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A SIMPLIFIED DERIVATION TECHNIQUE OF TOPOLOGICAL

DERIVATIVES FOR QUASI-LINEAR TRANSMISSION PROBLEMS

Peter Gangl1 and Kevin Sturm2,*

Abstract. In this paper we perform the rigorous derivation of the topological derivative for opti-
mization problems constrained by a class of quasi-linear elliptic transmission problems. In the case
of quasi-linear constraints, techniques using fundamental solutions of the differential operators cannot
be applied to show convergence of the variation of the states. Some authors succeeded showing this
convergence with the help of technical computations under additional requirements on the problem.
Our main objective is to simplify and extend these previous results by using a Lagrangian framework
and a projection trick. Besides these generalisations the purpose of this manuscript is to present a
systematic derivation approach for topological derivatives.
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1. Introduction

The topological derivative of a shape functional J = J(Ω), where Ω ⊂ Rd, measures the sensitivity of the
functional with respect to a topological perturbation of the shape Ω. The concept was first used in [11] in the
context of linearized elasticity as a means to find optimal locations for introducing holes into an elastic structure.
Later, the concept was introduced in a mathematically rigorous way in [20]. In the literature many research
articles deal with the derivation of topological sensitivities of optimization problems which are constrained by
linear partial differential equations (PDEs). We refer the reader to [2] as well as the monograph ([17], p. 3) and
references therein. The topological derivative for a class of semilinear PDEs with the Laplace operator as the
principal part was studied in [3, 14], and more recently in [21] using an averaged adjoint framework.

As it is mentioned in the recent book ([18], Sect. 6.4, p. 107)

“Extension to nonlinear problems in general can be considered the main challenge in the theoretical
development of the topological derivative method. The difficulty arises when the nonlinearity comes
from the main part of the operator, which at the same time suffers a topological perturbation.”
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This statement applies in particular to quasi-linear PDEs when the main part of the differential operator gets
topologically perturbed. In this case, techniques based on fundamental solutions, as they are heavily used in
the linear and semi-linear case, cannot be applied any more and other strategies have to be followed.

The first rigorous results of topological sensitivity analysis for shape functions constrained by quasi-linear
PDEs were obtained in [4] where the authors consider a regularized version of the p-Poisson equation. Based
on these results, the topological derivative for the quasi-linear equation of 2D magnetostatics was derived in [5]
where also the numerical treatment of the obtained formula was addressed.

In this paper, we establish the topological derivative for a larger class of quasi-linear problems under more
general assumptions. More precisely, given a fixed, open and bounded hold-all domain D and an open and
measurable subset Ω ⊂ D, we study the topological sensitivity analysis of the tracking-type cost function

J(Ω) =

ˆ
D

|∇(u− ud)|2 dx (1.1)

subject to the constraint that u ∈ H1
0 (D) solves

ˆ
D

AΩ(x,∇u) · ∇ϕ dx =

ˆ
D

fϕ dx for all ϕ ∈ H1
0 (D). (1.2)

Here, f ∈ L2(D), ud ∈ H1
0 (D) and AΩ : D×Rd → Rd is a piecewise nonlinear function defined by

AΩ(x, y) :=

{
a1(y) for x ∈ Ω
a2(y) for x ∈ D \ Ω,

(1.3)

with a1, a2 : Rd → Rd being functions satisfying monotonicity and continuity assumptions.
The crucial ingredient for our result is the strong convergence (Thm. 4.3) of the variation of the direct states,

∇
(

(uε − u0) ◦ Tε
ε

)
→ ∇K strongly in L2(Rd)d, (1.4)

where uε and u0 correspond to the solutions to the perturbed and unperturbed state equation, respectively. As
shown in [21], for semilinear problems only weak convergence in (1.4) is necessary to establish the topological
derivative. For quasi-linear problems we need the strong convergence (1.4). The main contributions of this work
are as follows:

– simplified analysis for derivation of topological derivative for quasi-linear equations;
– generalisation of previous results;
– relaxation of smoothness assumption on inclusion ω.

The presented approach for deriving the topological derivative under a quasi-linear PDE constraint simplifies
and also generalizes the approaches presented in [4] and [5] which is the subject of the following discussion.

The main difference between the presented approach and the results obtained in [4, 5] lies in the technique
used to show (1.4), i.e. the strong convergence of the variation of the state on the rescaled bounded domain
to the solution K of a transmission problem on the unbounded domain as ε→ 0. While, in our approach, this
convergence is accomplished by the introduction of a projection K̂ε of K into the space H1

0 (ε−1D), the main
ingredient used in [4, 5] is a cut-off argument relying on explicit knowledge of the asymptotic behavior of K as
|x| → ∞. The authors successfully showed the necessary decay of K by a comparison principle. However, this
was achieved using long, technical calculations which additionally required stronger assumptions on the data
compared to what is presented here.

In particular, the authors of [4, 5] have to assume that ω = B1(0) is the unit ball, whereas our approach
remains valid for any open and bounded set ω ⊂ Rd with 0 ∈ ω. Furthermore, the assumptions on the class of



TOPOLOGICAL DERIVATIVE QUASI-LINEAR 3

quasi-linear PDEs used here, i.e. Assumption 2.2, are less restrictive than those used in [4, 5]. In particular, the
proof technique used there requires the third derivative of the operator ai to be bounded (see [6], p. 75 or [5],
Asm. 3.3.) and, in the case of [5], an additional nonphysical assumption on the materials which is not necessarily
satisfied in practice (see [5], Asm. 3.4). We remark that the setting of [5] is fully covered in our analysis without
this nonphysical assumption.

Moreover, in both [4] and [5], the case z ∈ Ω and z ∈ D\Ω have to be treated separately. This is not addressed
in [4] where the proof relies on γ1 < γ0, and is carried out by repeating adaptations of the technical proofs in
the setting of [5], see also Section 4.5 in [12]. In the approach presented here, it is enough to interchange the
roles of a1 and a2 to get to the topological derivative for the other scenario.

Finally, we will also show how to treat objective functionals of the form

ˆ
D

|u− ud|2 dx,

in Section 5, which is not covered by the analysis shown in [4] and [5].
The rest of this paper is organized as follows: In Section 2 we state the main assumptions and the main

result. The remaining sections are devoted to the proof of this result. In Section 3, we recall and extend results
from an abstract Lagrangian framework that will be used to derive the topological derivative. In Section 4 we
show that the hypotheses of the abstract theorem are satisfied and obtain the final formula. In Section 5 we
compare the Lagrangian framework of Section 3 with the averaged framework.

2. Assumptions and main results

2.1. Preliminaries: notation and definitions

Function spaces Standard Lp spaces and Sobolev spaces on an open set D ⊂ Rd are denoted Lp(D) and
W k
p (D), respectively, where p ≥ 1 and k ≥ 1. In case p = 2 and k ≥ 1 we set as usual Hk(D) := W k

2 (D). Vector

valued spaces are denoted Lp(D)d := Lp(D,R
d) and W k

p (D)d := W k
p (D,Rd). We denote by H1

0 (D) the subspace
of functions in H1(D) with vanishing trace on ∂D. Given a normed vector space V we denote by L (V,R) the
space of linear and continuous functions on V . We denote by Bδ(x) the ball centred at x with radius δ > 0 and
set B̄δ(x) := Bδ(x). For the ball centered at x = 0 we write Bδ := Bδ(0).

For d ≥ 1 and 1 ≤ p < ∞, we set BLp(R
d) := {u ∈ W 1

p,loc(Rd) : ∇u ∈ Lp(Rd)d} and define the Beppo-

Levi space as the quotient space ḂLp(R
d) := BLp(R

d)/R, where /R means that we quotient out the constant

functions. We denote by [u] the equivalence classes of ḂL(Rd). Equipped with the norm

‖[u]‖ḂLp(Rd) := ‖∇u‖Lp(Rd)d , u ∈ [u], (2.1)

the Beppo-Levi space is a Banach space (see [9, 19]) and C∞c (Rd)/R is dense in ḂLp(R
d). In case p = 2 the

space ḂL(Rd) becomes a Hilbert space and we abbreviate this space simply with ḂL(Rd).
Moreover, we write

ffl
A
f dx := 1

|A|
´
A
f dx to indicate the average of f over a measurable set A with measure

|A| < ∞. We equip Rd with the Euclidean norm | · | and use the same notation for the corresponding matrix
(operator) norm.

Definition of topological derivative Before we state our main result we recall the definition of the topo-
logical derivative. We restrict ourselves to the special case as it was introduced in [20] and refer the reader to
PP. 4 in [17] for the more general definition.

Definition 2.1 (Topological derivative). Let D ⊂ R3 be an open set and Ω ⊂ D an open subset. Let ω ⊂ R3

be open with 0 ∈ ω. Define for z ∈ R3, ωε(z) := z + εω. Then the topological derivative of J at Ω at the point
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z ∈ D \ ∂Ω is defined by

dJ(Ω)(z) =

{
limε↘0

J(Ω\ωε(z))−J(Ω)
|ωε(z)| if z ∈ Ω,

limε↘0
J(Ω∪ωε(z))−J(Ω)

|ωε(z)| if z ∈ D \ Ω.
(2.2)

Without loss of generality, we will restrict ourselves to the second case and will always assume z ∈ D \ Ω.
The derivation for the case z ∈ Ω is analogous, cf. Remark 2.4.

2.2. Main results

We need the following assumptions:

Assumption 2.2. There are constants c1, c2, c3 such that the functions ai : Rd → Rd, i = 1, 2 are differentiable
and satisfy:

(i) (ai(x)− ai(y)) · (x− y) ≥ c1|x− y|2 for all x, y ∈ Rd.
(ii) |ai(x)− ai(y)| ≤ c2|x− y| for all x, y ∈ Rd.

(iii) |∂ai(x)− ∂ai(y)| ≤ c3|x− y| for all x, y ∈ Rd.

Remark 2.3. By using the inverse triangle inequality and choosing y = 0, we get from Assumption 2.2(ii) and
(iii) that

|ai(x)| ≤ |ai(0)|+ c2|x|, (2.3)

|∂ai(x)| ≤ |∂ai(0)|+ c3|x|, (2.4)

for i = 1, 2 and for all x ∈ Rd. Notice also that using (ii), we get

|∂ai(x)v| = lim
t↘0
|ai(x+ tv)− ai(x)|/t ≤ c2|v|, (2.5)

for i = 1, 2 and all x, v ∈ Rd.

Properties (i) and (ii) of Assumption 2.2 imply that the operator AΩ : H1
0 (D) → (H1

0 (D))∗ defined by
〈AΩϕ,ψ〉 :=

´
D

AΩ(x,∇ϕ) · ∇ψ dx is Lipschitz continuous and strongly monotone for all measurable Ω ⊂ D.
Hence the state equation (1.2) admits a unique solution by the theorem of Zarantonello; see p.504, Theorem
25.B in [22].

We restrict ourselves to Dirichlet boundary conditions but also other boundary conditions, e.g., Neumann
boundary conditions, could be considered. In what follows at many places we extend functions u ∈ H1

0 (Ω) to
function ũ ∈ H1(Rd) by setting u to zero outside of D. When dealing with other boundary conditions, we can
replace this extension by the standard Sobolev extension operator E : H1(D)→ H1(Rd).

Before we state our main result we introduce the adjoint p ∈ H1
0 (D) as the solution to

ˆ
D

∂uAΩ(x,∇u)(∇ϕ) · ∇p dx = −
ˆ
D

2∇(u− ud) · ∇ϕ dx for all ϕ ∈ H1
0 (D). (2.6)

In view of the monotonicity of AΩ the previous equation has according to Lax-Milgram a unique solution in
H1

0 (D).
We fix the following setting for the topological perturbation (cf. Fig. 1):

– an open and bounded set ω ⊂ Rd with 0 ∈ ω,
– an open set Ω b D and the inclusion point z := 0 ∈ D \ Ω,
– the perturbation ωε(z) := εω and ε ∈ [0, τ ], where τ > 0 is such that ωε(z) b D \ Ω for all ε ∈ [0, τ ].
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Figure 1. Setting for topological derivative: Inclusion ωε of radius ε > 0 containing material
a1 around point z ∈ D \ Ω (where material a2 is present).

– the perturbed shape Ωε(z) := Ω ∪ ωε(z)
– Tε(x) := εx, x ∈ Rd, ε ≥ 0.

To simplify notation we will often write ωε instead of ωε(z), Ωε instead of Ωε(z) and xε instead of Tε(x). For
ε > 0 we introduce the notation ε−1D := T−1

ε (D).
Let `(ε) := |ωε|, and introduce the Lagrangian G : [0, τ ] × H1

0 (D) × H1
0 (D) → R associated with the

perturbation ωε by

G(ε, u, p) :=

ˆ
D

|∇(u− ud)|2 dx+

ˆ
D

AΩε(x,∇u) · ∇p dx−
ˆ
D

fp dx. (2.7)

Here, the operator AΩε is defined according to (1.3) with Ωε = Ω ∪ ωε.
Now we can state our main result of this paper:

Main Theorem. Let Assumption 2.2 be satisfied. Let Ω ⊂ D open and u0 the solution to (1.2) and p0 the
solution to (2.6). Let z ∈ D \ Ω and assume that u0 ∈ C1,α(Bδ(z)) and p0 ∈ C1(Bδ(z)) for some δ > 0 and
0 < α < 1. Assume further that ∇p0 ∈ L∞(D)d.

(a) Then the assumptions of Theorem 3.4 are satisfied for the Lagrangian G given by (2.7) and hence the
topological derivative at z ∈ D \ Ω is given by

dJ(Ω)(z) = ∂`G(0, u0, p0) +R1(u0, p0) +R2(u0, p0). (2.8)

(b) We have

∂`G(0, u0, p0) = ((a1(U0)− a2(U0)) · P0 (2.9)

and

R1(u0, p0) =
1

|ω|

(ˆ
Rd

[
Aω(x,∇K + U0)−Aω(x, U0)− ∂uAω(x, U0)(∇K)

]
· P0 dx

+

ˆ
Rd

|∇K|2 dx

)
(2.10)
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and

R2(u0, p0) =
1

|ω|

ˆ
ω

[∂ua1(U0)− ∂ua2(U0)] (∇K) · P0 dx (2.11)

where U0 := ∇u0(z), P0 := ∇p0(z) and Aω(x, y) := a1(y)χω(x) + a2(y)χRd\ω(x). Here K ∈ ḂL(Rd) is
the unique solution to

ˆ
Rd

(Aω(x,∇K + U0)−Aω(x, U0)) · ∇ϕ dx

= −
ˆ
ω

(a1(U0)− a2(U0)) · ∇ϕ dx for all ϕ ∈ BL(Rd).

(2.12)

Remark 2.4. We restrict ourselves to the case where z ∈ D \Ω without loss of generality. However, the exact
same proof can be conducted in the case where z ∈ Ω. In that case, the formula for the topological derivative
is obtained by just switching the roles of a1 and a2 in the theorem above (in particular also in the definition of
Aω).

The assumption z = 0 is without loss of generality, too. In the general case, this situation can be obtained
by a simple change of the coordinate system.

Remark 2.5. Although we assume f ∈ L2(D), also more general right hand sides, such as fΩ := χΩf1 +χD\Ωf2

with f1, f2 ∈ L2(D) could be considered with minor changes.

Remark 2.6. We note that in [4] the topological derivative for a quasi-linear problem in Lp spaces is considered.
We believe that our analysis can also be transferred to this setting.

Remark 2.7. Although we did not treat the limiting case where a1 or a2 is zero, this can be done in a similar
fashion. We refer to Section 5 in [21]. Dirichlet conditions on the inclusion using our approach have to be studied
in different manner and deserve further research.

Remark 2.8. For the sake of simplicity we assume in the following Ω = ∅, however, the general case can be
readily retrieved by minor modifications.

3. Lagrangian framework

In this section we recall results on a Lagrangian framework, which is a suitable refinement of [7]. These
abstract results will be used to derive the topological derivative for our quasi-linear model problem. We begin
with the definition of a Lagrangian function; see also [8].

Definition 3.1 (parametrised Lagrangian). Let X and Y be vector spaces and τ > 0. A parametrised
Lagrangian (or short Lagrangian) is a function

(ε, u, p) 7→ G(ε, u, p) : [0, τ ]×X × Y → R,

satisfying,

p 7→ G(ε, u, p) is affine on Y. (3.1)

Definition 3.2 (state and adjoint state). Let ε ∈ [0, τ ]. We define the state equation by: find uε ∈ X, such that

∂pG(ε, uε, 0)(ϕ) = 0 for all ϕ ∈ Y. (3.2)
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The set of states is denoted E(ε). We define the adjoint state by: find pε ∈ Y , such that

∂uG(ε, uε, pε)(ϕ) = 0 for all ϕ ∈ X. (3.3)

The set of adjoint states associated with (ε, uε) is denoted Y (ε, uε).

Definition 3.3 (`-differentiable Lagrangian). Let X and Y be vector spaces and τ > 0. Let ` : [0, τ ]→ R be
a given function satisfying `(0) = 0 and `(ε) > 0 for ε ∈ (0, τ ]. An `-differentiable parametrised Lagrangian is a
parametrised Lagrangian G : [0, τ ]×X × Y → R, satisfying,

(a) for all v, w ∈ X and p ∈ Y ,

s 7→ G(ε, v + sw, p) is continuously differentiable on [0, 1]. (3.4)

(b) for all u0 ∈ E(0) and p0 ∈ Y (0, u0) the limit

∂`G(0, u0, p0) := lim
ε↘0

G(ε, u0, p0)−G(0, u0, p0)

`(ε)
exists. (3.5)

Assumption (H0).

(i) We assume that for all ε ∈ [0, τ ], the set E(ε) = {uε} is a singleton.
(ii) We assume that the adjoint equation for ε = 0, ∂uG(0, u0, p0)(ϕ) = 0 for all ϕ ∈ E, admits a unique

solution.

We now give sufficient conditions when the function

[0, τ ]→ R

ε 7→ g(ε) := G(ε, uε, 0),
(3.6)

is one sided `-differentiable, that means, when the limit

d`g(0) := lim
ε↘0

g(ε)− g(0)

`(ε)
(3.7)

exists, where ` : [0, τ ]→ R is a given function satisfying `(0) = 0 and `(ε) > 0 for ε ∈ (0, τ ].
The following theorem is a refinement of Theorem 3.3 in [7]. Instead of having one R-term we obtain two

terms, which simplifies the later analysis.

Theorem 3.4. Let G : [0, τ ] × X × Y → R be an `-differentiable parametrised Lagrangian satisfying
Hypothesis (H0). Define for ε > 0,

Rε1(u0, p0) :=
1

`(ε)

ˆ 1

0

(∂uG(ε, suε + (1− s)u0, p0)− ∂uG(ε, u0, p0)) (uε − u0) ds (3.8)

and

Rε2(u0, p0) :=
1

`(ε)
(∂uG(ε, u0, p0)− ∂uG(0, u0, p0))(uε − u0). (3.9)

If R1(u0, p0) := limε↘0R
ε
1(u0, p0) and R2(u0, p0) := limε↘0R

ε
2(u0, p0) exist, then

d`g(0) = ∂`G(0, u0, p0) +R1(u0, p0) +R2(u0, p0).
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Proof. Using ∂uG(0, u0, p0)(ϕ) = 0 for all ϕ ∈ E and the fundamental theorem of calculus, we obtain

g(ε)− g(0) = G(ε, uε, p0)−G(0, u0, p0) = G(ε, uε, p0)−G(ε, u0, p0) +G(ε, u0, p0)−G(0, u0, p0)

=

ˆ 1

0

∂uG(ε, suε + (1− s)u0, p0)(uε − u0) ds+G(ε, u0, p0)−G(0, u0, p0)

=

ˆ 1

0

(∂uG(ε, suε + (1− s)u0, p0)− ∂uG(ε, u0, p0))(uε − u0) ds

+ (∂uG(ε, u0, p0)− ∂uG(0, u0, p0))(uε − u0)

+G(ε, u0, p0)−G(0, u0, p0).

Notice that the fundamental theorem of calculus is applicable in view of assumption (3.4). Now dividing by `(ε),
using Hypothesis (H0) and that R1(u0, p0) and R2(u0, p0) exist, we can pass to the limit ε ↘ 0. This finishes
the proof.

Remark 3.5. In the next section, we will apply the abstract result of Theorem 3.4 to the Lagrangian introduced
in (2.7). There, it holds that g(ε) = J(Ωε) and, when using `(ε) = |ωε|, the derivative (3.7) corresponds to the
topological derivative defined in (2.2).

4. The topological derivative

Let X = Y = H1
0 (D) and let the Lagrangian G be defined as in (2.7). We are now going to verify that the

hypotheses of Theorem 3.4 are satisfied for this G with `(ε) = |ωε|.

4.1. Analysis of the perturbed state equation

We introduce the abbreviation Aε(x, y) := AΩε(x, y) for x, y ∈ Rd. The perturbed state equation reads: find
uε ∈ H1

0 (D) such that

∂pG(ε, uε, 0)(ϕ) = 0 for all ϕ ∈ H1
0 (D), (4.1)

or equivalently uε ∈ H1
0 (D) satisfies

ˆ
D

Aε(x,∇uε) · ∇ϕ dx =

ˆ
D

fϕ dx for all ϕ ∈ H1
0 (D). (4.2)

Since (4.2) admits a unique solution we have that E(ε) = {uε} is a singleton. Together with the previous
observation that (2.6) admits a unique solution, we have that Hypothesis (H0) is satisfied.

Lemma 4.1. Let Assumption 2.2(i),(ii) be satisfied. There is a constant C > 0, such that for all small ε > 0,

‖uε − u0‖H1(D) ≤ Cεd/2. (4.3)

Proof. Subtracting (4.2) for ε > 0 and ε = 0 yields

ˆ
D

(Aε(x,∇uε)−Aε(x,∇u0)) · ∇ϕ dx

= −
ˆ
ωε

(a1(∇u0)− a2(∇u0)) · ∇ϕ dx for all ϕ ∈ H1
0 (D).

(4.4)
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Therefore testing (4.4) with ϕ := uε − u0, then applying Hölder’s inequality and using the monotonicity of Aε

leads to

‖∇(uε − u0)‖2L2(D)d ≤ C
√
|ωε|(‖∇u0‖C(Bδ(z))d

+ 1)‖∇(uε − u0)‖L2(D)d , (4.5)

where 0 < ε < δ and C is a generic constant. Here, we also used (2.3). Now the result follows from |ωε| = |ω|εd
and the Poincaré inequality.

Definition 4.2. We define the variation of the state by

Kε :=
(uε − u0) ◦ Tε

ε
∈ H1

0 (ε−1D), ε > 0. (4.6)

By extending uε and u0 by zero outside of D, we can view Kε as an element of BL(Rd) (and its equivalence
class [Kε] as element of ḂL(Rd)).

Our main result of this section is the following theorem:

Theorem 4.3. Let Assumption 2.2(i),(ii) be satisfied.

(i) There exists a unique solution K ∈ ḂL(Rd) to

ˆ
Rd

(Aω(x,∇K + U0)−Aω(x, U0)) · ∇ϕ dx

= −
ˆ
ω

(a1(U0)− a2(U0)) · ∇ϕ dx for all ϕ ∈ BL(Rd),

(4.7)

where U0 := ∇u0(z) and Aω(x, y) := a1(y)χω(x) + a2(y)χRd\ω(x).

(ii) We have ∇Kε → ∇K strongly in L2(Rd)d as ε↘ 0.

Proof of (i): Thanks to Assumption 2.2 the operator Bω : ḂL(Rd) → ḂL(Rd)∗ defined by 〈Bωϕ,ψ〉 :=´
Rd(Aω(x,∇ϕ + U0) − Aω(x, U0)) · ∇ψ dx is a strongly monotone and Lipschitz continuous and hence the

unique solvability follows by the theorem of Zarantonello; see page 504, Theorem 25.B in [22].
Proof of (ii): We split the proof into two lemmas. The idea is as follows:

(a) introduce the intermediate quantity Hε and split K −Kε = K −Hε +Hε −Kε,
(b) show K −Hε → 0,
(c) show Hε −Kε → 0.

This splitting is not necessary, but simplifies the presentation. Note that changing variables in (4.3) gives

‖∇Kε‖L2(Rd) ≤ C for all ε > 0. (4.8)

We start by changing variables in (4.4) to obtain an equation for Kε:

ˆ
Rd

(Aω(x,∇Kε +∇u0(xε))−Aω(x,∇u0(xε))) · ∇ϕ dx

= −
ˆ
ω

(a1(∇u0(xε))− a2(∇u0(xε))) · ∇ϕ dx

(4.9)



10 P. GANGL AND K. STURM

for all ϕ ∈ H1
0 (ε−1D) where we recall the notation xε = Tε(x) = εx. Similarly as in [4, 5] we approximate Kε

by Hε ∈ H1
0 (ε−1D) solution to

ˆ
Rd

(Aω(x,∇Hε + U0)−Aω(x, U0)) · ∇ϕ dx

= −
ˆ
ω

(a1(U0)− a2(U0)) · ∇ϕ dx for all ϕ ∈ H1
0 (ε−1D).

(4.10)

This equation is simply (4.9) with ∇u(xε) replaced by U0. We now introduce the projection of K into the space
H1

0 (ε−1D): For this we consider the more general situation of ḂLp(R
d).

Definition 4.4. Let ε > 0 and 1 < p <∞. For every K ∈ ḂLp(Rd) we define its projection Pε(K) ∈W 1
p,0(Rd)

as the minimiser of

min
ϕ∈W 1

p,0(ε−1D)
‖∇(ϕ−K)‖Lp(ε−1D)d . (4.11)

So Pε : ḂLp(R
d)→W 1

p,0(ε−1D) ⊂W 1
p,0(Rd) is a nonlinear operator.

The next lemma shows that the operator Pε is continuous with respect to ε.

Lemma 4.5. For every K ∈ ḂLp(Rd) it holds that

∇(Pε(K))→ ∇K strongly in Lp(R
d)d as ε↘ 0. (4.12)

Proof. Since ϕ 7→ ‖∇(ϕ−K)‖p
Lp(ε−1D)d

is strictly convex on W 1
p,0(ε−1D) it follows that (4.11) admits a unique

solution which is denoted by Pε(K). We have by definition

‖∇(Pε(K)−K)‖Lp(ε−1D)d ≤ ‖∇(ϕ−K)‖Lp(ε−1D)d for all ϕ ∈W 1
p,0(ε−1D). (4.13)

Choosing a function ϕ ∈W 1
p,0(ε−1D) with fixed support in some compact set K ⊂ D, we see that we find C > 0,

such that ‖∇(Pε(K))‖Lp(Rd)d ≤ C for all ε ∈ (0, 1). Now let ε̃ > 0 be arbitrary. Let (εn) be a null-sequence,
such that εn < ε̃ for all n ≥ 1. We obtain from (4.13) that for all n ≥ 1:

‖∇(Pεn(K)−K)‖Lp(ε−1
n D)d ≤ ‖∇(ϕ−K)‖Lp(ε−1

n D)d for all ϕ ∈W 1
p,0(ε̃−1D). (4.14)

Here we extended ϕ to ε−1
n D by zero. Since Pεn(K) is bounded in ḂLp(R

d) we find a weakly converging

subsequence (denoted the same) and an element K̂ ∈ ḂLp(Rd), such that lim infn→∞ ‖∇(Pεn(K))‖Lp(Rd)d ≥
‖∇K̂‖Lp(Rd)d . Hence it follows from (4.14) that

‖∇(K̂ −K)‖Lp(Rd)d ≤ ‖∇(ϕ−K)‖Lp(Rd)d for all ϕ ∈W 1
p,0(ε̃−1D). (4.15)

But since ε̃ > 0 was arbitrary and since C∞c (Rd)/R is dense in ḂLp(R
d) it follows

‖∇(K̂ −K)‖Lp(Rd)d ≤ lim inf
n→∞

‖∇(Pεn(K)−K)‖Lp(ε−1
n D)d ≤ ‖∇(ϕ−K)‖Lp(Rd)d (4.16)

for all ϕ ∈ ḂLp(Rd). However, by choosing ϕ = K, this implies K̂ = K. It follows in particular that Pε(K) ⇀ K
weakly in Lp(R

d) as ε↘ 0. In addition it follows from (4.16) the norm convergence of ∇(Pε(K)) in Lp(R
d)d.
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Hence by the theorem of Radon-Riesz (see [10], p. 264, Thm. 5.10) we have ‖∇(Pε(K) −K)‖Lp(Rd)d → 0 as
ε↘ 0.

We now let K̂ε := Pε(K) ∈ H1
0 (ε−1D) be the solution to (4.11) with p = 2.

As for Kε, we can also view Hε and K̂ε as elements of BL(Rd) by extending them by 0 outside ε−1D.

Remark 4.6. In [4, 5] the proof of∇Kε → ∇K strongly in L2(Rd)d as ε↘ 0 was given using a cut-off argument
of K. The reason is that one cannot directly work with K since K 6∈ H1

0 (ε−1D) for every ε > 0. This cut-off
technique lead to technical arguments which required additional smoothness of the operators, some restrictions
on the non-linearity and also to restrict to ω = B1(0). As we will see by introducing the projection K̂ε this step
is simplified substantially.

Lemma 4.7. We have

∇Hε → ∇K strongly in L2(Rd)d as ε↘ 0. (4.17)

Proof. Subtracting (4.10) from (4.7) yields after rearranging:

ˆ
Rd

(Aω(x,∇K̂ε+U0)−Aω(x,∇Hε+U0)) ·∇ϕ dx =

ˆ
Rd

(Aω(x,∇K̂ε+U0)−Aω(x,∇K+U0)) ·∇ϕ dx (4.18)

for all ϕ ∈ H1
0 (ε−1D). Now we test this equation with ϕ = K̂ε −Hε ∈ H1

0 (ε−1D), use the monotonicity of Aω

and Hölder’s inequality:

C‖∇(K̂ε −Hε)‖2L2(Rd)d ≤
ˆ
Rd

(Aω(x,∇K̂ε + U0)−Aω(x,∇Hε + U0)) · ∇(K̂ε −Hε) dx

(4.18)
=

ˆ
Rd

(Aω(x,∇K̂ε + U0)−Aω(x,∇K + U0)) · ∇(K̂ε −Hε) dx

≤
ˆ
Rd

|∇(K̂ε −K)||∇(K̂ε −Hε)| dx

≤ ‖∇(K̂ε −K)‖L2(Rd)d‖∇(K̂ε −Hε)‖L2(Rd)d .

(4.19)

Since in view of Lemma 4.5, we have∇K̂ε → ∇K strongly in L2(Rd)d it follows from (4.19) that∇(K̂ε−Hε)→ 0
strongly in L2(Rd)d and therefore also ‖∇(Hε−K)‖L2(Rd)d ≤ ‖∇(Hε− K̂ε)‖L2(Rd)d +‖∇(K̂ε−K)‖L2(Rd)d → 0
as ε↘ 0.

We now prove that ∇(Hε −Kε)→ 0 strongly in L2(Rd)d.

Lemma 4.8. We have

∇(Hε −Kε)→ 0 strongly in L2(Rd)d as ε↘ 0. (4.20)

Proof. Subtracting (4.9) and (4.10) we obtain

ˆ
Rd

(Aω(x,∇Kε +∇u0(xε))−Aω(x,∇Hε + U0)) · ∇ϕ dx

+

ˆ
Rd

(Aω(x, U0)−Aω(x,∇u0(xε))) · ∇ϕ dx

= −
ˆ
ω

(a1(∇u0(xε))− a2(∇u0(xε))) · ∇ϕ+ (a1(U0)− a2(U0)) · ∇ϕ dx

(4.21)
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for all ϕ ∈ H1
0 (ε−1D). In order to be able to use the monotonicity of Aω we rewrite this as follows

ˆ
Rd

(Aω(x,∇Kε +∇u0(xε))−Aω(x,∇Hε +∇u0(xε)))) · ∇ϕ dx

=−
ˆ
Rd

((Aω(x,∇Hε +∇u0(xε))− (Aω(x,∇Hε + U0) · ∇ϕ dx︸ ︷︷ ︸
=:I1(ε,ϕ)

−
ˆ
Rd

(Aω(x, U0)−Aω(x,∇u0(xε))) · ∇ϕ dx︸ ︷︷ ︸
=:I2(ε,ϕ)

−
ˆ
ω

(a1(∇u0(xε))− a2(∇u0(xε))) · ∇ϕ dx+ (a1(U0)− a2(U0)) · ∇ϕ dx︸ ︷︷ ︸
=:I3(ε,ϕ)

.

(4.22)

Since ai are Lipschitz continuous and u0 ∈ C1,α(Bδ(z)) with α, δ > 0, we immediately obtain that |I3(ε, ϕ)| ≤
Cεα‖∇ϕ‖L2(Rd)d for a suitable constant C > 0. We now show that also |I1(ε, ϕ) + I2(ε, ϕ)| ≤ C(ε)‖∇ϕ‖L2(Rd)d

and C(ε)→ 0 as ε↘ 0. We write for arbitrary r ∈ (0, 1),

I1(ε, ϕ) + I2(ε, ϕ) =−
ˆ
Bε−r

((Aω(x,∇Hε +∇u0(xε))− (Aω(x,∇Hε + U0) · ∇ϕ dx

−
ˆ
Bε−r

(Aω(x, U0)−Aω(x,∇u0(xε))) · ∇ϕ dx

−
ˆ
Rd\Bε−r

((Aω(x,∇Hε +∇u0(xε))− (Aω(x,∇u0(xε)) · ∇ϕ dx

+

ˆ
Rd\Bε−r

((Aω(x,∇Hε + U0)−Aω(x, U0)) · ∇ϕ dx.

(4.23)

As in Proposition 6.7 in [4] the idea of choosing a power ε−r is to let the ball Bε−r (0) expand slower than
Bε−1(0) by choosing r ∈ (0, 1) appropriately. Now we can estimate the right hand side of (4.23) using the
Lipschitz continuity of ai (see Asm. 2.2(ii)) as follows

|I1(ε, ϕ) + I2(ε, ϕ)| ≤ 2C

ˆ
Bε−r

|U0 −∇u0(xε)||∇ϕ| dx+ 2C

ˆ
Rd\Bε−r

|∇Hε||∇ϕ| dx

≤ C
ˆ
Bε−r

|xε|α|∇ϕ|dx+ 2C

ˆ
Rd\Bε−r

|∇Hε||∇ϕ| dx

≤ ε−rαεαε−rd/2C‖∇ϕ‖L2(Rd)d + 2C‖∇Hε‖L2(Rd\Bε−r )d‖∇ϕ‖L2(Rd\Bεr )d .

(4.24)

For r sufficiently close to 0, we have ε−rαεαε−rd/2 = εα−r(
d
2 +α) → 0. Moreover, by the triangle inequality we

have

‖∇Hε‖L2(Rd\Bε−r ) ≤ ‖∇(Hε −K)‖L2(Rd\Bε−r ) + ‖∇K‖L2(Rd\Bε−r ). (4.25)

The first term on the right hand side goes to zero in view of Lemma 4.7. The second term goes to zero since
∇K ∈ L2(Rd)d thus ‖∇K‖L2(Rd\Bε−r )d → 0 as ε ↘ 0. Using Kε − Hε as test function in (4.22), using the
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monotonicity of A and employing |I1(ε, ϕ) + I2(ε, ϕ) + I3(ε, ϕ)| ≤ C(ε)‖∇ϕ‖L2(Rd)d with C(ε)→ 0 as ε↘ 0,
shows the result.

Combining Lemmas 4.7 and 4.8 proves Theorem 4.3(ii).
We get the following properties of the sequence (εKε):

Corollary 4.9. We have

εKε → 0

 strongly in Lp(R
d) for d = 2, p ∈ (2, 4],

strongly in Lp(R
d) for d ≥ 3, p ∈ (2, 2∗],

weakly in L2(Rd) for d ≥ 2,
(4.26)

where 2∗ := 2d/(d− 2) denotes the Sobolev exponent of 2 for d ≥ 3.

Proof. Let d = 2. From the Ladyzhenskaya inequality (see [15]) we obtain the estimate ‖εKε‖L4(R2) ≤
Cε1/2‖εKε‖1/2L2(R2)‖∇Kε‖1/2L2(R2)2 . Hence for d = 2, we conclude εKε → 0 in L4(R2) as ε↘ 0. Let now p ∈ (2, 4).

Then in view of the interpolation inequality ‖εKε‖Lp(R2) ≤ ‖εKε‖θL2(R2)‖εKε‖1−θL4(R2) for all θ ∈ (0, 1) and
1
p = θ

2 + (1−θ)
4 it follows εKε → 0 in Lp(R

2) as ε↘ 0.

Let now d ≥ 3. By the Gagliardo-Nirenberg inequality (see [16]) we obtain ‖εKε‖L2∗(Rd) ≤ Cε‖∇Kε‖L2(Rd)d

and hence εKε → 0 strongly in L2∗(Rd) as ε↘ 0. The convergence εKε → 0 strongly in Lp(R
d) as ε↘ 0 for

all p ∈ (2, 2∗) follows by the interpolation argument as in the previous step.
The convergence εKε ⇀ 0 weakly in L2(Rd) as ε ↘ 0 can be proved using the same arguments as in

Theorem 4.14 in [21].

4.2. Computation of R1(u0, p0) and R2(u0, p0)

It is easily seen from the continuity of a1, a2, ∇u0 and ∇p0 that G is `-differentiable with

∂`G(0, u0, p0) =
1

|ω|
(a1(U0)− a2(U0)) ·

ˆ
ω

P0 dx. (4.27)

It remains to check that the limits of R1(u0, p0) and R2(u0, p0) exist. For this we use Assumption 2.2(i)-(iii).
Using the change of variables Tε, we have

Rε1(u0, p0) =
1

`(ε)

ˆ 1

0

ˆ
D

(∂uAε(x,∇(suε + (1− s)u0))− ∂uAε(x,∇u0)) (∇(uε − u0)) · ∇p0 dx ds

+
1

`(ε)

ˆ
D

|∇(uε − u0)|2 dx

=
1

|ω|

ˆ 1

0

ˆ
Rd

(∂uAω(x, s∇Kε +∇u0(xε))− ∂uAω(x,∇u0(xε))) (∇Kε) · ∇p0(xε) dx ds

+
1

|ω|

ˆ
Rd

|∇Kε|2 dx

→ 1

|ω|

ˆ 1

0

ˆ
Rd

(∂uAω(x, s∇K + U0)− ∂uAω(x, U0)) (∇K) · P0 dx ds+
1

|ω|

ˆ
Rd

|∇K|2 dx.

(4.28)
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Here, we used that ∇Kε → ∇K strongly in L2(Rd)d as ε ↘ 0 for the limit of the second term. To see the
convergence of the first term, we may write

ˆ 1

0

ˆ
Rd

(∂uAω(x, s∇Kε +∇u0(xε))− ∂uAω(x,∇u0(xε)))(∇Kε) · ∇p0(xε) dxds

= +

ˆ 1

0

ˆ
Rd

(∂uAω(x, s∇Kε +∇u0(xε))− ∂uAω(x, s∇K +∇u0(xε)))(∇Kε) · ∇p0(xε) dxds

+

ˆ 1

0

ˆ
Rd

(∂uAω(x, s∇K +∇u0(xε))− ∂uAω(x,∇u0(xε)))(∇(Kε −K)) · ∇p0(xε) dxds

+

ˆ 1

0

ˆ
Rd

(∂uAω(x, s∇K +∇u0(xε))− ∂uAω(x,∇u0(xε)))(∇K) · ∇p0(xε) dxds.

Using Assumption 2.2(iii) and ∇p0 ∈ L∞(D)d, we see that the absolute value of the first and second
term on the right hand side can be bounded by C‖∇(Kε − K)‖L2(Rd)d‖∇K‖L2(Rd)d and C‖∇(Kε −
K)‖L2(Rd)d‖∇Kε‖L2(Rd)d , respectively, and hence using ∇Kε → ∇K in L2(Rd)d as ε ↘ 0 they disappear
in the limit. The last term converges to the desired limit by using Lebesgue’s dominated convergence theorem.
Using the fundamental theorem, we obtain the expression in (2.10). Similarly, using (2.4), the continuity of ∇u0

and ∇p0 at z, the continuity of ∂ua1, ∂ua2, and again ∇Kε → ∇K strongly in L2(Rd)d, we obtain by Lebesgue’s
dominated convergence theorem

Rε2(u, p) =
1

`(ε)

ˆ
ωε

(∂ua1(∇u0)− ∂ua2(∇u0))(∇(uε − u0)) · ∇p0 dx

=
1

|ω|

ˆ
ω

(∂ua1(∇u0(xε))− ∂ua2(∇u0(xε)))(∇Kε) · ∇p0(xε) dx

→ 1

|ω|

ˆ
ω

(∂ua1(U0)− ∂ua2(U0))(∇K) · P0 dx.

(4.29)

This finishes the proof of the Main Theorem.

Remark 4.10. We remark that, while the problem considered in this paper is in an L2 setting, the projection
trick of Definition 4.4 is also possible in W 1

p spaces. Thus, an extension of our results for the topological derivative
to PDE constraints posed in an Lp setting as considered in [4] with 1 < p <∞, p 6= 2 seems possible.

Remark 4.11. The obtained formula for the topological derivative coincides with the Theorem 4.4 in [4] and
Theorems 2 and 3 in [5] for the respective special cases, which can be seen as follows: Introducing the problem
defining the variation of the adjoint state Q̃ ∈ ḂL(Rd),

ˆ
Rd

∂uAω(x, U0)(∇ϕ) · ∇Q̃dx = −
ˆ
ω

(∂ua1(U0)− ∂ua2(U0))(∇ϕ) · P0 dx (4.30)

for all ϕ ∈ BL(Rd), and adding the left and right hand side of (4.7) tested with the solution Q̃ of (4.30), the
term R2(u0, p0) can be rewritten as

R2(u0, p0) =− 1

|ω|

ˆ
Rd

∂uAω(x, U0)(∇K) · ∇Q̃dx

=
1

|ω|

ˆ
Rd

(Aω(x,∇K + U0)−Aω(x, U0)− ∂uAω(x, U0)(∇K)) · ∇Q̃ dx

+
1

|ω|

ˆ
ω

(a1(U0)− a2(U0)) · ∇Q̃ dx.

(4.31)
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Together with the terms ∂`G(0, u0, p0) and R1(u0, p0), the topological derivative reads

dJ(Ω)(z) =
1

|ω|

[
(a1(U0)− a2(U0)) ·

ˆ
ω

P0 +∇Q̃dx

+

ˆ
Rd

(Aω(x,∇K + U0)−Aω(x, U0)− ∂uAω(x, U0)(∇K)) · (P0 +∇Q̃) dx

+

ˆ
Rd

|∇K|2 dx

] (4.32)

which is, up to a scaling by 1/|ω| the same formula as obtained in [4] and [5]. The different scaling is due to a
different definition of the topological derivative in these publications.

Remark 4.12. It can be seen from (4.30) that ∇Q̃ depends linearly on P0. Thus, it can be shown that there
exists a matrix M = M (ω, ∂ua1(U0), ∂ua2(U0)), which is related to the concept of polarization matrices [1],
such that

´
ω
∇Q̃dx = MP0, see also Section 6 in [5] for the special setting of two-dimensional magnetostatics.

For a discussion on the efficient numerical evaluation of the second integral in (4.32) involving K, see
Section 7 in [5].

5. Comparison with the averaged adjoint approach and more
general cost functions

In this section we compare the Lagrangian approach of the previous section with the averaged adjoint
approach; see [21]. We demonstrate that the averaged adjoint approach has some advantages at the price
of being more technically involved. In fact, with the averaged adjoint approach we are able to treat a cost
function of the type:

J(Ω) := a

ˆ
D

(u− ud)2 dx+ b

ˆ
D

|∇(u− ud)|2 dx (5.1)

with a, b ≥ 0 and u the solution to (4.2) with ε = 0 for Ω ⊂ D. It can be checked that the first term cannot be
directly be handled with the Lagrangian technique of Section 3. In fact in order to pass to the limit ε↘ 0 in
(4.28), we would need εKε → 0 strongly in L2(Rd)d, which does not directly follow (see Cor. 4.9). Note that
this term is not covered by the analysis in [4].

5.1. Averaged adjoint

We use the same setting as in Section 3 and let G be a Lagrangian (see Def. 3.3) defined on [0, τ ]×X × Y
with X,Y being vector spaces.

The key ingredient of the averaged adjoint approach is the averaged adjoint equation. In addition to G as in
Definition 3.3 we assume that G satisfies:

Assumption (H1). For all t ∈ [0, τ ], ϕ, ϕ̃, p ∈ X and ψ ∈ Y the derivative [0, 1]→ R : s 7→ ∂ϕG(t, ϕ+sϕ̃, ψ)(p)
is well-defined and integrable on [0, 1].

For a Lagrangian satisfying the previous assumption we can introduce the averaged adjoint equation.

Definition 5.1. Given ε ∈ [0, τ ] and (u0, uε) ∈ E(0)× E(ε), the averaged adjoint state equation is defined as
follows: find pε ∈ X, such that

ˆ 1

0

∂uG(ε, suε + (1− s)u0, pε)(ϕ) ds = 0 for all ϕ ∈ X. (5.2)
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For every triplet (ε, u0, uε) the set of solutions of (5.2) is denoted by Y (ε, u0, uε) and its elements are referred
to as adjoint states for ε = 0 and averaged adjoint states for ε > 0.

By construction of the averaged adjoint equation we have for ε ∈ [0, τ ],

G(ε, uε, pε) = G(ε, u0, pε). (5.3)

The following is an alternative to Theorem 3.4 (see [21]).

Theorem 5.2. Let G be an `-differentiable Lagrangian function satisfying Assumption (H1). Assume further
that for all ε ∈ [0, τ ]

(i) the set E(ε) = {uε} is a singleton,

(ii) for u0 ∈ E(0), uε ∈ E(ε) the set of averaged adjoint states Y (ε, u0, uε) = {pε} is a singleton,

(iii) the limit

R(u0, p0) := lim
ε↘0

G(ε, u0, pε)−G(ε, u0, p0)

`(ε)
exists. (5.4)

Then we have

d`g(0) = ∂`G(0, u0, p0) +R(u0, p0). (5.5)

5.2. Analysis of the averaged adjoint equation

We now apply Theorem 5.2 to X = Y = H1
0 (D) with Lagrangian G given by

G(ε, u, p) := a

ˆ
D

(u− ud)2 dx+ b

ˆ
D

|∇(u− ud)|2 dx+

ˆ
D

AΩε(x,∇u) · ∇p dx−
ˆ
D

fp dx. (5.6)

We use the same setting as in Section 2.2. The averaged adjoint pε ∈ H1
0 (D) is defined by

ˆ 1

0

∂uG(ε, suε + (1− s)u0, pε)(ϕ) ds = 0 for all ϕ ∈ H1
0 (D). (5.7)

This is equivalent to

ˆ 1

0

ˆ
D

∂uAε(x,∇(suε + (1− s)u0))(∇ϕ) · ∇pε dx ds

= −
ˆ
D

(uε + u0 − 2ud)ϕ dx−
ˆ
D

∇(uε + u0 − 2ud) · ∇ϕ dx

(5.8)

for all ϕ ∈ H1
0 (D). As noted earlier, Problem (4.2) admits a unique solution under Assumption 2.2. Moreover,

problem (5.8) has a unique solution due to Assumption 2.2 and Lax-Milgram. Therefore, the assumptions (i)
and (ii) of Theorem 5.2 are satisfied. The `-differentiability of G follows again as in the previous section. It
remains to show the existence of the limit term R(u0, p0).

The following analysis is similar to the study of the perturbation of the state equation. Since the model
problem is quasi-linear it is crucial that we have the strong convergence of ∇Kε → ∇K.

Lemma 5.3. There is a constant C > 0, such that

‖pε − p0‖H1(D) ≤ C(εd/2 + ‖uε − u0‖H1(D)) for all ε > 0. (5.9)
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Proof. Using (5.8) for ε > 0 and ε = 0 we obtain

ˆ 1

0

ˆ
D

∂uAε(x,∇(suε + (1− s)u0))(∇ϕ) · ∇(pε − p0) dx ds

+

ˆ 1

0

ˆ
D

(
(∂uAε(x,∇(suε + (1− s)u0))− ∂uAε(x,∇u0))(∇ϕ)

)
· ∇p0 dx ds

+

ˆ
D

(
(∂uAε(x,∇u0)− ∂uA0(x,∇u0))(∇ϕ)

)
· ∇p0 dx

+ a

ˆ
D

(uε − u0)ϕ dx+ b

ˆ
D

∇(uε − u0) · ∇ϕ dx = 0

(5.10)

for all ϕ ∈ H1
0 (D). Testing with ϕ = pε − p0, using the boundedness of ∇p0, Hölder’s inequality from

Assumption 2.2 gives the result.

Definition 5.4. We consider again the variation of the adjoint state

Qε :=
(pε − p0) ◦ Tε

ε
∈ H1

0 (ε−1D), ε > 0. (5.11)

Note that Lemma 5.3 together with Lemma 4.1 implies that

ˆ
Rd

(εQε)
2 + |∇Qε|2 dx ≤ C for all ε > 0. (5.12)

This means that (Qε) is bounded in the Beppo-Levi space BL(Rd). We now show the weak convergence Qε ⇀ Q
in BL(Rd) to some Q ∈ BL(Rd). It can also be shown that εQε → 0 in L2(Rd).

Theorem 5.5. We have

∇Qε ⇀ ∇Q weakly in L2(Rd)d as ε↘ 0, (5.13)

where Q ∈ BL(Rd) is the unique solution to

ˆ
Rd

ˆ 1

0

∂uAω(x, s∇K + U0)(∇ψ) · ∇Q ds dx

= −
ˆ
Rd

ˆ 1

0

(
∂uAω(x, s∇K + U0)(∇ψ)− ∂uAω(x, U0)(∇ψ)

)
· P0 dx

−
ˆ
ω

(∂ua1(U0)− ∂ua2(U0))(∇ψ) · P0 dx− b
ˆ
Rd

∇K · ∇ψ dx for all ψ ∈ BL(Rd),

(5.14)

with P0 := ∇p0(z) and K defined in (4.7).
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Proof. Changing variables in (5.10) and rearranging yields

ˆ 1

0

ˆ
Rd

∂uAω(x, s∇Kε +∇u0(xε))(∇ψ) · ∇Qε dx ds

= −
ˆ 1

0

ˆ
Rd

(
(∂uAω(x, s∇Kε +∇u0(xε))− ∂uAω(x,∇u0(xε)))(∇ψ)

)
· ∇p0(xε) dx ds

−
ˆ
ω

(
(∂ua1(∇u0(xε))− ∂ua2(∇u0(xε)))(∇ψ)

)
· ∇p0 dx ds

− a
ˆ
Rd

εKεψ dx− b
ˆ
Rd

∇Kε · ∇ψ dx = 0

(5.15)

for all ψ ∈ H1
0 (ε−1D). Using ∇Kε → ∇K strongly in L2(Rd)d and εKε ⇀ 0 weakly in L2(Rd), we can use the

Lebesgue dominated convergence theorem pass to the limit in (5.15) (for a subsequence) and obtain that the
weak limit of the subsequence of (Qε) satisfies (5.14). Since the solution to (5.14) is unique we conclude that
Qε ⇀ Q weakly in BL(Rd).

5.3. Computation of R(u0, p0)

Lemma 5.6. We have

R(u0, p0) = (a1(U0)− a2(U0)) ·
 
ω

∇Q dx, (5.16)

where Q is the solution to (5.14).

Proof. Testing (4.2) for ε = 0 with ϕ := pε − p0 yields

ˆ
D

A0(x,∇u0) · ∇(pε − p0) dx =

ˆ
D

f(pε − p0) dx. (5.17)

Therefore

G(ε, u0, pε)−G(ε, u0, p0) =

ˆ
D

Aε(x,∇u0) · ∇(pε − p0) dx−
ˆ
D

f(pε − p0) dx

(5.17)
=

ˆ
D

(Aε(x,∇u0)−A0(x,∇u0)) · ∇(pε − p0) dx

=

ˆ
ωε

(a1(∇u0)− a2(∇u0)) · ∇(pε − p0) dx.

(5.18)

Therefore invoking the change of variables Tε in (5.18) leads to

G(ε, u, pε)−G(ε, u, p)

|ωε|
=

1

|ω|

ˆ
ω

(a1(∇u0(xε))− a2(∇u0(xε))) · ∇Qε dx. (5.19)

In view of the continuity of a1, a2,∇u and the weak convergence ∇Qε ⇀ ∇Q in L2(Rd)d, we see that the right
hand side converges to the expression (5.16).
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5.4. The final expression of the topological expansion

So we see that all conditions of Theorem 5.2 are satisfied and we have

dJ(Ω)(z) = ∂`G(0, u0, p0) +R(u0, p0), (5.20)

with R(u0, p0) given by (5.16). We see that the second term on the right hand side still depends on Q, which we
can express through u0 and p0 as follows. First we test (5.14) with ψ := K and use the fundamental theorem
to obtain

ˆ
Rd

(Aω(x,∇K + U0)−Aω(x, U0))) · ∇Q dx

= −
ˆ
Rd

ˆ 1

0

(
∂uAω(x, s∇K + U0)(∇K)− ∂uAω(x, U0)(∇K)

)
· P0 ds dx

−
ˆ
ω

(∂ua1(U0)− ∂ua2(U0))(∇K) · P0 dx− b
ˆ
Rd

|∇K|2 dx

(5.21)

and testing (4.7) with ϕ = Q yields

ˆ
Rd

(Aω(x,∇K + U0)−Aω(x, U0)) · ∇Q dx = −
ˆ
ω

(a1(U0)− a2(U0)) · ∇Q dx. (5.22)

Combining these two equations we obtain

R(u, p) = (a1(U0)− a2(U0)) ·
 
ω

∇Q dx

=
1

|ω|

ˆ
Rd

ˆ 1

0

(
∂uAω(x, s∇K + U0)(∇K)− ∂uAω(x, U0)(∇K)

)
· P0 ds dx

+
1

|ω|

ˆ
ω

(∂ua1(U0)− ∂ua2(U0))(∇K) · P0 dx+
1

|ω|
b

ˆ
Rd

|∇K|2 dx.

(5.23)

In particular we see that for a = 1 and b = 0 we retrieve the formula (2.8), that is, R1(u0, p0) + R2(u0, p0) =
R(u0, p0).

6. Conclusion

In this paper we derived topological sensitivities for a class of quasi-linear problems under more general
assumptions than previous results. Moreover, we simplified many of the previous calculations, which can be
helpful when dealing with other types of nonlinear problems. In fact our analysis of Kε → K is not restricted
to elliptic problems and is extendable to other types of equations, such as Maxwell’s equation, see [13].
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