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A DETERMINISTIC GAME INTERPRETATION FOR FULLY

NONLINEAR PARABOLIC EQUATIONS WITH DYNAMIC

BOUNDARY CONDITIONS

Nao Hamamuki1 and Qing Liu2,*

Abstract. This paper is devoted to deterministic discrete game-theoretic interpretations for fully
nonlinear parabolic and elliptic equations with nonlinear dynamic boundary conditions. It is known that
the classical Neumann boundary condition for general parabolic or elliptic equations can be generated
by including reflections on the boundary to the interior optimal control or game interpretations. We
study a dynamic version of such type of boundary problems, generalizing the discrete game-theoretic
approach proposed by Kohn-Serfaty (2006, 2010) for Cauchy problems and later developed by Giga-Liu
(2009) and Daniel (2013) for Neumann type boundary problems.
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1. Introduction

In this paper, we are interested in a deterministic discrete game-theoretic interpretation for fully nonlinear
parabolic equations with dynamic boundary conditions. We mainly consider boundary value problems of the
form

(DBP1)


∂tu+ F (x,∇u,∇2u) = 0 in Ω× (0,∞), (1.1)

∂tu+H(x,∇u) = 0 on ∂Ω× (0,∞), (1.2)

u(·, 0) = u0 in Ω. (1.3)

We below give a brief description of the notations appearing in (DBP1):

– Ω ⊂ Rn is a bounded domain with boundary of C2 class. Let ν(x) denote the unit outward normal to ∂Ω
at x ∈ ∂Ω.

– u0 : Ω→ R denotes a given Lipschitz function.
– F : Ω× Rn × Sn → R is a continuous fully nonlinear elliptic operator satisfying appropriate assumptions

to be elaborated later. Here Sn stands for the set of all n× n real symmetric matrices.
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– H : ∂Ω× Rn → R denotes a general continuous boundary operator. A typical example of H is

H(x, p) = 〈ν(x), p〉

for all x ∈ ∂Ω and p ∈ Rn, where 〈·, ·〉 stands for the inner product in Rn; in other words, the boundary
condition (1.2) in this case reduces to

∂tu+ 〈ν(x),∇u〉 = 0 on ∂Ω× (0,∞). (1.4)

It is possible to consider a more general class of boundary Hamiltonian H, which will be introduced in a
moment.

We remark that by the boundedness and C2 regularity of Ω, ν can be extended to a Lipschitz function Ω→ B1(0),
where Br(x) denotes the closed ball centered at x with radius r > 0.

A comparison principle for (DBP1) in the framework of viscosity solutions is established in [7, 8]. In
Section 3.2, we review the definition of viscosity solutions to (DBP1) and comparison results.

We aim to construct a family of discrete deterministic two-person games whose value functions approximate
the viscosity solution of (DBP1), inspired by the pioneer work [37] on such game interpretations for Cauchy
problems. Our present work will also serve as an existence result for (DBP1). We stress that it is possible to
extend our results to a more general class of fully nonlinear equations with F depending also on the time variable
t and the unknown function u, but we prefer to stick to the current special form since our main concern lies at
the dynamic boundary condition.

1.1. Background and motivation

Before proceeding to our main results, let us briefly review the related literature and state the motivation of
our work. Dynamic boundary conditions appear in research work for various parabolic equations with important
applications; see for instance [13, 16, 19, 28, 53, 54]. We refer to [2, 18, 20, 23–25, 27] etc. for study on elliptic
equations with dynamic boundary conditions.

In the context of viscosity solutions, as mentioned above, a comparison principle is provided in [7, 8] for a
general class of fully nonlinear parabolic equations with dynamic boundary conditions. Motivated by applications
in superconductivity and interface evolution, a class of dynamic boundary problems for the Hamilton-Jacobi
equations are studied in [17] when the boundary Hamiltonian H is independent of ∇u. More recently, existence
and uniqueness for mean curvature flow equation with the linear dynamic boundary condition (1.4) in a half
space are established in [30].

Besides the wellposedness results, asymptotic behavior for the Hamilton-Jacobi equations with dynamic
boundary conditions is studied in [1, 10]. The authors of [1] study asymptotic behavior of solutions to a dynamic
problem for the eikonal equation

ε∂tu+ |∇u| = 1 in Ω× (0,∞)

as ε→ 0. Such type of asymptotics is recently discussed in [26] for the heat equation.
As for the connection between nonlinear PDEs and discrete games, we recall that a deterministic game-

based approach is proposed by Kohn and Serfaty in [36] for the mean curvature flow equation and in [37]
for general parabolic and elliptic equations. We also refer to the work by Peres et al. [48, 49] on stochastic
discrete games called Tug-of-war for p-Laplace equations with 1 < p ≤ ∞; see related results in [38, 45, 46]. The
game approximations turn out to be useful in understanding various analytic and geometric properties of the
associated nonlinear PDEs, as shown in [4, 42–44, 47, 50], etc.

However, the games mentioned above are all constructed for nonlinear equations either in the whole space
or in a domain with Dirichlet boundary conditions. A continuous-time stochastic interpretation for Neumann
boundary problems is provided in [41]. In the spirit of [36, 37], deterministic discrete game interpretations of
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the Neumann type boundary problems for curvature flow equations and more general parabolic equations are
studied respectively in [31] and in [15] by including reflected or projected dynamics on the boundary in the
games; see also [3, 12] for stochastic discrete games associated to the infinity Laplacian. A random walk approach
to the Robin boundary problem for the Laplace equation is recently provided in [39, 40].

Despite the above development of the game-theoretic approach, it was not clear if the game method can be
generalized for nonlinear dynamic boundary conditions. The present work attempts to answer this question and
is devoted to an extension of the results in [15, 31, 37] to a general class of fully nonlinear dynamic boundary
conditions. In [33] we study the game interpretation for dynamic boundary problem of level set curvature flow
equation and discuss several applications of the game method.

1.2. Assumptions

We first impose some basic assumptions on the operator F in (1.1):

(F1) F is a continuous (degenerate) elliptic operator locally Lipschitz in p and X; namely, for any R > 0, there
exists LF (R) > 0 such that

|F (x, p,X)− F (x, p′, X ′)| ≤ LF (R)(|p− p′|+ |X −X ′|)

for all x ∈ Ω, p, p′ ∈ Rn, X,X ′ ∈ Sn with |p|+ |p′|+ |X|+ |X ′| ≤ R, and

F (x, p,X) ≤ F (x, p,X ′)

for any x ∈ Ω, p ∈ Rn and X,X ′ ∈ Sn satisfying X ≥ X ′.
(F2) There exist C > 0, σ1, σ2 > 0 such that

|F (x, p,X)| ≤ C(1 + |p|σ1 + |X|σ2) for all x ∈ Ω, p ∈ Rn and X ∈ Sn. (1.5)

Let us next introduce a general nonlinear boundary Hamiltonian H in (1.2). Let A be a compact metric
space. For later use, we take for every λ > 0

Ωλ = {x ∈ Ω : dist (x, ∂Ω) > λ}. (1.6)

For any a ∈ A, we denote by γa(x) an outward unit oblique normal to ∂Ω.
Throughout this work we assume that

(H1) The oblique normal γa can be extended to a vector-valued function Ω→ B1(0) that is Lipschitz continuous
uniformly for all a ∈ A.

(H2) There exists a uniform positive lower bound for 〈γa, n〉 on ∂Ω; namely,

m = inf
a∈A
x∈∂Ω

〈γa(x), ν(x)〉 > 0. (1.7)

The assumption (H1) is satisfied when γa = ν on ∂Ω for all a ∈ A. In this case, we can choose a Lipschitz
extension of ν in Ω such that ν(x) = −∇d(x) for any x ∈ Ω \ Ωλ0

with λ0 > 0 small, where d(x) denotes the
signed distance from x to ∂Ω, i.e.,

d(x) = dist (x,Ωc)− dist (x,Ω).

Note that d is of class C2 near ∂Ω due to the C2 regularity of Ω. The Lipschitz extension in Ωλ0
can be done

following [21, p. 80].
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Suppose that H : Ω× Rn → R is given in the form

H(x, p) = min
a∈A

{
〈p, γa(x)− f(x, a)〉+ g(x, a)

}
, (1.8)

where f, g : Ω×A→ R satisfy the following assumptions:

(B1) f, g are both bounded and continuous, and there exist Lf , Lg > 0 such that for any x, x′ ∈ Ω and a ∈ A,

|f(x, a)− f(x′, a)| ≤ Lf |x− x′|, |g(x, a)− g(x′, a)| ≤ Lg|x− x′|.

(B2) The function f satisfies

sup
(x,a)∈Ω×A

|f(x, a)| < m (1.9)

where m > 0 is given in (1.7).

The assumption (B1) together with (H1) implies the existence of a constant LH > 0 fulfilling

|H(x, p)−H(y, q)| ≤ LH ((1 + |p|+ |q|)|x− y|+ |p− q|) (1.10)

for all x, y ∈ Ω and p, q ∈ Rn. Moreover, (B2) combined with (H2) implies that there exists ρ > 0 such that for
any x ∈ Ω and p ∈ Rn,

H (x, p+ sν(x))−H(x, p) ≥ ρs for all s > 0. (1.11)

In fact, we may choose

ρ = m− sup
(x,a)∈Ω×A

|f(x, a)| > 0

to obtain (1.11). This amounts to saying that in (1.2) the classical Neumann part 〈∇u, γa〉 plays a nontrivial
role uniformly for all a ∈ A. This is not only important for our game interpretation but also for uniqueness of
viscosity solutions to (DBP1); we refer to [7, 8] for a comparison principle that essentially requires this property.

It is clear that the linear boundary condition (1.4) satisfies (B1) and (B2). A typical example of nonlinear
dynamic boundary conditions is

∂tu+ 〈∇u, ν(x)〉 = K|∇u|+ g(x) on ∂Ω× (0,∞)

with any 0 ≤ K < 1, for which we take in (1.8) A = B1(0), γa ≡ ν, f(x, a) ≡ Ka and g(x, a) ≡ g(x).

1.3. The game setting and main result

Let us now provide a game interpretation for the general dynamic boundary problem (DBP1).
In order to generate the dynamic boundary condition (1.2), we need to prepare a “cushion” near the boundary

∂Ω. Let α, β, γ ∈ (0, 1) satisfy several assumptions to be precisely given later. Take 0 < µ < 1− γ. We fix a step
size ε > 0 and set N = [t/ε2] for any given (x, t) ∈ Ω× [0,∞). We next set, for every x ∈ Ω,

ηε(x) = min

{
1,

dist (x, ∂Ω)

εµ

}
(1.12)
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and take

ζε(x) = 1− η2
ε(x). (1.13)

Let us start the game from y0 = x ∈ Ω. At the k-th step (k = 1, 2, . . . , N),

– Player I chooses pk ∈ Rn, Xk ∈ Sn satisfying |pk| ≤ ε−α and |Xk| ≤ ε−β ;
– Player II then picks ak ∈ A and vk ∈ Rn with |vk| ≤ ε−γ ;
– Once the choices of both players are determined, the game position moves from yk to a new point yk =
yk−1 + hk (to be proved to belong to Ω later for ε sufficiently small), where

hk =
√

2εηε(yk−1)vk + ε2ζε(yk−1) (f(yk−1, ak)− γak(yk−1)) (1.14)

and ηε, ζε are the functions given respectively in (1.12) and (1.13).
– Meanwhile, Player II pays the following amount of money to Player I:

lk =
√

2εηε(yk−1) 〈pk, vk〉+ ε2η2
ε(yk−1) (〈Xkvk, vk〉+ F (yk−1, pk, Xk))

+ ε2ζε(yk−1)g(yk−1, ak).
(1.15)

The rules above define a sequence of positions y0(= x), y1, y2, . . . , yN . When the game ends after the Nth
round, Player II receives from Player I a terminal fee u0(yN ). The game outcome for Player II at (x, t), determined
by pk, Xk, ak, vk for k = 1, . . . , N , is therefore

Jε(x, t) = u0(yN )−
N∑
k=1

lk.

Suppose that Player II attempts to maximize Jε(x, t) while Player I is to minimize the same amount. We thus
can define the value function as

uε(x, t) = min
p1,X1

max
a1,v1

min
p2,X2

max
a2,v2

. . . min
pN ,XN

max
aN ,vN

Jε(x, t). (1.16)

Let us now verify that yk−1 + hk ∈ Ω for all k = 1, 2, . . . , N when ε > 0 is sufficiently small. To see this, we
omit all of the sub-indices of yk−1, hk, ak for simplicity of notation. Then we have

dist (y + h,Ωc) = dist
(
z +
√

2εηε(y)v,Ωc
)
,

where

z = y + ε2ζε(y) (f(y, a)− γa(y)) .

Thanks to (H2) and the C2 regularity of Ω, we get

dist
(
y − ε2ζε(y)γa(y),Ωc

)
≥ dist (y,Ωc) +mε2ζε(y) + o(ε2ζε(y)),

which, by (B2), implies that

dist (z,Ωc) ≥ dist (y,Ωc) + ε2ζε(y)

(
m− sup

Ω×A
|f |ε2

)
+ o(ε2ζε(y)) ≥ dist (y,Ωc)
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when ε is taken small without depending on y and Ω. In view of (1.12), it follows that

dist
(
z +
√

2εηε(y)v,Ωc
)
≥ dist (z,Ωc)−

√
2εηε(y)|v| ≥ dist (y,Ωc)

(
1−
√

2ε1−γ−µ
)
≥ 0

when ε > 0 is taken further small if necessary.
We remark that although the game dynamics and cost functions look complicated, the connection with

equations can somehow be easily observed; all of the terms involving ηε are used to derive the equation (1.1) in
the interior while the terms related to the boundary condition (1.2) are all carrying ζε.

As an immediate consequence of (1.16), the so-called dynamic programming principle in this case reads

uε(x, t) = min
p,X

max
a,v

{
uε(x+ h, t− ε2)− l

}
, (1.17)

where |p| ≤ ε−α, |X| ≤ ε−β , a ∈ A and |v| ≤ ε−γ , and

h =
√

2εηε(x)v + ε2ζε(x) (f(x, a)− γa(x)) , (1.18)

l =
√

2εηε(x) 〈p, v〉+ ε2η2
ε(x) (〈Xv, v〉+ F (x, p,X)) + ε2ζε(x)g(x, a). (1.19)

We next list the assumptions on the choice of α, β, γ in order to rigorously show the convergence of uε in the
interior, as used also in [15, 37]:

γ <
1

3
, (1.20)

α+ γ < 1, β + 2γ < 2, max{ασ1, βσ2} < 2, (1.21)

β < 1− γ, βσ2 < 1 + γ, (1.22)

α(σ1 − 1) < γ + 1, (1.23)

β(σ2 − 1) < 2γ. (1.24)

We remark that (1.21) is utilized to guarantee the smallness of ε 〈p, v〉, ε2 〈Xv, v〉 and ε2F (x, p,X) respectively
so that the running cost l→ 0 as ε→ 0.

As will be shown in Lemma 3.2, for every T > 0, uε are uniformly bounded in Ω× [0, T ]. Let us then take
the relaxed half limits of uε, as in [14] for example:

u(x, t) := lim
δ→0

sup{uε(y, s) : (y, s) ∈ Ω× [0,∞), |x− y|+ |t− s|+ ε ≤ δ},

u(x, t) := lim
δ→0

inf{uε(y, s) : (y, s) ∈ Ω× [0,∞), |x− y|+ |t− s|+ ε ≤ δ}.
(1.25)

Theorem 1.1 (Game approximation for general dynamic boundary problems). Assume that Ω ⊂ Rn is a
bounded C2 domain. Assume that (H1), (H2), (F1), (F2), (B1), (B2) hold. Let H be given by (1.8). Assume that
u0 is Lipschitz in Ω. For any ε > 0 small, let uε be the value function defined as in (1.16) under the conditions
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(1.20)–(1.24). Then u and u given in (1.25) are respectively a subsolution and a supersolution of (1.1)–(1.2)
with u(·, 0) = u0 = u(·, 0) in Ω. Moreover, if the comparison principle for (DBP1) holds, then uε → u locally
uniformly in Ω× [0,∞) as ε→ 0, where u is a unique solution of (DBP1).

Since (1.17) essentially provides a monotone scheme for the dynamic boundary problem, our proof streamlines
the general framework for convergence of monotone scheme established in [9]. It is possible to obtain a similar
game interpretation for parabolic equations with boundary conditions more general than (1.8); see Section 3.2
for details.

Our game setting and approximation results can be extended to unbounded solutions in unbounded domains
under the current assumptions on F and H if we still assume the Lipschitz continuity of u0. In this case,
proving the convergence of uε requires a more general comparison principle. In general, we need to assume
growth conditions on u0 at space infinity to construct a local bound for uε in Ω× [0,∞) uniform in ε > 0.

1.4. A heuristic proof of game convergence

Let us give a heuristic proof of Theorem 1.1 in what follows. The rigorous proof is presented in detail in
Section 3.1. Suppose that the value function uε is smooth in Ω × (0,∞). Applying Taylor expansion to the
dynamic programming equation (1.17), we have at any (x, t) ∈ Ω× (0,∞)

0 = min
p,X

max
a,v

{
〈∇uε, h〉+

1

2

〈
∇2uεh, h

〉
− ε2∂tu

ε − l
}

+ o(ε2), (1.26)

where h and l are given as in (1.18) and (1.19). Here we used (1.20) to formally deduce that |h|3 is of order
o(ε2).

The derivation of the equation (1.1) follows the same argument as in [37], since ηε(x)→ 1 and ζε(x)→ 0 as
ε→ 0 for any x ∈ Ω. We thus focus our attention only to the case when x ∈ ∂Ω. In order to imitate our rigorous
proof in this case, we assume that there exists an approximating sequence of any (x, t) ∈ ∂Ω× (0,∞), denoted
by (xε, tε), where (1.26) holds. Then we have at (xε, tε)

ε2∂tu
ε = min

p,X
max
v

{√
2εηε 〈∇uε − p, v〉+ ε2η2

ε

(〈
(∇2uε −X)v, v

〉
− F (xε, p,X)

)}
+ max

a

{
ε2ζε 〈∇uε, f(xε, a)− γa〉 − ε2ζεg(xε, a)

}
+ o(ε2).

(1.27)

Our following argument for the first part on the right hand relies on the choices of α, β and γ as in (1.22)–
(1.24). Roughly speaking, due to the maximizing variable v, the minimum needs to be attained approximately
at p = ∇uε(xε, tε) and a certain X ≥ ∇2uε(xε, tε) due to the lowest order term

√
2εηε 〈∇uε − p, v〉 and then

the second dominant term ε2η2
ε

〈
(∇2uε −X)v, v

〉
.

Under such choices of p and X, |v| can be taken small. By the ellipticity of F , we thus have

min
p,X

max
v

{√
2εηε 〈∇uε − p, v〉+ε2η2

ε

(〈
(∇2uε −X)v, v

〉
− F (xε, p,X)

)}
= −ε2η2

εF
(
xε,∇uε,∇2uε

)
+ o(ε2).

(1.28)

On the other hand, in view of (1.8), we have

max
a

{
ε2ζε(xε) 〈∇uε(xε, tε), f(xε, a)− γa〉 − ε2ζεg(xε, a)

}
= −ε2ζεH(xε,∇uε(xε, tε)).
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Combined with (1.27) and (1.28), we are then led to

ε2∂tu
ε + ε2η2

εF (xε,∇uε,∇2uε) + ε2ζεH(∇uε,∇2uε) = o(ε2)

at (xε, tε), which is equivalent to

∂tu
ε + η2

εF (xε,∇uε,∇2uε) + ζεH(xε,∇uε) = o(1). (1.29)

Recalling that η2
ε(xε) + ζε(xε) = 1 for all ε > 0 as in (1.13), we may take a subsequence such that η2

ε(xε)→ c
with 0 ≤ c ≤ 1 as ε→ 0. It follows that at (x, t) ∈ ∂Ω× (0,∞),

c
(
∂tu+ F (x,∇u,∇2u)

)
+ (1− c) (∂tu+H(x,∇u)) = 0.

Hence, u satisfies the dynamic boundary condition in the viscosity sense.

1.5. Relation with other types of boundary conditions

Let us discuss relations between the dynamic boundary condition and other types of boundary conditions
from the game-theoretic point of view.

We can modify the previous game rules for (DBP1) to find game interpretations for fully nonlinear parabolic
equations with the Dirichlet or Neumann boundary condition. More precisely, by simply letting ζε ≡ 0 instead
of taking (1.13), we can prove that the value function uε converges to a viscosity solution of

(DP1)


∂tu+ F (x,∇u,∇2u) = 0 in Ω× (0,∞),

∂tu = 0 on ∂Ω× (0,∞), (1.30)

u(·, 0) = u0 in Ω

with the boundary condition (1.30) in the viscosity sense. We remark that (1.30) seems to be the same as the
Dirichlet condition

u = u0 on ∂Ω× (0,∞) (1.31)

but it may give different behavior of the solutions; see ([17], Sect. 5, [29], Sect. 5.3 and [32]). In fact, solutions
of (DP1) in general are not unique, as pointed out in ([1], Exam. A.5).

In order to obtain the convergence of the game values in this case, we need to impose additional barrier
assumptions on F so as to interpret the Dirichlet boundary condition (1.31) in the strict sense. It turns out that
under the barrier assumptions, both (1.30) and (1.31) are equivalent and we thus can show that uε converges
to the unique solution of the Cauchy-Dirichlet problem. More details will be given in Section 4.1. It would be
interesting to show, under appropriate assumptions on F and u0, that sometimes (DP1) can be interpreted in
the state constraint sense [51, 52] and uε converges to the unique solution of the state constraint problem.

On the other hand, in order to build a game-based approximation for the Neumann boundary problem

(NP)


∂tu+ F (x,∇u,∇2u) = 0 in Ω× (0,∞),

〈∇u, ν〉 = 0 on ∂Ω× (0,∞), (1.32)

u(·, 0) = u0 in Ω,

we take A = {0} with γ0 = ν, and let f(x, 0) = g(x, 0) = 0 for all x ∈ ∂Ω. Moreover, in the game rules, we fix
arbitrarily τ ∈ (0, 1) and replace ζε in (1.14) and in (1.15) by ε−τζε. Heuristically speaking, this change of rules
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turns (1.29) into

∂tu
ε + η2

εF (xε,∇uε,∇2uε) + ε−τζε 〈∇uε, ν(x)〉 = o(1),

whose limit as ε→ 0 leads to (1.32) due to the fact that ε−τ →∞. In Section 4.2, we provide a game-theoretic
approach to a general class of Neumann type boundary problems by generalizing the game setting above.

We emphasize that our modified game construction for the Neumann boundary condition here is different
from that in [15, 31]. In order to force the game states to stay in Ω, we adopt shrinking moves near the boundary
while in the games proposed in [15, 31] either reflection about ∂Ω or projection onto ∂Ω is applied once the
game position exits from Ω.

1.6. Fast evolution asymptotics and the limit elliptic problem

It is a natural question whether we can obtain a similar game interpretation for elliptic problems with dynamic
boundary conditions. This is related to the following problem, which will be discussed in detail in Section 5.
Let us consider the asymptotics for

(DBP2)


δ∂tu+ F (x,∇u,∇2u) = 0 in Ω× (0,∞), (1.33)

∂tu+H(x,∇u) = 0 on ∂Ω× (0,∞),

u(·, 0) = u0 in Ω,

as the parameter δ > 0 tends to 0. Here F and H are assumed to satisfy all assumptions as in Theorem 1.1.
Suppose that a comparison principle holds for (DBP2) and let uδ denote the unique solution of (DBP2) for any
fixed δ > 0.

Under the linear dynamic boundary condition (1.4), asymptotic behavior for (DBP2) as δ → 0 is investigated
in [1] for the eikonal equation and later in [26] for the heat equation. The main results of these papers state
that, when F (x, p,X) = |p| or F (x, p,X) = − trX, the solution uδ → U locally uniformly in [0,∞) as δ → 0,
where U is the unique solution of the dynamic boundary problem for the corresponding elliptic equation, that
is,

(DBP3)


F (x,∇U,∇2U) = 0 in Ω× (0,∞), (1.34)

∂tU +H(x,∇U) = 0 on ∂Ω× (0,∞),

U(·, 0) = u∞ in Ω. (1.35)

We must emphasize that an initial layer emerges in the limit process; the initial value u∞ for the limit U
does not coincide with u0 in general. In fact, by rescaling (DBP2) in the time variable, u∞ can be identified as
the large-time profile of 

∂tu+ F (x,∇u,∇2u) = 0 in Ω× (0,∞),

∂tu = 0 on ∂Ω× (0,∞),

u(·, 0) = u0 in Ω.

Under appropriate assumptions, u∞ can thus be obtained by uniquely solving the stationary Dirichlet problem

(DP2)

{
F (x,∇u,∇2u) = 0 in Ω, (1.36)

u = u0 on ∂Ω. (1.37)

We are able to use the game method to show the asymptotic behavior for the general dynamic boundary
problem (DBP2). Our result is actually slightly stronger. By adapting the game setting we can easily construct
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a game value uε,δ that converges to uδ locally uniformly in Ω × [0,∞) as ε → 0. It turns out that uε,δ → U
locally uniformly as (ε, δ)→ 0 as long as δ ≥ εσ with σ > 0 satisfying

σ < 2−max{ασ1, βσ2}, (1.38)

σ < 1 + γ − βσ2, (1.39)

σ < 1 + γ − α(σ1 − 1), (1.40)

σ < 2γ − β(σ2 − 1). (1.41)

We refer the reader to Theorem 5.6 and Theorem 5.10 for a more precise statement and a detailed proof.
This result can also be considered as a game-theoretic interpretation of dynamic boundary problems for elliptic
equations like (DBP3).

We remark that σ fulfilling (1.38)–(1.41) does exist thanks to (1.21)–(1.24). In particular, if F is Lipschitz
continuous, then σ1 = σ2 = 1 and we only require that 0 < σ < 2γ. To heuristicallly understand such a condition,
in this case we may still apply Taylor expansion to the associated dynamic programming equation and obtain
a new version of (1.27) with F replaced by δ−1F . In order to make the entire argument work again, we thus
need to make sure that, in the term with ε2η2

ε on the left hand side, the range of |v|2 is wider than that of δ−1,
which demands at least formally that σ < 2γ.

It is worth pointing out that a comparison principle for (DBP3) is needed in our rigorous proof of the
convergence of uε,δ. Since it is not available explicitly in the literature, for the sake of completeness, we provide
it in Appendix A with a detailed and technical proof, following the idea in [7, 8].

1.7. Organization of the paper

In Section 2 we give a review on preliminaries of the dynamic boundary problem (DBP1) including the
definition of viscosity solutions and comparison results. In Section 3, we give a rigorous proof of Theorem 1.1.
Section 4 is devoted to discussions on the relations with the Dirichlet and Neumann boundary problems from
the game-theoretic point of view. We study the asymptotic behavior for (DBP2) and a game interpretation of
(DBP3) in Section 5. A comparison principle for (DBP3) is presented in Appendix A for the sake of completeness.

2. Preliminaries on dynamic boundary problems

For the reader’s convenience, in this section we briefly review the definition of viscosity solutions and known
results on well-posedness of (DBP1), especially the comparison principle. Let us start with a definition of
viscosity solutions of (DBP1).

2.1. Definition of viscosity solutions

In the sequel, we denote by USC(Ω× [0,∞)) (resp., LSC(Ω× [0,∞))) the set of all locally bounded upper
semicontinuous (resp., lower semicontinuous) functions in Ω× [0,∞).

Definition 2.1. A function u ∈ USC(Ω× [0,∞)) (resp., u ∈ LSC(Ω× [0,∞))) is said to be a subsolution (resp.,
supersolution) of (1.1)–(1.2) if whenever there exist a function ϕ ∈ C∞(Ω× [0,∞)) and (x0, t0) ∈ Ω× (0,∞) such
that u− ϕ attains a strict maximum (resp., minimum) in Ω× (0,∞) at (x0, t0), then the following inequalities
hold:
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– If x0 ∈ Ω, then we have

∂tϕ(x0, t0) + F (x0,∇ϕ(x0, t0),∇2ϕ(x0, t0)) ≤ 0(
resp., ∂tϕ(x0, t0) + F (x0,∇ϕ(x0, t0),∇2ϕ(x0, t0)) ≥ 0)

)
.

– If x0 ∈ ∂Ω, then we have

∂tϕ(x0, t0) + min
{
F
(
x0,∇ϕ(x0, t0),∇2ϕ(x0, t0)

)
, H (x0,∇ϕ(x0, t0))

}
≤ 0(

resp., ∂tϕ(x0, t0) + max
{
F
(
x0,∇ϕ(x0, t0),∇2ϕ(x0, t0)

)
, H (x0,∇ϕ(x0, t0))

}
≥ 0
)
.

A continuous function on Ω × [0,∞) is called a solution of (1.1)–(1.2) if it is both a subsolution and a
supersolution.

Moreover, a function u ∈ USC(Ω× [0,∞)) (resp., u ∈ LSC(Ω× [0,∞))) is said to be a subsolution (resp.,
supersolution) of (DBP1) if it is a subsolution (supersolution) of (1.1)–(1.2) and satisfies u(·, 0) ≤ u0 (resp.,
u(·, 0) ≥ u0) in Ω. A continuous function on Ω× [0,∞) is a solution of (DBP1) if it is both a subsolution and
a supersolution of (DBP1).

Remark 2.2. For a stationary equation with a dynamic boundary condition such as (DBP3), we can define its
viscosity solutions in the same manner.

2.2. Comparison results

It is known that a comparison principle holds for (DBP1) if Ω is a C2,1 bounded domain, H fulfills (1.11)
and F satisfies appropriate regularity assumptions. A typical regularity assumption on F is as follows.

(F3) F is a Lipschitz (degenerate) elliptic operator in the sense that there exists LF > 0 such that

|F (x, p,X)− F (x′, p′, X ′)|
≤ LF ((1 + |p|+ |p′|)|x− x′|+ |p− p′|+ |X −X ′|)

for all x, x′ ∈ Ω, p, p′ ∈ Rn, X,X ′ ∈ Sn, and

F (x, p,X) ≤ F (x, p,X ′)

for any x ∈ Ω, p ∈ Rn and X,X ′ ∈ Sn satisfying X ≥ X ′.

Theorem 2.3 (Comparison theorem for (DBP1) ([8], Thm. 3.2)). Assume that Ω ⊂ Rn is a bounded C2,1

domain. Assume that (F3), (1.10) and (1.11) hold. Let u be a bounded subsolution of (1.1)–(1.2) and v be a
bounded supersolution of (1.1)–(1.2). If u(·, 0) ≤ v(·, 0) on Ω, then u ≤ v in Ω× [0,∞).

Remark 2.4. The boundedness assumption on u and v is a technical assumption. Indeed, one can prove the
comparison result in Ω× [0, T ) for an arbitrarily T > 0 if u and v are only locally bounded in Ω× [0,∞); see
the proof of an elliptic version (Thm. 2.5) below. We will use this comparison theorem below without assuming
the boundedness of u and v.

Without losing the comparison result, the assumption (F3) can be weakened; see ([8], (H5-1)). Since our main
purpose is to give game-theoretic existence results, for our convenience in the game construction in Section 3
and Section 4, we will mainly use (F1)–(F2) and assume the comparison principle always holds, rather than
assuming (F3) as well as C2,1 regularity of Ω.

In Section 5, since we will also discuss elliptic problems with dynamic boundary conditions, we need a
comparison theorem as below to guarantee uniqueness of solutions. Besides (F3) and C2,1 regularity of Ω, we
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further impose the following assumption on the operator F as well as the function g given in the boundary
Hamiltonian (1.8):

(F4) There are sequences λj , cj > 0 (j = 1, 2, . . .) with

λj → 1, cj → 0 as j →∞

such that

F (x, λjp, λjX) ≥ λjF (x, p,X) + cj

for all j ≥ 1, p ∈ Rn and X ∈ Sn and

min
(x,a)∈Ω×A

(1− λj)g(x, a) ≥ 0. (2.1)

Theorem 2.5 (Comparison principle for elliptic equations with dynamic boundary conditions). Assume that
Ω ⊂ Rn is a bounded C2,1 domain. Assume that (F3), (F4), (B1) and (B2) hold. Suppose that u ∈ USC(Ω×
[0,∞)) and v ∈ LSC(Ω × [0,∞)) are respectively a subsolution and a supersolution of (1.34) with dynamic
boundary condition (1.2). If u ≤ v on Ω× {0}, then u ≤ v in Ω× [0,∞).

The assumption (F4) amounts to saying that one can convert a supersolution (resp., subsolution) of (1.34)
with (1.2) to a strict supersolution (resp., subsolution) in the interior by constant multiple, which plays an
important role of proving the comparison principle. See [34] for a similar idea applied to the Hamilton-Jacobi
equation.

As a typical example, if γa = ν, f(x, a) = 0, we see that (F4) is satisfied when F (x, p,X) = |p| − b1, and
g(x, a) = b2 for all x ∈ Ω, p ∈ Rn and X ∈ Sn with b1 > 0 and b2 ≤ 0, i.e., the dynamic boundary problem reads

|∇u| = b1 in Ω× (0,∞),

∂tu+ 〈∇u, ν〉+ b2 = 0 on ∂Ω× (0,∞),

u(·, 0) = u0 in Ω.

The assumption (F4) is also fulfilled in the same setting when F (x, p,X) = −|p| − b1, g(x, a) = b2 but with
b1 < 0 and b2 ≥ 0.

As mentioned in Remark 2.4, here we also do not assume global boundedness but local boundedness on u
and v in Ω× [0,∞). A proof of Theorem 2.5 will be presented in detail in Section 5.2 and Appendix A.

3. Convergence of game values

This section is devoted to a rigorous proof of Theorem 1.1.

3.1. The rigorous proof

Under the conditions (1.20)–(1.24), let us define Sε : C(Ω)→ C(Ω) to be

Sε[w](x) = min
p,X

max
a,v
{w(x+ h)− l} (3.1)

for w ∈ C(Ω), where h and l are respectively given by (1.18) and (1.19). It is clear that Sε is translation
invariant; namely, Sε[w + C](x) = Sε[w](x) + C for any constant C ∈ R, w ∈ C(Ω) and x ∈ Ω. Moreover, it is
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not difficult to see that Sε is monotone in w, i.e.,

Sε[w1](x) ≥ Sε[w2](x)

for any x ∈ Ω and w1, w2 ∈ C(Ω) with w1 ≥ w2 in Ω.
The following lemma plays a key role in the proof of Theorem 1.1.

Lemma 3.1 (Consistency). Suppose that Ω ⊂ Rn is a bounded C2 domain. Assume that (H1), (H2), (F1),
(F2), (B1) and (B2) hold. Let H be given by (1.8). Assume (1.20)–(1.24) and let Sε be defined by (3.1). Then
for any ϕ ∈ C∞(Ω) and x ∈ Ω,

Sε[ϕ](x)− ϕ(x) = −ε2η2
ε(x)F (x,∇ϕ(x),∇2ϕ(x))− ε2ζε(x)H(x,∇ϕ(x)) + o(ε2), (3.2)

where the constant implied in the error term o(ε2) is independent of x ∈ Ω.

Proof. For any ϕ ∈ C∞(Ω), by Taylor expansion we have

Sε[ϕ](x)− ϕ(x) = min
p,X

max
a,v

{
〈∇ϕ(x), h〉+

1

2

〈
∇2ϕ(x)h, h

〉
− l
}

+ o(ε2) (3.3)

where h and l are given as in (1.18) and (1.19). The error term is independent of x ∈ Ω. The condition (1.20)
is applied to deduce that |h|3 is of order o(ε2). We may divide the right hand side of (3.3) by setting

min
p,X

max
a,v

{
〈∇ϕ(x), h〉+

1

2

〈
∇2ϕ(x)h, h

〉
− l
}

= Q1 +Q2,

where

Q1 := min
p,X

max
v

{√
2εηε(x) 〈∇ϕ(x)− p, v〉+ ε2η2

ε(x)
(〈

(∇2ϕ(x)−X)v, v
〉
− F (x, p,X)

)}
; (3.4)

Q2 := max
a∈A

{
ε2ζε(x) 〈∇ϕ(x), f(x, a)− γa(x)〉 − ε2ζε(x)g(x, a)

}
. (3.5)

We next claim that

Q1 = −ε2η2
ε(x)F (x,∇ϕ(x),∇2ϕ(x)) + o(ε2). (3.6)

The proof of the claim is essentially the same as that of [37, Lemma 4.1], except that all of the terms of the
second order now carry η2

ε(x). We give a detailed proof below for the reader’s convenience.
In order to prove that “≤” holds, one only needs to take p = ∇ϕ(x) and X = ∇2ϕ(x) in (3.3). It suffices to

show “≥” holds.
Roughly speaking, the assumptions (1.22)–(1.24) imply that the first term on the right hand side of (3.4) is

the leading one in terms of the order in ε, which forces p to be taken near ∇ϕ(x).
More precisely, by (1.22) we can take q ∈ R satisfying

0 < q < min{1− γ − β, γ + 1− βσ2} (3.7)

and discuss the following cases.
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(a) Suppose |∇ϕ(x)− p| ≤ εq and ∇2ϕ(x) ≤ X + εγI. Then we may take v = 0 so that

Q1 ≥ −ε2η2
ε(x) max

p,X
F (x, p,X) ≥ −ε2η2

ε(x)F (x,∇ϕ(x),∇2ϕ(x))− Lε2η2
ε(x)(εq + εγ),

where L = LF (R) is the local Lipschitz constant of F in (F1) for R = 1 + ‖ϕ‖C2(Ω).

(b) Suppose |∇ϕ(x)− p| ≤ εq and X + εγI −∇2ϕ(x) is not positive semi-definite. Denote by λ the maximum
positive eigenvalue of ∇2ϕ(x)−X − εγI. Let v be an eigenvector associated to the eigenvalue λ with |v| = ε−γ .
Moreover, we may adjust the sign of v such that

〈∇ϕ(x)− p, v〉 ≥ 0.

By the Lipschitz continuity (F1) of F and the growth condition (F2) again, it follows that

Q1 ≥− ε2η2
ε(x)F (x,∇ϕ(x),∇2ϕ(x)− λI) + ε2η2

ε(x)
(
λε−2γ + ε−γ

)
− Lε2η2

ε(x)(εq + εγ)

≥− ε2η2
ε(x)F (x,∇ϕ(x),∇2ϕ(x)) + ε2η2

ε(x)
(
λε−2γ − Cλσ2

)
+ o(ε2)

for some C > 0 large. Noticing that λ ≤ C(1 + ε−β), we have

λε−2γ − Cλσ2 ≥ λ
(
ε−2γ − Cλσ2−1

)
≥ 0

when ε > 0 is small, since (1.24) holds. We therefore get the desired inequality in this case too.
(c) Suppose that |∇ϕ(x)− p| > εq. Take v parallel to ∇ϕ(x)− p with |v| = ε−γ . Then we get the estimate

by (F2),

Q1 ≥
√

2ε1−γηε(x)|∇ϕ(x)− p| − Cη2
ε(x)

(
ε2−β−2γ + ε2−βσ2

)
− Cε2η2

ε(x)|p|σ1

≥ε1−γηε(x)|∇ϕ(x)− p| − Cε2η2
ε(x)|p|σ1

for some C > 0 when ε > 0 is sufficiently small. The last inequality is due to (3.7) and the fact that 0 ≤ ηε ≤ 1.
If |p| ≤ 2|∇ϕ(x)|, then for ε > 0 small we have

ε1−γηε(x)|∇ϕ(x)− p| − Cε2η2
ε(x)|p|σ1 ≥ ε1−γηε(x)|∇ϕ(x)− p| −O(ε2)

≥ ε1−γ+qηε(x)−O(ε2).

Suppose, on the other hand, that |p| > 2|∇ϕ(x)|, which implies that |p| ≥ 2εq/3, then

ε1−γηε|∇ϕ(x)− p| − Cε2η2
ε |p|σ1 ≥ 1

2
ε1−γηε|p| − Cε2η2

ε |p|σ1 .

Note that

1

2
ε1−γηε(x)|p| − Cε2η2

ε |p|σ1 ≥ ε1−γη2
ε(x)|p|

(
1

2
− Cε1+γ |p|σ1−1

)
≥ ε1−γη2

ε(x)|p|
(

1

2
− Cε1+γ−α(σ1−1)

)
.

It follows from (1.23) that

ε1−γηε(x)|p| − Cε2η2
ε(x)|p|σ1 ≥ 1

4
ε1−γη2

ε(x)|p| ≥ 1

6
ε1−γ+qη2

ε(x)
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when ε > 0 is small. In either case, we obtain

Q1 ≥ −ε2η2
ε(x)F (x,∇ϕ(x),∇2ϕ(x)).

We thus complete the proof of the claim.
Moreover, it is clear that

Q2 = max
a∈A

{
ε2ζε(x) 〈∇ϕ(x), f(x, a)− γa(x)〉 − ε2ζε(x)g(x, a)

}
= −ε2ζε(x)H(x,∇ϕ(x)). (3.8)

We conclude the proof of the lemma by plugging (3.6) and (3.8) together with (3.4) and (3.5) into (3.3).

Lemma 3.2 (Uniform boundedness). Assume that Ω ⊂ Rn is a bounded C2 domain. Assume that (H1), (H2),
(F1), (F2), (B1), (B2) hold. Let H be given by (1.8). Assume that u0 is bounded in Ω. For any ε > 0 small, let
uε be the value function defined as in (1.16) under the conditions (1.20)–(1.24). Then for every T > 0, uε are
uniformly bounded in Ω× [0, T ] for all ε > 0 small.

Proof. Since there exists C > 0 such that |u0| ≤ C, by monotonicity of Sε and Lemma 3.1, we have

Sε[u0](x) ≤ C + ε2η2
ε(x)|F (x, 0, 0)|+ ε2ζε(x)|H(x, 0)|+ o(ε2) ≤ C +Mε2

for some M > 0 independent of ε. Iterating this argument, we can use the translation invariance of Sε to deduce
that uε(x, t) ≤ C + Mt for all (x, t) ∈ [0,∞) and all ε > 0 small. A symmetric lower bound can be obtained
analogously.

Proposition 3.3 (Characterization of relaxed limits as sub- and supersolutions). Suppose that Ω ⊂ Rn is a
bounded C2 domain. Assume (H1), (H2), (F1), (F2), (B1) and (B2) hold. Let H be given by (1.8). Assume
(1.20)–(1.24). Assume that u0 is Lipschitz in Ω. Let uε be the value function defined as in (1.16) for any ε > 0
small. Then u and u given in (1.25) are respectively a subsolution and a supersolution of (1.1)–(1.2).

Proof. By definition, it is not difficult to see that u ∈ USC(Ω× [0,∞)) and u ∈ LSC(Ω× [0,∞)). Let us show
that u is a subsolution of (1.1)–(1.2). Suppose that there exist (x0, t0) ∈ Ω × (0,∞) and φ ∈ C∞(Ω × [0,∞))
such that u− φ attains a unique maximum over Ω× [0,∞) at (x0, t0). The proof is precisely the same as that
of [37, Proposition 3.3] if x0 ∈ Ω. We therefore only consider the boundary case, that is, x0 ∈ ∂Ω.

By the definition of u, we may find r > 0 and a sequence (xε, tε) ∈ Ω × (0,∞) still indexed by ε such that
(xε, tε)→ (x0, t0) as ε→ 0 and

(uε − φ)(xε, tε) ≥ sup
(x,t)∈Br(x0,t0)

(uε − φ)(x, t)− ε3.

We need the error term −ε3, since here we do not assume continuity of uε and therefore the supremum can only
be attained approximately. By (1.17), we get

φ(xε, tε) ≤ Sε[ϕε](xε) + ε3,

where Sε is defined in (3.1) and

ϕε := φ(·, tε − ε2) ∈ C∞(Ω).

It follows from Lemma 3.1 with ϕ = ϕε that

φ(xε, tε) ≤ ϕε(xε)− ε2η2
ε(xε)F (xε,∇ϕε(xε),∇2ϕε(xε))− ε2ζε(xε)H(xε,∇ϕε(xε)) + o(ε2),
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which implies that

ε2∂tφ(xε, tε) ≤ −ε2η2
ε(xε)F (xε,∇ϕε(xε),∇2ϕε(xε))− ε2ζε(xε)H(xε,∇ϕε(xε)) + o(ε2). (3.9)

By taking a further subsequence, we may assume that η2
ε(xε) → c as ε → 0 for some c ∈ [0, 1]. Then dividing

both sides of (3.9) by ε2 and letting ε→ 0 yield

∂tφ(x0, t0) + cF (x0,∇φ(x0, t0),∇2φ(x0, t0)) + (1− c)H(x0,∇φ(x0, t0)) ≤ 0,

which in turn implies that either of the following inequalities holds:

∂tφ(x0, t0) + F (x0,∇φ(x0, t0),∇2φ(x0, t0)) ≤ 0,

∂tφ(x0, t0) +H(x0,∇φ(x0, t0)) ≤ 0.

The proof for u is thus complete. One can similarly show that u is a supersolution.

We also need to establish comparison between the initial values of u and u.

Proposition 3.4 (Initial comparison). Suppose that Ω ⊂ Rn is a bounded C2 domain. Assume that (H1), (H2),
(F1), (F2), (B1) and (B2) hold. Assume that (1.20)–(1.24) hold. Let H be given by (1.8). Assume that u0 is
Lipschitz in Ω. Let uε be the value function defined as in (1.16) for any ε > 0 small. Let u and u be the relaxed
limits given in (1.25). Then

u(·, 0) = u0 = u(·, 0) in Ω. (3.10)

Proof. Let us prove that u(x0, 0) ≤ u0(x0) for any fixed x0 ∈ Ω. Since u0 is Lipschitz continuous, for any fixed
τ > 0 there exists a constant Cτ > 0 such that

u0(x) ≤Wτ (x) := u0(x0) + τ + Cτ |x− x0|2 for all x ∈ Ω.

By Lemma 3.1, we have

Sε[Wτ ](x)−Wτ (x) =− ε2η2
ε(x)F (x, ∇Wτ (x),∇2Wτ (x))

− ε2ζε(x)H(x,∇Wτ (x)) + o(ε2)

for all x ∈ Ω. Here the constant implied in the error term is uniform for x ∈ Ω. We also choose a constant K > 0
such that

|F (x,∇Wτ (x),∇2Wτ (x))|+ |H(x,∇Wτ (x))| ≤ K

for all x ∈ Ω. It follows that for each x ∈ Ω,

Sε[Wτ ](x)−Wτ (x) ≤ Kε2 + o(ε2).

Hence, by the definition and monotonicity of Sε we see that

uε(x, ε2) = Sε[u0](x) ≤ Sε[Wτ ](x) ≤Wτ (x) +Kε2 + o(ε2)
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for all x ∈ Ω.
Let t > 0. After repeating this estimate N times with N = [t/ε2], we obtain

uε(x, t) ≤Wτ (x) +KNε2 + o(Nε2) ≤Wτ (x) +Kt+ o(1)

for all x ∈ Ω. Taking the relaxed half limit ε→ 0 implies

u(x, t) ≤Wτ (x) +Kt

for all x ∈ Ω. This in particular gives

u(x0, 0) ≤Wτ (x0) = u0(x0) + τ,

and therefore sending τ → 0 yields that u(x0, 0) ≤ u0(x0).
A symmetric proof gives u(x0, 0) ≥ u0(x0). We thus conclude the proof, since by definition it is clear that

u(x0, 0) ≥ u(x0, 0).

The statements in Theorem 1.1 are immediate consequences of Proposition 3.3 and Proposition 3.4.

Remark 3.5. Replacing (F1) and (F2) by a stronger assumption (F3), we can obtain the convergence uε → u
by using the comparison principle in Theorem 2.3. Under the assumption (F3), the conditions (1.20)–(1.24) on
α, β, γ become simpler, since σ1 and σ2 can be chosen to be 1. In fact, in this case we only require that

γ <
1

3
, α+ γ < 1, β + γ < 1. (3.11)

3.2. Variants of the game

A straightforward observation, based on our formal proof, is that if we switch the goals of both players
by taking maxp,X mina,v instead of minp,X maxa,v in the game rules, then the game value is turned into an
approximation for (DBP1) with

H(x, p) = max
a∈A

{
〈p, γa(x)− f(x, a)〉+ g(x, a)

}
(3.12)

instead of (1.8).
Moreover, we may generate an even more general Hamiltonian H of Isaacs type via our games by including

one more controller; more precisely, given another compact metric space B, suppose that the oblique normal
and the functions f, g now depend also on b ∈ B. Denote the oblique normal by γa,b and assume

inf
x∈∂Ω

a∈A, b∈B

〈γa,b(x), ν(x)〉 > 0.

If H : Ω× Rn → R can be expressed as

H(x, p) = max
b∈B

min
a∈A
{〈p, γa,b(x)− f(x, a, b)〉+ g(x, a, b)}, (3.13)

we can build a new game by following the same rules but letting Player I also choose b ∈ B at each step besides
the controls p and X. The value function is now defined by

uε(x, t) = min
b1,p1,X1

max
a1,v1

min
b2,p2,X2

max
a2,v2

. . . min
bN ,pN ,XN

max
aN ,vN

Jε(x, t). (3.14)
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Since this change only affects the Taylor expansion of Q2 near the boundary, the limit u still satisfies (1.1) in the
interior. Meanwhile, the boundary condition with this new Hamiltonian H in (3.13) can be derived analogously.
We choose to keep our exhibition simple in this work and refer the reader to [22] for technical details on this
possible generalization.

4. Relation with other boundary problems

Based on the method in the previous section, we can obtain game interpretations for the Dirichlet and
Neumann boundary problems by slightly modifying the rules.

4.1. Reduction to the Dirichlet problem

If we keep the definition of ηε in (1.12) but letting ζε ≡ 0 instead of requiring (1.13), we can follow the whole
argument in the previous section to derive the corresponding PDE. It is easily observed that the only difference
lies at the expansion (1.29) on the boundary, which in the current case reads

∂tu
ε(xε, tε) + η2

ε(xε)F (xε,∇uε(xε, tε),∇2uε(xε, tε)) = o(1),

Passing to the limit yields that

∂tu(x, t) + cF (x,∇u,∇2u) = c
(
∂tu+ F (x,∇u,∇2u)

)
+ (1− c)∂tu = 0

holds for some c ∈ [0, 1]. This suggests that u satisfies the boundary condition ∂tu = 0 in the viscosity sense;
in practice, we should verify this by using inequalities rather than equalities. Hence, the modified game should
give rise to (DP1). We can still characterize the relaxed limits u and u as a sub- and a supersolution of (DP1)
respectively.

Corollary 4.1 (Degenerate dynamic boundary problems). Assume that Ω ⊂ Rn is a bounded C2 domain.
Assume that (F1) and (F2) hold. Assume that u0 is Lipschitz in Ω. For any ε > 0 small, let uε be the value
function, defined as in (1.16), for the game with ζε ≡ 0. Then u and u given in (1.25) are respectively a
subsolution and a supersolution of (DP1).

Remark 4.2. It is also possible to have a game for (DP1) by still having (1.13) and substituting ζε with ετζε
for any fixed τ ∈ (0, 1); the expansion (1.29) on the boundary implies

∂tu
ε + η2

εF (xε,∇uε,∇2uε) + ετζεH(xε,∇uε) = o(1).

It is then straightforward to get (1.30) in the viscosity sense. This method seems more complicated, but intro-
ducing such an additional parameter τ > 0 enables us to compare with the games for the classical Neumann
condition in Section 4.2.

Concerning the initial data, the result in Proposition 3.4 still holds even if we take ζε = 0. However, we are
not able to prove the convergence of uε, since the boundary Hamiltonian does not satisfy (1.11) and comparison
results are not known in general. In fact, viscosity solutions of (DP1) are in general not unique, as shown in
[1, Example A.5]. On the other hand, we refer the reader to [32] for a uniqueness result for (DP1) in a half space.

The problem (DP1) looks equivalent, at least formally from the game perspective, to the following Cauchy-
Dirichlet problem

(DP3)

{
∂tu+ F (x,∇u,∇2u) = 0 in Ω× (0,∞),

u = u0 on Ω× {0} and ∂Ω× (0,∞).
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In fact, due to the choice ζε ≡ 0, the interior game dynamics gradually vanishes when approaching the
boundary; such kind of method to generate the Dirichlet boundary condition is employed in [5] in the Tug-of-war
game for ∞-Laplacian.

A rigorous analysis for the relation between (DP1) and (DP3) (either a proof of equivalence or counterex-
amples to indicate their difference) would be interesting. We below show the equivalence in special cases with
additional assumptions.

The game above precisely characterizes the classical Dirichlet problem (DP3) provided that boundary barriers
can be constructed from both above and below. In order to guarantee the convergence of game values, we need
a comparison principle in the following form:

(CP) Let u ∈ USC(Ω× [0,∞)) and v ∈ LSC(Ω× [0,∞)) be respectively a subsolution and a supersolution of
(1.1). If u(x, t) ≤ v(x, t) for any (x, t) ∈ Ω× {0} and (x, t) ∈ ∂Ω× (0,∞), then u ≤ v in Ω× [0,∞).

Besides, we also assume the existence of barriers at any boundary points:

(F5) For any x0 ∈ ∂Ω and τ > 0, there exists ψ±τ ∈ C∞(Ω) such that

ψ+
τ (x0)− τ ≤ u0(x0) ≤ ψ−τ (x0) + τ,

ψ−τ ≤ u0 ≤ ψ+
τ in Ω, and

F (x,∇ψ+
τ (x),∇2ψ+

τ (x)) ≥ 0, F (x,∇ψ−τ (x),∇2ψ−τ (x)) ≤ 0 for all x ∈ Ω. (4.1)

Such boundary barriers are also indispensable when one attempts to use Perron’s method to show existence
of solutions to the classical Dirichlet problem (DP3). We refer to [14] for concrete examples on how to construct
the barriers.

Theorem 4.3 (Classical Dirichlet boundary problems). Assume that Ω ⊂ Rn is a bounded C2 domain. Assume
that (F1), (F2) and (F5) hold. Assume (1.20)–(1.24). Assume that u0 is Lipschitz in Ω. Let uε be the value
function, defined as in (1.16), of the game for (DP1) with ζε ≡ 0. Then u and u given in (1.25) are respectively
a subsolution and a supersolution of (1.1) satisfying (3.10) and

u(·, t) = u0 = u(·, t) on ∂Ω for all t ≥ 0. (4.2)

Moreover, if the comparison principle (CP) holds, then uε → u locally uniformly in Ω× [0,∞) as ε→ 0, where
u is the unique solution of (DP3).

Proof. Our results in the previous sections already show that u and u given in (1.25) are respectively a subso-
lution and a supersolution of (1.1) satisfying (3.10). It remains to prove (4.2). Let us fix τ > 0, x0 ∈ ∂Ω and
take ψ+

τ as given in (F5). Since Sε is monotone and u0 ≤ ψ+
τ in Ω, we have

uε(x, ε2) = Sε[u0](x) ≤ Sε[ψ+
τ ](x) in Ω.

By the consistency result in Lemma 3.1, it follows that

uε(x, ε2) ≤ ψ+
τ (x)− ε2η2

εF (∇ψ+
τ (x),∇2ψ+

τ (x)) + o(ε2)

for all x ∈ Ω. In view of the assumption (4.1), we thus get

uε(x, ε2) ≤ ψ+
τ (x) + o(ε2) (4.3)
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for all x ∈ Ω. Since uε(x, ε2) = u0(x) for x ∈ ∂Ω by definition, we obtain (4.3) for all x ∈ Ω.
Iterating this argument yields

uε(x, t) ≤ ψ+
τ (x) + o(1)

for all x ∈ Ω and t ≥ 0. Letting ε→ 0 and then τ → 0, we end up with

u(x0, t) ≤ u0(x0)

for all t ≥ 0. We may apply a symmetric argument to deduce that

u(x0, t) ≥ u0(x0)

and the proof of (4.2) is complete.

4.2. Connection with the Neumann-type problem

Game interpretations of Neumann-type boundary problems for various nonlinear elliptic and parabolic
equations are studied in [3, 12, 15, 31] etc.

We can slightly modify the game for (DBP1) described in Section 1.3 to provide an alternative game-theoretic
approach to the following oblique boundary problem

(OP)


∂tu+ F (x,∇u,∇2u) = 0 in Ω× (0,∞),

〈∇u, γ0〉 = 0 on ∂Ω× (0,∞), (4.4)

u(·, 0) = u0 in Ω,

where γ0 is a given oblique outward unit normal vector to ∂Ω. We assume that γ0 satisfies (H1) and (H2).
Indeed, in the game setting we set A to be a singleton {0}, let f ≡ 0 and take g(x, 0) = g(x) for all x ∈ ∂Ω.

We assume that γ0 satisfies (H1) and (H2). Moreover, we also need to change the game rules: fix τ ∈ (0, 1) and
replace ζε in (1.14) and in (1.15) by ε−τζε, i.e., we set

hk =
√

2εηε(xk)vk − ε2−τζε(xk)γ0(xk) (4.5)

lk =
√

2εηε(xk) 〈pk, vk〉+ ε2η2
ε(xk) (〈Xkvk, vk〉+ F (yk, pk, Xk)) + ε2−τζεg(xk). (4.6)

One should view such changes as an emphasis on the boundary game activity; the order was reduced from ε2

to ε2−τ .
Despite these changes, the whole argument of the derivation in the previous section will work. We therefore

obtain the following variant of (1.29):

∂tu
ε(xε, tε) + η2

εF (xε,∇uε(xε, tε),∇2uε(xε, tε))

+ ε−τζε (〈∇uε(xε, tε), γ0(xε)〉 − g(xε)) = o(1).
(4.7)

– If ε−τζε →∞ as ε→ 0, we end up with the oblique boundary condition (4.4).
– If ε−τζε → 0 as ε→ 0, then we get the equation (1.1) on ∂Ω× (0,∞).
– A mixed case shows up when ε−τζε → c for c > 0.

We therefore can obtain the following result for (OP).
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Theorem 4.4 (Neumann-type boundary problem). Assume that Ω ⊂ Rn is a bounded C2 domain. Assume
that (F1) and (F2) hold. Let γ0 be an oblique outward unit normal vector to ∂Ω satisfying (H1) and (H2) with
A = {0}. Let u0 and g be Lipschitz in Ω. Assume (1.20)–(1.24). For any ε > 0 small, let uε be the value function
defined as in (1.16) for the game with A = {0}, f ≡ 0 in Ω and ζε replaced by ε−τζε with 0 < τ < 1. Then u
and u given in (1.25) are respectively a subsolution and a supersolution of (OP). Moreover, if the comparison
principle for (OP) holds, then uε → u locally uniformly in Ω× [0,∞) as ε→ 0, where u is a unique solution of
(OP).

It is clear that when γ0 = ν, this result reduces to a game-theoretic interpretation for the Neumann problem
(NP).

It seems that one cannot take τ = 1 for the game interpretation above; when τ = 1, in (4.7) there is an extra
term

〈
∇2uεγ0, γ0

〉
coming into play. We are not able to remove this term in our expansion.

Remark 4.5. It is worth pointing out that our game construction for Neumann boundary conditions here is
still different from those in [15], though the target equation is the same. The main difference is that in (4.5) we
maintain a “push” at the direction of −γ0 with magnitude of order ε2−τ while in the game described in [15] such
a term (but of order ε) appears as a projection to ∂Ω, depending on how far the game position is away from
Ω if an exit occurs in the previous step. Our interpretation of Neumann boundary conditions is also different
from that in [31, 41], where reflections on ∂Ω are employed.

5. Fast evolution asymptotics and elliptic problems

In this section, we intend to adopt the game-theoretic approach to study the asymptotic behavior of the
solution to (DBP2) as the given parameter δ tends to 0. We assume that H still has the form (1.8) and all
assumptions in Theorem 1.1 still hold.

Using the game described in Section 1.3, we can construct a family of games whose value functions uε,δ

converge, as ε→ 0, to the unique solution of (DBP2), denoted by uδ. In fact, in this case one can simply replace
the running cost F in (1.15) by F/δ in the game introduced in Section 1.3 and then still take uε,δ to be the
value function defined by (1.16).

The dynamic programming principle for the new game is as below:

uε,δ(x, t) = min
p,X

max
a,v

{
uε,δ(x+ h, t− ε2)− lδ

}
, (5.1)

where |p| ≤ ε−α, |X| ≤ ε−β , a ∈ A and |v| ≤ ε−γ , and h is given by (1.18) and

lδ =
√

2εηε(x) 〈p, v〉+ ε2η2
ε(x)

(
〈Xv, v〉+

1

δ
F (x, p,X)

)
+ ε2ζε(x)g(x, a). (5.2)

It is clear that we need to assume δ ≥ εσ with σ satisfying (1.38) to guarantee the smallness of lδ as ε→ 0.
We are interested in the behavior of uε,δ as (ε, δ) → 0, since this will also give us asymptotic behavior for

uδ as δ → 0. This part of our work is inspired by recent results on similar asymptotic problems for the eikonal
equation [1] and heat equations [26] with linear dynamical boundary conditions. In the context of diffusion
problems, limiting behavior of uδ as δ → 0 for parabolic equations is called large diffusion behavior [26]. As
shown in [1, 26], one can expect that uδ converges to U as δ → 0, where U solves (DBP3).

Here u∞ is obtained as the large-time limit of the solution of (DP1) with the Dirichlet condition (1.30). The
problem (DBP3) can be viewed as an (interior) stationary version of (DBP1). The appearance of u∞ reveals
the existence of an initial layer in the limit process for (DBP2) as δ → 0. A simple example to show such
asymptotics will be given in Section 5.1 below.

We actually give a slightly stronger result by investigating the limit of our game value uε,δ for (DBP2) as
ε → 0 and δ → 0 simultaneously. It turns out that, under proper assumptions on F and requirements on the
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vanishing rate on δ(ε), we can obtain a limit U of uε,δ, which uniquely solves (DBP3). Moreover, by considering
such a joint limit for ε and δ, we can obtain a game interpretation for fully nonlinear elliptic equations with
dynamic boundary conditions.

5.1. An example of large diffusion behavior

Let us start with a typical example on the behavior of the solution of (DBP2) as δ → 0.

Example 5.1. Let us consider the following linear problem in one space dimension:

(E)


δ∂tu− uxx = 1 in (−1, 1)× (0,∞),

∂tu+ ux = 0 on {1} × (0,∞),

∂tu− ux = 0 on {−1} × (0,∞),

u(·, 0) = u0 in [−1, 1],

where u0 is a given Lipschitz function in [−1, 1] satisfying u0(±1) = 0. We can show that the unique solution
uδ → U locally uniformly in [−1, 1]× (0,∞) as δ → 0, where

U(x, t) =
1

2
(1− x2) + t

for all (x, t) ∈ [−1, 1]× [0,∞).
Indeed, since u0 is Lipschitz in [−1, 1] and satisfies u0(±1) = 0, we can find c0 > 1 such that for any x ∈ [−1, 1]

|u0(x)| ≤ c0
2

(1− x2).

Letting

t1 =
δ

2
ln
c0 − 1

δ
, t2 =

δ

2
ln

1 + c0
δ

for any δ ∈ (0, c0 − 1), one can show that

wδ,+(x, t) =


1

2

(
(1− c0)e−

2t
δ − 1

)
(x2 − 1) + 2c0t if 0 ≤ t ≤ t1

1

2
(δ + 1)(1− x2) + (δ + 1)t+ (2c0 − δ − 1)t1 if t > t1

and

wδ,−(x, t) =


1

2

(
(1 + c0)e−

2t
δ − 1

)
(x2 − 1)− 2c0t if 0 ≤ t ≤ t2

1

2
(δ − 1)(x2 − 1) + t− (2c0 + 1)t2 if t > t2

are respectively a continuous supersolution and a continuous subsolution of (E). By comparison principle for
(DBP1), we get

wδ,− ≤ uδ ≤ wδ,+ in [−1, 1]× [0,∞).

Since wδ,± → U locally uniformly in [−1, 1]× (0,∞) as δ → 0, we obtain the convergence uδ → U as well.
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Let us denote

u∞(x) =
1

2
(1− x2).

We can easily verify that U solves the following dynamic boundary problem
−Uxx = 1 in (−1, 1)× (0,∞),

∂tU + Ux = 0 on {1} × (0,∞),

∂tU − Ux = 0 on {−1} × (0,∞),

U(·, 0) = u∞ in [−1, 1],

and u∞ is the large time limit of the solution to
∂tu− uxx = 1 in (−1, 1)× (0,∞),

u = 0 on {±1} × (0,∞),

u(·, 0) = u0 in [−1, 1]. (5.3)

5.2. Comparison principles

As is mentioned before, we aim to show that the game value uε,δ for (DBP2) converges to a unique solution
U of (DBP3) as ε, δ → 0. To this end, we need to prepare two comparison principles. One is for the Dirichlet
problem (DP2), which is used to uniquely determine the initial value u∞ of (DBP3). The other one is for
(DBP3), which is already stated in Theorem 2.5. It gives the uniqueness of solutions to (DBP3) and enables us
to conclude the convergence of uε,δ.

A comparison result for (DP2) allows us to find the large-time profile u∞ for (DP1). One difficultly lies at
a possible loss of the Dirichlet boundary data in (DP2). In order to overcome this difficulty, we again assume
(F5) for the existence of boundary barriers so that (1.30) can be interpreted in the strict sense.

We remark that (F5) is in general quite restrictive and u∞ may be uniquely determined as the large-time
profile for (DP1) under weaker assumptions. In [1], although the equation and boundary conditions are more
specific, no assumptions like (F5) are imposed there and the large-time behavior for (DP1) is investigated with
(1.30) interpreted in the viscosity sense.

Theorem 5.2 and Proposition 5.4 given below are mainly concerned with the Dirichlet problem (DP2). We
assume (F4) in these results only for the operator F and the condition (2.1) is irrelevant.

Theorem 5.2 (Comparison principle for stationary Dirichlet problems). Assume that Ω ⊂ Rn is a bounded
domain. Assume that (F3) and (F4) hold. Let u ∈ USC(Ω) and v ∈ LSC(Ω) be respectively a bounded
subsolution and a bounded supersolution of (1.36). If u ≤ v on ∂Ω then u ≤ v in Ω.

We refer to [34] for such a result in the first order case. It is not difficult to see that the operator in Example 5.1
satisfies the assumptions (F3) and (F4). The idea of proving this comparison result under the assumption (F4)
is to first compare the subsolution u with a strict supersolution

vj := λjv + |1− λj | sup
x∈Ω

|v(x)|

of (DP2) and then let λj → 1. As the proof is standard, we omit the details here.

Remark 5.3. The assumption (F4) is typically used to find a strict sub- or supersolution. There are certainly
many other ways to do this. For example, (F4) actually fails to hold when F is the Laplacian operator, i.e.,
F (x, p,X) = − trX. However, one can subtract a positive quadratic function from a supersolution to construct
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a strict supersolution; namely, if v is a supersolution, then

vλ(x) = v(x)− λ|x|2

is a supersolution of −∆vλ = 2nλ in Ω ⊂ Rn for any λ > 0. Raising slightly the boundary data, we can get a
strict supersolution of Dirichlet problem and proceed to the same comparison argument before sending λ→ 0.

We choose to impose (F4) for our convenience in providing a general result including the first order equations.

The following is an immediate consequence of Theorem 5.2.

Proposition 5.4 (Large-time asymptotics). Assume that Ω ⊂ Rn is a bounded domain. Assume that (F3),
(F4) and (F5) hold. Let u0 be Lipschitz in Ω. Let ũ be the unique viscosity solution of (DP1). Then

ũ(·, t)→ u∞ uniformly in Ω as t→∞, (5.4)

where u∞ is the unique solution of (DP2).

To show this result, one can rescale ũ with a parameter λ > 0 to get

ṽλ(x, t) = ũ(x, t/λ), (x, t) ∈ Ω× [0,∞),

which can be easily verified to be the solution of

λ∂tṽλ + F (x,∇ṽλ,∇2ṽλ) = 0 in Ω× (0,∞)

with ṽλ = u0 on Ω× {0} and on ∂Ω× (0,∞) under the assumption (F5). By the standard stability theory and
the comparison principle for (DP2), it follows that ṽλ converges to u∞ locally uniformly in Ω× (0,∞) as λ→ 0.
This completes the proof of (5.4).

On the other hand, Theorem 2.5 can be obtained by adapting the uniqueness arguments in [8]. Let us first give
a comparison result for a subsolution and a strict supersolution. More precisely, for any given c > 0, assuming
that u is a subsolution of (1.34) and (1.2) while v is a supersolution of

F (x,∇u,∇2u) = c in Ω× (0,∞) (5.5)

with (1.2), we prove that u ≤ v in Ω× [0,∞).

Theorem 5.5 (Comparison principle for strict sub/supersolutions). Assume that Ω is a bounded C2,1 domain
in Rn. Assume that (F3), (H1), (H2), (B1) and (B2) hold. Let u ∈ USC(Ω× [0,∞)) be a subsolution of (1.34)
and (1.2). Let v ∈ LSC(Ω× [0,∞)) be a supersolution of (5.5) and (1.2) with c > 0. If u ≤ v on Ω× {0}, then
u ≤ v in Ω× [0,∞).

Since comparison results like Theorem 5.5 are not explicitly available in the literature, we give a proof of
Theorem 5.5 in Appendix A for the reader’s convenience.

We can prove Theorem 2.5 with ease by utilizing the assumption (F4) and the comparison result in
Theorem 5.5.

Proof of Theorem 2.5. For the given supersolution v, we take

vj(x, t) = λjv(x, t) + |1− λj | sup
x∈Ω

|v(x, 0)|, for all (x, t) ∈ Ω× [0,∞).
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In view of (F4), it is not difficult to see that vj is a supersolution of (5.5) with c = cj > 0 and the dynamic
boundary condition (1.2). Moreover, since

vj(x, 0) ≥ v(x, 0), for any x ∈ Ω,

we may apply Theorem 5.5 to deduce that

u ≤ vj in Ω× [0,∞).

Sending j →∞, we end up with u ≤ v in Ω× [0,∞), as desired.

We conclude this section by emphasizing that Remark 5.3 also applies to elliptic equations with dynamic
boundary conditions. The assumption (F4) is only a sufficient condition to find strict sub- and supersolutions
of (DBP3). One can find a different way to construct sub- or supersolutions when (F4) does not hold.

5.3. Game approximation

We finally study limit behavior of uε,δ as (ε, δ) → 0 with a requirement on the dependence δ(ε). We first
examine a general case under the weaker assumptions (F1), (F2) and (F5). Later we additionally impose (F3)
and (F4) so as to use the comparison results in Section 5.2 to conclude the convergence of uε,δ.

5.3.1. General results

Let us first discuss the general case when only assumptions (F1) and (F2) are imposed. In this case, besides
the conditions (1.20)–(1.24) on α, β and γ, we need to assume that δ ≥ εσ with σ > 0 satisfying (1.38)–(1.41).

Taking these extra assumptions on σ into consideration, we define a modified version of the half relaxed
limits of uε,δ as (ε, δ)→ 0: for any (x, t) ∈ Ω× [0,∞), fix σ > 0 satisfying (1.38)–(1.41) and let

uσ(x, t) = lim
r→0

sup
{
uε,δ(y, s) : (y, s) ∈ Ω× [0,∞), |x− y|+ |t− s|+ ε+ δ ≤ r, δ ≥ εσ

}
,

uσ(x, t) = lim
r→0

inf
{
uε,δ(y, s) : (y, s) ∈ Ω× [0,∞), |x− y|+ |t− s|+ ε+ δ ≤ r, δ ≥ εσ

}
.

(5.6)

The boundedness of uε,δ uniformly in (ε, δ) will be justified later in Lemma 5.9.

Theorem 5.6 (Half limits of game values). Assume that Ω ⊂ Rn is a bounded C2,1 domain. Assume that (F1),
(F2), (F4), (F5), (H1), (H2), (B1) and (B2) hold. Assume that (1.20)–(1.24) hold. Assume that u0 is Lipschitz
in Ω. Let ε, δ > 0 and uε,δ be the game value in (1.16) but with running cost F in (1.15) replaced by F/δ. Let
uσ and uσ be defined by (5.6). Then uσ are uσ are respectively a subsolution and a supersolution of (1.34) with
dynamic boundary condition (1.2).

Remark 5.7. Concerning the condition δ ≥ εσ in (5.6), it is equivalent to assume that there exists C > 0 such
that δ ≥ Cεσ for any ε > 0 sufficiently small, or

lim inf
ε→0

δ

εσ
> 0.

These weaker assumptions will not change our result in Theorem 5.10. We choose to keep our current form for
simplicity of exhibition.

Let us take an analogue of (3.1); we define Sεδ : C(Ω)→ C(Ω) by

Sεδ [w](x) = min
p,X

max
a,v
{w(x+ h)− lδ} (5.7)
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for any w ∈ C(Ω), where h and lδ are respectively given by (1.18) and (5.2). It is clear that Sεδ is monotone.

Lemma 5.8 (Consistency for elliptic problems). Suppose that Ω ⊂ Rn is a bounded C2 domain. Assume that
(H1), (H2), (F1), (F2), (B1) and (B2) hold. Let H be given by (1.8). Assume that (1.20)–(1.24) hold and δ ≥ εσ
with σ > 0 satisying (1.38)–(1.41). Let Sεδ be given by (5.7). Then for any ϕ ∈ C∞(Ω) and x ∈ Ω,

Sεδ [ϕ](x)− ϕ(x) = −ε2δ−1η2
ε(x)F (x,∇ϕ(x),∇2ϕ(x))− ε2ζε(x)H(x,∇ϕ(x))

+ o
(
ε2δ−1η2

ε(x) + ε2
)
.

(5.8)

Here and in the rest of this section, we abuse the notation o(·) to express higher order terms as both
parameters ε, δ → 0 with δ ≥ εσ. Under the restriction δ ≥ εσ, for any two positive quantities `1, `2 fulfilling
`i(ε, δ)→ 0 as (ε, δ)→ 0 for both i = 1, 2, by writing `2 = o(`1), we mean that `2/`1 → 0 as (ε, δ)→ 0.

The proof of Lemma 5.8 is quite similar to that of Lemma 3.1. However, since the estimate (5.8) involves the
additional parameter δ with more conditions, we below give full details, explaining how to use the condition
δ ≥ εσ and (1.38)–(1.41).

Proof of Lemma 5.8. For any ϕ ∈ C∞(Ω), x ∈ Ω and δ ≥ εσ, by Taylor expansion we have

Sεδ [ϕ](x)− ϕ(x) = min
p,X

max
a,v

{
〈∇ϕ(x), h〉+

1

2

〈
∇2ϕ(x)h, h

〉
− lδ

}
+ o(ε2), (5.9)

where h and lδ are given as in (1.18) and (5.2). As mentioned before, (1.38) is used to guarantee that lδ → 0
as ε→ 0. The condition (1.20) is adopted to deduce that |h|3 is of order o(ε2). We write the right hand side of
(5.9) as Q1 +Q2, where

Q1 := min
p,X

max
v

{√
2εηε(x) 〈∇ϕ(x)− p, v〉+ ε2η2

ε(x)
〈
(∇2ϕ(x)−X)v, v

〉
− ε2δ−1η2

ε(x)F (x, p,X)

} (5.10)

and Q2 is the same as that in (3.5).
Similar to the proof of Lemma 3.1, our next step is to show that

Q1 = −ε2δ−1η2
ε(x)F (x,∇ϕ(x),∇2ϕ(x)) + o(ε2δ−1η2

ε). (5.11)

The proof for “≤” is based on the choice p = ∇ϕ(x) and X = ∇2ϕ(x) in (3.3). It suffices to show that “≥”
holds.

The conditions (1.22) and (1.39) allow us to take q such that

0 < q < min{1− γ − β, 1 + γ − σ − βσ2}. (5.12)

We discuss the following cases.
(a) Suppose |∇ϕ(x)− p| ≤ εq and ∇2ϕ(x) ≤ X + εγI. Then we may take v = 0 so that

Q1 ≥ −ε2δ−1η2
ε(x)F (x, p,X)

≥ −ε2δ−1η2
ε(x)F (x,∇ϕ(x),∇2ϕ(x))− Lε2δ−1η2

ε(x)(εq + εγ),

where L = LF (R) is the local Lipschitz constant of F in (F1) for R = 1 + ‖ϕ‖C2(Ω). This yields (5.11)
immediately.
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(b) Suppose |∇ϕ(x)− p| ≤ εq and X + εγI −∇2ϕ(x) is not positive semi-definite. Denote by λ the maximum
positive eigenvalue of ∇2ϕ(x)−X − εγI. Let v be an eigenvector associated to the eigenvalue λ with |v| = ε−γ .
Moreover, we may adjust the sign of v such that

〈∇ϕ(x)− p, v〉 ≥ 0.

By the Lipschitz continuity (F1) of F and the growth condition (F2) again, it follows that

Q1 ≥ −ε2δ−1η2
ε(x)F (x,∇ϕ(x),∇2ϕ(x)− λI) + ε2η2

ε(x)
(
λε−2γ + ε−γ

)
− Lε2δ−1η2

ε(x)(εq + εγ),

which yields

Q1 ≥ −ε2δ−1η2
ε(x)F (x,∇ϕ(x),∇2ϕ(x)) + ε2η2

ε(x)
(
λε−2γ − Cδ−1λσ2

)
− o(ε2δ−1η2

ε(x))

for some C > 0 large. Noticing that λ ≤ C(1 + ε−β) and δ ≥ εσ, we have

λε−2γ − Cδ−1λσ2 ≥ λ
(
ε−2γ − Cε−σ−β(σ2−1)

)
≥ 0

when ε > 0 is small, since (1.41) holds. We therefore get (5.11) in this case too.
(c) Suppose that |∇ϕ(x)− p| > εq. Take v parallel to ∇ϕ(x)− p with |v| = ε−γ . Then, by (F2), we get

Q1 ≥
√

2ε1−γηε(x)|∇ϕ(x)− p| − Cη2
ε(x)

(
ε2−β−2γ + δ−1ε2−βσ2

)
− Cε2δ−1η2

ε(x)|p|σ1 ,

for some C > 0 and ε > 0 small, which, in view of (5.12), implies that

Q1 ≥ ε1−γηε(x)|∇ϕ(x)− p| − Cε2δ−1η2
ε(x)|p|σ1 ,

due to the assumption δ ≥ εσ.
If |p| ≤ 2|∇ϕ(x)|, then for ε > 0 small we have

ε1−γηε(x)|∇ϕ(x)− p| − Cε2δ−1η2
ε(x)|p|σ1 ≥ ε1−γηε(x)|∇ϕ(x)− p| −O(ε2δ−1η2

ε(x))

≥ 1

2
ε1−γ+qη2

ε(x).

The last inequality comes from the fact that 1− γ + q < 2− σ due to (5.12) again.
If |p| > 2|∇ϕ(x)|, which yields |p| ≥ 2εq/3, then

ε1−γηε|∇ϕ(x)− p| − Cε2δ−1η2
ε |p|σ1 ≥ 1

2
ε1−γηε|p| − Cε2δ−1η2

ε |p|σ1

≥ ε1−γη2
ε(x)|p|

(
1

2
− Cε1+γδ−1|p|σ1−1

)
≥ ε1−γη2

ε(x)|p|
(

1

2
− Cδ−1ε1+γ−α(σ1−1)

)
.

It follows from the assumption δ ≥ εσ again and (1.40) that

ε1−γηε(x)|p| − Cε2η2
ε(x)|p|σ1 ≥ 1

4
ε1−γη2

ε(x)|p| ≥ 1

6
ε1−γ+qη2

ε(x)
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when ε > 0 is small. In either case, we obtain

Q1 ≥ −ε2δ−1η2
ε(x)F (x,∇ϕ(x),∇2ϕ(x))

for any ε > 0 small by using (5.12) again. We thus complete the proof of the claim (5.11).
Moreover, it is clear that (3.8) still holds for Q2 here. We thus conclude the proof of (5.8) by combining (5.9),

(5.11) and (3.8).

Let us prove uniform boundedness of uε,δ in ε and δ.

Lemma 5.9 (Uniform boundedness). Assume that Ω ⊂ Rn is a bounded C2,1 domain. Assume that (F1), (F2),
(F4), (F5), (H1), (H2), (B1) and (B2) hold. Assume that u0 is Lipschitz in Ω. Assume that (1.20)–(1.24) hold
and δ ≥ εσ with σ > 0 satisying (1.38)–(1.41). Let uε,δ be the game value in (1.16) but with running cost F in
(1.15) replaced by F/δ. Then for any T > 0, uε,δ is bounded in Ω× [0, T ] uniformly for such small ε, δ > 0.

Proof. We first take a smooth function ψ+
τ as in (F5), for any τ > 0 and x0 ∈ ∂Ω arbitrarily taken, such that

u0 ≤ ψ+
τ in Ω,

ψ+
τ (x0) ≤ u0(x0) + τ,

and

F (x,∇ψ+
τ (x),∇2ψ+

τ (x)) ≥ 0 for any x ∈ Ω.

Using (F4), we can take ψ := λj(ψ
+
τ + c) in Ω with c > 0 small and λj > 0 sufficiently close to 1 such that

u0 ≤ ψ in Ω

and

inf
x∈Ω

F
(
x,∇ψ(x),∇2ψ(x)

)
> 0. (5.13)

Applying Lemma 5.8 and (5.13), we have

uε,δ(x, ε2) = Sεδ [u0](x) ≤ Sεδ [ψ](x)

≤ ψ(x)− δ−1ε2η2
ε(x)F

(
x,∇ψ(x),∇2ψ(x)

)
− ε2ζε(x)H

(
x,∇ψ(x)

)
+ o(δ−1ε2η2

ε(x) + ε2)

≤ ψ(x)− δ−1ε2η2
ε(x)

(
F
(
x,∇ψ(x),∇2ψ(x)

)
+ o(1)

)
− ε2ζε(x)H

(
x,∇ψ(x)

)
+ o(ε2)

≤ ψ(x)− ε2ζε(x)H
(
x,∇ψ(x)

)
+ o(ε2).

for εσ ≤ δ ≤ 1 with ε > 0 small. Since ζε(x)H
(
x,∇ψ(x)

)
is uniformly bounded for all x ∈ Ω and ε > 0 small,

we have

uε,δ(x, ε2) ≤ ψ(x) + ε2Mτ ,

where Mτ > 0 depends only on H and ψ. By iteration, it follows that

uε,δ(·, t) ≤ ψ +Mτ t in Ω for all t ≥ 0, (5.14)
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which shows the boundedness of uε,δ from above uniformly for such small ε and δ. A lower bound can be
obtained in a symmetric manner by taking ψ−τ in (F5) and ψ := (ψ−τ − c)/λj in Ω.

Proof of Theorem 5.6. We only show that uσ is a subsolution. Assume that there exist (x0, t0) ∈ Ω × (0,∞)
and φ ∈ C∞(Ω× [0,∞)) such that u− φ attains a unique maximum over Ω× [0,∞) at (x0, t0). By definition
of uσ, there exist r > 0 and a sequence (xε,δ, tε,δ) ∈ Ω× (0,∞) with δ ≥ εσ such that (xε,δ, tε,δ)→ (x0, t0) as
(ε, δ)→ 0 and

(uε,δ − φ)(xε,δ, tε,δ) ≥ sup
Br(xε,δ,t−ε,δ)

(uε − φ)− ε3δ2.

For simplicity of notation below, we use j to denote the index pair (ε, δ) with δ ≥ εσ.
It follows that

φ(xj , tj) ≤ Sεδ [ϕj ](xj) + ε3δ2,

where ϕj = φ(·, tj − ε2). Applying Lemma 5.8 with ϕ = φj and x = xj , we deduce that

φ(xj , tj)− φ(xj , tj − ε2) ≤ −ε2δ−1η2
ε(xj)F (xj ,∇φ(xj , tj − ε2),∇2φ(xj , tj − ε2))

− ε2ζε(xj)H(xj ,∇φ(xj , tj − ε2)) + o
(
ε2δ−1η2

ε(xj) + ε2
)
,

which yields that

ε2∂tφ(xj , tj) ≤ −ε2δ−1η2
ε(xj)F (xj ,∇φ(xj , tj − ε2),∇2φ(xj , tj − ε2))

− ε2ζε(xj)H
(
xj ,∇φ(xj , tj − ε2)

)
+ o

(
ε2δ−1η2

ε(xj) + ε2
)
.

(5.15)

Suppose that x0 ∈ Ω. In this case, we aim to show that

F (x0,∇φ(x0, t0),∇2φ(x0, t0)) ≤ 0. (5.16)

We may assume that xj ∈ Ω. It follows from (5.15) that

η2
ε(xj)F

(
xj ,∇φ(xj , tj − ε2),∇2φ(xj , tj − ε2)

)
≤ −δ∂tφ(xj , tj) + δζε(xj)H(xj ,∇φ(xj , tj − ε2)) + o(1).

Since ηε(xj)→ 1 as j → 0, we are led to (5.16) by letting j → 0.
We next use (5.15) to verify the boundary condition. Suppose that x0 ∈ ∂Ω. By taking a further subsequence,

we may discuss the following two cases.
Case 1. If δ−1η2

ε(xj)→∞ as j → 0, then we may divide (5.15) by ε2δ−1η2
ε and pass to the limit to get (5.16).

Case 2. If δ−1η2
ε(xj) → c as j → 0 for some c ≥ 0, then we have η2

ε(xj) → 0 and therefore ζε → 1 as j → 0.
Dividing (5.15) by ε2 and sending ε→ 0 yield that

cF (x0,∇φ(x0, t0),∇2φ(x0, t0)) + ∂tφ(x0, t0) +H(x0,∇φ(x0, t0)) ≤ 0.

Hence, combining both cases above, we are led to

min
{
F (x0,∇φ(x0, t0),∇2φ(x0, t0)), ∂tφ(x0, t0) +H(x0,∇φ(x0, t0))

}
≤ 0,

which completes the proof.
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5.3.2. Game convergence

Suppose that (F3) holds. As pointed out in Remark 3.5, the ranges for α, β, γ in this case become simpler;
see (3.11). For convergence of uε,δ with δ ≥ εσ, the choice of σ becomes also simpler. Indeed, as σ1 = σ2 = 1,
the conditions (1.38)–(1.41) reduce to only σ < 2γ.

Theorem 5.10 (Game convergence for elliptic equations with dynamic boundary conditions). Assume that
Ω ⊂ Rn is a bounded C2,1 domain. Assume that (F3), (F4), (F5), (H1), (H2), (B1) and (B2) hold. Assume
that (1.20)–(1.24) hold. Assume that u0 is Lipschitz in Ω. Let ε, δ > 0 and uε,δ be the game value in (1.16) but
with running cost F in (1.15) replaced by F/δ. Then uε,δ → U locally uniformly in Ω × (0,∞) as (ε, δ) → 0
provided that δ ≥ εσ with σ < 2γ, where U is the unique solution of (DBP3) with the initial value u∞ being the
unique solution of (DP2).

Remark 5.11. The convergence of uε,δ does not apply to the initial moment. This is certainly due to an instant
jump from u0 to u∞.

Since in Section 3 we have shown the locally uniform convergence uε,δ to uδ as ε → 0, Theorem 5.10
immediately implies the following result.

Corollary 5.12 (Fast evolution behavior). Assume that Ω ⊂ Rn is a bounded C2,1 domain satisfying (H1) and
(H2). Assume that (F3), (F4), (F5), (B1) and (B2) hold. Assume that u0 is Lipschitz in Ω. Let uδ be the unique
solution of (DBP2). Then uδ → U locally uniformly in Ω× (0,∞) as δ → 0, where U is the unique solution of
(DBP3) with u∞ being the unique solution of (DP2).

Let us show Theorem 5.10 by using Theorem 5.6. Under the assumption (F3) we can assume 0 < σ < 2γ in
place of (1.38)–(1.41). We prove that uσ and uσ above essentially satisfies the initial value (1.35).

Proposition 5.13 (Initial verification). Assume that Ω ⊂ Rn is a bounded C2 domain satisfying (H1) and
(H2). Assume that (F3), (F4), (F5), (B1) and (B2) hold. Let u0 be Lipschitz in Ω. Let ε, δ > 0 and uε,δ be the
game value in (1.16) but with running cost F in (1.15) replaced by F/δ. Let uσ and uσ be defined as in (5.6)
for 0 < σ < 2γ. Then uσ(x, t) and uσ(x, t) converge to u∞(x) uniformly for all x ∈ Ω as t→ 0.

Proof. The first part of our proof is based on the construction of barrier functions in the proof of Lemma 5.9
for any fixed point x0 ∈ ∂Ω. By taking the relaxed limit for (5.14) as ε, δ → 0 and then sending λj → 1, c→ 0,
we have, for any τ > 0 and t > 0,

uσ(x0, t) ≤ u0(x0) + τ +Mτ t.

A symmetric argument yields

uσ(x0, t) ≥ u0(x0)− τ −Mτ t.

It follows that uσ(·, 0) = uσ(·, 0) = u0 on ∂Ω due to the arbitrariness of τ > 0 and x0 ∈ ∂Ω.
Moreover, by Theorem 5.6, we see that uσ and uσ, as functions of (x, t) in Ω × (0,∞), are respectively a

subsolution and a supersolution of (1.34), which implies that uσ(·, t) and uσ(·, t) are respectively a subsolution
and a supersolution of (1.34) for all t > 0.

Indeed, suppose that for any fixed t0 > 0, there is a function ϕ ∈ C∞(Ω) such that uσ(·, t0) − ϕ attains a
strict maximum at x0 ∈ Ω. Then, due to the boundedness of uσ and Ω, for any m > 0 large,

(x, t) 7→ uσ(x, t)− ϕ(x)−m|t− t0|2

attains a local maximum at (xm, tm) ∈ Ω× (0,∞). We then have

uσ(xm, tm)− ϕ(xm)−m|tm − t0|2 ≥ uσ(x0, t0)− ϕ(x0), (5.17)
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which yields tm → t0 as m→∞. This further implies that xm → x0 as m→∞. If this is not the case, we may
take a subsequence, still indexed by m for convenience, such that xm → x̂ ∈ Ω as m→∞. Then by (5.17), we
have

uσ(x̂, t0)− ϕ(x̂) ≥ lim sup
m→∞

(uσ(xm, tm)− ϕ(xm)) ≥ uσ(x0, t0)− ϕ(x0),

which is a contradiction. Hence we have xm ∈ Ω.
By the definition of viscosity subsolutions of (1.34), we thus obtain

F (xm,∇ϕ(xm),∇2ϕ(xm)) ≤ 0,

and therefore

F (x0,∇ϕ(x0),∇2ϕ(x0)) ≤ 0

by letting m→∞. The same argument applies to uσ as well.
Recall from Proposition 5.4 that u∞ the unique solution of (DP2). We can use the comparison principle for

(DP2) (Thm. 5.2) to get

uσ(x, t) ≤ u∞(x) + τ +Mτ t+ ω(t)

for all (x, t) ∈ Ω× (0,∞) and any τ > 0. A symmetric argument yields

uσ(x, t) ≥ u∞(x)− τ −Mτ t+ ω(t)

for all (x, t) ∈ Ω× (0,∞) and any τ > 0. Noticing that uσ ≤ uσ, we have

|uσ(x, t)− u∞(x)| ≤ τ +Mt+ ω(t).

This means that for any λ > 0, we can let

|uσ(x, t)− u∞| ≤ λ

by choosing τ ≤ λ/2 first and then letting t > 0 small such that Mt + o(t) ≤ λ/2. This shows that uσ(·, t)
uniformly converges to u∞ in Ω as t→ 0. A similar result holds also for uσ.

We are now in a position to prove Theorem 5.10.

Proof of Theorem 5.10. By Theorem 5.6, we see that uσ and uσ are respectively a subsolution and a supersolu-
tion of (1.34) satisfying the dynamic boundary condition (1.2). Moreover, Proposition 5.13 allows us to redefine
the initial values of uσ and uσ to be

uσ(·, 0) = uσ(·, 0) = u∞ in Ω.

The convergence of uε,δ to the unique solution of (DBP3) is therefore a consequence of Theorem 2.5.
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Appendix A. Comparison principle for elliptic equations with
dynamic boundary conditions

We below give a proof of Theorem 5.5 based on an adaptation of the arguments by Barles [8]. Let us
prepare several preliminary results that will be used in the proof of Theorem 5.5. Given λ > 0 small, (x, b, p) ∈
(Ω \ Ωλ)× R× Rn, we choose a real number C(x, b, p) such that

b+H(x, p+ C(x, b, p)ν(x)) = 0. (A.1)

Using the method in [7, 8], we can extend C to a function defined in Rn×R×Rn and approximate this function
by a family of smooth functions {Cη}η>0.

Proposition A.1. Assume that Ω is a bounded C2,1 domain. Assume (B1) and (B2). Let H be given by (1.8).
Let C : (Ω \ Ωλ) × R × Rn → R be the function satisfying (A.1). Then for each η > 0 there exists a smooth
function Cη : Rn × R× Rn → R such that for any R > 0,

|Cη(x, b, p)− C(x, b, p)| ≤ K0(η + |〈p, ν(x)〉|) (A.2)

holds for all (x, b, p) ∈ (Ω \ Ωλ)× [−R,R]× Rn with K0 > 0 independent of η, x, b, p, and

|Cη(x, 0, 0)| ≤ K, (A.3)

|∇xCη(x, b, p)| ≤ K(1 + |p|), (A.4)∣∣∣∣ ∂∂bCη(x, b, p)

∣∣∣∣ ≤ K, (A.5)

|∇pCη(x, b, p)| ≤ K, (A.6)

|∇2
xCη(x, b, p)| ≤ K(1 + |p|)2(η + | 〈p, ν(x)〉 |)−1, (A.7)

|∇2
xpCη(x, b, p)| ≤ K(1 + |p|)(η + | 〈p, ν(x)〉 |)−1, (A.8)

|∇2
pCη(x, b, p)| ≤ K(η + | 〈p, ν(x)〉 |)−1 (A.9)

hold for all (x, b, p) ∈ Rn × [−R,R]× Rn, where K > 0 depends on η and R.

We omit precise description on how to construct Cη, which can be found in [8, Proof of Lemma 5.1, Step 1].
Note that the boundary condition considered in [8, Lemma 5.1] does not include the time derivative ut (repre-
sented by b above) but depends on the unknown function u instead. We actually can build Cη here by letting b
take the role of u in the regularization process there and all estimates still hold for our purpose.

As a result, we obtain the following.

Proposition A.2. Suppose that all assumptions in Lemma A.1 hold. Then Cη in Lemma A.1 satisfies

|b+H(x, p+ Cη(x, b, p)ν(x))| ≤ K0(η + |〈p, ν(x)〉|) (A.10)

and

|Cη(x, b, p)| ≤ K(1 + |b|+ |p|) (A.11)

for all (x, b, p) ∈ Rn × [−R,R]× Rn and η > 0.
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Proof. Recall that (B1) implies the Lipschitz regularity (1.10) of H. Using (A.1), (1.10) and (A.2), we have

|b+H(x, p+ Cη(x, b, p)ν(x))| = |H(x, p+ C(x, b, p)ν(x))−H(x, p+ Cη(x, b, p)ν(x))|
≤ L|Cη(x, b, p)− C(x, b, p)| ≤ LK0(η + |〈p, ν(x)〉|).

We thus obtain (A.10) by resetting LK0 = K0. Next, it follows from (A.3), (A.5) and (A.6) that

|Cη(x, b, p)| ≤ |Cη(x, 0, 0)|+ |Cη(x, b, p)− Cη(x, 0, 0)| ≤ K +K(|b|+ |p|),

which shows (A.11).

Lemma A.3 ([7, page 99 (20)]). Assume Ω is a bounded C2 domain. Let d(x) denote the signed distance from
x ∈ Ω to ∂Ω. Then for all x, y ∈ Ω

d(x)− d(y) =

〈
(y − x), ν

(
x+ y

2

)〉
+O(|x− y|2). (A.12)

In particular, if x ∈ ∂Ω, then 〈
(x− y), ν

(
x+ y

2

)〉
= d(y) +O(|x− y|2). (A.13)

Proof. By the regularity of d we have

d(x)− d(y) = 〈∇d(y), x− y〉+O(|x− y|2)

and

∇d(y) = ∇d

(
x+ y

2

)
+O(|x− y|) = −ν

(
x+ y

2

)
+O(|x− y|).

These two equations yield (A.12). Also, (A.13) is an immediate consequence of (A.12) since d(x) = 0.

Proof of Theorem 5.5. Suppose by contradiction that M := u(x0, t0) − v(x0, t0) > 0 for some (x0, t0) ∈ Ω ×
(0,∞). Fix T > t0.

Step 1. Doubling variables
Define an upper semicontinuous function Φ : (Ω× [0, T ))2 → R by

Φ(x, t, y, s) := u(x, t)− v(y, s)− ψ(x, t, y, s),

where

ψ(x, t, y, s) :=
|x− y|2

ε2
+

(t− s)2

α2
+
A(d(x)− d(y))2

ε2
+

δ

T − t
+

δ

T − s

− Cη
(
x+ y

2
,

2(t− s)
α2

,
2(x− y)

ε2

)
(d(x)− d(y)).

Here δ is taken to be 4M/(T − t0) and A > 0 is a large constant to be determined later. We may let ε, α > 0
and η > 0 small such that Φ attains a maximum over (Ω× [0, T ))2 at a point Zε = (xε, tε, yε, sε).

A standard viscosity argument then yields that
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– There exists (x̄, t̄, x̄, s̄) ∈ (Ω× [0, T ))2 such that

Zε = (xε, tε, yε, sε)→ (x̄, t̄, x̄, s̄)

as ε→ 0 by taking a subsequence; below we still index the subsequence by ε for convenience.
– xε, yε are close to each other in the sense that

|xε − yε|2

ε2
→ 0 as ε→ 0. (A.14)

– tε 6= 0 and sε 6= 0 and

|tε − sε| ≤ α, (A.15)

for all ε, α small enough. We fix such α > 0.

Set

Q :=

(
x+ y

2
,

2(t− s)
α2

,
2(x− y)

ε2

)
.

As (A.15) essentially gives a bound 2/α for the variable b of Cη, below we will apply the estimates (A.3)–(A.11)
with R = 2/α. For later use, we differentiate ψ to obtain

∂tψ(x, t, y, s) =
2(t− s)
α2

+
δ

(T − t)2
− ∂

∂b
Cη(Q)

2(d(x)− d(y))

α2
, (A.16)

∇xψ(x, t, y, s) =
2(x− y)

ε2
+

2A(d(x)− d(y))

ε2
∇d(x)

−
(

1

2
∇xCη(Q) +

2

ε2
∇pCη(Q)

)
(d(x)− d(y))− Cη(Q)∇d(x),

(A.17)

∇yψ(x, t, y, s) = −2(x− y)

ε2
− 2A(d(x)− d(y))

ε2
∇d(y)

−
(

1

2
∇yCη(Q)− 2

ε2
∇pCη(Q)

)
(d(x)− d(y)) + Cη(Q)∇d(y).

(A.18)

Step 2. Violation of the boundary conditions
Let us show that

∂tψ(Zε) +H(xε,∇xψ(Zε)) > 0 if xε ∈ ∂Ω (A.19)

and

− ∂sψ(Zε) +H(yε,−∇yψ(Zε)) < 0 if yε ∈ ∂Ω (A.20)
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for ε > 0 small enough. Here we only give the proof of (A.19) since the same argument works for (A.20). If
xε ∈ ∂Ω, since d(xε) = 0 and ∇d(x) = −ν(x), by (A.16) and (A.17) we have

∂tψ(Zε) =
2(tε − sε)

α2
+

δ

(T − tε)2
+

2d(yε)

α2

∂Cη
∂b

(Qε),

∇xψ(Zε) =
2(xε − yε)

ε2
+

2Ad(yε)

ε2
ν(xε)

+

(
1

2
∇xCη(Qε) +

2

ε2
∇pCη(Qε)

)
d(yε) + Cη(Qε)ν(xε),

where

Qε :=

(
xε + yε

2
,

2(tε − sε)
α2

,
2(xε − yε)

ε2

)
.

Let us now give an estimate for each term on the left hand side of (A.19) for ε > 0 small.
By (A.5), we get ∣∣∣∣2d(yε)

α2

∂

∂b
Cη(Qε)

∣∣∣∣ ≤ 2K|xε − yε|
α2

= o(1) (A.21)

for ε > 0 small. Here and in the sequel, the constant implied in the error term o(1) also depends on α,A, δ, η.
We next use (A.10) and (A.13) to deduce that

2(tε − sε)
α2

+H

(
xε + yε

2
,

2(xε − yε)
ε2

+ Cη(Qε)ν

(
xε + yε

2

))
≥ −K0

(
η +

∣∣∣∣〈2(xε − yε)
ε2

, ν

(
xε + yε

2

)〉∣∣∣∣)
≥ −K0

(
η +

2

ε2

(
d(yε) +O(|xε − yε|2)

))
= −K0η − 2K0

d(yε)

ε2
+ o(1).

(A.22)

Moreover, using the Lipschitz regularity of H as in (1.10) implied by (B1), we see that

H (xε,∇xψ(Zε)) ≥ H

(
xε,

2(xε − yε)
ε2

+
2Ad(yε)

ε2
ν(xε) + Cη(Qε)ν(xε)

)
− LH

∣∣∣∣12∇xCη(Qε) +
2

ε2
∇pCη(Qε)

∣∣∣∣d(yε).

(A.23)

It follows by (1.11) (due to (B2)) that

H (xε,∇xψ(Zε)) ≥ H

(
xε,

2(xε − yε)
ε2

+ Cη(Qε)ν(xε)

)
+

2ρAd(yε)

ε2

− LH
∣∣∣∣12∇xCη(Qε) +

2

ε2
∇pCη(Qε)

∣∣∣∣d(yε).

(A.24)

Our goal is to estimate from below the difference

H (xε,∇xψ(Zε))−H
(
xε + yε

2
,

2(xε − yε)
ε2

+ Cη(Qε)ν

(
xε + yε

2

))
.
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To this end, adopting (A.4) and (A.6), we see that the last term on the right hand side of (A.24) satisfies

LH

∣∣∣∣12∇xCη(Qε) +
2

ε2
∇pCη(Qε)

∣∣∣∣d(yε)

≤ LH
2
|∇xCη(Qε)|d(yε) + 2LH |∇pCη(Qε)|

d(yε)

ε2

≤ LHK

2

(
1 +

2|xε − yε|
ε2

)
|xε − yε|+ 2LHK

d(yε)

ε2
= o(1) + 2LHK

d(yε)

ε2
.

(A.25)

On the other hand, in view of (1.10) we deduce that

H

(
xε + yε

2
, qε,2

)
−H (xε, qε,1)

≤LH (1 + |qε,1|+ |qε,2|)
∣∣∣∣xε − yε2

∣∣∣∣+ LH |Cη(Qε)|
∣∣∣∣ν(xε)− ν

(
xε + yε

2

)∣∣∣∣ , (A.26)

where

qε,1 :=
2(xε − yε)

ε2
+ Cη(Qε)ν(xε),

qε,2 :=
2(xε − yε)

ε2
+ Cη(Qε)ν

(
xε + yε

2

)
.

Thanks to (A.15) and (A.11), the right hand side of (A.26) can be estimated as follows:

LH(1 + |qε,1|+ |qε,2|)
∣∣∣∣xε − yε2

∣∣∣∣ ≤ LH (1 +
4|xε − yε|

ε2
+ 2|Cη(Qε)|

)
|xε − yε|

2

≤ LH
(

1 +
4|xε − yε|

ε2
+ 2K

(
1 +

2

α
+

2|xε − yε|
ε2

))
|xε − yε|

2
= o(1),

LH |Cη(Qε)|
∣∣∣∣ν(xε)− ν

(
xε + yε

2

)∣∣∣∣ ≤ LHK (1 +
2

α
+

2|xε − yε|
ε2

)
O(|xε − yε|) = o(1).

Hence, we have

H (xε, qε,1)−H
(
xε + yε

2
, qε,2

)
≥ o(1). (A.27)

Combining (A.24), (A.25) and (A.27), we are led to

H (xε,∇xψ(Zε))−H
(
xε + yε

2
,

2(xε − yε)
ε2

+ Cη(Qε)ν

(
xε + yε

2

))
≥ 2ρAd(yε)

ε2
− 2LHK

d(yε)

ε2
+ o(1).

(A.28)
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We finally obtain the estimate

∂tψ(Zε) +H(xε,∇xψ(Zε))

≥ δ

(T − tε)2
−K0η +

d(yε)

ε2
(2ρA− 2K0 − 2LHK)− o(1).

This shows that (A.19) holds for ε > 0 small enough when η and A are chosen to satisfy

η ≤ δ

2K0T 2
, A ≥ K0 + LHK

ρ
.

Step 3. Further estimates for the derivatives of ψ
We first consider ∇xψ(Zε) +∇yψ(Zε), which is estimated using (A.17) and (A.18) as follows:

|∇xψ(Zε) +∇yψ(Zε)|

≤
∣∣∣∣2A(d(xε)− d(yε))− Cη(Qε)

ε2
(∇d(xε)−∇d(yε))−∇xCη(Qε)(d(xε)− d(yε))

∣∣∣∣
≤ 2A|d(xε)− d(yε)|+ |Cη(Qε)|

ε2
|∇d(xε)−∇d(yε)|+ |∇xCη(Qε)||d(xε)− d(yε)|

≤
(
K +

(2A+ 2K)|xε − yε|
ε2

)
O(|xε − yε|) +K

(
1 +

2|xε − yε|
ε2

)
|xε − yε|.

We thus have

|∇xψ(Zε) +∇yψ(Zε)| = o(1). (A.29)

Utilizing (A.17) again, we observe that

|∇xψ(Zε)| ≤
2|xε − yε|

ε2
+

2A|d(xε)− d(yε)|
ε2

+ |Cη(Qε)|

+

(
1

2
|∇xCη(Qε)|+

2

ε2
|∇pCη(Qε)|

)
|d(xε)− d(yε)|

≤ 2|xε − yε|
ε2

+
2A|xε − yε|

ε2
+K

(
1 +

2|xε − yε|
ε2

)
+

(
1

2
K

(
1 +

2|xε − yε|
ε2

)
+

2

ε2
K

)
|xε − yε|,

which implies that

|∇xψ(Zε)||xε − yε| = o(1) (A.30)

when ε > 0 is sufficiently small. In a similar way, we have

|∇yψ(Zε)||xε − yε| = o(1). (A.31)
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The second derivative of ψ is more involved to handle. In the same manner as in [7, p. 99, 100], we can obtain

∇2ψ(Zε) ≤ O
(

1

ε2

)(
I −I
−I I

)
+ o(1)

(
I 0
0 I

)
. (A.32)

Indeed, besides the standard estimates for the second derivatives of |x − y|2/ε2, we also need to calculate
those of A(d(x)− d(y))2/ε2 as well as those of

C̃(x, t, y, s) := Cη(Q)(d(x)− d(y)).

Since the calculation for the former is similar to that for |x − y|2/ε2, we focus our attention on C̃. By direct
calculations, we have

∇2C̃(x, t, y, s) =

3∑
i=1

Di(Q)(d(x)− d(y)) +

6∑
i=4

Di(x, t, y, s), (A.33)

where

D1(Q) :=
1

4

(
∇2
xCη(Q) −∇2

xCη(Q)
−∇2

xCη(Q) ∇2
xCη(Q)

)
, D2(Q) :=

2

ε2

(
∇2
xpCη(Q) 0

0 −∇2
xpCη(Q)

)
,

D3(Q) :=
4

ε4

(
∇2
pCη(Q) −∇2

pCη(Q)
−∇2

pCη(Q) ∇2
pCη(Q)

)
and

D4(x, t, y, s) =
1

2

(
2∇xCη(Q)⊗∇d(x) ∇xCη(Q)⊗ (∇d(x)−∇d(y))

∇xCη(Q)⊗ (∇d(x)−∇d(y)) −2∇xCη(Q)⊗∇d(y)

)?
,

D5(x, t, y, s) =
2

ε2

(
2∇pCη(Q)⊗∇d(x) −∇pCη ⊗ (∇d(x) +∇d(y))

−∇pCη ⊗ (∇d(x) +∇d(y)) 2∇pCη(Q)⊗∇d(y)

)?
,

D6(x, t, y, s) = Cη(Q)

(
∇2d(x) 0

0 −∇2d(y)

)
.

Here A? denotes the symmetrized matrix of A, i.e., A? = (A+AT )/2.
We next verify that, evaluated at Zε, all terms in the sums appearing in (A.33) can be estimated by the right

hand side of (A.32). First, by (A.7), (A.12) and (A.14), we have

|D1(Qε)| |d(xε)− d(yε)|

≤ K
(

1 +
2

ε2
|xε − yε|

)2(
η +

2

ε2

∣∣∣∣〈(xε − yε), ν
(
xε + yε

2

)〉∣∣∣∣)−1

|d(xε)− d(yε)|

≤ K
(

1 +
2

ε2
|xε − yε|

)2(
ε2

2
+

1

η
O
(
|xε − yε|2

))
= o(1).
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Next, for the term with D2, we use (A.8), (A.12) and (A.14) to similarly get

∣∣∇2
xpCη(Qε)

∣∣ |d(xε)− d(yε)| ≤ K
(

1 +
2

ε2
|xε − yε|

)(
ε2

2
+

1

η
O
(
|xε − yε|2

))
= o(ε),

which implies that

(d(xε)− d(yε)) 〈D2(Qε)(w1 ⊕ w2), w1 ⊕ w2〉 ≤
1

ε2
|w1 − w2|2 + o(1)

(
|w1|2 + |w2|2

)
for all w1, w2 ∈ Rn. This shows that D1(Qε)(d(xε) − d(yε)) is bounded by the right hand side of (A.32).
Moreover, since we can utilize (A.9) and (A.12) to deduce

1

ε4

∣∣∇2
pCη(Qε)

∣∣ |d(xε)− d(yε)| ≤
K

ε2

(
1

2
+

1

ε2
O
(
|xε − yε|2

))
,

which yields

D3(Qε)(d(xε)− d(yε)) ≤ O
(

1

ε2

)(
I −I
−I I

)
.

The terms D4(Zε), D5(Zε), D6(Zε) can be similarly estimated. For instance, by direct computation, we have

〈D4(Zε)w1 ⊕ w2, w1 ⊕ w2〉
= 〈∇xCη(Qε)⊗∇d(xε)w1, w1〉 − 〈∇xCη(Qε)⊗∇d(yε)w2, w2〉

+ 〈∇xCη(Qε)w1〉 〈∇d(xε)−∇d(yε), w2〉+ 〈∇xCη(Qε), w2〉 〈∇d(xε)−∇d(yε), w1〉

for any w1, w2 ∈ Rn. By (A.4) and (A.14), we are led to

〈D4(Zε)w1 ⊕ w2, w1 ⊕ w2〉
≤ |∇xCη(Qε)||∇d(x)||w1 − w2||w1 + w2|+ 2∇xCη(Qε)|∇d(xε)−∇d(yε)|(|w1|2 + |w2|2)

≤ o
(

1

ε

)
|w1 − w2||w1 + w2|+ o(1)(|w1|2 + |w2|2)

≤ O
(

1

ε2

)
|w1 − w2|2 + o(1)(|w1|2 + |w2|2),

as desired. We omit the tedious but analogous estimates for D5(Zε) and D6(Zε). In the estimate of D6(Zε), we
need the Lipschitz continuity of ∇2d, which justifies our assumption on C2,1 regularity of Ω.

As the other terms in ∇2ψ(Zε) can be estimated in a standard way, we conclude the proof of (A.32) by
omitting the rest of the details.

Step 4. Use of Crandall-Ishii lemma
Making use of Crandall-Ishii lemma, we see that there exist Xε, Yε ∈ Sn such that

((∇xψ(Zε), ∂tψ(Zε)), Xε) ∈ P
2,+
u(xε, tε), (A.34)

((−∇yψ(Zε),−∂sψ(Zε)),−Yε) ∈ P
2,−

v(yε, sε), (A.35)
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(
Xε O
O Yε

)
≤ ∇2ψ(Zε) + ε2(∇2ψ(Zε))

2. (A.36)

By (A.32), the last condition (A.36) implies that

Xε + Yε ≤ o(1). (A.37)

Since u is a subsolution of (1.34) and (1.2), then (A.19) implies

F (xε,∇xψ(Zε), Xε) ≤ 0 (A.38)

even if xε ∈ ∂Ω. Similarly, since v is a supersolution of (5.5) with (1.2) and (A.20) holds, we get

F (yε,−∇yψ(Zε),−Yε) ≥ c. (A.39)

Subtracting (A.38) from (A.39), and applying (F3) and (A.37) together with the ellipticity of F , we obtain

c ≤ F (yε,−∇yψ(Zε),−Yε)− F (xε,∇xψ(Zε), Xε)

≤ LF ((1 + |∇xψ(Zε)|+ |∇yψ(Zε)|)|xε − yε|+ |∇xψ(Zε) +∇yψ(Zε)|+ o(1)) .

By (A.29)–(A.31), we see that

c ≤ o(1),

which is clearly a contradiction when ε > 0 is sufficiently small.
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[12] F. Charro, J. Garćıa Azorero and J.D. Rossi, A mixed problem for the infinity Laplacian via tug-of-war games. Calc. Var.
Partial Differ. Equ. 34 (2009) 307–320.

[13] P. Colli and T. Fukao, The Allen-Cahn equation with dynamic boundary conditions and mass constraints. Math. Methods
Appl. Sci. 38 (2015) 3950–3967.

[14] M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations Bull.
Am. Math. Soc. (N.S.) 27 (1992) 1–67.

[15] J.-P. Daniel, A game interpretation of the Neumann problem for fully nonlinear elliptic and parabolic equations. ESAIM:
COCV 19 (2013) 1109–1165.

[16] R. Denk, J. Prüss and R. Zacher, Maximal Lp-regularity of parabolic problems with boundary dynamics of relaxation type.
J. Funct. Anal. 255 (2008) 3149–3187.

[17] C.M. Elliott, Y. Giga and S. Goto, Dynamic boundary conditions for Hamilton-Jacobi equations. SIAM J. Math. Anal. 34
(2003) 861–881

[18] J. Escher, Nonlinear elliptic systems with dynamic boundary conditions. Math. Z. 210 (1992) 413–439.

[19] J. Escher, Quasilinear parabolic systems with dynamical boundary conditions. Commun. Partial Differ. Equ. 18 (1993)
1309–1364.

[20] J. Escher, Smooth solutions of nonlinear elliptic systems with dynamic boundary conditions, In Evolution equations, control
theory, and biomathematics (Han sur Lesse, 1991), volume 155 of Lecture Notes in Pure and Appl. Math. Dekker, New York
(1994) 173–183.

[21] L.C. Evans and R.F. Gariepy. Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press,
Boca Raton, FL (1992).

[22] L.C. Evans and P.E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs
equations. Indiana Univ. Math. J. 33 (1984) 773–797.

[23] M. Fila, K. Ishige and T. Kawakami, Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical
boundary condition. Commun. Pure Appl. Anal. 11 (2012) 1285–1301.

[24] M. Fila, K. Ishige and T. Kawakami, Large-time behavior of small solutions of a two-dimensional semilinear elliptic equation
with a dynamical boundary condition. Asymptot. Anal. 85 (2013) 107–123.

[25] M. Fila, K. Ishige and T. Kawakami, Large-time behavior of solutions of a semilinear elliptic equation with a dynamical
boundary condition. Adv. Differ. Equ. 18 (2013) 69–100.

[26] M. Fila, K. Ishige and T. Kawakami, The large diffusion limit for the heat equation with a dynamical boundary condition.
Preprint arXiv:1806.06308 (2018).
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