

ONE-RELATION LANGUAGES AND CODE GENERATORS

VINH DUC TRAN^{1,*} AND IGOR LITOVSKY²

Abstract. We investigate the open problem to characterize whether the infinite power of a given language is generated by an ω -code. In case the given language is a code (*i.e.* zero-relation language), the problem was solved. In this work, we solve the problem for the class of one-relation languages.

Mathematics Subject Classification. 68Q45, 68R15.

Received March 9, 2020. Accepted March 19, 2021.

1. INTRODUCTION

In this paper, we deal with the infinite power (ω -power) of languages. The infinite power of L denoted by L^ω , is the set of infinite concatenations of words in L . A language L having the property that any infinite word (ω -word) of L^ω has a unique infinite factorization in words in L is called an ω -code [12], thus ω -codes are for infinite concatenation, like usual codes for concatenation. Of course ω -codes are codes, but the converse does not hold. We investigate the open problem to characterize languages L such that $L^\omega = G^\omega$ for some code or ω -code G . See [4, 5, 8] for partial answers and various approaches. This question is still open even if the language L is a finite language.

Given a language L , there does not always exist a greatest language M such that $L^\omega = M^\omega$, however it is “often” the case, if L is a finite language, for example. Whenever such a greatest ω -generator M exists, M is a semigroup. We know [5] that if this greatest ω -generator is a free semigroup, that is if $M = L^+$ for some code L , then $L^\omega = C^\omega$ for some ω -code C if and only if the language L itself is an ω -code. This means that whenever the greatest ω -generator is a free semigroup, that is for the class of zero-relation languages, the problem is already solved. So we consider in this paper, a new class of languages, called *one-relation languages*.

For each language $L = \{u_0, u_1, u_2, \dots\} \subseteq A^+$, we consider the alphabet $\Sigma = \{0, 1, 2, \dots\}$ which is a labelling of L , and two words m, m' in $\Sigma^+ \cup \Sigma^\omega$ are *equivalent*, denoted by $m \cong m'$, if the corresponding words in $A^+ \cup A^\omega$ are equal. Thus L is a code if and only if the previous equivalence relation is the identity in Σ^+ , and L is an ω -code if and only if the previous equivalence relation is the identity in Σ^ω . Here we consider languages L having *only one* relation $m \cong m'$ with $m \neq m'$. Of course, if $m \cong m'$, then $m_1mm_2 \cong m_1m'm_2$, for any word m_1 and m_2 (more precisely the relation \cong is a congruence relation), and if $xu^n z \cong yv^n t$ for each integer n , then $xu^\omega \cong yv^\omega$ (more precisely the relation \cong is closed by adherence). We say that L is a *one-relation language* where $m \cong m'$ is the *basic relation*, if there is “not any other” relation, that is all relations are

Keywords and phrases: Formal languages, infinite words, ω -generators, code, ω -code.

¹ Hanoi University of Science and Technology, Vietnam.

² Université de Nice - Sophia Antipolis, Laboratoire I3S, B.P. 145, 06903 Sophia Antipolis Cedex, France.

* Corresponding author: ductv@soict.hust.edu.vn

obtained by finite applications of the rewriting rule $m \rightarrow m'$ or by closure by adherence. So we can see the class of one-relation languages as the simplest class after the class of codes.

The purpose of this paper is to prove the two following results.

Theorem 1.1. *Let L be a one-relation language such that L^+ is the greatest generator of L^ω . Then L^ω has no finite code generator.*

Theorem 1.2. *Let L be a one-relation language such that L^+ is the greatest generator of L^ω . Then L^ω has a code generator if and only if the basic relation $u \cong v$ of L is one of the following forms:*

- (i) $u = 0^n w 2$ and $v = 10^n$ with $w \in \Sigma^*$ and $n \geq 1$;
- (ii) $u = 0^n 2$ and $v = 10^m 0^n$ with $m \geq 1$ and $n \geq 1$;
- (iii) $u = 0w2$ and $v = 1^k 0$ with $w \in \Sigma^*$ and $k \geq 2$;
- (iv) $u = 02$ and $v = (10^m)^k 0$ with $k \geq 2$ and $m \geq 1$.

Moreover, L^ω has an ω -code generator if and only if the basic relation is one of forms (i) or (ii).

The paper is structured as follows. Section 2 contains the preliminaries. In Section 3, we give the definition of one-relation language and useful lemmas. In Section 4, we consider some basic results needed in later proofs. Section 5 is devoted to prove Theorem 1.1. Sections 6 and 7 are devoted to prove Theorem 1.2.

2. PRELIMINARIES

Let A be an alphabet and A^* (resp. A^ω) is the set of all finite (resp. infinite or ω) words. The empty word is denoted by ε and A^+ denotes $A^* \setminus \{\varepsilon\}$. Let $x \in A^*$, we denote by $|x|$ the length of x . The subsets of A^* (resp. A^ω) are called languages (resp. ω -languages).

We denote by $A^\infty = A^* \cup A^\omega$ the set of finite or infinite words. We make A^∞ a monoid equipping it with the product defined as:

$$xy = \begin{cases} x, & \text{if } x \in A^\omega, y \in A^\infty \\ xy, & \text{if } x \in A^*, y \in A^\infty \end{cases}$$

for any words $x, y \in A^\infty$. Clearly, the empty word ε is the identity element of A^∞ .

A word $x \in A^\infty$ is called a prefix (resp. factor) of a word $y \in A^\infty$ if $y \in xA^\infty$ (resp. $y \in A^*x A^\infty$); and a word $x \in A^\infty$ is suffix of a word or ω -word y if $y \in A^*x$. The language $\text{Pref}(x)$ is the set of all prefixes of x . Let $X \subseteq A^\infty$, we define $\text{Pref}(X) = \bigcup_{x \in X} \text{Pref}(x)$. In a similar manner we define $\text{Fact}(X)$ and $\text{Suff}(X)$ for the set of factors and of suffixes.

A word $x \in A^+$ is called *primitive* if $x = y^n$ for $y \in A^+$ implies $n = 1$. For a word $x \in A^+$, the shortest $y \in A^+$ such that $x = y^n$ for some $n \geq 1$ is called *primitive root* of x and is denoted by $\rho(x)$.

Now we formulate, in the form of lemmas, several facts which are useful in the sequel.

Lemma 2.1 (see [10]). *Let $x \in A^+$ and $y, z \in A^*$. If we have $xz = yx$, then there exist two words α, β and a positive integer k such that $x = (\alpha\beta)^k\alpha$, $y = \alpha\beta$ and $z = \beta\alpha$.*

Lemma 2.2 (see [10]). *Two words $u, v \in A^+$ commute, that is $uv = vu$, if and only if they have the same primitive root.*

Lemma 2.3 (see [1]). *Let $x, y \in A^+$ and let $z, t \in \{x, y\}^*$. If xzy and ytx are both prefix or suffix of a same word, then x and y commute.*

Lemma 2.4. *If two words x, y satisfy the relation $xzy = ytx$ for some $z \in \{x, y\}^*$ and $t \in A^*$, then x and y commute.*

Proof. The proof is by induction on $|xy|$. If $x = \varepsilon$ or $y = \varepsilon$, then x and y commute. Assume that Lemma is true for all x, y where $|xy| < n$. We prove it for $|xy| = n$. If $|x| = |y|$ then $x = y$, so x and y commute. Now, as the

role played by x and y is symmetric by mirror, we can assume that $|x| < |y|$, and then x is a proper prefix of y , we write $y = xx'$ with $x' \in A^+$. We have $xzxx' = xx'tx$, then $zxx' = x'tx$. Since $zx \in \{x, xx'\}^*x \subset x\{x, x'\}^*$, it follows that x is a prefix of zx . We set $z' = x^{-1}(zx) \in \{x, x'\}^*$. We have thus the relation $xz'x' = x'tx$. Moreover, if $x \neq \varepsilon$, then $|xx'| < |xy|$. By the induction hypothesis then x and x' commute. Thus $y = xx'$ and x commute. \square

Lemma 2.5. *Let $x \in A^*$ and $y, z \in A^+$. We have $y^\omega = xz^\omega$ if and only if there exist two positive integers i and j such that $y^i x = xz^j$.*

Proof. If $y^\omega = xz^\omega$ then there are a positive integer n and a word $t \in A^*$ such that $y^n = xt$. Therefore we have $y^\omega = (xt)^\omega = xz^\omega$. Thus $(tx)^\omega = z^\omega$. Hence there are two positive integers k and j such that $(tx)^k = z^j$. We have

$$x(tx)^k = xz^j.$$

As $xt = y^n$, we have $y^i x = xz^j$ where $i = nk$.

Conversely, if there exist two positive integers i and j such that $y^i x = xz^j$, then we have $y^{ni} x = xz^{nj}$ for $n = 0, 1, 2, \dots$. Hence two words y^ω and xz^ω has an infinity of common prefixes. Thus $y^\omega = xz^\omega$. \square

Given a language $L \subseteq A^+$. We define

$$L^\omega = \{u_0 u_1 \dots \mid \forall i \geq 0, u_i \in L\}$$

the language of ω -words generated by L . An ω -language of the form L^ω is said to be an ω -power. A generator of an ω -power L^ω is a language $G \subseteq A^+$ such that $G^\omega = L^\omega$.

The following lemma is used frequently to prove the equality of two ω -powers.

Lemma 2.6 (see [9]). *Let L and R be languages. If $L^\omega \subseteq RL^\omega$ then $L^\omega \subseteq R^\omega$.*

An L -factorization of a word $w \in A^*$ is a finite sequence (w_1, \dots, w_n) of words of L such that $w = w_1 \dots w_n$. An L -factorization of an ω -word $w \in A^\omega$ is an infinite sequence (w_1, w_2, \dots) of words of L such that $w = w_1 w_2 \dots$

A language $C \subseteq A^+$ is a *code* (resp. ω -code) if any word in A^* (resp. any ω -word in A^ω) has at most one C -factorization.

We now present a characterization of codes based on the factorizations of infinite periodic words.

Proposition 2.7 (see [2]). *Let $C \subseteq A^+$ be a language. Then C is a code if and only if for every $u \in C^+$, u^ω has a single C -factorization.*

3. ONE-RELATION LANGUAGES

Given a language L in A^* . Let Σ be an alphabet with the same cardinality as L . A one-to-one mapping from Σ onto L is called a labelling of L , denoted as $\tilde{\cdot} : \Sigma \rightarrow L$. This mapping is extended in the canonical morphism from (Σ^∞, \cdot) over (L^∞, \cdot) , where \cdot denotes the concatenation operation. Thus each L -factorization of a word in A^∞ is presented by a word in Σ^∞ . By abuse of language, the subsets of Σ^∞ are called *languages of factorizations*. For a language $C \subseteq \Sigma^\infty$, we denote $\tilde{C} = \{\tilde{x} \mid x \in C\}$.

Let x and y two words in Σ^∞ such that $\tilde{x} = \tilde{y}$, we write $x \cong y$ that is called a relation in Σ^∞ . A relation $x \cong y$ is called *nontrivial* if $x \neq y$. A nontrivial relation $x \cong y$ is called *minimal* if for all nonempty proper prefix x' of x and for all nonempty proper prefix y' of y , we have $x' \not\cong y'$. We denote by $E(L)$ and $E_{\min}(L)$ the set of nontrivial relations and minimal relations, respectively.

When the language L is finite, the sets $E_{\min}(L)$ and $E(L)$ can be easily computed by using domino graphs (see [3]) or finite automata (see [10], page 446). In order to compute easily with the examples, we write a program in Java to construct the domino graph of finite language. Source code is available online¹.

An equivalence relation R on Σ^∞ is called a congruence if $(x, y) \in R$ and $u, v \in \Sigma^\infty$ imply $(uxv, uyy) \in R$.

For a pair $(u, v) \in \Sigma^\infty \times \Sigma^\infty$, we denote by $\text{Pref}(u, v) = \text{Pref}(u) \times \text{Pref}(v)$. Let $R \subseteq \Sigma^\infty \times \Sigma^\infty$, we define $\text{Pref}(R) = \bigcup_{(u, v) \in R} \text{Pref}(u, v)$ and the *adherence* of R is defined by (see [11]):

$$\text{Adh}(R) = \{(x, y) \in \Sigma^\omega \times \Sigma^\omega \mid \text{Pref}(x, y) \subseteq \text{Pref}(R)\}$$

A relation R is *closed* (topologically) if $\text{Adh}(R) \subseteq R$.

Proposition 3.1. *The relation \cong is a closed congruence.*

Proof. According to definition, the relation \cong is a congruence. Moreover, if

$$(x, y) = (x_0 x_1 \dots, y_0 y_1 \dots) \in \text{Adh}(\cong)$$

with all $x_i, y_i \in \Sigma$, then $\text{Pref}(x, y) \subseteq \text{Pref}(\cong)$. Therefore, for all integer $i \geq 0$, there exist $u_i, v_i \in \Sigma^\infty$ satisfying

$$x_0 \dots x_i u_i \cong y_0 \dots y_i v_i \quad \text{for all } i \geq 0.$$

Setting

$$p_i = \begin{cases} \tilde{x}_0 \dots \tilde{x}_i & \text{if } |\tilde{x}_0 \dots \tilde{x}_i| < |\tilde{y}_0 \dots \tilde{y}_i| \\ \tilde{y}_0 \dots \tilde{y}_i & \text{otherwise.} \end{cases}$$

Then \tilde{x} and \tilde{y} have an infinity of common prefixes: p_0, p_1, \dots . Hence we have $\tilde{x} = \tilde{y}$, that is $x \cong y$. Thus the relation \cong is closed. \square

Motivated by this fact, we introduce the following notion.

Definition 3.2. A language $L = L \setminus LL^+ \subseteq A^+$ is a *one-relation language* if there is a pair $(u, v) \in \Sigma^+ \times \Sigma^+$, $u \neq v$ such that \cong is the smallest closed congruence relation on Σ^∞ which contains (u, v) . The relation $u \cong v$ is called the *basic* relation of L .

Regarding the words length, there is only one basic relation up to symmetry, in a given one-relation language. Furthermore, this basic relation must be minimal.

The following examples show the variety of the class of one-relation languages.

Example 3.3. Consider the language $L = \{a, ab, bc, c\}$, the alphabet $\Sigma = \{0, 1, 2, 3\}$, and the labelling $\{\tilde{0} = a, \tilde{1} = ab, \tilde{2} = bc, \tilde{3} = c\}$. L has only one minimal relation $02 \cong 13$. Thus the language L is a one-relation language.

Example 3.4. Consider the language $L = \{a, ab, ba\}$, the alphabet $\Sigma = \{0, 1, 2\}$, and the labelling $\{\tilde{0} = a, \tilde{1} = ab, \tilde{2} = ba\}$. The set of minimal relations of L is exactly the following system:

$$\begin{cases} 02^n \cong 1^n 0 & \text{for } n = 1, 2, \dots \\ 02^\omega \cong 1^\omega \end{cases}$$

¹<https://github.com/tranvinhduc/dominograph>

The shortest minimal relation of L is $02 \cong 10$. From this relation, we get $022 \cong 110$ by applying the rewriting rule

$$022 \cong 102 \cong 110;$$

and by applying the rewriting rule several times, we obtain

$$02^n \cong 1^n 0, \quad \text{for } n = 1, 2, \dots$$

By adherence, we get the infinitary relation $02^\omega \cong 1^\omega$. Thus every relations of L are obtained from this shortest relation by rewriting or by adherence. Thus L is one-relation language with the basic relation $02 \cong 10$.

Example 3.5. Consider $L = \{a, ab, baba\}$ and the alphabet $\Sigma = \{0, 1, 2\}$. The set of minimal relations of L is exactly the following system:

$$\begin{cases} 02^n \cong (11)^n 0 & \text{for } n = 1, 2, \dots \\ 02^\omega \cong 1^\omega \\ 02^\omega \cong 1(11)^m 02^\omega & \text{for } m = 0, 1, \dots \end{cases}$$

We can verify that the relations $02^n \cong (11)^n 0$ and $02^\omega \cong 1^\omega$ are obtained from the relation $02 \cong 110$ by rewriting or by closure by adherence. Moreover, for any $m \geq 0$, we have

$$02^\omega \cong 1^\omega = 1(11)^m 1^\omega \cong 1(11)^m 02^\omega.$$

Thus L is a one-relation language where the basic relation is $02 \cong 110$.

It is noticed that a one-relation language is not a code as the basic relation $u \cong v$ is such that u and v are finite words. If the language L has only one relation $w \cong w'$ with $w, w' \in \Sigma^\omega$ such that all relations are obtained from this relation by rewriting, then L is a code. In this case, the problem was solved (see [5]).

We denote by $\text{First}(x)$ and $\text{Last}(x)$, respectively, the first and the last letter of a nonempty word x .

Lemma 3.6. *Let L be a one-relation language. Then the basic relation of L is not in the form $uv \cong vu$ with $u, v \in \Sigma^*$.*

Proof. Assume the contrary, that L is a one-relation language where the basic relation is $uv \cong vu$. By Lemma 2.2, two words \tilde{u} and \tilde{v} have the same primitive root. Thus there are two positive integers p and q such that $u^p \cong v^q$. By definition of the one-relation languages, the pair (u^p, v^q) is in the smallest congruence containing (uv, vu) . Thus u^p contains the factor uv or the factor vu , this mean that there are two words $x, y \in \Sigma^*$ such that $u^p = xuvy$ or $u^p = xvuy$.

- If $u^p = xuvy$ then $uu^p = uxuvy = u^p u = xuvyu$. Since $|xu| = |ux|$, we have $uvy = vyu$. It follows that $\text{First}(u) = \text{First}(v)$, which conflicts the fact that the relation basic $uv \cong vu$ is minimal.
- If $u^p = xvuy$ then $uu^p = uxvuy = u^p u = xvuyu$. Thus we have $uxv = xvu$. It follows that $\text{Last}(u) = \text{Last}(v)$, which conflicts again the minimality of the basic relation $uv \cong vu$.

In both cases we obtain a contradiction. \square

Lemma 3.7. *A one-relation language can not contain two words which commute.*

Proof. Assume the contrary, that there is a one-relation language L contains two words $\tilde{0}$ and $\tilde{1}$ such that $01 \cong 10$. Regarding the word length, the basic relation of L must be $01 \cong 10$, which contradicts Lemma 3.6. \square

4. GENERATORS AND CODES

From this section to the end of this paper, we make the assumption: *L is a language such that L^+ is the greatest generator of L^ω and L is in one-to-one mapping with the alphabet Σ .*

Note that this assumption is satisfied by some interesting cases, for example the case where L^ω is an ω -power of a finite language (see [9] and [7]).

We denote by $Amb_\Sigma(L)$ the set of ω -words in Σ^ω such that the images of these ω -words in A^ω have at least two L -factorizations. That is,

$$\begin{aligned} Amb_\Sigma(L) &= \{x \in \Sigma^\omega \mid \tilde{x} \text{ has at least two } L\text{-factorizations}\} \\ &= \{x \in \Sigma^\omega \mid \exists y \in \Sigma^\omega, x \cong y \text{ and } x \neq y\}. \end{aligned}$$

According to Proposition 2.7, the language L is a code if and only if the set $Amb_\Sigma(L)$ has no periodic words.

Lemma 4.1. *Let $C \subseteq \Sigma^+$ such that \tilde{C} is a generator of L^ω and let $w \in \Sigma^\omega$. If $w \notin Amb_\Sigma(L)$, then $w \in C^\omega$.*

Proof. Since \tilde{C} is a generator of L^ω , it follows that for each $w \in \Sigma^\omega$ there is an ω -word $w' \in C^\omega$ such that $w \cong w'$. If $w \notin Amb_\Sigma(L)$ then $w = w'$. So $w \in C^\omega$. \square

A language $P \subseteq \Sigma^+$ is a *prefix code* if no word in P is a proper prefix of another word in P .

Lemma 4.2. *Let $C \subseteq \Sigma^+$ such that the language \tilde{C} is a code generator of L^ω . Then the language C is a prefix code over Σ .*

Proof. Assume the contrary that there exist two nonempty words $u, v \in \Sigma^+$ such that $\{u, uv\} \subseteq C$. Since \tilde{C} is a generator of L^ω , there exists $w \in C^\omega$ such that $(vu)^\omega \cong w$. Then $u(vu)^\omega = (uv)^\omega \cong uw$. As $\tilde{u}v \neq \tilde{u}$, the periodic word $(\tilde{u}v)^\omega$ has two factorizations on \tilde{C} : one starts by \tilde{u} and the other by $\tilde{u}v$. According to Proposition 2.7, \tilde{C} is not a code. \square

We say that two words $u, v \in \Sigma^+$ are *incompatibles* if there exist $x, y \in \Sigma^+$ such that the relation $ux \cong vy$ is minimal.

Remark 4.3. By the minimality of relation $ux \cong vy$, two incompatible words u and v must have no common prefix.

Let $X \subseteq \Sigma^\infty$. We denote by $\text{Pref}_*(x) = \text{Pref}(x) \setminus \{\varepsilon\}$.

Lemma 4.4. *Let $C \subseteq \Sigma^+$ such that \tilde{C} is a code generator of L^ω . Let u and v be two incompatible words. Then for all $m \in \Sigma^*$, the set $m\text{Pref}_*(\{u, v\}) \cap C$ is the empty set or a singleton.*

Proof. By Lemma 4.2, the language C is a prefix code. For each $m \in \Sigma^*$, each set of $m\text{Pref}_*(u) \cap C$ and $m\text{Pref}_*(v) \cap C$ is either the empty set or a singleton. Therefore, it is sufficient to show that $m\text{Pref}_*(u) = \emptyset$ or $m\text{Pref}_*(v) = \emptyset$.

Assume the contrary that there exist $p \in \text{Pref}_*(u)$ and $q \in \text{Pref}_*(v)$ such that $\{mp, mq\} \subseteq C$. As two words u and v are incompatible, there exist $x, y \in \Sigma^+$ such that $px \cong qy$ is a minimal. Since \tilde{C} is a generator of L^ω , the infinite words $(\tilde{x})^\omega$ has a ultimately periodic \tilde{C} -factorization, that is there exist $z \in C^*$ and $t \in C^+$ such that $x^\omega \cong zt^\omega$. According to Lemma 2.5, there are $i, j > 0$ such that $x^i z \cong zt^j$. Now we have

$$\begin{aligned} (mpzt^j)^\omega &\cong (mpxx^{i-1}z)^\omega \\ &\cong (mqyx^{i-1}z)^\omega = mq(yx^{i-1}zmq)^\omega. \end{aligned}$$

Since \tilde{C} is a generator of L^ω , there exists $w \in C^\omega$ such that

$$(yx^{i-1}zmq)^\omega \cong w.$$

Thus we have

$$(mpzt^j)^\omega \cong (mq)w.$$

We recall that \tilde{C} is a code and that $\{mp, mq\} \subseteq C$. If $\tilde{m}p \neq \tilde{p}q$ then the infinite periodic word $(\widetilde{mpzt^j})^\omega$ has two \tilde{C} -factorizations, which contradicts Proposition 2.7. If $mp \cong mq$ then $p \cong q$, which contradicts the fact that $px \cong qy$ is minimal. This completes the proof. \square

Here is a corollary of Lemma 4.4.

Corollary 4.5. *Let $C \subseteq \Sigma^+$ such that \tilde{C} is a code generator of L^ω . Let u and v be two incompatible words. Then for all $m \in \Sigma^*$, there exists $z \in \{u, v\}$ such that*

$$m\text{Pref}_*(z) \cap C = \emptyset.$$

Proof. By Lemma 4.4, we have $m\text{Pref}_*(u) \cap C = \emptyset$ or $m\text{Pref}_*(v) \cap C = \emptyset$. \square

Proposition 4.6. *Let $(\{u_i, v_i\})_{i \geq 0}$ be an infinite sequence of pairs of incompatible words. If*

$$Amb_\Sigma(L) \cap \prod_{i=0}^{\infty} \{u_i, v_i\} = \emptyset$$

where $\prod_{i=0}^{\infty} X_i$ represent the concatenation of languages X_i , then L^ω has no code generator.

Proof. Assume that there exists $C \subseteq \Sigma^+$ such that \tilde{C} is a code generator of L^ω . By induction, we build an infinite sequence $(z_i)_{i \geq 0}$ of words such that: for all $i \geq 0$, we have

$$\begin{cases} z_i \in \{u_i, v_i\} \\ \text{Pref}_*(z_0 \dots z_i) \cap C = \emptyset. \end{cases} \quad (4.1)$$

Indeed, according to Corollary 4.5, there exists $z_0 \in \{u_0, v_0\}$ such that

$$\text{Pref}_*(z_0) \cap C = \emptyset.$$

Now assume that we have the sequence (z_0, \dots, z_{n-1}) which verifies the condition (4.1). According to Corollary 4.5, there exists $z_n \in \{u_n, v_n\}$ such that

$$z_0 \dots z_{n-1} \text{Pref}_*(z_n) \cap C = \emptyset$$

and by induction hypothesis we have

$$\text{Pref}_*(z_0 \dots z_{n-1}) \cap C = \emptyset.$$

Then z_0, \dots, z_n verifies the condition (4.1).

Consider the ω -word

$$w = z_0 z_1 \dots z_n \dots \notin Amb_\Sigma(L),$$

according to Lemma 4.1, we have $w \in C^\omega$. However, by above construction we have $\text{Pref}_*(w) \cap C = \emptyset$. This is a contradiction. \square

By applying Proposition 4.6 for the infinite sequence of pair of incompatible words $(\{u, v\}, \{u, v\}, \dots)$, we have.

Proposition 4.7. *Let u and v be two incompatible words. If*

$$Amb_{\Sigma}(L) \cap \{u, v\}^{\omega} = \emptyset,$$

then L^{ω} has no code generator.

Example 4.8. Let $L = \{a, ab, bc, c\}$ and $\Sigma = \{0, 1, 2, 3\}$. The language L has only one minimal relation $02 \cong 13$. Then $Amb_{\Sigma}(L) = \Sigma^* \{02, 13\} \Sigma^{\omega}$. We have

$$Amb_{\Sigma}(L) \cap \{0, 1\}^{\omega} = \emptyset.$$

As two words $0, 1$ are incompatibles, according to Proposition 4.7, L^{ω} has no code generator.

We say that two words $u, v \in \Sigma^+$ are ∞ -incompatibles if there exists $x, y \in \Sigma^+ \cup \Sigma^{\omega}$ such that the relation $ux \cong vy$ is minimal.

Remark 4.9. If two words u and v are incompatible, they are ∞ -incompatible.

Lemma 4.10. *Let $C \subseteq \Sigma^+$ such that \tilde{C} is an ω -code generator of L^{ω} . Let u and v be two ∞ -incompatible words. Then for all $m \in \Sigma^*$, the set $m \text{Pref}_*(\{u, v\}) \cap C$ is the empty set or a singleton.*

Proof. By Lemma 4.2, the language C is a prefix code. For each $m \in \Sigma^*$, each set of $m \text{Pref}_*(u) \cap C$ and $m \text{Pref}_*(v) \cap C$ is either the empty set or a singleton. Therefore, it is sufficient to show that $m \text{Pref}_*(u) = \emptyset$ or $m \text{Pref}_*(v) = \emptyset$.

Assume the contrary that there exist $p \in \text{Pref}_*(u)$ and $q \in \text{Pref}_*(v)$ such that $\{mp, mq\} \subseteq C$. As two words u and v are ∞ -incompatible, there exist $x, y \in \Sigma^{\omega}$ such that $px \cong qy$ is a minimal relation. Then we have $(mp)x \cong (mq)y$. There are two cases:

- If $\tilde{m}p \neq \tilde{m}q$, then \tilde{C} is not an ω -code generator of L^{ω} ;
- If $\tilde{m}p = \tilde{m}q$, that is $mp \cong mq$, then $p \cong q$ which contradicts the minimality of the relation $px \cong qy$.

In both cases we obtain a contradiction. \square

The proof of following results is similar to the case of incompatible words.

Proposition 4.11. *Let $(\{u_i, v_i\})_{i \geq 0}$ be an infinite sequence of pairs of ∞ -incompatible words. If*

$$Amb_{\Sigma}(L) \cap \prod_{i=0}^{\infty} \{u_i, v_i\} = \emptyset$$

then L^{ω} has no ω -code generator.

Proposition 4.12. *Let u and v be two ∞ -incompatible words. If*

$$Amb_{\Sigma}(L) \cap \{u, v\}^{\omega} = \emptyset,$$

then L^{ω} has no ω -code generator.

Example 4.13. Let $L = \{a, ab, b^2\}$ be a suffix code and $\Sigma = \{0, 1, 2\}$. The language L has only one minimal relation $02^{\omega} \cong 12^{\omega}$. Thus $Amb_{\Sigma}(L) = \Sigma^* \{02^{\omega}, 12^{\omega}\}$. We have therefore $Amb_{\Sigma}(L) \cap \{0, 1\}^{\omega} = \emptyset$. According to Proposition 4.12, the ω -language L^{ω} has no ω -code generator.

5. PROOF OF THEOREM 1.1

Recall that L is a one-relation language with the basic relation $u \cong v$. Assume that there exists $C \subseteq \Sigma^+$ such that \tilde{C} is an ω -code generator of L^ω . According to Theorem 1.2, we consider two cases:

Case 1 (covers forms **i** and **iii** in Thm. 1.2): $u = 0^n w 2$ and $v = 1^k 0^n$ where $w \in \Sigma^*$ and $k, n \geq 1$.

Since $0^\omega \notin \text{Amb}_\Sigma(L)$, there exists an integer $\ell \geq 0$ such that

$$0^\ell 0 \in C \quad (5.1)$$

It follows from the basic relation $0^n w 2 \cong 1^k 0^n$ that

$$0^n (w 2)^j \cong 1^{kj} 0^n \quad \text{for } j = 1, 2, \dots$$

Thus for each $j \geq 1$, two words 0 and 1^j are incompatible. Combining Lemma 4.4 and (5.1) gives

$$0^\ell \text{Pref}_* (\{0, 1^\omega\}) \cap C = 0^\ell 0.$$

Then

$$\text{Pref}_* (0^\ell 1^\omega) \cap C = \emptyset. \quad (5.2)$$

We show that 1 is not a prefix of w . Assume the contrary that $w = 1w'$ for some $w' \in \Sigma^*$. Thus $\widetilde{0^n 1}$ and $\widetilde{1^k 0}$ are both prefix of $\widetilde{1^k 0^n}$. According to Lemma 2.3, two words $\tilde{0}$ and $\tilde{1}$ commute, which contradicts Lemma 3.7.

Thus we have

$$0^\ell 1^+ 2^\omega \cap \text{Amb}_\Sigma(L) = \emptyset.$$

It follows from Lemma 4.1 and (5.2) that for each integer $p > 0$, there exists an integer $q > 0$ such that $0^\ell 1^p 2^q \in C$. Consequently, \tilde{C} is infinite.

Case 2 (covers forms **ii** and **iv** in Thm. 1.2): $u = 0^n 2$ and $v = (10^m)^k 0^n$ where $k, m, n \geq 1$.

Since $0^\omega \notin \text{Amb}_\Sigma(L)$, there exists an integer $\ell \geq 0$ such that

$$0^\ell 0 \in C \quad (5.3)$$

It follows from the basic relation $0^n 2 \cong (10^m)^k 0^n$ that

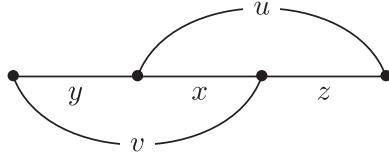
$$0^n 2^j \cong (10^m)^{kj} 0^n \quad \text{for } j = 1, 2, \dots$$

Thus for each word $x \in \text{Pref}_* ((10^m)^\omega)$, the words 0 and x are incompatible. Combining Lemma 4.4 and (5.3), gives

$$0^\ell \text{Pref}_* (\{0, (10^m)^\omega\}) \cap C = 0^\ell 0.$$

Then

$$\text{Pref}_* (0^\ell (10^m)^\omega) \cap C = \emptyset. \quad (5.4)$$

FIGURE 1. $x \in \text{OVL}(u, v)$ and $(y, z) \in \text{Border}(u, v)$.

Since $m \geq 1$, we get

$$0^\ell(10^m)^+1^\omega \cap \text{Amb}_\Sigma(L) = \emptyset.$$

It follows from Lemma 4.1 and (5.4) that for each integer $p > 0$, there exists an integer $q > 1$ such that $0^\ell(10^m)^p 1^q \in C$. Consequently, \tilde{C} is infinite.

6. TECHNICAL LEMMAS

In this section, we establish the technical lemmas which we need to prove Theorem 1.2 in the following section.

Let u and v be two non-empty words. We denote by $\text{OVL}(u, v)$ the set of overlapping words of the words u with the word v :

$$\text{OVL}(u, v) = \{x \in \Sigma^+ \mid u = xz, v = yx \text{ for some } y, z \in \Sigma^+\}.$$

A pair $(y, z) \in \Sigma^+ \times \Sigma^+$ is a *border* of the pair of words (u, v) if there is a word $x \in \text{OVL}(u, v)$ such that

$$u = xz \quad \text{and} \quad v = yx.$$

We denote by $\text{Border}(u, v)$ the set of borders of the pair (u, v) . This is illustrated in Figure 1.

Note that these notations are not symmetric.

Example 6.1. Let $u = 0102$ and $v = 1010$. We have

$$\begin{aligned} \text{OVL}(u, v) &= \{010, 0\}, & \text{Border}(u, v) &= \{(1, 2), (101, 102)\}, \\ \text{OVL}(v, u) &= \emptyset, & \text{Border}(v, u) &= \emptyset. \end{aligned}$$

Lemma 6.2. Let L be a one-relation language where $u \cong v$ is the basic relation. The set of relations of L is exactly $M^\#$ where $M^\#$ is the smallest congruence containing

$$M = (\varepsilon, u) \cdot B^* \cdot (v, \varepsilon) \cup (\varepsilon, u) \cdot B^\omega,$$

with

$$B = \bigcup_{(x, y) \in \{u, v\}^2} \text{Border}(x, y).$$

Proof. First, we show the inclusion $M^\# \subseteq \cong$. If $B = \emptyset$, the proof is immediate. Assume that $B \neq \emptyset$. We show that for each $(y, z) \in B$, we have

$$uz \cong yv. \tag{6.1}$$

We verify (6.1) in four cases:

- (1) If $(y, z) \in \text{Border}(u, u)$. By definition, there exists $x \in \Sigma^+$ such that $u = yx = xz$. We have thus $uz = yxz = yu \cong yv$.
- (2) If $(y, z) \in \text{Border}(u, v)$. By definition, there exists $x \in \Sigma^+$ such that $v = yx$ and $u = xz$. We have thus $uz \cong vz = yxz = yu \cong yv$.
- (3) If $(y, z) \in \text{Border}(v, u)$. By definition, there exists $x \in \Sigma^+$ such that $u = yx$ and $v = xz$. We have thus $uz = yxz = yv$.
- (4) If $(y, z) \in \text{Border}(v, v)$. By definition, there exists $x \in \Sigma^+$ such that $v = yx = xz$. We have thus $uz \cong vz = yxz = yv$.

Now we consider an infinite sequence of borners in B :

$$(y_1, z_1), (y_2, z_2), \dots$$

By (6.1), we have $uz_i \cong y_iv$ for $i = 1, 2, \dots$. Thus for any positive integer n , we have

$$\begin{aligned} (uz_1)z_2 \dots z_n &\cong (y_1v)z_2z_3 \dots z_n \\ &\cong (y_1u)z_2z_3 \dots z_n = y_1(uz_2)z_3 \dots z_n \\ &\vdots \\ &\cong y_1 \dots y_{n-1}y_nv. \end{aligned}$$

Since \cong is closed (by adherence), we obtain

$$uz_1z_2 \dots \cong y_1y_2 \dots$$

Thus $M \subseteq \cong$. Since \cong is a congruence, we have $M^\# \subseteq \cong$.

Now we show $\cong \subseteq M^\#$. It is clear that the congruence $M^\#$ is closed. As $(u, v) \in M^\#$, by definition of one-relation language, we have the inclusion. \square

We denote by $\text{LB}(u, v)$ the first projection of $\text{Border}(u, v)$. By Lemma 6.2, we have

$$\text{Amb}_\Sigma(L) = \Sigma^* \{u, v\} \Sigma^\omega \cup \Sigma^* \left(\text{LB}(u, u) \cup \text{LB}(v, v) \cup \text{LB}(u, v) \cup \text{LB}(v, u) \right)^\omega.$$

If $\text{OVL}(u, v) \neq \emptyset$ then $\text{OVL}(u, v)$ has a unique greatest (by the length) element which will denote by $O_{u,v}$, and $\text{LB}(u, v)$ has a unique smallest element which will denote by $b_{u,v}$. We have thus

$$v = b_{u,v} O_{u,v}.$$

Example 6.4. Let $u = 0102$ and $v = 1010$. We have

$$\begin{aligned} \text{OVL}(u, v) &= \{010, 0\}, & \text{LB}(u, v) &= \{1, 101\}, \\ O_{u,v} &= 010, & b_{u,v} &= 1. \end{aligned}$$

For a word $u \in \Sigma^\infty$, we denote by $\text{Alph}(u)$ the set of letters of Σ appearing in u .

Lemma 6.5. Let $u \in \Sigma^+$. For any $y \in \text{LB}(u, u)$, we have $\text{Alph}(y) = \text{Alph}(u)$.

Proof. For any $y \in \text{LB}(u, u)$, there exist two non-empty word x and z such that $u = xz = yx$. By Lemma 2.1, there exist two words α, β and an integer k such that $x = (\alpha\beta)^k\alpha$, $y = \alpha\beta$, and $z = \beta\alpha$. Thus $\text{Alph}(u) = \text{Alph}(\alpha\beta) = \text{Alph}(y)$. \square

Lemma 6.6. *For any word $u \in \Sigma^+$, we have $(\text{LB}(u, u))^\omega \subseteq u\Sigma^\omega$.*

Proof. If $\text{LB}(u, u) = \emptyset$, the claim is trivial. Assume $\text{LB}(u, u) \neq \emptyset$. By 6.1, for any $y \in \text{LB}(u, u)$, there exists a word z such that $uz = yu$. By induction, for any sequence $y_1, y_2, \dots \in \text{LB}(u, u)$, there are z_1, z_2, \dots such that

$$y_1 y_2 \dots y_n u = u z_1 z_2 \dots z_n, \quad \text{for } n = 1, 2, \dots$$

By adhrence, we have

$$y_1 y_2 \dots = u z_1 z_2 \dots$$

Thus $(\text{LB}(u, u))^\omega \subseteq u\Sigma^\omega$. \square

Lemma 6.7. *Let $u, v \in \Sigma^+$. If $\text{OVL}(u, v) \neq \emptyset$ then for any $w \in \text{LB}(u, v) \setminus \{b_{u,v}\}$, we have $\text{Alph}(w) = \text{Alph}(v)$.*

Proof. By definition, we have

$$\text{OVL}(u, v) = \{O_{u,v}\} \cup \text{OVL}(O_{u,v}, O_{u,v}).$$

Thus

$$\text{LB}(u, v) = \{b_{u,v}\} \cup \{b_{u,v}\} \text{LB}(O_{u,v}, O_{u,v}).$$

By Lemma 6.5, for any $y \in \text{LB}(O_{u,v}, O_{u,v})$, we have $\text{Alph}(y) = \text{Alph}(O_{u,v})$; we obtain thus

$$\text{Alph}(b_{u,v}y) = \text{Alph}(b_{u,v}O_{u,v}) = \text{Alph}(u),$$

which completes the proof. \square

Lemma 6.8. *Let 0, 1 be two distinct letters and let x be a word. Then*

$$x0 \notin \text{Fact}(\{x1, 1\}^\omega).$$

Proof. We denote by $|x|_1$ the number of letters 1 in x . Let $y \in \text{Fact}(\{x1, 1\}^\omega)$ and $|y| = |x| + 1$, we have $|y|_1 > |x|_1 = |x0|_1$. Thus $x0 \notin \text{Fact}(\{x1, 1\}^\omega)$. \square

7. PROOF OF THEOREM 1.2

Recall that L is a one-relation language where the basic relation is $u \cong v$. We set $0 = \text{First}(u)$ and $1 = \text{First}(v)$. Two letters 0 and 1 are distinct because the relation $u \cong v$ is minimal. Since the roles of u and v are symmetric, we consider three cases.

7.1. When $\text{OVL}(u, v) = \emptyset$ and $\text{OVL}(v, u) = \emptyset$

We prove that L^ω has no code generator in this case. Indeed, we have $\text{LB}(u, v) = \text{LB}(v, u) = \emptyset$. By Lemma 6.3, we have

$$\text{Amb}_\Sigma(L) = \Sigma^* \{u, v\} \Sigma^\omega \cup \Sigma^* (\text{LB}(u, u) \cup \text{LB}(v, v))^\omega. \quad (7.1)$$

As the roles of u and v are symmetric, we consider three cases.

Case 1: $u \notin \{0, 1\}^+$ and $v \notin \{0, 1\}^+$.

By Lemma 6.5, we have

$$\text{LB}(u, u) \cap \{0, 1\}^+ = \emptyset \quad \text{and} \quad \text{LB}(v, v) \cap \{0, 1\}^+ = \emptyset.$$

By (7.1), we have $\text{Amb}_\Sigma(L) \cap \{0, 1\}^\omega = \emptyset$. Since two words 0 and 1 are incompatible, it follows from Proposition 4.7 that L^ω has no code generator.

Case 2: $u \in \{0, 1\}^+$ and $v \notin \{0, 1\}^+$.

By (7.1) we have

$$\begin{aligned} \text{Amb}_\Sigma(L) \cap \{0, 1\}^\omega &= \{0, 1\}^* u \{0, 1\}^\omega \cup \{0, 1\}^* (\text{LB}(u, u))^\omega \\ &= \{0, 1\}^* u \{0, 1\}^\omega \end{aligned} \quad (\text{by Lem. 6.6})$$

Since $\text{OVL}(v, u) = \emptyset$ and $\text{First}(v) = 1$, we have $\text{Last}(u) = 0$. Because $|u| > 1$, we can write $u = 0z0$ with $z \in \{0, 1\}^*$. The basic relation becomes $0z0 \cong v$. Then we have

$$0zv \cong 0z0z0 \cong vz0.$$

Since $\text{First}(v) = 1$, it follows that two words $0z1$ and 1 are incompatible. By Lemma 6.8, we have

$$u = 0z0 \notin \text{Fact}(\{0z1, 1\}^\omega).$$

Thus $\text{Amb}_\Sigma(L) \cap \{0z1, 1\}^\omega = \emptyset$. By the Proposition 4.7, L^ω has no code generator.

Case 3: $u \in \{0, 1\}^+$ and $v \in \{0, 1\}^+$.

By Lemma 2.4, two words $\tilde{0}$ and $\tilde{1}$ commute. This contradicts Lemma 3.7.

Example 7.1. The following languages show that there exist one-relation languages where their basic relations as in Case 1 and Case 2.

1. Let $L = \{a, ab, bc, c\}$ and $\Sigma = \{0, 1, 2, 3\}$. The language L is a one-relation language where $02 \cong 13$ is the basic relation.
2. Let $H = \{ab, aba, b\}$ and $\Sigma = \{0, 1, 2\}$. The language H is a one-relation language where the basic relation is $00 \cong 12$.

7.2. When $\text{OVL}(u, v) \neq \emptyset$ and $\text{OVL}(v, u) \neq \emptyset$

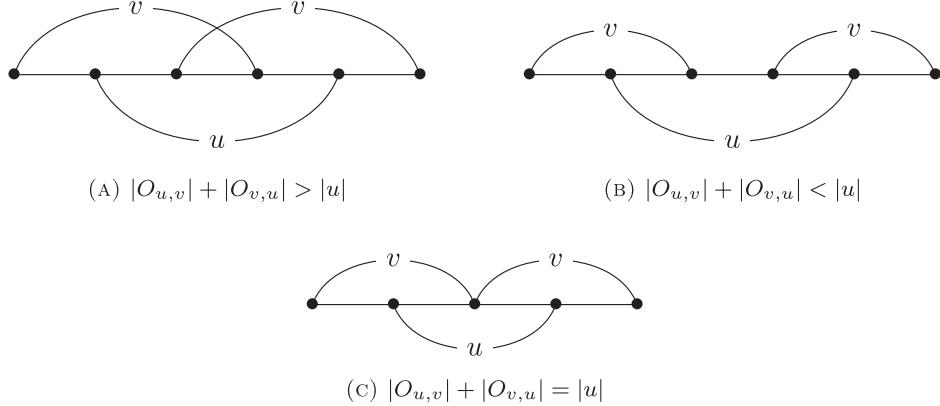
We prove that L^ω has no code generator in this case. The situations are illustrated in Figure 2.

We first prove that

$$|u| > |O_{u,v}| + |O_{v,u}| \quad \text{and} \quad |v| > |O_{u,v}| + |O_{v,u}|. \quad (7.2)$$

Conversely (to obtain a contradiction), suppose $|u| \leq |O_{u,v}| + |O_{v,u}|$. Since $|\tilde{u}| = |\tilde{v}|$, it follows that $|v| \leq |O_{u,v}| + |O_{v,u}|$. Then the basic relation $u \cong v$ can be rewritten in the form

$$u_1 u_2 u_3 \cong v_1 v_2 v_3,$$

FIGURE 2. Situations occur when $\text{OVL}(u, v) \neq \emptyset$ and $\text{OVL}(v, u) \neq \emptyset$.

where $u_i, v_i \in \Sigma^*$; $u_1u_2 = v_2v_3 = O_{u,v}$; and $u_2u_3 = v_1v_2 = O_{v,u}$. Hence

$$u_1v_1v_2 \cong v_1u_1u_2.$$

As $|\widetilde{u_1v_1}| = |\widetilde{v_1u_1}|$, we have $u_1v_1 \cong v_1u_1$ and $v_2 \cong u_2$. Since $u_1v_1v_2 \cong v_1u_1u_2$ is a minimal relation, it follows that $u_2 = v_2 = \varepsilon$ or $u_1v_1 = v_1u_1 = \varepsilon$. However, if $u_2 = v_2 = \varepsilon$ then the basic relation becomes $u_1v_1 \cong v_1u_1$ which contradicts Lemma 3.6. If $u_1v_1 = v_1u_1 = \varepsilon$ then $O_{u,v} = u_2 = v$, a contradiction. We get (7.2).

Now the basic relation can be rewritten of the form

$$xzt \cong tyx$$

where $x, y, z, t \in \Sigma^+$; $x = O_{u,v}$; and $t = O_{v,u}$. Recall that $\text{First}(x) = 0$ and $\text{First}(t) = 1$. There are three cases:

Case 1: $xz \in \{0, 1\}^+$ and $ty \in \{0, 1\}^+$.

It follows from Lemma 2.4 that two words $\tilde{0}$ and $\tilde{1}$ commute. This contradicts Lemma 3.7.

Case 2: $xz \notin \{0, 1\}^+$ and $ty \notin \{0, 1\}^+$.

By Lemma 6.3, we have

$$\text{Amb}_\Sigma(L) \cap \{0, 1\}^\omega = \emptyset.$$

By Proposition 4.7, L^ω has no code generator.

Case 3: $xz \in \{0, 1\}^+$ and $ty \notin \{0, 1\}^+$.

We first prove that $t \notin \{0, 1\}^+$. Conversely (to obtain a contradiction), suppose $t \in \{0, 1\}^+$. If $\text{Last}(t) = 0$ then by Lemma 2.3, two words $\tilde{0}$ and $\tilde{1}$ commute. Otherwise $\text{Last}(t) = 1$, by minimality of the basic relation, we have $\text{Last}(x) = 0$; according to Lemma 2.4, two words $\tilde{0}$ and $\tilde{1}$ commute. Both cases yield a contradiction with Lemma 3.7.

Now we have $t \notin \{0, 1\}^+$, then

$$\text{LB}(xzt, xzt) \cap \{0, 1\}^+ = \emptyset, \quad \text{LB}(tyx, tyx) \cap \{0, 1\}^+ = \emptyset,$$

$$\text{LB}(xzt, tyx) \cap \{0, 1\}^+ = \emptyset$$

and by Lemma 6.7, we have $\text{LB}(tyx, xzt) \cap \{0, 1\}^+ = xz$. We have thus

$$\text{Amb}_\Sigma(L) \cap \{0, 1\}^\omega = \{0, 1\}^*(xz)^\omega.$$

By Lemma 6.8, we have $xz0 \notin \text{Fact}(\{xz1, 1\}^\omega)$. As $\text{First}(x) = 0$, we have $(xz)^\omega \notin \text{Suff}(\{xz1, 1\}^\omega)$. Therefore

$$\text{Amb}_\Sigma(L) \cap \{xz1, 1\}^\omega = \emptyset$$

Since $\text{First}(t) = 1$, two words $xz1$ and 1 are incompatible. According to Lemma 4.7, L^ω has no code generator.

The following example show that there exist languages as in Case 2.

Example 7.2. Let $L = \{a, aba, bac, cab\}$ and let $\Sigma = \{0, 1, 2, 3\}$. It can be verified that L is a one-relation language where the basic relation is $021 \cong 130$.

7.3. When $\text{OVL}(u, v) \neq \emptyset$ and $\text{OVL}(v, u) = \emptyset$

We deal this case by some claims which are proven later.

Claim 7.3. *Assume that the basic relation of L is of the form*

$$0xz \cong 1y0x \tag{7.3}$$

where $z \in \Sigma^+$; $x, y \in \Sigma^*$; and $0x = O_{u,v}$ is the greatest (by the length) element of $\text{OVL}(u, v)$. If $x \notin 0^*$ or $\rho(1y) \notin 10^*$, then L^ω has no code generator.

Now there remain the cases: $u = 0^n z$ and $v = (10^m)^k 0^n$ with $k \geq 1, m \geq 0, n \geq 1$, and $0^n = O_{u,v}$. It is to be noticed that $\text{Last}(z) \notin \{0, 1\}$ as $\text{OVL}(v, u) = \emptyset$.

Claim 7.4. *Assume that the basic relation of L is of the form*

$$0^n z \cong (10^m)^k 0^n$$

with $0^n = O_{u,v}$ and $\text{Last}(z) \notin \{0, 1\}$.

If the parameters z, k, m, n of the basic relation satisfies one of two following conditions:

1. $k \geq 2, m \geq 0$, and $n \geq 2$;
2. $|z| \geq 2, k \geq 1, m \geq 1$, and $n \geq 1$.

Then L^ω has no code generator.

According to Claims 7.3 and 7.4, there remains to prove that L^ω has always a code generator in the cases where the basic relation is in the form

$$0^n z \cong (10^m)^k 0^n$$

with

- (i) $k = 1, m = 0, n \geq 1$, and $z \in \Sigma^* 2$;
- (ii) $k = 1, m \geq 1, n \geq 1$, and $z = 2$;
- (iii) $k > 1, m = 0, n = 1$, and $z \in \Sigma^* 2$; or
- (iv) $k > 1, m \geq 1, n = 1$, and $z = 2$.

Claim 7.5 (Case i). *Assume that the basic relation of L is of the form*

$$0^n z \cong 10^n$$

with $n \geq 1$ and $z \in \Sigma^*2$. Then \tilde{C} is an infinite ω -code generator of L^ω , where

$$C = \{0\} \cup \left(\bigcup_{i=0}^{n-1} 10^i \right)^* (\Sigma \setminus \{0, 1\}).$$

Claim 7.6 (Case ii). *Assume that the basic relation of L is of the form*

$$0^n 2 \cong 10^m 0^n$$

with $m \geq 1$ and $n \geq 1$. Then \tilde{C} is an infinite ω -code generator of L^ω , where

$$C = \{0, 2\} \cup \left(\bigcup_{i=0}^{n-1} 10^m 0^i \right)^* \left(\bigcup_{i=0}^{m-1} 10^i (\Sigma \setminus \{0, 2\}) \cup \bigcup_{i=0}^{n-1} 10^i 2 \cup \Sigma \setminus \{0, 1, 2\} \right).$$

Claim 7.7 (Case iii). *Assume that the basic relation of L is of the form*

$$0z \cong 1^k 0$$

with $z \in \Sigma^*2$ and $k > 1$. Then \tilde{C} is an infinite code generator of L^ω , where

$$C = \bigcup_{i=0}^{k-1} 1^i 0 \cup 1^* (\Sigma \setminus \{0, 1\}).$$

Moreover, L^ω has no ω -code generator.

Claim 7.8 (Case iv). *Assume that the basic relation of L is of the form*

$$02 \cong (10^m)^k 0$$

with $k > 1$ and $m \geq 1$. Then \tilde{C} is an infinite code generator of L^ω , where

$$C = \{2\} \cup \bigcup_{i=0}^{k-1} (10^m)^i 0 \cup (10^m)^* \left(\{12\} \cup 1 \left(\bigcup_{i=0}^{m-1} 0^i \right) (\Sigma \setminus \{0, 2\}) \cup \Sigma \setminus \{0, 1, 2\} \right).$$

Moreover, L^ω has no ω -code generator.

Example 7.9. The following languages show that there exist one-relation languages where their basic relations as in Cases i-iv.

- (i) Let $L = \{a, ab, ba\}$ and $\Sigma = \{0, 1, 2\}$. The language L is a one-relation language where the basic relation is $02 \cong 10$. By Claim 7.5, the ω -language L^ω has an infinite ω -code generator \tilde{C} with $C = 0 \cup 1^* 2$.
- (ii) Let $H = \{a, a^2b, ba^4\}$ and $\Sigma = \{0, 1, 2\}$. It can be verified that H is a one-relation language where the basic relation is $0^2 2 \cong 10^2 0^2$. By Claim 7.6, the ω -language H^ω has an infinite ω -code generator \tilde{C} with

$$C = \{0, 2\} \cup \{10^2, 10^2 0\}^* \{11, 101, 12, 102\}.$$

- (iii) Let $I = \{a, ab, baba\}$ and $\Sigma = \{0, 1, 2\}$. It can be verified that I is a one-relation language where the basic relation is $02 \cong 110$. By Claim 7.7, the ω -language I^ω has an infinite code generator \tilde{C} with $C = \{0, 10\} \cup 1^*2$.
- (iv) Let $J = \{a, ab, ba^3ba^3\}$ and $\Sigma = \{0, 1, 2\}$. It can be verified that J is a one-relation language where the basic relation is $02 \cong (100)^20$. By Claim 7.8, the ω -language J^ω has an infinite code generator \tilde{C} with

$$C = \{0, 1000, 2\} \cup (100)^*\{12, 11, 101\}.$$

7.3.1. Proof of Claim 7.3

Assume that the basic relation of L is $0xz \cong 1y0x$. First, we prove that

$$xz \notin \{0, 1\}^+. \quad (7.4)$$

Conversely (to obtain a contradiction), suppose $x \in \{0, 1\}^*$ and $z \in \{0, 1\}^+$. By minimality of relation $0xz \cong 1y0x$, we have $\text{Last}(z) \neq \text{Last}(0x)$.

- If $\text{Last}(0x) = 0$ and $\text{Last}(z) = 1$, then $1 \in \text{OVL}(v, u)$, this contradicts $\text{OVL}(v, u) = \emptyset$.
- Otherwise $\text{Last}(0x) = 1$ and $\text{Last}(z) = 0$, then we can rewrite the basic relation in the form

$$0x'1z'0 \cong 1y0x'1$$

where $x'1 = x$ and $z'0 = z$. Thus $\widetilde{1z'0}$ and $\widetilde{0x'1}$ are both suffix of the word $\widetilde{0x'1z'0} = \widetilde{1y0x'1}$. By Lemma 2.3, two words $\tilde{0}$ and $\tilde{1}$ commute. This contradicts Lemma 3.7.

Thus, we get (7.4).

Now, we consider three cases:

Case 1: $y \notin \{0, 1\}^*$.

Since $xz \notin \{0, 1\}^+$ and by Lemma 6.3, we have

$$\text{Amb}_\Sigma(L) \cap \{0, 1\}^\omega = \emptyset.$$

According to Proposition 4.7, L^ω has no code generator.

The following example shows that there exists one-relation languages with the basic relation as in *Case 1*.

Example 7.10. Let $L = \{a, ab, bca, c\}$ and let $\Sigma = \{0, 1, 2, 3\}$. The language L is one-relation language where the basic relation is $02 \cong 130$.

Case 2: $y \in \{0, 1\}^*$ and $x \notin 0^*$.

First, we show that $x \notin \{0, 1\}^+$. Indeed, if $x \in \{0, 1\}^+$ then, by Lemma 2.3 and the relation $0xz \cong 1y0x$, two words $\tilde{0}$ and $\tilde{1}$ commute, which contradicts Lemma 3.7.

Now, using Lemma 6.3, we have

$$\text{Amb}_\Sigma(L) \cap \{0, 1\}^\omega = \{0, 1\}^*(1y)^\omega.$$

By Lemma 6.8, we have $1y1 \notin \text{Fact}(\{0, 1y0\}^\omega)$. Thus

$$\text{Amb}_\Sigma(L) \cap \{0, 1y0\}^\omega = \emptyset.$$

Two words 0 and $1y0$ are incompatible as $0xz \cong 1y0x$. By Proposition 4.7, L^ω has no code generator.

The following example shows that there exists one-relation language with the basic relation as in *Case 2*.

Example 7.11. Let $L = \{ab, abc, bcaba, caba\}$ and let $\Sigma = \{0, 1, 2, 3\}$. It can be verified that L is a one-relation language where the basic relation is $032 \cong 1003$.

Case 3: $y \in \{0, 1\}^*$, $\rho(1y) \notin 10^*$, and $0x = 0^n$ with $n \geq 1$.

Because $xz \notin \{0, 1\}^*$ we can write $z = z_{01}2z'$ where $z_{01} \in \{0, 1\}^*$ and $z' \in \Sigma^*$. Now the basic relation is in the form $0^n z_{01}2z' \cong 1y0^n$. By Lemma 3.7, L cannot contain two words commute, and then by Lemma 2.3, we have $z_{01} \in 0^*$. Thus the basic relation can be written in the form

$$0^n 0^k 2z' \cong 1y0^n \quad (7.5)$$

with $k \geq 0$.

By Lemma 6.3, we have

$$Amb_{\Sigma}(L) \cap \{0, 1\}^{\omega} = \{0, 1\}^* 1y0^n \{0, 1\}^{\omega} \cup \{0, 1\}^* (LB(0^n 0^k 2z', 1y0^n) \cup LB(1y0^n, 1y0^n))^{\omega}. \quad (7.6)$$

Consider two subcases:

Subcase 3.1: $OVL(1y0^n, 1y0^n) \neq \emptyset$.

That is, there are $f \in \{0, 1\}^*$ and $p \in \{0, 1\}^*$ such that $1y0^n = 1pf1p$. The basic relation (7.5) becomes

$$0^n 0^k 2z' \cong 1pf1p.$$

And we have

$$0^n 0^k 2z' f1p \cong 1pf1pf1p \cong 1pf0^n 0^k 2z'.$$

Thus two words 0 and $1pf0$ are incompatible.

By Lemma 6.8, we have $1pf1 \notin \text{Fact}(\{0, 1pf0\}^{\omega})$, then $1y \notin \text{Fact}(\{0, 1pf0\}^{\omega})$. Thus

$$Amb_{\Sigma}(L) \cap \{0, 1pf0\}^{\omega} = \emptyset.$$

By Proposition 4.7, L^{ω} has no code generator.

Subcase 3.2: $OVL(1y0^n, 1y0^n) = \emptyset$.

From the equation (7.6), we have

$$Amb_{\Sigma}(L) \cap \{0, 1\}^{\omega} = \{0, 1\}^* 1y0^n \{0, 1\}^{\omega} \cup \{0, 1\}^* \{1y, 1y0, \dots, 1y0^{n-1}\}^{\omega}.$$

From the basic relation (7.5), we have

$$0^n 0^k 2z' 0^n 0^k 2z' \cong 1y0^n 0^n 0^k 2z' \cong 1y1y0^n.$$

Then two words 0 and $1y1$ are incompatible. Now we show that

$$Amb_{\Sigma}(L) \cap \{0, 1y1\}^{\omega} = \emptyset \quad (7.7)$$

and thus, by Proposition 4.7, L^{ω} has no code generator.

To obtain (7.7), it is sufficient to verify that

$$1y0^n \notin \text{Fact}(\{0, 1y1\}^{\omega}) \quad (7.8)$$

and

$$\left(\bigcup_{i=0}^{n-1} 1y0^i \right)^\omega \cap \text{Suff}(\{0, 1y1\}^\omega) = \emptyset. \quad (7.9)$$

If $1y0^n \in \text{Fact}(\{0, 1y1\}^\omega)$ then there are a word $p \in \text{Pref}(1y) \setminus \{1y\}$, a word $s \in \text{Suff}(1y)$, and an integer $m \geq 0$ such that

$$1y0^n = s10^m p.$$

But since $\text{OVL}(1y0^n, 1y0^n) = \emptyset$, it follows that $p = \varepsilon$. Hence

$$1y0^n \in \text{Suff}(1y)10^m.$$

But this show that $\rho(1y) \in 10^*$, a contradiction. We get (7.8).

If

$$\left(\bigcup_{i=0}^{n-1} 1y0^i \right)^\omega \cap \text{Suff}(\{0, 1y1\}^\omega) = \emptyset$$

then there exists a word $s \in \text{Suff}(1y1) \setminus \{1y1\}$ and two sequences $(i_j), (k_j)$ of integers such that

$$1y0^{i_1}1y0^{i_2} \dots = s0^{k_1}1y10^{k_2} \dots$$

Let $\ell = |1y|_1 - |s|_1 \geq 0$. We have

$$\begin{aligned} |s|_1 + |(1y1)^\ell|_1 &= |s|_1 + \ell + |(1y)^\ell|_1 \\ &= |1y|_1 + |(1y)^\ell|_1 = |(1y)^{\ell+1}|_1. \end{aligned}$$

Observe, further, that: if two words $\alpha 1$ and $\beta 1$ are both prefix of a same word and $|\alpha|_1 = |\beta|_1$, then $\alpha = \beta$. We have thus

$$1y0^{i_1} \dots 1y0^{i_{\ell+1}} = s0^{k_1}1y10^{k_2} \dots 1y10^{k_\ell}.$$

Thus

$$1y0^{i_{\ell+1}} \in \text{Suff}(1y)10^{k_\ell}.$$

But this show that $\rho(1y) \in 10^*$, a contradiction. We get (7.9).

Example 7.12 (for Subcase 3.1). Let $L = \{a, ab, baab\}$ and let $\Sigma = \{0, 1, 2\}$. It can be verified that L is a one-relation language where the basic relation is $02 \cong 1010$.

Example 7.13 (for Subcase 3.2). Let $L = \{a, ab, babaa\}$ and let $\Sigma = \{0, 1, 2\}$. It can be verified that L is a one-relation language where the basic relation is $02 \cong 1100$.

7.3.2. Proof of Claim 7.4

Assume that the basic relation of L is of the form

$$0^n z \cong (10^m)^k 0^n \quad (7.10)$$

with $0^n = O_{u,v}$ and $\text{Last}(z) \notin \{0, 1\}$. We will show that L^ω has no code generator in both following cases:

Case 1: $k \geq 2$, $m \geq 0$, and $n \geq 2$.

By Lemma 6.3, we have

$$\text{Amb}_\Sigma(L) \cap \{0, 1\}^\omega = \{0, 1\}^* (10^m)^k 0^n \{0, 1\}^\omega \cup \{0, 1\}^* \left(\bigcup_{i=0}^{n-1} (10^m)^k 0^i \right)^\omega$$

From the relation (7.10), it follows that

$$0^n z 0 z \cong (10^m)^k 0^n 0 z \cong (10^m)^k 0 (10^m)^k 0^n.$$

Hence two words 0 and $(10^m)^k 01$ are incompatible.

Because $k \geq 2$ and $n \geq 2$, we have

$$(10^m)^k 0^n \notin \text{Fact}(\{0, (10^m)^k 01\}^\omega).$$

It can be verified that

$$\text{Suff}(\{0, (10^m)^k 01\}^\omega) \cap \left(\bigcup_{i=0}^{n-1} (10^m)^k 0^i \right)^\omega = \emptyset.$$

Thus we have

$$\text{Amb}_\Sigma(L) \cap \{0, (10^m)^k 01\}^\omega = \emptyset.$$

By Proposition 4.7, L^ω has no code generator.

Example 7.14 (for Case 1). Let $L = \{a, aab, baabaa\}$ and let $\Sigma = \{0, 1, 2\}$. It can be verified that L is a one-relation language where the basic relation is $002 \cong 1100$.

Case 2: $|z| \geq 2$, $k \geq 1$, and $n \geq 1$.

As $O_{u,v} = 0^n$, we have $\text{First}(z) \neq 0$. Since L cannot contain two words commute, it follows from Lemma 2.3 that $\text{First}(z) \neq 1$. Thus the basic relation can be written in the form

$$0^n 2 z' \cong (10^m)^k 0^n$$

where $z' \neq \varepsilon$ and $\text{Last}(z') \notin \{0, 1\}$, and $2 \in \Sigma \setminus \{0, 1\}$. Then two words $0^n 2$ and 1 are incompatible.

By Lemma 6.3, we have

$$\text{Amb}_\Sigma(L) = \Sigma^* \{0^n 2 z', (10^m)^k 0^n\} \Sigma^\omega \cup \Sigma^* (\text{LB}(0^n 2 z', 0^n 2 z') \cup \text{LB}(0^n 2 z', (10^m)^k 0^n))^\omega. \quad (7.11)$$

Thus we have

$$\text{Amb}_\Sigma(L) \cap \{0^n 2, 1\}^\omega \subseteq \Sigma^* \{0^n 2 z'\} \Sigma^\omega. \quad (7.12)$$

If $\text{Amb}_\Sigma(L) \cap \{0^n 2, 1\}^\omega = \emptyset$, then by Proposition 4.7, L^ω has no code generator. We now assume that $\text{Amb}_\Sigma(L) \cap \{0^n 2, 1\}^\omega \neq \emptyset$. This means that

$$0^n 2 z' \in \text{Fact}(\{0^n 2, 1\}^\omega).$$

Since $\text{Last}(z') \notin \{0, 1\}$, it follows that $z' \in \Sigma^* 0^n 2$. Thus the basic relation can be written in the form

$$0^n 2 f 0^n 2 \cong (10^m)^k 0^n$$

where $f \in \text{Pref}(z')$. We have:

$$0^n 2 f (10^m)^k 0^n \cong 0^n 2 f 0^n 2 f 0^n 2 \cong (10^m)^k 0^n f 0^n 2.$$

Thus two words $0^n 2 f 1$ and 1 are incompatible.

By Lemma 6.8, we have $0^n 2 f 0 \notin \text{Fact}(\{0^n 2 f 1, 1\}^\omega)$. Therefore

$$0^n 2 f 0^n 2 \notin \text{Fact}(\{0^n 2 f 1, 1\}^\omega).$$

Thus

$$\text{Amb}_\Sigma(L) \cap \{0^n 2 f 1, 1\}^\omega = \emptyset.$$

By Proposition 4.7, L^ω has no code generator.

Example 7.15 (for Case 2). 1. Let $L = \{ab, abc, b, caba\}$ and $\Sigma = \{0, 1, 2, 3\}$. It can be verified that L is a one-relation language where that basic relation is $032 \cong 100$.
2. Let $L' = \{a, aba^3b, ba^2\}$ and $\Sigma = \{0, 1, 2\}$. It can be verified that L' is a one-relation language where the basic relation is $0202 \cong 100$.

7.3.3. Proof of Claim 7.5

Assume that the basic relation of L is of the form

$$0^n z \cong 10^n$$

with $n \geq 1$ and $z \in \Sigma^* 2$. We will show that \tilde{C} is an ω -code generator of L^ω , where

$$C = \{0\} \cup \left(\bigcup_{i=0}^{n-1} 10^i \right)^* (\Sigma \setminus \{0, 1\}).$$

To prove that \tilde{C} is a generator of L^ω , we show first assertion: for every $x \in \Sigma^\omega \setminus C\Sigma^\omega$, there exists $y \in C\Sigma^\omega$ such that $x \cong y$. Indeed, direct computation show that

$$\Sigma^\omega \setminus C\Sigma^\omega = \left(\bigcup_{i=0}^{n-1} 10^i \right)^\omega \cup \left(\bigcup_{i=0}^{n-1} 10^i \right)^* 10^n \Sigma^\omega.$$

For each $x \in (\bigcup_{i=0}^{n-1} 10^i)^\omega$, we write

$$x = 10^{i_1} 10^{i_2} \dots$$

where $n > i_j \geq 0$. Then we have

$$10^{i_1} 10^{i_2} \dots \cong 0^n z 0^{i_1} z 0^{i_2} \dots \in C\Sigma^\omega.$$

And for each $x \in (\bigcup_{i=0}^{n-1} 10^i)^* 10^n \Sigma^\omega$, we write

$$x = 10^{i_1} \dots 10^{i_p} 10^n w$$

where $p \geq 0$, $n > i_j \geq 0$ and $w \in \Sigma^\omega$. We have thus

$$10^{i_1} \dots 10^{i_p} 10^n w \cong 0^n z 0^{i_1} z \dots z 0^{i_p} w \in C\Sigma^\omega.$$

Thus we have $L^\omega \subseteq \tilde{C}L^\omega$. According to Lemma 2.6, we have $L^\omega \subseteq \tilde{C}^\omega$. Thus $\tilde{C}^\omega = L^\omega$.

Now we show that \tilde{C} is an ω -code. Indeed, it is clear that C is a prefix code. Observe, further, that

$$10^n \notin \text{Fact}(C^\omega) \quad \text{and} \quad \left(\bigcup_{i=0}^{n-1} 10^i \right)^\omega \cap \text{Suff}(C^\omega) = \emptyset.$$

Hence we have $R(L) \cap (C^\omega \times C^\omega) = \emptyset$. Thus each ω -word in \tilde{C}^ω has only one factorization on \tilde{C} . The proof is completed.

7.3.4. Proof of Claim 7.6

Assume that the basic relation of L is of the form

$$0^n 2 \cong 10^m 0^n$$

with $m \geq 1$ and $n \geq 1$. We will show that \tilde{C} is an ω -code generator of L^ω , where

$$C = \{0, 2\} \cup \left(\bigcup_{i=0}^{n-1} 10^m 0^i \right)^* \left(\bigcup_{i=0}^{m-1} 10^i (\Sigma \setminus \{0, 2\}) \cup \bigcup_{i=0}^{n-1} 10^i 2 \cup \Sigma \setminus \{0, 1, 2\} \right).$$

To prove that \tilde{C} is a generator of L^ω , we show first assertion: for each $x \in \Sigma^\omega \setminus C\Sigma^\omega$, there exists $y \in C\Sigma^\omega$ such that $x \cong y$. Indeed, direct computation show that

$$\Sigma^\omega \setminus C\Sigma^\omega = \left(\bigcup_{i=0}^{n-1} 10^m 0^i \right)^\omega \cup \left(\bigcup_{i=0}^{n-1} 10^m 0^i \right)^* (10^m 0^n \cup 10^n 0^* 2) \Sigma^\omega.$$

For every $x \in \left(\bigcup_{i=0}^{n-1} 10^m 0^i \right)^\omega$, we can write

$$x = 10^m 0^{i_1} 10^m 0^{i_2} \dots$$

where $n > i_j \geq 0$, we have

$$10^m 0^{i_1} 10^m 0^{i_2} \dots \cong 0^n 2 0^{i_1} 2 0^{i_2} \dots \in C\Sigma^\omega.$$

For every $x \in \left(\bigcup_{i=0}^{n-1} 10^m 0^i \right)^* 10^m 0^n \Sigma^\omega$, we write

$$x = 10^m 0^{i_1} \dots 10^m 0^{i_p} 10^m 0^n w$$

with $p \geq 0$, $n > i_j \geq 0$, and $w \in \Sigma^\omega$, we have

$$10^m 0^{i_1} \dots 10^m 0^{i_p} 10^m 0^n w \cong 0^n 20^{i_1} 2 \dots 20^{i_p} w \in C\Sigma^\omega.$$

For every $x \in \left(\bigcup_{i=0}^{n-1} 10^m 0^i\right)^* 10^n 0^* 2\Sigma^\omega$, we write

$$x = 10^m 0^{i_1} \dots 10^m 0^{i_p} 10^n 0^q 2w$$

where $q \geq 0$, $p \geq 0$, $n > i_j \geq 0$, and $w \in \Sigma^\omega$. If $q \geq m$, we have

$$x = 10^m 0^{i_1} \dots 10^m 0^{i_p} 10^n 0^m 0^{q-m} 2w \cong 0^n 20^{i_1} 2 \dots 20^{i_p} 20^{q-m} 2w \in C\Sigma^\omega,$$

if $q < m$, we have

$$\begin{aligned} 10^m 0^{i_1} \dots 10^m 0^{i_p} (10^n 0^q) 2w &= 10^m 0^{i_1} \dots 10^m 0^{i_p} (10^q 0^n) 2w \\ &\cong 10^m 0^{i_1} \dots 10^m 0^{i_p} 10^q (10^m 0^n) w \\ &\in (10^m 0^{i_1} \dots 10^m 0^{i_p}) 10^q 1\Sigma^\omega \subseteq C\Sigma^\omega \end{aligned}$$

that prove the assertion. Thus $L^\omega \subseteq \tilde{C}L^\omega$. According to Lemma 2.6, we have a $L^\omega \subseteq \tilde{C}^\omega$. Thus $\tilde{C}^\omega = L^\omega$.

Now we prove that \tilde{C} is an ω -code. Indeed, it is clear that C is a prefix code. Observe, further, that

$$\left(\bigcup_{i=0}^{n-1} 10^m 0^i\right)^\omega \cap \text{Suff}(C^\omega) = \emptyset,$$

and if there exists $u \in \Sigma^*$ and $w \in \Sigma^\omega$ such that $u10^m 0^n w \in C^\omega$, then $u1 \in C^+$. We have thus $R(L) \cap (C^\omega \times C^\omega) = \emptyset$. Thus each ω -word in \tilde{C}^ω has only one factorization on \tilde{C} . The proof is completed.

7.3.5. Proof of Claim 7.7

Assume that the basic relation of L is of the form

$$0z \cong 1^k 0$$

with $z \in \Sigma^* 2$ and $k > 1$. We will show that \tilde{C} is a code generator of L^ω , where

$$C = \bigcup_{i=0}^{k-1} 1^i 0 \cup 1^* (\Sigma \setminus \{0, 1\}).$$

To prove that \tilde{C} is a generator of L^ω , we show first assertion: for every $x \in \Sigma^\omega \setminus C\Sigma^\omega$, there exists $y \in C\Sigma^\omega$ such that $x \cong y$. Indeed, direct computation show that

$$\Sigma^\omega \setminus C\Sigma^\omega = 1^\omega \cup 1^* 1^k 0 \Sigma^\omega.$$

For $x = 1^\omega$, we have

$$1^\omega \cong 0z^\omega \in C\Sigma^\omega,$$

and for each $x \in 1^* 1^k 0 \Sigma^\omega$, we can write

$$x = 1^q 1^{p k} 0 w \quad \text{with } p \geq 0, k > q \geq 0, \text{ and } w \in \Sigma^\omega$$

we have then

$$1^q 1^{p k} 0 w \cong 1^q 0 z^p w \in C \Sigma^\omega.$$

Thus we have $L^\omega \subseteq \tilde{C} L^\omega$. By Lemma 2.6, we have $L^\omega \subseteq \tilde{C}^\omega$. Thus $\tilde{C}^\omega = L^\omega$.

Now we prove that \tilde{C} is a code. Indeed, it is clear that C is a prefix code. Moreover we have $1^k 0 \notin \text{Fact}(C^+)$, we obtain $R(L) \cap (C^+ \times C^+) = \emptyset$. Thus each words in \tilde{C}^* has only one factorization on \tilde{C} . The proof is completed.

It is to be noticed that \tilde{C} is not an ω -code because $0 z^\omega \cong 0 z^\omega$ and $\{0, 10\} \subseteq C$.

Now we show that L^ω has no ω -code generator. Indeed, for every $i > 0$, we have

$$0 z^i \cong 1^k 0 z^{i-1} \cong 1^k 1^k 0 z^{i-2} \cong \dots \cong 1^{ki} 0,$$

By passing to adherence, we obtain the relation $0 z^\omega \cong 1^\omega$. Thus

$$10 z^\omega \cong 11^\omega = 1^\omega \cong 0 z^\omega.$$

Since $k > 1$, it follows that $10 z^\omega \cong 0 z^\omega$ is a minimal relation. Thus two words 0 and 10 are ∞ -incompatible. Moreover, it is easy to see that

$$Amb_\Sigma(L) \cap \{0, 1\}^\omega = \{0, 1\}^* \{1^k 0\} \{0, 1\}^\omega \cup \{0, 1\}^* 1^\omega$$

Since $1^k \notin \text{Fact}(\{10, 0\}^\omega)$ with $k > 1$, it follows that $Amb_\Sigma(L) \cap \{10, 0\}^\omega = \emptyset$. By Proposition 4.12, L^ω has no ω -code generator.

7.3.6. Proof of Claim 7.8

Assume that the basic relation of L is of the form

$$02 \cong (10^m)^k 0$$

with $k > 1$ and $m \geq 1$. We will show that \tilde{C} is a code generator of L^ω , where

$$C = \{2\} \cup \bigcup_{i=0}^{k-1} (10^m)^i 0 \cup (10^m)^* \left(\{12\} \cup 1 \left(\bigcup_{i=0}^{m-1} 0^i \right) (\Sigma \setminus \{0, 2\}) \cup \Sigma \setminus \{0, 1, 2\} \right).$$

To prove that \tilde{C} is a generator of L^ω , we show first assertion: for every $x \in \Sigma^\omega \setminus C \Sigma^\omega$, there exists $y \in C \Sigma^\omega$ such that $x \cong y$. Indeed, direct computation show that

$$\Sigma^\omega \setminus C \Sigma^\omega = \{(10^m)^\omega\} \cup (10^m)^* (\{(10^m)^k 0\} \cup 10^+ 2) \Sigma^\omega.$$

For $x = (10^m)^\omega$, we have

$$(10^m)^\omega \cong 02^\omega \in C \Sigma^\omega.$$

For every $x \in (10^m)^*(10^m)^k 0 \Sigma^\omega$, we can write $x = (10^m)^q (10^m)^{p^k} 0 w$ with $p \geq 0, k > q \geq 0$, and $w \in \Sigma^\omega$, we have therefore

$$(10^m)^q (10^m)^{p^k} 0 w' \cong (10^m)^q 0 2^p 0 w' \in C \Sigma^\omega.$$

And for every $x \in (10^m)^* 10^+ 2 \Sigma^\omega$, we can write

$$x = (10^m)^q 10^p 0 2 w$$

with $q \geq 0, m > p \geq 0$ and $w \in \Sigma^\omega$. We have therefore

$$(10^m)^q 10^p 0 2 w' \cong (10^m)^q 10^p (10^m)^k 0 w' \in (10^m)^q 10^p 1 \Sigma^\omega \subseteq C \Sigma^\omega.$$

Thus $L^\omega \subseteq \tilde{C} L^\omega$. By Lemma 2.6, we have $L^\omega \subseteq \tilde{C}^\omega$. Thus $\tilde{C}^\omega = L^\omega$.

Now we prove that \tilde{C} is a code. Indeed, it is clear that C is a prefix code. Moreover, since $(10^m)^k 0 \notin \text{Fact}(C^+)$, we obtain $R(L) \cap (C^+ \times C^+) = \emptyset$. This means that every words in \tilde{C}^* has only one factorization on \tilde{C} . Hence \tilde{C} is a code.

It is to be noticed that that \tilde{C} is not an ω -code because $10^m 0 2^\omega \cong 0 2^\omega$ and $\{0, 10^m 0, 2\} \subseteq C$.

Now we show that L^ω has no ω -code generator. Indeed, for every $i > 0$, we have

$$0 2^i \cong (10^m)^k 0 2^{i-1} \cong (10^m)^k (10^m)^k 0 2^{i-2} \cong \dots \cong (10^m)^{ki} 0.$$

By passing to adherence, we get $0 2^\omega \cong (10^m)^\omega$. So

$$10^m 0 2^\omega \cong 10^m (10^m)^\omega = (10^m)^\omega \cong 0 2^\omega.$$

Because $k > 1$, we have $10^m 0 2^\omega \cong 0 2^\omega$ is a minimal relation. Thus two words 0 and $10^m 0$ are ∞ -incompatible. Moreover, it is easy to see that

$$Amb_\Sigma(L) \cap \{0, 1\}^\omega = \{0, 1\}^* \{(10^m)^k 0\} \{0, 1\}^\omega \cup \{0, 1\}^* (10^m)^\omega$$

By Lemma 6.8, we have $10^m 1 \notin \text{Fact}(\{10^m 0, 0\}^\omega)$. Hence

$$Amb_\Sigma(L) \cap \{10^m 0, 0\}^\omega = \emptyset.$$

By Proposition 4.12, L^ω has no ω -code generator.

REFERENCES

- [1] E. Czeizler and J. Karhumäki, On non-periodic solutions of independent systems of word equations over three unknowns. *Int. J. Found. Computer Sci.* **18** (2007) 873–897.
- [2] J. Devolder, M. Latteux, I. Litovsky and L. Staiger, Codes and infinite words. *Acta Cybern.* **11** (1994) 241–256.
- [3] F. Guzmán, Decipherability of codes. *J. Pure Appl. Algebra* **141** (1999) 13–35.
- [4] S. Julia, On ω -generators and codes. In 23^d ICALP (Int. Coll. on Automata, Languages and Programming). Vol. 1099 of *Lecture Notes in Computer Sciences*. Springer, Berlin (1996) 393–402.
- [5] S. Julia, I. Litovsky and B. Patrou, On codes, ω -codes and ω -generators. *Inf. Process. Lett.* **60** (1996) 1–5.
- [6] S. Julia and T.V. Duc, Families and ω -ambiguity removal. In *In Proc. 7th Int. Conf. on Words (WORDS)*, Salerno (2009).
- [7] I. Litovsky, *Générateurs des langages rationnels de mots infinis*. Ph.D. thesis, Université de Lille (1988).
- [8] I. Litovsky, Prefix-free languages as ω -generators. *Inf. Process. Lett.* **37** (1991) 61–65.
- [9] I. Litovsky and E. Timmerman, On generators of rational ω -power languages. *Theor. Comput. Sci.* **53** (1987) 187–200.
- [10] M. Lothaire, *Algebraic Combinatorics on Words*. Cambridge University Press (2002).

- [11] M. Nivat, Infinitary Relations. In *CAAP '81: Proceedings of the 6th Colloquium on Trees in Algebra and Programming*. Springer (1981) 46–75.
- [12] L. Staiger, On infinitary finite length codes. *Theor. Inf. Appl.* **20** (1986) 483–494.
- [13] C. Wrathall, Confluence of One-Rule Thue Systems. Word Equations and Related Topics. Vol. 572 of *Lecture Notes in Computer Sciences*. Springer (1992) 237–246.