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BOUNDARY NULL CONTROLLABILITY AS THE LIMIT
OF INTERNAL CONTROLLABILITY: THE HEAT CASE

F.W. CHAVES-SILVA!, J.-P. PUEL? AND M.C. SANTOS"

Abstract. It is well known that for the heat equation with Dirichlet boundary condition both internal
and boundary null controllability hold with controls applied to any open subset of the domain and any
open subset of the boundary, respectively. The purpose of this paper is to show that for the heat equation
the boundary null controllability can be obtained as the limit of distributed null controllability.
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1. INTRODUCTION

Let T > 0 and let © C RY be a bounded connected open set whose boundary I is regular enough and let w
be a (small) nonempty subset of €.

It is well known that for any yo € L?(Q), there exists a pair (y, f) € C([0,T]; L*(Q)) x L?(w x (0,T)) which
solves the following distributed null controllability problem

ye — Ay = fl,, in Q:=0x(0,7),
y=0 on  %:=Tx(0,T), (1.1)
y(z,0) = yo(z), y(z,T) =0 in .

Moreover, if I'y C ' is a non-empty open subset of the boundary, it is also known that there exists a pair
(y,9) € (C([0,T); H71(Q)) N L*(Q)) x L*(T'o x (0,T)) solution of the following boundary null controllability
problem

Yt — AZ/ =0 in Q7
y=glp, on %, (1.2)
y(l‘,O) = yO(x)v y(]},T) =0 in Q.

In this paper we work on the following question:
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N

FIGURE 1. The set 'y and its e-neighborhood w..

Question: Let € > 0 and let w, be an e-neighborhood of I'y which shrinks to I’y as € — 01 (see Fig. 1). Can
we find a sequence (y, fe), with supp fe C we, such that the distributed null control problem (1.1) converges, in
some sense, to the boundary null control problem (1.2) as e — 077

This question of approximating a boundary null controllability problem by a distributed one has been already
proved to hold in the case of the wave equation by Fabre in [3]. We also cite [10] for some recent developments
for hyperbolic equations and [12] for the same problem in the context of stabilization. For parabolic equations,
there has been a recent paper by Letrouit (see [15]), which considers, in the one-dimensional setting, the case of
a control region shrinking to a point which is located within the domain. There, it is shown that, depending on
arithmetic properties of the limiting point, one may recover the pointwise controllability for the heat equation
with some minimal time. Nevertheless, it is important to say that the result of Letrouit cannot be applied to
the case we are considering (even in the one-dimensional case), because here the boundary condition for the
limiting problem is non-homogeneous and his estimates do no not allow to pass to the limit when the limiting
point is on the boundary. Thus, as far as we know, this is the first time that, for the heat equation, the question
of distributed control problem converging to the boundary control one is considered.

Concerning controllability problems for parabolic equations, the first results on this subject go back to
Fattorini and Russell in [5, 6], where the moment method was used to prove boundary and internal null control-
lability in one space dimension. For the multidimensional case, an important work is [17], where the boundary
null controllability with controls applied to the whole boundary is proved. Also in the multidimensional case,
when the control is applied to a (small) part of the domain or the boundary, we refer to the works of Imanuvilov
and Fursikov in [1, 2, 9] and Lebeau and Robbiano in [14]. Hence, we already know that both null control
problems (1.1) and (1.2) are solvable and we are only interested in showing that one problem converges to the
other. In fact, our main result reads as follows.

Theorem 1.1. Let T > 0, yo € L?(Q) and let Ty be a non-empty open subset of T'. For any e > 0, let w. be a
non-empty open neighborhood of T'y given by

We = U B(z,e) N Q.

xely
There exists a sequence (ye, f.) € C([0,T); L?(R2)) x L?(w. x (0,T)) that solves the distributed null control

problem (1.1), such that y. — y weakly in L*(Q), f. — g weakly in L*(0,T;(H? N HE(Q))") and the pair
(y,9) € (C([0,T); H*()) N L*(Q)) x L*(To x (0,T)) solves boundary null control problem (1.2). Moreover,

the identity
// yehdadt = // fez dadt +/ yo(x)z(z,0) dx, (1.3)
Q we X (0,T) Q
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converges to

T
// yhdxdt:—/ / g%dydt—&—/yo(x)z(x,O)dx, (1.4)
Q 0o Jrg ov Q

for every (27, h) € L3(Q) x L*(Q), where z is the solution of

—zz—Az=h in Q,
z=0 mn X,
2(z, T) =2 in Q.

We prove Theorem 1.1 in Section 5.

Remark 1.2. In Theorem 1.1, since we lose the boundary conditions in the limit, we only have that y. — y
weakly in L?(Q) and f. — g weakly in L2(0,T; (H? N H}(Q))).

In order to prove Theorem 1.1, it is important to understand how one can solve problems (1.1) and (1.2).
Indeed, a classical argument to solve the control problems (1.1) and (1.2) is to consider the adjoint system

—$t — ASO =h in Q7
=0 on X, (1.5)

p(z,T) =" (z) in Q

and show that the following inequalities

1(0) 132y < Ce) (// (OT)<p|2dxdt+//Q|h|2da:dt>, (1.6)
we % (0,

and

0
||¢(0)||2L2(Q)SC< J[. o oo [ |h|2dxdt>, (1.7
0x (0,

hold for every o7 € L?(2) and h € L?(Q), respectively.

Inequalities (1.6) and (1.7) are the so-called internal observability inequality and boundary observability
inequality, respectively. The constants C' and C(e) are known as observability constants.

Here, to prove Theorem 1.1, we must obtain the optimal observability constant C(e), with respect to e, when
we is an e-neighborhood of T'y and € is sufficiently small. The obtainment of the optimal C(e) will be a consequence
of a sharp Carleman inequality near the boundary (see Thm. 2.1). In fact, we show that C(e) = O(¢~3).

2. A SHARP CARLEMAN INEQUALITY

In this section, we prove a sharp Carleman inequality near the boundary for system (1.5). More precisely, we
show that when the control region is a neighborhood of the boundary of radius e then the observability constant
is O(e?) (see Thm. 2.1 below). This result will be the key point for proving Theorem 1.1.

First, let us introduce several classical weights in the study of Carleman inequalities for parabolic equations
(see [7, 9, 16]). The basic weight will be a function ¢ € C?(Q) verifying

|V (z)| > 0, Vr € Q,
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0
%(z) <0, VYzeTl\T,.
Then, for A > 0, we set:
e (z)+ma) eMW(@)+ma) _ o A(l[Y]leot+m2)
t) = ———; t) =
8(01) = Sy ol e ,

(2.1)

with m1 = ||th]|eo + 2 and m2 = ||Y]|co + 3.

Notice that by the choice of m; and my we have that « is negative and that, for any s > 0 and any k € N,
terms of the form e?**¢* are bounded uniformly with respect to = and t.

Also, we point out that similar weights as the ones in (2.1) have been introduced in [16], the difference being
the time behavior due to the consideration of the Stokes equation.

We also introduce the following notation:

I(s,\;) == s3)\* // 2% ¢3|p|?dadt + s\? // e p|Vp|2dxdt
Q Q

N
+3—1 // 625a¢)—1 “pt|2+ Z
Q i,j=1

0%p
Bxiaxj

dzdt, (2.2)

where s and A are positive real numbers and ¢ = ¢(z,t).
The main objective of this section is to prove the following result.

Theorem 2.1. Let 0 < e < 1 and let we be a non-empty open neighborhood of Ty given by

We = U B(z,e) N Q. (2.3)

xel

Given o1 € L*(Q) and h € L*(Q), there exist three constants Ao = Ao(2,T0), so = s0(%,To)(T + T?) and
C =C(Q,Ty), such that, for every s > so and any XA > Ao the following inequality holds

I(s,\;) < C // e23a|h|2dxdt+e_3s7)\4// 27| p|? dadt | , (2.4)
Q we % (0,7T)

for every ¢ solution of (1.5).

Carleman estimates as the one given in Theorem 2.1 are classical tools in Control theory (see [7, 9, 13]).
Concerning estimate (2.4), if one follows the standard proofs of distributed Carleman inequalities for the heat
equation (for instance [9]), one sees that it gives a constant of order ¢4, which is not sufficient for our purpose.
Hence, the main novelty in Theorem 2.1 is the order ¢~3 for the observability constant. To prove this result,
we start from a boundary Carleman inequality and use a localization argument to get the internal observation
with the precise constant.

Remark 2.2. In Theorem 2.1, the order e~ for the observability constant is optimal. Indeed, consider Q = (0, 1)

and o(z,t) = et sin(mz), then one has

! 1
/ |sin(z)|?dz = =
0 2
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and

T € .
—272t) 2 1 —2m21 Sln(27 6) 3
dzd — (1 — — =0 .
/0 /(; e \sm(na:)| xdt 1 2( e )(6 B ) (6 )

In what follows we need the following boundary Carleman estimate.

Theorem 2.3. Given ¢! € L*(Q) and h € L*(Q), there exist three constants Ao = Ao(Q,T0), so =
50(Q,To)(T +T?) and C = C(,Tg), such that for every s > so and any A\ > X\g the following inequality holds

I(s.h0) < C // €250 B2 drdt + s\ // e%a(yvf)a:(y,t)]a*”(y,t)
Q Tox (0,T) ov

for every ¢ solution of (1.5).

2
dydt) , (2.5)

A proof of Theorem 2.3 can be found in [2]. In there the dependence in time of the weight functions is of
order t=2(T — t)~2. Nevertheless, by following the proof, it is not difficult to see that one can consider weights
like (2.1).

In the proof of Theorem 2.1, we will use the following result of localization near the boundary which is proved
in [4] (see also [11], Appendix C).

Lemma 2.4. There exist open sets Uy, Us,...Uy,,, and g > 0 such that

no
we C U U;, where . denotes the closure of w, Ve € [0,eq]. (2.6)
i=1

Let v(y) be the unit exterior normal vector to T' at the point y € T';

Vee QnU;, 3My,z)e (T NU;) xRy such that ==y — zv(y). (2.7)

The mappings J; ' :x — (y,2) are C?-diffeomorphisms from QNU; on their images,

which map weNU; into (T'NU;) x (0,¢). (2:8)
There exist eg,m >0 and M > 0 such that
Vz € [0,e0), Vi wehave m <|J;(y,z)| <M. (2.9)

Here, |J;(y, z)| denotes the Jacobian of J; at the point (y, z), with the map (y, z) — |Ji(y, 2)| being C* and
|i(y,0) =1, VyeTI'nU. (2.10)

Finally, if v is a function defined over Q NU;, we write ¥(y, z) = v(x), and then

o (1,2) = ~Vol@) - vlo(@)), (2.11)
and
20 =3 LU o )+ (v >~8”(y’)iap(x) (2.12)
927 —id:l 9203, vi(p(z))v(p(z v(x Dy 2 oz, )
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forve HX(QNU,), where p(z) = y.

Let us now prove Theorem 2.1.

Proof of Theorem 2.1. From Theorem 2.3 , it is sufficient to prove that

SA // 252wt g (y, t)|8—<'0(y,t)|2 dydt < Ce 35"\ // %@ |p|? dadt + 61(s, \; @), (2.13)
I'ox(0,T) v wex(0,T)

for any 6 > 0 and some C' = C(J) > 0.
From Lemma 2.4 we have that

dp dep dp
— _ e _ I.
En (y,1) P (y—2v(y),1)|._, i (Y, 2,t)]:=0, YE

Also, the following estimate holds

dyp
SA // eQw(y’t)qS y,t ‘ y,t
., .0 |5, @)

Let us introduce a nonnegative function § € C*(0,1) such that = 1in (0, %), 6(¢) = 0 and

2
dydt.

2 no
- ~ d(p
=) ff 003,00 | 050
; (DoNU;) % (0,T) dz z

0.=0("), 0..=0(?), 0..=0(?).

A simple computation now gives

2

S d
8}\62sa(y70yt)¢(y7 O, t) ‘ &Qﬂ(y, 2, t) ‘ZZO

— o /0 (03, 2,1)[0, 2 0)P0() ) de

= —SA/ W=y, 2, )| (y, 2, £)*6-(2) dz—2s2A/ WD, (y, 2,0)0(y, 2,1)|F=(y, 2, £)*0(2) dz
0 0
(2.14)

€

- s/\/ W20 (y, 2,1)|-(y, 2,)[0(2) du — 25,\/ e WD gy, 2 )G (y, 2,1) B (y, 2,1)0(2) dz.
0 0

We recall that
Fx (4 2,8) = ~Ao(z, V() - v(p()) and G (y, 5,1) = —Ab(z, V() - v(p(x),
and use the estimate
290 [ PGy, 2,0 (02,0502 06 d

< CS3>\2/ e W=D (y, 2, 1)]B- (y, 2, 1)[*0(2) dz + 55*1/ NGy, 2, 0)| 3. (y, 2, 1) dz,
0 0
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to see that
2sa(y,t) a(p 2
sA e WYy, )| 5= (y, )]” dydt
Tox(0,T) ov
no T € ~ .
<oy [ [ [ eGP0 ) dedya
i=1 0 TonU; JO

no T €
+C s\ W20 (y, 2,1) |- (y, 2, 1)[*60(2) dzdydt
i=1 0 I'oNnU;

0

o T €
w03 s [0 [0 g ) 2, ) e, (2.15)
i=1 0 I'onU; JO

for any 6 > 0 and some C = C(§) > 0.
The last term on the right-hand side of (2.15) is bounded by dI(s, A, ). Hence, we just have to estimate the
first two terms. For the first one, integration by parts gives

—sA fOT froﬂUi foe ezsa(y’z’t);g(y,z,t)|$z(y,z,t)|292(z) dzdydt
=252\ fOT frgmUj, I 623&(y’z’t)&z(y,zﬂf)q?(y,z,t)@(y,z,t)@z(y,z,t)(?z(z) dzdydt
+5M o oo Jo €25@206(y, 2 3. (y, 2, )Py, 2, )02 (2) dzdydt
MY Jronos Sy €53@H0 Gy, 2,03y, 2, 1) (y, 2, )0 () dzdydt
XSy Srgnw, Jo €500, 2 0By, 2, 0)ex (v, 2. 1) (=) dadydt = i, Ay, (2.16)

The first term is easily estimated as
T € ~ -
Ay < 6sA\? / / / 20wz gy 2 1|3, (y, 2, 1)|? dzdydt (2.17)
0 T'onU; JO

T € -
AR / / / WDy 2 1)y, =, 1)|? dedydt,
0 TonU; JO

for any 6 > 0 and some C' = C(§) > 0.
Using integration by parts, we obtain

T €
A== [ [ [ R0R0E (21300, 201,20 (2) ey
0 T'onU; JO
SA T € ~ .
S e e 18t 5 0P ) dadya (2.18)
2 0 T'onU; JO
shA [T € _ - ~
_ A / / / W=D T(y 2 1)y, 2,1) 0z (2) dadydt
2 0 TonU; JO

T €
<cetsin [F [ [ ey, s )50, 5 0 dadydt,
0 T'onU; JO

where C' does not depend on e.
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Next, using Young’s inequality, one sees that
T € -
Ay <8s\? / / / 5003y 2 )13, (y, 2 ) dzdydt (2.19)
0 I'onU; JO
T € _ -
+ 06_28/ / / e25 0w gy 2 1)|3(y, 2, 1)) dzdydt,
0 Jronu; Jo

for any 6 > 0 and some C' = C(§) > 0.
Finally, for the last term in (2.16), we have

T €
Ay <6571 / / / 280 FL(y 2 1)|5an(y, 2 8)[2 dedydt (2.20)
0 T'onU; JO
T € _ .
veezsn [ [ gy, s 5,20 P dedyde,
0 I'onU; JO

for any 6 > 0 and some C' = C(§) > 0.
For the second term on the right-hand side of (2.15), we can proceed in the same way to obtain the following
estimate

T € ~
s\ / / / W2 53y 2 )3, (y, 2, t)20(2) dzdydt
0 TonU; JO

T €
<cerin [ [ 0G0 dedyae
0 TonU; JO
T € _ _
+6 (S)\Q/ / / ezso‘(y’z’t)(b(y,z,t)|<ﬁz(y,z,t)|2dzdydt
0 TonU; JO

T € ~
+s_1/ / . / eQw(y’z’t)Wl(%z,t)l@z(yw,t)Idedydt)v (2.21)
0 T'onU; J0O

for any § > 0 and some C' = C(§) > 0.
Putting (2.16)—(2.21) in (2.15) we obtain

[ o0,/ 9 ) apar
Tox(0,T) ov

no T € _ -

SCe‘SsW‘Z/ / / e BD T (y, 2,)|P(y, 2,1)|* dzdydt

= Jo Jronu, Jo

10 T € ~ -

va(oed [0 [ gy, i 0 dedyds (2.22)

i=1 0 T'onU; JO

no T e
+ st Z/ / / era(y7Z,t)¢—1(y’ 20|32 (v, Z,t)|2 dzdydt | |
=170 T'onU; JO

for any 6 > 0 and some C' = C(§) > 0.
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Noticing that
T e N
S,\Z/ / / e%a(yyzyt)d)(y,z,t)|&z(y,Z’t)|2 dzdydt
0 TonU; JO
T
SCS)\Q/ /e2sa(x7t)¢($,t)|VSO($,t)|2dxdt, i=1,...,n0 (2.23)
0 Q
and that
T . B
371/ / / era(%z,t)gb*l(y,z,t)|§522(y’z7t)|2 dzdydt
0 TonU; JO
N T
< Cs_l // e2sa(x,t)¢_1 ot
> ) (2. 1)

ij=1

70 T
405 Y [ 71 ) V(a0 ot
i—170JQ

a 2
?_(z,t) dzdt (2.24)

8$i8$j

‘ 2

from (2.22) we readily obtain (2.13).

3. CONSTRUCTION OF A SEQUENCE OF CONTROLS

In this section, we construct a sequence of internal controls such that the distributed null control problem (1.1)
converges, in the sense given in Theorem 1.1, to the boundary null control problem (1.2). To do this, we must
improve the Carleman inequality given in Theorem 2.1. This new Carleman inequality will contain only weight
functions that do not vanish at ¢t = 0.

We set a function

(T?/4) if0<t<T/2
l(t):{t(Tt) ifT/2<t<T,

and define new weight functions to be

AW @) +m) _ Al +ms) A (@) +m)

6($7t) = l(t) ) 7($7t) = Ta

A(t) = miny(z, 1), v*(t) = maxy(z,t), *(t) = max Bz, t), 5 =minB(z,1).
e e x€Q e

Notice that 3 is negative and that o < 3, and for any s > 0 and any k € N, terms of the form e?$#~4* are
bounded uniformly with respect to x and t.

From now on, we fix s and A for which Theorem 2.1 holds (giving the Carleman estimate). With these new
weights, we have the following observability inequality:
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Lemma 3.1. There exists C > 0 such that

N 2
82
le(0)[1320 +// 2Py 1| o + dxdt+// 84|V p|? dzdt
" Q ¢§::1 0z;0z; Q

T
—I—// e*F3 o2 dedt < C <€_3/ / 623577\<p|2dxdt+// 625B|h|2dxdt> ,
Q 0 Jwe Q

for every ¢ solution of (1.5).

Proof. The proof of this lemma is standard. It combines energy estimates, using a cut-off function, together
with the fact that o < 8 in Q. A proof is given in Lemma 1 from [8] but, for sake of completeness, a detailed
proof is given in the appendix. |

Notice that to prove Lemma 3.1, we strongly use the fact that the weight 3 does not vanish at ¢t = 0.
Now, for each € > 0, we construct a pair (¥, fe) solution of the distributed control problem (1.1).
Let Py :={w € C?*(Q), w=0inT x (0,7)} and in Py we define the bilinear form

1 X
ae(wy, ws) 1= // e2sﬂ£*w1£*w2dxdt+—3[/ 258 ('y*)7w1w2dxdt,
Q € wex (0,T)

where £* := 0; + A.

Thanks to the Carleman inequality given in Lemma 3.1, we have that a. : Py x Py — R is a symmetric,
positive definite bilinear form.

We denote by P = P(e) the completion of Py with respect to the norm associated to a.(-,-) (which we denote
by || - ||p). This is a Hilbert space and a(-, ) is a continuous and coercive bilinear form on P.

Consider the linear form [ : P — R given by

(o) = / Yo (0)dz.
Q
From Lemma 3.1, we have that

|1, 0)| < llyoll 2oy lle(0)ll L2 (e
< Cllyollz2 ) llellp,

where C' does not depend on e.
By Lax-Milgram theorem, there exists a unique @, € P such that

ac(Pe, ) = (I, ), Vo€ P.

Defining . = e**°L*@, and ]?6 = —6%625'6*(7*)7@6, we have that

// YL pdxdt — // fegodxdt = / Yo (0)dx, Vo € P, (3.1)
Q we X (0,T) Q

and the following estimate holds

. 98B |~ |2 C9sB* an_T| 2
||s06||§3=//Q€ 7[5, Fasd + & [ o TNt < Ol (3.2)
we % (0,
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where C' does not depend on e. R
From (3.1) and (3.2), it follows that (g, f.) solves the distributed null control problem (1.1) and the following
estimates hold

CeB* . eI _
le™ ()72 fellF2 (oo < Ce llyoll72(q)s (3:3)

and
le™FellZ2(q) < Clyolliz (), (3.4)
where C' does not depend on e.

4. PASSAGE TO THE LIMIT

Let £* := 8, + A and (Je, f.) = (2P L* G, — e (v*)73.) the sequence constructed in the previous section.
The following result is a direct consequence of Lemma 3.1.

Proposition 4.1. We have that esaﬁ_lﬁg € L%(0,T; H*(2) N H(Q)) with

Hesﬁa_lae”?ﬁ((o,T);H%Q)mH&(Q)) < ||$€H%D < C||y0||§,

where C does not depend on e. ~ ~
Moreover, there exists a function ¢ such that, up to a subsequence, P15, — ePy1y weakly in
L2(0,T; H*(Q) N H(Q)) and 577152 € L*(T x (0,7)).

Using Proposition 4.1, we prove the following result.

Lemma 4.2. Let

Lo: L2(0,T; H*(Q)NHY(Q)) - R
1 SB* [ x\T~
v :3// ( )62 B (V) e, t)v(a, t) dadt.
Wex (0,T

Then, Le are bounded in L?(0,T; (H?(Q) N HE(Q))') and converge (up to a subsequence) for the weak topology
of this space to

L:L2(0,T; H2(Q) N HH(Q) - R

1// 258 1 -0 ov
v—= = e (v)' = (y,t) =—(y,t) dydt.
5 i ()5, W5 (1)

Proof. We divide the proof into two steps.
Step 1: Boundedness of L.

From (3.2), it follows that

1
2

C sB* /%
Lols S ( J[ e >7|v<x,t>|2dxdt> Iyoll. (@.1)
€ we x (0,T)
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On the other hand we have that

1 . = .
= // e2 P ()T (x, t)|? dedt < — Z// / 2B (v [0 (y, 2, t)|2dzdydt. (4.2)
€ JJwex(0,1) U,

Since v € L?(0,T; H*(we NUyg)) and v = 0 in T' N Uy, from (2.12) it follows that v € H?(0,¢; L2((0,T) x I'N
Ug)) and 9(y,0,t) = 0 and we can write

- o 2892y
vy, z,t) = z&(y,O,t) —|—/O /0 @(y,r, t) drds. (4.3)

From (4.1)—(4.3), we have the following estimate

C o T € 258"
= e (v
ESk_l/OV/FﬂU)C/O

2

|Lv|? dzdydt

IN

g(y,()t //aZy,rt)drds

2 2~

C & /T/ / nes- o 1625 ?
<= 287 (4 y,0,t —|—/ —(y,r,t)| dr | dzdydt
53; oJrau, Jo ()" 0z 75" ) 0 822( )
no T 2 €1 42~ 2
. ov 0°v
<C // e2P" (%) y,0,t —|—/ —(y,r,t)| dr|dydt
’; o €O |G @00+ e
< Cllvll 20,1120 m7) (4.4)

where C' depends only on 2 and T
Therefore, L. is bounded in L?(0,T; (H? N HE)') and there exists L € L2(0,T; (H? N H})'), the weak limit
of L..

Step 2: Characterization of the limit L
We introduce

wWe ={r €w. such that I(y,z) €Ty x (0,€),z =y — zv(y)};

so that W; C w. and, for € > 0 small enough, w, is the set points 2 € w, such that its projection p(x) on the
boundary IT" belongs to I'y. We have

meas[O(we \we) NT] -0 as €—0,

where the measure here denotes the boundary measure.
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We write

1 ax =R 1 g% N
—3// e (V) @e(w, tyv(w, t) dadt = —3// > () e, t)v(w, t) dadt
€ wex(0,T) Tex(0,T)

// \& > () B (w, t)v(z, t) dadt

0,7

= M!(v) + Mz( )
Claim 1: M2(v) — 0 as e — 07.
Proof of Claim 1: Since
2 2 c 2sB* (. x\T 2
[ME(u)]” < = e (v7) |v(z, )| dadt,
€ \@e x(0,T)
it is sufficient to prove that

1 -
—3/ 2P () oz, t)|? dzdt — 0, as e — 0T,
we\we X (0,T)

In fact, we have that

1 x
—3// 2P (v |o(x, t)]? dadt
€ we\@e % (0, T)

- 63 (we\@e)NI'NU, 40 6 )
ov 2
¢ // e (v |5 (y,0,1)| dydt
kZ:1 0 JO(we\Be)NCNU 0z
c &, T 32~ ,
+7BZ// ¢ 5 (y,7,t) ’ drds| dzdydt.
€ 121 /o Ja(w\F)NTNUy,

Using Hélder inequality, we readily see that

U

2~

2 2 z s
g 5 (y,r ‘ drds) gz/ (s/ ﬂ
0 0

and then
62~

s g g (o

< Ol gy

y,r t) ‘ drds

82 y,rt‘drds

2
dr) ds,

~ 2
% (y,r,t) ‘ dr) dsdz

) dzdydt

13

(4.6)
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Putting (4.7) in (4.6), we get that

1 X
= 9" (") ()2 dadt
€ we\we X (0,T)

T 2
3%, av7 | OV
<c[ (V{92 ,)| dyet + el (45)
0 J8(w\@)NT
for some C' > 0 which does not depend on e. This proves the claim. O
Claim 2: M} (v) — = // dydt ase— 0T,
Tox(0,T) 8V 81/
Let {6;};°, a partition of unity associated to {U;}°;. Defining vy = 6xv, we have that v, €

C’l([O,e];LQ((O T) xToNUg)) and

zﬂ(%(),t) + sz(z), with lir% V’“(y7 z,t) = 0.
zZ—r

~ 0
Uk:(yaz7t) = 82

Thus, we write
1 & .
M) ==Y / / €255 ()70, (2)B (. Yol 1) dadt
€ =1 Y JBnULx(0,T)

1 X . Gn
=5 // / 2557 () Be(y, 2, 1) ( (4,0, 1) + sz(Z)) | Tk (y, 2)| dzdydt
€ k=1 0JToNUg az

= > (AF(v) + B(v)), (4.9)
k=1
where
k I ‘ 2s8* % vy
AW =5 [ [ [ 0B 5025 00,0 (0. 2) dsdyds
€ JoJronu, Jo 0z
and

T € .
BE(v) = = / / / 8" (Y Buly, 2 8)2V* (4, 2, D) Je(y, 2)| dzdydt.
0JToNUE JO

€

Now, a simple computation gives
no
k
> |BE(w)
k=1
1

% n0 T € 2
gc<e3 i eQSﬁ*w*V@e(m,w?dxdt) <e32 I z2|vk<y,z,t>|2dzdydt>
We x (0,T) 0 FoﬁU)C 0

k=1

no 2
< Cl|@ellp (Z ||Vk|Lgo(o,e;LQ(ng(O,T)))> ) (4.10)

k=1
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where C' does not depend on €. Hence, it follows that

z:|B’C ) —0 as e—0".

To prove the convergence of A¥  we use that

z

9 0
) = 0+ [ (s ds =14 [ () ds
0 S 0 S
and that
=~ 0=
(JDE(yazvt) :/ *@e(yv&t)d& t> 07
0 85

to write

// / 250% () By, 2, 1)z %k(y,07t)dzdydt
I'oNUyg z

vy 9
25ﬁ OUk. o
//FoﬂUk/ ‘Pe(%Z,t)Z Ep (%O,t)/o aS(|Jk(y,s)|)dsdzdydt
= Ak H) + AP2 (). (4.11)

Since [; 2 (|Jk(y, s)|) = O(2), we estimate A% 2(v) as follows

AfQU)

T N 2 3
<SU[L o [erens| [ fatmsnd] d / % 0 0p asavar
€ o LoNUy 40 s LoNUy
€ € 2 % %
C < e4sﬂ*(7*)14/ € (/ dS) dZdydt) (// / 4|8'Uk y70 t)|2 dZdydt)
€ 0JToNUg 0 0 ToNUs
S% // 2648’3*(7*)14/ IQ@(y,z,t)\dedydt // 5|6vk (,0,1)|2 dydt
¢ ToNUs o 0z ToNU

T € 2 T
* 0 =~ oy,
< Cye (// e’ (v*)M/ awe(y,z,t)dedydt> <// %5 w0, t)Qdydt> : (4.12)
0JTonUs o 0z 0JTonU, 9%

Now, from the choice of m; and my and A > 1 we have

2

7/\5 ) 7t
55 Pe(U:5,1)

IA
%l

2

(,Y*)l4e4sﬁ* < 076255
and from the Carleman inequality in Lemma 3.1, we get
A?’z( ) < C\[”%”P” ||L2(F00Uk><(0 1) < O\[”%HPHUHH(O T;H2(Q)NHY)> (4.13)

which implies that A% 2(v) — 0 as e — 0.
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For Ak 1(v), we have

a // /ze%ﬁ < (y,s,t) 03, Pe(y,0, t)> i Uk (y,0,t) dsdzdydt
ToNUy T st 0z
3 // /2628[3 / y,O t) 5 0k (y, 0, t) dsdzdydt
€ Jo Jronui,Jo 8
=1 + Is.

For the first term, we have that

e .
= 73// 20 (y)7 7vk (y,0, t/ / (/ o 2905 Y51, )dn) dsdzdydt
ToNUyg
corr( [ s D] )
FomU,c 0z
2
(// [ SﬁA_l/Q/ / ( 9 2% Yy 1, )d77> dsdz] dydt)
ToNUy 0 ’]’]
Moreover, using Holder inequality and (4.7), we get
2
[l [ (] ) sa o
T'oNUyg 0
< 7// 2585 71/ / / 82
I'oNUyg

< Cel|elp,

Uk (y, 0, 1)

1/2

2
dndsdz dydt

(y,m,t)

which gives that I; — 0 as ¢ — 0. ~
To finish the proof, we recall that es'B’y 3 af’j converges weakly to esﬁﬁ_%g—f in L?(Tg x (0,T)). From (4.9)
and the previous estimates, we conclude that

no

_ kL
fiy Me (o) = lig 3 Ac

= lim — Z// /zezqﬁ / 0 Zﬁ:(y 0 t)gﬁk(y,o,t)dsdzdydt
e—0 63 ToNUpg as T 85

= lim = Z// 2B ()T 0 E(y,o,t)gﬁ(y,O,t) dydt
e—0 3 LonUs 82 0z

— lim 5" () L5 (1) Loy, 1) dyat
64)0 To al/ € ’ al/ ’

0
256
-3/ / 0 (0, 1) vl ) dydt

and the proof of Lemma 4.2 is complete. O
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5. PROOF OF THEOREM 1.1

In this section we explain in which sense the distributed null control problem (1.1) converges to the boundary
null control problem (1.2).
The following result is a direct consequence of Lemma 4.2.

Proposition 5.1. Assume that

1 *
// | L7 [Pdudt + — / / 7 (%) |pePdudt < C,
Q € wex(0,T)

where C' does not depend on €. Then, the linear form G : L*(2) x L?(Q) — R given by
1 .
(2T, h) - // 2P (v e, 1) 2(x, t) dadt,
€ we % (0,7T)

for every (27, h) € L3(Q) x L*(Q), where z is the solution of

—zz—Az=h in Q,
z=0 on X, (5.1)
2, T) =21  in Q,

converges weakly to G : L*(Q) x L*(Q) — R given by
1 . dy 0z
Gzt h :f// 287 ()T 2 (y, t) — (y, t) dydt,
=g [T G e
with esﬁa—lgi’ € L2(T' x (0,T)).
v

Let us now prove the main result of this paper.

Proof of Theorem 1.1. Let now (3., f.) = (2P L*Pe, — 52" (v*)7@,) be a solution of the distributed null
controllability problem (1.1), that is to say

~ ~ 1 5.5, w7~ .
Yet — Aye = _562 p (’7 )79051106 m Q»
% =0 on X, (5.2)
ye(xa 0) = yO(:L') in Q,
Ye(z, T)=0 in Q.
We recall that
le™*FellZ2 (o) < ClivollZ2(0y, (5.3)

where C' does not depend on e.
It is not difficult to see that

1 N
/ / Gehdrdt = — = / / 28" ()75, 2 dadt + / vo(z)2(x, 0) dz, (5.4)
Q € we x(0,T) Q

for every (27, h) € L?(Q) x L%(Q), where z is the associated solution to (5.1).
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From Proposition 5.1 and estimate (5.3), it follows that

_ 1 r 2sB% 1 * 7890 0z
//Q yhdzdt = —g/o /Foe () Y dxdtJr/QyO(:r)z(x,O) dz, (5.5)

where e=*%7 € L%(Q) and esgﬁ_lg—f € L*(Ty x (0,7)).
We finish noticing that identity (5.5) implies that y is the solution of

yr — Ay =0 in - Q
SB* (A% a@
y = 56> (v )7511“0 on X (5.6)
y(x,0) = yo(z) in Q
y(x,T) =0 in Q,
1 .
which means that (y, gegsﬂ (’y*)?g—@) solves the boundary null control problem (1.2). O
v

APPENDIX A. PROOF OF LEMMA 3.1

Proof of Lemma 3.1. We begin noticing that, for s fixed, we have

// e®*|n|* dedt 4¢3 // e2 7| p|? dzdt
Q we X(0,T)
T
<C (6_3/ / 2P~ p|? dedt + // 628’8|h|2d$dt> ,
0 We Q

because €2°*¢7 is uniformly bounded on [0, T'/2], €2*#~7 is bounded from below on [0, T'/2] by a positive constant,
a=fand ¢ =~ on (T/2,T) and a < S in Q.
Also from the fact that « = 8 and ¢ = v on (T/2,T), it follows that

T N T
/ /62557_1 le|? + Z dxdt—i—/ /62557|V<p|2da:dt+/ /625573|<p|2dxdt
T/2J)0 Py T/2J)0 T/2J)0

T N T T
:/ /625a¢_1 le]? + Z dxdt—l—/ /625a¢|V<p|2dacdt+/ /625“¢3|<p|2dxdt
T/2J0 = T/2J0 T/2/0Q

T
<C <e3/0 / 625577|¢2dxdt+//62 6286|h2dxdt> . (A1)

Now, we introduce a cut-off function § € C*°([0,T]) such that 0 < 0 <1 with # =1 on [0,7/2] and § = 0 on
[3T'/4,T]. Denoting by z = 6y, we have the equation

2 T

0%
8%—8%-

2

0%
8%1'8%]'

-2z —Az=0h—-0p in Q,
=0 in %,
2(x,T)=0 in Q.

Using the Carleman estimate given in Theorem 2.1, we have
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3T/4 3T/4
10/l < C / [ lofasdt < / | e atlopaadt

< C’( *3/ / 258 7\<p|2dxdt+// 25ﬁ|h|2dxdt>

since the function e***¢? is bounded from below on (T/2,3T/4) by a positive constant.
Also, as 6 vanishes on (37/4,T), we have

T
1651172 SC(e?’/ / 288 7|<p|2dxdt+// 256|h|2dxdt>
0 We

From energy estimates, regularity results for the heat equation with Dirichlet boundary condition, and the
fact that # = 1 on [0,7/2], we obtain

”‘P(O)H%?(Q) + ||<P||%2(0,T/2;H2(Q)) + ||<PtH2L2(o,T/2;L2(Q))
< 200)1720) + 1212201520y + 1260 720,722 ()
<C(10h]122(q) + 1100l Z2(g))-

Hence, since the weights of the form e?*?4* are uniformly bounded in [0,7/2], we obtain the following
estimate on (0,7/2):

2 2
8 dzdt

T2 N
2s —1 2
1o ()220 + / / S e+ Y |5

i,j=1

T/2 T/2
—|—/ /62557|V¢\2dxdt+/ / 25831 p|? dadt
0 Q
T
<C 6*3/ / 288 7\<p|2d:cdt+// %8 |n|? dzdt (A.2)
0 We

Finally, gathering estimates A.1 and A.2, we obtain

5B O P
e e+ ITger (o + S5 |2 | ) cnat
—|—fo 62557|th\2dxdt+fo e2P3|p|% dzdt

<C (673 fOT L, €57 p]? dadt + Io e3P\ h|? d:cdt) ,

which proves Lemma 3.1.
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