δ′ of M ′ must also include
move-right instructions over fields containing pairs of symbols, as the next rewrite after using (4.1) can
occur to the right of v1, and in addition, all rewrite instructions of M ′ must preserve the information
within the first element of a pair symbol on its tape.

In general, the tape of M ′ will contain symbols from Γ and pairs of symbols from Γ× Γ:

• The automaton M ′ interprets a symbol x ∈ Γ on its tape as x on the tape of M , if it is not followed by a
pair, and as v1 on the tape of M , if it is followed by a pair [v1, v2].

• The automaton M ′ interprets a symbol [x, y] ∈ Γ×Γ on its tape as y on the tape of M , if it is not followed
by a pair, and as v1 on the tape of M , if it is followed by a pair [v1, v2].

As M is deterministic and monotone, all pair symbols on the tape of M ′ will be scanned by M ′ prior to
simulating any further rewrites by M . Hence, all symbols on the tape of M ′ will be interpreted correctly
and the automaton M ′ is deterministic. Moreover, as all computations of deterministic RWW(2)-automata are
monotone by Proposition 4.4, it follows that M ′ is monotone.

Because of Theorem 4.1 the above simulation has the following consequence.

Corollary 4.8. DCFL = L(det-mon-RWW(2)) = L(det-mon-RRWW(2))
= L(det-RWW(2)) = L(det-RRWW(2)).

In combination, our results yield the following construction of a deterministic monotone RWW-automaton of
window size two from a deterministic monotone RWW-automaton of window size k ≥ 4. LetM be a deterministic
monotone RWW-automaton of window size k ≥ 4. From M , we can first construct a DPDA P for the language
L(M) as shown in the proof of Theorem 2.2 in [7]. From this DPDA, we can derive a deterministic monotone
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RWW-automaton of window size three for L(M) as in the proof of Theorem 4.1, and then, using the construction
above, we obtain a deterministic (monotone) RWW-automaton of window size two for L(M).

4.3. On deterministic RWW-automata

Here we turn to deterministic RWW-automata that are not (necessarily) monotone. We have seen above that
deterministic RWW- and RRWW-automata of window size two are necessarily monotone, which implies that
they yield a characterization for the class DCFL of deterministic context-free languages. What can be said about
deterministic RWW- and RRWW-automata of window size larger than two?

We begin with a simple example, considering the non-context-free language

Lexpo = { a2n

| n ≥ 0 }.

It is known that Lexpo is a Church-Rosser language [17], and hence, it is accepted by a deterministic RWW-
automaton [24]. In fact, it is even accepted by a deterministic RWW-automaton of window size three.

Example 4.9. Let M = (Q, {a},Γ, ¢, $, q0, 3, δ) be the deterministic RWW-automaton of window size three
that is defined by taking Q = {q0}, Γ = {a, b}, and by defining the transition function δ as follows:

(1) δ(q0, ¢a$) = Accept, (6) δ(q0, ¢b$) = Accept,
(2) δ(q0, ¢aa) = (q0,MVR), (7) δ(q0, ¢bb) = (q0,MVR),
(3) δ(q0, aaa) = (q0,MVR), (8) δ(q0, bbb) = (q0,MVR),
(4) δ(q0, aa$) = b$, (9) δ(q0, bb$) = a$,
(5) δ(q0, aab) = bb, (10) δ(q0, bba) = aa.

It is easily seen that M accepts the language Lexpo. Also observe that M is non-monotone, as, for example,

q0¢aaaaaaaa$ `cM q0¢aaaaaab$ `cM q0¢aaaabb$ `cM q0¢aabbb$ `c
∗

M Accept

is a non-monotone accepting computation.

As Lexpo ∈ L(det-RWW(3)), we have the following chain of inclusions, where CRL denotes the class of
Church-Rosser languages:

REG = L(det-R(R)WW(1))
( L(det-R(R)WW(2)) = DCFL
( L(det-RWW(3))
⊆ L(det-RRWW(3)) ⊆ L(det-R(R)WW) = CRL.

It remains open whether the latter inclusions are proper or not.

5. On shrinking restarting automata

We now turn to a generalized type of restarting automaton, the shrinking restarting automaton, which was
introduced in [26] and further studied in [9–11]. A shrinking restarting automaton M is defined just like an
RRWW-automaton with the one exception that it is no longer required that each rewrite step u→ v of M must
be length-reducing. Instead, there must exist a weight function ω that assigns a positive integer ω(a) to each
letter a of M ’s tape alphabet Γ such that, for each rewrite step u→ v of M , ω(u) > ω(v). Here the function ω
is extended to a morphism ω : Γ∗ → N by taking ω(λ) = 0 and ω(wa) = ω(w) + ω(a) for all words w ∈ Γ∗ and
letters a ∈ Γ. We use the notation sRRWW and sRWW to denote shrinking RRWW- and RWW-automata.
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In [10], the following result has been established, where FCA denotes the class of finite-change automata
from [30]. A finite-change automaton is a nondeterministic linear-bounded automaton that does not change the
contents of any tape cell more than r times during any accepting computation, where r ≥ 1 is a constant.

Theorem 5.1. [10] L(FCA) = L(sRWW) = L(sRRWW).

In the proof of Lemma 17 in [10], it is shown that a finite-change automaton A can be simulated by an
sRRWW-automaton M with window size one. In fact, the sRRWW(1)-automaton M just performs rewrite
steps that replace a single letter by another single letter. Hence, M can be interpreted as an ordered RRWW-
automaton (ORRWW-automaton) as defined in [14]. These are sRRWW-automata that have a window of size
three, but the rewrite steps of which just replace the symbol in the middle of the window by a smaller letter,
that is, by a letter of less weight. This yields the following consequence, which answers the question about the
expressive power of ORRWW-automata that was left open in [14].

Corollary 5.2. L(FCA) = L(sRRWW(1)) = L(ORRWW).

The simulation of an sRRWW-automaton of window size k by an sRWW-automaton given in [10] yields that
the latter has window size max{2k, 9}. Thus, we obtain the following result.

Corollary 5.3. L(FCA) = L(sRWW(9)).

However, it remains open whether sRWW-automata of window size k ∈ {2, 3, . . . , 8} are really less expressive
than finite-change automata. Concerning sRWW(1)-automata, we have the following results.

Proposition 5.4. REG ( L(sRWW(1)).

Proof. Obviously, a finite-state acceptor can be simulated by an sRWW(1)-automaton that does not use any
rewrite/restart operations. Thus, REG ⊆ L(sRWW(1)).

In order to prove that this inclusion is proper, we consider the example language

L≥ = { am+nbn | m,n ≥ 0 },

which is easily seen to be a deterministic context-free language that is not regular. Now an sRWW(1)-automaton
M≥ = (Q, {a, b},Γ, ¢, $, q0, 1, δ) for the language L≥ can be defined by taking Q = {q0, q1, q2, p0, p1, p2}, Γ =
{a, b, a1, a2, a3, b1, b2}, and by defining the transition relation δ as follows:

(1) δ(q0, ¢) = {(q0,MVR)}, (12) δ(q1, b2) = {(p1,MVR)},
(2) δ(q0, $) = {Accept}, (13) δ(q1, $) = {Accept},
(3) δ(q0, a) = {a1}, (14) δ(q2, a) = {(q2,MVR)},
(4) δ(q0, a1) = {(q1,MVR), a2}, (15) δ(q2, b1) = {b2},
(5) δ(q0, a2) = {(q2,MVR), a3}, (16) δ(q2, b2) = {(p2,MVR)},
(6) δ(q0, a3) = {(q0,MVR)}, (17) δ(p1, b2) = {(p1,MVR)},
(7) δ(q0, b2) = {(p0,MVR)}, (18) δ(p1, b) = {b1},
(8) δ(p0, b2) = {(p0,MVR)}, (19) δ(p1, $) = {Accept},
(9) δ(p0, $) = {Accept}, (20) δ(p2, b2) = {(p2,MVR)},

(10) δ(q1, a) = {(q1,MVR)}, (21) δ(p2, b1) = {b2}.
(11) δ(q1, b) = {b1},

From the form of the transitions, it is easily seen that M≥ performs an accepting tail computation iff the
tape contents is of the form z = am3 b

n
2 for some m,n ≥ 0 or of the form am3 a1a

rbn2 for some m,n, r ≥ 0. Thus,
the corresponding input is of the form asbt for some s, t ≥ 0. During an accepting computation on an input
of this form, the occurrences of the letter a are rewritten, from left to right, first into a1, then into a2, and
finally into a3. Analogously, the occurrences of the letter b are rewritten, from left to right, first into b1 and
then into b2. However, an occurrence of b can only be rewritten into b1 (by (11) or (18)) if in that cycle, the
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rightmost occurrence of the letter a that has already been rewritten happens to be an a1 (see (4) and (12)), and
an occurrence of b1 can only be rewritten into b2 (by (15) or (21)) if in that cycle, the rightmost occurrence of
the letter a that has already been rewritten happens to be an a2 (see (5) and (16)). It follows that s ≥ t, that
is, L(M≥) = L≥. Thus, REG is indeed a proper subclass of L(sRWW(1)).

The technique used in the construction of the sRWW(1)-automaton for the language L≥ in the above proof
can easily be extended to show that also the language

L′copy = {w#u | w, u ∈ {a, b}∗, |w|, |u| ≥ 2, u is a scattered subword of w }

is accepted by an sRWW(1)-automaton. In [15], it has been shown that this language is not even growing
context-sensitive.

Proposition 5.4 establishes a lower bound for the expressive power of sRWW(1)-automata. Next we derive
an upper bound for it. Recall from [15, 16] that an ORWW-automaton is an sRWW(3)-automaton the rewrite
steps of which just replace the symbol in the middle of the window by a smaller letter, that is, by a letter with
less weight.

Proposition 5.5. L(sRWW(1)) ⊆ L(ORWW).

Proof. Let M = (Q,Σ,Γ, ¢, $, q0, 1, δ) be a shrinking RWW(1)-automaton that is compatible with the weight
function ϕ : Γ→ N+, and let c = max{ϕ(a) | a ∈ Σ }, that is, c is the maximal weight of an input letter. Without
loss of generality, we can assume that M only accepts with its read/write window on the right sentinel $.

We construct an ORWW-automaton Mo = (Q,Σ,∆, ¢, $, q0, 3, δo, >), where > is a partial ordering on the
tape alphabet ∆ such that x > y holds whenever Mo rewrites a symbol x into y. First we take

∆ = Σ ∪ { [α] | α ∈ Γ∗, ϕ(α) ≤ c }.

Here the symbol [α] encodes the word α ∈ Γ∗, where the weight ϕ(α) is bounded from above by the constant c.
As the weight of each letter a ∈ Γ is positive, we see that there are only finitely many words from Γ∗ with weight
bounded from above by c. Hence, ∆ is indeed a finite alphabet. We define a morphism ψ : ∆∗ → Γ∗ through
ψ(a) = a for all a ∈ Σ and ψ([α]) = α for all [α] ∈ ∆ r Σ, and we define the partial ordering > on ∆ by taking,
for all a, b ∈ Σ, a > [a], and for all x, y ∈ ∆ r Σ,

x > y if ϕ(ψ(x)) > ϕ(ψ(y)).

Finally, we specify the transition relation δo as follows, where `MVR denotes the single-step computation relation
that is induced by the MVR steps of M , a, b ∈ Σ, u, v, z, α ∈ Γ∗, ω ∈ ∆, X ∈ Γ, and q1, q2 ∈ Q:

(1) δo(q0, ¢$) = {Accept}, if q0¢$ `MVR ¢q1$
and δ(q1, $) = {Accept},

(2) δo(q0, ¢a$) = {¢[a]$},
(3) δo(q0, ¢[u]$) = {Accept}, if q0¢u$ `|u|+1

MVR ¢uq1$
and δ(q1, $) = {Accept},

(4) δo(q0, ¢[uXv]$) 3 ¢[uzv]$, if q0¢uXv$ `|u|+1
MVR ¢uq1Xv$

and δ(q1, X) 3 z,
(5) δo(q0, ¢ab) = {¢[a]b},
(6) δo(q0, ¢[u]ω) 3 (q1,MVR), if q0¢uψ(ω) `|u|+1

MVR ¢uq1ψ(ω),
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(7) δo(q0, ¢[uXv]ω) 3 ¢[uzv]ω, if q0¢uXv `|u|+1
MVR ¢uq1Xv

and δ(q1, X) 3 z,
(8) δo(q1, [α]ab) = {[α][a]b},
(9) δo(q1, [α][u]ω) 3 (q2,MVR), if q1uψ(ω) `|u|MVR uq2ψ(ω),

(10) δo(q1, [α][uXv]ω) 3 [α][uzv]ω, if q1uXv `|u|MVR uq2Xv
and δ(q2, X) 3 z,

(11) δo(q1, [α]a$) = {[α][a]$},
(12) δo(q1, [α][u]$) = {Accept}, if q1u$ `|u|MVR uq2$

and δ(q2, $) = {Accept},
(13) δo(q1, [α][uXv]$) 3 [α][uzv]$, if q1uXv `|u|MVR uq2Xv

and δ(q2, X) 3 z.

Note that instruction (9) also simulates the process of moving over a deleted part of the tape of M , as
δo(q1, [α][λ]ω) 3 (q1,MVR) for all states q1 ∈ Q. All rewrite steps of Mo do either replace an input letter a
by the auxiliary letter [a] or they simulate a rewrite step of M on some auxiliary symbol. Hence, each rewrite
step replaces the letter in the middle of the window by a smaller one with respect to the partial ordering >.
Thus, we see that Mo is indeed an ORWW-automaton.

It remains to prove that Mo accepts the same (input) language as M . It is easily seen from the definition of
δo that Mo accepts on input λ iff M accepts on input λ. So let w = a1a2 · · · an be given as input, where n ≥ 1
and a1, a2, . . . , an ∈ Σ. Assume that w ∈ L(M), that is, M has an accepting computation on input w. As M
only accepts with its read/write window on the right sentinel $, this computation looks as follows:

q0¢w$ = q0¢a1a2 · · · an$ `cM q0¢w1$ `cM q0¢w2$
`cM . . . `cM q0¢wm$ `+

MVR ¢wmq+$
`M Accept,

where q+ ∈ Q, δ(q+, $) = {Accept}, and w1, w2, . . . , wm ∈ Γ∗. As M is shrinking with window size one, each
word wi can be factored as wi = ui,1ui,2 · · ·ui,n, where ui,j is the factor of wi that is obtained from the input
letter ai by those rewrite steps in the above computation that have been applied to ai and to the i-th factors of
w2, w3, . . . , wi−1. Note that the length of ui,j can be greater than one as an sRWW(1)-automaton can rewrite
a single symbol x into a word y, provided that ϕ(x) > ϕ(y).

Now the ORWW-automaton Mo proceeds as follows. On input w = a1a2 . . . an, it replaces each letter ai
by the auxiliary symbol [ai] using instructions (2), (5), (8), and (11). Then it simulates the cycles of M by
performing the rewrite steps from M ’s computation within the corresponding auxiliary symbols, that is, if in a
cycle

q0¢wi$ = q0¢ui,1ui,2 · · ·ui,j−1ui,jui,j+1 · · ·ui,n$
`cM q0¢ui,1ui,2 · · ·ui,j−1ui+1,jui,j+1 · · ·ui,n$
= q0¢wi+1$

the factor ui,j is rewritten into the factor ui+1,j , then Mo executes the cycle

q0¢w′i$ = q0¢[ui,1][ui,2] · · · [ui,j−1][ui,j ][ui,j+1] · · · [ui,n]$
`cM q0¢[ui,1][ui,2] · · · [ui,j−1][ui+1,j ][ui,j+1] · · · [ui,n]$
= q0¢w′i+1$

by rewriting the letter [ui,j ] into the letter [ui+1,j ] using instruction (4), (7), (10), or (13). Here it is possible
that some of the factors ui,j+1 to ui,n are just input letters that have not yet been rewritten into auxiliary
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symbols by Mo. Finally, as

q0¢wm$ = q0¢um,1um,2 · · ·um,n$ `∗MVR ¢um,1um,2 · · ·um,nq+$

and δ(q+, $) = {Accept}, Mo can execute an accepting tail computation starting from the configuration

q0¢w′m$ = q0¢[um,1][um,2] · · · [um,n]$

using instructions (3), (6), (9), and (12).
Conversely, it is easily seen that each accepting computation of Mo is just the simulation of an accepting

computation of M . Thus, L(M0) = L(M) follows, which completes the proof of Proposition 5.5.

Next we turn to shrinking RWW-automata of window size two. We shall prove that window size two is
sufficient for these automata to enable them to accept all growing context-sensitive languages. A language
L ⊆ Σ∗ is growing context-sensitive if it is generated by a grammar G = (N,Σ, S, P ) such that, for each
production (` → r) ∈ P , ` = S or |`| < |r| (see, e.g., [3]). Concerning the class GCSL of growing context-
sensitive languages, the following characterization has been established, where sTPDA denotes the class of
shrinking two-pushdown automata (see below).

Theorem 5.6. [2] GCSL = L(sTPDA).

The two-pushdown automaton is defined as follows, where this definition is taken from [2].

Definition 5.7. A two-pushdown automaton (TPDA) is a nondeterministic automaton with two pushdown
stores. Formally, it is defined as a 7-tuple A = (Q,Σ,Γ, δ, q0,⊥, F ), where

– Q is the finite set of states,
– Σ is the finite input alphabet,
– Γ is the finite tape alphabet with Γ ) Σ and Γ ∩Q = ∅,
– q0 ∈ Q is the initial state,
– ⊥ ∈ Γ r Σ is the bottom marker of the pushdown stores,
– F ⊆ Q is the set of final (or halting) states, and
– δ : Q× Γ× Γ→ Pfin(Q× Γ∗ × Γ∗) is the transition relation, where Pfin(Q× Γ∗ × Γ∗) denotes the set of

finite subsets of Q× Γ∗ × Γ∗.

Given a word w ∈ Σ∗ as input, the TPDA A starts in its initial state q0 with its first pushdown only containing
the bottom marker ⊥ and its second pushdown containing the input w followed by the bottom marker. Thus,
at the start, A sees the bottom marker on its first pushdown and the first letter of w on its second pushdown.

The automaton A is a deterministic two-pushdown automaton (DTPDA), if δ is a (partial) function from
Q× Γ× Γ into Q× Γ∗ × Γ∗.

A configuration of the (D)TPDA A is described as uqv, where q ∈ Q is the actual state, u ∈ Γ∗ is the contents
of the first pushdown store with the first letter of u at the bottom and the last letter of u at the top, and v ∈ Γ∗

is the contents of the second pushdown store with the last letter of v at the bottom and the first letter of v
at the top. Thus, for an input string w ∈ Σ∗, the corresponding initial configuration is ⊥q0w⊥. By applying a
transition (q, u, v) ∈ δ(p, a, b), the automaton replaces the symbol a on the top of its first pushdown store by
the word u and the symbol b on the top of its second pushdown store by the word v, and it changes from state
p to state q. The (D)TPDA A induces a computation relation `∗A on the set of configurations, which is the
reflexive transitive closure of the single-step computation relation `A (see, e.g., [5]). The (D)TPDA A accepts
with empty pushdown stores, that is,

L(A) := {w ∈ Σ∗ | ⊥q0w⊥ `∗A q for some q ∈ F }
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is the language accepted by A.

Definition 5.8. A (D)TPDA is called shrinking if there exists a weight function ϕ : Q ∪ Γ → N+ such that,
for all q ∈ Q and a, b ∈ Γ, (p, u, v) ∈ δ(q, a, b) implies that ϕ(upv) < ϕ(aqb). By s(D)TPDA we denote the class
of shrinking (deterministic) two-pushdown automata.

Thus, if A is a shrinking TPDA with weight-function ϕ, then ϕ(u1q1v1) > ϕ(u2q2v2) holds for all configura-
tions u1q1v1 and u2q2v2 of A that satisfy u1q1v1 `A u2q2v2. Observe that the input is provided to a TPDA as
the initial contents of its second pushdown store, and that in order to accept a TPDA is required to empty its
pushdown stores. Thus, it is forced to consume its input completely. Using standard techniques from automata
theory, it can be shown that, for a (shrinking) (deterministic) TPDA A = (Q,Σ,Γ, δ, q0,⊥, F ), we may require
that the special symbol ⊥ can only occur at the bottom of a pushdown store, and that no other letter can occur
at that place.

From the definition of the transition relation δ, we see that A halts immediately whenever one of its pushdown
stores is emptied. Because of the above property, this happens if and only if a transition of the form (q, a,⊥) 7→
(q′, u, λ) or (q,⊥, b) 7→ (q′, λ, v) is performed. Thus, we can assume without loss of generality that, if A does
accept on input w ∈ Σ∗, then ⊥q0w⊥ `∗A q for some q ∈ F , and if A does not accept on input w ∈ Σ∗, then
⊥q0w⊥ `∗A ⊥q for some q ∈ F , that is, even in this situation, A empties its second pushdown store completely
and only leaves the bottom marker on its first pushdown store before it halts. Hence, all the halting and accepting
configurations of A are of the form q, where q ∈ F , and all the halting and rejecting configurations of A are of
the form ⊥q, where q ∈ F . In addition, we can assume that A has a single halting state only.

Based on Theorem 5.6 and the fact that GCSL ( L(sRWW) = L(FCA) (see, e.g., [8]), we can now derive the
following inclusion result.

Theorem 5.9. GCSL ( L(sRWW(2)).

Proof. As the language L′copy mentioned above is accepted by an sRWW(1)-automaton, we see that L(sRWW(2))
contains a language that is not growing context-sensitive. So it remains to prove that each growing context-
sensitive language is accepted by some sRWW(2)-automaton.

Let L ⊆ Σ∗ be a growing context-sensitive language. By Theorem 5.6, there exists an sTPDA A =
(P,Σ,Γ, δ, p0,⊥, {pf}) that accepts the language L. Let ϕ : P ∪ Γ → N+ be a weight function such that A is
shrinking with respect to this weight function. Without loss of generality we can assume that ϕ(aqb)−ϕ(upv) ≥ 2
for each transition (p, u, v) ∈ δ(q, a, b). We now present an sRWW(2)-automaton M that simulates the
computations of A.

First, we choose Σ′ = { a′ | a ∈ Σ } as a new input alphabet that is disjoint from Γ, but that is in one-to-one
correspondence to Σ. Now let M = (Q,Σ′,Ω, ¢, $, q0, 2, δM ) be defined by taking Q = {q0}, Ω = Σ′ ∪ P ∪ Γ ∪
(Γ×P ), and by defining the transition relation δM as follows, where p, p1 ∈ P , a ∈ Σ, x, y, z ∈ Γ, and u, v ∈ Γ∗:

(1) δM (q0, ¢$) = {Accept}, if δ(p0,⊥,⊥) = {(pf , λ, λ)},
(2) δM (q0, ¢a′) 3 ¢[⊥, p0]a,
(3) δM (q0, ¢⊥) = {(q0,MVR)},
(4) δM (q0, ¢[⊥, p]) = {(q0,MVR)},
(5) δM (q0, [⊥, p]$) = {Accept}, if (pf , λ, λ) ∈ δ(p,⊥,⊥),
(6) δM (q0, xy) = {(q0,MVR)},
(7) δM (q0, x[y, p]) = {(q0,MVR)},
(8) δM (q0, xp) = {[x, p]},
(9) δM (q0, [x, p]a

′) = {[x, p]a},
(10) δM (q0, [x, p]$) 3 u[z, p1]v$, if (p1, uz, v⊥) ∈ δ(p, x,⊥),
(11) δM (q0, [x, p]$) 3 p1v$, if (p1, λ, v⊥) ∈ δ(p, x,⊥),
(12) δM (q0, [x, p]y) 3 u[z, p1]v, if (p1, uz, v) ∈ δ(p, x, y),
(13) δM (q0, [x, p]y) 3 p1v, if (p1, λ, v) ∈ δ(p, x, y).
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Furthermore, we define a weight function ω : Ω→ N+ as follows:

− ω(a′) = ϕ(a) + ϕ(⊥) + ϕ(p0) + 1 for all a ∈ Σ,
− ω(x) = ϕ(x) for all x ∈ Γ,

− ω(p) = ϕ(p) + 1 for all p ∈ P,
− ω([x, p]) = ϕ(x) + ϕ(p) for all x ∈ Γ and p ∈ P.

Using this weight function, it is easily verified that the RWW-automaton M is shrinking. Indeed, instructions
of types (2) and (9) are weight-reducing because of the weight associated to the letters from Σ′, instructions
of type (8) are weight-reducing because of the weight associated to the letters from the subalphabet P of Ω,
instructions of types (10) and (12) are weight-reducing, as the corresponding instructions of A are weight-
reducing with respect to ϕ, and the instructions of types (11) and (13) are weight-reducing because of our
assumption that each instruction of A reduces the weight of the corresponding configuration by at least two.

It remains to show that L(M) = h(L(A)), where h : Σ∗ → Σ′
∗

is the morphism induced by mapping a to a′

for all a ∈ Σ. A configuration of the form ⊥uxpv⊥ of A, where u, v ∈ Γ∗, x ∈ Γ, and p ∈ P , is encoded by the
tape contents ¢⊥u[x, p]v$ of M , or by the tape contents ¢⊥uxpv$. The latter type of encoding is used whenever
a step of A is being simulated that only pops from the lefthand pushdown (see instructions (11) and (13)).
However, as soon as such an encoding is detected, it is immediately transformed into an encoding of the former
form by instruction (8). Now using this encoding of the configurations of A, the sRWW-automaton M simulates
the computations of A step by step. Hence, it follows that L(M) = h(L(A)).

By renaming the letters of Ω accordingly, an sRWW(2)-automaton is obtained that accepts the language
L(A). This completes the proof of Theorem 5.9.

It is easily seen that each ORWW-automaton can be simulated by an sRWW(2)-automaton. Based on a
pumping lemma for ORWW-automata, it has been shown in [16] that the deterministic linear language L =
{ anbn | n ≥ 0 } is not accepted by any ORWW-automaton. As this language is accepted by an sRWW(2)-
automaton, we have the following chain of inclusions.

Corollary 5.10. REG ( L(sRWW(1)) ⊆ L(ORWW) ( L(sRWW(2)) ⊆ L(sRWW(9)) = L(FCA).

It currently remains open whether the inclusions L(sRWW(1)) ⊆ L(ORWW) and L(sRWW(2)) ⊆
L(sRWW(9)) are proper.

Concerning monotone sRWW- and sRRWW-automata of window size one and two, we now derive the
following results.

Theorem 5.11. (a) L(mon-sRWW(1)) = REG ( L(mon-sRRWW(1)).
(b) L(mon-sRWW(2)) = CFL = L(mon-sRRWW(2)).

Proof. (a) Obviously, each regular language is accepted by some monotone sRWW(1)-automaton that does not
execute any rewrite step. On the other hand, the non-regular language

L′2 = { ambn | m ∈ {n, n+ 1}, n ≥ 0 }

is accepted by a monotone RRWW(1)-automaton, and so it is contained in L(mon-sRRWW(1)). Indeed, let M =
(Q, {a, b}, {a, b}, ¢, $, q0, 1, δ) be the RRWW(1)-automaton that is defined by taking Q = {q0, q1, q2, p0, p1, p2}
and by defining the transition relation δ as follows:

(1) δ(q0, ¢) = {(q0,MVR)}, (7) δ(q1, b) = {(p1, λ)},
(2) δ(q0, $) = {Accept}, (8) δ(q2, b) = {(p2, λ)},
(3) δ(q0, a) = {(p0, λ), (q2,MVR)}, (9) δ(p1, b) = {(p2,MVR)},
(4) δ(q1, a) = {(p2, λ), (q2,MVR)}, (10) δ(p2, b) = {(p1,MVR)},
(5) δ(q2, a) = {(p1, λ), (q1,MVR)}, (11) δ(p2, $) = {Restart}.
(6) δ(p0, $) = {Accept},
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Obviously, M accepts the empty word λ and the word a. Furthermore, it is easily seen that M only accepts
words from the regular language a∗ · b∗. Now let w = ambn be given as input, that is, we have the initial
configuration q0¢ambn$. If M deletes one of the first m − 1 occurrences of the letter a, then it gets stuck
immediately thereafter. Hence, we see that M either deletes the last occurrence of the letter a or the first
occurrence of the letter b, which implies that M is monotone. From the indices of the states used, we see that
to complete a cycle through the restart operation (11), M must delete the last occurrence of the letter a, if m
and n do not have the same parity mod 2, and M must delete the first occurrence of the letter b, if m and n
have the same parity mod 2. Indeed, depending on the parities of m and n, we have the following cycles:

(o, e) q0¢a2r+1b2s$ `2r+1
M ¢a2rq1ab

2s$ `M ¢a2rp2b
2s$

`2s
M ¢a2rb2sp2$ `M q0¢a2rb2s$,

(e, o) q0¢a2rb2s+1$ `2r
M ¢a2r−1q2ab

2s+1$ `M ¢a2r−1p1b
2s+1$

`2s+1
M ¢a2r−1b2s+1p2$ `M q0¢a2r−1b2s+1$,

(e, e) q0¢a2rb2s$ `2r+1
M ¢a2rq1b

2s$ `M ¢a2rp1b
2s−1$

`2s−1
M ¢a2rb2s−1p2$ `M q0¢a2rb2s−1$,

(o, o) q0¢a2r+1b2s+1$ `2r+2
M ¢a2r+1q2b

2s+1$ `M ¢a2r+1p2b
2s$

`2s
M ¢a2r+1b2sp2$ `M q0¢a2r+1b2s$.

Furthermore, in each of these cases, if another occurrence of the letter b is added, in this way changing the
relative parities of a’s and b’s, then M reaches the right sentinel while being in state p1, and hence, it gets stuck.
Thus, it follows that L(M) = L′2.

In Lemma 5.13, we show that each monotone sRWW(1)-automaton can be simulated by a stateless ORWW-
automaton. As L(stl-ORWW) = REG according to [15], this yields (a).

(b) As the simulation of a monotone RRWW-automaton by a pushdown automaton used in [7] to show that
monotone RRWW-automata only accept context-free languages easily extends to monotone sRRWW-automata,
it follows that L(mon-sRWW) = L(mon-sRRWW) = CFL. This fact, together with Theorem 3.1, yields (b), as
each monotone RWW(2)-automaton is also a monotone sRWW(2)-automaton.

Remark 5.12. Let us extend the RRWW(1)-automaton M from the proof of Theorem 5.11 (a) into a shrinking
RRWW(1)-automaton M ′ as follows: during the first cycle, M ′ replaces the first occurrence of the letter a on
its tape by an auxiliary letter a′ and it verifies that the number of a’s has the same parity mod 2 as the
number of b’s. In the affirmative, it then simulates M step by step, interpreting the letter a′ in the same
way as M would interpret the letter a, while in the negative, it just halts without accepting. Then M ′ is a
monotone sRRWW(1)-automaton for the language L2 = { ambm | m ≥ 0 }, which is obviously not accepted
by any RRWW(1)-automaton. In fact, by counting the number of a’s mod 2 and the number of b’s mod 4,
a monotone sRRWW(1)-automaton can be designed for the language L = { ambmc, amb2md | m ≥ 0, }, which
is not even deterministic context-free. However, it currently remains open whether there exists a context-free
language that is not accepted by any monotone sRRWW(1)-automaton. We conjecture that Lpal = {wwR | w ∈
{a, b}∗ } is such a language, but currently we do not yet have an idea of how to prove that this language cannot
be accepted by any monotone sRRWW(1)-automaton.

Lemma 5.13. For each monotone sRWW(1)-automaton M , there exists a stateless ORWW-automaton Ms

such that L(Ms) = L(M).

Proof. Let M = (Q,Σ,Γ, ¢, $, q0, 1, δ) be a monotone sRWW(1)-automaton that is compatible with the weight
function ϕ : Γ → N+. Here we can assume without loss of generality that M accepts only at the right end of
the tape, that is, when it sees the right sentinel $.

In the proof of Proposition 5.5, we have seen that each sRWW(1)-automaton can be simulated by an ORWW-
automaton. That simulation is based on the observation that, by using an enlarged tape alphabet, each rewrite
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step of an sRWW(1)-automaton can be interpreted as replacing a letter by either a letter with a smaller weight
or by the empty word λ. Thus, we can assume without loss of generality that M already has this property.

Next we study the implications that the monotonicity has on the computations of M . Let

C1 : q0¢uavbw$ `|u|+1
M ¢uq1avbw$ `|v|+1

M ¢uavq2bw$ `M q0¢uavyw$

be a cycle of M , where y ∈ δ(q2, b), and assume that x ∈ δ(q1, a). Thus, in the above cycle, M moves across
the distinguished letter a by executing a MVR step (p1,MVR) ∈ δ(q1, a), and it completes the cycle by the
rewrite/restart step y ∈ δ(q2, b), but it could have executed the rewrite/restart step x ∈ δ(q1, a) instead. Hence,
the cycle above, which has the right distance Dr(C1) = |w|+ 2, can be followed by the cycle

C2 : q0¢uavyw$ `|u|+1
M ¢uq1avyw$ `M q0¢uxvyw$,

which has the right distance Dr(C2) = |v| + |y| + |w| + 2. As M is monotone, this means that Dr(C2) =
|v|+ |y|+ |w|+ 2 ≤ Dr(C1) = |w|+ 2, which implies that |v| = 0 = |y|, that is, v = y = λ. Thus, the cycle C1

actually looks as follows:

C1 : q0¢uabw$ `|u|+1
M ¢uq1abw$ `M ¢uaq2bw$ `N q0¢uaw$,

where λ ∈ δ(q2, b).

We now define a stateless ORWW-automaton Ms = (Σ,∆, ¢, $, 3, δs, >). To simplify the notation, the set of
states is omitted from the definition and the states are omitted from the transition relation δs. We take

∆ = Σ ∪ { [i, x, P ] | 0 ≤ i ≤ |Γ|, x ∈ Γ ∪ {λ}, P ⊆ Q },

define the partial ordering > on ∆ through

− a > B for all a ∈ Σ and B ∈ ∆ r Σ,
− [i, x, P ] > [j, y, P ′] for all i < j and all x, y ∈ Γ ∪ {λ}, P, P ′ ⊆ Q,

and define the transition relation δs as follows, where a, b, c ∈ Σ, i, j ∈ {0, 1, . . . , |Γ|}, P, P ′ ⊆ Q, x, y, z ∈ Γ,
xλ ∈ Γ ∪ {λ}, and X ∈ ∆:

(1) δs(¢a$) = {Accept} for all a ∈ (Σ ∪ {λ}) ∩ L(M),
(2) δs(¢ab) 3 ¢[0, a, Pa]b, where Pa = { p ∈ Q | q0¢a `2

M ¢ap },
(3) δs(¢ab) 3 ¢[1, x, Px]b,

where Px = { p ∈ Q | q0¢a `2
M q0¢x `2

M ¢xp },
(4) δs(¢ab) 3 ¢[1, λ, P ]b,

where P = { p ∈ Q | q0¢a `2
M q0¢ `M ¢p },

(5) δs(¢[i, x, P ]X) = {MVR} ∪
{ ¢[i+ 1, y, Py]X | q0¢x `M ¢qx `M q0¢y } ∪
{ ¢[i+ 1, λ, P ′]X | i ≥ 1 and q0¢x `2

M q0¢ },
where Py = { p ∈ Q | q0¢y `2

M ¢yp }
and P ′ = {q ∈ Q | q0¢ `M ¢q },

(6) δs(¢[i, λ, P ]X) = {MVR},
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(7) δs([i, xλ, P ]bc) 3 [i, xλ, P ][0, b, Pb]c,
where Pb = { q ∈ Q | ∃p ∈ P : (q,MVR) ∈ δ(p, b) },

(8) δs([i, xλ, P ]bc) ⊇ { [i, xλ, P ][1, y, Py]c | ∃p ∈ P : y ∈ δ(p, b) }, where
Py = { q ∈ Q | ∃p′ ∈ P : (q,MVR) ∈ δ(p′, y) },

(9) δs([i, xλ, P ]bc) 3 [i, xλ, P ][i, λ, P ]c, if ∃p ∈ P : λ ∈ δ(p, b),
(10) δs([i, xλ, P ][j, z, P ′]X) = {MVR} ∪

{ [i, xλ, P ][j + 1, y, Py]X | ∃p ∈ P : y ∈ δ(p, z) } ∪
{[i, xλ, P ][j + 1, λ, P ]X | j ≥ 1 and ∃p ∈ P : λ ∈ δ(p, z) },

where Py = { q ∈ Q | ∃p′ ∈ P : (q,MVR) ∈ δ(p′, y) },
(11) δs([i+ 1, xλ, P ][i, λ, P ′]X) 3 [i+ 1, xλ, P ][i+ 1, λ, P ]X,
(12) δs(X[i, xλ, P ]$) = {Accept}, if ∃p ∈ P : Accept ∈ δ(p, $).

Here a letter of the form [i, x, P ] encodes the information that, at the current tape position, M currently has
the letter x, that this letter has already been rewritten i times, and that by scanning the current tape contents
from left to right, M can reach any of the states in P after having read the letter x. A letter of the form [i, λ, P ]
encodes the information that the letter at the current tape position has been rewritten to λ, and that this was
done either by the i-th rewrite at the current position or by the first rewrite at the current position, in which
case i is the number of rewrites that have been applied so far at the first position to the left of the current
position that has not yet been rewritten to λ. Finally, P is again the set of states that M can reach by scanning
the current tape contents from left to right up to the current position.

It remains to prove that L(Ms) = L(M). Instructions (2) and (7) encode state information of M into the
letters that are moved over by M ’s read/write window through MVR steps. Instructions (3), (5), (8), and (10)
simulate rewrite steps of M that rewrite a letter by another letter and they encode the corresponding state
information in the newly written symbols. Furthermore, instructions (4), (9), and (10) simulate rewrite steps
of M that replace a letter by the empty word, and instruction (11) updates state information that is stored
in symbols of the form [i, λ, P ] that has become outdated because a rewrite step was performed somewhere to
the left of this symbol. Observe that the λ-rewrite steps of the form (10) (with xλ = λ) can only be applied to
letters that have already been rewritten before, which means that later no rewrite steps can be performed to
the left of these letters due to the monotonicity of M . From this description it is easily seen that all accepting
computations of Ms are simulations of accepting computations of M , that is, we have L(Ms) ⊆ L(M).

To prove the converse inclusion, let w = a1a2 · · · an be a word from L(M), where n ≥ 0 and a1, a2, . . . , an ∈ Σ.
If n ≤ 1, then w ∈ (Σ ∪ {λ}) ∩ L(M), and so Ms can accept on input w by using instruction (1). Assume that
n ≥ 2 and let

q0¢w$ = q0¢w0$ `cM q0¢w1$ `cM · · · `cM q0¢wm$ `∗M q0¢wmq+$

be an accepting computation of M on input w, where q+ ∈ Q and Accept ∈ δ(q+, $). As M is monotone, the
above computation is monotone. If all rewrites are performed strictly from left to right, then it is easily seen
that Ms can simulate this computation, that is, Ms will also accept on input w.

Finally, assume that

wi = b1b2 · · · bj−1bjbj+1 · · · brbr+1br+2 · · · bt,

that wi+1 is obtained from wi by rewriting the letter br+1 into c, that wi+2 is obtained from wi+1 by rewriting
the letter bj into d, and that this is the first such situation in the above computation. Then we see from our
discussion above that r = j and that c = λ, that is,

wi = b1b2 · · · bj−1bjbr+1br+2 · · · bt,
wi+1 = b1b2 · · · bj−1bjbr+2 · · · bt, and

wi+2 = b1b2 · · · bj−1dbr+2 · · · bt.
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In particular, none of the letters to the left of d can be rewritten anymore. By simulating the steps of the above
computation of M up to wi, Ms obtains the restarting configuration

¢[i1, b1, P1][i2, b2, P2][i3, b3, P3] · · · [ij , bj , Pj ]br+1br+2 · · · bt$,

where we underline the symbols inside the read/write window of Ms. Now by instruction (5), (6), and (10), Ms

can move its window to the right until it reaches the configuration

¢[i1, b1, P1][i2, b2, P2] · · · [ij−1, bj−1, Pj−1][ij , bj , Pj ]br+1br+2br+3 · · · bt$.

As Pj is the set of all states that M can reach by reading the prefix ¢b1b2 · · · bj of the tape contents from left
to right, there exists a state q ∈ Pj such that λ ∈ δ(q, br+1), and hence, Ms can rewrite the letter br+1 into
[ij , λ, Pj ] by instruction (9), which yields the configuration

¢[i1, b1, P1][i2, b2, P2][i3, b3, P3] · · · [ij , bj , Pj ][ij , λ, Pj ]br+2 · · · bt$.

In the next cycle [ij , bj , Pj ] is rewritten into [ij + 1, d, P ′], and then [ij , λ, Pj ] can be rewritten into [ij + 1, λ, P ′]
by instruction (11), which yields the configuration

¢[i1, b1, P1][i2, b2, P2][i3, b3, P3] · · · [ij + 1, d, P ′][ij + 1, λ, P ′]br+2 · · · bt$.

It now follows that Ms can simulate the above computation of M , implying that w ∈ L(Ms). Hence, it follows
that L(Ms) = L(M).

This completes the proof of Lemma 5.13 and, therewith, of Theorem 5.11.

6. On deterministic shrinking restarting automata

Finally, we consider deterministic sRWW- and sRRWW-automata. The construction in the proof of
Proposition 5.5 carries over to the deterministic case, and it can easily be extended to simulate a det-sRRWW(1)-
automaton by a det-ORRWW-automaton. As det-ORWW-automata and det-ORRWW-automata only accept
regular languages (see [14, 19]), we obtain the following results.

Theorem 6.1. (a) L(det-sRWW(1)) = L(det-ORWW) = REG.
(b) L(det-sRRWW(1)) = L(det-ORRWW) = REG.

Also the simulation of an sTPDA by an sRWW(2)-automaton in the proof of Theorem 5.9 carries over to
the deterministic case. As deterministic sTPDAs characterize the class CRL of Church-Rosser languages [25],
this yields the following result.

Corollary 6.2.

L(det-sRWW(2)) = L(det-sRRWW(2)) = L(det-sRWW) = L(det-sRRWW) = CRL.

Thus, we see that for deterministic shrinking RWW- and RRWW-automata, the hierarchy based on window
size consists of only two levels: window size one yields the regular languages, and window size k ≥ 2 yields the
Church-Rosser languages.

Concerning monotone deterministic sRWW- and sRRWW-automata of window size one or two, the above
results yield the following consequences.

Corollary 6.3.
(a) L(det-mon-sRWW(1)) = L(det-mon-sRRWW(1)) = REG.
(b) L(det-mon-sRWW(2)) = L(det-mon-sRRWW(2)) = DCFL.



ON RESTARTING AUTOMATA WITH AUXILIARY SYMBOLS AND SMALL WINDOW SIZE 29

Figure 1. The taxonomy of (shrinking) restarting automata with small window size. An arrow
→ denotes a proper inclusion, while →? denotes an inclusion that is not known to be proper.

7. Conclusion

We have studied the expressive power of restarting automata and shrinking restarting automata of small
window size. We have seen that for deterministic as well as for nondeterministic RWW- and RRWW-automata
that are monotone, window size two suffices to accept all languages that can be accepted by these types of
automata. In fact, our proofs provide constructions that allow converting a (deterministic) monotone RWW-
automaton of window size k ≥ 3 into an equivalent (deterministic) monotone RWW-automaton of window size
two.

It is known that deterministic RWW- and RRWW-automata of window size one just accept the regular
languages [13, 18]. Here we have seen that deterministic RWW- and RRWW-automata of window size two
are necessarily monotone, which implies that they yield a characterization for the class DCFL of deterministic
context-free languages. What can be said about deterministic RWW- and RRWW-automata of window size
larger than two? Here we have the following chain of inclusions

DCFL ( L(det-RWW(3)) ⊆ L(det-RRWW(3))
⊆ L(det-R(R)WW) = CRL,

but it remains open whether the latter inclusions are proper. In fact, it is open whether there exists an integer k ≥
3 such that L(det-RWW(k)) = L(det-RWW) = CRL, or whether the language classes (L(det-RWW(k))k≥3 (and
(L(det-RRWW(k))k≥3) yield an infinite ascending hierarchy within the class CRL of Church-Rosser languages.
Also it is open whether L(det-RWW(k)) = L(det-RRWW(k)) for any k ≥ 3. Recall that in [29], Natalie Schluter
has only shown that L(det-RRWW(k)) ⊆ L(det-RWW(2k− 2)) for all k ≥ 2. Thus, we see that for deterministic
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RWW- and RRWW-automata, the influence of the window size on the expressive power of these automata is
still unsolved.

Concerning shrinking restarting automata, we have seen that for sRRWW-automata, already window size one
suffices, while for monotone and/or deterministic sRWW- and sRRWW-automata, window size two is required
to obtain the full expressive power of these types of automata. In particular, we have seen that for deterministic
shrinking RWW- and RRWW-automata, the hierarchy based on window size consists of only two levels: window
size one yields the regular languages, and window size k ≥ 2 yields the Church-Rosser languages. Also it remains
open whether sRWW(1)-automata are as powerful as ORWW-automata, whether window size nine is really
needed to obtain the full power of sRWW-automata, and whether monotone sRRWW(1)-automata accept all
context-free languages. The diagram in Figure 1 summarizes the characterizations and inclusion relations we
have obtained for (shrinking) restarting automata of small window size.

Recall from Remark 5.12 that the language L = { ambmc, amb2md | m ≥ 0 } is accepted by a monotone
sRRWW(1)-automaton. This language is context-free, but not deterministic context-free. In fact, L is a linear
language that even belongs to the class 2-detLIN of languages that are accepted by deterministic two-head finite
automata that read their tape from both ends [22]. Accordingly, it may be of interest to study the relationship
between the class 2-detLIN and the various language classes specified by shrinking restarting automata of window
size one.
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