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ON THE OBSERVABILITY INEQUALITY OF COUPLED WAVE
EQUATIONS: THE CASE WITHOUT BOUNDARY

YaN Cur!, CAMILLE LAURENT? AND ZHIQIANG WANG?®*

Abstract. In this paper, we study the observability and controllability of wave equations coupled by
first or zero order terms on a compact manifold. We adopt the approach in Dehman-Lebeau’s paper
[B. Dehman and G. Lebeau, SIAM J. Control Optim. 48 (2009) 521-550.] to prove that: the weak
observability inequality holds for wave equations coupled by first order terms on compact manifold
without boundary if and only if a class of ordinary differential equations related to the symbol of the
first order terms along the Hamiltonian flow are exactly controllable. We also compute the higher order
part of the observability constant and the observation time. By duality, we obtain the controllability
of the dual control system in a finite co-dimensional space. This gives the full controllability under
the assumption of unique continuation of eigenfunctions. Moreover, these results can be applied to the
systems of wave equations coupled by zero order terms of cascade structure after an appropriate change
of unknowns and spaces. Finally, we provide some concrete examples as applications where the unique
continuation property indeed holds.
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1. INTRODUCTION AND MAIN RESULTS

1.1. Coupling of order one

Let (M,g) be a compact connected n-dimensional Riemannian manifold without boundary. Denote A,
the Laplace-Beltrami operator on M for the metric g. We consider the observability and control problem for
the system of coupled wave equations:

D2V — A,V + LV =0,
(V(0),0:V(0)) = (Vo, V1),
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where V = (V1,... VM) with N € Z* and L is a matrix of differential operator of order one on R x M of
the form

L = A0, + A, (1.2)

with Ay, € C(R; Diff*(M;CV*N)), (k = 0,1). Here Diff*(M;CVN*¥N) is the set of matricial differential
operators of order k in space with smooth coefficients.

It is known that the weak solution of the Cauchy problem of System (1.1) exists for any initial data (Vp, V1) €
(HY)N x (L?)N (see [43]). Here and hereafter, H* (s € R) denotes the Sobolev space on manifold M with the
norm defined as follows: || f||%. = ||A®f||32, where

Afo=(=A+1)2f =) (k+1)3(f,¢j)r2e5, sER (1.3)

jEN
(ej)jen the eigenfunctions of the Laplace-Beltrami operator associated to the eigenvalues (k;);en which forms
a Hilbert basis of H® . In this context, we are interested in the following observability problem.

Definition 1.1. We say that System (1.1) is Exactly Observable on [0, 7], if the solutions of (1.1) satisfy
Observability Inequality

T
cl, / 1DV ()20t > [ (Vo, Vi) g1 x oy (1.4)

where C}, . > 0 is a constant independent of the initial data (V,V;) and the observation operator D €
C>(R; Diff ' (M; CE*N)) is a matrix of differential operator of order one on R x M taking the form)

D = Dyd, + Dy, (1.5)

with Dy, € C°°(R; Diff*(M; CE*NY), (k= 0,1).

Definition 1.2. We say that System (1.1) is Weakly Observable on [0, 7], if the solutions of (1.1) satisfy
Weak Observability Inequality

T
Cohe [ IDVON oyt + el (VoI et 100V iy (16)

where C% > 0 and ¢; are constants independent of the initial data (Vo, V1) and the observation operator D is

defined by (1.5).

Roughly speaking, the weak observability can be understood as the observability of functions with high

frequency, that is, ||(Vo, V1)|l(ary~ x(z2yy >> ||(V0,V1)H(H2 No(H- N

We mention a few notational conventions that we will use throughout. We will use notation X = % . We
denote a* = @'" the adjoint matrix of a, a’” the transpose of @ and L* the adjoint operator of L for the L?
(or (L2)N) scalar product inherited from the Riemannian structure. We denote S* M the cosphere bundle of
M. pi(po) is the Hamiltonian flow of |{|, initiated at py defined by the formula

et(po) = (z(1),£(t)), ¥olpo) = po- (1.7)

Then we state our main results:



ON THE OBSERVABILITY INEQUALITY OF COUPLED WAVE EQUATIONS 3

Theorem 1.3. Solutions of System (1.1) satisfy weak observability inequality (1.6) on [0,T] if and only if for
any po € S*M, the finite dimensional control system

X(t) - %a*(t, i(p0)) X (#) + %d*(t’ i (po))ult), with control u € L*(0,T;CK) (1.8)
X(0) = Xo € CV, o

is exactly controllable on [0,T]. Here X (t) = (X1(t), -+, Xn(t))!" € CN is the state variable. The coefficients
matrice a and d are defined by a :== ag — H{Eﬁ and d := dy — igﬁ, where ay, € C(R; Sﬁhg(T*M; CN*NY) (k =
0,1) is the homogenous principal symbol of Ay defined in (1.2) and dj € C(R; Sﬁhg(T*M; CEXNY) (k=0,1)
is the homogeneous principal symbol of Dy, defined in (1.5), respectively.

As it is quite classical in control theory, see ([27], Thm. 4.1) for an abstract version, the previous result gives
the observability result if some unique continuation property is fulfilled. Let us be more precise in the case of
time invariant equations.

Property 1.4. Assume Ay and Ay are time invariant. We say that a system satisfies the Unique continuation
of eigenfunctions if the following property holds:
For any \ € C, any solution V € (H)N of

—AGV + N2V + (Mo + A1)V =0,
ADogV 4+ D1V =0,

18 the zero solution V = 0.

Theorem 1.5. Assume that Ay and Ay are time invariant. In the setting of Theorem 1.3, the following two
statements are equivalent:

1. System (1.1) is exactly observable according to Definition 1.1.
2. Property 1.4 is satisfied and for any pg € S* M, System (1.8) is exactly controllable.

Now, we will be more precise about the inequality we can obtain. In a similar way to Lebeau [33] for the
stabilisation problem (see also Laurent-Léautaud [32] for scalar control and Klein [31] for systems of damped
waves), it is possible to characterize the constant in the high frequency part of the weak observability estimate.
Roughly speaking, we prove that the constant of the high frequency part can be exactly determined by the
Gramian of the finite dimensional system (1.8). We will need more definition now.

We define the Gramian matrix of System (1.8) by the formula

L .
Gpo(T) = 1/0 R¥(0,8; po)d” (t, 1 (po))d(t, 1 (po) ) (0, E; po)di (1.10)
where R(,-;-) is the resolvent of (1.8) (see [22], Prop. 1.5 for definition). We can also define a constant

K(T) = min {8G,,(T)5}

PoES* M,BECY,|B|=1
= min max{s € R|B*(G,,(T) — sldnxn)B > 0,3 € CV } (1.11)

poES* M

= min min{\ € R|\ is an eigenvalue of G,,(T) }.
pPoES* M
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The equality of the different definitions comes from the symmetry and positivity of Hermitian matrix G,,(7T').
Note that £(T") > 0 and we have &(T") > 0 if and only if G, (T") > 0 (in the sense of symmetric matrices) which
is equivalent to the controllability of (1.8) (see [22]).

Moreover, it is very important to estimate the optimal constant of the observability inequality since it is
closely related to the cost of optimal control of the dual system. The following Theorem precises Theorem 1.3
and states what is the optimal constant of the high regularity term in the weak observability inequality.

Theorem 1.6. If T > T := i%lf{To‘ gsinM det (G,,(Tp)) > 0}, then weak observability inequality (1.6) holds
0 po€ES™

with C%, . = T%T) Reciprocally, if weak observability inequality (1.6) holds for all solutions of System (1.1), then

obs

we have T > Teiy and C%, > ﬁ(T)’ where G, (1) and K(T') are defined by (1.10) and (1.11), respectively.

Remark 1.7. Theorem 1.6 says that the observability constant C’st blows up like 1/28(T) as T — Teyit-

o

Next we introduce the adjoint system of (1.1)

277 * — *
{@U AU + L*U = D*F, 112)

(U(0),0,U(0)) = (Up, Un).

where U = (UL, UN)" F = (f1, -, f~)" € L*(0,T; (H~1)) is control function. Clearly, the weak solution
of the Cauchy problem of System (1.12) exists for any initial data (U, U;) € (L?)N x (H=1)" and forces
F=(f1, -, fx)" € L*(0,T; (L*)X) (see [43]).

Thanks to Liu-Lu-Zhang ([40], Thm. 3.2) (see also Duprez-Olive [27] for similar results for time independent
systems), we obtain the following corollary concerning Finite Co-dimensional Controllability of System (1.12).

Corollary 1.8. Assume that System (1.8) is exactly controllable for any po € S*M on [0,T). Then, there exists
a finite dimensional subspace Hg, and a finite co-dimensional subspace Heofin with Han @ Heofin = (LQ)N X
(H=Y)N | such that: for any initial data (U, U1) € Heofin, there exists control F € L?(0,T; (L?)X) such that the
solution of (1.12) satisfies (U(T),0:U(T)) = (0,0).

Now, we want to give more qualitative properties of the HUM (Hilbert Uniqueness Method) control operator.
We need to consider the change of variable corresponding to the half wave decomposition. More precisely, define
Y(Vo, Vi) = (Vi, Vo) = (iAVy + Vi, —iAVp + Vi) with A = (—=A, 4+ 1)'/2, see Section 3.1 for more precisions.
Denote G := Gr + Ry the Gramian operator which is defined below by (1.13). If Gr is invertible, then define
Lt = (GT)—l the HUM control operator. As a byproduct of the proof of Theorem 1.3, we obtain the following
interesting characterization of Lr as a matricial pseudodifferential operator. This generalizes some results of
Dehman-Lebeau [24] in the scalar case to systems. Note that it is also related to some trivialization along the
flow that are described in Burg-Lebeau [19] in the case with boundary.

Theorem 1.9. Let V, := (Vo, V1) € (HHYN x (L2 be the initial data of System (1.1). Let Ty > 0. Then for
any T € (0,To], we have

T
/O ||DV(t)||?L2)Kdt = ((GT+RT)EV.<7E‘/,,<)(L2)2N, (113)

where G € C>(0, To; )y, (M; C2NX2NYY and Ry € B(0, To; L((H?)?N, (HoH1)2N)) is in a class of reqularizing

operators of order at least one. Moreover, the principal symbol of Gr can be characterized as follows:

ra(Gr)(m) = (R O ) 00 Tt (€22, (119
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where foo (T) are the Gramian matrices of the control systems

L. Lo
X(t) = Lt oxulpo) X () + 3Lt pr(po)ul), w1
X(O) =Xy € CN,
where X (t) = (X1,---,Xn)"" is a vector having N components, ay = aotgg-, dx = doiﬂdgﬁ7 ©i(po) is the

Hamiltonian flow of |£|, initiated at po and u(t) € L*(0,T;CX) is the control.

The interest of this theorem is that at high frequency, the HUM operator Lt is a pseudolocal operator. That
means that if one needs to control the initial data with a lot of oscillations localized only in some region of
the phase space, the corresponding optimal HUM control will also present these oscillations only in the same
region. We refer to the interesting numerical study of this fact in [34] the scalar case where this property is
explored. Note that this would be interesting to make similar numerical study in the vectorial case we consider.

1.2. Coupling of order zero

The purpose of this section is to transfer the results we have obtained for coupling of order one to coupling
of order zero. The main difference is that zero order coupling are not strong enough to transfer the information
from a component to another in the natural spaces. Indeed, if we apply directly the results of the previous
Section for zero order coupling, the coupling (considered as an operator of order one) will have zero principal
symbol and thus, there will be no coupling at this level of regularity. So, we have to adapt the setting.

Before getting to a general result, let us study a first enlightening example: a system of two equations with
cascade coupling that was completely studied in Dehman-Le Rousseau-Léautaud [25]:

{8fu —Agu =149, (1.16)

02v — Agv + a(z)u = 0.

It is clearly not possible to control both components in H' x L? with a control g in L?(0,T; L?)), which is the
natural regularity for scalar control. Indeed, if the initial conditions are zero for u and v and g € L?(0,T; L?)),
this will create some solutions u in C([0,T]; H') and the source term a(x)u (for v) will be in C([0,T]; H'),
which will create a solution v in C([0, T|; H?). So, in that case, the natural space of control is H! x L? for u and
H? x H! for v. Then, we see that it is necessary to classify each variable of the system according to algebraic
properties of the coupling and the control operator.
Now let us move to the N x N system
2 _
OU = B,U + AU = BG, with control G € L%(0,T; (L*)%) (1.17)
(U(0),0.U(0)) = (Uo, ).

where A(z) is a matrix in RV*Y and B(z) is a matrix in RV*X, Without loss of generality, we can assume
A(z) is a matrix “subdiagonal by block” in RV*¥

Al .. - Ag
Axr ... A Ao
Alz) = | . . (1.18)
0 0 Arkr-1 Ak
with A; ; € R4*4i (i =1, k) and B(z) is a matrix in RV*X of the form

B(‘T) = [811707"' 70]” (1.19)
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where By; € R1*K In fact, any A(z), B(z) can be transformed into these forms simultaneously by using one
algorithm detailed in Section 4. Noting the coupling of structure by blocks, one can analyze the regularity of
components in blocks and easily find out the natural space for solutions of (1.17) is H*® as follows. We have
U € H?* if for every i = 1,..., k, we have U’ € (H*T"~1)% where d; is the dimension of A, ;. That is

M= (H*)" x (HT) % oo (Ho R, (1.20)

The natural energy space is then & = H! x H? and it appears that the important terms are the subdiagonal
terms of A which leads to define

0O ... ... O

Agl... 0
Asp(x) = . . . .. (1.21)

0 0 Apr 10

This gives the following theorem of control.

Theorem 1.10. Assume that A(z), Asub(z) and B(x) have some decomposition as in (1.18), (1.21) and (1.19).
The System (1.17) is controllable in & = H' x H° on [0, T] with control G € L*(0,T; (L?)X) if and only if we
have the following two properties

e The control system

{ X(t) = %Asub(@t(po))X (t) + %B(wt(po»w (1.22)
X(0) = Xo € RV,

with control u € L?(0,T;RX)) is exactly controllable on [0,T].
e Unique continuation of eigenfunctions:
For any X € C, any solution V € (HY)N of

(1.23)

—A,V 4 A*(z)V = NV,
BV =0,

sV =0.

The equivalence is true once the polarized space £ has been chosen and the decomposition in block has been
specified. Theorem 1.10 yields a necessary and sufficient condition once we fix the decomposition as in (1.18)
and (1.19). This decomposition might not be unique, but each decomposition, eventually after some change of
unknown, gives a different result of control, positive or negative, which has its own interest.

In Section 4.1, we will show how the assumption of subdiagonal form is actually quite general. Indeed, for any
couple A(x), B(x), there exist some change of unknown that lead the control problem to have the subdiagonal
form expected. Yet, this is not unique. For instance, the trivial decomposition with only one block always works.
In that case, Agup(z) = 0 and there is no coupling. Our result gives a necessary and sufficient condition for the
control in (HY)N x (L?)N. Yet, it is possible in some situation that another choice of decomposition would use
better the coupling but at the cost of a loss in the space.

In the constant case A(z) = A € RV*YN B(z) = B € RV*X | the Brunovsky normal form (written in a
slightly different way, see Prop. A.1) always allows to put our control system in the expected subdiagonal form
with the good property. In that case, it seems to be the optimal choice that gives the best controllability result.
We obtain the following theorem.
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Theorem 1.11. Let A, B constant satisfying the Kalman rank condition and w satisfies Geometric Control
Condition (GCC for short) [16]. Then, there exists some integer k < N and some d; € N, i =1,--- |k, allowing
to define the space € := H! x H° as in (1.20) and some matriz Q € GLy(R) so that the System (1.17) is
controllable in QE with control G € L*(0,T; (L?)X).

The matrix  and the integers k and d; are strongly related to the Brunovsky normal form. Roughly speaking,
this decomposition transforms the control problem in the control system with integrators

y](_al) = Uy, 7y£gm) = U, Q1,0 Oy GZJ’_? (124)

the state being yl,ygl), e ,yﬁ“l_l), s aym,%(r%), s ,yfq?m_l) and the controls being the u;. In that setting, k

is max;—1,...m 0y, that is the stronger integrators. It is then natural that for the wave equation, the observations
holds in some space H*, that is we have integrated k times from H' thanks to the regularization of the wave
operator with respect to a source term. Note also that it is not clear that the space Q& is invariant by the
equation, so we should precise which kind of control we mean (control to zero, from zero...). Yet, it will be a
byproduct of the proof that Q& is invariant by the equation. So, here, by controllability in Q&, we mean that
any state in Q& can be controlled to a state in Q€.

Some previous articles (Liard-Lissy [37], Lissy-Zuazua [39]) already obtained some controllability property in
this framework under the Kalman rank condition (in a more abstract and general setting). So, an improvement
of our Theorem comes from the space where the controllability holds. We refer to Section 5.2 for more precisions.

1.3. Other applications
1.3.1. Other equations: parabolic and Schridinger-like systems

Thanks to the transmutation techniques, see for instance [28, 42], all the results stated in this article might
give results for the analog parabolic system and for systems of Schrédinger equations.

A lot of controllability results of parabolic system have been established and it would be impossible to give a
complete view of the subject. We refer for instance to the survey paper Ammar-Khodja-Benabdallah-Gonzélez-
Burgos-de Teresa [12]. Under the assumption that the control domain and the coupling domain intersect each
other, controllability results can be obtained under some algebraic conditions, like of Cascade type or Kalman
rank condition [10, 11, 29] (see also [26]). Note also that these papers about parabolic equations often contain as
a byproduct some results of unique continuation for eigenfunctions that are in the assumptions of our theorem.
In the opposite direction, we also would like to refer to the interesting paper of Boyer-Olive [17] that gives
several 1D counterexamples of unique continuation of eigenfunctions. It would be interesting to check if there
is a link between this counterexamples and our assumption of controllability of the finite dimensional problem.
Are there some cases were the unique continuation is false while the weak observability is true? or backward?

Using the transmutation method and removing the assumption of intersection of the domains of coupling
and control, [5] obtains indirect controllability of parabolic system of cascade and symmetric under Geometric
Control Condition (GCC).

We refer to [37, 41] for internal controllability results of systems of Schrédinger equations coupled with
constant zero order terms with good algebraic structure.

1.3.2. The boundary case

The choice of using Egorov Theorem for proving our results has the advantage to be simpler and more precise.
Indeed, we get a structure of the HUM control operator and the exact constant of high frequency. However, it
has the disadvantage that it does not apply (at least up to our knowledge) to the case of domains with boundary.
Most of the results presented in this paper (with the notable exception of the description of the HUM control
operator as a pseudo-differential operator) might remain true in the case of boundary. Yet, it requires different
techniques. We are therefore planning to prove similar result in the case of boundary in a forthcoming paper
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[20]. The proofs will be based on the full description of microlocal defect measures of sequences of solution of
wave equations as performed in [19].

1.4. Previous results

Let us discuss briefly the previous work on controllability and observability problem for wave equations.
Russell [44] and Lions [38] set up the duality and proved that the exact controllability of the control system
can be equivalently reduced to the observability inequality for solutions of the adjoint system. Then Bardos-
Lebeau-Rauch pointed out the GCC is crucial to the controllability and stabilization of (scalar) wave equations
[14-16]. Note that in the framework of our Theorems the GCC for the control of the scalar wave equation
(02 — Ay)u = xu(z)h is described in an equivalent way as the controllability for any py € S*M of the scalar
control system @(t) = x.u(¢:(po))u(t) with control u on [0, T].

Alabau-Boussouira [2] first studied the indirect controllability of two wave equations with constant coefficients
coupled by displacements via one boundary control. The controllability result was established in a multi-level
energy space similar to (1.20) and it was generalized to variable coefficients coupling under geometric control
conditions on coupling and control domains in Alabau-Boussouira-Léautaud [5]. Other results for the related
problem of stabilization were also formulated by the same authors [1, 4] and then by Aloui-Daoulatli [8].

In [25], Dehman-Le Roussau-Léautaud proved the controllability of two wave equations coupled by zero
order terms of Cascade type on a compact manifold. Moreover, they gave the sharp controllability time and
a microlocal characterization of the HUM control operator similar to the one of Theorem 1.9. In Section 5,
we explain how our main result allows to recover some results in [25] with the study of an appropriate finite
dimensional problem. The multi-speed case was also studied in [25]. As stated earlier, under Kalman rank
condition and GCC, exact controllability of systems of wave equations with constant coefficients and general
coupling structure of zero order were proved in [37, 39]. Note also the recent article of Alabau-Boussouira-
Coron-Olive [6] for 1D hyperbolic systems where appears a condition on finite dimensional problems related to
ours and the use of its Gramian.

There are many other control problems which are closely related to or strongly motivated by the study of
controllability of systems of wave equations via less controls, for instance, the synchronization problems [35, 36],
desensitizing control problems [3, 23, 38, 45] and simultaneous control problems [13, 38].

Let us mention that the above results concern only the systems with coupling of order zero. As for the systems
of wave equations coupled by first order terms, we refer to [7, 21] for the stability of such systems coupled by
velocities under strong geometric conditions.

Recently, Klein [31] obtained some results related to ours for the stabilisation of wave equations. He computes
the best exponent for the stabilization of wave equations on compact manifolds. The coefficient he obtains is
therefore solution of some ODE system of matrices. In this context, an improvement of our paper is to recognize
the relation between this coefficient and the Gramian control operator of the finite dimensional system.

1.5. Plan of the paper

The plan of the paper is the following. Section 2 is devoted to provide some preliminary works. In Section 2.1
we give a proof of a System Egorov Theorem. In Section 2.2 we recall the N x N Sharp Garding Inequality useful
in our context. In Section 3, we get back to the control problem. In Section 3.1, we provide a characterization of
the principal symbol of the Gramian operator. Our main results are proved in Section 3.2 and 3.3. Section 4 is
about the implications of our theorem (which concerned coupling by coefficients of order 1) in the case of coupling
by zero order coefficients. Section 5 is about examples of applications of our theorem, namely a cascade system
and a system coupling with constant coefficients. Finally, we gathered in Appendix a reformulated Brunovsky
normal form that is used in Section 4, some eigenvalue problems used in Section 5, and the proof of 1-smooth
effect Lemma 3.5.
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2. PRELIMINARY WORKS
In Subsection 2.1 and Subsection 2.2, we prove System Egorov Theorem and N x N Sharp Garding Inequality

on manifold respectively.

2.1. System Egorov Theorem
We consider the following hyperbolic system:

QU (L) — iHWU () =0, o)
U(S) = UQ, ’
where
H(t) = eMdyyn + iWo(t), (2.2)
¢ € R and Wy(t) € C>(0,T; 89, (M; CV*N)) is a matrix pseudodifferential operator of order 0. Denote wy =
a0(Wo) € C>(0,T; 83, ,(T* M; CN*N)) the principal symbol of Wy.

We define the notation S(t,s) as the solution operator associated to (2.1), that is S(t,s)Uy = U(t). The
main result of this section is the following variation of Egorov Theorem (see [32], Sect. A.1 for its scalar case).

Theorem 2.1 (System Egorov Theorem). For any P, (-) € C*=(0,T; \I/Z}lg(M;CNXN)) , meER , pu(s,-) =

om (P (5)), there exist Q(t,s) € C=((0,T)?; U (M CN*NY) and R(t,s) € B((0,T)%, L((H)N, (HoH1-m)NY)
with O;R(t,s),0sR(t,s) € B((0,T)2, L((H)N, (H"=™)N)) for any o € R, such that

S(s,t)* Pm(5)S(s,t) — Q(t,s) = R(t,s), (t,s) € (0,T)% (2.3)
Moreover, the principal symbol of Q(t,s) is given by q(t,s,-) which satisfies:

q(t, s, p) = Ri(t, 5 X5, (P))pm (5, X5 (P)) Ra(E, 5 X5 4 () (2.4)

where x{ (p) is given by the flow of Hamiltonian vector field associated with —c\

d . c c .
&X;,S = H*C)\(Xt,s)) Xs,s(p) = p € T M \ {0} (25)
and Ry(7,s;p) satisfies
dR:(7,s; .
TS50 _ oy, o)l 150 Ra(s,5:9) = T (2:6)

Note that in fact, x7 ;(p) = Xf{_s,0(p) and the implicit formula (2.6) defines well R;. We recall that A is
defined in (1.3).
The proof is inspired from [32] in the scalar case.

Proof. We firstly note that S(t,s) satisfies
O S(t,s) —iH(t)S(t,s) =0, S(s,s8) =Idnxn- (2.7)

where the time derivative is not to be taken as a derivative in a Banach space L£((H°)™,(H?)N) but in the
weak sense, that is the derivative when the operator is applied to a fixed function. See for instance ([32], Cor.
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A.2) for more details. Since S(¢,5)S(s,t) = Idyxn , we have

01S(s,t) +1S(s,t)H(t) =0
0pS(t,8)" +1iS(t,s)*H(¢)" =0, (2.8)
0S(s,t)" —iH(t)*S(s,t)* =0

with H*(t) = Aldnxny — iW{(t). The well-posedness of (2.1) yields the following regularity properties S(t, s) €
B((0,T)%; L((H?)N),0:S(t,5),0:5(t,s) € B((0,T)% LI((H)N; (H°~1)N) for all o € R, as well as for S(t,s)*.
Now, setting
P(t,s) = S(s,t)*Pn(s)S(s,t), (2.9)
and using the above equations, we have P(s, s) = Py, (s) with

B.P(t,s) = iH(t)* P(t,s) — iP(t, s)H(t) = ic[Aldnxn, P(t, 8)] + Wo(t)* P(t, s) + P(t, s)Wo(1).

Here [-,-] stands for the classic commutator. We now construct an approximate pseudodifferential solution
Q(t,s). Its principal symbol q(¢, s, z, &) should satisfy

8tQ(t7 S, ) = C{)‘7 Q(ta S, )} + wé(ta )q(ta S, ) + q(ta S, ')wo(t7 ')7 Q(S7 S, ) = pm(S, ')a (210)
where {.,.} stands for the Poisson bracket in the (z,¢) variables.

We claim that ¢(¢, s, p) defined in (2.4) satisfies (2.10).
Indeed, since x5, o x{ s(p) = p, we have q(t, s, x{ s(p)) = Ri(t,8; p)pm (s, p)R1(t, 8;p). So

140t 5 %8 (0)] =086 XE o (D) RI(E, 51 ) (5. ) Ba (1 5: )

dt
+ Ry (t, 51 0)pm (5, p) Ra (1, 53 p)wo £, X5 4 (1)) (2.11)
=wq (X4 (p))alt, s, X7 s(p)) + alt, s, x7 s (P))wolt, X7 s (p))-
So, denoting q(t, s, p) = q(t, s, x{ s(p)), (2.11) can be written
d N c ~ ~ c
T [Q(ta S, p)] =wq (ta Xt,s(p))Q(ta S, p) + Q(tv S, p)w()(tv Xt,s(p))' (212)

dit

Therefore, since (2.5) gives % [q(t,s,p)] = (0:q)(t,5, X5 s(p)) — AN, a}(t, 8, XE 5(p)), We obtain for any (t,s) €
(0,7)2 and p € T*M

9hq(t, s, x5 5 (p)) = wi (£, X7 5 (P)a(t, 5, x5 5 (P)) + ats s, X5 (p)wo(t, x5, () + ef A, g} (£ 5, X7 5 (p))-
Since for fixed (¢,s) € (0,T)?, x§., is a bijection of T*M, it gives
9rq(t, s, p) = wi(t, p)alts s, p) +q(t, s, p)wo(t, p) + c{A; a3 (¢ s, ).
We thus see that our definition (2.4) of ¢(¢, s, p) satisfies (2.10).
The homogeneity of A of order one allows to keep the homogeneity of ¢(t, s, p). This allows to select one

Q(t, s), so that

Q(t,s) € C>=((0,T)% phg(M CN*NY) satisfies 0., (Q(t, 5)) = q(t, s, .). (2.13)
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From (2.10) and pseudodifferential calculus, we now have

0:Q(t, ) = ic[Adnxn, Q(t, 5)] + W5 (DQ(E, 5) + Q(t, ) Wo(t) + R(t, s)

o (2.14)
iH()*Q(t, 8) — iQ(t, s)H(t) + R(t,5),

with R € C>((0,T)?; \I/Z;L;l(/\/l; CN*N)). Next we estimate the remainder R(t,s) = Q(t,s) — P(t, s). Set

T(t,s) = S(t, )" (Q(t,s) — P(t,s))S(t,s) = S(t,s)*Q(t,s)S(t,s) — Pn(s), (2.15)
so that we have, in view of (2.14),

0T (t,s) = 0 [S(t, )" Q(t, s)S(t, 9)]
= S(t,8)" [-iH(#)"Q(t, s) + 0, Q(t, 5) +iQ(t, s)H (t)] S(¢, 5) (2.16)

= S(t,s)*R(t,s)S(t, s).

Thus, we obtain
Q(t,s) — P(t,s) = S(s,t)* |Q(s,8) — Pn(s) +/ S(T,S)*E(T, $)S(r,s)dr| S(s,t), (2.17)

where R € C((0,T)% W0 M (M;CV*N)) Q(s,5) — Pr(s) € C((0,T); W0y 1 (M; CNXN)). Therefore, it
implies Q(t,s) — P(t,s) € B((0,7)% L((H°)N,(H°T1=™)N) and 8;(Q(t,s) — P(t,5)),0s(Q(t,s) — P(t,s)) €
B((0,T)2, L((H)N, (H"=™)N) for any ¢ € R. Together with the expression of @ in (2.13), we finish the
proof of System Egorov Theorem. O

Remark 2.2. Note that the previous Egorov Theorem implies some propagation of microlocal defect measure,
as described in Burg-Lebeau [19] in the more complicated case of domain with boundary. The equation we
obtain for Ry is actually closely related to the trivialization of the bundle that they describe in ([19], Sect. 3.2).
In the present article, we will prove that Theorem 2.1 implies a link between the observability of the ODE and
the observability of the PDE. Similarly, we plan to prove in the future [20] how the propagation of microlocal
defect measure in [19] implies a similar link.

2.2. N x N Sharp Garding Inequality

In this section, we state without proof some uniform N x N type Sharp Garding Inequality on a compact
manifold. This is the equivalent of the sharp Garding inequality in R™ as stated in [47]. The following versions
on a compact manifold can easily be obtained frome the one on R™ by localization in local charts. We refer for
instance to ([32], Sect. A.4) for some details in the scalar case, the argument being exactly the same.

Theorem 2.3. Assume that A, € CY([Ty, Tz); \I/ghg(./\/l;(CNXN)). If o00(A:) is nonnegative Hermitian matriz
of order 0 on [T1,Ts] X T* M, then

(Apu,u) oy > =Cllul|Byijoyn,  VE€ [T, T, ue (HY)Y, (2.18)

where C' is independent with u.

The proof of Theorem 2.3 is a direct consequence of the following theorem.
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Theorem 2.4. For A € \Ifghg (M; CN*NY if 0 (A) is a nonnegative hermitian matriz of order 0 on T* M, then

there exist C' > 0 such that
(Au,u)(2)ny > —C||u||%H,1/2)1\,7 Vu € (L*)N, (2.19)

3. PROOF OF MAIN RESULTS

In this section, we give the proof of Theorem 1.3 which is inspired from [32]. We start by writing the System
(1.1) as a 2N x 2N system of order 1. Then, we use a trick due to Taylor to eliminate the lower order terms.
Applying System Egorov Theorem, N x N Garding inequality and control theory of finite dimensional , we
construct a connection between pseudodifferential representation and Gramian matrix of finite dimensional
System (1.8).

In the following, we will be slightly more general than in Theorem 1.3, in the sense that we will allow L and
D to be pseudodifferential operators in space and not only differential operators. We assume

L= Ay + Ay, (3.1)
with Ag € C®(R; WO (M; CN*N)) A; € C®°(R; UH(M; CN*N)). and

D = Dyd; + Dy, (3.2)
with Dy € C®°(R; WO(M; CE*N)), Dy € C®(R; W (M; CEXN)),

3.1. Gramian operator

e Half wave decomposition
We rewrite System (1.1) to Klein-Gordon type equations [24, 32],

(0f — Ag)V +V + BydV + BV =0, (3.3)

(V(0), 8,V (0)) = (Vo, V). '
where BO = Ao,Bl = A1 — IdeN~

We set

so that

AL 1

Vo = S5 (Vi (0) = V-(0)), Vi = 5(V(0) + V- (0)). (35)

We define the map X:

. (Hs)N % (Hs—l)N N (Hs—l)QN, (3 6)

(Vo, V1) = (V4(0), V-(0)).
According to (3.5), we have:

5 iINdyxny  Tdyxn w1 _ } —Z.AildexN Z.AilldeN (3.7)
—iAldyxn Tdnxn 2 Idnwn Idnxn ’ '
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where the operator ¥ is (almost) an isometry from (H*)N x (H*~1)N to (H*~1)2V,
Note that for (V(0),V_(0)) = X(Vy, V1), we have

2/ (Vo, VlIgroyn xare—ryn = 1 (Ve (0), VL (O)) [Epge—yon- (3.8)

Let
1 . -1 1 . —1
By =By —iBiA™Y), B = (B +iBiA™h), (3.9)

we rewrite System (3.3) as a 2N x 2N system

(at—iA)V++B+V++B7V7 :0, (3 10)
(0 +iA)V_ + BV, + B_V_ =0, '
since 02 — Ay + 1 = (9; — i) (0 + iA). Denote
_ _ —iAIdeN 0 o B+ B_
P=0;+M +B, M = ( 0 N dy .y ), B = < B, B. . (3.11)

Then PV =0, V = (Vy,V_)". We define &(t,s) as the solution operator of System (3.10). The well-
posedness of Hyperbolic System (3.10) yields &(¢,s) € B((0,T)% L(H? (M;C*))) and 9,5(t,s),0:6(t, s) €
B((0,T)2%; L(H(M;C?N); H*=L(M; C?N))) for all o € R.

Lemma 3.1. Denote by SL(t,s) solution operator of (0 FiA)+ B+ and let

S(t,s) = (S+(g’5) S_&S)). (3.12)
The solution operator &(t,s) of System (3.10) have the following decomposition
S(t,s) =S(t, s) + R(t,s), (3.13)
where, for all o € R,
R(t,s) € B((0,T)* LH" (M;C*N); H7H (M; C*N))) (3.14)

Proof. For the case of N = 1, we refer to [32].

We use a trick to decouple the equations. More precisely, the idea is to find an operator K €
C>®(0,To; U~1(M; C2N*2N)) 5o that W = (Idanxon — K)V solves a diagonal system, up to appropriate
remainders. We have on the one hand

(Idonxon + K)YW =V — K?V.
Notice that PV = 0, then

(Idonxon — K)P(Idanxaon + K)W = (Idonxon — K)P(V — K2V)
= —(Idynxon — K)PK?VY = RV.
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Moreover, the remainder satisfies R € R~ !, where
R =C=(0,T; W, (M; CNV*2NY)) 400, T; W, 2 (M; CHV*2N)) g,
is the admissible class of remainders in the present context. On the other hand, we have
(Idanxan — K)P(Idanxon + K)W = PW + [P, K|W — KPKW,
with KPK € R~1. We then remark that [9;, K]|W = (9;K)W so that
[0, K] € C=(0,T; L (M;C2V>*2N)) c ;y=t

phg

and as well [B, K| € R~ 1. Hence, if we find K such that

0 B »
<B+ 0 )—l—[Ml,K]EiR N

then W solves the following equation
P;W =RW + RV =RV,

with Ry, Ry, R € R~1 and, with M; defined in (3.11),
B
Py =0+ M + Ag, Ad:< . BO >

Now taking

1 ( 0 A'B_

o0 . —1 2N X2N
=5l _pat g )eC (0, To; U, (M; C2V¥2NY)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

realizes (3.16), and we are left to study PyW = RV, R € R~ with W = (Idanxan — K)V. Note that it is
crucial at this step that M; is diagonal so that, for instance, A"'B_A — B_ € R~1. S(¢, s) defined in (3.12) is

therefore the solution operator of Py. Equation (3.17) is now solved by
t
W(t) = S(t,s)W(s) + / SRV )d', ReR L

Recalling that W = (Idanxen — K)V, and that V(&) = &(¢, s)V(s), this yields

V(t) = S(t,s)V(s) + K()&(t,s)V(s) — S(t,s)K(s)V(s) + (/ St RS, s)dt’)V(s).

This can be rewritten as
V(t) = S(t, s)V(s) + R(¢, s)V(s),

with

R(t,s) = K(t)S(t,s) — S(t,s)K(s) + (/t S(t,t")R(tS(t', s)dt').

(3.20)
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According to regularity of &(t,s) and K(s), one can see easily that R(t,s) € B((0,Tp)%; L(H®(M;
C2N); HOFL(M; C?N))) and O,R(t, s), 0sR(t, s) € B((0,Tp)?; L(H (M;C*N))) for any o € R. This finishes the
proof of Lemma 3.1. O

Lemma 3.1 states that &(t, s) can be divided into two parts, diagonal term S(¢, s) and a more regular term
R(t,s). So we have a high-frequency representation formula for solutions of System (1.1).

e Gramian Operator
In this part, we apply System Egorov Theorem 2.1 to express the Gramian operator as a pseudodifferential
operator, following [24] for the scalar case.

Theorem 3.2. Let V, := (Vo, V1) € (HHYN x (LA be the initial data of System (1.1). Let Ty > 0. Then for
any T € (0,Tp], we have

T
/ ||DV( )H (L?) rdt = ((GT +RT)EV*,EV) L2)N x (L2)N (321)
0

where G € C>(0,To; U9, (M; C2NX2NYY and Ry € B(0, To; L((H?)?N, (H7H1)2NY)) is in a class of regqularizing
operators of order at least one. Moreover, the principal symbol of G can be characterized as follows:

T
- i/o RE(0, 8 0-4(0)) AL (8 o—(0)) A (L, 01 (0)) B (0, 85 0 (p) ) dt, (3.22)

1 T
= Z/ RZ(0,;.¢1(p))dZ (1, i (p))d- (t, 01 (p)) B (0, 85 4 (p))dt,
0

where Ry (7,t; p) satisfies

dR:t (T7 t; p)

i = Ry (1, t;p)bs (7,047 (p)), Ra(t,t;p) = Idnxn, (3.23)

with by = 0o(By) = $(ag + e ), de =dp £ % and pi(p) is the Hamiltonnian flow of |£|, initiated at p (see

Theorem 2.1 for more precisions).

This theorem is the main step to prove Theorem 1.9. The only difference is the characterization of fo(T)
as the Gramian matrix of appropriate control problems, which will be made in another section. The proof is a
direct combination of Propositions 3.3 and 3.4 below.

Proposition 3.3. Denote by V., = (Vo, V1) € (HYN x (L?)N the initial data of System (1.1). We have

T
/0 IDV ()12 dt = (G + Rr)SVa, SV.) g2y, (3.24)

where

Ry € Bioe(RT; L(H (M; C*N), HTTY(M; C?N))), Vo € R. (3.25)
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and

Gr = T S(t,0)2D1S(t,0),  S(t,0)%D2S(t,0)_ "
= J, U S(t,0D?'S(t0); S(t0)*D?2S(t,0)_ ’

DD A~'D*D;A"Y  ATIDID D D;A™!

pit — 00 + 11 _ 1+0 4+ =0 1
4 4 41 47 ’

D2 DgDy  AT'DiDiA™'  AT'DiDy  DgDiAT! (3.26)

4 4 41 47 ’
p2t _ DiDo A~'DIDAT! N A~'D; D, N DiDyA™!
T4 4 4i 4i
DD A='D*D;A"Y  ATIDID DDA

22 _ o0 11 10 Pl
D= 4 + 4 + 417 417 ’

where the definition of S+(t,s) is given in Lemma 3.1,

Proof. The proof of Proposition 3.3 essentially relies on some computations and an application of Lemma 3.1.
According to (3.5)

T T —1 —1
| wviovigaa= [ (Ph= - v, PR )
0 0

2 24

(LQ)K
D D
(2 v, 22+ V)
2 2 (L2)%
5 DA (3.27)
+ (0(V+ +VL), (Vi — V))
2 24 (L2)K
DiA! D
+( L (V+V_),O(V++V_)> dt.
24 2 (L2)K
. 11 P12
Denote D! = ( 521 322 > Since Vi = (Vp, V1), we have
T T,
/ (DV, DV) g2y dt = / (Dlg(t,O)zm,G(t,O)zv*) . (3.28)
0 0 (L2)2N
According to Lemma 3.1,
(Vo, VO = &(t,0)8Vi = (S(¢,0) + R(t,0))XVi. (3.29)

Combining (3.29) with (3.28), we have

T T
/(DV,DV)(Lz)Kdt:/ (S*(t,0)D*S(t,0) 2V, BV, (12)2n
0 0

+ (R*(t,0)

0 (t,0) + S*(t,0) D' R(t,0)SV,, £V,.) (2y2n
+ (R*(t,0) 0

DS
D'R(t,0)SV,, £V..) (12)2n .
Define

Ry = R*(t,0)D*S(t,0) + S*(t,0)D ' R(t,0) + R*(t,0) D' R(t, 0)
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with
A1
Gr =S8*(t,0)D*S(t,0),

we obtain (3.24). We claim that Ry satisfies (3.25). Indeed, S(t,0) preserves the regularity thanks to (3.14) in
Lemma 3.1 and D! is a Pseudodifferential operator of order 0. O

Proposition 3.4. Gy (defined in (3.26)) has a decomposition as Gr = Gr + Ry , where Ry satisfies Ry €
Bioe(RT; L(H (M;C*V); HOTH(M; C?N))) for all 0 € R and G € C°(RF; 00, (M;C*N*2N)) has principal

phyg
symbol
G; (T) 0
ooen =( 5" 6wy )

(3.30)
1 T * *
G5 (T) = 1/0 RL(0,;.97 (p)di (L, o7 (p))d(t, 0 (p)) R (0, £ (p))dt,
where Ry (s,t; p) satisfies
dR4(T,t;
WRTED) _ Ry ot s 6F-(0). Rilht:0) = T, (331)

with by = 09(Bx) = %ao + %”‘Eﬁ, dy = do + i\%ﬁ and @] (p) is the Hamiltonian flow of F|&|. initiated at p.

The proof relies on Egorov Theorem and the following Lemma that deals with the anti-diagonal terms of the
Gramian control operator whose proof is postponed to the Appendix.

Lemma 3.5. Assume that Z is an interval in R, let
Hi(t) =+Aldy«n + ’iWo(t),

with Wy € C>(0,T; \I/ghg(/\/l;(CNXN)), then for any By € C*(0,T; V7

(M;CVNXNY) m € R, we can define
T
B(T) = [ S2(6.0) BuS<(t,0),

and we have B € Bjoe(0,T; L((HO)N, (HH=™)N) for all o € R.
Proof of Proposition 3.4. Integrating the anti-diagonal terms of Gr in (3.26) on [0,T] yields

T
/ S(t,00% DY2S(t,0)_dt € Bioo(T: L((H)Y, (HoH—m)N),
0

. (3.32)
/ S(t,0)* D*'S(t,0) 4 dt € Bioe(Z; L(H)N, (HOHI=™)N),
0
Next we claim that there exist Gf(T), G, (T) satisfying (3.30) and
T
| 8050180 0)dt — G (T) € BT L((HT), (BT,
0

(3.33)

/T S(t,0)* D**S(t,0)_dt — G, (T) € Buoe(T; LI(H)N, (HTT )N,
0
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We only detail S(t,0)* D'1S(¢,0), the other case being similar. Using Theorem 2.1 with
o ¢ =1, 50 that x7 ,(p) = vr_,(p) = vs—+(p) and X{G" = ¥
o WO = B+
¢ Pu= D= J(Dy+ BI04 22

gives S(t,0)% DM S(¢,0)4 = R (0,t,0_4(p))d" (t, -t (p)) R+ (0,t,0_¢(p)), where R, solves

dR4 (7, s;p)

T R (rsi b (o (p). R(ssip) = Iy (3.31)

. — a 1pA-1
and b+ = Uo(B+) = %O’Q(Ao — ZAlA 1) = %(ao + ﬁ),d.ﬁ_ = O’Q(DO + D ? ) = do + iéﬁ,

The other case S(t,0)* D*25(t,0)_ is the same with ¢ = —1, X;& =, Wo = B_, P,, = D2, O
e Gramian operator and weak observability inequality (1.6)

As a direct consequence (or verification) of Theorem 3.2, oo(Gr) is a nonnegative symmetric matrix. Thanks
to N x N Sharp Garding Inequality (2.18), we can construct a connection between weak observability inequality
(1.6) and Gramian control operator as follows.

Proposition 3.6. Let T > 0 . Define

Ro(T) = min{ min sup {s € R|B*(G}(T) — sldnxn)B > 0,V8 € cN},
poES* M P (3 35)

min _sup {s € R B(G,(T) —sldyxn)B > 0,V8 € (CN} }

pPoES* M

and G;E(T) are defined in (3.22). If for all pg € S*M, oo(Gr) is a symmetric positive matriz, then the weak
observability inequality (1.6) holds for all solutions of System (1.1) with

C2u(T) = QRJ(T). (3.36)
Proof. According to Theorem 3.2, we have
g 2
| IV Oyt = (G + ROV 2V gapon .

A 2
> (GreV., SV) oy — CIEVAR,

_ % )2N )
and o(Gr) is a symmetric positive matrix. Then o(Gr) — Ra(T)Idanx2n is a nonnegative symmetric matrix

(here, we are using that actually, the supremum in (3.35) is actually a maximum). By N x N Sharp Garding
Inequality (2.18) and (3.37), we obtain

T
| IV Oyt > RaATIEV., SV, oo = CHIEVLIE,

Combining with (3.8), we have

1
R2(T)

T
| 1DV Oyt = 2008 Wl = CNOGVOIR 1 e B39

So this finishes the proof of Proposition 3.6. O
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e Gramian control operator and controllability of finite dimensional system
For fixed py € S* M, we will consider the following control system

. 1, 1,
(1) = LaL (b omep0) X(0) + L ore(po)u(t), 539
X(0) = Xo € CV,
where X (t) = (X1,--+,Xn)!" is a vector having N components, and a4 = aoiil‘zﬁ is a N x N matrix.
dy = doii“éﬁ is a K x N matrix. u(t) € L?(0,T; CX) is the control.

Next we reveal connections between Gramian control operator and exact controllability of finite dimensional
System (3.39) as follows.
The first step is an elementary but crucial lemma.

Lemma 3.7. Let py € S*M. Denote Ri(-,-;po) the resolvent of System (3.39) (see [22], Prop. 1.5 for
definition). Then

R (7,t; po) = R (7, t; 014 (p0)) (3.40)

where Ry (-,+;po) is defined in (3.23). Moreover, let the Gy be the Gramian of the control System (3.39)(see
[22], Def. 1.10). Then

Gi=GE(T) (3.41)
where Gg:o (T) is defined in (3.22).
Proof. The equation (3.23) verified by R4 is
dRy(T,t;
RTE00) R (ot po)os (7, o (00)), Bl o) = T, (342)

Taking the adjoint of the definition of the resolvent, see ([22], (1.10) in Prop. 1.5) applied to System (3.39) and

ax(7,po0)
2

recalling by (7, po) = gives

dR St p0)” ~ N ,OFr ~ N ~
TS R (7,8 o) D) — (1,1 o) s (7, (), B (185 p0) = T
Applying at the point @1:(po) gives

AR (7, t; p+4(po))*
dr

=Ry (7, t;0+6(p0)) b (T, +(1—7) (o)), Ei(t,t; p+t(po)) = Idnxn- (3.43)

Therefore, for fixed ¢, the two matrices Ry (7,t;p9) and Ei(T,t;wit(po))* depending on 7 solve the same
equation with same initial data, so they are equal by the Cauchy-Lipschitz Theorem.
Concerning the second part of the Lemma, we have

T
Gy = Z / Ry (0’ S5 pO)d*i(sv @q:s([)[)))di(& @q:s(PO))Rjt (Oa S5 pO)dS'
0

Concerning (3.22), it can be written

1

T
GE(T) = Z/o RL(0,t; p5¢(p0))dL(t, o5t(po))d+(t, oi(po)) R+ (0, 05t (po))de.
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Now, using the obtained identity (3.40), we get the expected result

1 T * T
G (T) = Z/ R1(0,t; po)di(t, px¢(po))d+(t, ox¢(po)) RL(0,t; po)dt.
0

O

Theorem 1.9 is now a direct consequence of Theorem 3.2 and of the previous Lemma. Another consequence
is the following.

Proposition 3.8. Let T' > 0, for any pg € S*M , we have the equivalence

1. Hermitian matriz oo(Gr) (defined in (3.22)) is positive.
2. System (3.39) are exactly controllable in both cases + and —.

Proof. Thanks to (3.41), the result is now a direct consequence of the classical equivalence between invertibility
of the Gramian and controllability, see ([22], Thm. 1.11). O

In the next proposition, we prove that if a and d have some symmetry properties, we need to check the
controllability of only one system + or —. This property will be satisfied in the two important cases

e A is a differential operator so that aq is even and a; is odd and a4+ = % (ao + ﬁ) (same for d)

o A= AA(zx) where A(x) is the operator of multiplication by a matrix A(x), which will be the case for zero
order coupling.

Proposition 3.9. Assume ay = ax 00,by = broo,dy = dr oo, where o : T*"M — T*M is the
involution (x,&) — (x,—&). Let T > 0, for any pg € S*M , we have the equivalence

1. Hermitian matriz oo(Gr) (defined in (3.22)) is positive at py and o(po)
2. System (1.8) is exactly controllable in the case a_ and d_ for py and o(pg)
3. System (1.8) is exactly controllable in the case ay and dy for py and o(po).

The proof is direct with Proposition 3.8 and the following Lemma at hand.

Lemma 3.10. With the symmetry assumptions of Proposition 3.9, we have

+
G

a(po)

(T) = G5 (T).

PO

Proof. By using ([25], Lem. B.2), we have

(¢t(po)) oo =00 (p-t(po)), (p—t(po)) oo =0ao(pi(po)) (3.44)

We have, first by (3.44), then by the symmetry property of d,

dy(t,9-1(a(po))) = d4(t,0 0 p1(po)) = d—(t; #1(po)) (3.45)

and the same holds for the transpose. For the same reasons, we have

b (7,07 4(0(p0))) = b (T.0 0 T, (po)) = b—(7, o1, (p0)), (3.46)

In particular, we have by (3.23)

dR(1,t;0(po))

= = Ry (7,t;0(p0)) by (7,074 (0(p0))) = Ry (7,t;0(p0) )b (7, 05—, (po)) (3.47)
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which is the equation satisfied by R_(7,t; pg) with same initial data, so that R (7,¢;0(po)) = R—(7,t; po). (3.44)
and this symmetry of R give

R (0,859, (0(po))) = R(0, 850 0 o (po)) = R_(0,¢;9/ (o). (3.48)

This gives exactly the expected result Gg(p )( ) =G, (T). O

3.2. Proof of Theorem 1.3
We actually plan to prove the slightly more general theorem. Let

ag € C™(R; 8D, (T*M; CN*N)) ay € C®(R; Sp, (T M; CVNY), (3.49)
are, respectively, the principal symbols of Ay and A; which are defined in (3.1). Let
do € C®(R; S0, (T*M; CF¥NY) dy € CF(R; Sy, (T M; CH*NY) (3.50)

are, respectively, the principal symbols of Dy and D; which are defined in (3.2).

Theorem 3.11. Solutions of System (1.1) satisfy weak observability inequality (1.6) on [0,T] if and only if for
any po € S* M, any initial data Xo € CV, both systems (3.39) are exactly controllable on [0,T).

Proof. Step 1. By Propositions 3.6 and 3.8, it is easy to show that Systems (3.39) are exactly controllable
implies weak observability inequality (1.6) for all solution of System (1.1).

Step 2. We check that System (1.1) satisfy weak observability inequality (1.6) implies System (3.39) are exactly
controllable. Suppose by contradiction that this part of the Theorem failed, then there exists a pg € S*M and
Hamiltonian flow ¢;(pg) such that one of the System (3.39) is not controllable, let us say — for fixing the ideas.
Hence G,,(T) is nonpositive. According to Proposition 3.8, we have

det (G, (T))) =0, (3.51)

Then there exists a vector P € CV,|P|;z2(cvy = 1 such that P*G, (T)P = 0 . We take a local chart ¢ € (U, k)
of M so that g; j(x¢) = Id. We denote by (yo,70) the coordinates of po in this chart. We choose ¢ € C°(R™)
such that supp(v) C k(Uy), and ¢ = 1 in a neighborhood of yo . Next we define

wh(y) = CokTe™Wp(y),  (y) =y-no +i(y —yo)*>, Co > 0.
Setting now
P = gk e (M), (3.52)

We have v* — 0 and limp_,o0 [[v¥ |12 = limg_so0 | Pv® || (z2yv = 1 for an appropriate choice of Cp, while
limy o0 |* || z7-1 = 0. Moreover, a classical computation on (w*)iey show that for all A € \Ilphg(/\/l; CN*NY),
(v* )ren satisfies

(AP, Pv’i)(LQ)N — oo(P*AP)(po), k — oc. (3.53)
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Next, we set v¥ =0, k€N, and V¥ = $71(0, Pv*) € (H')Y x (L?)". Denoting V¥(t) the solution to System
(1.1) with initial data V*  Theorems 3.2 and (3.53) gives

T
. k 2 T D k k
klgr;c/o IDVE@) {12yt = i ((Gr+ Rr)ZVEZVE) ooy

_ 1 k k 3.54
= lim (GrEVEEVY) L (3.54)
— P*G;(T)P =0,

where we used that Ryp is 1-smoothing, that Gr € \Ilghg (M; C2N*2N) has principal symbol given by (3.33),

and the choice of p = pgin (3.33) . Then we obtain a contradiction and finish the proof of Theorem 3.11. O

Proof of Theorem 1.3. Since A and D are differential operators, Proposition 3.9 applies and the conclusion is
direct from Theorem 3.11. O

3.3. Proof of Theorem 1.6
Proof of Theorem 1.6. By Theorem 1.3, G, (T) is positive for any py € S*M. Hence T > Ty =
inf {71 i *G,, (To)B >0} .
inf{ 0|poesyj\£{1}|ﬁ|:15 po(T0)B > 0}
Using Proposition 3.9, we have

A(T) = Ro(T). (3.55)

Proposition 3.6 then gives that the weak observability holds with

C2(T) >

obs

R (3.56)

Since M is a compact manifold, it suffices to show that there exists a py € S*M, such that o(Gr) —
Ra(T)Idanxon is a nonpositive matrix. In view of the proof of Theorem 3.11, it is easy to obtain

T
C2,(TYRo(T) = C2,(T) / IDVF(0)1F 2yt = Y IViclge — 1. (3.57)
k

So we finish the proof of Theorem 1.6 thanks to Corollary 1.8 is a direct consequence of ([40], Thm. 3.2) and
Theorem 1.6. O

4. COUPLING OF ORDER ZERO

In this section, we plan to prove that the involved systems are well-posed and prove Theorem 1.10. In a first
section, we will also describe that the assumption of the matrix being in a subdiagonal form is actually quite
general, up to some change of unknown.

4.1. Getting the subdiagonal form
4.1.1. Getting the subdiagonal form in the constant coupling case

We use the Brunovsky normal form as described in Proposition A.1. This gives the immediate Lemma.
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Lemma 4.1. Assume that (A, B) are constant matrices and satisfy the Kalman rank condition. Let (ﬁ, E), Q,

F, M, given by Proposition A.1. Define also the space varying matriz A, (x) = Ay (z) = Q' (AQ + xw(z)BF)

where X, =1 on w. Then, if U is solution of

8?ﬁ_Agﬁ+gwﬁ:Xw($)§é7 (4.1)

(U(0),U(0)) = (Uo, Un). .
then, U = Qﬁ is solution of the following system with control G = —FU + M,G

ORU — AU + AU = x,(2) BG, s

(U(0),0:U(0)) = Q(Uo, Un). '

In particular, if the System (4.1) is controllable in some space & = & x & satisfying & C (L?)N with control
G € L*(0,T; L*)X), then the System (4.2) is controllable in Eg = QE on [0,T] with control G € L*(0,T; L*)K).
Moreover, we have the following properties concerning the coupling matrix.

1. For any x € M, has a_subdiagonal form as described in Proposition A.1.
2. For x € w, A,(x) = A so that (Asw, B) = (A, B) satisfies the Kalman rank condition, where the index

sub means that we only keep the subdiagonal terms as in (1.21).

Proof. This is just a direct computation, denote O = 97 — A, we have

OU + AU = QOU + AQU = —QALU + X (#)QBG + AQU
= —(AQ + Xu(z)BF)U + xu(2) BM,,G + AQU
= Xw(2)B(=FU + M,G) = x.(2) BG.

The second property about the link between the controllability of each equation is direct. The properties of the
coupling matrix are then a direct consequences of Proposition A.1. O

4.1.2. An algorithm to obtain a natural subdiagonal form

In this section, we describe one natural (informal) algorithm as following when considering the control System
2 —
OU = AU+ AU = BG, with control G € L?(0,T; L?)¥) (4.3)
(U(0),8:U(0)) = (Uo, Un).
where A(z) is a matrix in RV *Y and B(x) is a matrix in RVXK,

We start from the subspace of RY that might be reached directly by the control G' (without using the
coupling). Namely, we define By C RY as By = Vect {UzemRange(B(z))}. This set of state variables might be
controlled in H! x L2.

Next, we define the subspace that might be controlled from F; (if we can control in all E;) through the
coupling. This makes us to define naturally EFs = Vect {UzermA(x)(E1)}. This set of state variables might be
controlled from a source term in C([0, T]; H') so, we expect to control the states at least in H? x H' (but may
be better for direction that are in E7 N Ey).

Again, we want to define the subspace that might be controlled from F5 (if we can control in all Ey) through
the coupling. The natural new space that could be reached is E3 = Vect {Uzeam A(z)(E2)}. This time, the new
source term is in C(0,T; H?). Thus, we expect to control the states in H3 x H2.
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So, this leads to the definition of subspaces of E; by iteration:
E, =Vect{UzemRange(B(z))}; Eiy1 = Vect{UzemA(z)(E:)}. (4.4)

Hy, = Vect®_| E; is clearly an increasing sequence of subspaces of RY that is stationary after some steps that we
call k. Morever, it satisfies the important property A(z)(H;) C H;4+1 for any x € M. It could happen that the
bigger space H}, is not equal to RY, but it is easy to see that the wave system is not controllable in this case.
Indeed, for any control B(z)G(t,x) € Hy, since Hy, contains Vect {UzemRange(B(x))}, and A(x)(Hy) C Hg,
so for any initial data in Hj, the solution remains in Hy.

We can then assume now that we can decompose RY = @F | F; with F; N F; = {0} if i # j and @7 F; = H,,.
In particular, in a basis according to F;, A(x), B(x) can be written as a matrix “subdiagonal by block” as (1.18)
and (1.19).

Note that in the case A(z) = A and B(z) = B, we have E; = Range(B) and E; = Range(A*"'B), so
that this decomposition is related to the Kalman rank condition and the Brunovsky normal form described in
Proposition A.1.

4.2. Wellposedness in multilevel spaces
Up to now and in the next section, we assume that A(x) and B(z) have the form described in Theorem 1.10.
The natural space for solutions of (4.3) is then then space H?® as follows. U € H?® if for every i = 1,..., k, we
have U' € (H*T%71)% where d; is the dimension of F;. That is
HE = (H*)™ x (H¥TH)d2 oo (He TR 1)de, (4.5)

The natural energy space is then £ = H' x H" and we will prove (see Thm. 4.4) that the equation

02U — A,U + AU = BG, (4.6)
(U(0),0:U(0)) = (U, Uh). .
is well posed in £ with source term G € L2(0,T; (L?)¥).
Now, it appears that the important terms are the subdiagonal terms of A as (4.7).
0 - . 0
Aoy ... e 0
Asun(z) = : . . : (4.7)

0 0 Appa O
Note that in the previous result, the high frequency problem and the unique continuation problem, the matrix
involved is not the same. We have

0 0 A1 A ... A
Aoy ... 0 0 Ass ... Ao
0 0 Arr—1 O 0 0 0 Ak

The structure “subdiagonal by block” of A allows to prove the following Lemma.
Lemma 4.2. For any s € R, the multiplication by
o A(x) sends H® into H*~!

o Ag(z) sends H* into H*~!
o A.(x) sends H* into H*.
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Lemma 4.3. Let (Uy,Uy) € € and H € L'(0,T;H"). Then, there exists a unique solution (U,d;U) € C([0,T],€&)
to

2 — =
{at U—A,U = H, (4.9)

(U(0),8:U(0)) = (Uo, Un)-

is well-posed in (U,0,U) € C([0,T],E) for (Up,Ur) € € and H € L*(0,T;H°)

Proof. Since the wave operator is diagonal, we can reduce the problem to each component where the Theorem
reduces to the property that the equation

83% —A,V; = H;,
(Vi(0),0:Vi(0)) = (Uo,i, U1,i)

is well-posed in C([0,T], (H")%) N CL([0,T]; (H*=1)%) with H; € L*(0,T; (H*~')%) and (Up;, Uy ;) € (H*)% x
(Hz—l)dl D

Theorem 4.4. Let (Uy,Uy) € £ and G € L'([0,T); (L>)X). Then, there exists a unique solution (U,0;U) €
C([0,T],&) to the equation

02U — AyU + AU = BG,

(U(0),0:U(0)) = (Uo, Un).
Proof. The proof is direct with Lemmas 4.2 and 4.3. The source term BG is in L'(0,T;H°) because of the
specific structure of B in (1.19). O

4.3. Reduction of the control problem

In this section, we will reduce the control problem, which is now with a coupling of subdiagonal form as in
Section 1.2, to a coupling of order 1. This will lead to a proof of Theorem 1.10

At this stage, we notice that the matrix A, defined in (4.8) is compact for this scale of spaces. Now, it is
natural to define the following operator

Id 0 ... 0
0o A ... 0
J=1. . . . (4.10)
0 0 0 AF!?
J is a natural isometry from H* to (H*)". We will need also the matricial operator P4 defined by (roughly the
action of P4 on each subspace is described by (P4); ; = A1 4; ;A=0~Y)

Ay ApATt ApsA=2 L . A A=D
AAs;  AAssA™' AAxA™2 L ... AAg A=Y
Pi=JAJ = | 0  AApATt APAjAT? oL A Agpg A~
0 0 0 0 AP AL, AT AR g AT (RED

Therefore, we have the immediate property.
Lemma 4.5. P4 is a pseudodifferential operator of order 1 of principal symbol X(x, &) Agun ().
Also, the following Lemma is immediate noting that TB = B.
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Lemma 4.6. Let (Uy,Uy) € € and G € L*(0,T; (L*)X). Then, the following statements are equivalent
1. (U,0,U) € C([0,T], E) is solution to the equation

92U — A,U + AU = BG,
(U(0),0:U(0)) = (Uo, Un).

2. (V,0,V) = J(U,0,U) € C([0,T], (H)N x (L*)N) is solution to the equation

92V — A,V + P4V = BG,
(V(0),0:V(0)) = J(Uo, Uy).

3. W,0,W) = AJ(U,0,U) € C([0,T], (LN x (H=Y)N) is solution to the equation

2 — A APAA='W = AB
{atw oW+ APAATTW G, (411)

(W(0),9,W(0)) = AJ (U, Un).

Proposition 4.7 (HUM). The following statements are equivalent

1. The problem (4.11) is controllable in (L?)N x (H=Y)N with control G € L*(0,T; (L*)¥)
2. We have the observability estimate

T
Cgbs/o | B*AW |12y dt > Eo(Wo, Wh),

for any solution to

O2W — AW + A-1P5AW =0,
(W(0),0:W(0)) = (Wo, W1).

3. (1.22) is controllable and for any X € C, any solution W € (H)N of

—AGW + X2W + A~LPAAW =0,
B*AW =0,

is V =0.
4. (1.22) is controllable and for any A € C, any solution U € (HY)N of

AU+ NU+AU=0
B*U =0,

sV =0.

Proof. 12 is exactly the classical HUM method. We refer for instance to [22].

243 is exactly Theorem 1.5 once we have noticed that A= P A is a pseudodifferential of order 1 with principal
symbol A(z, &) Asup(2)* as noticed in Lemma 4.5, while B*A is of symbol A(x, &) B(x)*. Note also that P4 and
Az, &)B(x)* are not differential operators, but Theorem 3.11 is still true and we can apply Proposition 3.9 to
get the same result, using that A(z, &) is even in &.
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3<4 is obtained undoing the change of variable done in Lemma 4.6 in the elliptic equation (modulo some
duality). More precisely, W solves the equation —A ;W + AW + A~ PAW = 0 if and only if U = JAW solves
—AyU + N2U + A*(2)U = 0. B*AW = 0 is equivalent to B*J~'U = 0 and then B*U = 0 since J !B = B and
so B* = B*J 1, O

Theorem 1.10 follows then as a combination of Lemma 4.6 and Proposition 4.7.

5. EXAMPLES

In this section, we provide two examples as applications of Theorem 1.3. We will treat the wave equations
coupled by velocities of Cascade type, and the wave equations coupled by velocities with (almost) constant
coefficients. The results are not always new, but the proof we provide has the advantage to always rely on
easy ODE analysis which, we believe makes it valuable and give a common feature for this systems studied in
different articles.

5.1. Wave equations coupled by velocities of cascade-type

We first consider the observability problem for wave system Coupled by Velocities of cascade-type:
O2u— Agu+u+ B(t,x)0w =0, (5.1)
02v — Agv+v =0, ’

where the coupling term 8 € C*°([0,T] x M).

Based on Theorem 1.3, we can prove the following statement. The result is mostly contained in [25] which
considers the same problem with zero order coupling or coupling §(¢, x)Av for which the analysis is almost the
same. Yet, we believe that the proof we present here, which mostly relies on Theorem 1.3 and ODE analysis,
is interesting because it gives some ODE interpretation of some computations that were performed in [25].
We refer for example to ([25], Thm. 5.3) where the matrix of the principal symbol of the HUM operator is
computed and corresponds to the Gramian operator of the finite dimensional control problem that we compute
in Lemma 5.3 below.

Proposition 5.1. Assume that o € C*°(R x M). Then weak observability inequality
T

2 2 2 2

L a9+ ot 4 el ol e o)

> O (uo, w1, v0,v1) | F1 w211 x L2+
holds if and only if «, 8 satisfy the following property

Vpo € S*™M,30 < t; <ty < T, such that

a(tr, @0 (p0)) £ 0, alta, o (p0) 7 0, / "B pr(p0)) £ 0 (5.3)

Here o, is Hamiltonnian flow of |€|, defined in Theorem 1.3, ¢,C are two positive constants independent of the
initial data.

Proof of Proposition 5.1. We apply Theorem 1.3 (actually a variant) with D(u,v) = a(t, x)Au with A = (—A,+
1)'/2 and L(u,v) = (B(t, z)v,0), which states that the weak observability is equivalent to the controllability of
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the following finite dimensional system for any py € S*M:

X(t) _ _B(t’gt(po)) < (1) g >X(t)+ O‘(tvwzt(po)) ( (1) >g(t),

X(0) = Xo € RM.

(5.4)

where g € L?(0,T) is a scalar control function. The proposition follows then directly from Lemma 5.3 below. [

Under additional assumptions, we can obtain the strong observability, as in [25].

Proposition 5.2. With the assumptions as Proposition 5.1, let us assume furthermore that « and 8 only depend
on x and B satisfies sign condition, i.e., B >0 (or B < 0), then the observability inequality

T
| [ aQVal + uf?)dodt > Clun,ur,vo,00)Fpcsrscrs (5:5)
0 M

holds if and only if T > T,—s0-su, where Toy_yow (cf.[25]) is defined by

Tososw = 1nf{T >0 s.t. V(po(po) =po € S*M,HO <ty <ty <ty <T,

such that o(gr, (p0)). (g (p0)) £ 0. Blges(po) £ 0. (56)

Proof of Proposition 5.2. We apply Lemma 5.3 (the case 8 > 0) to get the equivalence for weak observ-
ability, Following Theorem 1.5, it only suffices to prove System (5.1) satisfies unique continuation. Let

A= < (1) 8 ) ,B = < (1) > , it is easy to see that A, B satisfy Kalman rank condition and A only has eigen-

value 0. By Proposition A.2 in the appendix, we conclude the proof of unique continuation of System (5.1) and
therefore of the Proposition. Note that Proposition A.2 does not take into account the case A = 0 in (1.9). Yet,
this case is trivial because we have replaced the wave equation by the Klein-Gordon equation. Indeed, (u,v) is
solution of 0 = —Agu +u = —Ay v + v and is zero. O

Lemma 5.3. We have the following equivalence for a, € C([0,T]):

1. The following control system is controlable.
. 0 0 1
X = X
5(t) ( - ) +alt) ( . ) 0 o)
X(0) = Xo € R?,

where g € L*(0,T) is a scalar control function.
2. There is no (c,d) € C?\ (0,0) so that ca(t) = da(t) fot B(r)dr for allt € [0,T].
3. There exists 0 < t; < ta < T, such that

to
a(t) £ 0.a(t2) £0, [ 5(r) £0.
t1
Moreover, if in addition, we have B(t) > 0 (or 5(t) <0), this is also equivalent to
30 < 1 <t <tz < T, such that a(t1) # 0, a(ts) # 0, B(t2) # 0.

Proof. 1<2 follows from classical control theory of finite dimensional system, we omit it.
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Now, we prove 3=2. Assume ty,#5 such that 0 < t; < to < T, a(t1), a(ts) # 0, f 7) # 0. Take (c,d) so
that ca(t) = da(t L 7)dr for all ¢t € [0,T], we shall prove ¢ = d = 0. We have then, since «(t1) # 0 and
aty) # O

c= d/tl0 B(r)dr; c= d/: B(r)dr (5.8)

and by difference 0 = df 7)dr, so d = 0 since ft 7)dr # 0. This gives ¢ = 0 after (5.8).
We finish with 2=3.
First, 2 implies that a # 0 (otherwise any (c,d) # 0 works)) and there exists ¢; so that a(tl) 75 0. Define

the function f(t) ft B(r)dr. We prove f # 0. Indeed, if it is the case, we have 0 = o ft 7)dr for all
t € [0,T]. In particular, 0 = a(t) { fto - [ B to ] for all ¢ € [0,T7], which is impossible by assumption.
So, we have proved f # 0 and there exists ta with f(t2) # 0, and in particular, a(tz) # 0 and f T)dT # 0,

which is the expected property 3, up to exchanging the role of ¢; and t5. Note that we have only selected
0 <t; <ty <T, but we can impose strict inequality with the same conclusion by continuity.
The last equivalence if 5 > 0 is obvious. O

5.2. Wave equations coupled by first or zero order terms of constant coefficients

In this Section, we explain how our result allows to recover and precise some results of Liard-Lissy [37] and
Lissy-Zuazua [39] which were obtained with a complete different method. In particular, it allows to precise the
regularity of the directions that can be reached.

Let A € RV*N and B € REXN be constant matrices. In the notations of Section 1.2, we place ourselves in
the particular cases: A(z) = A constant and B(z) = By,

In particular, our results precise the result in the following sense. Theorem 4.2 of [37] proves controllability
n (H*N=HN x (H*N=2)N with control in L? under the Kalman rank condition, i.e:

rank(B,AB, ..., AN"1B) = N. (5.9)

Our results proves the same result in H' x H° which is defined by (4.5).
Two situations can be considered, coupling of order 1 or 0, that we detail in separate subsection.

5.2.1. Constant coupling of order 1

We consider the following system of wave equations on a compact manifold (M, g):

(V(0),0,V(0)) = (Vo, V1). (5.10)

where V € RNV, A € RV*N and B € RV*E | o € L2(0,T;(L?)X). xu(z) denotes a smooth function which
satisfies

{(af — A, + 1)V + A,V = By, (z)u.

1, if z €w;
() =14 ’ 5.11
Xeo () {07 if ©eM\@ (5:11)

where w C ©. Weak solution of (5.10) exists with initial data (Vo, Vi) € (L?)N x (H-1)V.

Proposition 5.4. Assume A, B satisfy Kalman rank condition and w satisfies GCC. Then System (5.10) is
ezactly controllable with initial data (Vo, V1) € (L2)N x (H-HN,
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Proof of Proposition 5.4. Firstly, we will apply Corollary 1.8 (actually a variant) with D*u = By, (x)u and
L*V = A9V, which states that co-dimensional controllability (the weak observability of dual system) is
equivalent to the controllability of the following finite dimensional system for any p € S*M:

X(1) = SAX(0) + 1Bxa(or(po)u, 512)
X(0)=Xp € RY.
Since w satisfies GCC, for every pg € S* M, we can find an interval [¢1, 2] € R, such that x,(¢:(po)) = 1,Vt €
[t1,t2]. Hence we obtain the exact controllability of (5.12) following from classical control theory of finite
dimensional system. Next we only need to show the unique continuation property of the following elliptic
equations:

If
e

=0 (5.13)

(A2 = Ay +1)v— A" xo = 0;
B v =0

Since w N M =w C M and (A, B) satisfy Kalman rank condition, by using Proposition A.2, we conclude our
Proposition 5.4. O

5.2.2. Constant coupling of order 0

We consider the controllability of the system of wave equations coupled in order zero:

{(ag — A,V + AV = By, (z)u. (5.14)

(V(0),0:V(0)) = (Vo, V).

where V € RV, A € RV*N can be written a matrix “subdiagonal by block” as (1.18) and B € RV*K can be
written as (1.19), u € L2(0,T; (L%)X), x. satisfies (5.11).

Proposition 5.5. Assume that A, B satisfy the Kalman rank condition and w satisfies GCC. Then, with the
notations of Lemma 4.1, System (4.1) is controllable in the space & = H' x H° defined by H* = (H*)% x
(HsH1)d2 x oo HSTR=Y (M) where k and d; €N, i =1,---  k are given by Proposition A.1.

Proof. We want to apply Theorem 1.10. First of all, by Item 1 of Lemma 4.1, the matrix A,, satisfies the
subdiagonal condition with respect to the splitting of the variables defined by the d;. This gives also that
System (4.1) is well posed following from Theorem 4.4. Then by using Theorem 1.10, we only need to show the
unique continuation of eigenfunctions and the controllability of the following finite dimensional system:

{ X(1) = 3 Aulrlp) X (1) + 3 Bra(peloo) ult), (5.15)
X(0) = Xo € RV,

Item 2 of Lemma 4.1 ensures that for z € w, A, (z), Bxw(z)) satisfy Kalman rank condition. Since w sat-
isfies GCC, this means that for any py € S*M, there exists ¢t € [0,T] so that m,¢:(po) € w and therefore
Ay (©:(po)), Bxw(et(po))) satisfy Kalman rank condition. Hence the System (5.15) is controllable.

Concerning the unique continuation of eigenfunctions, we notice that if U is solution to

—AU + AxU = MU,
Xo () B*U = 0.
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then, in fact —Agﬁ + M A* (MU = AU and U = (M;1)*U is solution to

—AU + AU =\,
Xw(z)B*U = 0.

for which we can apply Proposition A.2. So we finish the proof of Proposition 5.5. O

A combination of Lemma 4.1 and Proposition 5.5 simply concludes Theorem 1.11.

APPENDIX A.
A.1 Brunovsky normal form

The following proposition is a reformulated and precise version of the Brunovsky normal form [18] for control
of ODE. We provide a proof of it because we did not find it written in this way and we needed a slight
modification with a matrix A; which will be useful in the change of variable of Lemma 4.1. Yet, it is quite
classical in control theory, and we don’t claim novelty, see for instance [46].

Proposition A.1 (Brunovsky normal form). Assume A € RN*N B e RNXK  satisfy the Kalman rank condi-
tion and denote m = rank(B). Then, there exist some matrices Q € GLy(R), M, € GLg(R) and F € REXN
and some nonincreasing sequence of integers d;,i =1,--- ,k (for k < n) so that

A=Q '(AQ+ BF); B=Q 'BM,

with
0 . . 0
— A21 “e e O ~ [d 0
= . _ m m,K—m
A= . ., : ’ - ON—m,m ON—m,K—m ’ (Al)
0 0 Agkr-1 O
. Idg. ) _d. . .
with Ajy1,; = 0 Qa;ss Ood”l’dl dita ] € REi+1xXdi (j =1,... k), that is A;jy1,(k,1) = Sk, (recall that
di—dit1,diq1 di—dit1,di—dit1
diy1 < d;).

Moreover, (A, E) also satisfy the Kalman rank condition.
Also, for any t € R, we also have the following form for Ay = Q~*(AQ + tBF),

~ Aoy ... ... 0
Ay=| . )
0 0 Arr—1 0

Proof. We prove the result by iteration on the dimension. The initialization is trivial, so we prove the iteration.

There exists Q1, M, so that Q7 *BM, ; = Tdm O, = . We define
’ ’ Ome,m Ome,Kfm
Ci1 C
C — —lA — 1,1 1,2 ,
@A {02,1 Co2

where C1 1 € R™*™, Cy 9 € RW=m)x(N-m) Since A, B satisfies Kalman rank condition, it is easy to obtain
that C, Q; ' BM,, ; satisfies Kalman rank condition. By Hautus Lemma, we check that (Cy9,Cy 1) satisfies the
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Kalman rank condition. Indeed,

rank(A —C,Q7'BM, 1) =N, VAeC,
which is equivalent to

A=Ci1 —Ci2 Id,, O, K—m

k
rank( —Co1 A=0C22 ON—mm ON—mKk-m

)=N, VYAeC,

so that

T(lnk‘( [—02,1 A — 0272]) =N — m, Ve (C,

(A.2)

(A.4)

then we obtain (Cs 2, Cs 1) satisfies the Kalman rank condition. By iteration, there exists G, € GLn_,,(R) and

Gy € GL,,(R) and Fp € R™* (V=) g0 that
AN =GN (ConGy + Co1 Fa); By = G 1Co1 Gy

has the expected form. We define

cn |yl B -]t 2]

ON—m,m G;c ON—m,m T

1 B * * o o
Q2 CQ2 o |:Gx102,1 G;lCz,ng + G1102’2G1:| - |:BNmG;1 ANm:| ’

Now, we define

—1
ng[ Cu 0 }; Q31=[G“ 0 ]

ON—m,m IdN—m ON—m,m IdN—m

so that for @ = Q1Q2Q3 € GLy(R), we have

)

O~1AQ — [~T1 T G,! O]

~ ; Q7 'BM,; =
Bme ANm:|’ Q u,1 |: 0 0

for some matrix 77 € R™*™ and T, € R™*V=") S0, choosing finally

Gy, O T 15
M, = M, ;. F=—-M,
1 |: 0 IdK_m:| |:OK—m,m OK—m,N—m:|
we get
0 0 Id 0 —
“YAQ+ BF) = | 5 - . Q'BM, = O
Q ( Q + ) BN—m AN—m Q ON—m,m ON—m,K—m

This gives the result given the form of Bn_m and Ax_p, given by the iteration. The fact that (Z, E) also satisfy

the Kalman rank condition follows by direct analysis of the associated control problem for instance.
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~ 1—1)T; 1-t)T:
Finally 4; = Q~1(4AQ + tBF) = (E )T (Z )T has the required form. O
N—m N—m

A.2 Eigenvalue problem
We will show the following proposition which will be repeatedly used in Section 5.

Proposition A.2. Assume A € RV*N B € REXN o 3 are smooth functions and w = {a # 0}, 0 = {8 # 0},
respectively. Then, for all \y € C, Ay € C\ {0}, or A\ =1, A2 = 0, the eigenvalue problem

Yz e M, (A.5)

(M =AU + XABU =0,
aBU = 0.

admits an unique zero solution U =0, if A, B and «, 8 satisfy one of the following assumptions

1. (At B') satisfy Kalman rank condition and K = 1 ( number of distinct eigenvalues of A is 1 ), 3 satisfies
a sign condition, that is, 3 >0 (or 5 <0).

2. (A B'") satisfy Kalman rank condition and wNo # 0, B satisfies a sign condition, that is, 3 > 0 (or
5<0).

Before we prove Proposition A.2, we need to recall some basic facts of linear algebra and state notations related
to Jordan decomposition. For any matrix A € RN*N we denote by {u;,i =1,---, K} distinct eigenvalues of
A. l; denotes the geometric multiplicity (the dimension of Ker(A — p;), that is the number of jordan blocks
corresponding to p;) of p; fori =1, | K. Let Pilj € CV be eigenvector corresponding to p; fori = 1,--- K;j=
1,...,1;. We define root vectors PZ’; € CY associated to each eigenvector {PZIJ}, which are given by

K

A—p)PEt=pPr1<k<i-1
{( ) i <k<i; (A.6)
(A— :ui)Pij =0,

where lg denote the dimension of Jordan chain of {Pfj} fori=1,--- ,f(;j =1,...,1;. Then by classical theory
of linear algebra, we can obtain

Lo lpk=1,--- U

(3

span a base of CN. Define a matrix
1| p2 4 pl I pl L&
P= Pnu:)lﬂ"'|Pﬁ|]312|"'|P1511|Pm‘"'|P]~£l~< ) (A7)

so we have Jordan Canonical Form A of A:
A:= P YAP = diag(Ay, Az, -+ , Af) (A.8)

where
A; = diag(Ai, -+, Ay), (A.9)

and A;; is ol i jordan block corresponding to u; fori=1,--- ,f(;j =1,---,1.
Let B := BP, then we state the proof of proposition A.2.

Proof of Proposition A.2. Case “A\1 = 1, A2 = 0” is simple, since 1 — A is a positive operator, then U = 0. So
we only need to prove case “\y # 07. Let W := P~1U. Since A satisfies (A.8), System (A.5) can be decoupled
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of K blocks, so that we only need to consider the solution W;; = (W, ,Wiljzi) € (C> (M))“ of the following
problem:

()\1 — Ag>Wij‘ + )\QAijﬁWij =0, Vxe M7 (AlO)

where A;; is given by (A.9) for every i =1,--- ,K;j =1,---,l;. More precisely, we rewrite System (A.10) as
follow,

(A = Ay )W 4+ Aapi SWY + X W,
: (A.11)
(A1 — D) W,! + AW, = 0.

%
Multiplying W : —equatlon by Wl; and by integration by parts over M, since (3 satisfies sign condition, we
have

j
Wi =0, Vzeo.
Then by unique continuation of scalar elliptic equation, we obtain

Wh =0 VreM.

ij
Hence, repeating this process to each equation of {W, } for k=2, l , we obtain

Whk=0, Vk=2, ll,LzeM.

It suffices to show that W}] =0,e=1,--- ,K,j=1,---,l; under assumptions 1 or 2. Indeed, W}] satisfies the
following equation

(Al—A)W + Aou; BW. 1=1,---  K,5=1,--- ;. (A.12)
Since B can be rewritten as

BPY|---|BPE |, (A.13)

then

K I
BWa=a) BP,W5=a) (Y BPW}) (A.14)

ij i=1 j=1

If we have assumption 1, that is, K = 1 and A, B satisfy Kalman rank condition. Then we obtain that for
j=1-h,z €w, Wllj = 0 following from ([9], Prop. 3.1). By unique continuation of scalar elliptic equation
(A.12), we have Wi, = 0,2 € M,¥j =1,--- 1.
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Next, if we have Assumption 2, that is, A, B satisfy Kalman rank condition and wNo # @), then set © C wNo,
in view of (A.14), we have

Z ZBP1 W) Vr € &. (A.15)
By using (A.12), we have
B Z Aol Z BPLWL) Vo € @. (A.16)
By induction, we obtain
R ~
B> (Aapi)k ZBP1W1 =0, Veeao,k=1,---,K. (A.17)
=1
Since {,ul}1 i are different, we have
ZBP1W1: , Vzewi=1,---,K. (A.18)
By ([9], Prop. 3.1), we obtain
W,=0, Veewi=1 Kj=1- 1. (A.19)

v (A.12) and unique continuation of scalar elliptic equation, we have
Wh=0 VzeMi=1,- Kj=1,-- 1. (A.20)
So we finish the proof. O

A.3 Proof of Lemma 3.5

In the main part of the paper, we use a matrix operator type version of 1-smooth effect Lemma 3.5. A version
of such a result in scalar case can be found in [32]. The proof of Lemma 3.5 relies on the following lemma.

Lemma A.3. Let T C R be an interval and let Hy(t) = EAldyxn + iWo(t) where Wy €

C>=(T; \Ilghg(M'(CNXN)). Define Si(t,0) as the solution operator for the evolution equation Oy — iH(t)

respectively. Then, for any A € W7} (M CN*NY) we have

[A,S.(t,0)] = /0 S.(t, 8)[A,iH ()] (s, 0)ds. (A.21)

In particular, if we take A = Aldn N, then, for all s € R, we have

[A, S (t,0)), [A, S (t,0)*] € Bioe(Zs LIH® (M; CV*¥NY)). (A.22)
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Proof of Lemma A.3. Let

us(t) = [A, S+ (¢, 0)]ug = AS+(¢,0)ug — S+ (¢,0)Aug, us(0) =0. (A.23)
solves
Opuy (t) = AiHy (¢)S+(t,0)ug — iHy (¢) S+ (¢,0)Aug = [A, iH1 (¢)] S+ (¢, 0)ug + i Hy (t)ug (¢).
so that the Duhamel principal yields (A.21). We finish the proof of Lemma A.3. O

Proof of Lemma 3.5. We refer for instance to ([32], Sect. A.3) for some details in the scalar case, the proof
being almost the same. So we omit it. O
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