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UPPER BOUND FOR PALINDROMIC AND FACTOR COMPLEXITY
OF RICH WORDS

JOSEF RUKAVICKA®

Abstract. A finite word w of length n contains at most n + 1 distinct palindromic factors. If the
bound n + 1 is attained, the word w is called rich. An infinite word w is called rich if every finite factor
of w is rich.

Let w be a word (finite or infinite) over an alphabet with ¢ > 1 letters, let Fac.,(n) be the set of
factors of length n of the word w, and let Pal,, (n) C Facy(n) be the set of palindromic factors of length
n of the word w.

We present several upper bounds for |Fac,(n)| and | Pal,(n)|, where w is a rich word. Let § =
m. In particular we show that

‘ F&Cw (n)l S (4q2n)5 In 2n+2.
In 2007, Balazi, Masakova, and Pelantova showed that
| Paly (n)| + | Paly(n + 1)| < | Facw(n + 1)| — | Facw(n)| + 2,

where w is an infinite word whose set of factors is closed under reversal. We prove this inequality for
every finite word v with |v| > n + 1 and Fac,(n + 1) closed under reversal.
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1. INTRODUCTION

The field of combinatorics on words includes the study of palindromes and rich words. In recent years there
have appeared several articles concerning this topic [3, 5, 8, 17]. Recall that a palindrome is a word that is
equal to its reversal, such as “noon” and “level”. A word is called rich if it contains the maximal number of
palindromic factors. It is known that a word of length n can contain at most n + 1 palindromic factors, including
the empty word [8]. An infinite word w is rich if every finite factor of w is rich.

Rich words possess various properties; see, for instance [4, 7, 9]. We will use two of them. The first uses the
notion of a complete return. Given a word w and a factor r of w, we call the factor r a complete return to u
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2 J. RUKAVICKA

in w if r contains exactly two occurrences of u, one as a prefix and one as a suffix. A property of rich words is
that all complete returns to any palindromic factor u in w are palindromes [9].

The second property of rich words that we use says that a factor r of a rich word w is uniquely determined
by its longest palindromic prefix and its longest palindromic suffix [7]. Some generalizations of this property
may be found in [12].

In the current article we present upper bounds for the palindromic and factor complexity of rich words. In
other words, this means that we derive upper bounds for the number of palindromes and factors of given length
in a rich word w. There are already some related results; see below.

We start with some results that hold for arbitrary (not only rich) words.

Let us define Fac,,(n) to be the set of factors of length n of the word w, let Pal,,(n) be the set of palindromic
factors of length n of w, and let Fac,, = J >0 Facy (), where w is a finite or infinite word. Let w’ denote the
reversal of w = wiws . .. Wy_1w,, where w; are letters; formally w = w,w,_; ... wow,. We say that a set S of
finite words is closed under reversal if w € S implies that w? € S.

It is clear that |Pal,(n)| < |Fac,(n)|. Some less obvious inequalities are known. One of the interesting
inequalities is the following one [2, 4]. If w is an infinite word with Fac,, closed under reversal then

| Pal,(n)| + | Pal(w,n + 1)| < |Facy,(n + 1)| — | Facy, (n)| + 2. (1.1)

In [2] the authors proved the inequality (1.1) for uniformly recurrent words, but in the proof only “recurrent”
is applied. It is known that if Fac,, is closed under reversal, then w is recurrent ([6], Prop. 2.2). In Section 3 we
generalize (1.1) for every finite word v with Fac,(n + 1) closed under reversal, which allows us to improve our
upper bound from Section 2 for the factor complexity of finite rich words.

In [1], another inequality has been proven for infinite non-ultimately periodic words: | Pal, (n)| < 18| Fac,(n+
12).

! In [14], the authors show that a random word of length n contains, on expectation, ©(y/n) distinct palindromic
factors.

Now, let us focus on rich words.

Let II(n) denote the number of rich words of length n. If w is a rich word then obviously |Fac,,(n)| < II(n).
Hence the number of rich words forms the upper bound for the palindromic and factor complexity of rich words.
The number of rich words was investigated in [19], where the author gives a recursive lower bound on the number
of rich words of length n, and an upper bound on the number of binary rich words. Better results can be found
n [10]. The authors of [10] construct for each n a large set of rich words of length n. Their construction gives,
currently, the best lower bound on the number of binary rich words, namely

(1.2)

where p(n) is a polynomial and the constant C = 37.

Every factor of a rich word is also rich [9]. In other words, the language of rich words is factorial. In particular,
this means that II(n)II(m) > II(n + m) for all m,n € N. Therefore, Fekete’s lemma implies the existence of the
limit of {/II(n), and moreover [10]:

lim {/TI(n) = inf{ VII(n):n € N}.

n—oo

For a fixed ng, one can find the number of all rich words of length ny and obtain an upper bound on the
limit. Using a computer Rubinchik counted TI(n) for n < 60; see the sequence https://oeis.org/A216264. As
%/TI(60) < 1.605, he obtained an upper bound for the binary alphabet: II(n) < ¢1.605™ for some constant c
[10].
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In [15], the author shows that II(n) has a subexponential growth on every finite alphabet. Formally

lim {/II(n) = 1. This result is an argument in favor of a conjecture formulated in [10] saying that for some
n— oo

infinitely growing function g(n) the following holds for a binary alphabet:

n \/ﬁ
I(n) = o(m) .

As already mentioned, we construct upper bounds for palindromic and factor complexity of rich words. The
proof uses the following idea. Let u be a palindromic factor of a rich word w on the alphabet A, such that aub is
factor of w, where a,b € A and a # b. Let lpp(w) and Ips(w) denote the longest palindromic prefix and suffix of
w respectively. Then lpp(aub) and lps(aub) uniquely determine the factor aub in w [7]. Let Ipps(w) denote the
longest proper palindromic suffix of w. We show that a,b and lpps(u) also uniquely determine aub. In addition,
we observe that either |lpps(u)| < 1|u| or u contains a palindromic factor @ that uniquely determines u and
la] < %|u| We obtain a “short” palindrome and letters a, b that uniquely determine the “long” palindrome u in
the case when aub is a factor of w. In these “short” palindromes there are again other “shorter” palindromes,
and so on. As a consequence we present an upper bound for the number of factors of the form aub with |aub| = n.
The property of rich words that all complete returns to any palindromic factor u in w are palindromes [9] allows
us to prove that if w contains the factors xux and yuy, where z,y € A and x # y, then w must contain a factor
of the form aub, where a,b € A and a # b. This property demonstrates the relation between the factors aub and
palindromic factors zuxz. Due to this we derive an upper bound for the palindromic complexity of rich words.
With the upper bound for palindromic complexity, the property that each factor is uniquely determined by its
longest palindromic prefix and suffix [7], and the inequality (1.1) we obtain several upper bounds on palindromic
and factor complexity. The main result of the current article is the following theorem.

Theorem 1.1. If§ = m, w s a finite or infinite rich word over an alphabet with q > 1 letters, and n
18 a positive integer then

| Fan(’n)| S (4q2n)61n 2n+2.

The main result is a quasi-polynomial upper bound for factor complexity of rich words. This is much less
than the lower bound on the number of rich words; recall (1.2). Thus an infinite rich word can contain only a
small share of all finite rich words. This contrasts with power-free languages, where an infinite word can contain
all extendable finite words with the same power-freeness restriction [13, 16, 18].

2. PALINDROMIC AND FACTOR COMPLEXITY OF RICH WORDS

Consider an alphabet A with ¢ letters, where ¢ > 1. Let AT = >0 A7 denote the set of all nonempty words

over A, where A7 is the set of words of length j.
Let € denote the empty word, let A* = AT U {e}, and let

A* = {wjwows ... | w; € A and i > 0}

be the set of infinite words.

Let R, C A" be the set of rich words of length n > 0. Let R* = J,., R; and R* = R* U {}. In addition,
we define R C A* to be the set of infinite rich words. Let R = Rt U R*°.

Let lps(w) and lpp(w) be the longest palindromic suffix and the longest palindromic prefix of a word w € A*
respectively. Additionally, we introduce Ipps(w) to be the longest proper palindromic suffix and lppp(w) to be
the longest proper palindromic prefix, where |w| > 1; proper means that lpps(w) # w and lppp(w) # w. For a
word w with |w| < 1 we define lppp(w) = lpps(w) = e.
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Let w = wqws ... w, be a word, where w; € A. We define w[i] = w; and wli,j] = w;witq ... w;, where
0<i<j<n.
Moreover we define the following notation:

— P, C A™: the set of palindromes of length n > 0.

- Pt = U,>o P; (the set of all nonempty palindromes).

— Fac,,: the set of factors of the word w € A* U A*>.

— Facy(n) = {u | u € Facy,, and |u| = n} (the set of factors of length n).
Pal,, = (P* U{¢}) N Fac,, (the set of palindromic factors).

— Pal,(n) = Facy(n) NP, (the set of palindromic factors of length n).

Definition 2.1. Let trim(w) = w[2, |w| — 1], where w € A* and |w| > 2. For |w| < 2 we define trim(w) = e. If
S is a set of words, then

trim(S) = {trim(v) | v € S}.

Remark 2.2. The function trim(w) removes the first and last letter from w.
Example 2.3. Suppose that A ={0,1,2,3,4,5}.

~ trim(01123501) = 112350.

~ trim({12213,112,2, 344}) = {221, 1, ¢, 4}.

We will deal a lot with the words of the form aub, where u is a palindrome and a, b are distinct letters. Hence
we introduce some more notation for them.

Definition 2.4. Given w € R and n > 2, let

Swy,(n) = {aub | aub € Fac,(n) and u € Pal,(n — 2)
and a,b € A and a # b}.

If n < 2 then we define Sw,,(0) = Swy, (1) = Sw,,(2) = 0.
Let Swu,(n) = Usupesw, () {4, @), (u,b)}, where a,b € A. Let aub € Swy,(n), where a,b € A. We call the
word aub a u-switch of w. Alternatively we say that w contains a u-switch.

Remark 2.5. Note that a pair (u,a) € Sw,(n) if and only if there exists b € A such that aub € Sw,(n) or
bua € Swy,(n).

Example 2.6. If A=1{0,1,2,3,4,5,6} and
w = 5112211311001131133114111146

then:

— Swy,(8) = {51122113,31133114,14111146}.

~ trim(Sw,,(8)) = {112211, 113311, 411114}.

— Swy(8) = {(112211,3), (112211, 5), (113311, 3), (113311, 4),
(411114,1), (411114, 6)}.

— w does not contain 110011-switch. Formally 110011 ¢ trim(Sw,,(8)).

Remark 2.7. The idea of a u-switch is inspired by the next lemma. If a rich word w contains palindromes
aua, bub, where a,b € A, a # b, and |aua| = |bub| = n, then w contains a u-switch of length n. The u-switch
“switches” from a to b. Note that aua, bub € Fac,, does not imply that aub € Fac,, or bua € Fac,,. It may be,
for example, that auc, cub € Fac,,. Nonetheless (u, a), (u,b) € Sw,(n).
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Lemma 2.8. Suppose w € R and suppose u € Pal,,(n —2), where n > 2. If a,by,ba € A, [{a,b1,b2}| > 1, and
aua, byuby € Facy,(n) then (u,a) € Swy(n).

Remark 2.9. The condition |{a,b1,b2}| > 1 in Lemma 2.8 means that at least one letter is different from the
others.

Proof. Let r be a factor of w such that aua is unioccurrent in r and trim(r) is a complete return to u in w.
Since aua and byuby are factors of w, it is obvious that such r exists. Clearly there are x1,x2,y1,y2 € A such
that zquzs is a prefix of r and yiuys9 is a suffix of r. The complete return trim(r) to u is a palindrome [9]. Hence
Zo = y1. Since aua is unioccurrent in r, it follows that zo = y1 = a, 1 # Y2, and a € {x1,y2}. In consequence
we have that (u,a) € Sw,,(n). O

To clarify the previous proof, let us consider the following two examples. For both examples suppose that
A={1,2,3,4,5,6}.

Example 2.10. Let w = 321234321252126. Let aua = 32123 and byubg = 52126. Then r = 32123432125 and
trim(r) = 212343212 is a complete return to 212. Therefore (212,3) € Sw,,(5). Note that bjubs is not a factor
of r.

Example 2.11. Let w = 321234321252. Let aua = 32123 and zuy = byuby = 32125. Then r = 32123432125
and trim(r) = 212343212 is a complete return to 212. Therefore (212,3) € Sw,,(5). Note that byubsy is a factor
of r.

We show that the number of palindromic factors and the number of u-switches are related.

Proposition 2.12. Ifw € R and n > 2 then
2| Swy,(n)] + | Paly,(n — 2)| > | Paly,(n)].

Proof. Let w(w,n) = {aual|(u,a) € Sw,(n)}. Less formally said, w(w, n) is a set of palindromes of length n such
that if w contains a u-switch aub then aua,bub € w(w,n). Obviously we have that

|w(w, n)| < 2| Swy(n)]. (2.1)
Let
Pal,(n) = {v | v € Pal,(n) and trim(v) € trim(Sw,,(n))}
and
Pal,,(n) = {v | v € Pal,(n) and trim(v) & trim(Sw,, (1))}
Obviously Pal, (n) = Pal,(n) U Pal,(n) and Pal,(n) N Pal,(n) = 0. It follows that
|Paly, (n)| + |Paly,(n)| = | Paly(n)|. (2.2)

Suppose v € Pal,, (n) and let u = trim(v).

— If v € Pal,(n) then w contains a u-switch. From Lemma 2.8 it follows that v € w(w,n); this and (2.1)
imply that

[Pal, (n)] < |w(w,n)| < 2| Swy(n)]. (2.3)
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— If v ¢ Pal,,(n) then w does not contain a u-switch. We have that u € Paly,(n —2) \ trim(Sw,(n)). Obviously
if t € Pal,(n — 2) \ trim(Swy(n)), a,b € A, and w has palindromic factors ata and btb, then a = b since
w does not contain a t-switch. It follows that
|Pal,, (n)| < | Paly,(n — 2)|. (2.4)
The proposition follows from (2.2), (2.3), and (2.4). O

To clarify the previous proof, let us consider the following example.

Example 2.13. If A ={0,1,2,3,4,5,6,7,8} and

w = 2110112333211011454110116110116778776

then
~ Sw,(7) = {2110114,4110116},
- Palw(7) {1233321,2110112,1145411,6110116, 6778776},
~ Pal,(7) = {2110112, 6110116},
~ Pal,(7) = {1233321, 1145411, 6778776},
~ Pal,(5) = {23332,11011, 14541, 77877},
— 2|Sw,,(7)| + | Pal,(5)] > | Pal,(7)], and
- 4+4>5.

In the next proposition we show that if a,b are different letters and aub is a switch of a rich word w then the
longest proper palindromic suffix r of u and the letters a, b uniquely determine the palindromic factor u € Pal,,,.

Proposition 2.14. If w € R, u,v € Pal,, lpps(u) = lpps(v), a,b € A, a # b, and aub, avb € Fac,, then u =v.

Proof. Tt is known that if r,¢ are two factors of a rich word w and lps(r) = Ips(¢) and lpp(r) = lpp(t), then
r =1t [7]. We will identify a u-switch by the longest proper palindromic suffix of v and two distinct letters a, b
instead of by the functions lps and lpp.

Given a u-switch aub where a # b, a,b € A, we know that Ips(aud) and lpp(aub) uniquely determine the
factor aub in w. We will prove that for given a,b € A, a # b, n > 0, and a palindrome r there is at most one
palindrome u € Pal,, such that lpps(u) = r and aub € Sw,, (|aubdl).

Suppose, to get a contradiction, that there are w,v € Paly,, u # v, a,b € A, a # b such that lps(audb) =
bpb, lps(avdb) = bsb, lpp(aub) = aza, lpp(avb) = aya, lpps(u) = lpps(v) = r, and aub, avb € Uj>0 Sw,(j). This
implies that p, s,x,y are prefixes of r. Thus if z # y, then |z| # |y|. Without loss of generality, let |z| < |y.
Since y is a prefix of r, either ya is a prefix of r or r = y. Consequently aya is a prefix of both aub and avb,
and this contradicts the assumption that lpp(aub) = axa; aya is a prefix of aub and |aya| > |azal. Analogously
if p # s. It follows that x = y and p = s. Therefore lpp(aub) = lpp(avd) and lps(aub) = lps(avd), which would
imply that u = v, which is a contradiction.

Hence we conclude that a,b € A, a # b, and a palindrome 7 determine at most one palindrome u € Pal,, such
that Ipps(u) = r and w € trim(Swy, (Ju| + 2)). O

In the following we derive an upper bound for the number of u-switches. We need one more definition to be
able to partition the set Sw,,(n) into subsets based on the longest proper palindromic suffix.

Definition 2.15. Given w € R, r € RT and n > 0, let

YTu(n,r) ={u|u € Swy(n) and lpps(trim(u)) = r}.
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Remark 2.16. The set T,,(n,r) contains switches avd of length n of the word w such that the longest proper
palindromic suffix of v equals to r, where a, b are letters. Obviously | Yu(n,r) = Swy(n) and Ty (n,r) N
YTw(n,7)=0ifr £7.

rePaly,

A simple corollary of the previous proposition is that the size of the set Y,,(n,r) is limited by the constant
q(q — 1). Recall that g is the size of the alphabet A.

Corollary 2.17. If w,7 € R and n > 0 then |Y,(n,r)| < q(qg—1).
Proof. From Proposition 2.14 it follows that

[Tw(n, )| < {(a,b) | a,b € A and a # b}| = q(q—1).

In other words, |Y,,(n,r)| is equal or smaller that the number of pairs of distinct letters (a, b). O

We define ', (n) = max{|Swy (i) | 0 < i < n}, where w € R and n > 0. Furthermore we define T',(n) =
max{g, 'y (n)}.

Remark 2.18. We defined I',,(n) as the maximum from the set of sizes of Swy, (i), where 0 < ¢ < n. In addition,
we defined that T'y,(n) > ¢. This is just for practical reason to make the formulas easier; since we look for upper
bounds, this simplification is justified. The function T',,(n) will allow us to present another relation between the
number of palindromic factors of length n and the number of u-switches without using Pal,,(n — 2).

Lemma 2.19. Ifw € R andn > 0 then
nl'y(n) > | Pal,(n)]|.
Proof. We define two functions ¢ and ¢ as follows. If n is even then ¢(n) = 2, otherwise ¢(n) = 1. Let ¢(n) =

{2+ ¢(n), 4+ ¢(n),...,n}. For example ¢(8) = {4,6,8} and ¢(9) = {3,5,7,9}.
Proposition 2.12 states that

2| Swy,(n)| + | Paly,(n — 2)| > | Paly, (n)]. (2.5)
It follows that
2| Swy(n — 2)| + | Pal,(n — 4)| > | Paly,(n — 2)|. (2.6)
From (2.5) and (2.6):
2| Swy (n)] + 2| Swy, (n — 2)| 4+ Paly, (n — 4)| > | Pal,, (n)]. (2.7
In general (2.5) implies that
2| Swy(n —4)| + | Paly, (n — 2i)| > | Paly,(n — 4)|. (2.8)

Then by iterative applying of (2.8) to (2.7) we obtain that

> 2[Swu(j)| + | Paly(¢(n))| > | Paly(n)] (2.9)
Jj€B(n)

We have that |Pal,(¢(n))| < ¢; just consider that | Pal, (¢(n))| is the number of palindromes of length 1
or 2. Recall that I',,(n) > |Swy(j)| for 2 < j < n and realize that |¢(n)| < 251. It follows from (2.9) that
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(n—1)Ty(n) +q > | Paly,(n)]. It is easy to see that n'y,(n) > (n— 1)T'y(n) + ¢ for n > 0, since 'y, (n) > ¢. This
completes the proof. O

We will need to cope with the longest proper palindromic suffixes that are “too long”. We show that if
the longest proper palindromic suffix lpps(v) is longer the half of the length of v, then v contains a “short”
palindromic factor, that uniquely determines v. We will use the two following lemmas from [11]:

Lemma 2.20. (see [11], Lem. 1) Suppose p is a period of a nonempty palindrome w; then there are palindromes
a and b such that |ab| = p, b # ¢, and w = (ab)?a for some non-negative integer j.

Lemma 2.21. (see [11], Lem. 2) Suppose w is a palindrome and w is its proper suffiz-palindrome or prefiz-
palindrome; then the number |w| — |u| is a period of w.

Let u,v € PT such that u is a suffix of v and |u| < |v|. Lemma 2.21 implies that v is periodic with period
p = |v| — |u|. Lemma 2.20 implies that there are palindromes a,b such that b is nonempty and p = |ab| and
v = (ab)’a for some non-negative integer j. We define p(u,v) = (a,b) and p(u,v) = aba € P,

The next lemma is an obvious consequence of Lemma 2.20 and Lemma 2.21. It says that v is uniquely
determined by the palindrome p(u,v) and by the lengths of u and v.

Lemma 2.22. If uj,uy,v1,v2 € PT, 1| = |va|, Jur] = |ual, |ui| < |vi], ui is a suffiz of vi, ug is a suffiz of vy,
and p(uy,v1) = p(ug, va) then vy = vs.

Proof. Let p(u1,v1) = (a1,b1) and let p(ug,v2) = (azg,b2). Let p = |v1]| — |uz| = |va| — |ug|. Since p(uy,v1) =
p(ug, va), from Lemma 2.20 and Lemma 2.21 we have that p = |a1b1| = |agba|. Also it follows that a1b; = asby
and a1bia; = asbeas. In consequence we get that a; = as and b; = bs. This ends the proof. O

In the next lemma we consider a palindromic suffix u of a palindrome v, which is longer than the half of v.
For this case we show an upper bound for the length of the palindrome p(u, v).

Lemma 2.23. If u,v € PT, u is a suffiz of v, and |v| < |u| < |v]| then

() < [21ol].

Proof. Let (a,b) = p(u,v). It is easy to verify that 1|v| < |u| < |v| implies that j > 2, where v = (ab)’a.
Let ¢ be a positive real constant such that |aba| = ¢|(ab)?a|. For given a,b it is clear that ¢ decreases as j
|labal| _ 2|a|+]|b]

Tababa] = 3lalT2b]" The lemma follows. O

increases. Since j > 1 it follows that ¢ is maximal for j = 2. Thus ¢ <

We derive an upper bound for the number of u-switches.

Proposition 2.24. If w € R and n > 2 then

Proof. We partition the set Sw,,(n) into sets A,(w,n), Apps(w,n) as follows. Let avb € Sw,,(n) be a v-switch,
where a,b € A. If 1|v| < |lpps(v)| then avb € A,(w,n) otherwise avb € Ajyps(w,n). Obviously A,(w,n) N
Ajpps(w,n) = 0 and

Swy(n) = A,(w,n) U Ajpps(w, n). (2.10)

Let us investigate the sizes of A,(w,n) and Ajpps(w,n).

— If avb € A,(w, n) then let v = Ipps(v). We have that p(u,v), |u|, and |v| uniquely determine the palindrome

v; see Lemma 2.22. In addition, |p(u,v)| < [@L see Lemma 2.23. Realize that |v| = n — 2; then the
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number of all palindromic factors of w of length < [2(" 2)] multiplied by [252] (the number of different
values of |u|) must be bigger or equal to the size of trlm(Ap(w,n)). Realize that the set trim(A,(w,n))

contains palindromes of length n — 2. Since (@1 < [ %] we have that

L3

| trim (A, (w, n)

Since a, b are distinct letters it follows that
1A, (w,n))| < q(g — 1)| trim(A,(w,n))].

— If avb € Appps(w,n) then |Ipps(v)| < 3|v| = 252. Obviously we have that

Ajpps(w,n) = U Y. (n,r), where S = {r | r € Pal,, and |r
res

Since [252] < [ %] we have from Corollary 2.17 and (2.13) that

%
[3]

|Alpp§‘ <Q(Q*1) |Palw(3)‘
j=1

w3

It follows from (2.10), (2.11), (2.12), and (2.14) that

%)

Z | Pal,,(

| Sw(n)] < 2¢(g = 1)[

From Lemma 2.19 we know that | Pal,,(j)| < jTw(j). Therefore we have that

L% L%

> 1Palu() < 37 Tw(i) < %n%n““%n“'

To simplify the formulas, we apply that ¢(qg — 1) < ¢* and that [252] < 22 From (2.15) and (2.16):

From Definition of I',,(n) and (2.17) we get that

Iy (n) = max{g, max{|Swy(j)| | 0 < j < n}} < 2¢* ( )T (L*J)

This ends the proof.
We will need the following lemma in the proof of Corollary 2.26.

Lemma 2.25. If B > 1 is a real constant then HJ>1 7 < n?lnﬁ where k = HQ—ZJ

n—2

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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Proof.
n nnon n o n nk
LTt =< . 2.18
U5=5m 7575 219
We have that
k koo k(kt1)
[[67 =566 5" 18" = pam = g5 (2.19)
j=1
k k *
Then from (2.18) and (2.19): [[}51 37 < —5tem = ( ey ) .
- B2 B2
Since g > n:
k k
(ﬂ(’%l)> < (n%) = (n2)k < n2ts . This completes the proof. O

In order to simplify the notation let a = % and let § =

derive a non-recurrent upper bound for T, (n).

o = 5 " 55~ Based on Proposition 2.24 we will

Corollary 2.26. Ifw € R, and n > 2 then
Fw(n) < q(2q2n)6lnn.

Proof. Proposition 2.24 states that

Lu(n) < 26°(2)°Cu (L= ). (2.20)

Note that

F/I;QJJ = M&J /

where 31, 82 > 1 are real constants. Then the inequality (2.20) implies that

Fw(L%J) < 2q2(%)3Fw(LﬁJ). (2.21)
From (2.20) and (2.21):
Tu(n) <26 (2 Tu (|2 )) < 26%(2)*26%(=5) Tul| =5 )
< 20%(2)*2¢%(5)*20%(5) Tl 25 ) < -

(2.22)
eyl n
2, M3
< | IJ 2¢ (=) | Tw(2).

j=1
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Realize that

>1andL<1.

Inn = Inn —

aLlna arlna
Knowing that I',,(2) = ¢ and using Lemma 2.25 we obtain from (2.22):

3lnn

nn nn 3
Ly(n) < (2(]2){“7“ (n;hﬁ) r,2) < q(2q2n)21na .

This ends the proof. O
From Lemma 2.19 and Corollary 2.26 it follows easily:
Corollary 2.27. Ifw € R and n > 0 then

| Pal,(n)| < ng(2¢*n)°™m.

Remark 2.28. Although Corollary 2.26 requires n > 2, it is easy to verify that Corollary 2.27 holds also for
n = {1,2}. That is why we define n > 0 in Corollary 2.27.

We can simply apply the upper bound for the palindromic complexity to construct an upper bound for the
factor complexity:

Corollary 2.29. Ifw € R andn > 0 then
|Fan(n)| < n4q2(2q2n>26lnn.

Proof. We apply again the property of rich words that every factor is determined by its longest palindromic
prefix and its longest palindromic suffix [7]. If there are at most ¢ palindromic factors in w of length < n, then
clearly there can be at most ¢2 different factors of length n. Let Pal, (k) = max{| Pal,(j)| | 0 < j < k}. From
Corollary 2.27 we can deduce that

t < Z | Pal,, (i)| < nPal,(n) < n?q(2¢°n)"%2".
i=1

The corollary follows. O

3. RICH WORDS CLOSED UNDER REVERSAL

We can improve our upper bound for the factor complexity if we use the inequality (1.1). This inequality
was shown for infinite words whose set of factors is closed under reversal. The next lemma and proposition
generalize the existing proof for finite words w € AT with Fac,,(n + 1) closed under reversal.

First we introduce an alphabet B and an infinite word x(w). Let B = AU {z,y} be an alphabet such that
x,y € A; it follows that |B| = |A| 4+ 2. Given w € A, let k(w) = (wrwliy)>® € B>.

We show that k(w) preserves richness.

Lemma 3.1. If w € AT is rich then k(w) € B> is also rich.

Proof. We have that wz is rich, because w is rich and lps(wx) = z, which is a unioccurrent palindrome in wz
and wzw? is a palindromic closure of the rich word wz, which preserves richness [9]. As well wzw®y is rich,
because ¥ is a unioccurrent palindrome in wzwy. Suppose that (wzwy)’ is rich, where j is a positive integer.
We prove that (wzw!y)’*1! is rich.
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We have that lps(wrwfy)! = y(wrwfy)’~! and thus (wrwfy)/wrw!? is a palindromic closure which is rich.

Realize that Ips(wzwfy) ! = y(wrwfy)’ and y(wrwfy)? is unioccurrent in y(wzrw?y)i+1. Thus y(wrwlty)i+t
is rich. It follows that all prefixes of k(w) are rich. Since all factors of rich words are rich, we proved that all
factors of k(w) are rich. Consequently k(w) is rich. This completes the proof. O

The following proposition generalizes the inequality (1.1) for finite words. It is known that for rich infinite
words whose set of factors is closed under reversal, the inequality may be replaced with equality; this result has
been proved in [6]. We prove also the equality for finite rich words.

Proposition 3.2. If w € A", Fac,(n + 1) is closed under reversal, |lw| > n+ 1, and n > 0 then
| Pal, (n)| + | Paly(n 4+ 1)| < |Facy(n+ 1) — | Facy (n)| + 2.

If w is also rich then the inequality becomes equality, formally:
| Pal,, (n)| + | Pal,(n + 1)| = | Facy(n + 1)| — | Facy, (n)| + 2.

Proof. Let t = k(w) and let k € {n,n+ 1}. Clearly if Fac,,(n+ 1) is closed under reversal and i < n that Fac,, (i)
is also closed under reversal. Thus we have that

Fac,(k) = Facy, (k) U {uzv | u,v € A" and wu is a suffix of w and

v is a prefix of w® and |uzv| = k}U (3.1)
{uyv | u,v € A* and w is a suffix of w® and .

v is a prefix of w and |uyv| = k}.

The formula (3.1) says that the set of factors of ¢ having length k contains:

— the set of factors of w of length k,
— the set of factors of ¢ containing one occurrence of x, and
— the set of factors of ¢ containing one occurrence of y.

It is easy to see that there are no other factors in Facy(k). Moreover for every ¢ € {0,1,2,...,k — 1} there are
unique u € Fac,, (i) and v € Fac,(k — ¢ — 1) such that uzv € Fac, (k) (uyv € Faci(k)). It follows that

| Fact (k)| = | Facy, (k)| + 2k. (3.2)

Obviously ¢ contains exactly two palindromes r1,r9 such that 7,79 are not factors of w and |ri| = |ra| €
{n,n + 1}. In addition r; = uzu® and ry = vyv®? for some words u,v. Formally

Pal;(n + 1) U Paly(n) = Pal,(n + 1) U Pal,(n) U {uzu®® vyv® | u is a suffix of w and

v is a suffix of w! and |uzu| = [vyv®| € {n,n +1}}
It follows that
|Pal;(n + 1)| + | Pal;(n)| = | Pal,(n 4+ 1)| + | Paly, (n)| + 2. (3.3)

Clearly Fac; is closed under reversal; realize that ¢ has infinitely many palindromic prefixes. Consequently (1.1)
holds for ¢t. Then from (1.1), (3.2), and (3.3) we have that

| Paly(n)| + | Paly(n + 1)| < |Faci(n + 1)| — | Facy(n)| + 2
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and
| Pal, (n)| + | Paly(n 4+ 1)| + 2 < |Facy(n + 1) + 2(n + 1) — | Facy(n)| — 2n + 2. (3.4)
It follows from (3.4) that
| Pal,,(n)| + | Paly,(n + 1)] < | Facy(n + 1) — | Facy (n)] + 2.
If w is rich then Lemma 3.1 implies that ¢ is rich. Then it follows from [6], (3.2), and (3.3) that
| Paly(n)| + | Paliy(n + 1)| = | Faci(n + 1)| — | Facy(n)| + 2
and
| Pal,, (n)| + | Paly,(n + 1)| + 2 = | Fac, (n + 1)| + 2(n + 1) — | Fac,(n)| — 2n + 2. (3.5)
Tt follows from (3.5) that
| Paly, (n)| + | Paly(n + 1)| = |Facy(n 4+ 1)| — | Facy (n)] + 2.

This completes the proof. O
Based on Proposition 3.2 we can present a new relation for palindromic and factor complexity.

Proposition 3.3. Let Pal, (k) = max{| Pal,(j)| | 0 < j < k}. If w € R is a rich word such that Fac,(n + 1)
is closed under reversal, |{w| > n+1, and n > 0, then

| Facy (n)| < 2(n — 1)Paly,(n) — 2(n — 1) + q.
Proof. Proposition 3.2 states for rich words that
| Paly, (n)| + | Paly(n 4+ 1)| — 2 = | Facy (n + 1)| — | Facy (n)). (3.6)

Since Facy,(n + 1) closed under reversal, we have that Fac, (i) is closed under reversal for i < n 4 1. We can
sum (3.6) over all lengths i < n:

n—1 n—1

(| Paly ()] + | Paly (i + 1)] — 2) = 3 (| Pacy (i + 1)] — | Facy, (1)), (3.7)

i=1 i=1
The sums from (3.7) may be expressed as follows:

iﬂ Facy (i + 1)] — | Facy, (9)|) = Facy, (2) — Facy, (1) 4+ Facy, (3) — Facy, (2)

=1 (3.8)
+ Fac,, (4) — Facy(3) + - - - + Facy (n — 1) — Facy,(n — 2)

+ Facy, (n) — Facy,(n — 1) = Facy,(n) — Facy, (1).

n—1
> (| Paly (i) + | Paly (i + 1) — 2) < (n — 1)(Pal, (n — 1) + Pal, (n) — 2). (3.9)
i=1
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From (3.7), (3.8), and (3.9) we get:
Facy (n) — Facy (1) < (n — 1)(Paly(n — 1) + Paly(n) — 2).

It follows that

Facy,(n) < (n — 1)(2Paly,(n) — 2) 4+ Facy(1).
This can be reformulated as:

Facy(n) < 2(n — 1)Paly(n) — 2(n — 1) 4 Facy(1).

Since Fac,, (1) = ¢ it follows that

Facy,(n) < 2(n — 1)Paly(n) — 2(n — 1) + .
This completes the proof. O

Proposition 3.3 and Lemma 2.27 imply an improvement to our upper bound for the factor complexity for
rich words with Fac,,(n + 1) closed under reversal:

Corollary 3.4. If w € R with Fac,,(n + 1) closed under reversal, |lw| > n+1, and n > 0, then:
| Facy(n)] < 2(n — 1)ng(2¢*n)°™"™ —2(n — 1) +q.

Since the palindromic closure of finite rich words is closed under reversal, we can improve the upper bound
for factor complexity for finite rich words.

Corollary 3.5. If w € R and n > 0 then
| Facy (n)] < 2(2n — 1)2nqg(4¢*n)° ™2™ — 2(2n — 1) + q.

Proof. Palindromic closure w of a word w € R preserves richness. Furthermore Facy is closed under reversal,
Fac,, C Facy, and |w| < 2|w| [9]. Hence we can apply Corollary 3.4, where we replace n with 2n. O

Theorem 1.1 in the introduction presents a “simple” (although a somewhat worse) upper bound for the factor
complexity. Here follows the proof.

Proof of Theorem 1.1. Note that for n > 0 we have that

2(2n _ 1)2nq(4q2n)51n2n _ 2(2n _ 1) +q< 8n2q(4q2n)61n2n < (4q2n)61n2n+2.
The theorem follows from Corollary 3.5. O
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