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ONE-RELATION LANGUAGES AND CODE GENERATORS

VINH Duc TRANY* AND IGOR LITOVSKY?

Abstract. We investigate the open problem to characterize whether the infinite power of a given
language is generated by an w-code. In case the given language is a code (i.e. zero-relation language),
the problem was solved. In this work, we solve the problem for the class of one-relation languages.
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1. INTRODUCTION

In this paper, we deal with the infinite power (w-power) of languages. The infinite power of L denoted by
L%, is the set of infinite concatenations of words in L. A language L having the property that any infinite
word (w-word) of L¥ has a unique infinite factorization in words in L is called an w-code [12], thus w-codes
are for infinite concatenation, like usual codes for concatenation. Of course w-codes are codes, but the converse
does not hold. We investigate the open problem to characterize languages L such that LY = G* for some code
or w-code G. See [4, 5, 8] for partial answers and various approaches. This question is still open even if the
language L is a finite language.

Given a language L, there does not always exist a greatest language M such that L¥ = M%, however it is
“often” the case, if L is a finite language, for example. Whenever such a greatest w-generator M exists, M is a
semigroup. We know [5] that if this greatest w-generator is a free semigroup, that is if M = L for some code L,
then L = C¥ for some w-code C' if and only if the language L itself is an w-code. This means that whenever the
greatest w-generator is a free semigroup, that is for the class of zero-relation languages, the problem is already
solved. So we consider in this paper, a new class of languages, called one-relation languages.

For each language L = {ug, u1, uz,...} C AT, we consider the alphabet 3 = {0,1,2,...} which is a labelling
of L, and two words m, m’ in ¥+ U X% are equivalent, denoted by m = m/, if the corresponding words in
At U AY are equal. Thus L is a code if and only if the previous equivalence relation is the identity in XT, and
L is an w-code if and only if the previous equivalence relation is the identity in X“. Here we consider languages

~ ~

L having only one relation m = m' with m # m’. Of course, if m = m/, then mymms = mym'ms, for any

~

word m1 and mq (more precisely the relation 2 is a congruence relation), and if zu"z = yv™t for each integer

~

n, then zu” = yv* (more precisely the relation 2 is closed by adherence). We say that L is a one-relation

~ !/

language where m = m' is the basic relation, if there is “not any other” relation, that is all relations are
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2 V.D. TRAN AND I. LITOVSKY

obtained by finite applications of the rewriting rule m — m’ or by closure by adherence. So we can see the class
of one-relation languages as the simplest class after the class of codes.
The purpose of this paper is to prove the two following results.

Theorem 1.1. Let L be a one-relation language such that L is the greatest generator of L*. Then L* has no
finite code generator.

Theorem 1.2. Let L be a one-relation language such that LT is the greatest generator of LY. Then LY has a
code generator if and only if the basic relation u = v of L is one of the following forms:

(i) uw=0"w2 and v = 10" with w € ¥* and n > 1;
(ii) w=0"2 and v = 100" with m > 1 and n > 1;
(iii) u = Ow2 and v = 10 with w € ¥* and k > 2;
(iv) u= 02 and v = (10™)*0 with k > 2 and m > 1.

Moreover, L¥ has an w-code generator if and only if the basic relation is one of forms (i) or (ii).

The paper is structured as follows. Section 2 contains the preliminaries. In Section 3, we give the definition
of one-relation language and useful lemmas. In Section 4, we consider some basic results needed in later proofs.
Section 5 is devoted to prove Theorem 1.1. Sections 6 and 7 are devoted to prove Theorem 1.2.

2. PRELIMINARIES

Let A be an alphabet and A* (resp. A%) is the set of all finite (resp. infinite or w) words. The empty word is
denoted by € and AT denotes A* \ {¢}. Let x € A*, we denote by |z| the length of z. The subsets of A* (resp.
A%) are called languages (resp. w-languages).

We denote by A>® = A* U A% the set of finite or infinite words. We make A®° a monoid equipping it with the
product defined as:

{x, ifxe AY, y € A
Ty = .
vy, ifxe A" ye A
for any words z,y € A*°. Clearly, the empty word ¢ is the identity element of A>.

A word x € A is called a prefix (resp. factor) of a word y € A® if y € xA>® (resp. y € A*zA™®); and a
word x € A% is suffix of a word or w-word y if y € A*z. The language Pref(z) is the set of all prefixes of z. Let
X C A%, we define Pref(X) = Pref(z). In a similar manner we define Fact(X) and Suff(X) for the set
of factors and of suffixes.

A word x € AT is called primitive if x = y™ for y € AT implies n = 1. For a word x € A", the shortest

y € AT such that z = y" for some n > 1 is called primitive root of x and is denoted by p(z).
Now we formulate, in the form of lemmas, several facts which are useful in the sequel.

reX

Lemma 2.1 (see [10]). Let x € AT and y,z € A*. If we have xz = yx, then there exist two words o, and a
positive integer k such that x = (aB)*a, y = aB and 2z = Ba.

Lemma 2.2 (see [10]). Two words u,v € AT commute, that is uv = vu, if and only if they have the same
primitive root.

Lemma 2.3 (see [1]). Let x,y € AT and let z,t € {x,y}*. If zzy and ytx are both prefix or suffiz of a same
word, then x and y commute.

Lemma 2.4. If two words x,y satisfy the relation xzy = ytx for some z € {z,y}* and t € A*, then x and y
commute.

Proof. The proof is by induction on |zy|. If z = € or y = ¢, then z and y commute. Assume that Lemma is true
for all x,y where |zy| < n. We prove it for |xy| = n. If |z| = |y| then z = y, so x and y commute. Now, as the
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role played by x and y is symmetric by mirror, we can assume that |z| < |y|, and then z is a proper prefix of y,
we write y = za’ with 2’ € A*. We have zzzx’' = za'tz, then zzx' = z'tx. Since zx € {z,zz'}x C z{x,2'}*,
it follows that x is a prefix of zz. We set 2/ = 27 !(2x) € {x,2'}*. We have thus the relation xz'z’ = 2tz.
Moreover, if z # €, then |z2’| < |zy|. By the induction hypothesis then z and ' commute. Thus y = zz’ and «
commute. O

Lemma 2.5. Let x € A* and y,z € AT. We have y* = x2* if and only if there exist two positive integers i
and j such that y'x = x27.

Proof. If y*¥ = xz* then there are a positive integer n and a word t € A* such that y™ = xt. Therefore we have
y“ = (2t)® = x2*. Thus (tz)” = z*. Hence there are two positive integers k and j such that (tx)¥ = 27. We
have

z(tr)k = 229,

As zt = y™, we have y'z = x27 where i = nk.
Conversely, if there exist two positive integers i and j such that y*z = z27, then we have y™a = xz™ for
n=20,1,2,.... Hence two words y* and xz“ has an infinity of common prefixes. Thus y* = zz*. O

Given a language L C A™. We define
L :{u(]ul-'- |VZ ZO,’UJZ EL}

the language of w-words generated by L. An w-language of the form L“ is said to be an w-power. A generator
of an w-power L¥ is a language G C A™ such that G¥ = L¥.
The following lemma is used frequently to prove the equality of two w-powers.

Lemma 2.6 (see [9]). Let L and R be languages. If L¥ C RL“ then L* C R“.

An L-factorization of a word w € A* is a finite sequence (w1, ..., w,) of words of L such that w = wy ... w,.
An L-factorization of an w-word w € A% is an infinite sequence (wi,ws,...) of words of L such that w =
wiwsa . ...

A language C' C AT is a code (resp. w-code) if any word in A* (resp. any w-word in A“) has at most one
C-factorization.

We now present a characterization of codes based on the factorizations of infinite periodic words.

Proposition 2.7 (see [2]). Let C C AT be a language. Then C is a code if and only if for every u € CT, u®
has a single C-factorization.

3. ONE-RELATION LANGUAGES

Given a language L in A*. Let ¥ be an alphabet with the same cardinality as L. A one-to-one mapping from
> onto L is called a labelling of L, denoted as™: ¥ — L. This mapping is extended in the canonical morphism
from (X°°,) over (L°,-), where - denotes the concatenation operation. Thus each L-factorization of a word in
A is presented by a word in 3°°. By abuse of language, the subsets of %°° are called languages of factorizations.
For a language C' C ¥, we denote C' = {Z | z € C}.

Let z and y two words in X°° such that & = ¢, we write x = y that is called a relation in X*°. A relation
x = y is called nontrivial if x # y. A nontrivial relation x = y is called minimal if for all nonempty proper
prefix 2’ of 2 and for all nonempty proper prefix y’ of y, we have z’ 2 y'. We denote by E(L) and Ey,in(L) the
set of nontrivial relations and minimal relations, respectively.
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When the language L is finite, the sets Epin(L) and E(L) can be easily computed by using domino graphs
(see [3]) or finite automata (see [10], page 446). In order to compute easily with the examples, we write a
program in Java to construct the domino graph of finite language. Source code is available online!.

An equivalence relation R on ¥ is called a congruence if (z,y) € R and u,v € £ imply (uzv,uyv) € R.

For a pair (u,v) € £°° x X*°, we denote by Pref(u,v) = Pref(u) x Pref(v). Let R C ¥ x X°°, we define
Pref(R) = U, . er Pref(u, v) and the adherence of R is defined by (see [11]):

Adh(R) = {(z,y) € X x X* | Pref(z,y) C Pref(R)}

A relation R is closed (topologically) if Adh(R) C R.
Proposition 3.1. The relation =2 is a closed congruence.

Proof. According to definition, the relation = is a congruence. Moreover, if

(z,y) = (xow1 ..., Yoy1-..) € Adh(=)

with all z;,y; € X, then Pref(x,y) C Pref(2). Therefore, for all integer ¢ > 0, there exist u;,v; € 3 satisfying

To.. Til; = Yo .. YiV; for all i > 0.
Setting
_{xox if |20 ... &| < 9o ... il
Pi=19 . . .
Yo-..-Y; otherwise.
Then = and § have an infinity of common prefixes: pg, p1,.... Hence we have T = gy, that is x = y. Thus the
relation 22 is closed. O

Motivated by this fact, we introduce the following notion.

Definition 3.2. A language L = L\ LL* C A7 is a one-relation language if there is a pair (u,v) € X7 x XT,
u # v such that 2 is the smallest closed congruence relation on £°° which contains (u,v). The relation u = v
is called the basic relation of L.

Regarding the words length, there is only one basic relation up to symmetry, in a given one-relation language.
Furthermore, this basic relation must be minimal.
The following examples show the variety of the class of one-relation languages.

Example 3.3. Consider the language L = {a,ab, bc, c}, the alphabet ¥ = {0, 1,2,3}, and the labelling {0 =
a, 1 =ab, 2 =bec, 3 =c}. L has only one minimal relation 02 = 13. Thus the language L is a one-relation
language.

Example 3.4. Consider the language L = {a, ab, ba}, the alphabet > = {0, 1,2}, and the labelling {0 = a, 1 =
ab, 2 = ba}. The set of minimal relations of L is exactly the following system:

l

02" 2 1"0 forn=1,2,...
02¥ = 1¢

Thttps://github.com/tranvinhduc/dominograph
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~ ~

The shortest minimal relation of L is 02 = 10. From this relation, we get 022 = 110 by applying the rewriting
rule

022 = 102 = 110;
and by applying the rewriting rule several times, we obtain

02" = 1"0, forn=1,2,....

~

By adherence, we get the infinitary relation 02 = 1¢. Thus every relations of L are obtained from this shortest
relation by rewriting or by adherence. Thus L is one-relation language with the basic relation 02 = 10.

Example 3.5. Consider L = {a, ab, baba} and the alphabet ¥ = {0,1,2}. The set of minimal relations of L is
exactly the following system:

02" =~ (11)"0 forn=1,2,...
02v = 1¢
02¢ = 1(11)™02¥ form =0,1,....

We can verify that the relations 02" = (11)"0 and 02“ = 1% are obtained from the relation 02 = 110 by
rewriting or by closure by adherence. Moreover, for any m > 0, we have

02¢ = 1% = 1(11)™1¥ = 1(11)"02%.

Thus L is a one-relation language where the basic relation is 02 = 110.
It is noticed that a one-relation language is not a code as the basic relation v = wv is such that v and v
are finite words. If the language L has only one relation w = w’ with w,w’ € 3% such that all relations are

obtained from this relation by rewriting, then L is a code. In this case, the problem was solved (see [5]).
We denote by First(x) and Last(x), respectively, the first and the last letter of a nonempty word x.

Lemma 3.6. Let L be a one-relation language. Then the basic relation of L is not in the form uv = vu with
u,v € X*.
Proof. Assume the contrary, that L is a one-relation language where the basic relation is uv = ovu. By

Lemma 2.2, two words % and © have the same primitive root. Thus there are two positive integers p and q
such that uP 2 v?. By definition of the one-relation languages, the pair (u?,v9) is in the smallest congruence
containing (uv, vu). Thus u? contains the factor uv or the factor vu, this mean that there are two words z,y € X*
such that u? = zuvy or uP = xvuy.

— If wP = zuvy then uu? = uzuvy = vPu = zuvyu. Since |zu| = |uz|, we have uvy = vyu. It follows that
First(u) = First(v), which conflicts the fact that the relation basic uv 2 vu is minimal.

— If w? = zvuy then wuP = uzvuy = uPu = zvuyu. Thus we have uaxv = zvu. It follows that Last(u) =
Last(v), which conflicts again the minimality of the basic relation uv = wvu.

In both cases we obtain a contradiction. O

Lemma 3.7. A one-relation language can not contain two words which commute.

Proof. Assume the contrary, that there is a one-relation language L contains two words 0 and 1 such that
01 = 10. Regarding the word length, the basic relation of L must be 01 = 10, which contradicts Lemma 3.6. [
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4. GENERATORS AND CODES

From this section to the end of this paper, we make the assumption: L is a language such that LT is the
greatest generator of L* and L is in one-to-one mapping with the alphabet 3.

Note that this assumption is satisfied by some interesting cases, for example the case where L* is an w-power
of a finite language (see [9] and [7]).

We denote by Amby (L) the set of w-words in ¢ such that the images of these w-words in A have at least
two L-factorizations. That is,

Ambx (L) = {z € ¥ | Z has at least two L-factorizations}
={zxeX¥¥|IyeX” r>=yandx #y}.

According to Proposition 2.7, the language L is a code if and only if the set Amby (L) has no periodic words.
Lemma 4.1. Let C C SF such that C is a generator of L* and let w € $%. If w ¢ Ambs (L), then w € C¥.

Proof. Since Cisa generator of L*, it follows that for each w € X¢ there is an w-word w’ € C*¥ such that
w =2 w. If wé¢ Ambs (L) then w = w’. So w € C¥. O

A language P C 3% is a prefiz code if no word in P is a proper prefix of another word in P.

Lemma 4.2. Let C C X% such that the language C is a code generator of L¥. Then the language C is a prefix
code over X.

Proof. Assume the contrary that there exist two nonempty words u,v € ¥+ such that {u,uv} C C. Since C
is a generator of L“, there exists w € C* such that (vu)¥ = w. Then u(vu)® = (wv)¥ = ww. As Wv # 4,

the periodic word (uv)“ has two factorizations on C: one starts by @ and the other by wv. According to

Proposition 2.7, C is not a code. O
We say that two words u,v € X1 are incompatibles if there exist z,y € ¥ such that the relation uz = vy
is minimal.

Remark 4.3. By the minimality of relation ux = vy, two incompatible words v and v must have no common
prefix.

Let X C 3°°. We denote by Pref,(z) = Pref(x) \ {¢}.

Lemma 4.4. Let C C X such that C is a code generator of L*. Let u and v be two incompatible words. Then
for all m € ¥*, the set mPref,.({u,v}) N C is the empty set or a singleton.

Proof. By Lemma 4.2, the language C' is a prefix code. For each m € ¥* each set of mPref,(u) N C and
mPref,(v) N C is either the empty set or a singleton. Therefore, it is sufficient to show that mPref,(u) = @ or
mPref, (v) = 0.

Assume the contrary that there exist p € Pref,(u) and ¢ € Pref,(v) such that {mp,mq} C C. As two words

~

u and v are incompatible, there exist z,y € &1 such that pr = gy is a minimal. Since C is a generator of L,
the infinite words (#)“ has a ultimately periodic C-factorization, that is there exist z € C* and ¢ € CT such

~

that ¥ = 2t*. According to Lemma 2.5, there are i, > 0 such that 'z = 2t/. Now we have

(mpzt?)? = (mpxa'™12)
= (maya'™'2)” = mq(yz' " zmq)”.

Since C is a generator of L“ there exists w € C* such that

(yz'~tzmq)¥ = w.
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Thus we have

(mpzt))¥ = (mg)w.
—_~ W

We recall that C is a code and that {mp, mq} C C. If mp # pq then the infinite periodic word (mpzt7) has

~ ~

two Cv'—fauctorizautions7 which contradicts Proposition 2.7. If mp = mgq then p = ¢, which contradicts the fact

~

that pr = ¢y is minimal. This completes the proof. O
Here is a corollary of Lemma 4.4.

Corollary 4.5. Let C C X% such that C is a code generator of L¥. Let u and v be two incompatible words.
Then for all m € ¥*, there exists z € {u,v} such that

mPref,(z) N C = 0.

Proof. By Lemma 4.4, we have mPref, (u) N C = 0 or mPref,(v) NC = 0. O

Proposition 4.6. Let ({u;,v;})i>0 be an infinite sequence of pairs of incompatible words. If

o0
Ambz(L) n H{ui7v¢} =10
i=0
where H;’io X, represent the concatenation of languages X;, then L* has no code generator.

Proof. Assume that there exists C C X+ such that C is a code generator of L“. By induction, we build an
infinite sequence (z;);>0 of words such that: for all i > 0, we have

Z; € {ui,vi}
{Pref*(zo...zi) nc =1. (4.1)

Indeed, according to Corollary 4.5, there exists zg € {ug,vo} such that
Pref, (z0) NC = 0.

Now assume that we have the sequence (zp,...,z,—1) which verifies the condition (4.1). According to
Corollary 4.5, there exists z,, € {uy,v,} such that

20 ... 2n—1Prefi(z,) NC =10
and by induction hypothesis we have
Pref.(z0...2,—1)NC = 0.

Then z,. .., 2z, verifies the condition (4.1).
Consider the w-word

W=2021...2n... ¢ Ambx(L),

according to Lemma 4.1, we have w € C*. However, by above construction we have Pref,(w) N C = (). This is
a contradiction. O
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By applying Proposition 4.6 for the infinite sequence of pair of incompatible words ({w, v}, {u,v},...), we
have.

Proposition 4.7. Let u and v be two incompatible words. If
Ambs (L) N {u,v}* =0,

then L¥ has no code generator.
Example 4.8. Let L = {a,ab,be,c} and X = {0,1,2,3}. The language L has only one minimal relation 02 =
13. Then Ambx (L) = ¥*{02,13}3“. We have

Ambs (L) N {0,1} =1.

As two words 0, 1 are incompatibles, according to Proposition 4.7, L“ has no code generator.

We say that two words u,v € X7 are oo-incompatibles if there exists x,y € X1 U X% such that the relation
ux = vy is minimal.

Remark 4.9. If two words u and v are incompatible, they are co-incompatible.

Lemma 4.10. Let C C X% such that C is an w-code generator of LY. Let u and v be two oco-incompatible
words. Then for all m € ¥*, the set mPref, ({u,v}) N C is the empty set or a singleton.

Proof. By Lemma 4.2, the language C is a prefix code. For each m € ¥*, each set of mPref,(u) N C’
mPref,(v) N C is either the empty set or a singleton. Therefore, it is sufficient to show that mPref,(u) =
mPref, (v) = 0.

Assume the contrary that there exist p € Pref,(u) and ¢ € Pref,(v) such that {mp,mq} C C. As two words
u and v are oco-incompatible, there exist x,y € 3% such that pr = gy is a minimal relation. Then we have

~

(mp)x = (mq)y. There are two cases:

— If mip # mgq, then C is not an w-code generator of L“;
— If mp = mgq, that is mp = mgq, then p = ¢ which contradicts the minimality of the relation px = qy.

In both cases we obtain a contradiction. O
The proof of following results is similar to the case of incompatible words.

Proposition 4.11. Let ({u;,v;})i>0 be an infinite sequence of pairs of co-incompatible words. If
Ambs (L) N H{uz,vz} =0

then L* has no w-code generator.

Proposition 4.12. Let u and v be two co-incompatible words. If
Ambs (L) N {u,v}¥ =10

then L* has no w-code generator.

Example 4.13. Let L = {a,ab,b?} be a suffix code and ¥ = {0,1,2}. The language L has only one minimal
relation 02¢ = 12, Thus Ambs (L) = X*{02¥,12%}. We have therefore Ambyx (L) N{0,1}* = 0. According to
Proposition 4.12, the w-language L“ has no w-code generator.
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5. PROOF OF THEOREM 1.1

~

Recall that L is a one-relation language with the basic relation u = v. Assume that there exists C' C ¥t
such that C' is an w-code generator of L“. According to Theorem 1.2, we consider two cases:

Case 1 (covers forms i and iii in Thm. 1.2): v = 0"w2 and v = 10" where w € ¥* and k,n > 1.
Since 0¥ ¢ Ambx (L), there exists an integer ¢ > 0 such that

o‘oeC (5.1)
It follows from the basic relation 0"w2 =2 10" that
o"(w2)? = 1Mo"  for j=1,2,....
Thus for each j > 1, two words 0 and 17 are incompatible. Combining Lemma 4.4 and (5.1) gives
0‘Pref, ({0,1%}) N C = 0.
Then

Pref, (0°1) N C = 0. (5.2)

We show that 1 is not a prefix of w. Assume the contrary that w = 1w’ for some w’ € ¥*. Thus 071 and 1%0
are both prefix of 1¥07. According to Lemma 2.3, two words 0 and 1 commute, which contradicts Lemma 3.7.
Thus we have

0“172% N Ambx (L) = 0.

It follows from Lemma 4.1 and (5.2) that for each integer p > 0, there exists an integer ¢ > 0 such that
0°1P29 € C. Consequently, C' is infinite.

Case 2 (covers forms ii and iv in Thm. 1.2): u = 0”2 and v = (10™)k0" where k,m,n > 1.
Since 0¥ ¢ Ambs (L), there exists an integer ¢ > 0 such that

ofoeC (5:3)
It follows from the basic relation 0”2 =2 (10™)*0" that
om2 = (10™)Mo" for j=1,2,....

Thus for each word x € Pref,((10™)%“), the words 0 and z are incompatible. Combining Lemma 4.4 and (5.3),
gives

0Pref, ({0, (10™)*}) N C = o0‘0.
Then

Pref, (0°(10™)“) N C = (. (5.4)
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FIGURE 1. 2 € OVL(u,v) and (y, z) € Border(u,v).

Since m > 1, we get
0f(10™)F1% N Ambs (L) = 0.

It follows from Lemma 4.1 and (5.4) that for each integer p > 0, there exists an integer ¢ > 1 such that
0f(10™)P19 € C. Consequently, C is infinite.

6. TECHNICAL LEMMAS

In this section, we establish the technical lemmas which we need to prove Theorem 1.2 in the following
section.

Let u and v be two non-empty words. We denote by OVL(u,v) the set of overlapping words of the words u
with the word v :

OVL(u,v) = {z € % |u =2z, v=yz for some y,z € L1}.
A pair (y,2) € X7 x X7T is a border of the pair of words (u,v) if there is a word x € OVL(u,v) such that
U=z and v = yx.

We denote by Border(u,v) the set of borders of the pair (u,v). This is illustrated in Figure 1.
Note that these notations are not symetric.

Example 6.1. Let u = 0102 and v = 1010. We have

OVL(u,v) = {010, 0}, Border(u, v)

v (1,2),(101,102)},
OVL(v,u) = 0, Border (v, u)

={
=0
Lemma 6.2. Let L be a one-relation language where u = v is the basic relation. The set of relations of L is
exactly M7 where M# is the smallest congruence containing

M = (g,u) - B* - (v,e) U (e,u) - B¥,
with

B= U Border(z,y).
(z,y)e{u,v}?

Proof. First, we show the inclusion M# C = . If B = (), the proof is immediate. Assume that B # (. We show
that for each (y, z) € B, we have

uz = yo. (6.1)
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We verify (6.1) in four cases:

(1) If (y, z) € Border(u,u). By definition, there exists 2 € X1 such that u = yx = xz. We have thus uz = yzz =
yu yv.

(2) If (y,2) € Border(u,v). By definition, there exists € ¥* such that v = yx and u = zz. We have thus
Uz vz =yYyxrz =yu = yYo.

(3) If (y,2) € Border(v,u). By definition, there exists x € ¥T such that v = yzr and v = xz. We have thus
uz = yrz = yo.

(4) If (y, z) € Border(v,v). By definition, there exists # € X1 such that v = yz = xz. We have thus uz =~ vz
yrz = yo.

1%

<

12

Now we consider an infinite sequence of borners in B:
(yla Zl)v (yQa Z2)7 DR
By (6.1), we have uz; = y;v for i =1,2,.... Thus for any positive integer n, we have

(y1v)2223 ... 20

1%

(uz1)zg...2n

> (yru)2923...2n = y1(uz2)z3... 2,
= Y1 .- Yn—1Yn0.

Since 2 is closed (by adherence), we obtain
uUz122 ... = Y1y2....

Thus M C =. Since 2 is a congruence, we have M# C >~
Now we show = C M#. It is clear that the congruence M# is closed. As (u,v) € M#, by definition of
one-relation language, we have the inclusion. O

We denote by LB(u,v) the first projection of Border(u, v). By Lemma 6.2, we have

~

Lemma 6.3. Let L be a one-relation language where the basic relation is u = v. We have
Ambs (L) = S*{u, v} U * (LB(u, w) ULB(v,v) ULB(u, v) ULB(u, u)) :

If OVL(u,v) # 0 then OVL(u,v) has a unique greatest (by the length) element which will denote by O, .,
and LB(u, v) has a unique smallest element which will denote by b, ,. We have thus

v = bu,vOu,v-
Example 6.4. Let © = 0102 and v = 1010. We have

OVL(u,v) = {010, 0}, LB(u,v) = {1,101},
Ou.s = 010, by = 1.

For a word u € ¥°°, we denote by Alph(u) the set of letters of ¥ appearing in u.
Lemma 6.5. Let u € 1. For any y € LB(u, u), we have Alph(y) = Alph(u).
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Proof. For any y € LB(u,u), there exist two non-empty word x and z such that v = zz = yz. By Lemma 2.1,
there exist two words «, 8 and an integer k such that x = (aB8)*a, y = aB, and z = Ba. Thus Alph(u) =
Alph(af) = Alph(y). O

Lemma 6.6. For any word u € ¥%, we have (LB(u,u)) C uX®.

Proof. Tf LB(u,u) = (), the claim is trivial. Assume LB(u,u) # 0. By 6.1, for any y € LB(u,u), there exists a
word z such that uz = yu. By induction, for any sequence y1,yo, - -- € LB(u,u), there are 21, 29, ... such that

Y1Y2 - - - YpUh = U2Z122 - - . Zn, forn=1,2,....
By adhrence, we have
YY2- - =UZ122. ...

Thus (LB(u,u))” C uX®. O
Lemma 6.7. Let u,v € 7. If OVL(u,v) # 0 then for any w € LB(u,v) \ {by.»}, we have Alph(w) = Alph(v).
Proof. By definition, we have

OVL(u,v) = {Oyu} UOVL(Oy 4, Oy v)-
Thus

LB(1, ) = {bu0} U {buu LB(Ous Ous):
By Lemma 6.5, for any y € LB(Oy v, Oy.»), we have Alph(y) = Alph(O,,,); we obtain thus

Alph(by,vy) = Alph(by,,Ou,) = Alph(u),

which completes the proof. O

Lemma 6.8. Let 0,1 be two distinct letters and let x be a word. Then
x0 ¢ Fact({z1,1}*).

Proof. We denote by |x|; the number of letters 1 in z. Let y € Fact({z1,1}*) and |y| = |z| + 1, we have
lyls > |z|s = |%0];. Thus 0 ¢ Fact({z1,1}*). O

7. PROOF OF THEOREM 1.2

Recall that L is a one-relation language where the basic relation is u = v. We set 0 = First(u) and

~

1 = First(v). Two letters 0 and 1 are distinct because the relation v = v is minimal. Since the roles of u and
v are symmetric, we consider three cases.

7.1. When OVL(u,v) = 0 and OVL(v,u) =0

We prove that L“ has no code generator in this case. Indeed, we have LB(u,v) = LB(v,u) = (). By Lemma 6.3,
we have

Ambs(L) = *{u, v}2% U £* (LB(u, u) U LB(v, v))“ . (7.1)
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As the roles of u and v are symmetric, we consider three cases.

Case 1: u ¢ {0,1}" and v ¢ {0,1} 7.
By Lemma 6.5, we have

LB(u,u)N{0,1}* =0 and LB(v,v)Nn{0,1}" =0.

By (7.1), we have Ambs (L) N{0,1}* = . Since two words 0 and 1 are incompatible, it follows from Proposi-
tion 4.7 that L“ has no code generator.

Case 2: w € {0,1}" and v ¢ {0,1}7.
By (7.1) we have

Ambs (L) N {0,1}* = {0, 1}*u{0, 1}* U {0, 1}* (LB(u, u))*

={0,1}*uf{0,1}* (by Lem. 6.6)
Since OVL(v,u) = 0 and First(v) = 1, we have Last(u) = 0. Because |u| > 1, we can write u = 020 with
z € {0,1}*. The basic relation becomes 020 = v. Then we have

Ozv = 02020 = vz0.
Since First(v) = 1, it follows that two words 0z1 and 1 are incompatible. By Lemma 6.8, we have
u = 020 ¢ Fact({0z1, 1}*).
Thus Ambs (L) N {021,1}* = (). By the Proposition 4.7, L* has no code generator.

Case 3: w € {0,1}" and v € {0,1} 7.
By Lemma 2.4, two words 0 and 1 commute. This contradicts Lemma 3.7.

Example 7.1. The following languages show that there exist one-relation languages where their basic relations
as in Case 1 and Case 2.

1. Let L = {a,ab,bc,c} and ¥ = {0,1,2,3}. The language L is a one-relation language where 02 = 13 is
the basic relation.

2. Let H = {ab,aba,b} and ¥ = {0, 1, 2}. The language H is a one-relation language where the basic relation
is 00 = 12.

7.2. When OVL(u,v) # @ and OVL(v,u) # 0

We prove that L“ has no code generator in this case. The situations are illustrated in Figure 2.
We first prove that

[ul > |Ouw| + |Opul and |v| > |Oyu| + |Opul- (7.2)

Conversely (to obtain a contradiction), suppose |u| < |Oy,p| + |Op.o|. Since |G| = |7], it follows that |v| <
|Ou.v| + |Oy u]- Then the basic relation u = v can be rewritten in the form

uuguz = v1U203,
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@%

(A) [Ouwl + [Ov,ul > |u] B) |Ou,v| + |Ou,ul < |ul

u
(€) [Ouwl| + |Ov,u| = |ul

FIGURE 2. Situations occur when OVL(u,v) # 0 and OVL(v,u) # 0.

where u;, v; € ¥*; u1ug = vv3 = Oy »; and ugus = v1v2 = O, ,,. Hence
U1v1V9 = v1ULU.

As |ugv1| = |01u1|, we have ujvq = viuy and vy = ug. Since ujv1ve = viujug is a minimal relation, it follows
that ug = vo = € or ujv, = viu; = €. However, if us = vo = ¢ then the basic relation becomes ujv; = viug
which contradicts Lemma 3.6. If uyv1 = viuy = € then O, , = uz = v, a contradiction. We get (7.2).

Now the basic relation can be rewritten of the form

~

zzt = tyx
where z,y,2,t € X1; 2 = O, ,; and t = O, .. Recall that First(z) = 0 and First(¢) = 1. There are three cases:

Case 1: xz € {0,1}" and ty € {0, 1}". )
It follows from Lemma 2.4 that two words 0 and 1 commute. This contradicts Lemma 3.7.

Case 2: vz ¢ {0,1}" and ty ¢ {0,1}+.
By Lemma 6.3, we have

Ambs (L) N {0,1}¥ = 0.
By Proposition 4.7, L“ has no code generator.

Case 3: xz € {0,1}T and ty ¢ {0,1}T.
We first prove that ¢ ¢ {0,1}*. Conversely (to obtain a contradiction), suppose ¢ € {0, 1}*. If Last(t) = 0 then
by Lemma 2.3, two words 0 and 1 commute. Otherwise Last( ) = 1, by minimality of the basic relation, we
have Last(x) = 0; according to Lemma 2.4, two words 0 and 1 commute. Both cases yield a contradiction with
Lemma 3.7.

Now we have ¢ ¢ {0,1}T, then

LB(zzt,z2t) N {0,1}" =0, LB(tyx, tyz) N {0,1}* =0,

LB(zzt, tyx) N {0,1}" =0
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and by Lemma 6.7, we have LB(tyz,xzzt) N {0,1}T = zz. We have thus
Ambs (L) N {0,1}*¥ = {0,1}"(z2)*.
By Lemma 6.8, we have ©20 ¢ Fact({zz1,1}*). As First(z) = 0, we have (zz)*¥ ¢ Suff({zz1, 1}*). Therefore
Ambs(L) N {xz1,1}¥ =10
Since First(t) = 1, two words 221 and 1 are incompatible. According to Lemma 4.7, L“ has no code generator.

The following example show that there exist languages as in Case 2.

Example 7.2. Let L = {a,aba,bac,cab} and let ¥ = {0,1,2,3}. It can be verified that L is a one-relation

~

language where the basic relation is 021 = 130.

7.3. When OVL(u,v) # 0 and OVL(v,u) = 0
We deal this case by some claims which are proven later.

Claim 7.3. Assume that the basic relation of L is of the form

Ozz = 1yOz (7.3)
where z € X1 z,y € *; and 0x = Oy, is the greatest (by the length) element of OVL(u,v). If x & 0* or p(1y) &
10*, then L¥ has no code generator.

Now there remain the cases: u = 0"z and v = (10’”)’“0” with k > 1,m >0, n > 1, and 0™ = O, ,. It is to be
noticed that Last(z) ¢ {0,1} as OVL(v,u) = 0.

Claim 7.4. Assume that the basic relation of L is of the form
0"z = (10™)kon
with 0" = O, and Last(z) ¢ {0,1}.
If the parameters z, k, m,n of the basic relation satisfies one of two following conditions:

1. k>2,m>0, and n > 2;
2. 0z| >2,k>1,m>1, and n > 1.

Then L has no code generator.
According to Claims 7.3 and 7.4, there remains to prove that L has always a code generator in the cases
where the basic relation is in the form

0"y o (1O7n)k:0n

with

(i) k=1,m=0,n>1, and z € ¥*2;
(ii)) k=1,m>1,n>1, and z = 2;

(iii) k>1,m=0,n=1, and z € ¥*2; or
(iv) k>1,m>1,n=1, and z = 2.

Claim 7.5 (Case i). Assume that the basic relation of L is of the form

0"z = 10"
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withn > 1 and z € £*2. Then C is an infinite w-code generator of L, where
n—1 ) *
C={0} U (U 10’) =\ {0,1}).
i=0
Claim 7.6 (Case ii). Assume that the basic relation of L is of the form

0"2 = 100"

withm > 1 and n > 1. Then C is an infinite w-code generator of L, where

C=1{0,2}uU (Ul 10’”0i> <WU 1042\ {0,2}) U Dl 102 U X\ {0, 1,2}) .

i=0
Claim 7.7 (Case iii). Assume that the basic relation of L is of the form
0z = 1*0

with z € £*2 and k > 1. Then C is an infinite code generator of L¥, where

k—1

C=|Jtou 1 (=\{o1}).

i=0
Moreover, L“ has no w-code generator.
Claim 7.8 (Case iv). Assume that the basic relation of L is of the form

02 = (10™)*0

with k > 1 and m > 1. Then C is an infinite code generator of L¥, where

k—1 m—1
C={2} U (J@omou (10m)* ({12} U 1<U oi> (2\{0,2}) U =\ {o, 1,2}).

i=0 i=0
Moreover, L¥ has no w-code generator.

Example 7.9. The following languages show that there exist one-relation languages where their basic relations
as in Cases i-iv.

(i) Let L = {a,ab,ba} and X = {0, 1,2}. The language L is a one-relation language where the basic relation
is 02 = 10. By Claim 7.5, the w-language L“ has an infinite w-code generator C with C =0U 1*2.

(ii) Let H = {a,a®b,ba*} and X = {0,1,2}. It can be verified that H is a one-relation language where the
basic relation is 022 =2 10202. By Claim 7.6, the w-language H* has an infinite w-code generator C with

C = {0,2} U {10%,10%0}*{11, 101, 12, 102}.
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(iii) Let I = {a,ab,baba} and ¥ = {0,1,2}. It can be verified that I is a one-relation language where the

~

basic relation is 02 = 110. By Claim 7.7, the w-language I“ has an infinite code generator C with
C = {0,10} U 1*2.
(iv) Let J = {a,ab,ba®ba®} and ¥ = {0,1,2}. It can be verified that J is a one-relation language where the

~

basic relation is 02 = (100)20. By Claim 7.8, the w-language J* has an infinite code generator C' with
C = {0,1000,2} U (100)*{12,11,101}.

7.8.1. Proof of Claim 7.3

Assume that the basic relation of L is Oxz = 1y0z. First, we prove that
vz ¢ {0,1}7". (7.4)
Conversely (to obtain a contradiction), suppose x € {0,1}* and z € {0,1}". By minimality of relation 0zz =
1y0x, we have Last(z) # Last(0z).
— If Last(0z) = 0 and Last(z) = 1, then 1 € OVL(v, u), this contradicts OVL(v, u) = 0.
— Otherwise Last(0z) = 1 and Last(z) = 0, then we can rewrite the basic relation in the form
0’12’0 = 1y0z'1

—_~—

where 2’1 = 2 and 20 = z. Thus 12’0 and 02’1 are both suffix of the word 02/12/0 = 1y0z’1. By
Lemma 2.3, two words 0 and 1 commute. This contradicts Lemma 3.7.

Thus, we get (7.4).

Now, we consider three cases:

Case 1: y ¢ {0,1}*.
Since zz ¢ {0,1}1 and by Lemma 6.3, we have

Ambs (L) N {0,1}* = 0.
According to Proposition 4.7, L“ has no code generator.

The following example shows that there exists one-relation languages with the basic relation as in Case 1.

Example 7.10. Let L = {a,ab,bca,c} and let ¥ = {0,1,2,3}. The language L is one-relation language where
the basic relation is 02 = 130.
Case 2: y € {0,1}* and x ¢ 0*.
First, we show that « ¢ {0,1}". Indeed, if z € {0,1}T then, by Lemma 2.3 and the relation 0zz = 1y0x, two

words 0 and 1 commute, which contradicts Lemma 3.7.
Now, using Lemma 6.3, we have

Ambs (L) N {0,1}* = {0, 1}*(1y)*.
By Lemma 6.8, we have 1y1 ¢ Fact({0, 1y0}*). Thus
Ambs (L) N {0,150}~ = 0.

~

Two words 0 and 1y0 are incompatible as 0xz = 1yOz. By Proposition 4.7, L* has no code generator.
The following example shows that there exists one-relation language with the basic relation as in Case 2.
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Example 7.11. Let L = {ab, abc, bcaba, caba} and let ¥ = {0, 1,2, 3}. It can be verified that L is a one-relation
language where the basic relation is 032 = 1003.

Case 3: y € {0,1}*, p(1y) ¢ 10*, and Oz = 0" with n > 1.

Because xz ¢ {0,1}* we can write z = z0122" where zp; € {0,1}* and 2z’ € ¥*. Now the basic relation is in the
form 0™2;22" = 1y0™. By Lemma 3.7, L cannot contain two words commute, and then by Lemma 2.3, we have
Zo1 € 0*. Thus the basic relation can be written in the form

omok2z = 1y0" (7.5)
with £ > 0.
By Lemma 6.3, we have
Ambs (L) N {0,1}* = {0,1}*1y50™{0, 1}* U {0,1}* (LB(0"0%22', 1y0™) ULB(1y0", 1yo"))“ . (7.6)

Consider two subcases:

Subcase 3.1: OVL(1y0™, 1y0™) # (.
That is, there are f € {0,1}* and p € {0, 1}* such that 1y0™ = 1pf1p. The basic relation (7.5) becomes

omok2z =~ 1pfip.
And we have
omok2z f1p =~ 1pfipfip = 1pforokaz’.

Thus two words 0 and 1pf0 are incompatible.
By Lemma 6.8, we have 1pf1 ¢ Fact({0, 1pf0}¥), then 1y ¢ Fact({0, 1pf0}*). Thus

Ambs (L) N {0,1pfo} = 0.
By Proposition 4.7, L“ has no code generator.

Subcase 3.2: OVL(1y0™, 1y0™) = (.
From the equation (7.6), we have

Ambs (L) N {0,1}* = {0,1}*1y0"{0, 1}* U {0, 1}*{1y, 190, - , 1y0" 1},
From the basic relation (7.5), we have
omok22/0%22" = 130"0%22 = 1y1y0™.
Then two words 0 and 1yl are incompatible. Now we show that
Ambs (L) N {0,1y1}* =0 (7.7)

and thus, by Proposition 4.7, L* has no code generator.
To obtain (7.7), it is sufficient to verify that

1y0™ ¢ Fact({0, 1y1}~) (7.8)
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and

(D 1yoi> N Suff ({0, 1y1}) = 0. (7.9)

=0

If 1y0™ € Fact({0, 1y1}*) then there are a word p € Pref(1y) \ {1y}, a word s € Suff(1y), and an integer
m > 0 such that

1y0"™ = s10™p.
But since OVL(1y0™, 1y0™) = (), it follows that p = . Hence
1y0™ € Suff(1y)10™.

But this show that p(1y) € 10*, a contradiction. We get (7.8).
If

n—1 w
(U 1y0i> N Suff({0,1y1}*) =0
=0

then there exists a word s € Suff(1y1) \ {1y1} and two sequences (i;), (k;) of integers such that
1901 1y0% ... = soF11y10F2 .. ..
Let £ = |1y|; — |s|1 > 0. We have

sl + 1(1y2) s = Isls + €+ (1))
= [1yls + (1)l = (1) .

Observe, further, that: if two words a1 and 1 are both prefix of a same word and |a|; = |8]1, then a = 5. We
have thus

1y0i1 o 1y0i£+1 = sOk1 :]_y]_Ok2 e 1y10}“.
Thus
1y0%+1 ¢ Suﬁ'(ly)loke.

But this show that p(1y) € 10*, a contradiction. We get (7.9).

Example 7.12 (for Subcase 3.1). Let L = {a,ab,baaba} and let ¥ = {0,1,2}. It can be verified that L is a
one-relation language where the basic relation is 02 = 1010.

Example 7.13 (for Subcase 3.2). Let L = {a,ab,babaa} and let ¥ = {0,1,2}. It can be verified that L is a
one-relation language where the basic relation is 02 = 1100.

7.8.2. Proof of Claim 7.4

Assume that the basic relation of L is of the form

0"z = (10™)ko" (7.10)
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with 0" = O,,, and Last(z) ¢ {0, 1}. We will show that L“ has no code generator in both following cases:
Case 1: k>2,m >0, and n > 2.
By Lemma 6.3, we have
n—1 ‘ i
Ambs; (L) N {0,1}* = {0,1}*(10™)*0"{0,1}* U {0, 1}* (U (1om)kol>
i=0
From the relation (7.10), it follows that
0"20z = (10™)*0"0z = (10™)*0(10™)*0".

Hence two words 0 and (10™)¥01 are incompatible.
Because £ > 2 and n > 2, we have

(10™)*0™ ¢ Fact ({0, (10™)"01}%).
It can be verified that
n—1 d
Suff ({o, (10™)F01}*) N (U (1om)’foi> = 0.
=0
Thus we have
Ambs (L) N {0, (10™)*01}¥ = 0.

By Proposition 4.7, L“ has no code generator.

Example 7.14 (for Case 1). Let L = {a,aab,baabaa} and let ¥ = {0,1,2}. It can be verified that L is a
one-relation language where the basic relation is 002 = 1100.

Case 2: |z| > 2,k > 1,and n > 1.
As Oy, = 0", we have First(z) # 0. Since L cannot contains two words commute, it follows from Lemma 2.3
that First(z) # 1. Thus the basic relation can be written in the form

o"2z = (10™)kon

where 2’ # ¢ and Last(z’) ¢ {0,1}, and 2 € ¥\ {0,1}. Then two words 0”2 and 1 are incompatible.
By Lemma 6.3, we have

Ambs(L) = ¥* {0"22/, (10™)*0" } £¥ U E* (LB (0"22/,0"22) ULB (022, (10™)F0"))“ . (7.11)
Thus we have
Ambs, (L) N {0"2,1}* C ¥*{0"22'}3v. (7.12)

If Ambs (L) N {0"2,1}* = (), then by Proposition 4.7, L* has no code generator. We now assume that
Ambs (L) N {0™2,1}* # (. This mean that

0"22" € Fact({0"2,1}¥).
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Since Last(z’) ¢ {0, 1}, it follow that z’ € £*0™2. Thus the basic relation can be written in the form
0"2f0"2 =~ (10™)*o"
where f € Pref(z’). We have:
om2f(10™)ko" =~ onafon2 o2 (10™)ko" for2.

Thus two words 0"2f1 and 1 are incompatible.
By Lemma 6.8, we have 0"2f0 ¢ Fact({0"2f1, 1}*). Therefore

0"2f0"2 ¢ Fact({0™2f1,1}%).
Thus
Ambs(L)n{0"2f1,1}¥ = 0.

By Proposition 4.7, L“ has no code generator.

Example 7.15 (for Case 2). 1. Let L = {ab,abc,b, caba} and ¥ = {0,1,2,3}. It can be verified that L is a
one-relation language where that basic relation is 032 = 100.
2. Let L' = {a,abab,ba®} and ¥ = {0, 1,2}. It can be verified that L’ is a one-relation language where the
basic relation is 0202 = 100.

7.8.3. Proof of Claim 7.5

Assume that the basic relation of L is of the form
0"z = 10"

with n > 1 and z € £*2. We will show that C is an w-code generator of L“, where

0={0} U (|J 105\ {0.1)).

=0

To prove that Cisa generator of L*, we show first assertion: for every x € X¢ \ CX¢| there exists y € CX%
such that x = y. Indeed, direct computation show that

Y\ CXY = (nol 101 U (Dl 10%)*10"%%,
i=0 i=0
For each z € (U~ 10%)*, we write
T =10"10% ...
where n > i; > 0. Then we have

10110% ... = 020202 ... € OX¥.
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And for each z € (J—, 107)*10"%%, we write
r =10"...10"10"w
where p > 0, n > 7; > 0 and w € £¥. We have thus
10" ...10%10™w = 0"20"z...2077w € OX¥.

Thus we have L¥ C égw According to Lemma 2.6, we have L* C C¥. Thus C* = L¥.
Now we show that C' is an w-code. Indeed, it is clear that C' is a prefix code. Observe, further, that

n—1
10" ¢ Fact(C%) and (U 10")* N Suff(C*) = 0.
i=0

Hence we have R(L) N (C* x C*) = (). Thus each w-word in C* has only one factorization on C. The proof is
completed.

7.8.4. Proof of Claim 7.6

Assume that the basic relation of L is of the form
o"2 =~ 10™o"

with m > 1 and n > 1. We will show that C is an w-code generator of L, where

C ={0,2}U <nU 1omoi> <mU 10°(2\ {0,2}) U no 10’2 UX\ {o, 1,2}) .
i=0 =0

=0

To prove that Cisa generator of L, we show first assertion: for each x € ¢ \ CX%, there exists y € CX%
such that x = y. Indeed, direct computation show that

n—1 w n—1 *
Y@\ CnY = (U 10"‘01') U (U 10%") (10™0™ U 10"0*2)2¥.
1=0 1=0

For every x € (U::Ol 10m0i)w, we can write
r =10"0110M0" . ..
where n > i; > 0, we have
10™07110™0% ... = 0"201202... € OX¥,
For every z € (U?:_Ol 10mO"’)* 10™0"X¥, we write

x = 10"0" ...10™0%10™0 w
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with p > 0, n > ¢; > 0, and w € ¥*, we have
100" ... 1007 10™0 " w = 0"2012...20%w € CL¥.
For every z € (U::Ol 10m0i)* 10"0*2X¢, we write
= 100" ...10™0%10"092w
where ¢ > 0, p >0, n >14; >0, and w € ¥. If ¢ > m, we have
z =10M0" ... 10™0%10"0™0¢ 2w = 0720%12...20%209 M2w € C'E¥,
if ¢ < m, we have

10™0% ... 10™0% (10709)2w = 10™0% ...10™0% (1070™)2w
10™0% ... 10™0%107(10™0™)w
€ (10™0" ...10™0%)1011%¥ C O%¥

Il

that prove the assertion. Thus L* C CL. According to Lemma 2.6, we have a L“ C C«. Thus C¥ = L¥.
Now we prove that C is an w-code. Indeed, it is clear that C is a prefix code. Observe, further, that

n—1 w
<U 1omoi> N Suff(C) = 0,
=0

and if there exists v € ¥* and w € ¥¥ such that u10™0"w € C¥, then ul € C*. We have thus R(L) N
(C*¥ x C¥) = (). Thus each w-word in C* has only one factorization on C. The proof is completed.

7.8.5. Proof of Claim 7.7

Assume that the basic relation of L is of the form
0z = 10

with z € £*2 and k > 1. We will show that C is a code generator of LY, where

k—1
c=Jtou 1" (=\{o,1}).

i=0

To prove that Cisa generator of L*, we show first assertion: for every x € X% \ C¥¢, there exists y € CX%
such that x = y. Indeed, direct computation show that

Y@\ O¥® =1% U 1*1Foxw,
For x = 1%, we have

1¥ =~ 0z¥ € O%¥,
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and for each z € 1*1F0X¥, we can write
z = 191P* 0w with p>0,k>¢>0, and w € X¢
we have then
191PR 0 = 1902Pw € OX¥.

Thus we have L¥ C agw By Lemma 2.6, we have L“ C C*. Thus C¥ = L¥.

Now we prove that C'is a code. Indeed, it is clear that C'is a prefix code. Moreover we have 1¥0 ¢ Fact(C™T), we
obtain R(L) N (CT x CF) = (). Thus each words in C* has only one factorization on C. The proof is completed.

It is to be noticed that C' is not an w-code because 10z% = 0z* and {0,10} C C.

Now we show that L“ has no w-code generator. Indeed, for every ¢ > 0, we have

02" = 1h0xi 7t = 1F1F 2 = ... = 1R

By passing to adherence, we obtain the relation 0z* = 1%. Thus

102¢ =2 11Y =1 = 02%.

Since k > 1, it follows that 102% = 02z“ is a minimal relation. Thus two words 0 and 10 are oo-incompatible.
Moreover, it is easy to see that

Ambs (L) N {0,1}* = {0, 1}*{1%0}{0, 1}* U {0, 1}*1

Since 1* ¢ Fact({10,0}*) with k > 1, it follows that Ambs(L) N {10,0}* = . By Proposition 4.12, L% has no
w-code generator.

7.8.6. Proof of Claim 7.8

Assume that the basic relation of L is of the form
02 = (10™)*o

with k > 1 and m > 1. We will show that C is a code generator of L“, where

k—1 m—1
C={2yu (J@om™)o u (10m) <{12}u 1 ( U oi> (=\{0,2}) U 2\{0,1,2}).

=0 =0

To prove that C is a generator of L¥, we show first assertion: for every x € ¥¢ \ CX¥, there exists y € CX¥
such that x = y. Indeed, direct computation show that

Y\ 0% = {(10™)“} U (10™)* ({(10™)F0} U 10T2) B
For x = (10™)“, we have

(10™)¥ =~ 02¥ € O%¥.
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For every z € (10™)*(10™)*0%%, we can write z = (10™)9(10™)Pk0w with p > 0,k > ¢ > 0, and w € X*, we
have therefore

(10™)2(10™)Pkow’ = (10™)%02P0w’ € CX¥.
And for every z € (10™)*1072X% we can write
z = (10™)710702w
with ¢ > 0,m > p > 0 and w € X*. We have therefore
(10™)710P02w’ = (10™)710P(10™)* 0w’ € (10™)910P1X% C C'B¥.

Thus L¥ C CL®. By Lemma 2.6, we have L¥ C C*. Thus C¥ = L*.

Now we prove that C' is a code. Indeed, it is clear that C is a prefix code. Moreover, since (10™)*0 ¢ Fact(C™T),
we obtain R(L) N (Ct x CT) = (. This means that every words in C* has only one factorization on C. Hence
C is a code. B

It is to be noticed that that C is not an w-code because 10™02% = 02“ and {0,10™0,2} C C.

Now we show that L“ has no w-code generator. Indeed, for every ¢ > 0, we have

02" = (10™)Fo2i~! = (10™)F(10™)k02i7% = ... = (10™)Fo.
By passing to adherence, we get 02¢ = (10™)“. So
10™02% = 10™(10™)¥ = (10™)¥ = 02“.

Because k > 1, we have 10™02% = 02“ is a minimal relation. Thus two words 0 and 10™0 are co-incompatible.
Moreover, it is easy to see that

Ambs (L) N {0,1}* = {0,1}*{(10™)*0}{0, 1}* U {0, 1}*(10™)*
By Lemma 6.8, we have 10™1 ¢ Fact({10™0,0}*). Hence
Ambs (L) N {10™0,0}* = 0.
By Proposition 4.12, L* has no w-code generator.
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