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A SIMPLIFIED DERIVATION TECHNIQUE OF TOPOLOGICAL
DERIVATIVES FOR QUASI-LINEAR TRANSMISSION PROBLEMS

PETER GANGL! AND KEVIN STURM?*

Abstract. In this paper we perform the rigorous derivation of the topological derivative for opti-
mization problems constrained by a class of quasi-linear elliptic transmission problems. In the case
of quasi-linear constraints, techniques using fundamental solutions of the differential operators cannot
be applied to show convergence of the variation of the states. Some authors succeeded showing this
convergence with the help of technical computations under additional requirements on the problem.
Our main objective is to simplify and extend these previous results by using a Lagrangian framework
and a projection trick. Besides these generalisations the purpose of this manuscript is to present a
systematic derivation approach for topological derivatives.
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1. INTRODUCTION

The topological derivative of a shape functional J = J(Q), where  C R%, measures the sensitivity of the
functional with respect to a topological perturbation of the shape Q. The concept was first used in [11] in the
context of linearized elasticity as a means to find optimal locations for introducing holes into an elastic structure.
Later, the concept was introduced in a mathematically rigorous way in [20]. In the literature many research
articles deal with the derivation of topological sensitivities of optimization problems which are constrained by
linear partial differential equations (PDEs). We refer the reader to [2] as well as the monograph ([17], p. 3) and
references therein. The topological derivative for a class of semilinear PDEs with the Laplace operator as the
principal part was studied in [3, 14], and more recently in [21] using an averaged adjoint framework.

As it is mentioned in the recent book ([18], Sect. 6.4, p. 107)

“Extension to nonlinear problems in general can be considered the main challenge in the theoretical
development of the topological derivative method. The difficulty arises when the nonlinearity comes
from the main part of the operator, which at the same time suffers a topological perturbation.”
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2 P. GANGL AND K. STURM

This statement applies in particular to quasi-linear PDEs when the main part of the differential operator gets
topologically perturbed. In this case, techniques based on fundamental solutions, as they are heavily used in
the linear and semi-linear case, cannot be applied any more and other strategies have to be followed.

The first rigorous results of topological sensitivity analysis for shape functions constrained by quasi-linear
PDEs were obtained in [4] where the authors consider a regularized version of the p-Poisson equation. Based
on these results, the topological derivative for the quasi-linear equation of 2D magnetostatics was derived in [5]
where also the numerical treatment of the obtained formula was addressed.

In this paper, we establish the topological derivative for a larger class of quasi-linear problems under more
general assumptions. More precisely, given a fixed, open and bounded hold-all domain D and an open and
measurable subset Q C D, we study the topological sensitivity analysis of the tracking-type cost function

J(Q) = /D IV (= ug)? da (1.1)
subject to the constraint that u € H} (D) solves
/D.szfg(x, Vu) - Ve de = /ngo dz  for all ¢ € H}(D). (1.2)
Here, f € Ly(D), uq € H}(D) and &, : D x R? — R? is a piecewise nonlinear function defined by

oz, y) = { Z;E‘Zi n 2 DG, .

with a1, as : R — R? being functions satisfying monotonicity and continuity assumptions.
The crucial ingredient for our result is the strong convergence (Thm. 4.3) of the variation of the direct states,

—up) o T
\Y ((“ZO)O) — VK strongly in Lo(R%)?, (1.4)

where u. and ug correspond to the solutions to the perturbed and unperturbed state equation, respectively. As
shown in [21], for semilinear problems only weak convergence in (1.4) is necessary to establish the topological
derivative. For quasi-linear problems we need the strong convergence (1.4). The main contributions of this work
are as follows:

— simplified analysis for derivation of topological derivative for quasi-linear equations;
— generalisation of previous results;
— relaxation of smoothness assumption on inclusion w.

The presented approach for deriving the topological derivative under a quasi-linear PDE constraint simplifies
and also generalizes the approaches presented in [4] and [5] which is the subject of the following discussion.

The main difference between the presented approach and the results obtained in [4, 5] lies in the technique
used to show (1.4), i.e. the strong convergence of the variation of the state on the rescaled bounded domain
to the solution K of a transmission problem on the unbounded domain as € — 0. While, in our approach, this
convergence is accomplished by the introduction of a projection K. of K into the space H}(e7'D), the main
ingredient used in [4, 5] is a cut-off argument relying on explicit knowledge of the asymptotic behavior of K as
|z] — oo. The authors successfully showed the necessary decay of K by a comparison principle. However, this
was achieved using long, technical calculations which additionally required stronger assumptions on the data
compared to what is presented here.

In particular, the authors of [4, 5] have to assume that w = B;(0) is the unit ball, whereas our approach
remains valid for any open and bounded set w C R¢ with 0 € w. Furthermore, the assumptions on the class of



TOPOLOGICAL DERIVATIVE QUASI-LINEAR 3

quasi-linear PDEs used here, i.e. Assumption 2.2, are less restrictive than those used in [4, 5]. In particular, the
proof technique used there requires the third derivative of the operator a; to be bounded (see [6], p. 75 or [5],
Asm. 3.3.) and, in the case of [5], an additional nonphysical assumption on the materials which is not necessarily
satisfied in practice (see [5], Asm. 3.4). We remark that the setting of [5] is fully covered in our analysis without
this nonphysical assumption.

Moreover, in both [4] and [5], the case 2 € Q and z € D\ Q have to be treated separately. This is not addressed
in [4] where the proof relies on v; < 7, and is carried out by repeating adaptations of the technical proofs in
the setting of [5], see also Section 4.5 in [12]. In the approach presented here, it is enough to interchange the
roles of a; and ay to get to the topological derivative for the other scenario.

Finally, we will also show how to treat objective functionals of the form

/ lu — ug|? dz,
D

in Section 5, which is not covered by the analysis shown in [4] and [5].

The rest of this paper is organized as follows: In Section 2 we state the main assumptions and the main
result. The remaining sections are devoted to the proof of this result. In Section 3, we recall and extend results
from an abstract Lagrangian framework that will be used to derive the topological derivative. In Section 4 we
show that the hypotheses of the abstract theorem are satisfied and obtain the final formula. In Section 5 we
compare the Lagrangian framework of Section 3 with the averaged framework.

2. ASSUMPTIONS AND MAIN RESULTS

2.1. Preliminaries: notation and definitions

Function spaces Standard LP spaces and Sobolev spaces on an open set D C R? are denoted L,(D) and
WI’f(D), respectively, where p > 1 and k > 1. In case p = 2 and k > 1 we set as usual H*(D) := W¥(D). Vector
valued spaces are denoted Ly(D)? := L,(D,R?) and W} (D)? := W} (D, R?). We denote by Hg (D) the subspace
of functions in H'(D) with vanishing trace on dD. Given a normed vector space V we denote by £ (V,R) the
space of linear and continuous functions on V. We denote by Bs(z) the ball centred at = with radius § > 0 and
set Bs(r) := Bs(x). For the ball centered at x = 0 we write Bs; := Bs(0).

For d > 1 and 1 < p < 0o, we set BL,(R?) := {u € WI}JOC(Rd) : Vu € L,(R%)4} and define the Beppo-
Levi space as the quotient space BL,(R?) := BL,(R%)/R, where /R means that we quotient out the constant
functions. We denote by [u] the equivalence classes of BL(R?). Equipped with the norm

||[U]||B'L,J(Rd) = HVUHLP(Rd)da u € [u], (2.1)

the Beppo-Levi space is a Banach space (see [9, 19]) and C°(R%)/R is dense in BL,(R%). In case p = 2 the
space BL(Rd) becomes a Hilbert space and we abbreviate this space simply with BL(Rd).

Moreover, we write f 4 da = ﬁ / 4 [ dx to indicate the average of f over a measurable set A with measure
|A] < co. We equip R? with the Euclidean norm |- | and use the same notation for the corresponding matrix
(operator) norm.

Definition of topological derivative Before we state our main result we recall the definition of the topo-
logical derivative. We restrict ourselves to the special case as it was introduced in [20] and refer the reader to
PP. 4 in [17] for the more general definition.

Definition 2.1 (Topological derivative). Let D C R? be an open set and Q C D an open subset. Let w C R3
be open with 0 € w. Define for z € R3, w.(2) := z + ew. Then the topological derivative of J at Q at the point
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z € D\ 09 is defined by

lim.\ o JQwe )= Q,
dJ(Q)(z) = Jwe (2)] _ 2.2
(Q)(2) { limeo J(Qutiz))l—J(Q) if €D\ Q. (2.2)

Without loss of generality, we will restrict ourselves to the second case and will always assume z € D \ Q.
The derivation for the case z € Q is analogous, c¢f. Remark 2.4.

2.2. Main results
We need the following assumptions:

Assumption 2.2. There are constants ci, ¢a, ¢3 such that the functions a; : R* — R%, i = 1,2 are differentiable
and satisfy:

(1) (ai(x) —ai(y)) - (x —y) > c1]e —y|>  for all 2,y € R%
(i) |ai(z) — ai(y)| < colzr —y| for all z,y € R4
(iii) |0a;(z) — da;(y)| < cslz —y| for all z,y € RY.

Remark 2.3. By using the inverse triangle inequality and choosing y = 0, we get from Assumption 2.2(ii) and
(iii) that

|ai(z)] < lai(0)] + colz], (2.3)
|0a;(z)| < 10a;(0)| + c3lx], (2.4)

for i = 1,2 and for all z € R%. Notice also that using (ii), we get

|Oa;(z)v| = }{I(l) la;(z + tv) — a;(z)|/t < ealv], (2.5)

for i =1,2 and all z,v € R%.

Properties (i) and (ii) of Assumption 2.2 imply that the operator Aq : H3(D) — (H}(D))* defined by
(Aqp, ) = fD o (x, V) - Vi da is Lipschitz continuous and strongly monotone for all measurable  C D.
Hence the state equation (1.2) admits a unique solution by the theorem of Zarantonello; see p.504, Theorem
25.B in [22].

We restrict ourselves to Dirichlet boundary conditions but also other boundary conditions, e.g., Neumann
boundary conditions, could be considered. In what follows at many places we extend functions u € H}(Q) to
function @ € H'(RY) by setting u to zero outside of D. When dealing with other boundary conditions, we can
replace this extension by the standard Sobolev extension operator £ : H'(D) — H'(R?).

Before we state our main result we introduce the adjoint p € HJ (D) as the solution to

/ Ouo(z, Vu)(Vy) - Vp do = —/ 2V (u —ug) - Vo dz  for all ¢ € H}(D). (2.6)
D D

In view of the monotonicity of @/, the previous equation has according to Lax-Milgram a unique solution in
We fix the following setting for the topological perturbation (cf. Fig. 1):
— an open and bounded set w C R¢ with 0 € w,

— an open set Q € D and the inclusion point z := 0 € D\ €, B
— the perturbation w.(z) := ew and ¢ € [0, 7], where 7 > 0 is such that w.(z) € D\ Q for all € € [0, 7].
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L %

FIGURE 1. Setting for topological derivative: Inclusion w, of radius € > 0 containing material
ay around point z € D \ 2 (where material ag is present).

— the perturbed shape Q.(z) := QU w.(2)

~ Te(x) :==cz,z € R4 e > 0.
To simplify notation we will often write w, instead of w.(z), . instead of Q.(z) and z. instead of T.(x). For
¢ > 0 we introduce the notation e D := T.1(D).

Let {(¢) := |w.|, and introduce the Lagrangian G : [0,7] x HJ(D) x H3(D) — R associated with the
perturbation w. by

G(e,u,p) := /D IV (u — ug)|? dz —l—/D,Q/QE (x,Vu) - Vpdz — /Dfp dz. (2.7)

Here, the operator 27 is defined according to (1.3) with Q. = Q U we.
Now we can state our main result of this paper:

Main Theorem. Let Assumption 2.2 be satisfied. Let 2 C D open and ug the solution to (1.2) and po the
solution to (2.6). Let z € D\ Q and assume that ug € C1*(Bs(z)) and pg € C'(Bs(z)) for some § > 0 and
0 < a < 1. Assume further that Vpg € Lo (D)%

(a) Then the assumptions of Theorem 3.4 are satisfied for the Lagrangian G given by (2.7) and hence the
topological derivative at z € D\ Q is given by

dJ(Q)(z) = 0¢G(0,u0,po) + R1(uo,po) + Ra(uo,po)- (2.8)
(b) We have
9¢G(0,uo, po) = ((a1(Uo) — az(Vo)) - Fo (2.9)
and
1
R1(U0,po) = ﬁ (/ [&fw(m,VK + U()) - .,Q{W(IL‘, Uo) - 81“(2%“,(1‘, Uo)(VK)] . PO dx
w Rd

+/Rd IVEK|? dx) (2.10)
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and
Ra(uo, po) = ﬁ/ [Ouar (Uo) — Buas(Uo)] (VK) - Py da (2.11)

where Up := Vug(2), Po := Vpo(z) and o, (z,y) := a1(y)Xw () + a2(y)xra\w(z). Here K € BL(RY) is
the unique solution to

/ (o (2, VE + Up) — (i, U)) - Vp da
R (2.12)
=— / (a1(Up) — aa(Uy)) - Ve dz  for all ¢ € BL(R?).

Remark 2.4. We restrict ourselves to the case where z € D\ Q without loss of generality. However, the exact
same proof can be conducted in the case where z € Q). In that case, the formula for the topological derivative
is obtained by just switching the roles of a; and as in the theorem above (in particular also in the definition of
A,,).

The assumption z = 0 is without loss of generality, too. In the general case, this situation can be obtained
by a simple change of the coordinate system.

Remark 2.5. Although we assume f € L(D), also more general right hand sides, such as fo := xaf1 + xp\of2
with f1, fo € La(D) could be considered with minor changes.

Remark 2.6. We note that in [4] the topological derivative for a quasi-linear problem in L, spaces is considered.
We believe that our analysis can also be transferred to this setting.

Remark 2.7. Although we did not treat the limiting case where a; or as is zero, this can be done in a similar
fashion. We refer to Section 5 in [21]. Dirichlet conditions on the inclusion using our approach have to be studied
in different manner and deserve further research.

Remark 2.8. For the sake of simplicity we assume in the following Q = ), however, the general case can be
readily retrieved by minor modifications.

3. LAGRANGIAN FRAMEWORK

In this section we recall results on a Lagrangian framework, which is a suitable refinement of [7]. These
abstract results will be used to derive the topological derivative for our quasi-linear model problem. We begin
with the definition of a Lagrangian function; see also [8].

Definition 3.1 (parametrised Lagrangian). Let X and Y be vector spaces and 7 > 0. A parametrised
Lagrangian (or short Lagrangian) is a function

(e,u,p) = G(g,u,p) : [0,7] x X xY — R,
satisfying,
p+— G(e,u,p) is affine on Y. (3.1)
Definition 3.2 (state and adjoint state). Let e € [0, 7]. We define the state equation by: find u. € X, such that

0pG(e,us,0)(p) =0 forall p €Y. (3.2)
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The set of states is denoted E(g). We define the adjoint state by: find p. € Y, such that
0uG(e,ue,pe)(p) =0 forall p € X. (3.3)

The set of adjoint states associated with (e, uc) is denoted Y (e, u.).

Definition 3.3 (¢-differentiable Lagrangian). Let X and Y be vector spaces and 7 > 0. Let £: [0,7] = R be
a given function satisfying ¢(0) = 0 and £(g) > 0 for € € (0,7]. An ¢-differentiable parametrised Lagrangian is a
parametrised Lagrangian G : [0,7] x X x Y — R, satistying,

(a) for all v,w € X and p €Y,
s = G(g,v + sw, p) is continuously differentiable on [0, 1]. (3.4)
(b) for all ug € E(0) and py € Y (0, ug) the limit

1 G(E,Uo,po) B G(O7u07p0)
0¢G(0,ug,po) := i{% )

exists. (3.5)

Assumption (HO).

(i) We assume that for all € € [0, 7], the set E(e) = {u.} is a singleton.
(ii) We assume that the adjoint equation for € = 0, 9,G(0,ug,po)(p) = 0 for all ¢y € E, admits a unique
solution.

We now give sufficient conditions when the function

0,7] = R
(3.6)
e g(e) := G(e, ue,0),
is one sided /¢-differentiable, that means, when the limit
i 9(e) —9(0)
deg(0) == lim 78 (3.7)

exists, where £ : [0,7] — R is a given function satisfying ¢(0) = 0 and ¢(¢) > 0 for € € (0, 7].
The following theorem is a refinement of Theorem 3.3 in [7]. Instead of having one R-term we obtain two
terms, which simplifies the later analysis.

Theorem 3.4. Let G : [0,7] x X xY — R be an (-differentiable parametrised Lagrangian satisfying
Hypothesis (HO). Define for e > 0,

Ri(UOaPO) = Tléf)/o (auG(€7 Sue + (1 - S)UO’pO) - 3uG(5>U07p0)) (U’E - UO) ds (38)
and
R5(ug,po) == L(%CJ(&UOJDO) — 0uG(0,u9,po))(ue — uo). (3.9)

t(e)

If Ry (uo,po) := lima\ 0 RS (uo,po) and Ra(uo, po) = lime~ o R5(uo, po) exist, then

deg(0) = 9¢G(0,ug,po) + Ri(uo,po) + Ra2(uo, po)-
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Proof. Using 9,G(0,up,po)(p) =0 for all ¢ € E and the fundamental theorem of calculus, we obtain

g(E) - g(O) = G(€7u57p0) - G(Ovu07p0) = G(é‘, UEaPO) - G(Ea anpO) =+ G(c?,?,bo,p()) - G(Oa anpO)

1
= / 0uG (e, sus + (1 — s)ug, po)(us — ug) ds + G(g,ug, po) — G(0, uo, po)
0

1
- / (8uG(€7 SUge + (1 - S)UOapo) - auG(€7u07p0))(u8 - ’LL()) ds
0
+ (0uG (e, 10, po) — 0uG(0,ug, po))(ue — up)
+ G(g,u0,po) — G(0, ug, po)-

Notice that the fundamental theorem of calculus is applicable in view of assumption (3.4). Now dividing by ¢(¢),
using Hypothesis (HO) and that Ry (uo,po) and Ra(ug,po) exist, we can pass to the limit € N\, 0. This finishes
the proof. O

Remark 3.5. In the next section, we will apply the abstract result of Theorem 3.4 to the Lagrangian introduced

in (2.7). There, it holds that g(g) = J(£2.) and, when using ¢(¢) = |w.|, the derivative (3.7) corresponds to the
topological derivative defined in (2.2).

4. THE TOPOLOGICAL DERIVATIVE

Let X =Y = H}(D) and let the Lagrangian G be defined as in (2.7). We are now going to verify that the
hypotheses of Theorem 3.4 are satisfied for this G with £(g) = |w,|.

4.1. Analysis of the perturbed state equation

We introduce the abbreviation .« (z,y) := . (z,y) for x,35 € R The perturbed state equation reads: find
ue € H}(D) such that

9,G(e,us,0)(¢) =0  for all p € H(D), (4.1)

or equivalently u. € H}(D) satisfies

/ e (x,Vue) Vo dr = / fodx forall p € H(D). (4.2)
D D

Since (4.2) admits a unique solution we have that E(e) = {u.} is a singleton. Together with the previous
observation that (2.6) admits a unique solution, we have that Hypothesis (HO) is satisfied.

Lemma 4.1. Let Assumption 2.2(i),(ii) be satisfied. There is a constant C > 0, such that for all small € > 0,
HU,E - UQHHl(D) S Cé‘d/2. (43)

Proof. Subtracting (4.2) for € > 0 and & = 0 yields

/(szs(x, Vue) — e (x,Vug)) - Vo dz
b (4.4)
= f/ (a1(Vug) — az2(Vug)) - Vo dx  for all p € H&(D).
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Therefore testing (4.4) with ¢ := us — ug, then applying Holder’s inequality and using the monotonicity of <7
leads to

[V (ue — UO)H%Z(D)d <Cy |Ws|(||vu0||c(1§5(z))d + DIV (ue = o)l L, (b (4.5)
where 0 < € < § and C is a generic constant. Here, we also used (2.3). Now the result follows from |w.| = |w|e?
and the Poincaré inequality. O

Definition 4.2. We define the variation of the state by

—up) o T
K. = % € HY(s7'D), &> 0. (4.6)

By extending u. and ug by zero outside of D, we can view K. as an element of BL(R?) (and its equivalence
class [K.] as element of BL(R?)).

Our main result of this section is the following theorem:
Theorem 4.3. Let Assumption 2.2(i),(ii) be satisfied.

(i) There exists a unique solution K € BL(R®) to

/ (A (2, VK + Uy) — A, (z,Up)) - Vo da
R4

= —/(al(Uo) —ax(Up)) -V dx  for all ¢ € BL(RY),

where Uy := Vug(z) and ,(x,y) = a1(y)xw(®) + a2(y) xra\w(T)-
(ii) We have VK. — VK strongly in Ly(R%)? as e \, 0.

Proof of (i): Thanks to Assumption 2.2 the operator B, : BL(R?) — BL(R%)* defined by (B,g,) =
Jra (Ao (2, Vo + Upy) — A, (x,Up)) - Vip dz is a strongly monotone and Lipschitz continuous and hence the
unique solvability follows by the theorem of Zarantonello; see page 504, Theorem 25.B in [22].

Proof of (ii): We split the proof into two lemmas. The idea is as follows:

(a) introduce the intermediate quantity H. and split K — K. = K — H. + H. — K,
(b) show K — H. — 0,
(¢) show H. — K. — 0.

This splitting is not necessary, but simplifies the presentation. Note that changing variables in (4.3) gives
IVK | p,mey <C  foralle>0. (4.8)

We start by changing variables in (4.4) to obtain an equation for K.:

/ (o(2, VE. + Vo (2.)) — o (x, Vo (2.))) - Vo da
R (4.9)
= — / (a1(Vug(xe)) — aa(Vup(ze))) - Vo da
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for all ¢ € H}(¢7'D) where we recall the notation z. = T.(z) = ez. Similarly as in [4, 5] we approximate K.
by H. € H}(7'D) solution to

/ (o (2, VH. + Uo) — A(x,Up)) - Vep da
R (4.10)
= —/(al(Uo) —ag(Up)) -V dx  forall o € Hi(e'D).

This equation is simply (4.9) with Vu(z.) replaced by Up. We now introduce the projection of K into the space
Hi(e71D): For this we consider the more general situation of BL,(R?).

Definition 4.4. Let ¢ > 0 and 1 < p < oo. For every K € BL,(R%) we define its projection P.(K) € W;O(Rd)
as the minimiser of

i Vip— K - . 4.11
q)eWII}nﬂl(T;le) V(e )HLP(E 1D)d ( )

So P. : BL,(R%) — W3 o(e71D) € Wi(R?) is a nonlinear operator.
The next lemma shows that the operator P. is continuous with respect to ¢.

Lemma 4.5. For every K € BL,(R?) it holds that
V(P.(K)) — VK  strongly in L,(R")* as ¢ \, 0. (4.12)
Proof. Since ¢ — ||V (¢ — K)Hip(a—lo)d is strictly convex on W, 4(¢7'D) it follows that (4.11) admits a unique
solution which is denoted by P.(K). We have by definition
IV(Po(K) = K)ll1,c-10ya < IV(¢ = K)p,c-1pya  forall g € W, (e7'D). (4.13)
Choosing a function ¢ € WI})O(E_lD) with fixed support in some compact set K C D, we see that we find C' > 0,
such that ||V(P:(K))||L,maye < C for all € € (0,1). Now let £ > 0 be arbitrary. Let (e,) be a null-sequence,

such that &,, < € for all n > 1. We obtain from (4.13) that for all n > 1:
I9(Poy () ~ )l omrppe < 906 — Kl omrppe for all o € Who(e1D). (4.14)
Here we extended ¢ to €,'D by zero. Since P, (K) is bounded in BL,(R%) we find a weakly converging
subsequence (denoted the same) and an element K € BL,(R?), such that liminf, ., IV(P., (K)|lL,meys >
HVK”LP(Rd)d. Hence it follows from (4.14) that
IV(K = K)||p,rayt < V(¢ — K)|l1, ey for all o € W, 4(€7'D). (4.15)
But since & > 0 was arbitrary and since C2°(R?)/R is dense in BL,(R?) it follows

I9(K ~ 5) | goys < minf [V(P., (K) ~ K)l,, oz1pye < V(6 — )L, ey (4.16)

for all ¢ € BLp(Rd). However, by choosing ¢ = K, this implies K = K. It follows in particular that P.(K)—~ K
weakly in L,(R?) as e \, 0. In addition it follows from (4.16) the norm convergence of V(P.(K)) in L,(R%)<.
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Hence by the theorem of Radon-Riesz (see [10], p. 264, Thm. 5.10) we have ||V(P.(K) — K)|1, &) — 0 as
e\ 0. O

We now let K, := P.(K) € H} (¢7'D) be the solution to (4.11) with p = 2.
As for K., we can also view H. and K. as elements of BL(R?) by extending them by 0 outside e~'D.

Remark 4.6. In [4, 5] the proof of VK, — VK strongly in Ly(R%)? as ¢ \, 0 was given using a cut-off argument
of K. The reason is that one cannot directly work with K since K ¢ H}(¢7'D) for every & > 0. This cut-off
technique lead to technical arguments which required additional smoothness of the operators, some restrictions
on the non-linearity and also to restrict to w = B;(0). As we will see by introducing the projection K. this step
is simplified substantially.

Lemma 4.7. We have
VH. — VK  strongly in Ly(R%)? as ¢ \, 0. (4.17)

Proof. Subtracting (4.10) from (4.7) yields after rearranging:

/ (A, (x, VK. +Uy) — A, (2, VH.+Uy)) -V dz = / (A, (x, VK. +U) — ,(x, VK +Up)) -V dz (4.18)
Rd Rd

for all o € Hl(¢7'D). Now we test this equation with ¢ = K. — H. € H}(¢7'D), use the monotonicity of .27,
and Holder’s inequality:

C”V(RE - HE)H%Q(Rd)d < / (&fw(l‘, VKE + UO) - vQ{w(l'v VHE + UO)) ' V(KE - HE) dz
Rd

(418) / (A (2, VK. + Up) — (2, VK + Up)) - V(K. — H.) dz
o (4.19)

< [ V(= K[V~ 1) do
R

< IV(K: = K) | pymayall V(K = He)ll 1y maye-
Since in view of Lemma 4.5, we have VK. — VK strongly in Ly (R%)? it follows from (4.19) that V(K. — H.) — 0

strongly in Ly (R%)? and therefore also ||V (H. — K)||,®a)e < ||V(He — k8)||L2(Rd)d + V(K. - K)|lp,mdays — 0
as € \(0. O

We now prove that V(H. — K.) — 0 strongly in Lo(R%)%.
Lemma 4.8. We have

V(H. - K.) -0 strongly in Ly(RY)? as e\, 0. (4.20)
Proof. Subtracting (4.9) and (4.10) we obtain
/ (o(@, VK- + Vug(22)) — o, VH. + Up)) - Vip da
Rd
—|—/ (A, (z,Uy) — A, (2, Vug(z:))) - Vo da (4.21)
Rd

= */(al(vuo(%)) —az(Vuo(ze))) - Vo + (a1(Uo) — a2(Uo)) - Vi d
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for all ¢ € H}(¢71D). In order to be able to use the monotonicity of o7, we rewrite this as follows
| (ol VK. + Vuo(w) — . VH. + Vuo(ac))) - Vi da
RA

=— /Rd((flsz(x, VH, + Vug(xe)) — (Ay(x, VH: + Up) - Ve dx

=:I1(e,p)

—/Rd(%(x, Uo) — ,(z, Vug(z.))) - Vo da (4.22)

=:I2(e,p)

— / (a1(Vup(xe)) — aa(Vug(ze))) - Vo dz + (a1(Up) — a2(Up)) - Ve dz.

=:I3(e,p)

Since a; are Lipschitz continuous and ug € C1®(Bs(2)) with «,d > 0, we immediately obtain that |[I3(e, ¢)| <
Ce®||[V| L, (raye for a suitable constant C' > 0. We now show that also |11 (e, @) + I2(¢, 0)| < C(e)||Vel| L, ma)
and C(e) = 0 as € N\, 0. We write for arbitrary r € (0, 1),

Li(e, ) + Ia(g,0) = — / (Ao (z, VH: + Vuo(ze)) — (o(z, VHe + Up) - Vip da
- / (A, (x,Uy) — Ay (x, Vug(ze))) - Vo da
Bemr (4.23)
- / ((Ay(x, VH: + Vup(z)) — (A (x, Vug(ze)) - Vo dz
RAN\B,__..

+ / (y(z, VH: + Uy) — A, (z,Up)) - Vo du.
R\B,__,

As in Proposition 6.7 in [4] the idea of choosing a power £~ is to let the ball B.--(0) expand slower than
B.-1(0) by choosing r € (0,1) appropriately. Now we can estimate the right hand side of (4.23) using the
Lipschitz continuity of a; (see Asm. 2.2(ii)) as follows

Bie) + )| <20 [ U= Vuolen) Vel do+20 [ VALVl da
B, RNB__,

< C/ Ixslalwldx+20/ IVH.||V| dz (4.24)
B . d .

e—T 35*7

< e "% 20|Vl pymay + 2C IV He | Ly B, ya VOl Lo\ Burya-

For r sufficiently close to 0, we have e~ ¥~ "4/2 = ga—r(g+e) 0, Moreover, by the triangle inequality we
have

IVH: L, mavs._,) < IV(He = K)||L,ma\B,_,) + IVE|Lyra\B. ) (4.25)

The first term on the right hand side goes to zero in view of Lemma 4.7. The second term goes to zero since
VK € Ly(RY)? thus VK| p,ma\p, )¢ — 0 as € \, 0. Using K. — H. as test function in (4.22), using the
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monotonicity of &/ and employing | (e, ¢) + I2(¢, ») + I3(c, ¢)| < C(e)IVpllL,maye with C(e) — 0 as e N\, 0,
shows the result. O

Combining Lemmas 4.7 and 4.8 proves Theorem 4.3(ii).
We get the following properties of the sequence (¢K.):

Corollary 4.9. We have

strongly in L,(R?) ford=2, pe(
eK. =0 strongly in L,(R?) ford>3, pe(
weakly in Ly(R?) ford > 2,

NN
N
XS

(4.26)

where 2* := 2d/(d — 2) denotes the Sobolev exponent of 2 for d > 3.

Proof. Let d = 2. From the Ladyzhenskaya inequality (see [15]) we obtain the estimate [|eK.|r,m2) <
Ce'/?|eK. ||1/2R2)||VK€||1L/22(R2)2. Hence for d = 2, we conclude e K. — 0 in Ly(R?) as e \, 0. Let now p € (2,4).
Then in view of the interpolation inequality [|eK.|[z,(r2) < [leK-. HLZ(RQ)HEKEHZEQRZ) for all # € (0,1) and
% =%+ (119) it follows e K, — 0 in L,(R?) as € \, 0.

Let now d > 3. By the Gagliardo-Nirenberg inequality (see [16]) we obtain |[eK.||,, ra) < Cel|VKL|| L, Ry
and hence eK. — 0 strongly in Lo« (R?) as e \, 0. The convergence eK. — 0 strongly in L,(R?) as € \, 0 for
all p € (2,2*) follows by the interpolation argument as in the previous step.

The convergence eK. — 0 weakly in Ly(R?) as € \, 0 can be proved using the same arguments as in
Theorem 4.14 in [21].

O
4.2. Computation of R;(ug,po) and Rz (ug,po)
It is easily seen from the continuity of a;, as, Vuy and Vpg that G is ¢-differentiable with
1
agG(O, Uo,po) |w| (al(UO UQ / PO dz. (427)

It remains to check that the limits of Ry (ug,po) and Ra(ug,po) exist. For this we use Assumption 2.2(i)-(iii).
Using the change of variables 7., we have

R (ug,po) = / / (Oue(x,V (sue + (1 — 8)ug)) — Oude(x, Vug)) (V(ue —ug)) - Vpg da ds

+7/|V up)|? dz

— m/ - (0w (2, sV K + Vug(ze)) — 0wy (z, Vug(ze))) (VK ) - Vpo(ze) dz ds (4.28)

1
+—/ VK. |? dz
wl| Jre

I 1
— —/ / (Ou Ay (2, sVK 4+ Up) — 0uy(x,Up)) (VK) - Py da ds + 7/ VK |? dz.
|l R4 lw| Jra
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Here, we used that VK, — VK strongly in Lo(R%)? as ¢ \, 0 for the limit of the second term. To see the
convergence of the first term, we may write

1
/0 /Rd (Oudy (1, sSVK, + Vug(x.)) — Oud, (z, Vug(z:)))(VK.) - Vpo(x.) deds
= —I—/ / (0wt (2, sVK, + Vug(xe)) — Oy (2, sSVK + Vug(z:)))(VK,) - Vpo(xe) dads
0o JRmd
+/0 /Rd (Ouy (2, sV K + Vug(ze)) — Oy, (x, Vug(ze)))(V(K: — K)) - Vpo(xe) dzds
1
+A /Rd (Ouy (2, sV K + Vug(z.)) — Oy, (2, Vug(x:)))(VK) - Vpo(x.) dads.

Using Assumption 2.2(iii) and Vpg € L*°(D)%, we see that the absolute value of the first and second
term on the right hand side can be bounded by C||V(K. — K)| 1,me)el| VK| L,reye and C||V(K. —
K)|lpymaye IVEe|| L, raye, respectively, and hence using VK. — VK in Ly(RH? as ¢ \, 0 they disappear
in the limit. The last term converges to the desired limit by using Lebesgue’s dominated convergence theorem.
Using the fundamental theorem, we obtain the expression in (2.10). Similarly, using (2.4), the continuity of Vuyg
and Vpy at z, the continuity of d,a1, d,a2, and again VK. — VK strongly in Ly (R?)?, we obtain by Lebesgue’s
dominated convergence theorem

R(u,p) = —— / (Duar (Viig) — Buas (Vo)) (V (ue — ug)) - Vpo da
= i / (Oua1 (Vug(ze)) — Oyaz(Vuo(x:)))(VK:) - Vpo(z:) dz (4.29)

L1 / (Ouar (Uo) — Duas(Uo)) (V) - Py da.

This finishes the proof of the Main Theorem.

Remark 4.10. We remark that, while the problem considered in this paper is in an Lo setting, the projection
trick of Definition 4.4 is also possible in WI} spaces. Thus, an extension of our results for the topological derivative
to PDE constraints posed in an L, setting as considered in [4] with 1 < p < 0o, p # 2 seems possible.

Remark 4.11. The obtained formula for the topological derivative coincides with the Theorem 4.4 in [4] and
Theorems 2 and 3 in [5] for the respective special cases, which can be seen as follows: Introducing the problem
defining the variation of the adjoint state @Q € BL(RY),

Oudy(x,Up) (V) - VQdx = — / (Dua1(Ug) — duaz(Up)) (V) - Py dz (4.30)

Rd

for all » € BL(R?), and adding the left and right hand side of (4.7) tested with the solution @ of (4.30), the
term Ra(ug,po) can be rewritten as

Ry (ug,po) = Ous(z,Up)(VK) - VQ da

|lw| Jra

:ﬁ [ (Al VI +Up) = () = Dt (. Uo) (VK)) - VQ d (31)

+ ﬁ /w(al(Uo) — ag(Uo)) . VQ dx
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Together with the terms 9,G (0, ug, po) and Ry(ug, po), the topological derivative reads

aH) ) = 2 |(@(00) - aalt) - [ P+ VQaa
+ [R (A, VE +To) = (2, Uo) = 0uLalw, Uo)(VE)) - (B + VQ)dw (4.32)

+/ VK| dm}
Rd

which is, up to a scaling by 1/|w| the same formula as obtained in [4] and [5]. The different scaling is due to a
different definition of the topological derivative in these publications.

Remark 4.12. Tt can be seen from (4.30) that VQ depends linearly on Ppy. Thus, it can be shown that there
exists a matrix A4 = A (w, 0ya1(Up), 0ya2(Up)), which is related to the concept of polarization matrices [1],
such that fw VQdx = .4 P,, see also Section 6 in [5] for the special setting of two-dimensional magnetostatics.

For a discussion on the efficient numerical evaluation of the second integral in (4.32) involving K, see
Section 7 in [5].

5. COMPARISON WITH THE AVERAGED ADJOINT APPROACH AND MORE
GENERAL COST FUNCTIONS

In this section we compare the Lagrangian approach of the previous section with the averaged adjoint
approach; see [21]. We demonstrate that the averaged adjoint approach has some advantages at the price
of being more technically involved. In fact, with the averaged adjoint approach we are able to treat a cost
function of the type:

J(Q) = a/D(u—ud)2 dx—|—b/D IV (u —ug)|? do (5.1)

with a,b > 0 and u the solution to (4.2) with € = 0 for Q C D. It can be checked that the first term cannot be
directly be handled with the Lagrangian technique of Section 3. In fact in order to pass to the limit £ \ 0 in
(4.28), we would need eK. — 0 strongly in Ly(R%)¢, which does not directly follow (see Cor. 4.9). Note that
this term is not covered by the analysis in [4].

5.1. Averaged adjoint

We use the same setting as in Section 3 and let G be a Lagrangian (see Def. 3.3) defined on [0,7] x X x Y
with X,Y being vector spaces.

The key ingredient of the averaged adjoint approach is the averaged adjoint equation. In addition to G as in
Definition 3.3 we assume that G satisfies:

Assumption (H1). Forallt € [0,7], ¢, $,p € X and ¢ € Y the derivative [0,1] = R : s — 0,G(t, o +5¢,0)(p)
is well-defined and integrable on [0, 1].

For a Lagrangian satisfying the previous assumption we can introduce the averaged adjoint equation.

Definition 5.1. Given ¢ € [0,7] and (ug,u.) € E(0) X E(e), the averaged adjoint state equation is defined as
follows: find p. € X, such that

1
/ 0uG(e, sue + (1 — s)ug,pe)(p)ds =0 for all p € X. (5.2)
0
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For every triplet (e, up,ue) the set of solutions of (5.2) is denoted by Y (g, up, ue) and its elements are referred
to as adjoint states for e = 0 and averaged adjoint states for € > 0.

By construction of the averaged adjoint equation we have for € € [0, 7],
G(e,ue,pe) = G(g,ug, pe)- (5.3)

The following is an alternative to Theorem 3.4 (see [21]).

Theorem 5.2. Let G be an {-differentiable Lagrangian function satisfying Assumption (H1). Assume further
that for all € € [0, 7]

(i) the set E(e) = {uc} is a singleton,

(i) for ug € E(0), us € E(e) the set of averaged adjoint states Y (g,ug, us) = {pe} s a singleton,
(iii) the limit

R(uo,po) := [11{‘% ) exists. (5.4)
Then we have
dgg(O) = aZG(Oa U’Ovpo) + R(UOapO)- (55)

5.2. Analysis of the averaged adjoint equation

We now apply Theorem 5.2 to X =Y = H}(D) with Lagrangian G given by

G(e,u,p) := a/

(4 —uq)?® dz + b/ IV (u — ug)|* dz + / o (x,Vu) - Vpdr — / fp dz. (5.6)
D D D D

We use the same setting as in Section 2.2. The averaged adjoint p. € HE(D) is defined by

1
/ 0uG(e, suz + (1 — s)ug,p.)(p) ds =0 for all p € Hy (D). (5.7)
0

This is equivalent to

/ / O (2, V (sues + (1 — s)ug)) (V) - Vpe dz ds
o Jo (5.8)

:—/(u5+u0—2ud)apd:c—/V(u5+uo—2ud)~chdm
D D

for all ¢ € H}(D). As noted earlier, Problem (4.2) admits a unique solution under Assumption 2.2. Moreover,
problem (5.8) has a unique solution due to Assumption 2.2 and Lax-Milgram. Therefore, the assumptions (i)
and (ii) of Theorem 5.2 are satisfied. The {¢-differentiability of G follows again as in the previous section. It
remains to show the existence of the limit term R(ug, po)-

The following analysis is similar to the study of the perturbation of the state equation. Since the model
problem is quasi-linear it is crucial that we have the strong convergence of VK, — VK.

Lemma 5.3. There is a constant C' > 0, such that

/2

Ipe — pollzr1 (D) < C(e™ 7 + [lue —uollgr(py)  for all e > 0. (5.9)
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Proof. Using (5.8) for ¢ > 0 and € = 0 we obtain

| 0wt (0 Vs + (1= u0))(V9) - Vo = o) v s
+ /0 /D ((8ud€(x, V(SU’E + (1 - S)UO)) - au%(x7 VUO))(V@)> : va dx ds (510)
—|—/D <(8u.£z/5(x, Vug) — Oudo(z, Vuo))(ch)) - Vpo dz

—l—a/(ug—uo)(pdx—i-b/V(us—uo)-Vg@dx:O
D D

for all ¢ € H}(D). Testing with ¢ = p. — pp, using the boundedness of Vpy, Holder’s inequality from
Assumption 2.2 gives the result. O

Definition 5.4. We consider again the variation of the adjoint state

(ps —po) oT,

Q. = € Hi(e7'D), e > 0. (5.11)

Note that Lemma 5.3 together with Lemma 4.1 implies that
/ (eQ.)? +|VQ:|*dz < C  foralle > 0. (5.12)
R4

This means that (Q.) is bounded in the Beppo-Levi space BL(R?). We now show the weak convergence Q. — Q
in BL(R?) to some Q € BL(R?). It can also be shown that Q. — 0 in Ly(R?).

Theorem 5.5. We have
VQ. —~VQ weakly in Lo(RY)? as e \, 0, (5.13)

where Q € BL(R?) is the unique solution to

/ /1 O, (x,sVK + Ug)(Vep) - VQ ds dx
R4 JO
— _/ /1 (au%w(x,SVK + U0)(VY) — 0, (x, Uo)(V¢)) . Py dx (5.14)
R4 JO

- /(8ua1(U0) — 0,a2(U0)) (V) - Py da — b/Rd VK -Vipde  for all € BL(RY),

with Py := Vpo(z) and K defined in (4.7).



18 P. GANGL AND K. STURM

Proof. Changing variables in (5.10) and rearranging yields

1
/ 0wy (x, sVK, + Vug(ze)) (V) - VQ. dx ds
0o JRe

= —/ / ((audw(x,sVKg + Vuo(ze)) — 8u%w(m7Vu0(xe)))(v¢)) Vpo(z.) da ds
o (5.15)

N /w ((a“al(v’“o(xs)) - aanWuo(xs)))(w)) - Vpo da ds

—a/ EKEwdx—b/ VK, -Vi¢dz =0
R4 R4

for all ¢ € Hi(¢7!D). Using VK. — VK strongly in Ly(R%)? and eK. — 0 weakly in Ly(R?), we can use the
Lebesgue dominated convergence theorem pass to the limit in (5.15) (for a subsequence) and obtain that the
weak limit of the subsequence of (Q.) satisfies (5.14). Since the solution to (5.14) is unique we conclude that
Q. — Q weakly in BL(RY). O

5.3. Computation of R(ug, po)

Lemma 5.6. We have

R(U(],p()) = (al(U()) — GQ(U())) . f VQ d.T7 (516)

w

where Q is the solution to (5.14).

Proof. Testing (4.2) for e = 0 with ¢ := p. — po yields

/ A, Vug) - V(pe — po) da = / F (- — po) da. (5.17)
D D
Therefore

G(E,UOvpe) - G(Eauo,po) = /D%(x’ VUQ) : v(pE _pO) do — A f(pe —Po) dz
O [ (o, V) — i, Fuo) - Vi = po) s (5.18)
D

= / (a1(Vug) — a2(Vug)) - V(pe — po) de.

Therefore invoking the change of variables T, in (5.18) leads to

Cleg ZGEnt) L [ (a1 (Tun(an)) - aa(Tua(a.)) - V- (519)

|e| B E

In view of the continuity of a;,as, Vu and the weak convergence VQ. — V@Q in Ly(R%)?, we see that the right
hand side converges to the expression (5.16). O
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5.4. The final expression of the topological expansion

So we see that all conditions of Theorem 5.2 are satisfied and we have
dJ(Q)(Z) = a/G(O, anPO) + R(“Oap()), (520)

with R(ug,po) given by (5.16). We see that the second term on the right hand side still depends on @), which we
can express through ug and pg as follows. First we test (5.14) with ¢ := K and use the fundamental theorem
to obtain

/Rd (A (2, VK + Upy) — ,(2,Up))) - VQ dx
= _/ /1 (0w (2, sSVK 4+ Up)(VK) — 0y, (x,Up)(VK)) - Py ds dz (5.21)
R4 JO

- /(8ua1(U0) — 0uas(Uo))(VK) - Pyda—b | |VK[? dz
w R4

and testing (4.7) with ¢ = @Q yields

/Rd(%(x, VK +Up) — dy(z,Up)) - VQ da = — / (a1(Uo) — az(Up)) - VQ d. (5.22)

w

Combining these two equations we obtain

Ru,p) = (a1 (Vo) — as(Uy)) - ][ VQ dx

w

- ﬁ /R /01 (8u (2, sVK + Up)(VK) — 0y, (x,Up)(VK)) - Py ds dw (5.23)

+ i/(aual(Uo) — 04a2(Up))(VK) - Py dx + ib/ |VK|? dz.
w Rd

jwl jwl

In particular we see that for a = 1 and b = 0 we retrieve the formula (2.8), that is, R;(uo,po) + Ra(uo,po) =
R(”Oap0)~

6. CONCLUSION

In this paper we derived topological sensitivities for a class of quasi-linear problems under more general
assumptions than previous results. Moreover, we simplified many of the previous calculations, which can be
helpful when dealing with other types of nonlinear problems. In fact our analysis of K. — K is not restricted
to elliptic problems and is extendable to other types of equations, such as Maxwell’s equation, see [13].
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