ESAIM: Control, Optimisation and Calculus of Variations

October 2004, Vol. 10, 549–552 DOI: 10.1051/cocv:2004019

ESAIM: COCV

SHARP SUMMABILITY FOR MONGE TRANSPORT DENSITY VIA INTERPOLATION

Luigi De $\mathsf{Pascale}^1$ and $\mathsf{Aldo}\ \mathsf{Pratelli}^2$

Abstract. Using some results proved in De Pascale and Pratelli [Calc. Var. Partial Differ. Equ. 14 (2002) 249-274] (and De Pascale et al. [Bull. London Math. Soc. 36 (2004) 383-395]) and a suitable interpolation technique, we show that the transport density relative to an L^p source is also an L^p function for any $1 \le p \le +\infty$.

Mathematics Subject Classification. 41A05, 49N60, 49Q20, 90B06.

Received May 5, 2003.

This paper is concerned with the transport problem, which consists in minimizing

$$\int_{\Omega} |x - t(x)| \,\mathrm{d}f^+(x) \tag{1}$$

among the transports, which are the measurable functions $t: \operatorname{spt}(f^+) \longrightarrow \operatorname{spt}(f^-)$ such that $t_\# f^+ = f^-$, i.e. for any Borel set B it is $f^+(t^{-1}(B)) = f^-(B)$; here $f = f^+ - f^-$ is a L^1 function on Ω with $\int f = 0$, while Ω is a convex and bounded subset of \mathbb{R}^N (to find more general descriptions of the transport problem, see [1,9]). To each optimal -i.e. minimizing (1) – transport t it is possible to associate a positive measure σ on Ω defined by

$$\langle \sigma, \varphi \rangle := \int_{\Omega} \left(\int_{\Omega} \varphi(z) \, d\mathcal{H}^{1}_{xt(x)}(z) \right) df^{+}(x)$$
 (2)

where φ is any function in $C_0(\Omega)$ and \mathcal{H}^1_{xy} is the one-dimensional Hausdorff measure on the segment xy. It has been proved (see [1,8]) that there always exist (in this setting) optimal transports and in particular there are invertible optimal transports whose inverse is also an optimal transport for -f. A fundamental result, due to [1,8], is that, even if there can be many different optimal transports, all define via (2) the same measure σ , which is then called transport density relative to f. This measure is very interesting for the transport problem (for example it plays an important role in [7]), and moreover it represents the connection between this problem and some shape optimization problem (see [3,4]), which can be reduced to the research of a positive measure σ

Keywords and phrases. Transport density, interpolation, summability.

¹ Dipartimento di Matematica Applicata, Università di Pisa, via Bonanno Pisano 25/B, 56126 Pisa, Italy; e-mail: depascal@dm.unipi.it

² Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; e-mail: a.pratelli@sns.it

and a 1-Lipschitz function u solving

$$\begin{cases}
-\operatorname{div}(\sigma D u) = f & \text{on } \Omega \\
|D u| = 1 & \sigma - \text{a.e.}
\end{cases}$$
(3)

The relationship between the two problems relies on the fact that the (unique) transport density is also the unique solution of (3) (see [1,3,6]); the functions u solving (3) together with σ are also meaningful in the context of the transport problem, they are referred to as Kantorovich potentials. Equation (3) is often referred to as Monge-Kantorovich equation. Thus the study of the regularity of σ is useful both for the transport problem and for the shape optimization problem. It was proved (see [1,6,8]) that the fact that $f \in L^1$ implies also that $\sigma \in L^1$.

In this paper we will show some sharp relationship between the summability of f and that of σ . The problem to derive regularity of σ from that of f has already been studied in [5,6] following two different methods: in [6] we used a geometric construction starting from the definition (2), while in [5] the proofs used PDE tools starting from the equivalent definition (3). In the first work it was proved that

$$f \in L^1 \Longrightarrow \sigma \in L^1, \qquad f \in L^\infty \Longrightarrow \sigma \in L^\infty,$$

$$f \in L^p \Longrightarrow \sigma \in L^{p-\epsilon} \text{ for any } \epsilon > 0,$$
 (4)

and some examples were given in which $f \in L^p$ and $\sigma \notin L^q$ for any q > p. Thus it was left open the problem whether or not it is true that $f \in L^p$ implies $\sigma \in L^p$ for $p \neq 1, +\infty$. In the second work this problem was partially solved, since it was proved that

$$f \in L^p \Longrightarrow \sigma \in L^p \text{ for any } 2 \le p < +\infty.$$
 (5)

Since the cases $p=1,\infty$ had already been solved in the first work, it was left open only the case with 1 . In this work we will show how the classic Marcinkievicz interpolation result can be used to infer from the results already mentioned the general property for any <math>p. Note that this is not trivial since the map associating the transport density σ to any function f with $\int f = 0$ is far from being linear or sublinear, as easy examples show; however, this map is 1-homogeneous, as one can hope in view of (6).

The result of this paper is the following

Theorem A. For any $1 \le p \le +\infty$, if $f \in L^p$ is a function with $\int f = 0$, then the associated transport density σ is also in L^p . More precisely, there exist a constant C_p , depending only on Ω , such that

$$\|\sigma\|_{L^p} \le C_p \|f\|_{L^p}.$$
 (6)

To prove the theorem, we first of all recall the known results we use, the regularity results proved in [5,6] and the Marcinkievicz interpolation result, which can be found for example in [10].

Theorem 1. For p=1 and for any $p \geq 2$ there exists a constant C_p depending on Ω such that, for any $f \in L^p$ with $\int f = 0$,

$$\|\sigma\|_{L^p} \le C_p \|f\|_{L^p} \tag{7}$$

where σ is the transport density associated to f.

Theorem 2 (Marcinkievicz). If $T: L^1 \to L^1$ is a linear mapping such that, for two suitable constants M_p and M_q with $1 \le p < q \le +\infty$,

$$||T(g)||_{L^p} \le M_p ||g||_{L^p}$$
 and $||T(g)||_{L^q} \le M_q ||g||_{L^q}$, (8)

then it is also true that for any $s \in (p,q)$

$$||T(g)||_{L^s} \le C M_p^{\frac{p(q-s)}{s(q-p)}} M_q^{\frac{q(s-p)}{s(q-p)}} ||g||_{L^s}, \tag{9}$$

where C is a geometric constant depending only on Ω .

To prove our result, let us fix now a function $f \in L^p$ with $\int f = 0$ and $1 \le p \le +\infty$. We can assume $p \ne 1, +\infty$, since otherwise we already know that $\sigma \in L^p$. Fix also an invertible optimal transport t for f (as we said, this always exists when $f \in L^1$, even though it is not unique). For any function $g \in L^1$, there are of course two uniquely determined measurable functions λ and ν supported respectively on spt (f^+) and on $\Omega \setminus \operatorname{spt}(f^+)$ such that

$$g = \lambda f^+ + \nu. \tag{10}$$

Let us finally define the operator $T: L^1 \longrightarrow \mathcal{M}(\Omega)$ to which we will apply later the Marcinkievicz theorem: given any $g \in L^1$ and following the notations of (10), we define

$$T(g) := \int_{\Omega} \lambda(x) f^{+}(x) \mathcal{H}^{1}_{xt(x)} dx, \tag{11}$$

which can also be rewritten as

$$\langle T(g), \varphi \rangle = \int_{x \in \Omega} \left(\int_{z \in \Omega} \varphi(z) \, d\mathcal{H}^1_{xt(x)}(z) \right) \lambda(x) \, f^+(x) \, dx$$

for any $\varphi \in C_0(\Omega)$. Notice that T(g) is a priori a measure, and that the definition of T depends on the function f we fixed; moreover, we point out that of course T(f) is the transport density σ associated to f (just recall (2) and (11)).

We define now σ_1 , σ_2 and f_1 , f_2 (depending on f and g) as follows:

$$\sigma_{1} := \int_{\Omega} \lambda^{+}(x) f^{+}(x) \mathcal{H}^{1}_{xt(x)} dx \qquad f_{1} := \lambda^{+} f^{+} - (\lambda^{+} \circ t^{-1}) f^{-}
\sigma_{2} := \int_{\Omega} \lambda^{-}(x) f^{+}(x) \mathcal{H}^{1}_{xt(x)} dx \qquad f_{2} := \lambda^{-} f^{+} - (\lambda^{-} \circ t^{-1}) f^{-};$$
(12)

note that also these definitions depend on f and g, and that $T(g) = \sigma_1 + \sigma_2$. First we prove the

Lemma 3. The function $t : \operatorname{spt}(f^+) \longrightarrow \operatorname{spt}(f^-)$ is defined f_i^+- a.e. and it is an optimal transport for the functions f_i , i = 1, 2 defined in (12); moreover, each σ_i is the transport density associated to f_i .

Proof. The optimality of a transport is equivalent to the cyclical monotonicity of its graph (see [2,9] to find the definition of the cyclical monotonicity and the proof of this assert). Then the fact that t is optimal for f assures that its graph is monotonically cyclic; thus, given any function h on Ω with 0 mean and such that $h^+ \ll f^+$, t is defined h^+ -a.e. and it is an optimal transport for h if and only if it is a transport. Then to prove the first part of the assert it is enough to check that $t_{\#}f_i^+ = f_i^-$ for i = 1, 2, which is a straightforward consequence of the fact that $t_{\#}f^+ = f^-$ and of the properties of the push-forward. Finally, the fact that each σ_i is the transport density associated to f_i follows comparing (12) with the definition (2) of the transport density (replace f and σ in (2) by f_i and σ_i).

We can then prove the following

Lemma 4. $T: L^1 \longrightarrow L^1$ is a linear operator.

Proof. The fact that T is linear follows immediately from the definition (11); moreover T(g) is a L^1 function (recall that a priori we knew it only to be a measure) since it is the sum of the two transport densities σ_i thanks to the preceding Lemma, and thanks to Theorem 1 each of these densities is in L^1 since so is each f_i recall (12) and that $g \in L^1$.

We prove now the validity of (8) with p=1 and $q=+\infty$ in order to apply the Marcinkievicz Theorem.

Lemma 5. The inequalities (8) hold for T with p=1 and $q=+\infty$; in particular, $M_1=2\,C_1$ and $M_\infty=2\,C_\infty$, where the C_i 's are the constants of (7).

Proof. In view of Lemma 3 and Theorem 1, σ_1 is the transport density relative to f_1 and then $\|\sigma_1\|_{L^1} \leq C_1\|f_1\|_{L^1}$; but since $t_\#f_1^+ = f_1^-$, then $\|f_1^+\|_{L^1} = \|f_1^-\|_{L^1}$ and we infer

$$\|\sigma_1\|_{L^1} \leq 2 C_1 \|f_1^+\|_{L^1}.$$

In the same way we deduce also $\|\sigma_2\|_{L^1} \leq 2C_1\|f_2^-\|_{L^1}$. Using now the fact that the supports of the f_i 's are essentially disjoint – that is clear from (12) –, we have

$$||T(g)||_{L^{1}} = ||\sigma_{1} + \sigma_{2}||_{L^{1}} \le ||\sigma_{1}||_{L^{1}} + ||\sigma_{2}||_{L^{1}} \le 2C_{1} \left(||f_{1}^{+}||_{L^{1}} + ||f_{2}^{+}||_{L^{1}}\right)$$

$$= 2C_{1}||f_{1}^{+} + f_{2}^{+}||_{L^{1}} = 2C_{1}||\lambda^{+}f^{+} + \lambda^{-}f^{+}||_{L^{1}} = 2C_{1}||\lambda f^{+}||_{L^{1}}$$

$$\le 2C_{1}||g||_{L^{1}},$$

which gives the first estimate.

On the other hand, to show the L^{∞} inequality we note that, thanks to (10) and (12), it is $||f_i||_{L^{\infty}} \leq ||g||_{L^{\infty}}$ for each i. Since $T(g) = \sigma_1 + \sigma_2$, from Lemma 3 and Theorem 1 we infer

$$||T(g)||_{L^{\infty}} \le 2C_{\infty}||g||_{L^{\infty}},$$

and then also the L^{∞} inequality follows.

Thanks to Lemmas 4 and 5, we can apply Theorem 2 to prove (6), recalling that T(f) is the transport density σ associated to f. Recall now that the function $f \in L^p$ was fixed at the beginning, but the constants C_p we obtained do not depend on f, but only on p and Ω . Then the estimate (6) is true, with the same constants, for any function $f \in L^p$.

References

- [1] L. Ambrosio, Mathematical Aspects of Evolving Interfaces. Lect. Notes Math. 1812 (2003) 1-52.
- [2] L. Ambrosio and A. Pratelli, Existence and stability results in the L^1 theory of optimal transportation. Lect. Notes Math. 1813 (2003) 123-160.
- [3] G. Bouchitté and G. Buttazzo, Characterization of optimal shapes and masses through Monge-Kantorovich equation. *J. Eur. Math. Soc.* **3** (2001) 139-168.
- [4] G. Bouchitté, G. Buttazzo and P. Seppecher, Shape Optimization Solutions via Monge-Kantorovich Equation. C. R. Acad. Sci. Paris I 324 (1997) 1185-1191.
- [5] L. De Pascale, L.C. Evans and A. Pratelli, Integral Estimates for Transport Densities. Bull. London Math. Soc. 36 (2004) 383-395.
- [6] L. De Pascale and A. Pratelli, Regularity properties for Monge transport density and for solutions of some shape optimization problem. Calc. Var. Partial Differ. Equ. 14 (2002) 249-274.
- [7] L.C. Evans and W. Gangbo, Differential Equations Methods for the Monge-Kantorovich Mass Transfer Problem. Mem. Amer. Math. Soc. 137 (1999).
- [8] M. Feldman and R. McCann, Uniqueness and transport density in Monge's mass transportation problem. Calc. Var. Partial Differ. Equ. 15 (2002) 81-113.
- [9] W. Gangbo and R.J. McCann, The geometry of optimal transportation. Acta Math. 177 (1996) 113-161.
- [10] M. Giaquinta, Introduction to regularity theory for nonlinear elliptic systems. Birkhäuser Verlag (1993).