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ON MATERIAL OPTIMISATION FOR NONLINEARLY ELASTIC

PLATES AND SHELLS

Peter Hornung1, Martin Rumpf2 and Stefan Simon2,*

Abstract. This paper investigates the optimal distribution of hard and soft material on elastic
plates. In the class of isometric deformations stationary points of a Kirchhoff plate functional with
incorporated material hardness function are investigated and a compliance cost functional is taken
into account. Under symmetry assumptions on the material distribution and the load it is shown that
cylindrical solutions are stationary points. Furthermore, it is demonstrated that the optimal design
of cylindrically deforming, clamped rectangular plates is non trivial, i.e. with a material distribution
which is not just depending on one axial direction on the plate. Analytical results are complemented
with numerical optimization results using a suitable finite element discretization and a phase field
description of the material phases. Finally, using numerical methods an outlook on the optimal design
of non isometrically deforming plates and shells is given.
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1. Introduction

In nonlinear models of elastic deformations of plates and shells, a decomposition of the material into a
hard and a soft phase can be taken into account, and a natural question to ask is how to distribute these
different materials in a mechanically optimal way. In this paper, we study this shape optimization problem both
analytically and numerically. For the background of shape optimization of bulk material and linearized elasticity
as well as the homogenization perspective, we refer the reader to the textbooks [1, 12].

The situation for thin plates addressed here differs from that of bulk materials. We will essentially make
use of the fact that plates can only be deformed isometrically, i.e., preserving local lengths and angles. This
isometry constraint arises naturally in the rigorous derivation of Kirchhoff’s plate theory from nonlinear three
dimensional elasticity provided in [9].

The characteristic global property of isometrically deformed plates is that they are developable surfaces. This
is shown for smooth deformations in [11] and it remains true for deformations with finite bending energy, cf.
[19, 22, 24]. For further results on W 2,2 isometries we refer to [14, 15].

Sprekels and Tiba [25] studied a linear plate or beam model given by the PDE ∆δ3(x)∆u = f , where δ is the
variable plate thickness, u the normal displacement and f the load. They took into account a volume or a tracking
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type cost functional and applied duality methods to solve the resulting optimization problem numerically. In
Arnautu et al. [2], the numerical approximation of the deformation of clamped plates via a reformulation of a
system of second order PDEs is investigated. For the discretization piecewise affine, continuous finite elements
are taken into account. Recently, an optimal control problem for plates with variable thickness was studied by
Deckelnick et al. [8]. Also here, the thickness of the plate is the design function. The authors used a variational
discretization of the resulting optimal control problem and took into account a mixed formulation of the state
equation based on a lowest-order Raviart-Thomas mixed finite element approach. They derived estimates for
the discretization and the regularization error.

Our focus in this paper is on isometric deformations and we take into account the nonlinear Kirchhoff plate
functional

W[B, u] =
1

2

ˆ
S

B(x)|A(x)|2 dx−
ˆ
S

f(x) · u(x) dx,

where u denotes the deformation of a plate S, A the second fundamental of the deformed plate, f the load
and B : S 7→ {a, b} a binary material hardness function, which describes the distribution of a hard phase b
and a soft phase a with b > a. In [18], we already considered the optimal distribution of a soft and a hard
material for nonlinearly elastic planar beams. We proved that under gravitational force the optimal distribution
involves no microstructure and is ordered. We also provided numerical simulations which confirm and extend
this observation. Now, we treat the two dimensional case with a particular focus on cylindrical deformation of
rectangular plates clamped on one side.

For a homogeneous material distribution, Bartels [3] approximated large bending isometries by making use
of the discrete Kirchhoff triangle and a linearization of the isometry constraint. At variance we implemented the
exact isometry constraints on all vertices of the underlying triangulation. To describe the distribution of hard
material we again took into account a phase field model of Modica–Mortola type. Furthermore, we investigated
the optimization of a material distribution on non isometrically deforming elastic plates and shells.

The paper is organized as follows. In Section 2 we discuss the Kirchhoff plate functional with a material
hardness function. We in particular show that under suitable symmetry assumptions there exists a stationary
point in the class of isometric deformations which is a cylindrical solution. Using the discrete Kirchhoff triangle
scheme we investigate in Section 3 a finite element discretization of the state equation and compare numerically
the compliance cost for different distributions of the hard material on a rectangular, clamped plate. Then, in
Section 4 we compare these designs analytically and show that optimal designs for sufficient strong applied
forces are indeed not just depending on one axis direction of the plate. In Section 5 a mild condition on
the deformed boundary is investigated under which (reflection symmetric) isometric deformations are already
cylindrical and in Section 6 existence of an optimal design in the class of cylindrically deforming plates is shown
using a relaxation approach. Properties of such an optimal design and in particular the distribution profile
of hard material are analyzed in Section 7. Section 8 confirms these findings numerically based on the above
finite element discretization of plates with a material distribution modeled via a phase field approach. Finally,
Section 9 generalizes the model considering elastic, in general non isometric deformations of plates and shells as
minimizers of the sum of an elastic membrane and bending energy. It is shown that the resulting optimal material
distribution is determined by fine scale structure, which are an indication for the onset of a microstructure in
the limit of this shape optimization problem for vanishing regularization parameter.

2. Stationary points of the Kirchhoff plate functional

In the following, we consider a rectangular domain S = (0, `)× I with I = (− 1
2 ,

1
2 ) of length ` and width 1

as the midplate of the reference configuration of a thin elastic object Sδ = S × (−δ/2, δ/2). For a deformation
U : Sδ → R3, we consider the stored elastic energy functional E3D[U ] =

´
Sδ
W (∇U) dx. In [10], under suitable

assumptions on the hyperelastic density function W and for a scaling 1/δ3, a Γ-convergence result was estab-
lished, where the limit functional E [u] = 1

2

´
S
|A[u](x)|2 dx is only finite for u ∈ W 2,2

iso (S). More precisely, we
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denote by Id the 2× 2 identity matrix and we set

W 1,∞
iso (S) = {u ∈W 1,∞(S,R3) : (∇u)T (∇u) = Id almost everywhere } .

Then we define W 2,2
iso (S) = W 2,2(S,R3) ∩W 1,∞

iso (S). We will always consider plates which are clamped at the
‘left’ lateral boundary, i.e., deformations which belong to the admissible class

AS =

{
u ∈W 2,2

iso (S) : u = id and ∇u = Id in the trace sense on {0} × (−1

2
,

1

2
)

}
.

Note that on the other part of the boundary, i.e. {l} × (− 1
2 ,

1
2 ), (0, l) × {−1

2}, and (0, l) × { 1
2}, no boundary

conditions are imposed; there is just an isometry constraint on u as in the interior of S. Here and elsewhere id
denotes the identity or the standard injection of R2 into R3. Moreover, A[u] denotes the second fundamental
form of an immersion u : S → R3. When there is no danger of confusion we will simply write A.

Now, we take into account a material distribution B : S → [a, b] on the reference plate, which models the
material hardness between two positive constants a < b. Then the elastic energy stored in the deformed config-
uration u(S) is given by Kirchhoff’s plate energy, weighted with the material hardness B. Moreover, an external
force f ∈ L2(S,R3) is acting. Thus, the free elastic energy is given by

W[B, u] = E [B, u]−F [u] =
1

2

ˆ
S

B(x)|A(x)|2 dx−
ˆ
S

f(x) · u(x) dx .

Next, let us review some results about W 2,2 isometric immersions. Due to a result by Kirchheim [19], we have
W 2,2

iso (S) ⊂ C1(S,R3). Define C∇u as the set of points x ∈ S such that ∇u is constant in a neighbourhood of
x. By definition C∇u is open. As shown in [19, 22] the deformation u is developable on S \ C∇u, i.e., for every
z ∈ S \C∇u there exists a unique line segment, denoted by [z], with the properties that [z] ⊂ S, both endpoints
of [z] lie on ∂S, and ∇u is constant on [z].

Being open, the set C∇u consists of countably many connected components. For each such component U
there exists a countable set Σ ⊂ S \ C∇u such that S ∩ ∂U =

⋃
z∈Σ[z], cf. [15].

To study stationary points of Kirchhoff’s plate energy in the class of isometric immersions we follow [16, 17]
and consider for a given u ∈W 2,2

iso (S) a one parameter family (ut)t∈(−1,1) ⊂W 2,2
iso (S) such that the limit

τ = lim
t→0

1

t
(ut − u)

exists weakly in W 2,2(S,R3). In what follows such a family (ut) will be called a bending of u.
We can compute the first variation of W[B, ·] along the family (ut). It is given by

d

dt

∣∣∣
t=0
W[B, ut] =

ˆ
S

B(x)A[ut] : b(x) dx−
ˆ
S

f(x) · τ(x) dx. (2.1)

Here b ∈ L2(S,R2×2) is the weak L2 limit

b = lim
t→0

1

t
(A[ut]−A[u]) .

Following [16, 17] we say that u is stationary for W[B, ·] on some subset A ⊂ W 2,2
iso (S) if (2.1) is zero for all

bendings (ut) ⊂ A. Applying the direct method one can show that W[B, ·] : AS → [0,∞) attains a minimum,
see e.g. [16].
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A deformation u : S → R3 will be called cylindrical if

u(x1, x2) =

u1(x1, 0)
x2

u3(x1, 0)


for all (x1, x2) ∈ S. A cylindrical deformation u of S is determined by the planar arclength parametrised curve
u(·, 0). For isometric, cylindrical u we therefore introduce as in [18] the phase K ∈ W 1,2(0, `) of u′ = ∂1u(·, 0),
which is explicitly given by

u′ =

cosK
0

sinK

 . (2.2)

Since the curve u(·, 0) is assumed to be an arclength parametrization, its curvature is given by κ = u′′ ·n, where

n = (u′)⊥ is the normal, which is explicitly given by n = (− sinK, 0, cosK). Then the phase K(t) =
´ t

0
κ(s) ds

is the primitive of the curvature. Once K(0) is prescribed and w.l.o.g. assuming that u(0) = 0, u is determined
by K via

u(t) =

ˆ t

0

ei(K(s)+K(0)) ds .

Similar to [18] we introduce

F (x1, x2) =

ˆ `

x1

f(s, x2)ds,

and set F (x1) =
´ 1/2

−1/2
F (x1, x2) dx2 as well as B(x1) =

´ 1/2

−1/2
B(x1, x2) dx2.

Note that in terms of K, the clamped boundary condition on u ∈ AS is equivalent to K(0) = 0 and u(0) = 0.
Thus K belongs to the space

W 1,2
l (0, `) = {K ∈W 1,2(0, `) : K(0) = 0}.

Define the functional Wphase[B, ·] : W 1,2
l (0, `)→ R by

Wphase[B,K] =
1

2

ˆ `

0

B(x1)(K ′(x1))2 dx1 −
ˆ `

0

F (x1) ·

cosK(x1)
0

sinK(x1)

 dx1. (2.3)

Stationary points K of (2.3) satisfy the Euler-Lagrange equation

−(BK ′)′ = F · n in the dual space of W 1,2
l (0, `). (2.4)

Observe that (2.4) encodes the Dirichlet boundary condition K(0) = 0 and the natural boundary condition
K ′(`) = 0.

It is easy to construct minimisers K of (2.3) within W 1,2
l (0, `). It was shown in [18] that, if f = (cosβ, 0, sinβ)

for some constant β ∈ [−π/2, 0), then (2.3) admits a unique global minimiser K, which can equivalently be
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characterized as being the unique solution of (2.4) with the additional property that

K(x1) ∈ [β, β + π) for all x1 ∈ (0, `). (2.5)

And this, in turn, is equivalent to the stronger condition K ∈ (β, 0] on (0, `).
Consider a cylindrical deformation u ∈ AS which is stationary within the class of cylindrical deformations,

i.e.,

d

dt

∣∣∣
t=0
W[B, ut] = 0

for all bendings (ut)t∈(−1,1) ⊂ AS of u such that each ut is cylindrical. Its phase is clearly a solution of (2.4).
The following proposition asserts that any cylindrical u ∈ AS whose phaseK satisfies (2.4) is in fact stationary

among all maps in AS . This is an instance of the principle of symmetric stationarity, see e.g. [7, 16, 17]. The
following arguments follow the conceptual framework developed in [16], but in the present case the computations
can be carried out explicitly.

Proposition 2.1. Let f ∈ L2(S,R3) be such that e2 · f ≡ 0. Assume, moreover, that

ˆ 1/2

−1/2

x2B(x1, x2) dx2 = 0 for almost every x1 ∈ (0, `),

ˆ 1/2

−1/2

x2f(x1, x2) dx2 = 0 for almost every x1 ∈ (0, `).

(2.6)

Let u ∈ AS be cylindrical and assume that its phase K satisfies (2.4) and that K ′ 6= 0 almost everywhere on
(0, `). Then u is stationary for W[B, ·].

The hypothesis that K ′ 6= 0 almost everywhere is satisfied in the situations that we are mainly interested in:

Lemma 2.2. Let f0 ∈ R3 \ {0}, let f ∈ L2(S,R3) and assume that f is almost everywhere parallel f0. Let
K ∈W 1,2

l (0, `) be a solution of (2.4). If K ′ has infinitely many zeros in [0, `] then K is identically zero.

Proof. If the set {BK ′ = 0} = {K ′ = 0} is not finite, then it has an accumulation point t0 ∈ [0, `]. Since
BK ′ = k ∈ C1([0, `]) due to (2.4), we see that k(t0) = F (t0) · n(t0) = 0.

Since by the hypotheses on f we know that F is always parallel to F (t0), we conclude that F · n(t0) is
identically zero. Hence the constant map (K(t0), 0) is a solution of the first order system

K ′ =
k

B

−k′ = F · n

associated with (2.4). Hence by uniqueness we must have K ≡ K(t0). Since K ∈W 1,2
l we conclude that K = 0.

The proof of Proposition 2.1 uses the following lemma.

Lemma 2.3. Let u ∈W 2,2
iso (S) be cylindrical and let (ut) ⊂W 2,2

iso (S) be a bending of u and denote by b the weak

L2 limit of A[ut]−A[u]
t as t → 0. Let J ⊂ (0, `) be an open interval such that A[u] 6= 0 almost everywhere on

J × (−1/2, 1/2). Then there exist α, β ∈W 2,2(J) such that

b(x) =

(
α′′(x1) + x2β

′′(x1) β′(x1)
β′(x1) 0

)
for almost every x ∈ J × (−1/2, 1/2). (2.7)
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If, moreover, ∂1ut = 0 on {0} × (−1/2, 1/2) in the trace sense for all t, then β′(0) = 0.

Proof. We assume without loss of generality that J = (0, `) and take into account curlA := (∂1A21 −
∂2A11, ∂1A22 − ∂2A12) for a field A of 2 × 2 matrices. Then, we deduce from the fact that curlA[ut] = 0 for
isometries that curl b = 0 and from this and the fact that b is symmetric we obtain that there exists m ∈W 2,2(S)
such that b = ∇2m almost everywhere on S. Define

α(x1) =

ˆ 1/2

−1/2

m(x1, x2) dx2

β(x1) = 12

ˆ 1/2

−1/2

x2m(x1, x2) dx2.

Since m ∈ W 2,2(S), we see that α, β ∈ W 2,2(0, `). On the other hand, the Gauss curvature detA[ut] of the
immersion ut vanishes for all t and therefore a differentiation with respect to t implies cof A : b = 0 everywhere.
As u is cylindrical, this implies that A11∂2∂2m = 0 almost everywhere on S. Hence ∂2∂2m = 0 almost everywhere
on S. This implies that

m(x) = α(x1) + x2β(x1) for almost every x ∈ S.

Hence ∇2m equals the right-hand side of (2.7).
To prove the last assertion in the statement of the lemma, denote by τ the weak W 2,2 limit of t−1(ut − u).

Since u is cylindrical,

1

t
∂1∂2(ut − u) =

1

t
A12[ut]nt =

1

t
(A12[ut]−A12[u])nt ⇀ b12n

because nt → n strongly in L2. Here, we have used that for isometric deformations ∂1∂2u = (∂1∂2u · n)n. The
left-hand side converges weakly in L2 to ∂1∂2τ . Hence ∂2∂1τ = ∂1∂2τ = β′n ∈W 1,2 is independent of x2.

Finally, ∂1ut = 0 on {0} × (−1/2, 1/2) implies that ∂1τ = 0 and thus also ∂2∂1τ = 0 on {0} × (−1/2, 1/2) in
the trace sense. From this it follows that β′(0) = 0.

Proof of Proposition 2.1. Let (ut) ⊂ AS be a bending of u. (Notice that the ut are in general not cylindrical.)
As above, denote by τ the weak W 2,2 limit of t−1(ut − u) and by b the weak L2 limit of 1

t (A[ut] − A[u]) as
t→ 0.

The map b satisfies the hypotheses of Lemma 2.3. Let α and β be as in the conclusion of that lemma. Define
η : (0, `)→ R by setting η(x1) = α′(x1)− α′(0). Define ϕ : (0, `)→ R3 by setting

ϕ(x1) =

ˆ x1

0

β′(s)u′(s) ds− η(x1)e2.

Here and in what follows we write u′(x1) =
´
I
(∂1u)(x1, x2) dx2 for cylindrical deformations u.

Define Φ : S → R3 by setting

Φ(x) = ϕ(x1)− x2β
′(x1)e2 for all x ∈ S.

Using (2.7) we see that

∂1Φ = b12u
′ − b11e2

∂2Φ = −b12e2.
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Since ∂2u = e2, this implies that

∂iΦ× ∂ju = bij n for i, j = 1, 2.

The isometry property of ut implies that ∂iτ is orthogonal to ∂iu. More precisely, according to ([16], Lem. 3.8)

(see also [20, 26]) there exists Φ̃ ∈W 1,1(S,R3) (the so-called bending field of τ) such that

∂iτ = Φ̃× ∂iu (2.8)

and ∂iΦ̃× ∂ju = bij n for i, j = 1, 2. Hence

∂iΦ̃× ∂ju = ∂iΦ× ∂jufori, j = 1, 2.

Since u is an immersion, this readily implies that ∇Φ̃ = ∇Φ almost everywhere on S. On the other hand,
(ut,∇ut) = (u,∇u) on {x1 = 0} for all t, due to the clamped boundary condition on the left boundary. Hence

∇τ = 0 on {0} × (−1/2, 1/2) in the trace sense. Hence Φ̃ = 0 on {0} × (−1/2, 1/2), due to (2.8).
But by definition we observe that Φ = 0 on {0} × (−1/2, 1/2). Notice that Lemma 2.3 implies β′(0) = 0.

Therefore, we have that Φ̃ = Φ. In particular, (2.8) implies that

∂1τ = Φ× ∂1u.

Hence, by integration by parts,

ˆ
S

f · τ =

ˆ
S

F · ∂1τ =

ˆ `

0

F · (ϕ× u′) (2.9)

because β′ and u′ are independent of x2 and the first moment of f (hence that of F ) along x2 is zero.
Since u′ · e2 ≡ 0, we see that u′(x1)×

´ x1

0
β′(s)u′(s) ds is parallel to e2 for all x1. Since F · e2 ≡ 0, we deduce

from (2.9) that

ˆ
S

f · τ = −
ˆ `

0

ηF · e2 × u′ =

ˆ `

0

ηF · n. (2.10)

On the other hand, testing (2.4) with η we see that

ˆ `

0

ηF · n =

ˆ `

0

BK ′η′ =

ˆ `

0

BK ′α′′. (2.11)

But due to (2.6)

ˆ `

0

BK ′α′′ =

ˆ
S

BK ′ (α′′ + x2β
′′) =

ˆ
S

BK ′b11 =

ˆ
S

BA : b.

Inserting this into (2.11) and recalling (2.10), we conclude that indeed

ˆ
S

BA : b =

ˆ
S

f · τ.



8 P. HORNUNG ET AL.

Now we can assert the existence of a stationary point which is cylindrical.

Theorem 2.4 (existence of cylindrical stationary points). Let B ∈ L∞(S; [a, b]) and f ∈ L2(S,R3) satisfy (2.6),
let f0 ∈ R3 \ {0} with f0 · e2 = 0, and assume that f is almost everywhere parallel to f0. Then there exists a
cylindrical deformation u ∈ AS which is a stationary point of W[B, ·] on AS. More precisely, every cylindrical
deformation u ∈ AS whose phase K satisfies (2.4) is a stationary point of W[B, ·] on AS.

Proof. Let K ∈W 1,2
l (0, `) be a solution of (2.4). The immersion u defined by (2.2) and the condition u(0) = 0

belongs to AS . Lemma 2.2 implies that K ′ has only finitely many zeros (the case K ≡ 0 is trivial). Hence
Proposition 2.1 implies that u is a stationary point of W[B, ·].

3. Numerical discretization of nonlinearly elastic plates

To discretize bending isometries we follow [3] and make use of the discrete Kirchhoff triangle (DKT) as a
suitable finite element space. In particular nodal wise degrees of freedom for derivative of the displacement
enable to implement the isometry constraint as a simple constraint at nodal positions of a triangular mesh.
Here, we additionally take into account the material distribution B. Different to [3], where a discrete gradient
flow approach with a linearized isometry constraint was proposed, we take into account a Newton method for
a associated Lagrangian with an exact isometry constraint at nodal positions.

For simplicity, we assume that S ⊂ R2 is polygonal, s.t. we can directly consider a triangulation Th of S. In
particular, this is guaranteed for our case of interest, where S is a rectangular domain. Otherwise, S could be
approximated by a polygonal domain. Then we denote by Nh the set of nodes in Th. First, we consider discrete
material distributions Bh in the space of continuous and piece-wise affine functions

V 1
h (S) :=

{
Bh ∈W 1,2(S) : Bh|T ∈ P3,red(T ) ∀T ∈ Th

}
.

Now, we recall the DKT element [5]. For a triangle T in Th, let Pk(T ) be the space of polynomials of order
k ∈ N. In analogy, we consider for an edge E the space Pk(E). Furthermore, we define for a triangle T the space

P3,red(T ) :=

w ∈ P3(T ) : w(pT ) =
1

3

∑
p∈Nh∩T

w(p) +∇w(p)(pT − p)

 ,

of polynomials of order three reduced by one degree of freedom by where pT = 1
3

∑
p∈Nh∩T p denotes the center

of mass of the triangle T . This finally lead us to the following finite element spaces.

Wh(S) :=
{
wh ∈W 1,2(S) : wh|T ∈ P3,red(T ) ∀T ∈ Th, ∇wh(p) continuous ∀p ∈ Nh

}
,

Θh(S) :=
{
θh ∈

(
W 1,2(S)

)2
: θh|T ∈ (P2(T ))

2 ∀T ∈ Th, θh · n ∈ P1(E) for every edge E
}
.

Then we consider a discrete gradient operator

∇h : Wh(S)→ Θh(S) , wh 7→ ∇hwh = θh(wh) ,

where θh(wh) ∈ Θh(S) is the uniquely defined function that satisfies for each triangle T ∈ Th with nodes p0, p1, p2

the interpolation conditions θh(wh)(pi) = ∇wh(pi) for 0 ≤ i ≤ 2 and θh(wh)(pij) · (pj−pi) = ∇wh(pij) · (pj−pi)
for 0 ≤ i, j ≤ 2 with pij = pji = 1

2 (pi + pj). This allows defining an approximative second derivative of wh by
∇θh(wh). Note that wh can be determined by the values wh(p) and the derivatives ∇wh(p) at nodes p, and thus,
has three degrees of freedom per node. As in [3], we use the space Wh,Γ(S)3 to discretize elastic displacements
w with w(x) = u(x) − x as component-wise DKT-functions with clamped boundary conditions on Γ ⊂ ∂ω.
Remember that in the case of the rectangular domain, Γ is typically given by the left side.
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To implement the corresponding discrete energy functionals, we apply a Gaussian quadrature of degree 6
with Q = 12 quadrature points for each triangle element with weights ω, and obtain a discrete bending energy

Eh[Bh, wh] =
∑
T∈Th

|T |
∑

q=1,...,Q

ωqBh(xq)‖∇∇hwh(xq)‖2 . (3.1)

Here, we have used that in the flat case under an isometry constraint and under C2-regularity the norm of the
second derivate |D2w| coincides with the norm of the second fundamental form |A[w]| (see [4], Prop. 8.2). In
our discrete setup, ∇∇hwh is a nonconforming approximation of the second derivate and thus of the second
fundamental form. Moreover, we obtain a discrete potential energy

Fh[wh] =
∑
T∈Th

|T |
∑

q=1,...,Q

ωqfh(q) · wh(q) ,

where |T | denotes the area of the triangle T . Consequently, a discrete free energy is given by Wh[Bh, wh] =
Eh[Bh, wh]−Fh[wh]. Note that the isometry constraint in terms of a displacement w is given by

0 =

(
G11
h G12

h

G12
h G22

h

)
[wh](p)

on all non Dirichlet nodes p ∈ N int
h = Nh \Γ, where G11

h [wh] = 2∂1w1 +
∑3
i=1(∂1wi)

2, G12
h [wh] = ∂2w1 + ∂1w2 +∑3

i=1 ∂1wi∂2wi, and G22
h [wh] = 2∂2w2 +

∑3
i=1(∂2wi)

2. To encode the nodalwise isometry constraint we consider
a vector λh(p) =

(
λ1
h(p), λ2

h(p), λ12
h (p)

)
of Lagrange multipliers and define

Gh[wh, λh] =
∑

p∈N int
h

λ1
h(p)G11

h [wh](p) + λ2
h(p)G22

h [wh](p) + λ12
h (p)G12

h [wh](p) .

Note that all the values (∂jwh(p))i for j = 1, 2 and i = 1, 2, 3 are explicit degrees of freedom for all p ∈ N int
h .

Finally, the discrete Lagrangian functional is given by

Lh[Bh, wh, λh] = Eh[Bh, wh]−Fh[wh] +Gh[wh, λh] . (3.2)

Then, to compute for a fixed material distribution given by Bh solutions to the state equation we apply Newton’s
method to solve the saddle point problem

∂(wh,λh)Lh[Bh, wh, λh] = 0 .

It was shown in [18] that the optimal design for planar beams is simply bχ(0,t0) + aχ(t0,1) for a suitable
t0 ∈ (0, 1). Naively, one might expect these to apply as well to the case of cylindrically deformed plates addressed
here. However, this is not the case.

In this section we provide an example of a very simple design B which is not constant along x2 and which
beats any design depending only on x1. It is obtained by putting a horizontal strip of hard material across the
plate. In fact, we compare three different material distributions, where, depending on the area V , the subdomain
covered with hard material is given by

I. a layer [0, V ]× [0, 1] at the clamped boundary,
II. a layer [0, 1]× [0.5− 0.5V, 0.5 + 0.5V ] orthogonal to the clamped boundary, and

III. a square [0,
√
V ]× [0.5− 0.5

√
V , 0.5 + 0.5

√
V ] centered in the middle of the clamped boundary.
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Figure 1. Comparison of the potential energy functional in dependence of |f | in a logarithmic
scale for three design types and different area fractions V = 0.25, 0.5, 0.75 of the hard material.
By dotted lines we separate the ranges, where a specific design is optimal w.r.t. the potential
energy.

Here, we consider three area fractions V = 0.25, 0.5, 0.75 for the amount of hard material. In Figure 1, we
compare the potential energy of these three designs in dependence of |f |. For all computations, we use a mesh of
|Nh| = 16641 nodes. We observe that for a large area fraction V = 0.75 of the hard material, the 1D optimizer
(I) is optimal w.r.t. the potential energy independent of |f |. In any cases, it seems that for large forces design (I)
is optimal. For an area fraction V = 0.5, and small forces, design (III) is optimal. For an area fraction V = 0.25,
we even obtain that design (II) is optimal for small forces and design (III) is better on an intermediate range.

Note that these three designs are good candidates for a global optimizer. Design (I) is already the solution
for the 1D problem. Intuitively, it is not surprising that putting in (II) such a thin but extremely hard ‘mid
rib’ ensures that a cylindrically deformed plate will bend down arbitrarily little. Indeed, even if the material is
very soft elsewhere, the stiff mid rib determines the overall behaviour. The effect of such a strip can clearly not
be emulated by mixing phases along the x1 axis either. As pointed out in the figure, the different designs lead
to substantially varying potential energy which we used as compliance functional, e.g. for 25% hard material,
there is a factor ≈5 in the bending energy between design (I) and design (II) for the smallest force which we
considered. Even for the largest force, where the curves seems to lie on top of each other, there is factor ≈ 1.233
in the bending energy.

Notice, however, that it is not clear a priori whether it is correct to restrict ourselves to cylindrical deforma-
tions. On one hand, the following numerical simulations suggest that indeed a hard mid rib leads to a better
compliance than a one-dimensional design. On the other hand, they also suggest that without additional con-
straints the energy minimising deformation u : S → R3 for such a material distribution may not be cylindrical
after all. This is addressed in Section 5.

4. Kirchhoff plates with nontrivial designs

Now, we ask for an optimal design of a plate, where by a design we mean an optimal choice of the hardness
function B. We consider this as a specific shape optimisation problem and describe optimality of a design B via
the minimization of the compliance as the most commonly used cost functional. In Section 2 we have shown that
there exists under suitable assumptions on the boundary conditions a unique minimum in the class of isometric,
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cylindrical deformations. Under suitable symmetry assumptions (2.6) on the hardness function B and the force
f this deformation is a stationary point of the plate energy in the class of general isometric deformations.

Thus, in what follows we will as well assume (2.6) with the force f ≡ −e3 and restrict ourselves to cylindrical
deformations. In this section we do not yet seek the optimal design; instead, we discuss in the light or our
previously discussed numerical findings in Section 3 explicit designs and compare them to each other.

For a given design B ∈ L∞(S) we denote by K[B] ∈ W 1,2
l (0, `) the unique global minimiser (see [18] for

existence and uniqueness) of the functional Wphase(B, ·) defined in (2.3); as usual B(x1) =
´ 1/2

−1/2
B(x1, x2) dx2.

In order to simplify the notation we assume that ` = 1. Then, for f ≡ −e3, the corresponding state equation
reads

(BK[B]′)′ = (1− t) cosK[B].

The compliance to be minimised by the optimal design is defined as the potential energy functional

F(B) =

ˆ 1

0

uB(t) · e3 dt =

ˆ 1

0

(1− t)| sinK[B](t)| dt . (4.1)

Further natural choices for the compliance are the strored elastic and the free energy, as it was discussed in
[23]. Note that in the case of linear elasticity, these three compliance functionals coincide. For the reformulation
we used integration by parts and the fact that K[B] ∈ (−π, 0) on (0, 1). In what follows, we are at first only
interested in the question which of two given designs BI , BII : S → {a, b} leads to a smaller value for the
right-hand side of (4.1), where

BI(x1, x2) = χ(0,V )(x1)b+ χ(V,1)(x1)a,

BII(x1, x2) = χ(−V/2,V/2)(x2)b+
(
1− χ(−V/2,V/2)(x2)

)
a

are the two designs already depicted in Figure 1 for the cases I and II, respectively. It was shown in [18] that
design BI is the best among all designs which are independent of x2. But, the numerical observations in Figure 1
suggest that the design BII might be better in the general case, which we will now verify analytically. To this
end, we will first fix some relative area of hard phase V > 0. Then we choose the hardness b� 2/V . Observe
that both BI and BII have the same area V of hard phase b.

The averaged design BII : (0, 1)→ [a, b] is given by

BII(x1) =

ˆ 1/2

−1/2

BII(x1, x2) dx2 = V b+ (1− V )a.

In what follows we will apply the maximum principle to the state equation. In order to transform the state
equation into a boundary value problem, we extend KI = K[BI ] from the interval [0, 1] to the interval [0, 2] by
reflection about t = 1, i.e., we define

KI(t) = KI(2− t) if t ∈ [1, 2].

Other functions, such as BI , are extended to [0, 2] in the same way. With this notation, the original state
equation (BIK

′
I)
′ = (1 − t) cosKI on (0, 1) with mixed Dirichlet-Neumann boundary conditions KI(0) = 0

and K ′I(1) = 0 is equivalent to the Dirichlet boundary value problem (BIK
′
I)
′ = |1 − t| cosKI on (0, 2) and

KI(0) = KI(2) = 0. We can apply the maximum principle to this semilinear problem, because KI takes values
in (−π/2, 0]. In what follows we will apply this maximum principle directly to the equation on (0, 1), without
extending it explicitly to (0, 2) every time.
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We construct a barrier for the solution KI = K[BI ] of the state equation

(BIK
′
I)
′ = (1− t) cosKI on (0, 1)

corresponding to the design BI .

Let KI : (V, 1)→ (−π/2, 0] be the solution of −aK ′′I + (1− t) cosKI = 0 on (V, 1) with boundary conditions

KI(V ) = 0 and K
′
I(1) = 0. We define the barrier function K̂I : (0, 1)→ (−π/2, 0] by setting

K̂I(t) = χ(V,1)KI .

Then K̂I(0) = KI(0) = 0 and K̂ ′I(1) = K ′I(1) = 0. And

−(BIK̂
′
I)
′ + (1− t) cos K̂I ≥ 0.

Thus, the maximum principle implies that K̂I ≥ KI on (0, 1). Observe that this is true for any choice of b > a.

It implies (using that KI , K̂I take values in [−π/2, 0]) | sin K̂I | ≤ | sinKI | on (0, 1). Hence the compliances
satisfy, as claimed,

ˆ 1

0

|1− t|| sin K̂I(t)| dt ≤
ˆ 1

0

|1− t|| sinKI(t)| dt.

The left-hand side is positive and independent of b. It will be denoted by ε.
Next, we consider the design BII . Since BII is constant, KII satisfies the state equation

−BIIK ′′II + |1− t| cosKII = 0 on (0, 1).

Dividing by BII and taking absolute values we deduce

|K ′′II | ≤
1

BII
.

Since K ′II(1) = 0, this implies |K ′II(t)| ≤ 1
BII

. And since KII(0) = 0, this implies |KII | ≤ 1
BII

. Hence

| sinKII | ≤ sin
1

BII
≤ ε

2
,

provided b (and thus BII) is large enough. For such b the compliance of BII satisfies

ˆ 1

0

|1− t|| sinKII(t)| dt ≤ ε

2
.

It is therefore strictly better than the compliance of BI .
Summarising, the examples depicted in Figure 1 show that the optimal design B : S → R must depend on

x2, because the design with a stiff horizontal strip has a better compliance than even the best one-dimensional
design.

After considering these examples we may ask firstly whether it was legitimate to restrict ourselves to cylin-
drical deformations in the analysis. In fact, the numerical simulations suggest otherwise. In Section 5 we will
address this question.
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Secondly, we may ask whether the horizontal strip is the best two dimensional design. In Section 7 we will
derive the Euler-Lagrange equation for the optimal design among cylindrical deformations. It turns out that it
never consists of a mid rib of hard material of uniform width. Instead, it consists of a ‘mid rib’ that becomes
narrower as the distance from the clamped left boundary increases.

5. Structure of solutions under symmetry requirement

From now on we assume that the symmetry assumption (2.6) holds. The numerical simulations in Figure 1
suggest that stationary points u ofW[B, ·] enjoy the same mirror symmetry about the {x2 = 0} plane as B and
f . But they also suggest that u may not be cylindrical. Thus, we will provide a rigorous analysis leading to a
qualitative global description of deformations which are symmetric about the {x2 = 0} plane but not necessarily
cylindrical.

This description allows us to identify a mild and reasonably natural additional hypothesis on the ‘right’ part
of the boundary of the plate which ensures that any symmetric deformation satisfying it is in fact cylindrical.
However, we will see that the numerical simulations display deformations which are symmetric, which satisfy
the additional condition on the right boundary and which nevertheless at a rather high spatial resolution of the
mesh still fail to be cylindrical. We will discuss this discrepancy between analysis and numerics.

Let us consider the immersion ũ obtained by reflecting an immersion u along the x2 = 0 plane with

u(x) = ũ(x̃) (5.1)

where x̃ = (x1,−x2) and

ũ =

 u1

−u2

u3

 .

Deformations u satisfying (5.1) will be called symmetric in what follows. Observe that the deformations depicted
in Figure 1 appear to be symmetric. Let u ∈ W 2,2(S,R3) be a symmetric immersion. Then the following are
true for almost every x ∈ S:

1. We have ∂2u(x) = −∂2ũ(x̃) and ∂1u(x) = ∂1ũ(x̃). In particular, ∂2u(x1, 0) ‖ e2 for a.e. x1.
2. For α = 1, 2 we have ∂α∂αu(x) = ∂α∂αũ(x̃). Moreover, ∂1∂2u(x) = −∂1∂2ũ(x̃).
3. The normal to u satisfies n(x) = ñ(x̃).
4. The second fundamental form of u satisfies

Aαα(x) = Aαα(x̃) for α = 1, 2, A12(x) = −A12(x̃).

The statements are straightforward for smooth maps and they follow by approximation for W 2,2 maps.
The following result shows that the level set structure of ∇u of symmetric maps u ∈ AS is heavily restricted:

it must begin with segments parallel to e2 and then there follows a (possibly truncated) triangle on which u is
affine. We refer to Figure 2 for numerical simulation, where such a triangle appears.

Proposition 5.1. Let u ∈ AS be symmetric. Then there exists m ∈ [0, `] such that u is cylindrical on [0,m]×
(− 1

2 ,
1
2 ) and there exists r ∈ [0, 1

2 ) such that u is affine on the convex hull of{(
m,

1

2

)
,

(
m,−1

2

)
, (`, r) , (`,−r)

}
.

Proof. Claim 1. If k ∈ (0, `) and (k, 0) ∈ S \ C∇u then u is affine on {k} × I.
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In fact, set z = (k, 0). Since u is affine along {0} × I, the segment [z] does not intersect {0} × I. Otherwise
z ∈ C∇u because neighbouring segments would intersect {0} × I as well.

The normal n to u is constant on [z]. Since n(x) = ñ(x̃), it follows that n is also constant on

[̃z] = {x ∈ S : x̃ ∈ [z]}.

Since z ∈ [z] ∩ [̃z], by uniqueness we have [z] = [̃z]. This is only possible if [z] is parallel to e2. (The possibility
that [z] is parallel to e1 has been ruled out earlier by observing that [z] cannot intersect {0} × I.)

Claim 2. Let k1 ∈ [0, `) and k2 ∈ (k1, `] and assume that ∇u is constant on each segment {ki}× I, for i = 1, 2.
Then u is cylindrical on [k1, k2]× (− 1

2 ,
1
2 ).

In fact, otherwise there would exist a k ∈ (k1, k2) such that ({k} × I) \ C∇u contains a point z. Since u is
affine on the segments {ki} × I, we see that [z] cannot intersect {k1, k2} × I. Hence there exists k′ ∈ (k1, k2)
such that (k′, 0) ∈ [z]. But then Claim 1 implies that ∇u is constant on {k′} × I. So by uniqueness we must
have [z] = {k′} × I and therefore k = k′. This completes the proof of Claim 2.

Since u is affine on {0} × I due to the boundary conditions, combining Claim 2 with Claim 1 we see that u
is cylindrical on [0, k]× I whenever (k, 0) ∈ S \ C∇u.

Therefore, if

m = sup{m′ ∈ (0, `) : (m′, 0) ∈ S \ C∇u},

then u is cylindrical on [0,m]× I (so let us assume that m < ` since otherwise there is nothing left to prove),
and (m, `)× {0} is contained in C∇u. By connectedness, it is contained in a single connected component U of
C∇u. Clearly {m} × I ⊂ ∂U .

Now let z ∈ S ∩ ∂U be such that z1 > m and z2 > 0. Then [z] ⊂ ∂U otherwise [z] would intersect C∇u (cf.
[15]) and [z] can neither intersect {m} × I (by uniqueness) nor (m, `) × {0} (because this set is contained in
C∇u). Hence there exists m′ ∈ [m, `) and r ∈ [0, 1

2 ] such that [z] is the segment with endpoints (m′, 1
2 ) and (`, r).

By symmetry also the segment with endpoints (m′,− 1
2 ) and (`,−r) is contained in ∂U .

Furthermore, C∇u is convex because for z̃ ∈ S \ C∇u line through z̃ can not intersect C∇u twice. (see e.g.
[15], Sect. 3.2), we conclude that U is the convex hull of the points (m,±1/2), (m′,±1/2) and (±r, `). The claim
follows from this, because on (m,m′)× I the map ∇u is constant, hence u is cylindrical on all of [0,m′]× I.

The following result asserts that every symmetric deformation u satisfying a mild additional condition is in
fact cylindrical. This additional conditions is that u must not bend the ‘right’ boundary.

Corollary 5.2. Let u ∈ AS be symmetric and assume that∣∣∣u(`, 1

2

)
− u

(
`,−1

2

) ∣∣∣ = 1. (5.2)

Then u is cylindrical.

Proof. Together with the isometry of u, the hypotheses imply that u is affine on {0} × I and on {`} × I. Hence
Claim 2 in the proof of Proposition 5.1 shows that u is cylindrical on S.

In Figure 2 we compute for a homogeneous material distribution B = 1 and l = 1 the solution to the state
equation w.r.t. the force

f = χ[0.9,1]×[0,0.1]

 0
50
1

+ χ[0.9,1]×[0.9,1]

 0
−50

1

 .
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Figure 2. Expected order of convergence for the isometry error in L1, the discrete Gauss
curvature κh in L1 and the second derivative of uh in L2.

In Figure 2, we take into account a sequence of successively refined measures with uniform grid sizes

h ∈ {0.0441942, 0.0220971, 0.0110485, 0.00552427, 0.00276214, 0.00138107 =: hmin}

to uniformly discretize the reference configuration S = [0, 1]2. Then we compute the expected order of conver-
gence (EOC) for the isometry error in L1 and the second derivative of the deformation in L2 consider the finest
mesh as ground truth. From [3] it is proven that both converge linearly in h, which is verified by our result.

To identify numerically the affine region, we compute for each triangle element the variance of the normal
vector and apply a threshold with 10−9. Furthermore, we plot the image of the Gauss map and observe as
expected two nearly one dimensional arms meeting at the normal of the approximately affine region on the
sphere. We refer to [24] for the analytical result that the deformed configuration is developable if and only if
the image of the Gauss map is singular. Here for each vertex we plot a small dot on the sphere indicating the
discrete normal.

Finally, note that for flat W 2,2-isometries the Gauss curvature vanishes (cf., e.g. [4], Prop. 8.2). We observe
an EOC for the discrete Gauss curvature κh = det(∇∇huh · nh) of approximately 1

2 in L1. This low order of
convergence in a weak norm appears to be too weak to prevent curvature singularities to develop on already fairly
fine meshes. In fact on a logarithmic scale we see singularities at the corners of the clamped boundary and in the
middle of the opposite boundary. This singular behaviour might deteriorate the analytically expected cylinderical
solution structure. For a affine lateral boundary, in our numerical simulations, we obtain deformations which are
not cylindrical as shown in Figure 3. Here, we use a layer of hard material orthogonal to the clamped boundary,
which we have already considered in Figure 1 (Design II). We compute solutions of the state equation for
different forces and plot the Gauss curvature. As in Figure 2, we observe an EOC significantly less than 1.

6. Optimal design problem

In this section we seek optimal designs, i.e., material distributions B which optimise the compliance
functional. We are only interested in gravitational force, i.e., the force f = −e3.
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Figure 3. Top: Deformations for Design II with stiff right boundary for different forces (|f | =
2, 4, 8, 16) and Gauss curvature. Bottom: Expected order of convergence of |f | = 16.

Moreover, in the analytical results, we will seek optimal designs B among those the first moment´
x2B(x1, x2) dx2 is identically zero. This restriction seems justified in view of the symmetry of the force

and the boundary conditions. In particular, it is satisfied by the optimal designs found numerically, cf. Figure 4.
Let cl > 0. For given B ∈ L∞(S; [a, b]) we define θB : S → [0, 1] via

θB =
B − a
b− a

and we denote by K[B] the unique global minimiser of the functional Wphase(B, ·) within the space W 1,2
l (0, `).

As already mentioned earlier (cf. also [18]) this function K[B] is the unique solution of (2.4), which for the
present force reads

(BK[B]′)′ = (1− t) cosK[B],

and which satisfies (2.5).
The cylindrical deformation uB ∈ AS with phase K[B] is the unique global minimiser of W[B, ·] within the

class of cylindrical deformations in AS . By Corollary 2.4 the deformation uB is a stationary point of W[B, ·] in
AS .

We seek to minimise the compliance

B 7→ −
ˆ
S

uB · e3 + cl

ˆ
S

θB (6.1)

among all B ∈ L∞(S; {a, b}).
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As a side remark, note that, in view of the results in Section 5, instead of imposing the a priori condition
(2.6) on the admissible designs B, we could restrict ourselves to symmetric deformations u which satisfy the
additional condition (5.2). Then Corollary 5.2 implies that in fact we are restricting ourselves to cylindrical
deformations – and therefore the x2-dependence of B becomes irrelevant (since u is cylindrical only B plays a
role) and therefore we could as well have assumed from the outset that (2.6) is satisfied, by symmetrising B.

In order to simplify the notation, from now on we normalise the length instead of the width w > 0 of S,
i.e., we assume that S = (0, 1)× I, where I = (−w/2, w/2). In view of the previous considerations, from now
on only cylindrical deformations u : S → R3 will be considered. and in what follows we will frequently write t
instead of x1.

In terms of the phase K[B] the right-hand side of (6.1) equals

B 7→ −
ˆ 1

0

(1− t) sinK[B](t) dt+ cl

ˆ 1

0

θB = −
ˆ 1

0

(1− t) sinK[B](t) dt+ cl

ˆ 1

0

θB .

Observe that the ‘physical’ design B : S → R can only take the values a or b. However, the corresponding
one-dimensional design B : (0, 1)→ R can take all values in [a, b].

Clearly the map B 7→ B is highly non-injective and therefore the optimal two-dimensional design B will be
non-unique: all designs B with the same average B have the same compliance if we define uB as above.

In view of the above, for K ∈W 1,2
l (0, 1) and θ ∈ L∞(0, 1) let us define the cost functional

J [K, θ] = −
ˆ 1

0

(1− t) sinK + cl

ˆ 1

0

θ

consisting of the compliance cost and a cost for hard material.
There is fundamental difference between Beams studied in [18] and cylindrical plates. In fact, the admissible

asymptotic designs for one dimensional beams are those arising from designs B : (0, 1)→ R of the form

B(t) = (1− χ(t))a+ χ(t)b,

where χ only takes values in {0, 1}. The possible asymptotic designs B∗ for beams arise as harmonic weak-∗
limits of sequences of such Bn, i.e.,

1

Bn

∗
⇀

1

B∗
in L∞(0, 1).

Since χn ∈ {0, 1} pointwise, for Bn = (1− χn)a+ χnb we have

1

Bn
=

1− χn
a

+
χn
b
.

Therefore, denoting by θ the weak-∗ limit of χn one obtains

1

B∗
=

1− θ
a

+
θ

b
.

Observe that clearly
´
I
χn →

´
I
θ.

The two-dimensional situation addressed here differs from this one-dimensional in that the designs Bn must
be replaced by their averages Bn. And each Bn can take values in the whole interval [a, b]. Therefore, the
Young measure generated by Bn is supported on [a, b], whereas in [18] the Young measure generated by Bn was
supported on {a, b}.
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Since apart from this difference the problem studied here is one dimensional as well, we will henceforth write
B instead of B to simplify the notation. So B : (0, 1) → [a, b] can indeed take values between a and b as well
and study this relaxed problem.

For θ ∈ L∞((0, 1); [0, 1]) we define Bθ = (1− θ)a+ θb and consider

Ĵ [θ] = J [K[Bθ], θ].

A function θ ∈ L∞((0, 1), [0, 1]) will be called an optimal design if it is a minimiser of Ĵ . The following existence
result for optimal designs hold.

Theorem 6.1 (Existence of optimal designs). The functional Ĵ : L∞((0, 1); [0, 1])→ R attains its minimum.

Proof. Let (θn) be a minimising sequence and set Bn = Bθn and Kn = K[Bn]. As in [18] we see that Kn

converges to K[B∗] weakly in W 1,2, where B∗ is defined by

1

Bn

∗
⇀

1

B∗
in L∞(0, 1).

Here we have passed to a subsequence, which we do not relabel. Notice that

ˆ 1

0

θn →
ˆ 1

0

θ as n→∞. (6.2)

Hence

inf Ĵ = J [K[B∗], θ]. (6.3)

There exists a unique θ∗ ∈ L∞((0, 1); [0, 1]) with Bθ∗ = B∗. We claim that

ˆ 1

0

θ∗ ≤
ˆ 1

0

θ. (6.4)

To prove (6.4) we note that Φ(z) = z−1 is convex on (0,∞). Hence by weak lower semicontinuity and by (6.2)
and recalling the definition of θ∗, we see that

ˆ 1

0

(a+ θ∗(b− a)) =

ˆ 1

0

B∗ =

ˆ 1

0

Φ

(
1

B∗

)
≤ lim inf

n→∞

ˆ 1

0

Φ

(
1

Bn

)
= lim inf

n→∞

ˆ 1

0

Bn =

ˆ 1

0

(a+ θ(b− a)).

Hence (6.4) follows. Now we deduce from (6.3) that

inf Ĵ ≥ J [K[B∗], θ∗] = Ĵ [θ∗].

So θ∗ is the sought-for minimiser.

7. Properties of the optimal design

To further study the optimal design, we will compute the derivative of the cost functional Ĵ with respect to
design θ. To this end, we first define as usual the unique solution P ∈W 1,2

l (0, 1) of the adjoint equation

(BθP
′)′ = (1− t) cosK − (1− t)P sinK. (7.1)
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in the dual space of W 1,2
l (0, 1). As before, this includes the weak formulation of the boundary conditions

P (0) = P ′(1) = 0.
As in [18] we introduce p = BθP

′ and write (7.1) as

p′ = −(1− t)(sinK)(P − cotK). (7.2)

The right hand side is well-defined because we know that K(t) ∈ (−π2 , 0] and K(t) = 0 if and only if t = 0. The
following lemma extends ([18], Prop. 5.5).

Lemma 7.1. The adjoint variable P satisfies P < 0 on (0, 1) and there exists τ ∈ (0, 1] such that p′ > 0 on
(0, τ) and p′ < 0 on (τ, 1). We have τ = 1 if and only if P (1) ≥ cotK(1). In this case (τ, 1) = ∅ and so p > 0
on all of [0, 1).

If τ < 1 then there exists τ0 ∈ (0, τ) such that p < 0 on [0, τ0) and p > 0 on (τ0, 1).

Proof. Since K ∈ (−π2 , 0] on [0, 1) we have sinK ≤ 0. Hence the adjoint equation (7.1) for P is

−(BθP
′)′ + (1− t)| sinK|P = −(1− t) cosK.

The right-hand side is negative and the zeroth order coefficient is positive. Hence the strong maximum principle
(using once again the extension approach onto the interval [0, 2]) implies that P does not attain a nonnegative
local maximum in (0, 2). Since P (0) = P (2) = 0, we conclude that indeed P < 0 on (0, 2). For convenience we
include the following argument from [18]. Set

τ = inf{t ∈ (0, 1) : P (t) ≤ cotK(t)},

with τ = 1 if the set on the right-hand side is empty.
Let us assume that it is nonempty. Then we have τ ∈ (0, 1); indeed τ > 0 because P (0) = 0 while cotK(0) =

−∞. Hence by continuity P (τ) = cotK(τ).
By definition of τ we have P > cotK on (0, τ). Hence by (7.2) we have p′ > 0 on (0, τ).

Now, (cotK)′ = − K′

sin2K
implies

−
(
Bθ (P − cotK)

′)′
= (1− t) sinK(P − cotK)−

(
BθK

′

sin2K

)′
= (1− t) sinK(P − cotK)− (1− t) cosK

sin2K
+

2Bθ(K
′)2 cosK

sin3K

Taking into account that K ∈ (−π2 , 0) on (0, 1) we observe that P − cotK satisfies the differential inequality

−
(
Bθ (P − cotK)

′)′ − (1− t) sinK(P − cotK) < 0

on (0, 1). And (1− t) sinK < 0 on (0, 1). An application of the strong maximum principle, again via extension
to (0, 2), implies that P < cotK on (τ, 2− τ), hence on (τ, 1). Thus p′ < 0 on (τ, 1) by (7.2). In particular, since
p(1) = 0, we have p > 0 on [τ, 1).

On the other hand, by definition of τ we have p′ > 0 on (0, τ). If p(0) ≥ 0 then p > 0 on (0, τ), which in turn
would imply that P > 0 on (0, τ), contradicting our earlier observation that P is negative. Therefore, p(0) < 0.

The existence of τ0 ∈ (0, τ) with the claimed properties now follows from the intermediate value theorem and
from the strict monotonicity of p on (0, τ) and on (τ, 1).

Next, we compute the derivative of the cost functional Ĵ [θ]. For given β ∈ L∞(0, 1) denote by δK =
∂K[Bθ](β) the Fréchet derivative of B 7→ K[B] at the point Bθ in direction β. Considering the variation of



20 P. HORNUNG ET AL.

the state equation with respect to θ we find

(BθδK
′)′ + (1− t) sinK δK = −(βK ′)′. (7.3)

Testing (7.3) with the adjoint variable P we find

ˆ 1

0

BθP
′δK ′ − (1− t)PδK sinK = −

ˆ 1

0

βP ′K ′. (7.4)

On the other hand, testing the adjoint equation (7.1) with δK we get

ˆ 1

0

BθP
′δK ′ − (1− t)(sinK)δKP = −

ˆ 1

0

(1− t)δK cosK. (7.5)

Comparing (7.4) and (7.5) we see that

ˆ 1

0

(1− t)δK cosK =

ˆ 1

0

βP ′K ′.

We can use these computations to compute the derivative of Ĵ with respect to θ. We observe that the derivative
of θ 7→ Bθ at the point θ is clearly ∂Bθ = b− a (continuing to denote Fréchet derivatives by a ∂) and conclude

∂Ĵ [θ](β) = −
ˆ 1

0

(1− t)δK cosK + cl

ˆ 1

0

β = −
ˆ 1

0

βP ′K ′ + cl

ˆ 1

0

β.

For more details in the above computations we refer to [18]. Summarising,

∂Ĵ [θ] = −K ′P ′ + cl. (7.6)

Proposition 7.2. If θ is an optimal design, then

B2
θK
′P ′


≤ cla2 on {θ = 0}
≥ clb2 on {θ = 1}
= clB

2
θ on {θ ∈ (0, 1)}.

(7.7)

Proof. The Euler-Lagrange equation is ∂Ĵ [θ](β) ≥ 0 for all β ∈ L∞(I) satisfying β ≥ 0 on {θ = 0} and β ≤ 0
on {θ = 1}. In view of (7.6) this leads to the following pointwise conditions:

K ′P ′


≤ cl on {θ = 0}
≥ cl on {θ = 1}
= cl on {θ ∈ (0, 1)}.

We multiply both sides by B2
θ to deduce (7.7), because B0 ≡ a and B1 ≡ b.

Finally, the following theorem identifies some features of the optimal designs.

Theorem 7.3 (Characterization of optimal designs). Every optimal design θ is continuous on [0, 1], and either
θ ≡ 0 or there are 0 ≤ t0 < t1 < 1 such that
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• if t0 > 0 then θ = 1 on (0, t0),
• θ is nonzero and strictly decreasing on (t0, t1) and
• θ = 0 on [t1, 1].

Moreover, θ ∈ C∞(t0, t1).

Proof. According to Lemma 7.1 there is τ ∈ (0, 1] such that p = BθP
′ ≥ 0 on [τ, 1] (when τ = 1 then we have

p(τ) = 0 due to the boundary condition).
Hence, setting k = BθK

′, we have B2
θK
′P ′ = kp ≤ 0 on [τ, 1]. On [0, τ) the continuously differentiable

function kp is positive and strictly decreasing, because here both k and p are negative and strictly increasing.
Define

t1 = inf
{
t ∈ [0, `] : (kp)(t) ≤ cla2

}
.

Then t1 < τ because kp ≤ 0 < cla
2 on [τ, 1] and kp is continuous. On the other hand, unless θ = 0 almost

everywhere (in which case we are done, so we exclude this from now on), we must have t1 > 0. In particular,

(kp)(t1) = cla
2.

Since t1 ∈ (0, τ) and since kp is strictly decreasing on (0, τ) we conclude that {θ = 0} = [t1, 1].
On [0, t1] the function kp decreases strictly from (kp)(0) to cla

2. Set

t0 = sup
{
t ∈ [0, `] : (kp)(t) > clb

2
}
,

and set t0 := 0 if the set on the right-hand side is empty. By monotonicity

kp > clb
2 on (0, t0).

Hence θ = 1 on this set, by (7.7).
Since clb

2 is strictly greater than cla
2 and since kp is continuous and strictly monotone on [0, t1], we have

kp ∈
(
cla

2, clb
2
)

on (t0, t1).

Hence (7.7) implies that θ ∈ (0, 1) on (t0, t1) and that

B2
θ =

1

cl
· kp on (t0, t1). (7.8)

In view of this, the monotonicity and continuity of θ follow from the same properties for kp, because θ 7→ Bθ is
linear and strictly increasing.

It remains to show that θ ∈ C∞(t0, t1). This follows from a bootstrap argument, since kp is always more
regular than θ. More precisely, we have

K ′(t) =
1

Bθ(t)

ˆ 1

t

(1− s) cosK(s) ds.

We have already shown that Bθ ∈ C0([0, 1]). Hence K ′ ∈ C0([0, 1]), too. Since (BθK
′)′ = (1− t) cosK we have

(BθK
′)′′ ∈ C0([0, 1]).

Now we use

P ′(t) = − 1

Bθ(t)

ˆ 1

t

(1− s)(cosK(s)− P (s) sinK(s)) ds
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to see that, similarly, P ′ ∈ C0([0, 1]), hence from p′ = (1− t)(cosK − P sinK) we see p′′ ∈ C0([0, 1]).
But then kp ∈ C2([0, 1]) and by (7.8)

Bθ =

(
kp

cl

)1/2

on (t0, t1).

Together with the fact that kp 6= 0 on (t0, t1) this allows us to conclude that Bθ ∈ C2(t0, t1). We can bootstrap
the above argument to conclude that Bθ ∈ C∞(t0, t1).

Remarks.

1. If

cla
2 > ‖B2

θK
′P ′‖L∞(0,1) (7.9)

then θ ≡ 0 is the unique optimal design. Indeed, if (7.9) is satisfied then (7.7) implies that θ = 0 everywhere.
Observe that the right-hand side of (7.9) can be bounded in terms of a and b, while the left-hand side can
be made arbitrarily large for fixed a and b by choosing cl large enough.

2. When τ = 1 (with τ as in Lemma 7.1) then we have more precisely: θ ≡ 0 is the unique optimal design if
and only if

cla
2 ≥ ‖B2

θK
′P ′‖L∞(0,1). (7.10)

Indeed, observe that B2
θK
′P ′ = kp is positive and strictly decreasing on (0, 1). Hence if (7.10) is satisfied,

then kp < a2cl everywhere on (0, 1). Hence (7.7) implies θ ≡ 0. Conversely, if (7.10) is not satisfied, then
kp > a2cl on a set of positive length, which must be an interval (0, t0), due to the monotonicity of kp.
And according to (7.7) we have θ > 0 on (0, t0).

8. Computation of optimal designs

As in Section 3, we take into account the DKT element for displacements. To describe the material distribution
B we use a phase-field function v ∈W 1,2(S, [−1, 1]). More precisely, we define

Bh[v] := a(1− χ(v)) + bχ(v)

with χ(v) = v+1
2 . Furthermore, we regularize the interface via a Modica–Mortola functional

Rε[v] =
1

2

ˆ
S

ε|∇v|2 +
1

ε
Ψ(v) dx

with Ψ(v) = 9
16 (v2−1)2, which approximates the perimeter functional [21]. We discretize the phase-field variable

with piecewise affine and continuous finite elements. Then, we take into account the discrete elastic energy (3.1)
and introduce Evh [vh, wh] := Eh[Bh[vh], wh]. According to (3.2), the state equation is defined by stationary points
of the Lagrangian

Lh[vh, wh, λh] := Evh [vh, wh]−Fh[wh] +Gh[wh, λh] .

For a fixed phase-field vh, we denote by (wh, λh)[vh] an associated pair of discrete elastic displacement and
Lagrange multiplier, such that (vh, (wh, λh)[vh]) is a saddle point of the Lagrangian Lh. Then, for a parameter
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η > 0, we define a discrete, regularized cost functional

Ĵ ηh [vh] = J ηh [vh, wh[vh]],

where J ηh [vh, wh] := Fh[wh] + ηRε[vh].

We numerically compute a minimizer of J ηh with a first-order method. This requires to evaluate the derivative

∂Ĵ ηh [vh](zh) = ∂vhJ
η
h [vh, wh[vh]](zh) + ∂whJ

η
h [vh, wh[vh]](∂vhwh[vh](zh))

for discrete test functions zh ∈Wh,Γ(S)3. To evaluate the second term on the right we consider a suitable adjoint
problem involving the Lagrange multiplier λh. By the optimality condition ∂(wh,λh)Lh [vh, (wh, λh)[vh]] = 0, the
variation of the mapping vh 7→ ∂(wh,λh)Lh [vh, (wh, λh)[vh]] vanishes, hence

∂(wh,λh)∂(wh,λh)Lh [vh, (wh, λh)[vh]] ∂vh(wh, λh)[vh] = −∂vh∂(wh,λh)Lh [vh, (wh, λh)[vh]] . (8.1)

Now, we define adjoint variables (ph, µh) ∈Wh,Γ(S)3 × R3|N int
h | as solutions of the linear system

∂(wh,λh)∂(wh,λh)Lh[vh, (wh, λh)[vh]](zh, βh)(ph, µh) = −∂(wh,λh)J ηh [vh, (wh, λh)[vh]](zh, βh)

for all (zh, βh) ∈ Wh,Γ(S)3 × R3|N int
h |. With the help of (ph, µh) and (8.1), the derivative of the cost functional

reads as

∂Ĵ ηh [vh](zh) = ∂vhJ
η
h [vh, (wh, λh)[vh]](zh) + ∂(wh,λh)J ηh [vh, (wh, λh)[vh]](∂vh(wh, λh)[vh](zh))

= ∂vhJ
η
h [vh, (wh, λh)[vh]](zh) + ∂vh∂(wh,λh)Lh[vh, (wh, λh)[vh]](ph, µh)(zh).

(8.2)

Since in our case we have

∂vh∂(wh,λh)Lh[vh, wh, λh] =

(
∂vh∂whEvh [vh, wh] 0

0 0

)
,

the expression (8.2) for the shape derivative simplifies to

∂Ĵ ηh [vh](zh) = ∂vhJ
η
h [vh, (wh, λh)[vh]](zh) + ∂vh∂whEvh [vh, wh[vh]](ph)(zh) .

Then, we apply the IPOPT solver [27] to compute minimizer of the fully discrete cost functional J ηh over all
vh ∈ V 1

h (S, [−1, 1]) with the additional area constraint

Vh[vh] :=

ˆ
S

χ(vh) dx = V .

We apply an adaptive refinement scheme via longest edge bisection. More precisely, to refine the interface we
mark those elements T ∈ Th with

ffl
T
|∇vh|2 dx > 1

2 . Additionally, we mark those elements T ∈ Th, where the
isometry error

´
T
|∇uT∇u − I|2 dx is large, i.e., we compute this error for all elements and select the largest

25% for a longest edge bisection refinement.
In what follows, we discuss selected numerically computed optimal designs. We always choose a = 1 and

b = 100 for the material hardness. At first, we study the configuration as in Figure 1 and take into account
the same area constraints V = 0.25, 0.5, 0.75. We always start with a coarse mesh of |Nh| = 289 nodes and use
8 adaptive refinement steps. For the Modica–Mortola functional Rε, we set η = 10−2 and depending on the
mesh size h we choose ε = 2h. In Figure 4 we first consider large forces with |f | = 100V . We observe for a
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Figure 4. Optimal material distributions for bending isometries of a plate. The amounts
of hard material are chosen by (from left to right) V = 0.25, 0.375, 0.5, 0.625, 0.75 and the
corresponding forces are given by f = (0, 0, 100V ) (first and second row) and f = (0, 0, 10V )
(third and fourth row). On the bottom the adaptive finite element meshes are displayed.

large amount of hard material (V = 0.75) that the design (I) is optimal. However, for V = 0.25, 0.5 we obtain
optimal designs with significantly better compliance compared to the above considered designs. Furthermore, we
consider in Figure 4 small forces with |f | = 10V . Here, for all investigated constraints V , the optimal solutions
are different to the designs (I), (II), and (III), even for an area V = 0.75, where design (I) performs better than
(II) and (III).

Note that in all computations in Figure 4 the deformation on the boundary {l}× (−1/2, 1/2) is not constraint.
Nevertheless, as predicted in Theorem 7.3 under the additional constraint that the deformation is affine on
{l} × (−1/2, 1/2) the optimal designs are characterized by

– a strip of hard material for x1 ∈ (0, t0], where t0 vanishes for small values of V ,
– a transmission zone from fully hard to fully soft material phase for x1 ∈ (t0; t1) with t1 strictly larger than
t0 (In fact, in our two phase field model the achieved zick–zack profile seems to reflect a local minimum of
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Figure 5. Optimal material distribution with and without stiff right boundary. We compare
the integral of the hard material phase along the x2-axis (red curve in the constraint case).

the total cost functional J ηh including the additional approximate perimeter functional ηRε. In particular,
different choices of the initial phase field vh lead to different zick–zack pattern),

– a strip of soft material for x1 ∈ [t1, 1) with t1 ≤ 1 depending on V .

Adding the constraint that the deformation is affine on {l} × (−1/2, 1/2), we observe numerically almost no
difference concerning the optimal shapes of the hard and soft material phase for the forces and area constraints
as in Figure 4. Only for an area constraint V = 0.25 and a force |F | = 10V we obtain a different optimizer,
which we depict in Figure 5. To avoid too much increase of compliance density due to a bending in −e3 direction
in the corners (l,− 1

2 ) and (l, 1
2 ), hard spikes occur when optimizing the material distribution in the absence of

the constraints. This bending is prohibited in case of the constraint, leading to centered spike in this concrete
configuration. For both optimizer we compare in Figure 5 the integral over the hard material phase χ(vh)´
x1×[0,1]

χ(vh) dx2 along the x2-axis as a function of x1. In the constraint case, the resulting function B̄ is

indeed strictly monotone decreasing in x2 as predicted in Theorem 7.3. However, in the non constraint case at
the branch point of the two spikes in x2 direction the strict monotonicity appears to be violated.

9. Optimal design in case of membrane and bending energy

So far, we have investigated the case of pure bending isometries. In this section, we relax the isometry con-
straint by using a membrane energy in addition to the bending energy E . Furthermore, we consider numerically
elastic shells with curved undeformed configuration. In explicit, the reference configuration Sref is assumed to
be a two-dimensional, compact, orientable manifold with Lipschitz boundary, which is parametrized by a fixed,
single chart ψref : ω → Sref, where ω ⊂ R2. We consider deformed configurations Sdef = u(S) which can be
parameterized over ω by ψdef := u ◦ ψref. This allows to formulate the energies in terms of ψdef. We denote by
gref = DψTrefDψref, gdef = DψTdefDψdef ∈ R2×2 the first fundamental forms of Sref and Sdef on the chart domain
as functions of ψref. As in Section 8, we take into account a phase field function v ∈ H1(ω, [−1, 1]) to the describe
the material hardness B : ω → [a, b]. Assuming a Poisson ratio ν = 0.25, the Lamé–Navier parameters can be
expressed by µ(v) = λ(v) = 2

5B(v). Now, we define a membrane energy

Evmem[v, ψdef] =

ˆ
ω

√
det gref Wmem

(
v, g−1

ref gdef

)
dξ,
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Figure 6. Optimal material distributions on a plate S = [0, 1]2 for a centered load in normal
direction supported on (0.45, 0.55)2. We compare the resulting hard phase for different area
constraints V = 0.25, 0.375, 0.5, 0.625, 0.75.

where the density function is given by

Wmem(v, F ) =
µ(v)

2
tr(F ) +

λ(v)

4
det(F )−

(
µ(v)

2
+
λ(v)

4

)
log(det(F ))− µ(v)− λ(v)

4

for F ∈ R2×2
sym (cf. [13]). For the bending energy, we simply use the squared Frobenius-norm of the relative shape

operator g−1
ref (Adef −Aref) and choose

Evbend[v, ψdef] =

ˆ
ω

√
det gref B(v)‖g−1

ref (Adef −Aref)‖ dξ .

Then, the stored elastic energy is defined via properly scaling both energy components with respect to the shell
thickness parameter δ as follows:

Ev[v, ψdef] := δ Evmem[v, ψdef] + δ3 Evbend[v, ψdef].

In what follows we consider different undeformed configurations and loads. Similar to bending isometries, we
numerically compute solutions of the state equation via a Newton method. Then, for the material optimization,
we apply the IPOPT solver to compute minimizer of a fully discrete cost functional. Here, we also use an adaptive
meshing strategy with 7 refinement steps via longest edge refinement of those elements T with

ffl
T
|∇vh|2 dx > 1

2 .
Centered Load on a Plate. First, we investigate the flat case Sref = [0, 1]2. We consider a force f =(

0, 0, c χ[0.45,0.55]2
)

in normal direction and is supported on a square in the center of S. The deformation is
supposed to be clamped at the boundary ∂S. As penalty parameter for the Modica–Mortola functional, we
choose η = 10−3. Moreover, we choose different area constraints V = k

8 for k = 2, 3, 4, 5, 6. Then, depending
on this area constraint, we set c = −250V for the force to ensure that the corresponding deformations are
comparable. Furthermore, we consider δ = 10−2. In Figure 6, we depict the cross type structure for the hard
phase which characterizes the minimizer of the compliance functional.

Constant load on a plate. Next, in Figure 7, still for the flat case Sref = [0, 1]2, we consider a force f = (0, 0, c)
acting everywhere on the plate in normal direction for some constant c. Again, we assume clamped boundary
conditions of the displacement on ∂S. As above, we choose η = 10−3 for the Modica–Mortola functional and
δ = 10−2 for the thickness. Furthermore, we compare different area constraints V = k

8 for k = 2, 3, 4, 5, 6 and
set c = −20V for the force. While for the centered load it has been sufficient to stabilize the area in the region,
where the force is concentrated, by trusses connected to the boundary, for a constant load there is a need of
microstructures to keep the deformation as small as possible in terms of the potential energy.
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Figure 7. Optimal material distributions on a plate S = [0, 1]2 for a constant load acting in
normal direction and clamped boundary conditions on ∂S. We compare the results for different
area constraints V = 0.25, 0.375, 0.5, 0.625, 0.75.

Figure 8. For a material distributions on a hemisphere the optimal hard phase is shown for
η = 10−7, 10−8, 10−9 (left to right) in the deformed configuration (top) and on the chart domain
(bottom). In addition, the clamped boundary condition is sketched.

Constant load on a hemisphere. Now, we investigate optimal material distributions on the upper hemisphere

with the inverse of the stereographic projection as parametrization ψref(ξ) =
(

2ξ1
ξ21+ξ22+1

, 2ξ2
ξ21+ξ22+1

,
1−ξ21−ξ

2
2

ξ21+ξ22+1

)
over

the unit disc. We assume clamped boundary conditions on the left and right side, i.e., we set ΓD = {p ∈ Sref :
p3 = 0 , |p1| ≥ 0.9}. Moreover, we consider a single area constraint V = 1

2H
2(Sref). A force f = (0, 0, c) with

c = 0.001 is acting on the reference domain and the thickness is δ = 10−2. Then, we apply 6 adaptive refinement
steps.

In Figure 8, we compare different values for the parameter η to penalize the Modica–Mortola functional.
Indeed, for η → 0 we observe successively finer pattern for the hard phase again underpinning the emergence of
a microstructures as the minimizer in the limit.
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Figure 9. First, we show solutions of the state equation for a homogeneous material distribu-
tion (top) for clamped left and right side and thickness parameters δ = 10−1, 10−1.5, 10−2, 10−2.5

(from left to right). The optimal material distributions on a half cylinder is shown in the
deformed configuration (middle) and on the chart (bottom).

Constant load on a half cylinder. Finally, we consider the half cylinder Sref which is parametrized over
the chart domain ω = [0, 1]2 via ψref(ξ) =

(
1

2π (1− cos(πξ1)), ξ2,
1

2π sin(πξ1)
)

We assume clamped boundary
conditions on the left and right sides w.r.t. the e2-direction, i.e., we set ΓD = {p =∈ Sref : p2 ∈ {0, 1}}. Here,
we study the effect for different thickness parameters δ. We consider a single area constraint V = 1

2H
2(Sref) and

a constant force f = (0, 0, c) with c = −10. In Figure 9, we depict the computational results.
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[9] G. Friesecke, R. James and S. Mueller, The Föpple-von kömö plate theory as a low energy gamma limit of nonlinear elasticity.
Max-Planck-Institut Mathematik, Leipzig 33 (2002).

[10] G. Friesecke, R.D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from
three-dimensional elasticity. Commun. Pure Appl. Math. 55 (2002) 1461–1506.

[11] P. Hartman and L. Nirenberg, On spherical image maps whose Jacobians do not change sign. Am. J. Math. 81 (1959) 901–920.
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