
RAIRO-Theor. Inf. Appl. 55 (2021) 2 RAIRO - Theoretical Informatics and Applications
https://doi.org/10.1051/ita/2021002 www.rairo-ita.org

ONE-RELATION LANGUAGES AND CODE GENERATORS

Vinh Duc Tran1,* and Igor Litovsky2

Abstract. We investigate the open problem to characterize whether the infinite power of a given
language is generated by an ω-code. In case the given language is a code (i.e. zero-relation language),
the problem was solved. In this work, we solve the problem for the class of one-relation languages.
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1. Introduction

In this paper, we deal with the infinite power (ω-power) of languages. The infinite power of L denoted by
Lω, is the set of infinite concatenations of words in L. A language L having the property that any infinite
word (ω-word) of Lω has a unique infinite factorization in words in L is called an ω-code [12], thus ω-codes
are for infinite concatenation, like usual codes for concatenation. Of course ω-codes are codes, but the converse
does not hold. We investigate the open problem to characterize languages L such that Lω = Gω for some code
or ω-code G. See [4, 5, 8] for partial answers and various approaches. This question is still open even if the
language L is a finite language.

Given a language L, there does not always exist a greatest language M such that Lω = Mω, however it is
“often” the case, if L is a finite language, for example. Whenever such a greatest ω-generator M exists, M is a
semigroup. We know [5] that if this greatest ω-generator is a free semigroup, that is if M = L+ for some code L,
then Lω = Cω for some ω-code C if and only if the language L itself is an ω-code. This means that whenever the
greatest ω-generator is a free semigroup, that is for the class of zero-relation languages, the problem is already
solved. So we consider in this paper, a new class of languages, called one-relation languages.

For each language L = {u0, u1, u2, . . . } ⊆ A+, we consider the alphabet Σ = {0, 1, 2, . . . } which is a labelling
of L, and two words m, m′ in Σ+ ∪ Σω are equivalent, denoted by m ∼= m′, if the corresponding words in
A+ ∪Aω are equal. Thus L is a code if and only if the previous equivalence relation is the identity in Σ+, and
L is an ω-code if and only if the previous equivalence relation is the identity in Σω. Here we consider languages
L having only one relation m ∼= m′ with m 6= m′. Of course, if m ∼= m′, then m1mm2

∼= m1m
′m2, for any

word m1 and m2 (more precisely the relation ∼= is a congruence relation), and if xunz ∼= yvnt for each integer
n, then xuω ∼= yvω (more precisely the relation ∼= is closed by adherence). We say that L is a one-relation
language where m ∼= m′ is the basic relation, if there is “not any other” relation, that is all relations are
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obtained by finite applications of the rewriting rule m→ m′ or by closure by adherence. So we can see the class
of one-relation languages as the simplest class after the class of codes.

The purpose of this paper is to prove the two following results.

Theorem 1.1. Let L be a one-relation language such that L+ is the greatest generator of Lω. Then Lω has no
finite code generator.

Theorem 1.2. Let L be a one-relation language such that L+ is the greatest generator of Lω. Then Lω has a
code generator if and only if the basic relation u ∼= v of L is one of the following forms:

(i) u = 0nw2 and v = 10n with w ∈ Σ∗ and n ≥ 1;
(ii) u = 0n2 and v = 10m0n with m ≥ 1 and n ≥ 1;

(iii) u = 0w2 and v = 1k0 with w ∈ Σ∗ and k ≥ 2;
(iv) u = 02 and v = (10m)k0 with k ≥ 2 and m ≥ 1.

Moreover, Lω has an ω-code generator if and only if the basic relation is one of forms (i) or (ii).

The paper is structured as follows. Section 2 contains the preliminaries. In Section 3, we give the definition
of one-relation language and useful lemmas. In Section 4, we consider some basic results needed in later proofs.
Section 5 is devoted to prove Theorem 1.1. Sections 6 and 7 are devoted to prove Theorem 1.2.

2. Preliminaries

Let A be an alphabet and A∗ (resp. Aω) is the set of all finite (resp. infinite or ω) words. The empty word is
denoted by ε and A+ denotes A∗ \ {ε}. Let x ∈ A∗, we denote by |x| the length of x. The subsets of A∗ (resp.
Aω) are called languages (resp. ω-languages).

We denote by A∞ = A∗ ∪Aω the set of finite or infinite words. We make A∞ a monoid equipping it with the
product defined as:

xy =

{
x, if x ∈ Aω, y ∈ A∞

xy, if x ∈ A∗, y ∈ A∞

for any words x, y ∈ A∞. Clearly, the empty word ε is the identity element of A∞.
A word x ∈ A∞ is called a prefix (resp. factor) of a word y ∈ A∞ if y ∈ xA∞ (resp. y ∈ A∗xA∞); and a

word x ∈ A∞ is suffix of a word or ω-word y if y ∈ A∗x. The language Pref(x) is the set of all prefixes of x. Let
X ⊆ A∞, we define Pref(X) =

⋃
x∈X Pref(x). In a similar manner we define Fact(X) and Suff(X) for the set

of factors and of suffixes.
A word x ∈ A+ is called primitive if x = yn for y ∈ A+ implies n = 1. For a word x ∈ A+, the shortest

y ∈ A+ such that x = yn for some n ≥ 1 is called primitive root of x and is denoted by ρ(x).
Now we formulate, in the form of lemmas, several facts which are useful in the sequel.

Lemma 2.1 (see [10]). Let x ∈ A+ and y, z ∈ A∗. If we have xz = yx, then there exist two words α, β and a
positive integer k such that x = (αβ)kα, y = αβ and z = βα.

Lemma 2.2 (see [10]). Two words u, v ∈ A+ commute, that is uv = vu, if and only if they have the same
primitive root.

Lemma 2.3 (see [1]). Let x, y ∈ A+ and let z, t ∈ {x, y}∗. If xzy and ytx are both prefix or suffix of a same
word, then x and y commute.

Lemma 2.4. If two words x, y satisfy the relation xzy = ytx for some z ∈ {x, y}∗ and t ∈ A∗, then x and y
commute.

Proof. The proof is by induction on |xy|. If x = ε or y = ε, then x and y commute. Assume that Lemma is true
for all x, y where |xy| < n. We prove it for |xy| = n. If |x| = |y| then x = y, so x and y commute. Now, as the



ONE-RELATION LANGUAGES AND CODE GENERATORS 3

role played by x and y is symmetric by mirror, we can assume that |x| < |y|, and then x is a proper prefix of y,
we write y = xx′ with x′ ∈ A+. We have xzxx′ = xx′tx, then zxx′ = x′tx. Since zx ∈ {x, xx′}∗x ⊂ x{x, x′}∗,
it follows that x is a prefix of zx. We set z′ = x−1(zx) ∈ {x, x′}∗. We have thus the relation xz′x′ = x′tx.
Moreover, if x 6= ε, then |xx′| < |xy|. By the induction hypothesis then x and x′ commute. Thus y = xx′ and x
commute.

Lemma 2.5. Let x ∈ A∗ and y, z ∈ A+. We have yω = xzω if and only if there exist two positive integers i
and j such that yix = xzj.

Proof. If yω = xzω then there are a positive integer n and a word t ∈ A∗ such that yn = xt. Therefore we have
yω = (xt)ω = xzω. Thus (tx)ω = zω. Hence there are two positive integers k and j such that (tx)k = zj . We
have

x(tx)k = xzj .

As xt = yn, we have yix = xzj where i = nk.
Conversely, if there exist two positive integers i and j such that yix = xzj , then we have ynix = xznj for

n = 0, 1, 2, . . . . Hence two words yω and xzω has an infinity of common prefixes. Thus yω = xzω.

Given a language L ⊆ A+. We define

Lω = {u0u1 · · · | ∀i ≥ 0, ui ∈ L}

the language of ω-words generated by L. An ω-language of the form Lω is said to be an ω-power. A generator
of an ω-power Lω is a language G ⊆ A+ such that Gω = Lω.

The following lemma is used frequently to prove the equality of two ω-powers.

Lemma 2.6 (see [9]). Let L and R be languages. If Lω ⊆ RLω then Lω ⊆ Rω.

An L-factorization of a word w ∈ A∗ is a finite sequence (w1, . . . , wn) of words of L such that w = w1 . . . wn.
An L-factorization of an ω-word w ∈ Aω is an infinite sequence (w1, w2, . . .) of words of L such that w =
w1w2 . . ..

A language C ⊆ A+ is a code (resp. ω-code) if any word in A∗ (resp. any ω-word in Aω) has at most one
C-factorization.

We now present a characterization of codes based on the factorizations of infinite periodic words.

Proposition 2.7 (see [2]). Let C ⊆ A+ be a language. Then C is a code if and only if for every u ∈ C+, uω

has a single C-factorization.

3. One-relation languages

Given a language L in A∗. Let Σ be an alphabet with the same cardinality as L. A one-to-one mapping from
Σ onto L is called a labelling of L, denoted as˜: Σ→ L. This mapping is extended in the canonical morphism
from (Σ∞, ·) over (L∞, ·), where · denotes the concatenation operation. Thus each L-factorization of a word in
A∞ is presented by a word in Σ∞. By abuse of language, the subsets of Σ∞ are called languages of factorizations.
For a language C ⊆ Σ∞, we denote C̃ = {x̃ | x ∈ C}.

Let x and y two words in Σ∞ such that x̃ = ỹ, we write x ∼= y that is called a relation in Σ∞. A relation
x ∼= y is called nontrivial if x 6= y. A nontrivial relation x ∼= y is called minimal if for all nonempty proper
prefix x′ of x and for all nonempty proper prefix y′ of y, we have x′ 6∼= y′. We denote by E(L) and Emin(L) the
set of nontrivial relations and minimal relations, respectively.
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When the language L is finite, the sets Emin(L) and E(L) can be easily computed by using domino graphs
(see [3]) or finite automata (see [10], page 446). In order to compute easily with the examples, we write a
program in Java to construct the domino graph of finite language. Source code is available online1.

An equivalence relation R on Σ∞ is called a congruence if (x, y) ∈ R and u, v ∈ Σ∞ imply (uxv, uyv) ∈ R.
For a pair (u, v) ∈ Σ∞ × Σ∞, we denote by Pref(u, v) = Pref(u) × Pref(v). Let R ⊆ Σ∞ × Σ∞, we define

Pref(R) =
⋃

(u,v)∈R Pref(u, v) and the adherence of R is defined by (see [11]):

Adh(R) = {(x, y) ∈ Σω × Σω | Pref(x, y) ⊆ Pref(R)}

A relation R is closed (topologically) if Adh(R) ⊆ R.

Proposition 3.1. The relation ∼= is a closed congruence.

Proof. According to definition, the relation ∼= is a congruence. Moreover, if

(x, y) = (x0x1 . . . , y0y1 . . . ) ∈ Adh(∼=)

with all xi, yi ∈ Σ, then Pref(x, y) ⊆ Pref(∼=). Therefore, for all integer i ≥ 0, there exist ui, vi ∈ Σ∞ satisfying

x0 . . . xiui ∼= y0 . . . yivi for all i ≥ 0.

Setting

pi =

{
x̃0 . . . x̃i if |x̃0 . . . x̃i| < |ỹ0 . . . ỹi|
ỹ0 . . . ỹi otherwise.

Then x̃ and ỹ have an infinity of common prefixes: p0, p1, . . . . Hence we have x̃ = ỹ, that is x ∼= y. Thus the
relation ∼= is closed.

Motivated by this fact, we introduce the following notion.

Definition 3.2. A language L = L \ LL+ ⊆ A+ is a one-relation language if there is a pair (u, v) ∈ Σ+ × Σ+,
u 6= v such that ∼= is the smallest closed congruence relation on Σ∞ which contains (u, v). The relation u ∼= v
is called the basic relation of L.

Regarding the words length, there is only one basic relation up to symmetry, in a given one-relation language.
Furthermore, this basic relation must be minimal.

The following examples show the variety of the class of one-relation languages.

Example 3.3. Consider the language L = {a, ab, bc, c}, the alphabet Σ = {0, 1, 2, 3}, and the labelling {0̃ =
a, 1̃ = ab, 2̃ = bc, 3̃ = c}. L has only one minimal relation 02 ∼= 13. Thus the language L is a one-relation
language.

Example 3.4. Consider the language L = {a, ab, ba}, the alphabet Σ = {0, 1, 2}, and the labelling {0̃ = a, 1̃ =
ab, 2̃ = ba}. The set of minimal relations of L is exactly the following system:{

02n ∼= 1n0 for n = 1, 2, . . .

02ω ∼= 1ω

1https://github.com/tranvinhduc/dominograph

https://github.com/tranvinhduc/dominograph
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The shortest minimal relation of L is 02 ∼= 10. From this relation, we get 022 ∼= 110 by applying the rewriting
rule

022 ∼= 102 ∼= 110;

and by applying the rewriting rule several times, we obtain

02n ∼= 1n0, for n = 1, 2, . . . .

By adherence, we get the infinitary relation 02ω ∼= 1ω. Thus every relations of L are obtained from this shortest
relation by rewriting or by adherence. Thus L is one-relation language with the basic relation 02 ∼= 10.

Example 3.5. Consider L = {a, ab, baba} and the alphabet Σ = {0, 1, 2}. The set of minimal relations of L is
exactly the following system: 

02n ∼= (11)n0 for n = 1, 2, . . .

02ω ∼= 1ω

02ω ∼= 1(11)m02ω for m = 0, 1, . . . .

We can verify that the relations 02n ∼= (11)n0 and 02ω ∼= 1ω are obtained from the relation 02 ∼= 110 by
rewriting or by closure by adherence. Moreover, for any m ≥ 0, we have

02ω ∼= 1ω = 1(11)m1ω ∼= 1(11)m02ω.

Thus L is a one-relation language where the basic relation is 02 ∼= 110.

It is noticed that a one-relation language is not a code as the basic relation u ∼= v is such that u and v
are finite words. If the language L has only one relation w ∼= w′ with w,w′ ∈ Σω such that all relations are
obtained from this relation by rewriting, then L is a code. In this case, the problem was solved (see [5]).

We denote by First(x) and Last(x), respectively, the first and the last letter of a nonempty word x.

Lemma 3.6. Let L be a one-relation language. Then the basic relation of L is not in the form uv ∼= vu with
u, v ∈ Σ∗.

Proof. Assume the contrary, that L is a one-relation language where the basic relation is uv ∼= vu. By
Lemma 2.2, two words ũ and ṽ have the same primitive root. Thus there are two positive integers p and q
such that up ∼= vq. By definition of the one-relation languages, the pair (up, vq) is in the smallest congruence
containing (uv, vu). Thus up contains the factor uv or the factor vu, this mean that there are two words x, y ∈ Σ∗

such that up = xuvy or up = xvuy.

– If up = xuvy then uup = uxuvy = upu = xuvyu. Since |xu| = |ux|, we have uvy = vyu. It follows that
First(u) = First(v), which conflicts the fact that the relation basic uv ∼= vu is minimal.

– If up = xvuy then uup = uxvuy = upu = xvuyu. Thus we have uxv = xvu. It follows that Last(u) =
Last(v), which conflicts again the minimality of the basic relation uv ∼= vu.

In both cases we obtain a contradiction.

Lemma 3.7. A one-relation language can not contain two words which commute.

Proof. Assume the contrary, that there is a one-relation language L contains two words 0̃ and 1̃ such that
01 ∼= 10. Regarding the word length, the basic relation of Lmust be 01 ∼= 10, which contradicts Lemma 3.6.
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4. Generators and codes

From this section to the end of this paper, we make the assumption: L is a language such that L+ is the
greatest generator of Lω and L is in one-to-one mapping with the alphabet Σ.

Note that this assumption is satisfied by some interesting cases, for example the case where Lω is an ω-power
of a finite language (see [9] and [7]).

We denote by AmbΣ(L) the set of ω-words in Σω such that the images of these ω-words in Aω have at least
two L-factorizations. That is,

AmbΣ(L) = {x ∈ Σω | x̃ has at least two L-factorizations}
= {x ∈ Σω | ∃y ∈ Σω, x ∼= y and x 6= y}.

According to Proposition 2.7, the language L is a code if and only if the set AmbΣ(L) has no periodic words.

Lemma 4.1. Let C ⊆ Σ+ such that C̃ is a generator of Lω and let w ∈ Σω. If w /∈ AmbΣ(L), then w ∈ Cω.

Proof. Since C̃ is a generator of Lω, it follows that for each w ∈ Σω there is an ω-word w′ ∈ Cω such that
w ∼= w′. If w /∈ AmbΣ(L) then w = w′. So w ∈ Cω.

A language P ⊆ Σ+ is a prefix code if no word in P is a proper prefix of another word in P .

Lemma 4.2. Let C ⊆ Σ+ such that the language C̃ is a code generator of Lω. Then the language C is a prefix
code over Σ.

Proof. Assume the contrary that there exist two nonempty words u, v ∈ Σ+ such that {u, uv} ⊆ C. Since C̃
is a generator of Lω, there exists w ∈ Cω such that (vu)ω ∼= w. Then u(vu)ω = (uv)ω ∼= uw. As ũv 6= ũ,

the periodic word (ũv)ω has two factorizations on C̃: one starts by ũ and the other by ũv. According to

Proposition 2.7, C̃ is not a code.

We say that two words u, v ∈ Σ+ are incompatibles if there exist x, y ∈ Σ+ such that the relation ux ∼= vy
is minimal.

Remark 4.3. By the minimality of relation ux ∼= vy, two incompatible words u and v must have no common
prefix.

Let X ⊆ Σ∞. We denote by Pref∗(x) = Pref(x) \ {ε}.

Lemma 4.4. Let C ⊆ Σ+ such that C̃ is a code generator of Lω. Let u and v be two incompatible words. Then
for all m ∈ Σ∗, the set mPref∗({u, v}) ∩ C is the empty set or a singleton.

Proof. By Lemma 4.2, the language C is a prefix code. For each m ∈ Σ∗, each set of mPref∗(u) ∩ C and
mPref∗(v) ∩ C is either the empty set or a singleton. Therefore, it is sufficient to show that mPref∗(u) = ∅ or
mPref∗(v) = ∅.

Assume the contrary that there exist p ∈ Pref∗(u) and q ∈ Pref∗(v) such that {mp,mq} ⊆ C. As two words

u and v are incompatible, there exist x, y ∈ Σ+ such that px ∼= qy is a minimal. Since C̃ is a generator of Lω,
the infinite words (x̃)ω has a ultimately periodic C̃-factorization, that is there exist z ∈ C∗ and t ∈ C+ such
that xω ∼= ztω. According to Lemma 2.5, there are i, j > 0 such that xiz ∼= ztj . Now we have

(mpztj)ω ∼= (mpxxi−1z)ω

∼= (mqyxi−1z)ω = mq(yxi−1zmq)ω.

Since C̃ is a generator of Lω, there exists w ∈ Cω such that

(yxi−1zmq)ω ∼= w.
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Thus we have

(mpztj)ω ∼= (mq)w.

We recall that C̃ is a code and that {mp,mq} ⊆ C. If m̃p 6= p̃q then the infinite periodic word ˜(mpztj)
ω

has

two C̃-factorizations, which contradicts Proposition 2.7. If mp ∼= mq then p ∼= q, which contradicts the fact
that px ∼= qy is minimal. This completes the proof.

Here is a corollary of Lemma 4.4.

Corollary 4.5. Let C ⊆ Σ+ such that C̃ is a code generator of Lω. Let u and v be two incompatible words.
Then for all m ∈ Σ∗, there exists z ∈ {u, v} such that

mPref∗(z) ∩ C = ∅.

Proof. By Lemma 4.4, we have mPref∗(u) ∩ C = ∅ or mPref∗(v) ∩ C = ∅.

Proposition 4.6. Let ({ui, vi})i≥0 be an infinite sequence of pairs of incompatible words. If

AmbΣ(L) ∩
∞∏
i=0

{ui, vi} = ∅

where
∏∞

i=0Xi represent the concatenation of languages Xi, then Lω has no code generator.

Proof. Assume that there exists C ⊆ Σ+ such that C̃ is a code generator of Lω. By induction, we build an
infinite sequence (zi)i≥0 of words such that: for all i ≥ 0, we have{

zi ∈ {ui, vi}
Pref∗(z0 . . . zi) ∩ C = ∅.

(4.1)

Indeed, according to Corollary 4.5, there exists z0 ∈ {u0, v0} such that

Pref∗(z0) ∩ C = ∅.

Now assume that we have the sequence (z0, . . . , zn−1) which verifies the condition (4.1). According to
Corollary 4.5, there exists zn ∈ {un, vn} such that

z0 . . . zn−1Pref∗(zn) ∩ C = ∅

and by induction hypothesis we have

Pref∗(z0 . . . zn−1) ∩ C = ∅.

Then z0, . . . , zn verifies the condition (4.1).
Consider the ω-word

w = z0z1 . . . zn . . . /∈ AmbΣ(L),

according to Lemma 4.1, we have w ∈ Cω. However, by above construction we have Pref∗(w) ∩ C = ∅. This is
a contradiction.
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By applying Proposition 4.6 for the infinite sequence of pair of incompatible words ({u, v}, {u, v}, . . .), we
have.

Proposition 4.7. Let u and v be two incompatible words. If

AmbΣ(L) ∩ {u, v}ω = ∅,

then Lω has no code generator.

Example 4.8. Let L = {a, ab, bc, c} and Σ = {0, 1, 2, 3}. The language L has only one minimal relation 02 ∼=
13. Then AmbΣ(L) = Σ∗{02, 13}Σω. We have

AmbΣ(L) ∩ {0, 1}ω = ∅.

As two words 0, 1 are incompatibles, according to Proposition 4.7, Lω has no code generator.

We say that two words u, v ∈ Σ+ are ∞-incompatibles if there exists x, y ∈ Σ+ ∪ Σω such that the relation
ux ∼= vy is minimal.

Remark 4.9. If two words u and v are incompatible, they are ∞-incompatible.

Lemma 4.10. Let C ⊆ Σ+ such that C̃ is an ω-code generator of Lω. Let u and v be two ∞-incompatible
words. Then for all m ∈ Σ∗, the set mPref∗({u, v}) ∩ C is the empty set or a singleton.

Proof. By Lemma 4.2, the language C is a prefix code. For each m ∈ Σ∗, each set of mPref∗(u) ∩ C and
mPref∗(v) ∩ C is either the empty set or a singleton. Therefore, it is sufficient to show that mPref∗(u) = ∅ or
mPref∗(v) = ∅.

Assume the contrary that there exist p ∈ Pref∗(u) and q ∈ Pref∗(v) such that {mp,mq} ⊆ C. As two words
u and v are ∞-incompatible, there exist x, y ∈ Σω such that px ∼= qy is a minimal relation. Then we have
(mp)x ∼= (mq)y. There are two cases:

– If m̃p 6= m̃q, then C̃ is not an ω-code generator of Lω;
– If m̃p = m̃q, that is mp ∼= mq, then p ∼= q which contradicts the minimality of the relation px ∼= qy.

In both cases we obtain a contradiction.

The proof of following results is similar to the case of incompatible words.

Proposition 4.11. Let ({ui, vi})i≥0 be an infinite sequence of pairs of ∞-incompatible words. If

AmbΣ(L) ∩
∞∏
i=0

{ui, vi} = ∅

then Lω has no ω-code generator.

Proposition 4.12. Let u and v be two ∞-incompatible words. If

AmbΣ(L) ∩ {u, v}ω = ∅,

then Lω has no ω-code generator.

Example 4.13. Let L = {a, ab, b2} be a suffix code and Σ = {0, 1, 2}. The language L has only one minimal
relation 02ω ∼= 12ω. Thus AmbΣ(L) = Σ∗{02ω, 12ω}. We have therefore AmbΣ(L)∩ {0, 1}ω = ∅. According to
Proposition 4.12, the ω-language Lω has no ω-code generator.
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5. Proof of Theorem 1.1

Recall that L is a one-relation language with the basic relation u ∼= v. Assume that there exists C ⊆ Σ+

such that C̃ is an ω-code generator of Lω. According to Theorem 1.2, we consider two cases:

Case 1 (covers forms i and iii in Thm. 1.2): u = 0nw2 and v = 1k0n where w ∈ Σ∗ and k, n ≥ 1.
Since 0ω /∈ AmbΣ(L), there exists an integer ` ≥ 0 such that

0`0 ∈ C (5.1)

It follows from the basic relation 0nw2 ∼= 1k0n that

0n(w2)j ∼= 1kj0n for j = 1, 2, . . . .

Thus for each j ≥ 1, two words 0 and 1j are incompatible. Combining Lemma 4.4 and (5.1) gives

0`Pref∗ ({0, 1ω}) ∩ C = 0`0.

Then

Pref∗
(
0`1ω

)
∩ C = ∅. (5.2)

We show that 1 is not a prefix of w. Assume the contrary that w = 1w′ for some w′ ∈ Σ∗. Thus 0̃n1 and 1̃k0

are both prefix of 1̃k0n. According to Lemma 2.3, two words 0̃ and 1̃ commute, which contradicts Lemma 3.7.
Thus we have

0`1+2ω ∩AmbΣ(L) = ∅.

It follows from Lemma 4.1 and (5.2) that for each integer p > 0, there exists an integer q > 0 such that

0`1p2q ∈ C. Consequently, C̃ is infinite.

Case 2 (covers forms ii and iv in Thm. 1.2): u = 0n2 and v = (10m)k0n where k,m, n ≥ 1.
Since 0ω /∈ AmbΣ(L), there exists an integer ` ≥ 0 such that

0`0 ∈ C (5.3)

It follows from the basic relation 0n2 ∼= (10m)k0n that

0n2j ∼= (10m)kj0n for j = 1, 2, . . . .

Thus for each word x ∈ Pref∗((10
m)ω), the words 0 and x are incompatible. Combining Lemma 4.4 and (5.3),

gives

0`Pref∗ ({0, (10m)ω}) ∩ C = 0`0.

Then

Pref∗
(
0`(10m)ω

)
∩ C = ∅. (5.4)
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Figure 1. x ∈ OVL(u, v) and (y, z) ∈ Border(u, v).

Since m ≥ 1, we get

0`(10m)+1ω ∩AmbΣ(L) = ∅.

It follows from Lemma 4.1 and (5.4) that for each integer p > 0, there exists an integer q > 1 such that

0`(10m)p1q ∈ C. Consequently, C̃ is infinite.

6. Technical lemmas

In this section, we establish the technical lemmas which we need to prove Theorem 1.2 in the following
section.

Let u and v be two non-empty words. We denote by OVL(u, v) the set of overlapping words of the words u
with the word v :

OVL(u, v) = {x ∈ Σ+ | u = xz, v = yx for some y, z ∈ Σ+}.

A pair (y, z) ∈ Σ+ × Σ+ is a border of the pair of words (u, v) if there is a word x ∈ OVL(u, v) such that

u = xz and v = yx.

We denote by Border(u, v) the set of borders of the pair (u, v). This is illustrated in Figure 1.
Note that these notations are not symetric.

Example 6.1. Let u = 0102 and v = 1010. We have

OVL(u, v) = {010, 0}, Border(u, v) = {(1, 2), (101, 102)},
OVL(v, u) = ∅, Border(v, u) = ∅.

Lemma 6.2. Let L be a one-relation language where u ∼= v is the basic relation. The set of relations of L is
exactly M# where M# is the smallest congruence containing

M = (ε, u) ·B∗ · (v, ε) ∪ (ε, u) ·Bω,

with

B =
⋃

(x,y)∈{u,v}2
Border(x, y).

Proof. First, we show the inclusion M# ⊆ ∼= . If B = ∅, the proof is immediate. Assume that B 6= ∅. We show
that for each (y, z) ∈ B, we have

uz ∼= yv. (6.1)
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We verify (6.1) in four cases:

(1) If (y, z) ∈ Border(u, u). By definition, there exists x ∈ Σ+ such that u = yx = xz. We have thus uz = yxz =
yu ∼= yv.

(2) If (y, z) ∈ Border(u, v). By definition, there exists x ∈ Σ+ such that v = yx and u = xz. We have thus
uz ∼= vz = yxz = yu ∼= yv.

(3) If (y, z) ∈ Border(v, u). By definition, there exists x ∈ Σ+ such that u = yx and v = xz. We have thus
uz = yxz = yv.

(4) If (y, z) ∈ Border(v, v). By definition, there exists x ∈ Σ+ such that v = yx = xz. We have thus uz ∼= vz =
yxz = yv.

Now we consider an infinite sequence of borners in B:

(y1, z1), (y2, z2), . . . .

By (6.1), we have uzi ∼= yiv for i = 1, 2, . . . . Thus for any positive integer n, we have

(uz1)z2 . . . zn ∼= (y1v)z2z3 . . . zn
∼= (y1u)z2z3 . . . zn = y1(uz2)z3 . . . zn

...
∼= y1 . . . yn−1ynv.

Since ∼= is closed (by adherence), we obtain

uz1z2 . . . ∼= y1y2 . . . .

Thus M ⊆ ∼=. Since ∼= is a congruence, we have M# ⊆ ∼= .
Now we show ∼= ⊆ M#. It is clear that the congruence M# is closed. As (u, v) ∈ M#, by definition of

one-relation language, we have the inclusion.

We denote by LB(u, v) the first projection of Border(u, v). By Lemma 6.2, we have

Lemma 6.3. Let L be a one-relation language where the basic relation is u ∼= v. We have

AmbΣ(L) = Σ∗{u, v}Σω ∪ Σ∗
(

LB(u, u) ∪ LB(v, v) ∪ LB(u, v) ∪ LB(v, u)
)ω
.

If OVL(u, v) 6= ∅ then OVL(u, v) has a unique greatest (by the length) element which will denote by Ou,v,
and LB(u, v) has a unique smallest element which will denote by bu,v. We have thus

v = bu,vOu,v.

Example 6.4. Let u = 0102 and v = 1010. We have

OVL(u, v) = {010, 0}, LB(u, v) = {1, 101},
Ou,v = 010, bu,v = 1.

For a word u ∈ Σ∞, we denote by Alph(u) the set of letters of Σ appearing in u.

Lemma 6.5. Let u ∈ Σ+. For any y ∈ LB(u, u), we have Alph(y) = Alph(u).
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Proof. For any y ∈ LB(u, u), there exist two non-empty word x and z such that u = xz = yx. By Lemma 2.1,
there exist two words α, β and an integer k such that x = (αβ)kα, y = αβ, and z = βα. Thus Alph(u) =
Alph(αβ) = Alph(y).

Lemma 6.6. For any word u ∈ Σ+, we have (LB(u, u))
ω ⊆ uΣω.

Proof. If LB(u, u) = ∅, the claim is trivial. Assume LB(u, u) 6= ∅. By 6.1, for any y ∈ LB(u, u), there exists a
word z such that uz = yu. By induction, for any sequence y1, y2, · · · ∈ LB(u, u), there are z1, z2, . . . such that

y1y2 . . . ynu = uz1z2 . . . zn, for n = 1, 2, . . . .

By adhrence, we have

y1y2 · · · = uz1z2 . . . .

Thus (LB(u, u))
ω ⊆ uΣω.

Lemma 6.7. Let u, v ∈ Σ+. If OVL(u, v) 6= ∅ then for any w ∈ LB(u, v) \ {bu,v}, we have Alph(w) = Alph(v).

Proof. By definition, we have

OVL(u, v) = {Ou,v} ∪OVL(Ou,v, Ou,v).

Thus

LB(u, v) = {bu,v} ∪ {bu,v}LB(Ou,v, Ou,v).

By Lemma 6.5, for any y ∈ LB(Ou,v, Ou,v), we have Alph(y) = Alph(Ou,v); we obtain thus

Alph(bu,vy) = Alph(bu,vOu,v) = Alph(u),

which completes the proof.

Lemma 6.8. Let 0, 1 be two distinct letters and let x be a word. Then

x0 /∈ Fact({x1, 1}ω).

Proof. We denote by |x|1 the number of letters 1 in x. Let y ∈ Fact({x1, 1}ω) and |y| = |x| + 1, we have
|y|1 > |x|1 = |x0|1. Thus x0 /∈ Fact({x1, 1}ω).

7. Proof of Theorem 1.2

Recall that L is a one-relation language where the basic relation is u ∼= v. We set 0 = First(u) and
1 = First(v). Two letters 0 and 1 are distinct because the relation u ∼= v is minimal. Since the roles of u and
v are symmetric, we consider three cases.

7.1. When OVL(u, v) = ∅ and OVL(v, u) = ∅
We prove that Lω has no code generator in this case. Indeed, we have LB(u, v) = LB(v, u) = ∅. By Lemma 6.3,

we have

AmbΣ(L) = Σ∗{u, v}Σω ∪ Σ∗ (LB(u, u) ∪ LB(v, v))
ω
. (7.1)
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As the roles of u and v are symmetric, we consider three cases.

Case 1: u /∈ {0, 1}+ and v /∈ {0, 1}+.
By Lemma 6.5, we have

LB(u, u) ∩ {0, 1}+ = ∅ and LB(v, v) ∩ {0, 1}+ = ∅.

By (7.1), we have AmbΣ(L) ∩ {0, 1}ω = ∅. Since two words 0 and 1 are incompatible, it follows from Proposi-
tion 4.7 that Lω has no code generator.

Case 2: u ∈ {0, 1}+ and v /∈ {0, 1}+.
By (7.1) we have

AmbΣ(L) ∩ {0, 1}ω = {0, 1}∗u{0, 1}ω ∪ {0, 1}∗ (LB(u, u))
ω

= {0, 1}∗u{0, 1}ω (by Lem. 6.6)

Since OVL(v, u) = ∅ and First(v) = 1, we have Last(u) = 0. Because |u| > 1, we can write u = 0z0 with
z ∈ {0, 1}∗. The basic relation becomes 0z0 ∼= v. Then we have

0zv ∼= 0z0z0 ∼= vz0.

Since First(v) = 1, it follows that two words 0z1 and 1 are incompatible. By Lemma 6.8, we have

u = 0z0 /∈ Fact({0z1, 1}ω).

Thus AmbΣ(L) ∩ {0z1, 1}ω = ∅. By the Proposition 4.7, Lω has no code generator.

Case 3: u ∈ {0, 1}+ and v ∈ {0, 1}+.
By Lemma 2.4, two words 0̃ and 1̃ commute. This contradicts Lemma 3.7.

Example 7.1. The following languages show that there exist one-relation languages where their basic relations
as in Case 1 and Case 2.

1. Let L = {a, ab, bc, c} and Σ = {0, 1, 2, 3}. The language L is a one-relation language where 02 ∼= 13 is
the basic relation.

2. Let H = {ab, aba, b} and Σ = {0, 1, 2}. The language H is a one-relation language where the basic relation
is 00 ∼= 12.

7.2. When OVL(u, v) 6= ∅ and OVL(v, u) 6= ∅
We prove that Lω has no code generator in this case. The situations are illustrated in Figure 2.
We first prove that

|u| > |Ou,v|+ |Ov,u| and |v| > |Ou,v|+ |Ov,u|. (7.2)

Conversely (to obtain a contradiction), suppose |u| ≤ |Ou,v| + |Ov,u|. Since |ũ| = |ṽ|, it follows that |v| ≤
|Ou,v|+ |Ov,u|. Then the basic relation u ∼= v can be rewritten in the form

u1u2u3
∼= v1v2v3,
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Figure 2. Situations occur when OVL(u, v) 6= ∅ and OVL(v, u) 6= ∅.

where ui, vi ∈ Σ∗; u1u2 = v2v3 = Ou,v; and u2u3 = v1v2 = Ov,u. Hence

u1v1v2
∼= v1u1u2.

As |ũ1v1| = |ṽ1u1|, we have u1v1
∼= v1u1 and v2

∼= u2. Since u1v1v2
∼= v1u1u2 is a minimal relation, it follows

that u2 = v2 = ε or u1v1 = v1u1 = ε. However, if u2 = v2 = ε then the basic relation becomes u1v1
∼= v1u1

which contradicts Lemma 3.6. If u1v1 = v1u1 = ε then Ou,v = u2 = v, a contradiction. We get (7.2).
Now the basic relation can be rewritten of the form

xzt ∼= tyx

where x, y, z, t ∈ Σ+; x = Ou,v; and t = Ov,u. Recall that First(x) = 0 and First(t) = 1. There are three cases:

Case 1: xz ∈ {0, 1}+ and ty ∈ {0, 1}+.
It follows from Lemma 2.4 that two words 0̃ and 1̃ commute. This contradicts Lemma 3.7.

Case 2: xz /∈ {0, 1}+ and ty /∈ {0, 1}+.
By Lemma 6.3, we have

AmbΣ(L) ∩ {0, 1}ω = ∅.

By Proposition 4.7, Lω has no code generator.

Case 3: xz ∈ {0, 1}+ and ty /∈ {0, 1}+.
We first prove that t /∈ {0, 1}+. Conversely (to obtain a contradiction), suppose t ∈ {0, 1}+. If Last(t) = 0 then
by Lemma 2.3, two words 0̃ and 1̃ commute. Otherwise Last(t) = 1, by minimality of the basic relation, we
have Last(x) = 0; according to Lemma 2.4, two words 0̃ and 1̃ commute. Both cases yield a contradiction with
Lemma 3.7.

Now we have t /∈ {0, 1}+, then

LB(xzt, xzt) ∩ {0, 1}+ = ∅, LB(tyx, tyx) ∩ {0, 1}+ = ∅,

LB(xzt, tyx) ∩ {0, 1}+ = ∅
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and by Lemma 6.7, we have LB(tyx, xzt) ∩ {0, 1}+ = xz. We have thus

AmbΣ(L) ∩ {0, 1}ω = {0, 1}∗(xz)ω.

By Lemma 6.8, we have xz0 /∈ Fact({xz1, 1}ω). As First(x) = 0, we have (xz)ω /∈ Suff({xz1, 1}ω). Therefore

AmbΣ(L) ∩ {xz1, 1}ω = ∅

Since First(t) = 1, two words xz1 and 1 are incompatible. According to Lemma 4.7, Lω has no code generator.
The following example show that there exist languages as in Case 2.

Example 7.2. Let L = {a, aba, bac, cab} and let Σ = {0, 1, 2, 3}. It can be verified that L is a one-relation
language where the basic relation is 021 ∼= 130.

7.3. When OVL(u, v) 6= ∅ and OVL(v, u) = ∅
We deal this case by some claims which are proven later.

Claim 7.3. Assume that the basic relation of L is of the form

0xz ∼= 1y0x (7.3)

where z ∈ Σ+; x, y ∈ Σ∗; and 0x = Ou,v is the greatest (by the length) element of OVL(u, v). If x 6∈ 0∗ or ρ(1y) 6∈
10∗, then Lω has no code generator.

Now there remain the cases: u = 0nz and v = (10m)k0n with k ≥ 1,m ≥ 0, n ≥ 1, and 0n = Ou,v. It is to be
noticed that Last(z) /∈ {0, 1} as OVL(v, u) = ∅.

Claim 7.4. Assume that the basic relation of L is of the form

0nz ∼= (10m)k0n

with 0n = Ou,v and Last(z) /∈ {0, 1}.
If the parameters z, k,m, n of the basic relation satisfies one of two following conditions:

1. k ≥ 2,m ≥ 0, and n ≥ 2;
2. |z| ≥ 2, k ≥ 1,m ≥ 1, and n ≥ 1.

Then Lω has no code generator.

According to Claims 7.3 and 7.4, there remains to prove that Lω has always a code generator in the cases
where the basic relation is in the form

0nz ∼= (10m)k0n

with

(i) k = 1,m = 0, n ≥ 1, and z ∈ Σ∗2;
(ii) k = 1,m ≥ 1, n ≥ 1, and z = 2;
(iii) k > 1,m = 0, n = 1, and z ∈ Σ∗2; or
(iv) k > 1,m ≥ 1, n = 1, and z = 2.

Claim 7.5 (Case i). Assume that the basic relation of L is of the form

0nz ∼= 10n
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with n ≥ 1 and z ∈ Σ∗2. Then C̃ is an infinite ω-code generator of Lω, where

C = {0} ∪

(
n−1⋃
i=0

10i

)∗
(Σ \ {0, 1}).

Claim 7.6 (Case ii). Assume that the basic relation of L is of the form

0n2 ∼= 10m0n

with m ≥ 1 and n ≥ 1. Then C̃ is an infinite ω-code generator of Lω, where

C = {0, 2} ∪

(
n−1⋃
i=0

10m0i

)∗(m−1⋃
i=0

10i(Σ \ {0, 2}) ∪
n−1⋃
i=0

10i2 ∪ Σ \ {0, 1, 2}

)
.

Claim 7.7 (Case iii). Assume that the basic relation of L is of the form

0z ∼= 1k0

with z ∈ Σ∗2 and k > 1. Then C̃ is an infinite code generator of Lω, where

C =

k−1⋃
i=0

1i0 ∪ 1∗ (Σ \ {0, 1}) .

Moreover, Lω has no ω-code generator.

Claim 7.8 (Case iv). Assume that the basic relation of L is of the form

02 ∼= (10m)k0

with k > 1 and m ≥ 1. Then C̃ is an infinite code generator of Lω, where

C = {2} ∪
k−1⋃
i=0

(10m)i0 ∪ (10m)∗

(
{12} ∪ 1

(
m−1⋃
i=0

0i

)
(Σ \ {0, 2}) ∪ Σ \ {0, 1, 2}

)
.

Moreover, Lω has no ω-code generator.

Example 7.9. The following languages show that there exist one-relation languages where their basic relations
as in Cases i-iv.

(i) Let L = {a, ab, ba} and Σ = {0, 1, 2}. The language L is a one-relation language where the basic relation

is 02 ∼= 10. By Claim 7.5, the ω-language Lω has an infinite ω-code generator C̃ with C = 0 ∪ 1∗2.
(ii) Let H = {a, a2b, ba4} and Σ = {0, 1, 2}. It can be verified that H is a one-relation language where the

basic relation is 022 ∼= 10202. By Claim 7.6, the ω-language Hω has an infinite ω-code generator C̃ with

C = {0, 2} ∪ {102, 1020}∗{11, 101, 12, 102}.
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(iii) Let I = {a, ab, baba} and Σ = {0, 1, 2}. It can be verified that I is a one-relation language where the

basic relation is 02 ∼= 110. By Claim 7.7, the ω-language Iω has an infinite code generator C̃ with
C = {0, 10} ∪ 1∗2.

(iv) Let J = {a, ab, ba3ba3} and Σ = {0, 1, 2}. It can be verified that J is a one-relation language where the

basic relation is 02 ∼= (100)20. By Claim 7.8, the ω-language Jω has an infinite code generator C̃ with

C = {0, 1000, 2} ∪ (100)∗{12, 11, 101}.

7.3.1. Proof of Claim 7.3

Assume that the basic relation of L is 0xz ∼= 1y0x. First, we prove that

xz /∈ {0, 1}+. (7.4)

Conversely (to obtain a contradiction), suppose x ∈ {0, 1}∗ and z ∈ {0, 1}+. By minimality of relation 0xz ∼=
1y0x, we have Last(z) 6= Last(0x).

– If Last(0x) = 0 and Last(z) = 1, then 1 ∈ OVL(v, u), this contradicts OVL(v, u) = ∅.
– Otherwise Last(0x) = 1 and Last(z) = 0, then we can rewrite the basic relation in the form

0x′1z′0 ∼= 1y0x′1

where x′1 = x and z′0 = z. Thus 1̃z′0 and 0̃x′1 are both suffix of the word 0̃x′1z′0 = 1̃y0x′1. By
Lemma 2.3, two words 0̃ and 1̃ commute. This contradicts Lemma 3.7.

Thus, we get (7.4).
Now, we consider three cases:

Case 1: y /∈ {0, 1}∗.
Since xz /∈ {0, 1}+ and by Lemma 6.3, we have

AmbΣ(L) ∩ {0, 1}ω = ∅.

According to Proposition 4.7, Lω has no code generator.
The following example shows that there exists one-relation languages with the basic relation as in Case 1.

Example 7.10. Let L = {a, ab, bca, c} and let Σ = {0, 1, 2, 3}. The language L is one-relation language where
the basic relation is 02 ∼= 130.

Case 2: y ∈ {0, 1}∗ and x /∈ 0∗.
First, we show that x /∈ {0, 1}+. Indeed, if x ∈ {0, 1}+ then, by Lemma 2.3 and the relation 0xz ∼= 1y0x, two
words 0̃ and 1̃ commute, which contradicts Lemma 3.7.

Now, using Lemma 6.3, we have

AmbΣ(L) ∩ {0, 1}ω = {0, 1}∗(1y)ω.

By Lemma 6.8, we have 1y1 /∈ Fact({0, 1y0}ω). Thus

AmbΣ(L) ∩ {0, 1y0}ω = ∅.

Two words 0 and 1y0 are incompatible as 0xz ∼= 1y0x. By Proposition 4.7, Lω has no code generator.
The following example shows that there exists one-relation language with the basic relation as in Case 2.
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Example 7.11. Let L = {ab, abc, bcaba, caba} and let Σ = {0, 1, 2, 3}. It can be verified that L is a one-relation
language where the basic relation is 032 ∼= 1003.

Case 3: y ∈ {0, 1}∗, ρ(1y) /∈ 10∗, and 0x = 0n with n ≥ 1.
Because xz /∈ {0, 1}∗ we can write z = z012z

′ where z01 ∈ {0, 1}∗ and z′ ∈ Σ∗. Now the basic relation is in the
form 0nz012z

′ ∼= 1y0n. By Lemma 3.7, L cannot contain two words commute, and then by Lemma 2.3, we have
z01 ∈ 0∗. Thus the basic relation can be written in the form

0n0k2z′ ∼= 1y0n (7.5)

with k ≥ 0.
By Lemma 6.3, we have

AmbΣ(L) ∩ {0, 1}ω = {0, 1}∗1y0n{0, 1}ω ∪ {0, 1}∗
(
LB(0n0k2z′, 1y0n) ∪ LB(1y0n, 1y0n)

)ω
. (7.6)

Consider two subcases:

Subcase 3.1: OVL(1y0n, 1y0n) 6= ∅.
That is, there are f ∈ {0, 1}∗ and p ∈ {0, 1}∗ such that 1y0n = 1pf1p. The basic relation (7.5) becomes

0n0k2z′ ∼= 1pf1p.

And we have

0n0k2z′f1p ∼= 1pf1pf1p ∼= 1pf0n0k2z′.

Thus two words 0 and 1pf0 are incompatible.
By Lemma 6.8, we have 1pf1 /∈ Fact({0, 1pf0}ω), then 1y /∈ Fact({0, 1pf0}ω). Thus

AmbΣ(L) ∩ {0, 1pf0}ω = ∅.

By Proposition 4.7, Lω has no code generator.

Subcase 3.2: OVL(1y0n, 1y0n) = ∅.
From the equation (7.6), we have

AmbΣ(L) ∩ {0, 1}ω = {0, 1}∗1y0n{0, 1}ω ∪ {0, 1}∗{1y, 1y0, · · · , 1y0n−1}ω.

From the basic relation (7.5), we have

0n0k2z′0k2z′ ∼= 1y0n0k2z′ ∼= 1y1y0n.

Then two words 0 and 1y1 are incompatible. Now we show that

AmbΣ(L) ∩ {0, 1y1}ω = ∅ (7.7)

and thus, by Proposition 4.7, Lω has no code generator.
To obtain (7.7), it is sufficient to verify that

1y0n /∈ Fact({0, 1y1}ω) (7.8)
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and (
n−1⋃
i=0

1y0i

)ω

∩ Suff({0, 1y1}ω) = ∅. (7.9)

If 1y0n ∈ Fact({0, 1y1}ω) then there are a word p ∈ Pref(1y) \ {1y}, a word s ∈ Suff(1y), and an integer
m ≥ 0 such that

1y0n = s10mp.

But since OVL(1y0n, 1y0n) = ∅, it follows that p = ε. Hence

1y0n ∈ Suff(1y)10m.

But this show that ρ(1y) ∈ 10∗, a contradiction. We get (7.8).
If (

n−1⋃
i=0

1y0i

)ω

∩ Suff({0, 1y1}ω) = ∅

then there exists a word s ∈ Suff(1y1) \ {1y1} and two sequences (ij), (kj) of integers such that

1y0i11y0i2 . . . = s0k11y10k2 . . . .

Let ` = |1y|1 − |s|1 ≥ 0. We have

|s|1 + |(1y1)`|1 = |s|1 + `+ |(1y)`|1
= |1y|1 + |(1y)`|1 = |(1y)`+1|1.

Observe, further, that: if two words α1 and β1 are both prefix of a same word and |α|1 = |β|1, then α = β. We
have thus

1y0i1 . . . 1y0i`+1 = s0k11y10k2 . . . 1y10k` .

Thus

1y0i`+1 ∈ Suff(1y)10k` .

But this show that ρ(1y) ∈ 10∗, a contradiction. We get (7.9).

Example 7.12 (for Subcase 3.1). Let L = {a, ab, baaba} and let Σ = {0, 1, 2}. It can be verified that L is a
one-relation language where the basic relation is 02 ∼= 1010.

Example 7.13 (for Subcase 3.2). Let L = {a, ab, babaa} and let Σ = {0, 1, 2}. It can be verified that L is a
one-relation language where the basic relation is 02 ∼= 1100.

7.3.2. Proof of Claim 7.4

Assume that the basic relation of L is of the form

0nz ∼= (10m)k0n (7.10)
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with 0n = Ou,v and Last(z) /∈ {0, 1}. We will show that Lω has no code generator in both following cases:

Case 1: k ≥ 2,m ≥ 0, and n ≥ 2.
By Lemma 6.3, we have

AmbΣ(L) ∩ {0, 1}ω = {0, 1}∗(10m)k0n{0, 1}ω ∪ {0, 1}∗
(

n−1⋃
i=0

(10m)k0i

)ω

From the relation (7.10), it follows that

0nz0z ∼= (10m)k0n0z ∼= (10m)k0(10m)k0n.

Hence two words 0 and (10m)k01 are incompatible.
Because k ≥ 2 and n ≥ 2, we have

(10m)k0n /∈ Fact
(
{0, (10m)k01}ω

)
.

It can be verified that

Suff
(
{0, (10m)k01}ω

)
∩

(
n−1⋃
i=0

(10m)k0i

)ω

= ∅.

Thus we have

AmbΣ(L) ∩ {0, (10m)k01}ω = ∅.

By Proposition 4.7, Lω has no code generator.

Example 7.14 (for Case 1). Let L = {a, aab, baabaa} and let Σ = {0, 1, 2}. It can be verified that L is a
one-relation language where the basic relation is 002 ∼= 1100.

Case 2: |z| ≥ 2, k ≥ 1, and n ≥ 1.
As Ou,v = 0n, we have First(z) 6= 0. Since L cannot contains two words commute, it follows from Lemma 2.3
that First(z) 6= 1. Thus the basic relation can be written in the form

0n2z′ ∼= (10m)k0n

where z′ 6= ε and Last(z′) /∈ {0, 1}, and 2 ∈ Σ \ {0, 1}. Then two words 0n2 and 1 are incompatible.
By Lemma 6.3, we have

AmbΣ(L) = Σ∗
{
0n2z′, (10m)k0n

}
Σω ∪ Σ∗

(
LB (0n2z′, 0n2z′) ∪ LB

(
0n2z′, (10m)k0n

))ω
. (7.11)

Thus we have

AmbΣ(L) ∩ {0n2, 1}ω ⊆ Σ∗{0n2z′}Σω. (7.12)

If AmbΣ(L) ∩ {0n2, 1}ω = ∅, then by Proposition 4.7, Lω has no code generator. We now assume that
AmbΣ(L) ∩ {0n2, 1}ω 6= ∅. This mean that

0n2z′ ∈ Fact({0n2, 1}ω).
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Since Last(z′) /∈ {0, 1}, it follow that z′ ∈ Σ∗0n2. Thus the basic relation can be written in the form

0n2f0n2 ∼= (10m)k0n

where f ∈ Pref(z′). We have:

0n2f(10m)k0n ∼= 0n2f0n2f0n2 ∼= (10m)k0nf0n2.

Thus two words 0n2f1 and 1 are incompatible.
By Lemma 6.8, we have 0n2f0 /∈ Fact({0n2f1, 1}ω). Therefore

0n2f0n2 /∈ Fact({0n2f1, 1}ω).

Thus

AmbΣ(L) ∩ {0n2f1, 1}ω = ∅.

By Proposition 4.7, Lω has no code generator.

Example 7.15 (for Case 2). 1. Let L = {ab, abc, b, caba} and Σ = {0, 1, 2, 3}. It can be verified that L is a
one-relation language where that basic relation is 032 ∼= 100.

2. Let L′ = {a, aba3b, ba2} and Σ = {0, 1, 2}. It can be verified that L′ is a one-relation language where the
basic relation is 0202 ∼= 100.

7.3.3. Proof of Claim 7.5

Assume that the basic relation of L is of the form

0nz ∼= 10n

with n ≥ 1 and z ∈ Σ∗2. We will show that C̃ is an ω-code generator of Lω, where

C = {0} ∪ (

n−1⋃
i=0

10i)∗(Σ \ {0, 1}).

To prove that C̃ is a generator of Lω, we show first assertion: for every x ∈ Σω \ CΣω, there exists y ∈ CΣω

such that x ∼= y. Indeed, direct computation show that

Σω \ CΣω = (

n−1⋃
i=0

10i)ω ∪ (

n−1⋃
i=0

10i)∗10nΣω.

For each x ∈ (
⋃n−1

i=0 10i)ω, we write

x = 10i110i2 . . .

where n > ij ≥ 0. Then we have

10i110i2 . . . ∼= 0nz0i1z0i2 . . . ∈ CΣω.
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And for each x ∈ (
⋃n−1

i=0 10i)∗10nΣω, we write

x = 10i1 . . . 10ip10nw

where p ≥ 0, n > ij ≥ 0 and w ∈ Σω. We have thus

10i1 . . . 10ip10nw ∼= 0nz0i1z . . . z0ipw ∈ CΣω.

Thus we have Lω ⊆ C̃Lω. According to Lemma 2.6, we have Lω ⊆ C̃ω. Thus C̃ω = Lω.
Now we show that C̃ is an ω-code. Indeed, it is clear that C is a prefix code. Observe, further, that

10n /∈ Fact(Cω) and (

n−1⋃
i=0

10i)ω ∩ Suff(Cω) = ∅.

Hence we have R(L) ∩ (Cω × Cω) = ∅. Thus each ω-word in C̃ω has only one factorization on C̃. The proof is
completed.

7.3.4. Proof of Claim 7.6

Assume that the basic relation of L is of the form

0n2 ∼= 10m0n

with m ≥ 1 and n ≥ 1. We will show that C̃ is an ω-code generator of Lω, where

C = {0, 2} ∪

(
n−1⋃
i=0

10m0i

)∗(m−1⋃
i=0

10i(Σ \ {0, 2}) ∪
n−1⋃
i=0

10i2 ∪ Σ \ {0, 1, 2}

)
.

To prove that C̃ is a generator of Lω, we show first assertion: for each x ∈ Σω \ CΣω, there exists y ∈ CΣω

such that x ∼= y. Indeed, direct computation show that

Σω \ CΣω =

(
n−1⋃
i=0

10m0i

)ω

∪

(
n−1⋃
i=0

10m0i

)∗
(10m0n ∪ 10n0∗2)Σω.

For every x ∈
(⋃n−1

i=0 10m0i
)ω

, we can write

x = 10m0i110m0i2 . . .

where n > ij ≥ 0, we have

10m0i110m0i2 . . . ∼= 0n20i120i2 . . . ∈ CΣω.

For every x ∈
(⋃n−1

i=0 10m0i
)∗

10m0nΣω, we write

x = 10m0i1 . . . 10m0ip10m0nw
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with p ≥ 0, n > ij ≥ 0, and w ∈ Σω, we have

10m0i1 . . . 10m0ip10m0nw ∼= 0n20i12 . . . 20ipw ∈ CΣω.

For every x ∈
(⋃n−1

i=0 10m0i
)∗

10n0∗2Σω, we write

x = 10m0i1 . . . 10m0ip10n0q2w

where q ≥ 0, p ≥ 0, n > ij ≥ 0, and w ∈ Σω. If q ≥ m, we have

x = 10m0i1 . . . 10m0ip10n0m0q−m2w ∼= 0n20i12 . . . 20ip20q−m2w ∈ CΣω,

if q < m, we have

10m0i1 . . . 10m0ip(10n0q)2w = 10m0i1 . . . 10m0ip(10q0n)2w

∼= 10m0i1 . . . 10m0ip10q(10m0n)w

∈ (10m0i1 . . . 10m0ip)10q1Σω ⊆ CΣω

that prove the assertion. Thus Lω ⊆ C̃Lω. According to Lemma 2.6, we have a Lω ⊆ C̃ω. Thus C̃ω = Lω.
Now we prove that C̃ is an ω-code. Indeed, it is clear that C is a prefix code. Observe, further, that(

n−1⋃
i=0

10m0i

)ω

∩ Suff(Cω) = ∅,

and if there exists u ∈ Σ∗ and w ∈ Σω such that u10m0nw ∈ Cω, then u1 ∈ C+. We have thus R(L) ∩
(Cω × Cω) = ∅. Thus each ω-word in C̃ω has only one factorization on C̃. The proof is completed.

7.3.5. Proof of Claim 7.7

Assume that the basic relation of L is of the form

0z ∼= 1k0

with z ∈ Σ∗2 and k > 1. We will show that C̃ is a code generator of Lω, where

C =

k−1⋃
i=0

1i0 ∪ 1∗ (Σ \ {0, 1}) .

To prove that C̃ is a generator of Lω, we show first assertion: for every x ∈ Σω \ CΣω, there exists y ∈ CΣω

such that x ∼= y. Indeed, direct computation show that

Σω \ CΣω = 1ω ∪ 1∗1k0Σω.

For x = 1ω, we have

1ω ∼= 0zω ∈ CΣω,
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and for each x ∈ 1∗1k0Σω, we can write

x = 1q1pk0w with p ≥ 0, k > q ≥ 0, and w ∈ Σω

we have then

1q1pk0w ∼= 1q0zpw ∈ CΣω.

Thus we have Lω ⊆ C̃Lω. By Lemma 2.6, we have Lω ⊆ C̃ω. Thus C̃ω = Lω.
Now we prove that C̃ is a code. Indeed, it is clear that C is a prefix code. Moreover we have 1k0 /∈ Fact(C+), we

obtain R(L)∩ (C+ × C+) = ∅. Thus each words in C̃∗ has only one factorization on C̃. The proof is completed.

It is to be noticed that C̃ is not an ω-code because 10zω ∼= 0zω and {0, 10} ⊆ C.
Now we show that Lω has no ω-code generator. Indeed, for every i > 0, we have

0zi ∼= 1k0zi−1 ∼= 1k1k0zi−2 ∼= · · · ∼= 1ki0,

By passing to adherence, we obtain the relation 0zω ∼= 1ω. Thus

10zω ∼= 11ω = 1ω ∼= 0zω.

Since k > 1, it follows that 10zω ∼= 0zω is a minimal relation. Thus two words 0 and 10 are ∞-incompatible.
Moreover, it is easy to see that

AmbΣ(L) ∩ {0, 1}ω = {0, 1}∗{1k0}{0, 1}ω ∪ {0, 1}∗1ω

Since 1k /∈ Fact({10, 0}ω) with k > 1, it follows that AmbΣ(L) ∩ {10, 0}ω = ∅. By Proposition 4.12, Lω has no
ω-code generator.

7.3.6. Proof of Claim 7.8

Assume that the basic relation of L is of the form

02 ∼= (10m)k0

with k > 1 and m ≥ 1. We will show that C̃ is a code generator of Lω, where

C = {2} ∪
k−1⋃
i=0

(10m)i0 ∪ (10m)∗

(
{12} ∪ 1

(
m−1⋃
i=0

0i

)
(Σ \ {0, 2}) ∪ Σ \ {0, 1, 2}

)
.

To prove that C̃ is a generator of Lω, we show first assertion: for every x ∈ Σω \ CΣω, there exists y ∈ CΣω

such that x ∼= y. Indeed, direct computation show that

Σω \ CΣω = {(10m)ω} ∪ (10m)∗
(
{(10m)k0} ∪ 10+2

)
Σω.

For x = (10m)ω, we have

(10m)ω ∼= 02ω ∈ CΣω.
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For every x ∈ (10m)∗(10m)k0Σω, we can write x = (10m)q(10m)pk0w with p ≥ 0, k > q ≥ 0, and w ∈ Σω, we
have therefore

(10m)q(10m)pk0w′ ∼= (10m)q02p0w′ ∈ CΣω.

And for every x ∈ (10m)∗10+2Σω, we can write

x = (10m)q10p02w

with q ≥ 0,m > p ≥ 0 and w ∈ Σω. We have therefore

(10m)q10p02w′ ∼= (10m)q10p(10m)k0w′ ∈ (10m)q10p1Σω ⊆ CΣω.

Thus Lω ⊆ C̃Lω. By Lemma 2.6, we have Lω ⊆ C̃ω. Thus C̃ω = Lω.
Now we prove that C̃ is a code. Indeed, it is clear that C is a prefix code. Moreover, since (10m)k0 /∈ Fact(C+),

we obtain R(L) ∩ (C+ × C+) = ∅. This means that every words in C̃∗ has only one factorization on C̃. Hence

C̃ is a code.
It is to be noticed that that C̃ is not an ω-code because 10m02ω ∼= 02ω and {0, 10m0, 2} ⊆ C.
Now we show that Lω has no ω-code generator. Indeed, for every i > 0, we have

02i ∼= (10m)k02i−1 ∼= (10m)k(10m)k02i−2 ∼= · · · ∼= (10m)ki0.

By passing to adherence, we get 02ω ∼= (10m)ω. So

10m02ω ∼= 10m(10m)ω = (10m)ω ∼= 02ω.

Because k > 1, we have 10m02ω ∼= 02ω is a minimal relation. Thus two words 0 and 10m0 are∞-incompatible.
Moreover, it is easy to see that

AmbΣ(L) ∩ {0, 1}ω = {0, 1}∗{(10m)k0}{0, 1}ω ∪ {0, 1}∗(10m)ω

By Lemma 6.8, we have 10m1 /∈ Fact({10m0, 0}ω). Hence

AmbΣ(L) ∩ {10m0, 0}ω = ∅.

By Proposition 4.12, Lω has no ω-code generator.
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[8] I. Litovsky, Prefix-free languages as ω-generators. Inf. Process. Lett. 37 (1991) 61–65.

[9] I. Litovsky and E. Timmerman, On generators of rational ω-power languages. Theor. Comput. Sci. 53 (1987) 187–200.
[10] M. Lothaire, Algebraic Combinatorics on Words. Cambridge University Press (2002).



26 V.D. TRAN AND I. LITOVSKY

[11] M. Nivat, Infinitary Relations. In CAAP ’81: Proceedings of the 6th Colloquium on Trees in Algebra and Programming.
Springer (1981) 46–75.

[12] L. Staiger, On infinitary finite length codes. Theor. Inf. Appl. 20 (1986) 483–494.

[13] C. Wrathall, Confluence of One-Rule Thue Systems. Word Equations and Related Topics. Vol. 572 of Lecture Notes in Computer
Sciences. Springer (1992) 237–246.


	One-relation languages and code generators
	1 Introduction
	2 Preliminaries
	3 One-relation languages
	4 Generators and codes
	5 Proof of Theorem 1.1
	6 Technical lemmas
	7 Proof of Theorem 1.2 
	7.1 When OVL(u,v)= and OVL(v,u) = 
	7.2 When OVL(u,v)=  and OVL(v,u) = 
	7.3 When OVL(u,v) =  and OVL(v,u) = 
	7.3.1 Proof of Claim 7.3
	7.3.2 Proof of Claim 7.4
	7.3.3 Proof of Claim 7.5
	7.3.4 Proof of Claim 7.6
	7.3.5 Proof of Claim 7.7
	7.3.6 Proof of Claim 7.8



	References

