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UPPER BOUND FOR PALINDROMIC AND FACTOR COMPLEXITY

OF RICH WORDS

Josef Rukavicka*

Abstract. A finite word w of length n contains at most n + 1 distinct palindromic factors. If the
bound n+ 1 is attained, the word w is called rich. An infinite word w is called rich if every finite factor
of w is rich.

Let w be a word (finite or infinite) over an alphabet with q > 1 letters, let Facw(n) be the set of
factors of length n of the word w, and let Palw(n) ⊆ Facw(n) be the set of palindromic factors of length
n of the word w.

We present several upper bounds for |Facw(n)| and |Palw(n)|, where w is a rich word. Let δ =
3

2(ln 3−ln 2)
. In particular we show that

|Facw(n)| ≤ (4q2n)δ ln 2n+2.

In 2007, Baláži, Masáková, and Pelantová showed that

|Palw(n)|+ |Palw(n+ 1)| ≤ |Facw(n+ 1)| − |Facw(n)|+ 2,

where w is an infinite word whose set of factors is closed under reversal. We prove this inequality for
every finite word v with |v| ≥ n+ 1 and Facv(n+ 1) closed under reversal.
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1. Introduction

The field of combinatorics on words includes the study of palindromes and rich words. In recent years there
have appeared several articles concerning this topic [3, 5, 8, 17]. Recall that a palindrome is a word that is
equal to its reversal, such as “noon” and “level”. A word is called rich if it contains the maximal number of
palindromic factors. It is known that a word of length n can contain at most n+ 1 palindromic factors, including
the empty word [8]. An infinite word w is rich if every finite factor of w is rich.

Rich words possess various properties; see, for instance [4, 7, 9]. We will use two of them. The first uses the
notion of a complete return. Given a word w and a factor r of w, we call the factor r a complete return to u

Keywords and phrases: Rich words, Palindromes, Palindromic complexity, Factor complexity.

Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague,
166 36 Prague 6, Czechia.

* Corresponding author: josef.rukavicka@seznam.cz

Article published by EDP Sciences c© EDP Sciences, 2021

https://doi.org/10.1051/ita/2020008
https://www.rairo-ita.org
mailto:josef.rukavicka@seznam.cz
http://www.edpsciences.org


2 J. RUKAVICKA

in w if r contains exactly two occurrences of u, one as a prefix and one as a suffix. A property of rich words is
that all complete returns to any palindromic factor u in w are palindromes [9].

The second property of rich words that we use says that a factor r of a rich word w is uniquely determined
by its longest palindromic prefix and its longest palindromic suffix [7]. Some generalizations of this property
may be found in [12].

In the current article we present upper bounds for the palindromic and factor complexity of rich words. In
other words, this means that we derive upper bounds for the number of palindromes and factors of given length
in a rich word w. There are already some related results; see below.

We start with some results that hold for arbitrary (not only rich) words.
Let us define Facw(n) to be the set of factors of length n of the word w, let Palw(n) be the set of palindromic

factors of length n of w, and let Facw =
⋃
j≥0 Facw(j), where w is a finite or infinite word. Let wR denote the

reversal of w = w1w2 . . . wn−1wn, where wi are letters; formally wR = wnwn−1 . . . w2w1. We say that a set S of
finite words is closed under reversal if w ∈ S implies that wR ∈ S.

It is clear that |Palw(n)| ≤ |Facw(n)|. Some less obvious inequalities are known. One of the interesting
inequalities is the following one [2, 4]. If w is an infinite word with Facw closed under reversal then

|Palw(n)|+ |Pal(w, n+ 1)| ≤ |Facw(n+ 1)| − |Facw(n)|+ 2. (1.1)

In [2] the authors proved the inequality (1.1) for uniformly recurrent words, but in the proof only “recurrent”
is applied. It is known that if Facw is closed under reversal, then w is recurrent ([6], Prop. 2.2). In Section 3 we
generalize (1.1) for every finite word v with Facv(n+ 1) closed under reversal, which allows us to improve our
upper bound from Section 2 for the factor complexity of finite rich words.

In [1], another inequality has been proven for infinite non-ultimately periodic words: |Palw(n)| < 16
n |Facw(n+

bn4 c)|.
In [14], the authors show that a random word of length n contains, on expectation, Θ(

√
n) distinct palindromic

factors.
Now, let us focus on rich words.
Let Π(n) denote the number of rich words of length n. If w is a rich word then obviously |Facw(n)| ≤ Π(n).

Hence the number of rich words forms the upper bound for the palindromic and factor complexity of rich words.
The number of rich words was investigated in [19], where the author gives a recursive lower bound on the number
of rich words of length n, and an upper bound on the number of binary rich words. Better results can be found
in [10]. The authors of [10] construct for each n a large set of rich words of length n. Their construction gives,
currently, the best lower bound on the number of binary rich words, namely

Π(n) ≥ C
√
n

p(n)
, (1.2)

where p(n) is a polynomial and the constant C ≈ 37.
Every factor of a rich word is also rich [9]. In other words, the language of rich words is factorial. In particular,

this means that Π(n)Π(m) ≥ Π(n+m) for all m,n ∈ N. Therefore, Fekete’s lemma implies the existence of the
limit of n

√
Π(n), and moreover [10]:

lim
n→∞

n
√

Π(n) = inf
{

n
√

Π(n) : n ∈ N
}
.

For a fixed n0, one can find the number of all rich words of length n0 and obtain an upper bound on the
limit. Using a computer Rubinchik counted Π(n) for n ≤ 60; see the sequence https://oeis.org/A216264. As
60
√

Π(60) < 1.605, he obtained an upper bound for the binary alphabet: Π(n) < c1.605n for some constant c
[10].

https://oeis.org/A216264
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In [15], the author shows that Π(n) has a subexponential growth on every finite alphabet. Formally
lim
n→∞

n
√

Π(n) = 1. This result is an argument in favor of a conjecture formulated in [10] saying that for some

infinitely growing function g(n) the following holds for a binary alphabet:

Π(n) = O
( n

g(n)

)√n
.

As already mentioned, we construct upper bounds for palindromic and factor complexity of rich words. The
proof uses the following idea. Let u be a palindromic factor of a rich word w on the alphabet A, such that aub is
factor of w, where a, b ∈ A and a 6= b. Let lpp(w) and lps(w) denote the longest palindromic prefix and suffix of
w respectively. Then lpp(aub) and lps(aub) uniquely determine the factor aub in w [7]. Let lpps(w) denote the
longest proper palindromic suffix of w. We show that a, b and lpps(u) also uniquely determine aub. In addition,
we observe that either | lpps(u)| ≤ 1

2 |u| or u contains a palindromic factor ū that uniquely determines u and
|ū| ≤ 1

2 |u|. We obtain a “short” palindrome and letters a, b that uniquely determine the “long” palindrome u in
the case when aub is a factor of w. In these “short” palindromes there are again other “shorter” palindromes,
and so on. As a consequence we present an upper bound for the number of factors of the form aub with |aub| = n.
The property of rich words that all complete returns to any palindromic factor u in w are palindromes [9] allows
us to prove that if w contains the factors xux and yuy, where x, y ∈ A and x 6= y, then w must contain a factor
of the form aub, where a, b ∈ A and a 6= b. This property demonstrates the relation between the factors aub and
palindromic factors xux. Due to this we derive an upper bound for the palindromic complexity of rich words.
With the upper bound for palindromic complexity, the property that each factor is uniquely determined by its
longest palindromic prefix and suffix [7], and the inequality (1.1) we obtain several upper bounds on palindromic
and factor complexity. The main result of the current article is the following theorem.

Theorem 1.1. If δ = 3
2(ln 3−ln 2) , w is a finite or infinite rich word over an alphabet with q > 1 letters, and n

is a positive integer then

|Facw(n)| ≤ (4q2n)δ ln 2n+2.

The main result is a quasi-polynomial upper bound for factor complexity of rich words. This is much less
than the lower bound on the number of rich words; recall (1.2). Thus an infinite rich word can contain only a
small share of all finite rich words. This contrasts with power-free languages, where an infinite word can contain
all extendable finite words with the same power-freeness restriction [13, 16, 18].

2. Palindromic and factor complexity of rich words

Consider an alphabet A with q letters, where q > 1. Let A+ =
⋃
j>0A

j denote the set of all nonempty words

over A, where Aj is the set of words of length j.
Let ε denote the empty word, let A∗ = A+ ∪ {ε}, and let

A∞ = {w1w2w3 . . . | wi ∈ A and i > 0}

be the set of infinite words.
Let Rn ⊆ An be the set of rich words of length n ≥ 0. Let R+ =

⋃
j>0Rj and R∗ = R+ ∪ {ε}. In addition,

we define R∞ ⊆ A∞ to be the set of infinite rich words. Let R = R+ ∪R∞.
Let lps(w) and lpp(w) be the longest palindromic suffix and the longest palindromic prefix of a word w ∈ A∗

respectively. Additionally, we introduce lpps(w) to be the longest proper palindromic suffix and lppp(w) to be
the longest proper palindromic prefix, where |w| > 1; proper means that lpps(w) 6= w and lppp(w) 6= w. For a
word w with |w| ≤ 1 we define lppp(w) = lpps(w) = ε.
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Let w = w1w2 . . . wn be a word, where wi ∈ A. We define w[i] = wi and w[i, j] = wiwi+1 . . . wj , where
0 < i ≤ j ≤ n.

Moreover we define the following notation:

– Pn ⊂ An: the set of palindromes of length n ≥ 0.
– P+ =

⋃
j>0 Pj (the set of all nonempty palindromes).

– Facw: the set of factors of the word w ∈ A∗ ∪A∞.
– Facw(n) = {u | u ∈ Facw and |u| = n} (the set of factors of length n).
– Palw = (P+ ∪{ε}) ∩ Facw (the set of palindromic factors).
– Palw(n) = Facw(n) ∩ Pn (the set of palindromic factors of length n).

Definition 2.1. Let trim(w) = w[2, |w| − 1], where w ∈ A∗ and |w| > 2. For |w| ≤ 2 we define trim(w) = ε. If
S is a set of words, then

trim(S) = {trim(v) | v ∈ S}.

Remark 2.2. The function trim(w) removes the first and last letter from w.

Example 2.3. Suppose that A = {0, 1, 2, 3, 4, 5}.

– trim(01123501) = 112350.
– trim({12213, 112, 2, 344}) = {221, 1, ε, 4}.

We will deal a lot with the words of the form aub, where u is a palindrome and a, b are distinct letters. Hence
we introduce some more notation for them.

Definition 2.4. Given w ∈ R and n > 2, let

Sww(n) = {aub | aub ∈ Facw(n) and u ∈ Palw(n− 2)

and a, b ∈ A and a 6= b}.

If n ≤ 2 then we define Sww(0) = Sww(1) = Sww(2) = ∅.
Let S̄ww(n) =

⋃
aub∈Sww(n){(u, a), (u, b)}, where a, b ∈ A. Let aub ∈ Sww(n), where a, b ∈ A. We call the

word aub a u-switch of w. Alternatively we say that w contains a u-switch.

Remark 2.5. Note that a pair (u, a) ∈ S̄ww(n) if and only if there exists b ∈ A such that aub ∈ Sww(n) or
bua ∈ Sww(n).

Example 2.6. If A = {0, 1, 2, 3, 4, 5, 6} and

w = 5112211311001131133114111146

then:

– Sww(8) = {51122113, 31133114, 14111146}.
– trim(Sww(8)) = {112211, 113311, 411114}.
– S̄ww(8) = {(112211, 3), (112211, 5), (113311, 3), (113311, 4),

(411114, 1), (411114, 6)}.
– w does not contain 110011-switch. Formally 110011 6∈ trim(Sww(8)).

Remark 2.7. The idea of a u-switch is inspired by the next lemma. If a rich word w contains palindromes
aua, bub, where a, b ∈ A, a 6= b, and |aua| = |bub| = n, then w contains a u-switch of length n. The u-switch
“switches” from a to b. Note that aua, bub ∈ Facw does not imply that aub ∈ Facw or bua ∈ Facw. It may be,
for example, that auc, cub ∈ Facw. Nonetheless (u, a), (u, b) ∈ S̄ww(n).
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Lemma 2.8. Suppose w ∈ R and suppose u ∈ Palw(n− 2), where n > 2. If a, b1, b2 ∈ A, |{a, b1, b2}| > 1, and
aua, b1ub2 ∈ Facw(n) then (u, a) ∈ S̄ww(n).

Remark 2.9. The condition |{a, b1, b2}| > 1 in Lemma 2.8 means that at least one letter is different from the
others.

Proof. Let r be a factor of w such that aua is unioccurrent in r and trim(r) is a complete return to u in w.
Since aua and b1ub2 are factors of w, it is obvious that such r exists. Clearly there are x1, x2, y1, y2 ∈ A such
that x1ux2 is a prefix of r and y1uy2 is a suffix of r. The complete return trim(r) to u is a palindrome [9]. Hence
x2 = y1. Since aua is unioccurrent in r, it follows that x2 = y1 = a, x1 6= y2, and a ∈ {x1, y2}. In consequence
we have that (u, a) ∈ S̄ww(n).

To clarify the previous proof, let us consider the following two examples. For both examples suppose that
A = {1, 2, 3, 4, 5, 6}.

Example 2.10. Let w = 321234321252126. Let aua = 32123 and b1ub2 = 52126. Then r = 32123432125 and
trim(r) = 212343212 is a complete return to 212. Therefore (212, 3) ∈ S̄ww(5). Note that b1ub2 is not a factor
of r.

Example 2.11. Let w = 321234321252. Let aua = 32123 and xuy = b1ub2 = 32125. Then r = 32123432125
and trim(r) = 212343212 is a complete return to 212. Therefore (212, 3) ∈ S̄ww(5). Note that b1ub2 is a factor
of r.

We show that the number of palindromic factors and the number of u-switches are related.

Proposition 2.12. If w ∈ R and n > 2 then

2|Sww(n)|+ |Palw(n− 2)| ≥ |Palw(n)|.

Proof. Let ω(w, n) = {aua|(u, a) ∈ S̄ww(n)}. Less formally said, ω(w, n) is a set of palindromes of length n such
that if w contains a u-switch aub then aua, bub ∈ ω(w, n). Obviously we have that

|ω(w, n)| ≤ 2|Sww(n)|. (2.1)

Let

P̃alw(n) = {v | v ∈ Palw(n) and trim(v) ∈ trim(Sww(n))}

and

Ṗalw(n) = {v | v ∈ Palw(n) and trim(v) 6∈ trim(Sww(n))}.

Obviously Palw(n) = P̃alw(n) ∪ Ṗalw(n) and P̃alw(n) ∩ Ṗalw(n) = ∅. It follows that

|P̃alw(n)|+ |Ṗalw(n)| = |Palw(n)|. (2.2)

Suppose v ∈ Palw(n) and let u = trim(v).

– If v ∈ P̃alw(n) then w contains a u-switch. From Lemma 2.8 it follows that v ∈ ω(w, n); this and (2.1)
imply that

|P̃alw(n)| ≤ |ω(w, n)| ≤ 2|Sww(n)|. (2.3)
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– If v 6∈ P̃alw(n) then w does not contain a u-switch. We have that u ∈ Palw(n−2)\ trim(Sww(n)). Obviously
if t ∈ Palw(n− 2) \ trim(Sww(n)), a, b ∈ A, and w has palindromic factors ata and btb, then a = b since
w does not contain a t-switch. It follows that

|Ṗalw(n)| ≤ |Palw(n− 2)|. (2.4)

The proposition follows from (2.2), (2.3), and (2.4).

To clarify the previous proof, let us consider the following example.

Example 2.13. If A = {0, 1, 2, 3, 4, 5, 6, 7, 8} and

w = 2110112333211011454110116110116778776

then

– Sww(7) = {2110114, 4110116},
– Palw(7) = {1233321, 2110112, 1145411, 6110116, 6778776},
– P̃alw(7) = {2110112, 6110116},
– Ṗalw(7) = {1233321, 1145411, 6778776},
– Palw(5) = {23332, 11011, 14541, 77877},
– 2|Sww(7)|+ |Palw(5)| ≥ |Palw(7)|, and
– 4 + 4 > 5.

In the next proposition we show that if a, b are different letters and aub is a switch of a rich word w then the
longest proper palindromic suffix r of u and the letters a, b uniquely determine the palindromic factor u ∈ Palw.

Proposition 2.14. If w ∈ R, u, v ∈ Palw, lpps(u) = lpps(v), a, b ∈ A, a 6= b, and aub, avb ∈ Facw then u = v.

Proof. It is known that if r, t are two factors of a rich word w and lps(r) = lps(t) and lpp(r) = lpp(t), then
r = t [7]. We will identify a u-switch by the longest proper palindromic suffix of u and two distinct letters a, b
instead of by the functions lps and lpp.

Given a u-switch aub where a 6= b, a, b ∈ A, we know that lps(aub) and lpp(aub) uniquely determine the
factor aub in w. We will prove that for given a, b ∈ A, a 6= b, n ≥ 0, and a palindrome r there is at most one
palindrome u ∈ Palw such that lpps(u) = r and aub ∈ Sww(|aub|).

Suppose, to get a contradiction, that there are u, v ∈ Palw, u 6= v, a, b ∈ A, a 6= b such that lps(aub) =
bpb, lps(avb) = bsb, lpp(aub) = axa, lpp(avb) = aya, lpps(u) = lpps(v) = r, and aub, avb ∈

⋃
j>0 Sww(j). This

implies that p, s, x, y are prefixes of r. Thus if x 6= y, then |x| 6= |y|. Without loss of generality, let |x| < |y|.
Since y is a prefix of r, either ya is a prefix of r or r = y. Consequently aya is a prefix of both aub and avb,
and this contradicts the assumption that lpp(aub) = axa; aya is a prefix of aub and |aya| > |axa|. Analogously
if p 6= s. It follows that x = y and p = s. Therefore lpp(aub) = lpp(avb) and lps(aub) = lps(avb), which would
imply that u = v, which is a contradiction.

Hence we conclude that a, b ∈ A, a 6= b, and a palindrome r determine at most one palindrome u ∈ Palw such
that lpps(u) = r and u ∈ trim(Sww(|u|+ 2)).

In the following we derive an upper bound for the number of u-switches. We need one more definition to be
able to partition the set Sww(n) into subsets based on the longest proper palindromic suffix.

Definition 2.15. Given w ∈ R, r ∈ R+ and n ≥ 0, let

Υw(n, r) = {u | u ∈ Sww(n) and lpps(trim(u)) = r}.



UPPER BOUND FOR PALINDROMIC AND FACTOR COMPLEXITY OF RICH WORDS 7

Remark 2.16. The set Υw(n, r) contains switches avb of length n of the word w such that the longest proper
palindromic suffix of v equals to r, where a, b are letters. Obviously

⋃
r∈Palw Υw(n, r) = Sww(n) and Υw(n, r)∩

Υw(n, r̄) = ∅ if r 6= r̄.

A simple corollary of the previous proposition is that the size of the set Υw(n, r) is limited by the constant
q(q − 1). Recall that q is the size of the alphabet A.

Corollary 2.17. If w, r ∈ R and n ≥ 0 then |Υw(n, r)| ≤ q(q − 1).

Proof. From Proposition 2.14 it follows that

|Υw(n, r)| ≤ |{(a, b) | a, b ∈ A and a 6= b}| = q(q − 1).

In other words, |Υw(n, r)| is equal or smaller that the number of pairs of distinct letters (a, b).

We define Γ̄w(n) = max{|Sww(i)| | 0 ≤ i ≤ n}, where w ∈ R and n ≥ 0. Furthermore we define Γw(n) =
max{q, Γ̄w(n)}.

Remark 2.18. We defined Γw(n) as the maximum from the set of sizes of Sww(i), where 0 ≤ i ≤ n. In addition,
we defined that Γw(n) ≥ q. This is just for practical reason to make the formulas easier; since we look for upper
bounds, this simplification is justified. The function Γw(n) will allow us to present another relation between the
number of palindromic factors of length n and the number of u-switches without using Palw(n− 2).

Lemma 2.19. If w ∈ R and n > 0 then

nΓw(n) ≥ |Palw(n)|.

Proof. We define two functions φ̄ and φ as follows. If n is even then φ̄(n) = 2, otherwise φ̄(n) = 1. Let φ(n) =
{2 + φ̄(n), 4 + φ̄(n), . . . , n}. For example φ(8) = {4, 6, 8} and φ(9) = {3, 5, 7, 9}.

Proposition 2.12 states that

2|Sww(n)|+ |Palw(n− 2)| ≥ |Palw(n)|. (2.5)

It follows that

2|Sww(n− 2)|+ |Palw(n− 4)| ≥ |Palw(n− 2)|. (2.6)

From (2.5) and (2.6):

2|Sww(n)|+ 2|Sww(n− 2)|+ Palw(n− 4)| ≥ |Palw(n)|. (2.7)

In general (2.5) implies that

2|Sww(n− i)|+ |Palw(n− 2i)| ≥ |Palw(n− i)|. (2.8)

Then by iterative applying of (2.8) to (2.7) we obtain that∑
j∈φ(n)

2|Sww(j)|+ |Palw(φ̄(n))| ≥ |Palw(n)| (2.9)

We have that |Palw(φ̄(n))| ≤ q; just consider that |Palw(φ̄(n))| is the number of palindromes of length 1
or 2. Recall that Γw(n) ≥ | Sww(j)| for 2 < j < n and realize that |φ(n)| ≤ n−1

2 . It follows from (2.9) that
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(n− 1)Γw(n) + q ≥ |Palw(n)|. It is easy to see that nΓw(n) ≥ (n− 1)Γw(n) + q for n > 0, since Γw(n) ≥ q. This
completes the proof.

We will need to cope with the longest proper palindromic suffixes that are “too long”. We show that if
the longest proper palindromic suffix lpps(v) is longer the half of the length of v, then v contains a “short”
palindromic factor, that uniquely determines v. We will use the two following lemmas from [11]:

Lemma 2.20. (see [11], Lem. 1) Suppose p is a period of a nonempty palindrome w; then there are palindromes
a and b such that |ab| = p, b 6= ε, and w = (ab)ja for some non-negative integer j.

Lemma 2.21. (see [11], Lem. 2) Suppose w is a palindrome and u is its proper suffix-palindrome or prefix-
palindrome; then the number |w| − |u| is a period of w.

Let u, v ∈ P+ such that u is a suffix of v and |u| < |v|. Lemma 2.21 implies that v is periodic with period
p = |v| − |u|. Lemma 2.20 implies that there are palindromes a, b such that b is nonempty and p = |ab| and
v = (ab)ja for some non-negative integer j. We define ρ̄(u, v) = (a, b) and ρ(u, v) = aba ∈ P+.

The next lemma is an obvious consequence of Lemma 2.20 and Lemma 2.21. It says that v is uniquely
determined by the palindrome ρ(u, v) and by the lengths of u and v.

Lemma 2.22. If u1, u2, v1, v2 ∈ P+, |v1| = |v2|, |u1| = |u2|, |u1| < |v1|, u1 is a suffix of v1, u2 is a suffix of v2,
and ρ(u1, v1) = ρ(u2, v2) then v1 = v2.

Proof. Let ρ̄(u1, v1) = (a1, b1) and let ρ(u2, v2) = (a2, b2). Let p = |v1| − |u1| = |v2| − |u2|. Since ρ(u1, v1) =
ρ(u2, v2), from Lemma 2.20 and Lemma 2.21 we have that p = |a1b1| = |a2b2|. Also it follows that a1b1 = a2b2
and a1b1a1 = a2b2a2. In consequence we get that a1 = a2 and b1 = b2. This ends the proof.

In the next lemma we consider a palindromic suffix u of a palindrome v, which is longer than the half of v.
For this case we show an upper bound for the length of the palindrome ρ(u, v).

Lemma 2.23. If u, v ∈ P+, u is a suffix of v, and 1
2 |v| ≤ |u| < |v| then

ρ(u, v) ≤ d2
3
|v|e.

Proof. Let (a, b) = ρ̄(u, v). It is easy to verify that 1
2 |v| ≤ |u| < |v| implies that j ≥ 2, where v = (ab)ja.

Let c be a positive real constant such that |aba| = c|(ab)ja|. For given a, b it is clear that c decreases as j

increases. Since j > 1 it follows that c is maximal for j = 2. Thus c ≤ |aba|
|ababa| = 2|a|+|b|

3|a|+2|b| . The lemma follows.

We derive an upper bound for the number of u-switches.

Proposition 2.24. If w ∈ R and n > 2 then

Γw(n) ≤ 2q2(
2n

3
)3Γw(b2n

3
c).

Proof. We partition the set Sww(n) into sets ∆ρ(w, n),∆lpps(w, n) as follows. Let avb ∈ Sww(n) be a v-switch,
where a, b ∈ A. If 1

2 |v| ≤ | lpps(v)| then avb ∈ ∆ρ(w, n) otherwise avb ∈ ∆lpps(w, n). Obviously ∆ρ(w, n) ∩
∆lpps(w, n) = ∅ and

Sww(n) = ∆ρ(w, n) ∪∆lpps(w, n). (2.10)

Let us investigate the sizes of ∆ρ(w, n) and ∆lpps(w, n).

– If avb ∈ ∆ρ(w, n) then let u = lpps(v). We have that ρ(u, v), |u|, and |v| uniquely determine the palindrome

v; see Lemma 2.22. In addition, |ρ(u, v)| ≤ d 2|v|3 e; see Lemma 2.23. Realize that |v| = n − 2; then the
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number of all palindromic factors of w of length ≤ d 2(n−2)3 e multiplied by dn−22 e (the number of different
values of |u|) must be bigger or equal to the size of trim(∆ρ(w, n)). Realize that the set trim(∆ρ(w, n))

contains palindromes of length n− 2. Since d 2(n−2)3 e ≤ b 2n3 c we have that

| trim(∆ρ(w, n))| ≤ dn− 2

2
e
b 2n3 c∑
j=1

|Palw(j)|. (2.11)

Since a, b are distinct letters it follows that

|∆ρ(w, n))| ≤ q(q − 1)| trim(∆ρ(w, n))|. (2.12)

– If avb ∈ ∆lpps(w, n) then | lpps(v)| < 1
2 |v| =

n−2
2 . Obviously we have that

∆lpps(w, n) =
⋃
r∈S

Υw(n, r), where S = {r | r ∈ Palw and |r| < n− 2

2
}. (2.13)

Since dn−22 e ≤ b
n
2 c we have from Corollary 2.17 and (2.13) that

|∆lpps| ≤ q(q − 1)

bn2 c∑
j=1

|Palw(j)|. (2.14)

It follows from (2.10), (2.11), (2.12), and (2.14) that

|Sww(n)| ≤ 2q(q − 1)dn− 2

2
e
b 2n3 c∑
j=1

|Palw(j)|. (2.15)

From Lemma 2.19 we know that |Palw(j)| ≤ jΓw(j). Therefore we have that

b 2n3 c∑
j=1

|Palw(j)| ≤
b 2n3 c∑
j=1

jΓw(j) ≤ 2n

3

2n

3
Γw(b2n

3
c). (2.16)

To simplify the formulas, we apply that q(q − 1) < q2 and that dn−22 e ≤
2n
3 . From (2.15) and (2.16):

|Sww(n)| ≤ 2q2(
2n

3
)3Γw(b2n

3
c). (2.17)

From Definition of Γw(n) and (2.17) we get that

Γw(n) = max{q,max{|Sww(j)| | 0 ≤ j ≤ n}} ≤ 2q2(
2n

3
)3Γw(b2n

3
c).

This ends the proof.

We will need the following lemma in the proof of Corollary 2.26.

Lemma 2.25. If β > 1 is a real constant then
∏k
j≥1

n
βj ≤ n

lnn
2 ln β , where k = b lnnln β c.
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Proof.

k∏
j≥1

n

βj
=
n

β

n

β2

n

β3
. . .

n

βk−1
n

βk
≤ nk∏k

j=1 β
j
. (2.18)

We have that

k∏
j=1

βj = ββ2β3 . . . βk−1βk = β
∑k
j=1 j = β

k(k+1)
2 . (2.19)

Then from (2.18) and (2.19):
∏k
j≥1

n
βj ≤

nk

β
k(k+1)

2

=

(
n

β
(k+1)

2

)k
.

Since βk+1 ≥ n:(
n

β
(k+1)

2

)k
≤
(
n

n
1
2

)k
= (n

1
2 )k ≤ n

lnn
2 ln β . This completes the proof.

In order to simplify the notation let α = 3
2 and let δ = 3

2 lnα = 3
2(ln 3−ln 2) . Based on Proposition 2.24 we will

derive a non-recurrent upper bound for Γw(n).

Corollary 2.26. If w ∈ R, and n > 2 then

Γw(n) ≤ q(2q2n)δ lnn.

Proof. Proposition 2.24 states that

Γw(n) ≤ 2q2(
n

α
)3Γw(bn

α
c). (2.20)

Note that ⌊
b nβ1
c

β2

⌋
≤
⌊

n

β1β2

⌋
,

where β1, β2 ≥ 1 are real constants. Then the inequality (2.20) implies that

Γw(b n
αj
c) ≤ 2q2(

n

αj+1
)3Γw(b n

αj+1
c). (2.21)

From (2.20) and (2.21):

Γw(n) ≤ 2q2(
n

α
)3Γw(bn

α
c) ≤ 2q2(

n

α
)32q2(

n

α2
)3Γw(b n

α2
c)

≤ 2q2(
n

α
)32q2(

n

α2
)32q2(

n

α3
)3Γw(b n

α3
c) ≤ . . .

≤

b lnnlnα c∏
j≥1

2q2(
n

αj
)3

Γw(2).

(2.22)
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Realize that

n

αb
lnn
lnα c

≥ 1 and
n

αd
lnn
lnα e

≤ 1.

Knowing that Γw(2) = q and using Lemma 2.25 we obtain from (2.22):

Γw(n) ≤ (2q2)
lnn
lnα

(
n

lnn
2 lnα

)3
Γw(2) ≤ q(2q2n)

3 lnn
2 lnα .

This ends the proof.

From Lemma 2.19 and Corollary 2.26 it follows easily:

Corollary 2.27. If w ∈ R and n > 0 then

|Palw(n)| ≤ nq(2q2n)δ lnn.

Remark 2.28. Although Corollary 2.26 requires n > 2, it is easy to verify that Corollary 2.27 holds also for
n = {1, 2}. That is why we define n > 0 in Corollary 2.27.

We can simply apply the upper bound for the palindromic complexity to construct an upper bound for the
factor complexity:

Corollary 2.29. If w ∈ R and n > 0 then

|Facw(n)| ≤ n4q2(2q2n)2δ lnn.

Proof. We apply again the property of rich words that every factor is determined by its longest palindromic
prefix and its longest palindromic suffix [7]. If there are at most t palindromic factors in w of length ≤ n, then

clearly there can be at most t2 different factors of length n. Let P̂alw(k) = max{|Palw(j)| | 0 ≤ j ≤ k}. From
Corollary 2.27 we can deduce that

t ≤
n∑
i=1

|Palw(i)| ≤ nP̂alw(n) ≤ n2q(2q2n)log2 n.

The corollary follows.

3. Rich words closed under reversal

We can improve our upper bound for the factor complexity if we use the inequality (1.1). This inequality
was shown for infinite words whose set of factors is closed under reversal. The next lemma and proposition
generalize the existing proof for finite words w ∈ A+ with Facw(n+ 1) closed under reversal.

First we introduce an alphabet B and an infinite word κ(w). Let B = A ∪ {x, y} be an alphabet such that
x, y 6∈ A; it follows that |B| = |A|+ 2. Given w ∈ A+, let κ(w) = (wxwRy)∞ ∈ B∞.

We show that κ(w) preserves richness.

Lemma 3.1. If w ∈ A+ is rich then κ(w) ∈ B∞ is also rich.

Proof. We have that wx is rich, because w is rich and lps(wx) = x, which is a unioccurrent palindrome in wx
and wxwR is a palindromic closure of the rich word wx, which preserves richness [9]. As well wxwRy is rich,
because y is a unioccurrent palindrome in wxwRy. Suppose that (wxwRy)j is rich, where j is a positive integer.
We prove that (wxwRy)j+1 is rich.
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We have that lps(wxwRy)j = y(wxwRy)j−1 and thus (wxwRy)jwxwR is a palindromic closure which is rich.
Realize that lps(wxwRy)j+1 = y(wxwRy)j and y(wxwRy)j is unioccurrent in y(wxwRy)j+1. Thus y(wxwRy)j+1

is rich. It follows that all prefixes of κ(w) are rich. Since all factors of rich words are rich, we proved that all
factors of κ(w) are rich. Consequently κ(w) is rich. This completes the proof.

The following proposition generalizes the inequality (1.1) for finite words. It is known that for rich infinite
words whose set of factors is closed under reversal, the inequality may be replaced with equality; this result has
been proved in [6]. We prove also the equality for finite rich words.

Proposition 3.2. If w ∈ A+, Facw(n+ 1) is closed under reversal, |w| ≥ n+ 1, and n > 0 then

|Palw(n)|+ |Palw(n+ 1)| ≤ |Facw(n+ 1)| − |Facw(n)|+ 2.

If w is also rich then the inequality becomes equality, formally:

|Palw(n)|+ |Palw(n+ 1)| = |Facw(n+ 1)| − |Facw(n)|+ 2.

Proof. Let t = κ(w) and let k ∈ {n, n+ 1}. Clearly if Facw(n+ 1) is closed under reversal and i ≤ n that Facw(i)
is also closed under reversal. Thus we have that

Fact(k) = Facw(k) ∪ {uxv | u, v ∈ A∗ and u is a suffix of w and

v is a prefix of wR and |uxv| = k}∪
{uyv | u, v ∈ A∗ and u is a suffix of wR and

v is a prefix of w and |uyv| = k}.

(3.1)

The formula (3.1) says that the set of factors of t having length k contains:

– the set of factors of w of length k,
– the set of factors of t containing one occurrence of x, and
– the set of factors of t containing one occurrence of y.

It is easy to see that there are no other factors in Fact(k). Moreover for every i ∈ {0, 1, 2, . . . , k − 1} there are
unique u ∈ Facw(i) and v ∈ Facw(k − i− 1) such that uxv ∈ Fact(k) (uyv ∈ Fact(k)). It follows that

|Fact(k)| = |Facw(k)|+ 2k. (3.2)

Obviously t contains exactly two palindromes r1, r2 such that r1, r2 are not factors of w and |r1| = |r2| ∈
{n, n+ 1}. In addition r1 = uxuR and r2 = vyvR for some words u, v. Formally

Palt(n+ 1) ∪ Palt(n) = Palw(n+ 1) ∪ Palw(n) ∪ {uxuR, vyvR | u is a suffix of w and

v is a suffix of wR and |uxu| = |vyvR| ∈ {n, n+ 1}}

It follows that

|Palt(n+ 1)|+ |Palt(n)| = |Palw(n+ 1)|+ |Palw(n)|+ 2. (3.3)

Clearly Fact is closed under reversal; realize that t has infinitely many palindromic prefixes. Consequently (1.1)
holds for t. Then from (1.1), (3.2), and (3.3) we have that

|Palt(n)|+ |Palt(n+ 1)| ≤ |Fact(n+ 1)| − |Fact(n)|+ 2
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and

|Palw(n)|+ |Palw(n+ 1)|+ 2 ≤ |Facw(n+ 1)|+ 2(n+ 1)− |Facw(n)| − 2n+ 2. (3.4)

It follows from (3.4) that

|Palw(n)|+ |Palw(n+ 1)| ≤ |Facw(n+ 1)| − |Facw(n)|+ 2.

If w is rich then Lemma 3.1 implies that t is rich. Then it follows from [6], (3.2), and (3.3) that

|Palt(n)|+ |Palt(n+ 1)| = |Fact(n+ 1)| − |Fact(n)|+ 2

and

|Palw(n)|+ |Palw(n+ 1)|+ 2 = |Facw(n+ 1)|+ 2(n+ 1)− |Facw(n)| − 2n+ 2. (3.5)

It follows from (3.5) that

|Palw(n)|+ |Palw(n+ 1)| = |Facw(n+ 1)| − |Facw(n)|+ 2.

This completes the proof.

Based on Proposition 3.2 we can present a new relation for palindromic and factor complexity.

Proposition 3.3. Let P̂alw(k) = max{|Palw(j)| | 0 ≤ j ≤ k}. If w ∈ R is a rich word such that Facw(n + 1)
is closed under reversal, |w| ≥ n+ 1, and n > 0, then

|Facw(n)| ≤ 2(n− 1)P̂alw(n)− 2(n− 1) + q.

Proof. Proposition 3.2 states for rich words that

|Palw(n)|+ |Palw(n+ 1)| − 2 = |Facw(n+ 1)| − |Facw(n)|. (3.6)

Since Facw(n + 1) closed under reversal, we have that Facw(i) is closed under reversal for i ≤ n + 1. We can
sum (3.6) over all lengths i ≤ n:

n−1∑
i=1

(|Palw(i)|+ |Palw(i+ 1)| − 2) =

n−1∑
i=1

(|Facw(i+ 1)| − |Facw(i)|). (3.7)

The sums from (3.7) may be expressed as follows:

n−1∑
i=1

(|Facw(i+ 1)| − |Facw(i)|) = Facw(2)− Facw(1) + Facw(3)− Facw(2)

+ Facw(4)− Facw(3) + · · ·+ Facw(n− 1)− Facw(n− 2)

+ Facw(n)− Facw(n− 1) = Facw(n)− Facw(1).

(3.8)

n−1∑
i=1

(|Palw(i)|+ |Palw(i+ 1)| − 2) ≤ (n− 1)(P̂alw(n− 1) + P̂alw(n)− 2). (3.9)
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From (3.7), (3.8), and (3.9) we get:

Facw(n)− Facw(1) ≤ (n− 1)(P̂alw(n− 1) + P̂alw(n)− 2).

It follows that

Facw(n) ≤ (n− 1)(2P̂alw(n)− 2) + Facw(1).

This can be reformulated as:

Facw(n) ≤ 2(n− 1)P̂alw(n)− 2(n− 1) + Facw(1).

Since Facw(1) = q it follows that

Facw(n) ≤ 2(n− 1)P̂alw(n)− 2(n− 1) + q.

This completes the proof.

Proposition 3.3 and Lemma 2.27 imply an improvement to our upper bound for the factor complexity for
rich words with Facw(n+ 1) closed under reversal:

Corollary 3.4. If w ∈ R with Facw(n+ 1) closed under reversal, |w| ≥ n+ 1, and n > 0, then:

|Facw(n)| ≤ 2(n− 1)nq(2q2n)δ lnn − 2(n− 1) + q.

Since the palindromic closure of finite rich words is closed under reversal, we can improve the upper bound
for factor complexity for finite rich words.

Corollary 3.5. If w ∈ R and n > 0 then

|Facw(n)| ≤ 2(2n− 1)2nq(4q2n)δ ln 2n − 2(2n− 1) + q.

Proof. Palindromic closure ŵ of a word w ∈ R preserves richness. Furthermore Facŵ is closed under reversal,
Facw ⊆ Facŵ, and |w̃| ≤ 2|w| [9]. Hence we can apply Corollary 3.4, where we replace n with 2n.

Theorem 1.1 in the introduction presents a “simple” (although a somewhat worse) upper bound for the factor
complexity. Here follows the proof.

Proof of Theorem 1.1. Note that for n > 0 we have that

2(2n− 1)2nq(4q2n)δ ln 2n − 2(2n− 1) + q ≤ 8n2q(4q2n)δ ln 2n ≤ (4q2n)δ ln 2n+2.

The theorem follows from Corollary 3.5.
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[3] L. Balková, Beta-integers and Quasicrystals, PhD thesis, Czech Technical University in Prague and Université Paris Diderot-
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Berlin Heidelberg (2015) 289–301.
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