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LINEAR AUTOMATA WITH TRANSLUCENT LETTERS

AND LINEAR CONTEXT-FREE TRACE LANGUAGES∗

Benedek Nagy1 and Friedrich Otto2,**

Abstract. Linear automata with translucent letters are studied. These are finite-state acceptors that
have two heads that read the input from opposite sides and for which a set of translucent letters is
associated with each state. Thus, head 1, which proceeds from left to right, does not necessarily read
the first letter of the current tape content, but it skips a prefix that consists of translucent letters only
and reads the first letter after that prefix. Analogously, head 2, which proceeds from right to left, does
not necessarily read the last letter, but it skips a suffix that consists of translucent letters only and reads
the last letter before that. After such a read operation, the head always returns to its corresponding
end of the tape. These linear automata with translucent letters are a generalization of the finite-state
acceptors with translucent letters that were studied by the authors in B. Nagy and F. Otto [Finite-state
acceptors with translucent letters. In BILC 2011, Proc., edited by G. Bel-Enguix, V. Dahl, and A.O.
De La Pente, SciTePress, Portugal (2011) 3-13.] It is shown that these linear automata are strictly
more expressive than the model with a single head, but that they still only accept languages that have
a semi-linear Parikh image. On the other hand, we obtain a characterization for the class of linear
context-free trace languages in terms of a specific class of linear automata with translucent letters.
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1. Introduction

The finite-state acceptor is one of the most fundamental computing devices for accepting languages. Its
deterministic version (DFA) and its nondeterministic version (NFA) both accept exactly the regular languages,
and they have found applications in many areas like compiler construction, text editors, hardware design, etc.

A finite-state acceptor reads its input strictly sequentially from left to right, letter by letter. However, in
the literature one finds many extensions of this model that process their inputs in different ways. Here we just
mention some of them:

∗Some of the results of this paper have been announced at SOFSEM 2019 in Nový Smokovec, Slovakia, January 2019. An
extended abstract appeared in the proceedings of that conference [28].
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– The multi-head finite-state acceptor, which has a finite number of heads that all read the input from left to
right, can easily compare different parts of the input to each other without the necessity of storing these
parts in its finite-state control [33]. Accordingly, this type of automaton accepts some rather complex
languages like the copy language that is not even growing context-sensitive (see, e.g., [5]).

– The Watson-Crick automaton (see, e.g., [6, 10, 32]), which has two heads that read the input from left to
right, but which works on double stranded words where letters on corresponding positions are connected
by a complementarity relation. Actually, the Watson Crick automaton is equivalent to the two-head
finite-state acceptor.

– The nondeterministic linear automaton [15], which has two heads that start from the two ends of an input
word, one reading the word from left to right and the other reading it from right to left, halting when the
two heads meet. These automata characterize the class of linear context-free languages. They correspond
to the 5′ → 3′ sensing Watson-Crick automaton studied in [14, 17, 19, 21, 30] and to a class of 2-head
finite automata for linear languages [18].

– The finite-state acceptor with translucent letters [20, 25], which has a single head starting at the left end
of an input word, but depending on the actual state, it skips across a prefix of letters that are translucent,
in this way reading (and deleting) a letter from the input. This type of automaton is equivalent to the
cooperating distributed systems of stateless deterministic R(1)-automata that were introduced and studied
in [22]. They only accept languages with a semi-linear Parikh image, but they do accept all rational trace
languages [26]. In fact, the rational trace languages can be characterized by a certain restricted class of
these automata.

– The jumping automaton [16], which has a single head starting at the left end of the input, but that jumps
in each step to an arbitrary position reading (and deleting) the letter at that position. A detailed study of
the expressive power of this model can be found in [9]. We note that there is also a model which combines
the features of jumping automata and 5′ → 3′ sensing Watson-Crick automata [13].

In this paper we propose a new type of two-head finite-state acceptor, the nondeterministic linear automaton
with translucent letters1 (NLAwtl, for short). It is obtained by combining the concept of the nondeterministic
linear automaton with the idea of translucent letters from the finite-state acceptor with translucent letters.
Such a device is given an input word surrounded by sentinels, and it has two heads that start at the two ends
of a given input word, being positioned on the sentinels, one scanning the input from left to right, the other
scanning it from right to left. However, depending on the actual state, certain letters are translucent, that is,
the left head, that is, the one scanning the input from left to right, skips across a prefix of translucent letters
and reads (and deletes) the first letter that is not translucent for the current state, and analogously, the right
head, that is, the head that scans the input from right to left, skips across a suffix of translucent letters and
reads (and deletes) the first letter from the right that is not translucent for the current state. If no such letter
is found, then the automaton halts, accepting if the current state is final.

As the NLAwtl extends the nondeterministic linear automaton, it accepts all linear context-free languages.
Actually, the NLAwtl even accepts some languages that are not context-free, but we will see that each language
L accepted by an NLAwtl contains a linear context-free sublanguage that is letter-equivalent to L. This implies
in particular that all these languages have semi-linear Parikh images. Further, we will see that all linear context-
free trace languages are accepted by NLAwtls, and we can even characterize this class of trace languages by a
restricted type of NLAwtls. In addition, we will see that the DLAwtl, the deterministic variant of the NLAwtl,
is less expressive than the NLAwtl, and we establish some closure and some non-closure properties for the
classes of languages accepted by NLAwtls and by DLAwtls. Also we consider a number of decision problems for
NLAwtls.

1In [28] these automata are called two-head finite-state acceptors with translucent letters, abbreviated as 2hNFAwtl, but as our
automata are derived from the nondeterministic linear automata, the new name seems to fit better and it is in addition simpler.
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Finally, we consider the class of NLAwtls A(A) that is obtained by taking a fixed nondeterministic linear
automaton A and by then adding all admissible translucency relations and study the corresponding class of lan-
guages L(A(A)). It is easily seen that A(A) forms a lattice with respect to the inclusion relation on translucency
relations, but what can be said about the corresponding class of languages?

This paper is structured as follows. In Section 2, we recall basic notions and notation of formal language theory.
In Section 3, we introduce the nondeterministic linear automaton with translucent letters and its deterministic
variant, we present an example illustrating the expressive power of NLAwtls, and we establish a normal form
for NLAwtls. In Section 4, we derive the aforementioned results on the expressive power of the NLAwtl. Then
we study closure and decidability results in Section 5 and introduce the classes A(A) of NLAwtls in Section 6.

2. Preliminaries

For a finite alphabet Σ, we use Σ+ to denote the set of non-empty words over Σ and Σ∗ to denote the set of
all words over Σ including the empty word ε. For a word w ∈ Σ∗, |w| denotes the length of w, and |w|a is the
a-length of w, that is, the number of occurrences of the letter a in w. For a subset Γ of Σ, |w|Γ =

∑
a∈Γ |w|a,

and πΓ : Σ∗ → Γ∗ is the projection from Σ∗ onto Γ∗, that is, πΓ is the morphism defined by πΓ(a) = a for all
a ∈ Γ and πΓ(b) = ε for all b ∈ ΣrΓ. Further, for a set S, we use the notation 2S for the power set of S. Finally,
for any automaton A, L(A) will denote the language that consists of all words that are accepted by A, and for
any type of automaton A, L(A) is the class of languages that are accepted by automata of type A.

Here we assume that the reader is familiar with the basics of formal language and automata theory for which
we refer to the textbooks [12, 35] and to the Handbook [34]. By REG, LIN, CFL, and GCSL we denote the classes
of regular, linear context-free, context-free and growing context-sensitive languages, respectively. For the latter
we refer to [7].

A nondeterministic linear automaton (NLA) [15] is described by a 7-tuple A = (Q,Σ, δ, q0, L,R, F ), where Q
is a finite set of internal states, Σ is a finite input alphabet, q0 ∈ Q is the initial state, L,R 6∈ Q ∪Σ are special
symbols that will be used to mark the positions of the left and right head, respectively, F ⊆ Q is the set of final
(or accepting) states, and δ : Q× Σ→ 2Q×{L,R} is a transition relation.

An NLA A works as follows. On an input word w ∈ Σ∗, it starts in its initial state q0 with its first (or left)
head on the first letter of w and its second (or right) head on the last letter of w. This configuration is encoded as
〈q0, LwR〉. Now, depending on the allowed transitions, it reads the first or the last letter of w, say a or b, moves
the corresponding head to the next letter, and changes its state. Formally, the configuration 〈q, LavbR〉 can be
transformed into the configuration 〈p, LvbR〉 if (p, L) ∈ δ(q, a), and it can be transformed into the configuration
〈p′, LavR〉 if (p′, R) ∈ δ(q, b), where p, p′, q ∈ Q and a, b ∈ Σ. If no transition can be applied, then A gets stuck,
that is, it halts without accepting if w = avb is nonempty. Otherwise, it continues reading (and deleting) letters
until w has been consumed completely. Thus, from a configuration of the form 〈q, LaR〉 we reach the halting
configuration 〈p,RL〉 if (p, L) ∈ δ(q, a) or (p,R) ∈ δ(q, a). The configuration 〈p,RL〉 is accepting if p is a final
state. We say that A accepts a word w if A has a computation that is in a final state qf ∈ F after reading w
completely. In addition, we say that A accepts the empty word ε if q0 ∈ F . By L(A) we denote the set of all
words w ∈ Σ∗ for which A has an accepting computation in the sense described above.

It is known that the class L(NLA) of languages L(A) that are accepted by NLAs coincides with the class LIN
of linear context-free languages [15].

For later use we modify the description of the NLA as follows. First of all, instead of a single initial state
q0, we admit a finite set I ⊆ Q of initial states. It is easily seen that an NLA A = (Q,Σ, δ, I, L,R, F ) can be
turned into an equivalent NLA B = (Q ∪ {q0},Σ, δB , q0, L,R, F ) by defining δB as follows, where a ∈ Σ:

δB(q0, a) =
⋃
q∈I

δ(q, a) and δB(q, a) = δ(q, a) for all q ∈ Q.
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Next, instead of leaving the choice of whether to use the left or the right head to the moment at which a
transition is to be applied, we shift this choice to the previous transition. This is done by partitioning the
set of states Q of an NLA A into two subsets, the set QL of left states and the set QR of right states, and
by defining δ simply as a transition relation δ : Q × Σ → 2Q. Let 〈q, LavbR〉 be a configuration of A. If q
is a left state, then a state p ∈ δ(q, a) must be chosen and the configuration 〈p, LvbR〉 is reached, and if
q is a right state, then a state p′ ∈ δ(q, b) must be chosen and the configuration 〈p′, LavR〉 is reached. By
splitting each state q of an NLA A = (Q,Σ, δ, I, L,R, F ) into a left state qL and a right state qR and by
defining δB(qL, a) = { pL, pR | (p, L) ∈ δ(q, a) } and δB(qR, a) = { pL, pR | (p,R) ∈ δ(q, a) }, we obtain an NLA
B = (QL ∪QR,Σ, δB , IL ∪ IR, L,R, FL ∪ FR) that accepts the same language as A. Here QL = { qL | q ∈ Q },
QR = { qR | q ∈ Q }, and analogously for the subsets I and F of Q. As each state of B is either a left or a
right state, we actually do not need the special marks L and R anymore. Accordingly, we will use the following
definition for the NLA in this paper.

Definition 2.1.

(a) A nondeterministic linear automaton (NLA) is described by a 5-tuple A = (Q,Σ, δ, I, F ), where Q is a
finite set of internal states that is partitioned into two disjoint subsets Q = QL ∪ QR of left states and
right states, Σ is a finite input alphabet, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final (or
accepting) states, and δ : Q× Σ→ 2Q is a transition relation.
For an input word w ∈ Σ∗, a corresponding initial configuration is simply written as q0w, where q0 ∈ I.
The single-step transition relation `A that is induced by A on its set of configurations is defined as follows,
where a, b ∈ Σ:

qavb `A

 pvb, if q ∈ QL and p ∈ δ(q, a),
p′av, if q ∈ QR and p′ ∈ δ(q, b),
undefined, otherwise.

By `∗A we denote the computation relation of A, which is the reflexive and transitive closure of `A.
(b) An NLA A = (Q,Σ, δ, I, F ) is said to be in normal form if

|µ(q)| ≤ 1 for each state q ∈ Q,

where µ(q) = { a ∈ Σ | δ(q, a) 6= ∅ }, that is, for each state q ∈ Q, there exists at most one letter a ∈ Σ
such that δ(q, a) is defined.

(c) An NLA A = (Q,Σ, δ, I, F ) is a deterministic linear automaton (DLA) if it has only a single initial state,
that is, |I| = 1, and if |δ(q, a)| ≤ 1 for each state q ∈ Q and each letter a ∈ Σ.

For each NLA B, there exists an NLA A in normal form such that L(A) = L(B). In fact, if µ(q) =
{a1, a2, . . . , am}, then one can simply replace the state q by the new states qi1 , qi2 , . . . , qim such that µ(qij ) = {aj}
for all j = 1, 2, . . . ,m, and in the transition relation δ, if q ∈ δ(p, a), then q is replaced by all states
qi1 , qi2 , . . . , qim , and analogously in I and in F . So we can restrict our attention to NLAs that are in normal
form.

It is easily seen that our definition of the DLA is equivalent to the definition of the DLA given in [15] and,
hence, it defines the language class 2detLIN [19, 29, 31]. The reason is the following observation. If δ(q, a) = (p, L)
and δ(q, b) = (p′, R) for some states q, p, p′ and some letters a, b ∈ Σ, then the DLA A = (Q,Σ, δ, q0, L,R, F )
would have two applicable transitions in a configuration of the form 〈q, LavbR〉. Hence, for each state, it either
can only use the left head (that is, this state can be interpreted as a left state) or the right head (that is, this
state can be interpreted as a right state). In [15, 17] it has been observed that the language class L(DLA) is
incomparable under inclusion to the class DCFL of deterministic context-free languages, as, e.g., the language
{ anbnc, anb2nd | n ≥ 1 }, which is known to not be deterministic context-free, is accepted by a DLA, while it
can be shown that the deterministic context-free language { ancbn, anb2n | n ≥ 1 } is not accepted by any DLA.
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In fact, the latter language is accepted by a deterministic one-turn pushdown automaton, that is, it is even
a deterministic linear language (see, e.g., [2]). Thus, the language class L(DLA) is in fact incomparable under
inclusion to the class of deterministic linear languages.

Next we recall the definition of the finite-state acceptor with translucent letters. A finite-state acceptor with
translucent letters (NFAwtl) is defined by a 7-tuple A = (Q,Σ,�, τ, I, F, δ), where Q is a finite set of internal
states, Σ is a finite input alphabet, � 6∈ Σ is a special symbol that is used as an endmarker, τ : Q → 2Σ is a
translucency mapping, I ⊆ Q is a set of initial states, F ⊆ Q is a set of final states, and δ : Q × Σ → 2Q is a
transition relation. For each state q ∈ Q, the letters from the set τ(q) are translucent for q, that is, in state q
the automaton A cannot see them.

An NFAwtl A = (Q,Σ,�, τ, I, F, δ) works as follows. For an input word w ∈ Σ∗, it starts in a nondetermin-
istically chosen initial state q0 ∈ I with the word w� on its input tape. Assume that w = a1a2 · · · an for some
n ≥ 1 and a1, a2, . . . , an ∈ Σ. Then A looks for the first occurrence from the left of a letter that is visible, that
is, the leftmost letter of w that is not translucent for state q0. Thus, if w = uav such that u ∈ (τ(q0))∗ and
a 6∈ τ(q0), then A nondeterministically chooses a state q1 ∈ δ(q0, a), erases the letter a from the tape thus pro-
ducing the tape contents uv�, and its internal state is set to q1. In case δ(q0, a) = ∅, A halts without accepting.
Finally, if w ∈ (τ(q0))∗, then A reaches the �-symbol and the computation halts. In this case A accepts if q0

is a final state; otherwise, it does not accept. Thus, A executes the following computation relation on its set
Q · Σ∗� of configurations:

qw� `A


q′uv�, if w = uav, u ∈ (τ(q))∗, a 6∈ τ(q), and q′ ∈ δ(q, a),
Reject, if w = uav, u ∈ (τ(q))∗, a 6∈ τ(q), and δ(q, a) = ∅,
Reject, if w ∈ (τ(q))∗ and q 6∈ F,
Accept, if w ∈ (τ(q))∗ and q ∈ F.

Observe that this definition also applies to configurations of the form q�, that is, when the tape just contains
the endmarker. In this situation we see that q� `A Accept holds if and only if q is a final state. A word
w ∈ Σ∗ is accepted by A if there exists an initial state q0 ∈ I and a computation q0w� `∗A Accept, where `∗A
denotes the reflexive and transitive closure of the single-step computation relation `A. Now L(A) = {w ∈ Σ∗ |
w is accepted by A } is the language accepted by A and L(NFAwtl) denotes the class of all languages that are
accepted by NFAwtls.

Obviously, NFAwtls accept all regular languages, as the classical nondeterministic finite-state acceptor, the
NFA, is obtained from the NFAwtl by removing the endmarker �, by ignoring the translucency relation τ , and
by adding a new initial state from which there are ε-transitions to all states from the set I.

3. Linear automata with translucent letters

Now we are ready to introduce our new model based on linear automata and NFAwtls.

Definition 3.1. A nondeterministic linear automaton with translucent letters (NLAwtl) consists of a finite-
state control, a single flexible tape with endmarkers, and two heads that are positioned on these endmarkers.
It is defined by an 8-tuple A = (Q,Σ,�,�, τ, δ, I, F ), where

– Q is a finite set of states that is partitioned into two subsets Q = QL ∪ QR of left states and right states,
– Σ is a finite input alphabet,
– �,� 6∈ Σ are special symbols that are used as endmarkers, that is, the tape contents is being written

between � and �,
– τ : Q→ 2Σ is a translucency mapping,
– I ⊆ Q is a set of initial states,
– F ⊆ Q is a set of final states, and
– δ : Q× Σ→ 2Q is a transition relation.
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For each state q ∈ Q, the letters from the set τ(q) are translucent for q, that is, in state q the automaton A
cannot see these letters.

A is called a deterministic linear automaton with translucent letters, abbreviated as DLAwtl, if |I| = 1 and if
|δ(q, a)| ≤ 1 for all q ∈ Q and all a ∈ Σ.

An NLAwtl A = (Q,Σ,�,�, τ, δ, I, F ) works as follows. For an input word w ∈ Σ∗, an initial configuration
consists of the automaton being in an initial state q0 chosen nondeterministically from the set I with the word
�w� on its tape. Assume that w = a1a2 · · · an for some n ≥ 1 and a1, a2, . . . , an ∈ Σ. If q0 ∈ QL, that is, q0 is
a left state, then A looks for the first occurrence from the left of a letter that is not translucent for state q0,
and if q0 ∈ QR, that is, q0 is a right state, then A looks for the first occurrence from the right (that is, the last
occurrence) of a letter that is not translucent for state q0:

– Left-reading: If q0 ∈ QL, then A proceeds as follows. If w = uaz for some u ∈ (τ(q0))∗ and a ∈ Σr τ(q0),
then A nondeterministically chooses a state q1 ∈ δ(q0, a), erases the letter a from the tape, in this way
producing the tape contents �uz�, returns its left head to the left delimiter �, and sets its finite-state
control to q1. If δ(q0, a) = ∅, then A gets stuck, that is, it halts without accepting. If w ∈ (τ(q0))∗, then
A halts, and it accepts if q0 is a final state, that is, if q0 ∈ F .

– Right-reading: If q0 ∈ QR, then A proceeds as follows. If w = vby for some y ∈ (τ(q0))∗ and b ∈ Σrτ(q0),
then A nondeterministically chooses a state q1 ∈ δ(q0, b), erases the letter b from the tape, in this way
producing the tape contents �vy�, returns its right head to the right delimiter �, and sets its finite-state
control to q1. If δ(q0, b) = ∅, then A gets stuck, that is, it halts without accepting. If w ∈ (τ(q0))∗, then A
halts, and it accepts if q0 is a final state, that is, if q0 ∈ F .

Thus, A executes the following computation relation on its set Q ·�Σ∗� of configurations:

q �w� `A



q′ �uz�, if q ∈ QL and w = uaz for u ∈ (τ(q))∗, a ∈ Σ r τ(q),
and q′ ∈ δ(q, a),

Reject, if q ∈ QL and w = uaz for u ∈ (τ(q))∗, a ∈ Σ r τ(q),
and δ(q, a) = ∅,

q′ �vy�, if q ∈ QR and w = vby for y ∈ (τ(q))∗, b ∈ Σ r τ(q),
and q′ ∈ δ(q, b),

Reject, if q ∈ QR and w = vby for y ∈ (τ(q))∗, b ∈ Σ r τ(q),
and δ(q, b) = ∅,

Accept, if w ∈ (τ(q))∗ and q ∈ F,
Reject, if w ∈ (τ(q))∗ and q 6∈ F.

Observe that this definition also applies to configurations of the form q ��, that is, q �� `A Accept holds
if and only if q is a final state. A word w ∈ Σ∗ is accepted by A if there exists an initial state q0 ∈ I and a
computation q0 �w� `∗A Accept, where `∗A denotes the reflexive transitive closure of the single-step computation
relation `A. Now L(A) = {w ∈ Σ∗ | w is accepted by A } is the language accepted by A, L(NLAwtl) denotes the
class of languages that are accepted by NLAwtls, and L(DLAwtl) denotes the class of languages that are accepted
by DLAwtls.

If A is an NLAwtl such that τ(q) = ∅ for all states q of A, then A is essentially just an NLA. Conversely, if
B is an NLA, then B can be seen as an NLAwtl A with empty transparency sets and L(A) = L(B). Hence, the
NLAwtl is an extension of the NLA, which shows immediately that LIN ⊆ L(NLAwtl).

On the other hand, the NFAwtls obviously correspond to those NLAwtls for which all states are left states.
Thus, the NLAwtl is also an extension of the NFAwtl. It is known that the linear language { anbn | n ≥ 0 }
is not accepted by any NFAwtl [25], while L(NFAwtl) does even contain some non-context-free languages, for
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example, the language {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c }. However, the NLAwtl is more expressive than the
NFAwtl, which is shown by the following interesting example.

Example 3.2. Let L be the language

L = {w1#u#w2 | w1, w2 ∈ {a, b}∗, |w1|a = |w2|a, |w1|b = |w2|b,
and u ∈ {c, d}∗ is a palindrome }.

Obviously, L is not context-free, as L ∩ a∗ · b∗ ·# · {c, d}∗ ·# · a∗ · b∗ = { ambn#u#ambn | m,n ≥ 0 and u ∈
{c, d}∗ is a palindrome }. Further, L does not contain any regular subset that is letter-equivalent to L itself, and
hence, L is not accepted by any NFAwtl [25]. However, L is accepted by the DLAwtl A = (Q,Σ,�,�, τ, δ, I, F )
that is defined as follows:

– Q = QL ∪QR, where QL = {qa, qc} and QR = {pa, pb, p#, pc, pd},
– Σ = {a, b, c, d,#},
– I = {qa} and F = {qc, pc, pd},
– τ is defined by the following table:

qa qc pa pb p# pc pd
∅ ∅ {b} {a} ∅ ∅ ∅ ,

– and the transition relation is given through the following table:

qa qc pa pb p# pc pd
a pa − qa − − − −
b pb − − qa − − −
# p# − − − qc − −
c − pc − − − qc −
d − pd − − − − qc

Let w = x#y#z be given as input, where x, z ∈ {a, b}∗ and y ∈ {c, d}∗. Then A starts with the initial
configuration qa �x#y#z�. If x 6= ε, then A reads the first letter of x, say a, deletes this letter, and enters
state pa. Now A will get stuck if |z|a = 0, otherwise it will delete the rightmost a occurring in z and then again
enter its initial state qa. Analogously, if the first letter of x is a b, then A enters state pb. Now A will get stuck
if |z|b = 0, otherwise it will delete the rightmost b occurring in z and then again enter its initial state qa. Thus,
by going through states qa and then pa or pb, one occurrence of the letter a or b has been removed from x and
from z. If |x|a > |z|a or |x|b > |z|b, then A will eventually detect this and it will then get stuck in state pa or pb.
Otherwise, after erasing the prefix x, A reads the letter # and enters state p#. Using this state it checks that
the remaining tape contents ends with the symbol #, which it deletes in the affirmative entering state qc. Thus,
if |z|a > |x|a or |z|b > |x|b, then A gets stuck in state p#. If, however, |z|a = |x|a and |z|b = |x|b, then A enters
state qc, and using this state and the states pc and pd, it checks whether y is a palindrome over {c, d}. In the
negative, it gets stuck, while in the affirmative, it will read and delete y completely and accept. It follows that
L(A) = L.

Thus, we have derived the following proper inclusions.

Proposition 3.3. L(NLA) = LIN ( L(NLAwtl) and L(NFAwtl) ( L(NLAwtl).

An NLAwtl A = (Q,Σ,�,�, τ, δ, I, F ) can be described more transparently by a graph, similar to the graph
representation of an NFA. A state q ∈ Q is represented by a node, which is labelled with q→ if q ∈ QL, as such
a state refers to the left head that reads the tape from left to right, and which is labelled with q← if q ∈ QR,
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Figure 1. The graphical representation of the DLAwtl A of Example 3.2.

as such a state refers to the right head that reads the tape from right to left. In addition, the node of an initial
state q is marked by a special incoming edge without a label, and the node of a final state q is marked by a
special outgoing edge with label τ(q). Further, if q ∈ Q and p ∈ δ(q, a) for some letter a ∈ Σ, then there is a

directed edge from the node with label q to the node with label p. This edge is labelled with
−−−−−→
(τ(q), a) if q ∈ QL,

and it is labelled with
←−−−−−
(a, τ(q)) if q ∈ QR. For example, the DLAwtl A from Example 3.2 can be depicted by

the diagram in Figure 1.

Definition 3.4. Let A = (Q,Σ,�,�, τ, δ, I, F ) be an NLAwtl. For each state q ∈ Q we define µ(q) = { a ∈ Σ |
δ(q, a) 6= ∅ }, that is, µ(q) is the set of letters which A can read in state q. Observe that we can assume without
loss of generality that µ(q) ∩ τ(q) = ∅ for all states q ∈ Q. Now the NLAwtl A is said to be in normal form if

1. |µ(q)| ≤ 1 for each state q ∈ Q, that is, for each state q ∈ Q, there exists at most one letter a ∈ Σ such
that δ(q, a) is defined,

2. it always accepts with empty tape, that is, each word from L(A) is read (and deleted) completely before
A accepts.

By splitting the state qa into three different states qa, qb, and q# and by splitting the state qc into two
different states qc and qd such that, in state qx, only the letter x can be read for all x ∈ {a, b,#, c, d}, the
DLAwtl A from Example 3.2 can be transformed into an NLAwtl that is in normal form. Concerning NLAwtls,
we now derive the following result in analogy to the situation for NLAs.

Proposition 3.5. From a given NLAwtl A = (Q,Σ,�,�, τ, δ, I, F ) one can effectively construct an NLAwtl
B = (QB ,Σ,�,�, τB , δB , IB , FB) in normal form such that L(B) = L(A).

Proof. Let A = (Q,Σ,�,�, τ, δ, I, F ) be an NLAwtl. We proceed in two steps, corresponding to the two
conditions in the definition above.

First we transform A into an NLAwtl A′ = (Q′,Σ,�,�, τ ′, δ′, I ′, F ′) by choosing a set of additional states
F2 = { q′ | q ∈ F } that correspond to the final states of A with respect to the bijection β : F → F2 that maps
q ∈ F to β(q) = q′ ∈ F2 and by taking Q′ = Q ∪ F2, I ′ = I ∪ β(I ∩ F ), and F ′ = F2. Further, τ ′(q) = τ(q) for
all q ∈ Q and τ ′(q′) = ∅ for all q′ ∈ F2, and δ′ is obtained from δ by adding the following transitions:

δ′(β(q), a) = {β(q)} for all q ∈ F and all a ∈ τ(q).

Finally, we take δ′(q, a) = δ(q, a) ∪ {β(p) | p ∈ δ(q, a) ∩ F }, that is, if A, while being in state q, can read the
letter a and enter the final state p ∈ F , then A′ has the additional option to enter state β(p) ∈ F2. Now A′ can
simulate each computation of A step by step. When A enters a final state q in a situation, where the tape only
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contains letters from τ(q), which means that A will accept, then A′ can enter the state q′ = β(q), read (and
remove) all letters on the tape, and accept with empty tape. Thus, we see that A′ satisfies the second condition
required for an NLAwtl that is in normal form.

Next we transform A′ into an NLAwtl B = (QB ,Σ,�,�, τB , δB , IB , FB) that is in normal form. Let q ∈ Q′
such that µ(q) = {ai1 , ai2 , . . . , aim} for some m ≥ 2. Then we replace the state q by m states, say qi1 , qi2 , . . . , qim ,
take τB(qij ) = τ ′(q) for all j = 1, 2, . . . ,m, and define δB(qij , aij ) = δ′(q, aij ) and δB(qij , b) = ∅ for all j =
1, 2, . . . ,m and all b 6= aij . Further, in I ′, in F ′, and on the right-hand side of δ′, we replace each occurrence
of q by qi1 , qi2 , . . . , qim . Thus, whenever A′ enters state q within a computation, then in the corresponding
computation of B, one must choose one of the states qi1 , qi2 , . . . , qim , in this way guessing which letter aij will
be read in the following step. It is now obvious that B is in normal form and that it accepts the same language
as A.

If A is an NLAwtl on Σ that is in normal form, then by removing the translucency relation from A, we obtain
an NLA A′ that accepts a linear sublanguage of L(A). In fact, the following result holds

Proposition 3.6. By removing the translucency relation from an NLAwtl A that is in normal form, we obtain
an NLA A′ such that L(A′) is a sublanguage of L(A) that is letter-equivalent to L(A).

Here two languages over the same alphabet Σ = {a1, a2, . . . , an} are called letter-equivalent if they have
the same image under the Parikh mapping ψ : Σ∗ → Nn. Thus, we see that each language from L(NLAwtl) is
letter-equivalent to a linear context-free language and therewith to a regular language.

Proof. Let A = (Q,Σ,�,�, τ, δ, I, F ) be an NLAwtl that is in normal form, and let B = (Q,Σ, δ, I, F ) be the
NLA that is obtained from A by removing the translucency relation τ and the endmarkers � and �. Then each
accepting computation of B corresponds to an accepting computation of A in which no translucent letter is ever
skipped over. Thus, L(B) ⊆ L(A), that is, L(B) is a sublanguage of L(A).

Conversely, assume that w ∈ L(A), where w = a1a2 · · · an, and that

q0�w� `A qi1�w1� `A qi2�w2� `A · · · `A qin−1�wn−1� `A qin��

is an accepting computation of A on input w. Then q0 ∈ I and qin ∈ F . We claim that there exists a word
z ∈ Σ∗ such that q0z `nB qin and ψ(z) = ψ(w) hold. We proceed by induction on the length n of w.

If n = 0, then w = ε, which means that q0 = qin . Hence, we can take z = ε = w.

Now assume that q0 ∈ QL and that w = xay for some x ∈ (τ(q0))∗ and a ∈ Σ r τ(q0). Then w1 = xy and
qi1 ∈ δ(q0, a). From the induction hypothesis we see that there exists a word z1 ∈ Σ∗ such that qi1z1 `n−1

B qin
and ψ(z1) = ψ(w1). Let z = az1. Then q0z = q0az1 `B qi1z1 `n−1

B qin , that is, B accepts on input z, and
ψ(z) = ψ(az1) = ψ(aw1) = ψ(axy) = ψ(xay) = ψ(w).

Finally, if q0 ∈ QR and w = ubv for some v ∈ (τ(q0))∗ and b ∈ Σ r τ(q0), then w1 = uv and qi1 ∈ δ(q0, b).
Again from the induction hypothesis we see that there exists a word z1 ∈ Σ∗ such that qi1z1 `n−1

B qin and
ψ(z1) = ψ(w1). Let z = z1b. Then q0z = q0z1b `B qi1z1 `n−1

B qin , that is, B accepts on input z, and ψ(z) =
ψ(z1b) = ψ(w1b) = ψ(uvb) = ψ(ubv) = ψ(w). Thus, we see that, for each word w ∈ L(A), there exists a word
z ∈ L(B) such that w and z are letter-equivalent.

As NLAs accept exactly the linear context-free languages, this yields the following consequence.

Corollary 3.7. Each language L ∈ L(NLAwtl) contains a sublanguage that is linear context-free and that is
letter-equivalent to L. In particular, this implies that L is semi-linear, that is, ψ(L) is a semi-linear subset of
Nn.
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As an example, we take the language

L′ = { ambn#u#ambn | m,n ≥ 0, u ∈ {c, d}∗ is a palindrome },

which is a sublanguage of the language L considered in Example 3.2. The language L′ does not contain a
linear sublanguage that is letter-equivalent to the language itself, and so it follows from Corollary 3.7 that this
language is not accepted by any NLAwtl.

4. Linear context-free trace languages

Let Σ be a finite alphabet, and let D be a binary relation on Σ that is reflexive and symmetric, that is,
(a, a) ∈ D for all a ∈ Σ, and (a, b) ∈ D implies that (b, a) ∈ D, too. Then D is called a dependency relation
on Σ, and the relation ID = (Σ × Σ) r D is called the corresponding independence relation. Obviously, the
relation ID is irreflexive and symmetric. The independence relation ID induces a binary relation ≡D on Σ∗ that
is defined as the smallest congruence relation containing the set of pairs { (ab, ba) | (a, b) ∈ ID }. For w ∈ Σ∗,
the congruence class of w mod ≡D is denoted by [w]D, that is, [w]D = { z ∈ Σ∗ | w ≡D z }. These congruence
classes are called traces, and the factor monoid M(D) = Σ∗/≡D is a trace monoid. In fact, M(D) is the free
partially commutative monoid presented by (Σ, D) (see, e.g., [8]).

Traces are being used in concurrency theory to describe sequences of actions that are partially independent
of each other. Let a and b symbolize two actions that are executed in parallel. If they are independent, then in
a sequential simulation it does not matter in which order they are executed, that is, ab and ba are equivalent.
As such traces have received much attention (see, e.g., [8]).

To simplify the notation in what follows, we introduce the following notions. For w ∈ Σ∗, we use Alph(w) to
denote the set of all letters that occur in w, that is,

Alph(w) = { a ∈ Σ | |w|a > 0 }.

Now we extend the independence relation from letters to words by defining, for all words u, v ∈ Σ∗,

(u, v) ∈ ID if and only if Alph(u)×Alph(v) ⊆ ID.

As Alph(ε) = ∅, we see that (ε, w) ∈ ID for every word w ∈ Σ∗. The following technical result (see, e.g., Claim
A in the proof of Prop. 6.2.2 of [8]) will be useful in what follows.

Proposition 4.1. For all words x, y, u ∈ Σ∗ and all letters a ∈ Σ, if xay ≡D au and |x|a = 0, then (a, x) ∈ ID,
xay ≡D axy, and xy ≡D u.

A subset S of a trace monoid M(D) is called recognizable if there exist a finite monoid N , a morphism
α : M(D)→ N , and a subset P of N such that S = α−1(P ) [3]. Accordingly, this property can be characterized
as follows (see Prop. 6.1.10 of [8]).

Proposition 4.2. Let M(D) be the trace monoid presented by (Σ, D), and let ϕD : Σ∗ → M(D) be the cor-
responding morphism. Then a set S ⊆ M(D) is recognizable if and only if the language ϕ−1

D (S) is a regular
language over Σ.

By REC(M(D)) we denote the set of recognizable subsets of M(D).

A subset S of a trace monoid M(D) is called rational if it can be obtained from singleton sets by a finite
number of unions, products, and star operations [3]. This property can be characterized more conveniently as
follows.
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Proposition 4.3. Let M(D) be the trace monoid presented by (Σ, D), and let ϕD : Σ∗ →M(D) be the corre-
sponding morphism. Then a set S ⊆ M(D) is rational if and only if there exists a regular language R over Σ
such that S = ϕD(R).

By RAT(M(D)) we denote the set of rational subsets of M(D). Concerning the relationship between the
recognizable subsets of M(D) and the rational subsets of M(D) the following results are known (see, e.g., [8]).

Proposition 4.4. For each trace monoid M(D), REC(M(D)) ⊆ RAT(M(D)), and these two sets are equal if
and only if ID = ∅.

Thus, each recognizable subset of a trace monoid M(D) is necessarily rational, but the converse only holds if
ID is empty, that is, if D = Σ×Σ, which means that the congruence ≡D is the identity. Thus, the free monoids
are the only trace monoids for which the recognizable subsets coincide with the rational subsets.

We call a language L ⊆ Σ∗ a rational trace language if there exists a dependency relation D on Σ such that
L = ϕ−1

D (S) for a rational subset S of the trace monoid M(D) presented by (Σ, D). From Proposition 4.3 it
follows that L is a rational trace language if and only if there exist a trace monoid M(D) and a regular language
R ⊆ Σ∗ such that L = ϕ−1

D (ϕD(R)) =
⋃
w∈R[w]D. By LRAT (D) we denote the set of rational trace languages

ϕ−1
D (RAT(M(D))), and LRAT is the class of all rational trace languages. In [22] (see also [25]) the following

result on rational trace languages was established.

Theorem 4.5. LRAT ( L(NFAwtl), that is, if M(D) be the trace monoid presented by (Σ, D), where D is
a dependency relation on the finite alphabet Σ, then the language ϕ−1

D (S) is accepted by an NFAwtl for each
rational set of traces S ⊆M(D).

Here we are interested in more general trace languages. A language L ⊆ Σ∗ is called a linear context-free trace
language if there exist a dependency relation D on Σ and a linear context-free language R ⊆ Σ∗ such that L =
ϕ−1
D (ϕD(R)) =

⋃
w∈R[w]D. Analogously, a language L ⊆ Σ∗ is called a context-free trace language if there exist a

dependency relation D on Σ and a context-free language R ⊆ Σ∗ such that L = ϕ−1
D (ϕD(R)) =

⋃
w∈R[w]D [1, 4].

By LLCF(D) we denote the set of linear context-free trace languages obtained from (Σ, D), and LLCF is the
class of all linear context-free trace languages. Further, by LCF(D) we denote the set of context-free trace
languages obtained from (Σ, D), and LCF is the class of all context-free trace languages. In [23, 24] it has been
shown that the context-free trace languages are accepted by certain cooperating distributed systems of a very
restricted type of restarting automata. These systems can actually be interpreted as nondeterministic pushdown
automata with translucent letters. Here we derive the following result for linear context-free trace languages.

Theorem 4.6. Let M(D) be the trace monoid presented by (Σ, D), where D is a dependency relation on the
finite alphabet Σ. Then

LLCF(D) ⊆ L(NLAwtl),

that is, the language ϕ−1
D (ϕD(R)) is accepted by an NLAwtl for each linear context-free language R ⊆ Σ∗.

Proof. Let R be a linear context-free language over Σ, let S = ϕD(R) ⊆ M(D), and let L = ϕ−1
D (S) ⊆ Σ∗ be

the linear context-free trace language defined by R and D. As R ⊆ Σ∗ is a linear context-free language, there
exists an NLA A = (Q,Σ, δ, I, F ) such that L(A) = R. According to our remarks on NLAs in Section 2, we
can assume without loss of generality that the NLA A is in normal form, that is, for each state q ∈ Q, there is
at most a single letter aq ∈ Σ such that δ(q, aq) 6= ∅. Further, based on well-known transformation techniques
(see, e.g., [15, 17]), we may assume that F consists of a single left state q+ only, and that δ(q+, a) = ∅ for all
letters a ∈ Σ (that is, no transition is allowed from the accepting state). From A we now construct an NLAwtl
B = (QB ,Σ,�,�, τ, δB , IB , FB) as follows:

– QB = Q, IB = I, and FB = F = {q+},
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– τ(q) = { b ∈ Σ | (b, aq) ∈ ID } for all q ∈ Q r F , that is, all those letters are translucent for state q that
are independent of the letter aq that A can read (and delete) in state q, and τ(q+) = ∅, and

– the transition relation δB is simply defined by taking δB(q, a) = δ(q, a) for all q ∈ Q and all a ∈ Σ.

It remains to show that L(B) = L = ϕ−1
D (S) =

⋃
u∈R[u]D. Notice that in order to accept a word w, B must

read (and delete) it completely, as τ(q+) = ∅ and q+ is the only final state of B.

Claim 1.
⋃
u∈R[u]D ⊆ L(B).

Proof. Assume that w ∈
⋃
u∈R[u]D. Then there exists a word u ∈ R such that w ≡D u, and so there exists

a sequence of words u = w0, w1, . . . , wn = w such that, for each i = 1, 2, . . . , n, wi is obtained from wi−1 by
replacing a factor ab by ba for some pair of letters (a, b) ∈ ID. We now prove that wi ∈ L(B) for all i by induction
on i.

For i = 0 we have w0 = u ∈ R. Thus, w0 is accepted by the NLA A, and it follows immediately from the
definition of B that w0 is also accepted by B.

Now assume that wi ∈ L(B) for some i ≥ 0, and that wi = xaby and wi+1 = xbay for a pair of letters
(a, b) ∈ ID. By our hypothesis B has an accepting computation for wi = xaby, which is of one of the following
two forms:

(1) q1�wi� = q1�xaby� `mB q2�x
′aby′� `B q3�x

′by′� `∗B q+��,

or

(2) q1�wi� = q1�xaby� `mB q2�x
′aby′� `B q3�x

′ay′� `∗B q+��,

where in the first m steps some letters from x and y are read and deleted, in this way reducing these factors to
x′ and y′, respectively, and q3 ∈ δB(q2, a) (in (1)) or q3 ∈ δB(q2, b) (in (2)). Now consider the computation of B
on input wi+1 = xbay. In (1), if q2 is a right state, then obviously we have the computation

q1�wi+1� = q1�xbay� `mB q2�x
′bay′� `B q3�x

′by′� `∗B q+��.

If q2 is a left state, then observe that (b, a) ∈ ID, and hence, we see that b ∈ τ(q2), and so also in this situation
B can execute the computation

q1�wi+1� = q1�xbay� `mB q2�x
′bay′� `B q3�x

′by′� `∗B q+��.

Case (2) is obviously symmetric to (1). Thus, we see that wi+1 ∈ L(B). This completes the proof of Claim 1.

Claim 2. L(B) ⊆
⋃
u∈R[u]D.

Proof. Let w ∈ L(B), and let

qn�w� = qn�wn� `B qn−1�wn−1� `B qn−2�wn−2� `B
· · · `B q1�w1� `B q+��

be an accepting computation of B on input w, where qn ∈ IB . We claim that, for each i = 1, 2, . . . , n, there
exists a word ui ∈ Σ∗ such that ui ≡D wi and qiui `∗A q+, that is, the NLA A accepts the word ui when starting
from state qi.

We prove this claim by induction on i. For i = 1 we have wi = a1, and q+ ∈ δB(q1, a1). From the definition
of B we see that q+ ∈ δ(q1, a1), and so we can simply take u1 = a1 = w1. Now assume that, for some i ≥ 1,
ui ≡D wi and qiui `∗A q+ hold. The above computation of B contains the step qi+1�wi+1� `B qi�wi�. Again



LINEAR AUTOMATA WITH TRANSLUCENT LETTERS AND LINEAR CONTEXT-FREE TRACE LANGUAGES 13

from the definition of B we see that either qi+1 is a left state and qi ∈ δ(qi+1, ai+1), where wi+1 = xai+1y and
wi = xy for some words x, y ∈ Σ∗ such that (x, ai+1) ∈ ID, or qi+1 is a right state and qi ∈ δ(qi+1, ai+1) with
wi+1 = xai+1y and wi = xy for some words x, y ∈ Σ∗ such that (y, ai+1) ∈ ID. In the former case let ui+1 be
the word ui+1 = ai+1ui, and in the latter case, let ui+1 be the word ui+1 = uiai+1. Then

ui+1 = ai+1ui ≡D ai+1wi = ai+1xy ≡D xai+1y = wi+1

and qi+1ui+1 = qi+1ai+1ui `A qiui, or

ui+1 = uiai+1 ≡D wiai+1 = xyai+1 ≡D xai+1y = wi+1

and qi+1ui+1 = qi+1uiai+1 `A qiui. As by the induction hypothesis qiui `∗A q+, we see that in either case
qi+1ui+1 `∗A q+ follows.

For i = n we obtain a word u ∈ Σ∗ such that u ≡D w, and A accepts u starting from state qn ∈ I. Hence,
u ∈ R, and it follows that L(B) ⊆

⋃
u∈R[u]D holds.

Now Claims 1 and 2 together show that L(B) =
⋃
u∈R[u]D = ϕ−1

D (S) = L, which completes the proof of
Theorem 4.6.

Next we present a restricted class of NLAwtls that accept exactly the linear context-free trace languages.

Definition 4.7. Let B = (Q,Σ,�,�, τ, δ, I, F ) be an NLAwtl in normal form that satisfies the following
additional condition:

(∗) ∀p, q ∈ Q : µ(p) = µ(q) implies that τ(p) = τ(q),

that is, if two states read (and delete) the same letter, then they also have the same set of translucent letters.
With B we associate a binary relation

IB =
⋃
q∈Q

(τ(q)× µ(q)),

that is, (a, b) ∈ IB if and only if there exists a state q ∈ Q such that a ∈ τ(q) and δ(q, b) is defined. The
automaton B is called a τµ-NLAwtl, and further, by DB we denote the relation DB = (Σ× Σ) r IB .

Observe that the relation IB defined above is necessarily irreflexive, but that it will in general not be sym-
metric. On the other hand, consider the NLAwtl B that is constructed in the proof of Theorem 4.6. It satisfies
condition (∗) above and the relation IB coincides with the relation ID restricted to the subset of letters of Σ
that actually occur in the language L. Hence, this relation is in fact symmetric. The following result shows that
also the converse of this observation holds.

Theorem 4.8. Let B be an NLAwtl over Σ satisfying condition (∗) above, that is, a τµ-NLAwtl. If the associated
relation IB is symmetric, then L(B) is a linear context-free trace language over Σ. In fact, from B one can
construct an NLA A over Σ such that L(B) = ϕ−1

DB
(ϕDB

(L(A))).

Proof. Let B = (Q,Σ,�,�, τ, δ, I, F ) be a τµ-NLAwtl and assume that the associated relation IB =⋃
q∈Q(τ(q) × µ(q)) is symmetric. Then the relation DB = (Σ × Σ) r IB is reflexive and symmetric, and so

it is a dependency relation on Σ with associated independence relation IB . Without loss of generality we may
assume that all letters from Σ do actually occur in some words of L(B), since otherwise we could simply remove
these letters from Σ. From the properties of B we obtain the following consequences:
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Figure 2. The graphical representation of the NLAwtl A for the Dyck language D1.

1. As all words w ∈ L(B) are first reduced to the empty word, which is then accepted in a final state, we see
that, for each letter b ∈ Σ, there exists a state q ∈ Q such that µ(q) = {b}.

2. If (a, b) ∈ IB , then a ∈ τ(q) for all states q for which µ(q) = {b} holds (by (∗)).
3. If (a, b) ∈ IB , then (b, a) ∈ IB , too, and hence, b ∈ τ(p) for all states p for which µ(p) = {a} holds (by

symmetry of IB and by (∗)).

Let L = L(B). We claim that L is a linear context-free trace language over the trace monoid defined by
(Σ, DB), that is, L ∈ LLCF(DB). To verify this claim we present a linear context-free language R ⊆ Σ∗ such
that L =

⋃
z∈R[z]DB

.

By Proposition 3.6, the language L contains a linear context-free sublanguage R that is letter-equivalent
to L. In the proof of that proposition, an NLA A = (QA,Σ, δA, IA, FA) for R is constructed from B by simply
removing the translucency relation. In addition, it is shown that each word w ∈ L is letter-equivalent to a word
z ∈ R. Actually, it follows that w ≡DB

z, which implies that L ⊆
⋃
z∈R[z]DB

.

Conversely, let w ≡DB
u ∈ R, and let u = w0, w1, . . . , wn = w be a sequence of words such that, for each

i = 1, 2, . . . , n, wi is obtained from wi−1 by replacing a factor ab by ba for some pair of letters (a, b) ∈ IB . We
now prove that wi ∈ L for all i by induction on i.

For i = 0 we have w0 = u ∈ R, and so w0 ∈ L, as R is a sublanguage of L. Now assume that wi ∈ L for
some i ≥ 0, and that wi = xaby and wi+1 = xbay for a pair of letters (a, b) ∈ IB . By our hypothesis, B has an
accepting computation for wi = xaby. As a ∈ τ(q) for each state q satisfying µ(q) = {b} and b ∈ τ(p) for each
state p satisfying µ(p) = {a}, we see that the same computation of B applies to the word wi+1 = xbay, which
shows that wi+1 ∈ L. Thus, we see that w = wn is accepted by B. This implies that L =

⋃
z∈R[z]DB

, that is, L
is a linear context-free trace language.

Theorems 4.6 and 4.8 together yield the following characterization.

Corollary 4.9. A language L ⊆ Σ∗ is a linear context-free trace language if and only if there exists a τµ-NLAwtl
B with symmetric relation IB such that L = L(B).

Let D1 be the Dyck language over Σ = {a, b}, that is, D1 is the language generated by the context-free
grammar ({S}, {a, b}, S, {S → SS, S → aSb, S → ε}). This language is accepted by the NLAwtl A that is given
through the diagram in Figure 2.

Actually, A only uses its left head, that is, it is really just an NFAwtl. This automaton satisfies condition (∗)
above, but the relation IA = τ(q1) × µ(q1) = {(a, b)} is not symmetric. And indeed, the language D1 is not a
linear context-free trace language.

5. Closure properties and decidability results

While the language

L = {w1#u#w2 | w1, w2 ∈ {a, b}∗, |w1|a = |w2|a, |w1|b = |w2|b,
and u ∈ {c, d}∗ is a palindrome }
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is accepted by a DLAwtl (see Ex. 3.2), it follows from Corollary 3.7 that the language

L′ = L ∩ a∗ · b∗ ·# · {c, d}∗ ·# · a∗ · b∗
= { ambn#u#ambn | m,n ≥ 0, u ∈ {c, d}∗ is a palindrome }

is not accepted by any NLAwtl. This observation implies that the language classes L(NLAwtl) and L(DLAwtl)
are not closed under intersection with regular languages. As all regular languages are accepted by DLAwtls,
this means that these classes are not closed under intersection, either. However, it is easily seen that the former
class is closed under union. Thus, we have the following consequence.

Corollary 5.1. The language class L(NLAwtl) is closed under union, but it is neither closed under intersection
nor under complementation.

Concerning DLAwtls, we have the following closure property.

Proposition 5.2. The language class L(DLAwtl) is closed under complementation.

Proof. Let A = (Q,Σ,�,�, τ, δ, q0, F ) be a DLAwtl. We define a DLAwtl Ac = (Q∪{qf},Σ,�,�, τc, δc, q0, Fc),
where qf is a new left state, by taking τc(qf ) = Σ and τc(q) = τ(q) for all q ∈ Q, Fc = (Qr F ) ∪ {qf}, and by
defining δc as follows:

δc(q, a) = δ(q, a) for all q ∈ Q and all a ∈ µ(q),
δc(q, b) = qf for all q ∈ Q and all b ∈ Σ r (τ(q) ∪ µ(q)).

Thus, given a word w ∈ Σ∗ as input, Ac performs the same steps as A until A halts. Let q ∈ Q and u ∈ Σ∗ be
the current state and the current tape contents at that point.

– If q ∈ F and u ∈ (τ(q))∗, then A accepts, which means that w ∈ L(A). However, as q 6∈ Fc, we see that
Ac does not accept on input w.

– If q 6∈ F , but u ∈ (τ(q))∗, then A does not accept, which means that w 6∈ L(A). However, as q ∈ Fc, we
see that Ac accepts on input w.

– Finally, if q is a left state and u = xay for some word x ∈ (τ(q))∗ and a letter a 6∈ (τ(q)∪µ(q)), then A just
gets stuck without accepting, which means that w 6∈ L(A). However, Ac continues the current computation
by q � xay� `Ac qf � xy�, and then Ac accepts as qf ∈ Fc and xy ∈ (τ(qf ))∗, that is, w ∈ L(Ac).

– If q is a right state and u = xay for some word y ∈ (τ(q))∗ and a letter a 6∈ (τ(q) ∪ µ(q)), then it follows
analogously that Ac accepts on input w.

Thus, we see that L(Ac) = Σ∗ r L(A).

As observed above, the language class L(DLAwtl) is not closed under intersection with regular sets. Thus, we
get the following consequence from Proposition 5.2.

Corollary 5.3. The language class L(DLAwtl) is not closed under intersection with regular sets, and hence, it
is neither closed under union nor under intersection.

From the definition it follows immediately that L(DLAwtl) ⊆ L(NLAwtl). By Proposition 5.2, L(DLAwtl)
is closed under complementation, while by Corollary 5.1, L(NLAwtl) is not. Thus, we obtain the following
separation result.

Corollary 5.4. L(DLAwtl) ( L(NLAwtl).

In fact, in Proposition 5.7 below, we will encounter an example language that separates the class L(DLAwtl)
from the class L(NLAwtl).
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The languages L1 = { ambm | m ≥ 0 } and L2 = { cndn | n ≥ 0 } are both linear context-free and it is easily
seen they are accepted by DLAwtls. However, their product L1 · L2 = { ambmcndn | m,n ≥ 0 } is not linear
context-free, and in fact it does not even contain a sublanguage that is linear context-free and letter-equivalent
to the language itself. Hence, by Corollary 3.7, L1 ·L2 is not accepted by any NLAwtl. This yields the following
non-closure property.

Corollary 5.5. The language classes L(NLAwtl) and L(DLAwtl) are not closed under product.

From the definition of the NLAwtl, it follows immediately that the language classes L(NLAwtl) and L(DLAwtl)
are closed under reversal. In addition, the former class is closed under a weaker product operation.

Proposition 5.6. The language class L(NLAwtl) is closed under product with regular sets, that is, if L ∈
L(NLAwtl) and R ∈ REG, then L ·R and R · L are accepted by NLAwtls.

Proof. Let A = (Q,Σ,�,�, τ, δ, I, F ) be an NLAwtl in normal form, and let B = (Q′,Σ, δ′, q′0, F
′) be an NFA.

From A and B we obtain an NLAwtl C for the product L(B) · L(A) as follows:

– First C simulates the NFA B on a prefix u of the given input w. Whenever B enters a final state from F ′,
then C has the option of entering an initial state of A.

– Once C has entered an initial state of A, it simulates A on the remaining suffix v of the input w. C accepts
if and when A accepts.

Thus, C accepts a given input w iff w admits a factorization of the form w = uv such that u ∈ L(B) and
v ∈ L(A), which shows that L(C) = L(B) · L(A). As L(A) · L(B) = (L(B)R · L(A)R)R, and as REG as well as
L(NLAwtl) are both closed under reversal, we see that also L(A) · L(B) is accepted by an NLAwtl.

In [27] it has been noted that the rational trace language

L∨ = {w ∈ {a, b}∗ | ∃n ≥ 0 : |w|a = n and |w|b ∈ {n, 2n} }

is not accepted by any DFAwtl2. As L∨ is linear context-free, it is accepted by an NLAwtl. However, generalizing
the proof of Proposition 4.7 of [27], we now show that L∨ is not accepted by any DLAwtl. Thus, L∨ separates
the class L(DLAwtl) from the class L(NLAwtl).

Proposition 5.7. The language L∨ is not accepted by any DLAwtl.

Proof. Assume that A = (Q, {a, b},�,�, τ, δ, {q0}, F ) is a DLAwtl that accepts the language L∨. Let m be a
sufficiently large integer, and let w = ambm. Then w ∈ L∨, and hence, the computation of A on input w is
accepting. Let

q0�w� = q0�a
mbm� `∗A qf�x�

be this computation, where qf ∈ F and x ∈ (τ(qf ))∗. As x is obtained from w = ambm by deleting some letters,
we see that x = arbs for some integers r and s such that 0 ≤ r, s ≤ m. If r > 0, then a ∈ τ(qf ), and then A
would also accept the input am+1bm 6∈ L∨. Analogously, if s > 0, then b ∈ τ(qf ), and then A would also accept
the input ambm+1 6∈ L∨. Hence, we conclude that r = s = 0, that is, x = ε, which implies that the accepting
computation of A on input w consists of 2m steps.

2Actually, it is shown in [27] that L∨ is not accepted by any stl-det-global-CD-R(1)-system, which is a specific type of cooperating
distributed system of a very restricted type of restarting automata. The results of [25] then yield that L∨ is not accepted by any
DFAwtl.
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If m > |Q|, then there exists a state q ∈ Q that occurs repeatedly in this computation, that is, this
computation can be written as follows:

q0�w� = q0�a
mbm� `iA q�am−i1bm−i2� `

j−i
A q�am−j1bm−j2� `∗A qf��,

where 0 ≤ i < j ≤ |Q|, i1, i2, j1, j2 ∈ N such that i = i1 + i2 and j = j1 + j2, and qf ∈ F . Of course, j1 ≥ i1 and
j2 ≥ i2.

Claim. j1 − i1 = j2 − i2.

Proof. Assume that j1 − i1 > j2 − i2. Then m+ j1 − i1 > m+ j2 − i2, and hence, the word am+j1−i1bm+j2−i2

is not an element of L∨. However, on input am+j1−i1bm+j2−i2 , A executes the following computation, as A is
deterministic:

q0�a
m+j1−i1bm+j2−i2� `jA q�a

m−i1bm−i2� `∗A qf��,

that is, A accepts this word. This contradiction implies that j1 − i1 ≤ j2 − i2.

Now assume that j1 − i1 < j2 − i2. Then m + j1 − i1 < m + j2 − i2, and if m is sufficiently large, then
2(m+ j1 − i1) > m+ j2 − i2, and hence, also in this case the word am+j1−i1bm+j2−i2 is not an element of L∨.
However, as above it follows that A accepts this word. Thus, we see that indeed j1 − i1 = j2 − i2 holds.

Now we consider the word z = amb2m ∈ L∨. Then the computation of A on input z is accepting, and as A
is deterministic, this computation has the following form:

q0�z� = q0�a
mb2m� `iA q�am−i1b2m−i2� `

j−i
A q�am−j1b2m−j2� `∗A pf��

for some final state pf ∈ F . From this computation we now obtain the following computation:

q0�a
m+j1−i1b2m+j2−i2� `jA q�a

m−i1b2m−i2� `∗A pf��.

However, m+ j1 − i1 6= 2m+ j1 − i1 = 2m+ j2 − i2 and 2(m+ j1 − i1) 6= 2m+ j1 − i1 = 2m+ j2 − i2, which
implies that the word am+j1−i1b2m+j2−i2 is not an element of L∨. Thus, it follows that the language L∨ is not
accepted by any DLAwtl.

This observation yields the following result.

Corollary 5.8. The language class L(DLAwtl) does not even contain all rational trace languages.

Let L′∨ denote the following variant of the language L∨:

L′∨ = {wc | w ∈ {a, b}+, |w|a = |w|b − 1 } ∪ {wd | w ∈ {a, b}+, 2 · |w|a = |w|b − 1 }.

It is easy to design a DLAwtl A for this language. Now let ϕ : {a, b, c, d}∗ → {a, b}∗ be the alphabetic morphism
that is defined by a 7→ a and b, c, d 7→ b. Then

ϕ(L′∨) = {w ∈ {a, b}+ | ∃n ≥ 0 : |w|a = n and |w|b ∈ {n, 2n} },

which is not accepted by any DLAwtl (see the proof of Prop. 5.7). Thus, we obtain the following non-closure
property.

Corollary 5.9. The language class L(DLAwtl) is not closed under alphabetic morphisms.
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However, the following questions remain open.

Question 1: Is any of the classes L(DLAwtl) and L(NLAwtl) closed under Kleene star or inverse morphisms,
and is L(NLAwtl) closed under ε-free morphisms?

Consider the linear context-free language L = { ambm | m ≥ 1 }. It is easily seen that L is accepted by a
DLAwtl. We think that L∗ is not accepted by any NLAwtl, which would prove non-closure under Kleene star.

Finally, we turn to decision problems. A DLAwtl (NLAwtl) can easily be simulated by a (non-) deterministic
one-tape Turing machine that is simultaneously linearly space-bounded and quadratically time-bounded. Hence,
we have the following complexity results.

Proposition 5.10.

(a) L(DLAwtl) ⊆ DSpaceTime(n, n2).
(b) L(NLAwtl) ⊆ NSpaceTime(n, n2).

It follows in particular that L(NLAwtl) is contained in the class of context-sensitive languages. The proof
of Proposition 3.6 yields an effective construction of an NLA A′ from an NLAwtl A such that the language
E = L(A′) is a subset of the language L = L(A) that is letter-equivalent to L. Hence, E is non-empty if and
only if L is non-empty, and E is infinite if and only if L is infinite. As the emptiness problem and the finiteness
problem are decidable for NLAs (that is, for linear context-free languages), this immediately yields the following
decidability results.

Proposition 5.11. The following decision problems can be solved effectively:

Instance : An NLAwtl A.
Problem 1 : Is the language L(A) empty?
Problem 2 : Is the language L(A) finite?

Since universality is undecidable for linear languages (see, e.g., [12]), and as one can easily design a DLAwtl
for the language Σ∗, we obtain the following undecidability results.

Proposition 5.12. The following decision problems are undecidable in general:

(a) Instance : An NLAwtl A on Σ, and a regular language R.
Problem 3 : Is L(A) = Σ∗, that is, is A universal?
Problem 4 : Is R contained in L(A)?

(b) Instance : Two NLAwtls A and B.
Problem 5 : Is L(A) contained in L(B)?
Problem 6 : Is L(A) = L(B)?

Finally, it has been observed in [25] that it is undecidable in general whether a given NFAwtl accepts a
regular language. As the NFAwtl is a special type of NLAwtl, this immediately yields the following result.

Proposition 5.13. The following decision problem is undecidable in general:

Instance : An NLAwtl A.
Problem 7 : Is the language L(A) regular?

Actually, we even have the following undecidability result.

Proposition 5.14. The following decision problem is undecidable in general:

Instance : An NLAwtl A.
Problem 8 : Is the language L(A) linear context-free?
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Proof. The language class L(NLAwtl) is effectively closed under union and under product with regular sets
(Prop. 5.6). Further, universality is undecidable for NLAwtls. Finally, the class of linear context-free languages
contains the regular languages, and it is closed under right quotients with single letters, that is, if L ∈ LIN,
then also L/a = {w | wa ∈ L } is linear context-free. Thus, we can apply Greibach’s general undecidability
result [11], which implies that it is undecidable in general whether the language accepted by a given NLAwtl is
linear context-free.

However, the following question remains open.

Question 2: Is it decidable whether a language that is accepted by an NLAwtl is also accepted by a DLAwtl?

Finally, observe that universality is decidable for DLAwtls, as emptiness is decidable for them by Proposi-
tion 5.11 and L(DLAwtl) is closed under complementation (Prop. 5.2). However, the following questions remain
open.

Question 3: Are containment, equivalence, regularity, or linear context-freeness decidable for DLAwtls?

6. A family of languages associated to an NLA

Let A = (Q,Σ, δ, I, F ) be an NLA in normal form. Recall from Definition 2.1 that, for each state q ∈ Q,
µ(q) = { a ∈ Σ | δ(q, a) 6= ∅ }. Without loss of generality we may assume that

– F = {q+} for a state q+ ∈ Q, that is, q+ is a unique final state, and µ(q+) = ∅, that is, in this state A
cannot read any letter,

– each letter a ∈ Σ occurs in some word of the language L(A), which means in particular that, for each
a ∈ Σ, there exists at least one state q ∈ Q such that µ(q) = {a},

– and µ(q) 6= ∅ for each non-final state q ∈ Qr F .

By introducing the sentinels � and � and by adding an admissible translucency mapping τ : Q → 2Σ, we
obtain an NLAwtl Aτ = (Q,Σ,�,�, τ, δ, I, F ) from A. Here the translucency mapping τ is called admissible for
A if it satisfies the following restrictions:

1. τ(q+) = ∅ and
2. τ(q) ⊆ Σ r µ(q) for all q ∈ Qr {q+}.

From the proof of Proposition 3.6, we see that L(Aτ ) contains the linear context-free language L = L(A) and
that L is letter-equivalent to L(Aτ ). Observe that A, and therewith the language L, does not depend in any
way on the translucency mapping τ . Thus, we can choose different translucency mappings τ for the NLAwtl Aτ ,
but L will be contained in each of the resulting languages L(Aτ ) and it will be letter-equivalent to each of these
languages.

In order to investigate this phenomenon, we choose the notation (A, τ) for the NLAwtl Aτ =
(Q,Σ,�,�, τ, δ, I, F ). If |Q| = m and |Σ| = n, then there are 2(n−1)·(m−1) admissible translucency mappings
for A, as for each of the m− 1 non-final states q, there are 2n−1 possible values for τ(q). Thus, from the given
NLA A, we obtain a family

A(A) = { (A, τ) | τ is an admissible translucency mapping for A }

of cardinality 2(n−1)·(m−1) of NLAwtls that are all based on the given NLA A and that only differ in their
translucency mappings. Concerning the resulting family of languages we have the following basic observation,
where τ∅ denotes the trivial translucency mapping that is defined by taking τ∅(q) = ∅ for all states q of A.

Proposition 6.1. The linear context-free language L(A) = L((A, τ∅)) is a sublanguage of L((A, τ)) that is
letter-equivalent to L((A, τ)) for each NLAwtl (A, τ) ∈ A(A).
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Let τ∀ be the admissible translucency mapping that is defined by τ∀(q) = Σ r µ(q) for all non-final states
q ∈ Q r F . Then the following result is easily obtained. Just observe that each accepting computation of an
NLAwtl (A, τ) ∈ A(A) is also an accepting computation of the NLAwtl (A, τ∀).

Proposition 6.2. The language L((A, τ∀)) is the commutative closure of the language L(A). In particular,
L((A, τ)) is a sublanguage of L((A, τ∀)) for all (A, τ) ∈ A(A).

On the set of NLAwtls A(A), we can define a partial ordering ≤ as follows:

(A, τ1) ≤ (A, τ2) iff ∀q ∈ Qr F : τ1(q) ⊆ τ2(q).

If (A, τ1) ≤ (A, τ2), then each accepting computation of the former is also an accepting computation of the
latter. Thus, we obtain the following result.

Proposition 6.3. If (A, τ1) ≤ (A, τ2), then L((A, τ1)) ⊆ L((A, τ2)).

The set A(A) is actually a distributive lattice under the operations

(A, τ1) ∨ (A, τ2) = (A, τ1 ∪ τ2) and (A, τ1) ∧ (A, τ2) = (A, τ1 ∩ τ2),

where τ1 ∪ τ2 and τ1 ∩ τ2 are defined through

(τ1 ∪ τ2)(q) = τ1(q) ∪ τ2(q)

and

(τ1 ∩ τ2)(q) = τ1(q) ∩ τ2(q)

for all q ∈ Q.

Does this lattice of NLAwtls induce a lattice on the corresponding family of languages

L(A(A)) = {L((A, τ)) | (A, τ) ∈ A(A) }?

Let Λ : A(A)→ L(A(A)) be the mapping that maps each NLAwtl (A, τ) ∈ A(A) to the corresponding language
L((A, τ)). We define the following binary operations ∨ and ∧ on L(A(A)):

L((A, τ1)) ∨ L((A, τ2)) := L((A, τ1) ∨ (A, τ2))

and

L((A, τ1)) ∧ L((A, τ2)) := L((A, τ1) ∧ (A, τ2)).

Obviously,

L((A, τ1)) ∪ L((A, τ2)) ⊆ L((A, τ1)) ∨ L((A, τ2)),

as each accepting computation of (A, τ1) or (A, τ2) is also an accepting computation of (A, τ1) ∨ (A, τ2), and

L((A, τ1)) ∧ L((A, τ2)) ⊆ L((A, τ1)) ∩ L((A, τ2)),

as each accepting computation of (A, τ1) ∧ (A, τ2) is an accepting computation of (A, τ1) as well as of (A, τ2).
However, in general these are proper inclusions.
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Example 6.4. Let A = (Q,Σ, δ, I, F ) be the NLA that is defined by Q = QL = {qa, qb, qc, q+}, Σ = {a, b, c},
I = {qa}, F = {q+}, and δ(qa, a) = {qa, qb}, δ(qb, b) = {qb, qc}, δ(qc, c) = {qc, q+}, and δ(q, x) = ∅ for all other
pairs (q, x) ∈ Q× Σ. Then it is easily seen that L(A) = a+ · b+ · c+.

Let τ1 be the translucency mapping defined by τ1(qa) = {b} and τ1(qb) = τ1(qc) = ∅, and let τ2 be the
translucency mapping that is defined by τ2(qa) = τ2(qc) = ∅ and τ2(qb) = {c}. Then

L((A, τ1)) = {w ∈ {a, b}+ | |w|a, |w|b ≥ 1 } · c+,

and

L((A, τ2)) = a+ · {w ∈ {b, c}+ | |w|b, |w|c ≥ 1 }.

Now let τ3 = τ1 ∪ τ2. Then τ3(qa) = {b}, τ3(qb) = {c}, and τ3(qc) = ∅, and w = bacb ∈ L((A, τ3))r (L((A, τ1))∪
L((A, τ2))), that is,

L((A, τ1)) ∪ L((A, τ2)) ( L((A, τ1)) ∨ L((A, τ2)).

Example 6.5. Let A = (Q,Σ, δ, I, F ) be the NLA that is defined by Q = QL = {qa, q′a, qb, q+}, Σ = {a, b},
I = {qa, q′a}, F = {q+}, and δ(qa, a) = {qa, qb}, δ(q′a, a) = {q′a, qb}, δ(qb, b) = {qb, q+}, and δ(q, x) = ∅ for all
other pairs (q, x) ∈ Q× Σ. Then it is easily seen that L(A) = a+ · b+.

Let τ1 be the translucency mapping defined by τ1(qa) = {b} and τ1(q′a) = τ1(qb) = ∅, and let τ2 be the
translucency mapping that is defined by τ2(qa) = τ2(qb) = ∅ and τ2(q′a) = {b}. Then

L((A, τ1)) = {w ∈ {a, b}+ | |w|a, |w|b ≥ 1 } = L((A, τ2)).

Now let τ3 = τ1 ∩ τ2. Then τ3(qa) = τ3(q′a) = τ3(qb) = ∅, and L((A, τ3)) = L(A) = a+ · b+ ( L((A, τ1)) ∩
L((A, τ2)) = L((A, τ1)), that is,

L((A, τ1)) ∧ L((A, τ2)) ( L((A, τ1)) ∩ L((A, τ2)).

The next examples illustrate the possible structures of the set L(A(A)).

Example 6.6. Let A = (Q,Σ, δ, I, F ) be the NLA that is defined by Q = QL = {qa, qb, q+}, Σ = {a, b},
I = {qa, qb}, F = {q+}, and δ(qa, a) = Q, δ(qb, b) = Q, and δ(q, x) = ∅ for all other pairs (q, x) ∈ Q× Σ. Then
it is easily seen that L(A) = {a, b}+. Further, L(A, τ∀) = {a, b}+ as well, which implies that L(A, τ) = {a, b}+
for all admissible translucency mappings τ . Thus, the language class L(A(A)) consists of only one language,
the language {a, b}+.

Example 6.7. Let A = (Q,Σ, δ, I, F ) be the NLA that is defined by Q = QL = {qa, qb, qc, q+}, Σ = {a, b},
I = {qa}, F = {q+}, and δ(qa, a) = {qa, qb}, δ(qb, b) = {qb, qc}, δ(qc, a) = {qc, q+}, and δ(q, x) = ∅ for all other
pairs (q, x) ∈ Q× Σ. Then it is easily seen that L(A) = a+ · b+ · a+.

As we have three non-final states and two input letters, there are 28 possible translucency mappings for A,
which are listed in the following table together with the resulting languages:
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τ qa qb qc L((A, τ))

τ∅ ∅ ∅ ∅ a+ · b+ · a+

τ1 ∅ ∅ {b} a+ · b+ · a+

τ2 ∅ {a} ∅ a · {w ∈ {a, b}+ | |w|a, |w|b ≥ 1 }
τ3 ∅ {a} {b} a · {w ∈ {a, b}+ | |w|a, |w|b ≥ 1 }
τ4 {b} ∅ ∅ {w ∈ {a, b}+ | |w|a, |w|b ≥ 1 } · a
τ5 {b} ∅ {b} {w ∈ {a, b}+ | |w|a, |w|b ≥ 1 } · a
τ6 {b} {a} ∅ {w ∈ {a, b}+ | |w|a ≥ 2, |w|b ≥ 1 }
τ∀ {b} {a} {b} {w ∈ {a, b}+ | |w|a ≥ 2, |w|b ≥ 1 }

Here we see that L((A, τ∅)) = L((A, τ1)), L((A, τ2)) = L((A, τ3)), L((A, τ4)) = L((A, τ5)), and L((A, τ6)) =
L((A, τ∀)), and that with respect to inclusion these families are related as shown in the following diagram:

L((A, τ∀))

L((A, τ2))

;;

L((A, τ4))

cc

L((A, τ∅))

;;cc

Observe that in Example 6.7, τ1 and τ2 are incomparable with respect to inclusion, but that L((A, τ1)) (
L((A, τ2)) holds, and the same is true for τ5 and τ6. So the following question remains.

Question 4: Under what conditions is the set L(A(A)) a distributive lattice under the operations ∨ and ∧
defined above?

Based on an NLA in normal form, we have defined a class of NLAwtls and a corresponding class of languages
by adjoining all admissible translucency mappings. Of course, the same definition can be applied to NFAs to
define a class of NFAwtls and the corresponding class of languages. Observe that the NLAs in Examples 6.4–6.7
above only contain left states, and hence, they are actually NFAs. Thus, Question 4 extends to NFAs.

7. Conclusion

We have extended the nondeterministic linear automaton by translucency mappings, and we have seen that
the resulting NLAwtls are quite expressive. In fact, they accept a subclass of the class of all languages with semi-
linear Parikh image that properly contains all linear context-free trace languages. In addition, we successfully
characterized the class of all linear context-free trace languages by a restricted type of NLAwtls. Further, we
presented a number of closure and non-closure results for the language classes L(NLAwtl) and L(DLAwtl),
but some operations still remain to be considered. Also we considered various decision problems for NLAwtls.
Finally, we obtained a finite lattice of NLAwtls A(A) from each NLA A that is in normal form, and this lattice
yields a finite family of languages L(A(A)) that are partially ordered with respect to inclusion. However, it
remains to study these families of languages in more detail.
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by I. Cerná, T. Gyimóthy, J. Hromkovic, K.G. Jeffery, R. Královic, M. Vukolic and S. Wolf. In Vol. 6543 of Lect. Notes Comput.
Sci. Springer, Heidelberg (2011) 406–417.

[24] B. Nagy and F. Otto, CD-systems of stateless deterministic R(1)-automata governed by an external pushdown store. RAIRO:
ITA 45 (2011) 413–448.

[25] B. Nagy and F. Otto, Finite-state acceptors with translucent letters, BILC 2011: AI Methods for Interdisciplinary Research
in Language and Biology Proc., edited by G. Bel-Enguix, V. Dahl and A.O. De La Puente. SciTePress, Portugal (2011) 3–13.

[26] B. Nagy and F. Otto, On CD-systems of stateless deterministic R-automata with window size one, J. Comput. Syst. Sci. 78
(2012) 780–806.

[27] B. Nagy and F. Otto, Globally deterministic CD-systems of stateless R-automata with window size 1, Int. J. Comput. Math.
90 (2013) 1254–1277.

[28] B. Nagy and F. Otto, Two-head finite-state acceptors with translucent letters, SOFSEM 2019, Proc., edited by B. Catania,
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