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A DETERMINISTIC GAME INTERPRETATION FOR FULLY
NONLINEAR PARABOLIC EQUATIONS WITH DYNAMIC
BOUNDARY CONDITIONS

NAao HAMAMUKI! AND QING Liu%*

Abstract. This paper is devoted to deterministic discrete game-theoretic interpretations for fully
nonlinear parabolic and elliptic equations with nonlinear dynamic boundary conditions. It is known that
the classical Neumann boundary condition for general parabolic or elliptic equations can be generated
by including reflections on the boundary to the interior optimal control or game interpretations. We
study a dynamic version of such type of boundary problems, generalizing the discrete game-theoretic
approach proposed by Kohn-Serfaty (2006, 2010) for Cauchy problems and later developed by Giga-Liu
(2009) and Daniel (2013) for Neumann type boundary problems.
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1. INTRODUCTION

In this paper, we are interested in a deterministic discrete game-theoretic interpretation for fully nonlinear
parabolic equations with dynamic boundary conditions. We mainly consider boundary value problems of the
form

Owu + F(z,Vu, V3u) =0 in 2 x (0,00), (1.1)
(DBP1) du+ H(z,Vu) =0 on 99 x (0,00), (1.2)
u(+,0) = ug in Q. (1.3)

We below give a brief description of the notations appearing in (DBP1):

— 1 C R" is a bounded domain with boundary of C? class. Let v(z) denote the unit outward normal to 99
at x € L.

— up : Q© — R denotes a given Lipschitz function.

— F:QxR" xS* = R is a continuous fully nonlinear elliptic operator satisfying appropriate assumptions
to be elaborated later. Here S™ stands for the set of all n x n real symmetric matrices.
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2 N. HAMAMUKI AND Q. LIU

— H : 00 x R" — R denotes a general continuous boundary operator. A typical example of H is
H(Z‘,p) = <1/(a:),p>

for all z € 9 and p € R™, where (-,-) stands for the inner product in R™; in other words, the boundary
condition (1.2) in this case reduces to

O+ (v(x),Vu) =0 on 9Q x (0, 00). (1.4)

It is possible to consider a more general class of boundary Hamiltonian H, which will be introduced in a
moment.

We remark that by the boundedness and C? regularity of €, v can be extended to a Lipschitz function Q — B1(0),
where B, (z) denotes the closed ball centered at = with radius r > 0.

A comparison principle for (DBP1) in the framework of viscosity solutions is established in [7, 8. In
Section 3.2, we review the definition of viscosity solutions to (DBP1) and comparison results.

We aim to construct a family of discrete deterministic two-person games whose value functions approximate
the viscosity solution of (DBP1), inspired by the pioneer work [37] on such game interpretations for Cauchy
problems. Our present work will also serve as an existence result for (DBP1). We stress that it is possible to
extend our results to a more general class of fully nonlinear equations with F’ depending also on the time variable
t and the unknown function w, but we prefer to stick to the current special form since our main concern lies at
the dynamic boundary condition.

1.1. Background and motivation

Before proceeding to our main results, let us briefly review the related literature and state the motivation of
our work. Dynamic boundary conditions appear in research work for various parabolic equations with important
applications; see for instance [13, 16, 19, 28, 53, 54]. We refer to [2, 18, 20, 23-25, 27] etc. for study on elliptic
equations with dynamic boundary conditions.

In the context of viscosity solutions, as mentioned above, a comparison principle is provided in [7, 8] for a
general class of fully nonlinear parabolic equations with dynamic boundary conditions. Motivated by applications
in superconductivity and interface evolution, a class of dynamic boundary problems for the Hamilton-Jacobi
equations are studied in [17] when the boundary Hamiltonian H is independent of Vu. More recently, existence
and uniqueness for mean curvature flow equation with the linear dynamic boundary condition (1.4) in a half
space are established in [30].

Besides the wellposedness results, asymptotic behavior for the Hamilton-Jacobi equations with dynamic
boundary conditions is studied in [1, 10]. The authors of [1] study asymptotic behavior of solutions to a dynamic
problem for the eikonal equation

edu+ |Vul =1 in Q x (0,00)

as € — 0. Such type of asymptotics is recently discussed in [26] for the heat equation.

As for the connection between nonlinear PDEs and discrete games, we recall that a deterministic game-
based approach is proposed by Kohn and Serfaty in [36] for the mean curvature flow equation and in [37]
for general parabolic and elliptic equations. We also refer to the work by Peres et al. [48, 49] on stochastic
discrete games called Tug-of-war for p-Laplace equations with 1 < p < oo; see related results in [38, 45, 46]. The
game approximations turn out to be useful in understanding various analytic and geometric properties of the
associated nonlinear PDEs; as shown in [4, 4244, 47, 50], etc.

However, the games mentioned above are all constructed for nonlinear equations either in the whole space
or in a domain with Dirichlet boundary conditions. A continuous-time stochastic interpretation for Neumann
boundary problems is provided in [41]. In the spirit of [36, 37], deterministic discrete game interpretations of
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the Neumann type boundary problems for curvature flow equations and more general parabolic equations are
studied respectively in [31] and in [15] by including reflected or projected dynamics on the boundary in the
games; see also [3, 12] for stochastic discrete games associated to the infinity Laplacian. A random walk approach
to the Robin boundary problem for the Laplace equation is recently provided in [39, 40].

Despite the above development of the game-theoretic approach, it was not clear if the game method can be
generalized for nonlinear dynamic boundary conditions. The present work attempts to answer this question and
is devoted to an extension of the results in [15, 31, 37] to a general class of fully nonlinear dynamic boundary
conditions. In [33] we study the game interpretation for dynamic boundary problem of level set curvature flow
equation and discuss several applications of the game method.

1.2. Assumptions

We first impose some basic assumptions on the operator F' in (1.1):

(F1) F is a continuous (degenerate) elliptic operator locally Lipschitz in p and X; namely, for any R > 0, there
exists Lp(R) > 0 such that

|F(z,p, X) = F(z,p/, X')| < Lp(R)(lp — p'| + [ X — X))
for all z € Q, p,p’ € R", X, X' € S" with |p| + |p/| + | X| + |X'| < R, and
F(z,p, X) < F(z,p,X’)

for any z € Q, p € R” and X, X’ € S™ satisfying X > X'.
(F2) There exist C > 0, 01,02 > 0 such that

|F(z,p, X)| < C(1+ |p|”* +1]X]7?) forall z € Q, p e R" and X € S™. (1.5)

Let us next introduce a general nonlinear boundary Hamiltonian H in (1.2). Let A be a compact metric
space. For later use, we take for every A > 0

Oy = {x € Q:dist (z,00) > A} (1.6)

For any a € A, we denote by ~,(x) an outward unit oblique normal to 9.
Throughout this work we assume that

(H1) The oblique normal v, can be extended to a vector-valued function Q — By (0) that is Lipschitz continuous
uniformly for all a € A.
(H2) There exists a uniform positive lower bound for (vy,,n) on 9€; namely,

m= ;Ielg (Ya(z),v(z)) > 0. (1.7)
€00

The assumption (H1) is satisfied when v, = v on 99 for all @ € A. In this case, we can choose a Lipschitz

extension of v in Q such that v(x) = —Vd(z) for any € Q\ Qy, with A9 > 0 small, where d(z) denotes the
signed distance from x to 01, i.e.,

d(z) = dist (x, Q°) — dist (x, Q).

Note that d is of class C? near 9§ due to the C? regularity of 2. The Lipschitz extension in 2, can be done
following [21, p. 80].
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Suppose that H : @ x R® — R is given in the form
H(z,p) = ’;%iﬂ{ P, va(2) — f(2,0)) +g(x,a)}, (1.8)

where f,g: Q x A — R satisfy the following assumptions:

(B1) f,g are both bounded and continuous, and there exist L, L, > 0 such that for any z, 2" € Q and a € A,
fe.a) ~ f@a)| < Lyle — 2, lge,a) - g(a',0)] < Lyla — ']
(B2) The function f satisfies

sup  |f(z,a)] <m (1.9)
(z,a)EQx A
where m > 0 is given in (1.7).

The assumption (B1) together with (H1) implies the existence of a constant Ly > 0 fulfilling

|H(x,p) — H(y,q)| < Lz (1 + [p| + lg)|z -yl +|p — ql) (1.10)

for all z,y € Q and p, ¢ € R™. Moreover, (B2) combined with (H2) implies that there exists p > 0 such that for
any ¢ € ) and p € R",

H (z,p+ sv(z)) — H(x,p) > ps for all s > 0. (1.11)
In fact, we may choose

p=m— sup |[f(z,a)]>0
(z,0)€EQX A

to obtain (1.11). This amounts to saying that in (1.2) the classical Neumann part (Vu,~,) plays a nontrivial
role uniformly for all @ € A. This is not only important for our game interpretation but also for uniqueness of
viscosity solutions to (DBP1); we refer to [7, 8] for a comparison principle that essentially requires this property.

It is clear that the linear boundary condition (1.4) satisfies (B1) and (B2). A typical example of nonlinear
dynamic boundary conditions is

Oru + (Vu,v(z)) = K|Vu| + g(x) on 99 x (0, 00)
with any 0 < K < 1, for which we take in (1.8) A = B1(0), v, = v, f(z,a) = Ka and g(z,a) = g(x).

1.3. The game setting and main result

Let us now provide a game interpretation for the general dynamic boundary problem (DBP1).

In order to generate the dynamic boundary condition (1.2), we need to prepare a “cushion” near the boundary
00. Let a, B, € (0, 1) satisfy several assumptions to be precisely given later. Take 0 < 1 < 1 —~. We fix a step
size e > 0 and set N = [t/e?] for any given (z,t) €  x [0,00). We next set, for every x € (,

o (1.12)

71 (x) = min {1, diSt(a’an)}
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and take
_ 2
C(z) =1—n(z). (1.13)

Let us start the game from yo = x € Q. At the k-th step (k=1,2,...,N),

Player I chooses pj, € R™, X, € S™ satisfying [px| < e~ and | Xy| < e77;

— Player II then picks ax € A and v, € R™ with |vg| < e77;

— Once the choices of both players are determined, the game position moves from y; to a new point yx =
Yk—1 + hi (to be proved to belong to  later for ¢ sufficiently small), where

hie = V2ene (Yr—1)vk + €2 (Yr—1) (f k=1, k) — Yar Ye-1)) (1.14)

and 7., (. are the functions given respectively in (1.12) and (1.13).
— Meanwhile, Player II pays the following amount of money to Player I:

e = V2en: (yi—1) 0k, o) + €202 (yk—1) (Xnvr, o) + F (Yr—1, Prs X))

1.15
+ 2 (yk—1)9(Yr—1, ar). (1.15)

The rules above define a sequence of positions yo(= ), y1,y2, - ..,yn. When the game ends after the Nth
round, Player IT receives from Player I a terminal fee ug(yn). The game outcome for Player IT at (z,t), determined
by pk, Xk, ax, v for k=1,... N, is therefore

2

T (@, t) = uo(yn) = Y _ -

k=1

Suppose that Player II attempts to maximize J¢(z,t) while Player I is to minimize the same amount. We thus
can define the value function as

u®(x,t) = min max min max... min max J°(z,t). 1.16
) b
p1,X1 a1,v1 p2, X2 az,v2 PN,XN AN,UN

Let us now verify that yx_1 + hy € Q for all k = 1,2,..., N when ¢ > 0 is sufficiently small. To see this, we
omit all of the sub-indices of yi_1, hi, ax for simplicity of notation. Then we have

dist (y + h, 2°) = dist (z +V2en.(y)v, QC> ,
where

2=y +eC(y) (fly:a) = 7a(y)-
Thanks to (H2) and the C? regularity of Q, we get
dist (y - 52<€(y)7a(y)a QC) > dist (y, Q%) + mgzés(y) + 0(52C6(y))>

which, by (B2), implies that

dist (z,Q°) > dist (y, Q) + €2 (y) (m — sup |f|€2> + 0(e2¢-(y)) > dist (y, Q°)
OxA
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when ¢ is taken small without depending on y and Q. In view of (1.12), it follows that
dist (Z +V2en.(y)v, Q) > dist (2, Q%) — V2en:(y)|v| > dist (y, Q) (1 - \@gl—w—u) >0

when £ > 0 is taken further small if necessary.

We remark that although the game dynamics and cost functions look complicated, the connection with
equations can somehow be easily observed; all of the terms involving 7. are used to derive the equation (1.1) in
the interior while the terms related to the boundary condition (1.2) are all carrying (..

As an immediate consequence of (1.16), the so-called dynamic programming principle in this case reads

u®(z,t) = minmax {u®(z + h,t —?) — 1}, (1.17)

p,X a,v
where [p| < e |X|<e# a€ Aand [v|] <e™ 7, and

h = V2en. (2)o + £2C. () (f(2,0) — 7a(2)) (1.18)

l= ﬁsng(x) (p,v) 4+ *nt(x) ((Xv,v) + F(z,p, X)) + 2¢(2)g(x, a). (1.19)

We next list the assumptions on the choice of «, 8, in order to rigorously show the convergence of u® in the
interior, as used also in [15, 37]:

N < % (1.20)

a+vy<l1l, p+2y<2, max{ao,fo2} <2, (1.21)
B<l—r, Borz<l+r, (1.22)

alop —1) <y+1, (1.23)

Blos — 1) < 2. (1.24)

We remark that (1.21) is utilized to guarantee the smallness of € (p,v), €2 (Xv,v) and 2F(x,p, X) respectively
so that the running cost [ — 0 as ¢ — 0.

As will be shown in Lemma 3.2, for every T > 0, u¢ are uniformly bounded in Q x [0,7]. Let us then take
the relaxed half limits of u®, as in [14] for example:

(a,t) = lim sup{u(y, 5) : (9,5) € D x [0,00), o — y| + |t — s| + £ < o,
6=0 _ (1.25)
Q(l‘,t) = %E}%lnf{us(yvs) : (y78) € x [Oa OO), |'T’ - y| + |t - S| +e< 5}

Theorem 1.1 (Game approximation for general dynamic boundary problems). Assume that Q@ C R™ is a
bounded C* domain. Assume that (H1), (H2), (F1), (F2), (B1), (B2) hold. Let H be given by (1.8). Assume that
ug 18 Lipschitz in 2. For any € > 0 small, let u® be the value function defined as in (1.16) under the conditions
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(1.20)~(1.24). Then w and u given in (1.25) are respectively a subsolution and a supersolution of (1.1)(1.2)
with u(-,0) = ug = u(-,0) in 2. Moreover, if the comparison principle for (DBP1) holds, then u® — u locally
uniformly in Q@ x [0,00) as € — 0, where u is a unique solution of (DBP1).

Since (1.17) essentially provides a monotone scheme for the dynamic boundary problem, our proof streamlines
the general framework for convergence of monotone scheme established in [9]. It is possible to obtain a similar
game interpretation for parabolic equations with boundary conditions more general than (1.8); see Section 3.2
for details.

Our game setting and approximation results can be extended to unbounded solutions in unbounded domains
under the current assumptions on F' and H if we still assume the Lipschitz continuity of ug. In this case,
proving the convergence of u® requires a more general comparison principle. In general, we need to assume
growth conditions on ug at space infinity to construct a local bound for u¢ in Q x [0, 00) uniform in ¢ > 0.

1.4. A heuristic proof of game convergence

Let us give a heuristic proof of Theorem 1.1 in what follows. The rigorous proof is presented in detail in
Section 3.1. Suppose that the value function u is smooth in Q x (0,00). Applying Taylor expansion to the
dynamic programming equation (1.17), we have at any (z,t) € Q x (0,00)

1

0= mi)?max {<VUE, h) + 5 (V2ufh, h) — 20pu® — l} + o(?), (1.26)
p.X av

where h and [ are given as in (1.18) and (1.19). Here we used (1.20) to formally deduce that |h|3 is of order

o(g?).

The derivation of the equation (1.1) follows the same argument as in [37], since n.(x) — 1 and (. (z) — 0 as
€ — 0 for any x € Q. We thus focus our attention only to the case when = € 9. In order to imitate our rigorous
proof in this case, we assume that there exists an approximating sequence of any (z,t) € 9Q x (0, 00), denoted
by (ze,t.), where (1.26) holds. Then we have at (x.,¢.)

20 = mi)? max {\/557]5 (Vus —p,v) + 202 (((Vuf — X)v,v) — F(ze,p, X)) }
pEl (1.27)
g {6 (V0 F(00) = 20) = (o) | + o).

Our following argument for the first part on the right hand relies on the choices of «, 5 and v as in (1.22)—
(1.24). Roughly speaking, due to the maximizing variable v, the minimum needs to be attained approximately
at p = Vu®(z.,t.) and a certain X > V2u®(z.,t.) due to the lowest order term v/2en. (Vu® — p,v) and then
the second dominant term e?n? {(V?u® — X)v,v).

Under such choices of p and X, |v| can be taken small. By the ellipticity of F', we thus have

min max {\/55776 (Vu® — p,v) +e’n2 ({(V*u® — X)v,v) — F(zc,p, X)) }

p,X v

(1.28)
= —*n2F (2., Vus, V?u®) + o(e?).

On the other hand, in view of (1.8), we have

max {52Ca(m£) (VU (e, to), f (e, a) = Ya) — €°Ceg(e, a)} = —e?CH (e, Vs (2, L))
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Combined with (1.27) and (1.28), we are then led to
e20uf + 2’ F(x., Vu®, V2u®) + 2 H(Vu®, V2u®) = o(e?)
at (z,t.), which is equivalent to
Ot + n2F (ze, Vus, V) + ( H(x., Vu) = o(1). (1.29)

Recalling that n?(x.) + (.(z.) = 1 for all € > 0 as in (1.13), we may take a subsequence such that n2(z.) — ¢
with 0 < ¢ <1 ase— 0. It follows that at (z,t) € IQ x (0, 00),

¢ (Qpu+ F(z,Vu, V?u)) + (1 — ¢) (Qpu + H(z, Vu)) = 0.
Hence, u satisfies the dynamic boundary condition in the viscosity sense.

1.5. Relation with other types of boundary conditions

Let us discuss relations between the dynamic boundary condition and other types of boundary conditions
from the game-theoretic point of view.

We can modify the previous game rules for (DBP1) to find game interpretations for fully nonlinear parabolic
equations with the Dirichlet or Neumann boundary condition. More precisely, by simply letting (. = 0 instead
of taking (1.13), we can prove that the value function u® converges to a viscosity solution of

Owu+ F(x, Vu, Viu) =0 in Q x (0,00),
(DP1) Ou=0 on 99 x (0, 00), (1.30)
u(+,0) = ug in Q

with the boundary condition (1.30) in the viscosity sense. We remark that (1.30) seems to be the same as the
Dirichlet condition

u=wug on IN x (0,00) (1.31)

but it may give different behavior of the solutions; see ([17], Sect. 5, [29], Sect. 5.3 and [32]). In fact, solutions
of (DP1) in general are not unique, as pointed out in ([1], Exam. A.5).

In order to obtain the convergence of the game values in this case, we need to impose additional barrier
assumptions on F so as to interpret the Dirichlet boundary condition (1.31) in the strict sense. It turns out that
under the barrier assumptions, both (1.30) and (1.31) are equivalent and we thus can show that u® converges
to the unique solution of the Cauchy-Dirichlet problem. More details will be given in Section 4.1. It would be
interesting to show, under appropriate assumptions on F' and ug, that sometimes (DP1) can be interpreted in
the state constraint sense [51, 52] and u® converges to the unique solution of the state constraint problem.

On the other hand, in order to build a game-based approximation for the Neumann boundary problem

Opu + F(x,Vu, Viu) = 0 in Q x (0,00),
(NP) (Vu,v) =0 on 99 x (0, c0), (1.32)
u(+,0) = ug in Q,

we take A = {0} with v = v, and let f(x,0) = g(z,0) = 0 for all x € 9Q. Moreover, in the game rules, we fix
arbitrarily 7 € (0,1) and replace (. in (1.14) and in (1.15) by e~ "(.. Heuristically speaking, this change of rules
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turns (1.29) into
O 4+ n2F (e, Vs, V2uf) + e 7¢ (Vus, v(z)) = o(1),

whose limit as € — 0 leads to (1.32) due to the fact that e~ — co. In Section 4.2, we provide a game-theoretic
approach to a general class of Neumann type boundary problems by generalizing the game setting above.

We emphasize that our modified game construction for the Neumann boundary condition here is different
from that in [15, 31]. In order to force the game states to stay in Q, we adopt shrinking moves near the boundary
while in the games proposed in [15, 31] either reflection about 9§ or projection onto 9{ is applied once the
game position exits from Q.

1.6. Fast evolution asymptotics and the limit elliptic problem

It is a natural question whether we can obtain a similar game interpretation for elliptic problems with dynamic
boundary conditions. This is related to the following problem, which will be discussed in detail in Section 5.
Let us consider the asymptotics for

§0yu + F(x, Vu, V2u) =0 in Q x (0, 00), (1.33)
(DBP2) Ou+ H(x,Vu) =0 on 99 x (0,00),
u(+,0) = ug in 0,

as the parameter § > 0 tends to 0. Here F' and H are assumed to satisfy all assumptions as in Theorem 1.1.
Suppose that a comparison principle holds for (DBP2) and let us denote the unique solution of (DBP2) for any
fixed § > 0.

Under the linear dynamic boundary condition (1.4), asymptotic behavior for (DBP2) as § — 0 is investigated
in [1] for the eikonal equation and later in [26] for the heat equation. The main results of these papers state
that, when F(x,p, X) = |p| or F(z,p, X) = —tr X, the solution us — U locally uniformly in [0,00) as § — 0,
where U is the unique solution of the dynamic boundary problem for the corresponding elliptic equation, that
is,

F(x,VU,V?*U) =0 in Q x (0,00), (1.34)
(DBP3) 0U + H(z,VU) =0 on 09 x (0, 00),
U(-,0) = uso in Q. (1.35)

We must emphasize that an initial layer emerges in the limit process; the initial value uo, for the limit U
does not coincide with ug in general. In fact, by rescaling (DBP2) in the time variable, u., can be identified as
the large-time profile of

owu + F(z,Vu,Vu) =0 in 2 x (0,00),
Ou =0 on 09 x (0, 00),
u(+,0) = ug in Q.

Under appropriate assumptions, us, can thus be obtained by uniquely solving the stationary Dirichlet problem

F(x,Vu,V*u) =0 in Q, (1.36)

(DP2) { u = ug on 0f. (1.37)

We are able to use the game method to show the asymptotic behavior for the general dynamic boundary
problem (DBP2). Our result is actually slightly stronger. By adapting the game setting we can easily construct
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a game value u®° that converges to us locally uniformly in Q x [0,00) as € — 0. It turns out that u®? — U
locally uniformly as (¢,4) — 0 as long as § > 7 with ¢ > 0 satisfying

o < 2 —max{aoy, B0y}, (1.38)
o <1+~—pos, (1.39)
o<1l+7—ao —1), (1.40)
o <2y — B0y —1). (1.41)

We refer the reader to Theorem 5.6 and Theorem 5.10 for a more precise statement and a detailed proof.
This result can also be considered as a game-theoretic interpretation of dynamic boundary problems for elliptic
equations like (DBP3).

We remark that o fulfilling (1.38)—(1.41) does exist thanks to (1.21)—(1.24). In particular, if F' is Lipschitz
continuous, then o1 = 02 = 1 and we only require that 0 < o < 2. To heuristicallly understand such a condition,
in this case we may still apply Taylor expansion to the associated dynamic programming equation and obtain
a new version of (1.27) with F replaced by ! F. In order to make the entire argument work again, we thus
need to make sure that, in the term with €212 on the left hand side, the range of |v|? is wider than that of 671,
which demands at least formally that o < 2+.

It is worth pointing out that a comparison principle for (DBP3) is needed in our rigorous proof of the
convergence of 9. Since it is not available explicitly in the literature, for the sake of completeness, we provide
it in Appendix A with a detailed and technical proof, following the idea in [7, §].

1.7. Organization of the paper

In Section 2 we give a review on preliminaries of the dynamic boundary problem (DBP1) including the
definition of viscosity solutions and comparison results. In Section 3, we give a rigorous proof of Theorem 1.1.
Section 4 is devoted to discussions on the relations with the Dirichlet and Neumann boundary problems from
the game-theoretic point of view. We study the asymptotic behavior for (DBP2) and a game interpretation of
(DBP3) in Section 5. A comparison principle for (DBP3) is presented in Appendix A for the sake of completeness.

2. PRELIMINARIES ON DYNAMIC BOUNDARY PROBLEMS

For the reader’s convenience, in this section we briefly review the definition of viscosity solutions and known
results on well-posedness of (DBP1), especially the comparison principle. Let us start with a definition of
viscosity solutions of (DBP1).

2.1. Definition of viscosity solutions

In the sequel, we denote by USC( x [0,00)) (resp., LSC(£ x [0,00))) the set of all locally bounded upper
semicontinuous (resp., lower semicontinuous) functions in Q x [0, 00).

Definition 2.1. A function u € USC(Q x [0, 00)) (resp., u € LSC(Q x [0, 00))) is said to be a subsolution (resp.,
supersolution) of (1.1)—(1.2) if whenever there exist a function ¢ € C*°(Q x [0, 00)) and (z¢, to) € €2 x (0, 00) such
that u — ¢ attains a strict maximum (resp., minimum) in  x (0,00) at (zo, o), then the following inequalities
hold:



A GAME INTERPRETATION FOR DYNAMIC BOUNDARY PROBLEMS 11
— If g € Q, then we have

dp(zo,to) + F(zo, Vp(xo, ), Vie(20,t0)) <0
(resp., dvp(z0,to) + F(xo, V(xo, to), Vip(x0,t0)) > ())) .

— If zg € 09, then we have

Opp(zo,to) + min {F (mo, V(xo,to), v2(p($0,t0)) , H (xo, Vgo(xo,to))} <0
(resp., Orp(x0,to) + max {F (xo,V@(xo,to),vzgo(xo,to)) ,H(xo,V<p(x0,t0))} > 0) .

A continuous function on Q x [0,00) is called a solution of (1.1)-(1.2) if it is both a subsolution and a
supersolution.

Moreover, a function u € USC(Q x [0,00)) (resp., u € LSC(Q x [0,00))) is said to be a subsolution (resp.,
supersolution) of (DBP1) if it is a subsolution (supersolution) of (1.1)—(1.2) and satisfies u(-,0) < ug (resp.,
u(-,0) > up) in Q. A continuous function on Q x [0, 00) is a solution of (DBP1) if it is both a subsolution and
a supersolution of (DBP1).

Remark 2.2. For a stationary equation with a dynamic boundary condition such as (DBP3), we can define its
viscosity solutions in the same manner.

2.2. Comparison results

It is known that a comparison principle holds for (DBP1) if © is a C*! bounded domain, H fulfills (1.11)
and F' satisfies appropriate regularity assumptions. A typical regularity assumption on F' is as follows.

(F3) F is a Lipschitz (degenerate) elliptic operator in the sense that there exists Ly > 0 such that

|F(z,p, X) = F(2',p/, X')|
< Le ((L+[pl + ' Dle = 2| + [p = | + 1X = X])

for all z,2" € Q, p,p’ € R, X, X' € S", and
F(z,p, X) < F(z,p,X’)

for any x € Q, p € R” and X, X’ € S" satisfying X > X'.

Theorem 2.3 (Comparison theorem for (DBP1) ([8], Thm. 3.2)). Assume that Q@ C R™ is a bounded C*!
domain. Assume that (F3), (1.10) and (1.11) hold. Let u be a bounded subsolution of (1.1)~(1.2) and v be a
bounded supersolution of (1.1)—(1.2). If u(-,0) < wv(-,0) on Q, then u < v in Q x [0,00).

Remark 2.4. The boundedness assumption on u and v is a technical assumption. Indeed, one can prove the
comparison result in  x [0,T) for an arbitrarily 7 > 0 if u and v are only locally bounded in Q x [0, 00); see
the proof of an elliptic version (Thm. 2.5) below. We will use this comparison theorem below without assuming
the boundedness of v and v.

Without losing the comparison result, the assumption (F3) can be weakened; see ([8], (H5-1)). Since our main
purpose is to give game-theoretic existence results, for our convenience in the game construction in Section 3
and Section 4, we will mainly use (F1)—(F2) and assume the comparison principle always holds, rather than
assuming (F3) as well as C%! regularity of Q.

In Section 5, since we will also discuss elliptic problems with dynamic boundary conditions, we need a
comparison theorem as below to guarantee uniqueness of solutions. Besides (F3) and C*?! regularity of €2, we
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further impose the following assumption on the operator F' as well as the function g given in the boundary
Hamiltonian (1.8):

(F4) There are sequences Aj,c; >0 (j =1,2,...) with
Aj =1, ¢ =0 asj— o0
such that
F(x,\jp,\; X) > \;F(z,p,X) + ¢
forall j > 1, p e R" and X € S” and

min (1 —X;)g(x,a) > 0. (2.1)
(z,a)eQ XA

Theorem 2.5 (Comparison principle for elliptic equations with dynamic boundary conditions). Assume that
Q CR" is a bounded C*' domain. Assume that (F3), (F4), (B1) and (B2) hold. Suppose that u € USC(Q x
[0,00)) and v € LSC(Q x [0,00)) are respectively a subsolution and a supersolution of (1.34) with dynamic
boundary condition (1.2). If u < v on Q x {0}, then u < v in Q x [0,00).

The assumption (F4) amounts to saying that one can convert a supersolution (resp., subsolution) of (1.34)
with (1.2) to a strict supersolution (resp., subsolution) in the interior by constant multiple, which plays an
important role of proving the comparison principle. See [34] for a similar idea applied to the Hamilton-Jacobi
equation.

As a typical example, if v, = v, f(x,a) = 0, we see that (F4) is satisfied when F(z,p, X) = |p| — b1, and
g(z,a) = by for all z € Q,p € R® and X € S" with b; > 0 and by < 0, i.e., the dynamic boundary problem reads

|[Vu| = by in  x (0, 00),
Ou + (Vu,v) + by =0 on 99 x (0, 00),
u(+,0) = ug in Q.

The assumption (F4) is also fulfilled in the same setting when F(z,p, X) = —|p| — b1, g(z,a) = b2 but with
by < 0 and by > 0.

As mentioned in Remark 2.4, here we also do not assume global boundedness but local boundedness on u
and v in Q x [0,00). A proof of Theorem 2.5 will be presented in detail in Section 5.2 and Appendix A.

3. CONVERGENCE OF GAME VALUES

This section is devoted to a rigorous proof of Theorem 1.1.

3.1. The rigorous proof
Under the conditions (1.20)-(1.24), let us define S¢ : C(Q) — C(Q) to be

S€w](z) = minmax {w(x + h) — I} (3.1)

p,X a,v

for w € C(Q), where h and [ are respectively given by (1.18) and (1.19). It is clear that S is translation
invariant; namely, S¢[w + C](z) = S¢[w](z) + C for any constant C' € R, w € C(Q) and z € Q. Moreover, it is
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not difficult to see that S¢ is monotone in w, i.e.,
S¥lwr](x) = 5% [wa](x)

for any x € Q and wy,wy € C(Q) with w; > wy in Q.
The following lemma plays a key role in the proof of Theorem 1.1.

Lemma 3.1 (Consistency). Suppose that  C R™ is a bounded C? domain. Assume that (H1), (H2), (F1),
(F2), (B1) and (B2) hold. Let H be given by (1.8). Assume (1.20)—(1.24) and let S¢ be defined by (3.1). Then
for any ¢ € C>=(Q) and z € Q,

Slel(2) — p(x) = —e*n2(2) F(w, Vip(x), V(1)) — €2 (2) H (2, V(@) + o(e?), (3-2)

where the constant implied in the error term o(e?) is independent of x € Q.

Proof. For any ¢ € C*°(Q), by Taylor expansion we have

Se[¢](x) — p(x) = r;)ag? max {(Vap(x), h) + % <V2¢(x)h, h> — l} + o(e?) (3.3)

where h and [ are given as in (1.18) and (1.19). The error term is independent of z € Q. The condition (1.20)
is applied to deduce that |h|? is of order o(c?). We may divide the right hand side of (3.3) by setting

min max {(ch(x), h) + % (Vp(x)h, h) — l} = Q1+ Qa2

p,X a,v
where
Q1 = mip max {\@ena(x) (Ve(z) = p,v) + 22 (x) (((VZp(2) = X)v,v) = F(z,p, X)) }% (34)
Q> == max {e%(x) (Vep(w), f(w,a) — 7a(@)) — 2 (@)g(x, a>}. (3.5)

We next claim that
Q1 = —*n2(x)F(x, Vo(z), V() + o(c?). (3.6)

The proof of the claim is essentially the same as that of [37, Lemma 4.1], except that all of the terms of the
second order now carry nZ(z). We give a detailed proof below for the reader’s convenience.

In order to prove that “<” holds, one only needs to take p = Vip(x) and X = VZ¢(z) in (3.3). It suffices to
show “>” holds.

Roughly speaking, the assumptions (1.22)—(1.24) imply that the first term on the right hand side of (3.4) is
the leading one in terms of the order in e, which forces p to be taken near Vi (x).

More precisely, by (1.22) we can take g € R satisfying

0<g<min{l—~v—28, y+1— fos} (3.7)

and discuss the following cases.
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(a) Suppose |Vo(z) — p| < &9 and VZp(x) < X +71. Then we may take v = 0 so that

Q1 > —e*Z(z) max F(x,p, X) > —e*n2(2) F(w, Vo(x), Vip(x)) — Le*nZ (z)(e? + £7),
p,

where L = Lp(R) is the local Lipschitz constant of F in (F1) for R =1+ [|¢[c2(q)-

(b) Suppose |V(x) —p| < e? and X + 71 — V() is not positive semi-definite. Denote by A the maximum
positive eigenvalue of V2¢(z) — X — e71. Let v be an eigenvector associated to the eigenvalue A with |v| = ¢77.
Moreover, we may adjust the sign of v such that

By the Lipschitz continuity (F1) of F' and the growth condition (F2) again, it follows that

Q1 > — e*nZ(2) F(z, Vop(x), Vip(a) = M) + %2 (z) (Ae ™7 +77) — LenZ(z)(e? +€7)
> —enZ (@) Fa, V(z), Vip(a)) + enZ(z) (Ae™* = OA72) + o(e?)
for some C > 0 large. Noticing that A < C(1 + ¢~7), we have
AT —CA2 > A (e =CA>71) >0
when ¢ > 0 is small, since (1.24) holds. We therefore get the desired inequality in this case too.
(c) Suppose that |[Vo(x) — p| > €?. Take v parallel to Vo(z) — p with |v| = e~7. Then we get the estimate

by (F2),

Q1 >V2e' e (2)|Veo(x) — p| — C(z) (277727 + 27972) — Cenl(a)[p|™
>e' M. (2)|V(x) — p| — C®nZ (x)|p| ™!

for some C' > 0 when € > 0 is sufficiently small. The last inequality is due to (3.7) and the fact that 0 < 7. < 1.
If |p| < 2|Vp(z)|, then for € > 0 small we have

e 7 (2)|Ve(x) — p| — Cn2 (x)|p|™* > ' ne(2)|Vp(x) — p| — O(e?)
> 6177”775(90) - 0(52)'

Suppose, on the other hand, that |p| > 2|Vy(x)|, which implies that |p| > 2¢?/3, then
- (e 1 — g
el V() = pl = C*nZlp|™ > Se'nelp| — Ce*lpl ™
Note that

1, . - 1 o
3= alpl = CERI = Rl (5 - O )
1
> Ryl (5 - e )
It follows from (1.23) that

_ o1 1,
e e () lpl — CePnE()lp|™ = 76" 2 (@) lp| = 651 T2 (z)
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when € > 0 is small. In either case, we obtain

Q1 > —e*nZ () F(x, Vp(z), Vio(z)).

We thus complete the proof of the claim.
Moreover, it is clear that

Q2 = max {20 0) (Tp(a), 2.0) = 70(0) - PGl 0) | = ~SCHE Vo). (38)

We conclude the proof of the lemma by plugging (3.6) and (3.8) together with (3.4) and (3.5) into (3.3). O

Lemma 3.2 (Uniform boundedness). Assume that Q C R"™ is a bounded C? domain. Assume that (H1), (H2),
(F1), (F2), (B1), (B2) hold. Let H be given by (1.8). Assume that ug is bounded in Q. For any e > 0 small, let
u® be the value function defined as in (1.16) under the conditions (1.20)—(1.24). Then for every T > 0, u® are
uniformly bounded in Q x [0,T] for all e > 0 small.

Proof. Since there exists C' > 0 such that |ug| < C, by monotonicity of S¢ and Lemma 3.1, we have
S%[uo)(x) < C + *nZ ()| F(x,0,0)| + £2¢(2)[H (z,0)| + o(e?) < C + Me®

for some M > 0 independent of €. Iterating this argument, we can use the translation invariance of S¢ to deduce
that u®(x,t) < C' + Mt for all (z,t) € [0,00) and all £ > 0 small. A symmetric lower bound can be obtained
analogously. O

Proposition 3.3 (Characterization of relaxed limits as sub- and supersolutions). Suppose that Q@ C R™ is a
bounded C* domain. Assume (H1), (H2), (F1), (F2), (B1) and (B2) hold. Let H be given by (1.8). Assume
(1.20)—(1.24). Assume that uq is Lipschitz in Q. Let u® be the value function defined as in (1.16) for any e > 0
small. Then @ and u given in (1.25) are respectively a subsolution and a supersolution of (1.1)—(1.2).

Proof. By definition, it is not difficult to see that @ € USC( x [0,00)) and u € LSC(£ x [0,00)). Let us show
that @ is a subsolution of (1.1)-(1.2). Suppose that there exist (z¢,t5) € Q x (0,00) and ¢ € C>(Q x [0, 00))
such that 7 — ¢ attains a unique maximum over Q x [0,00) at (xg,to). The proof is precisely the same as that
of [37, Proposition 3.3] if zy € Q. We therefore only consider the boundary case, that is, z¢ € 9.

By the definition of %, we may find » > 0 and a sequence (z.,t.) €  x (0,00) still indexed by e such that
(e, te) = (zo,to) as e — 0 and

(u® = @)(zoyte) > sup (uF — @)(,t) — &%,
(z,t)€By(xo,to)

We need the error term —e3, since here we do not assume continuity of ¢ and therefore the supremum can only

be attained approximately. By (1.17), we get

Plae, te) < Slpe)(ae) + €7,
where S¢ is defined in (3.1) and

e 1= ¢(-,t. —e?) € C®(Q).
It follows from Lemma 3.1 with ¢ = ¢, that

H(ze,te) < @e(we) — 6277?(x5)F(x57 Ve (ze), VZ@E(JUE)) - 82C5(1‘€)H($E, Ve (we)) + 0(52)7



16 N. HAMAMUKI AND Q. LIU
which implies that
62at¢($5, ts) < _527]?(375)17(7:87 v‘Pe(me)a VQSOE(xE)) - EQCE(xE)H(xav V(pg(xg)) + 0(52)- (3'9)

By taking a further subsequence, we may assume that n2(z.) — ¢ as ¢ — 0 for some ¢ € [0,1]. Then dividing
both sides of (3.9) by &2 and letting ¢ — 0 yield

Bip(x0,t0) + cF (20, Vé(x0,to), V2¢(x0, t0)) + (1 — ¢)H (20, Vé(20,t0)) <0,
which in turn implies that either of the following inequalities holds:

(0, t0) + F(20, Vé(z0, to), VZ(20,10)) < 0,

0¢d(x0,t0) + H(xo, Vé(x0,10)) < 0.

The proof for w is thus complete. One can similarly show that w is a supersolution. O

We also need to establish comparison between the initial values of w and w.

Proposition 3.4 (Initial comparison). Suppose that  C R™ is a bounded C? domain. Assume that (H1), (H2),
(F1), (F2), (B1) and (B2) hold. Assume that (1.20)—(1.24) hold. Let H be given by (1.8). Assume that ug is
Lipschitz in Q. Let u¢ be the value function defined as in (1.16) for any e > 0 small. Let U and u be the relazed
limits given in (1.25). Then

u(-,0) =up =u(-,0) in Q. (3.10)

Proof. Let us prove that (g, 0) < ug(wg) for any fixed x¢ € Q. Since ug is Lipschitz continuous, for any fixed
7 > 0 there exists a constant C. > 0 such that

ug(x) < Wo(x) = ug(wo) + 7+ Crlz — 20|*> for all z € Q.
By Lemma 3.1, we have

SEW (@) = Wr(2) = — enZ(a) F(x, VW, (), V2W,(x))
— &2 () H(z, VW, ()) + o(e?)

for all z € Q. Here the constant implied in the error term is uniform for 2 € Q. We also choose a constant K > 0
such that

|F (e, VW, (), V2W, ()| + | H(z, VIV, (2)] < K
for all = € Q. It follows that for each = € Q,
SEW, () — Wy (z) < Ke* + o(e?).
Hence, by the definition and monotonicity of S¢ we see that

uf(z,€?) = Sug(z) < SE[W,](x) < Wy (x) + Ke? + o(e?)
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for all z € Q.
Let t > 0. After repeating this estimate N times with N = [t/£?], we obtain

uf(z,t) < Wi(x) + KNe? + o(Ne?) < W, (z) + Kt + o(1)
for all x € Q. Taking the relaxed half limit ¢ — 0 implies
u(x,t) < Wp(x) + Kt
for all € Q. This in particular gives
w(zo,0) < Wr(zo) = uo(zo) + 7,

and therefore sending 7 — 0 yields that w(zg,0) < ug(zo).
A symmetric proof gives u(zg,0) > up(xo). We thus conclude the proof, since by definition it is clear that
u(x0,0) > u(xo,0). O

The statements in Theorem 1.1 are immediate consequences of Proposition 3.3 and Proposition 3.4.
Remark 3.5. Replacing (F1) and (F2) by a stronger assumption (F3), we can obtain the convergence u® — u

by using the comparison principle in Theorem 2.3. Under the assumption (F3), the conditions (1.20)—(1.24) on
«, 3,7 become simpler, since o1 and o2 can be chosen to be 1. In fact, in this case we only require that

1
7<§, at+y<l1l, B+v<1. (3.11)

3.2. Variants of the game

A straightforward observation, based on our formal proof, is that if we switch the goals of both players
by taking max, x min, , instead of min, x max,, in the game rules, then the game value is turned into an
approximation for (DBP1) with

H(z,p) = max{ (b 7a(2) — fl,a)) + g(%a)} (3.12)

a€A
instead of (1.8).
Moreover, we may generate an even more general Hamiltonian H of Isaacs type wvia our games by including

one more controller; more precisely, given another compact metric space B, suppose that the oblique normal
and the functions f, g now depend also on b € B. Denote the oblique normal by 7, and assume

€02
a€A, beB
If H:Q xR = R can be expressed as
H(x,p) = Ilfleaé(gg}{l{<p’ 7a,b(x) - f(:v,a, b)> + g(xa a, b)}v (313)

we can build a new game by following the same rules but letting Player I also choose b € B at each step besides
the controls p and X. The value function is now defined by

u(x,t) = min max min max... min  max J°(z,1). (3.14)
b1,p1,X1 a1,v1 ba,p2, X2 a2,v2 bn,pN, XN AN ,UN
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Since this change only affects the Taylor expansion of Q5 near the boundary, the limit w still satisfies (1.1) in the
interior. Meanwhile, the boundary condition with this new Hamiltonian H in (3.13) can be derived analogously.
We choose to keep our exhibition simple in this work and refer the reader to [22] for technical details on this
possible generalization.

4. RELATION WITH OTHER BOUNDARY PROBLEMS

Based on the method in the previous section, we can obtain game interpretations for the Dirichlet and
Neumann boundary problems by slightly modifying the rules.

4.1. Reduction to the Dirichlet problem

If we keep the definition of 7. in (1.12) but letting (. = 0 instead of requiring (1.13), we can follow the whole
argument in the previous section to derive the corresponding PDE. It is easily observed that the only difference
lies at the expansion (1.29) on the boundary, which in the current case reads

Opus (we,te) +n2(ve) F(xe, Vus (ze,t), V32Ul (zo,t.)) = o(1),
Passing to the limit yields that
dyu(z,t) + cF(z, Vu, V?u) = ¢ (8pu+ F(z, Vu, V2u)) + (1 — c)du =0

holds for some ¢ € [0,1]. This suggests that u satisfies the boundary condition d;u = 0 in the viscosity sense;
in practice, we should verify this by using inequalities rather than equalities. Hence, the modified game should
give rise to (DP1). We can still characterize the relaxed limits @ and u as a sub- and a supersolution of (DP1)
respectively.

Corollary 4.1 (Degenerate dynamic boundary problems). Assume that Q C R™ is a bounded C? domain.
Assume that (F1) and (F2) hold. Assume that ug is Lipschitz in Q. For any e > 0 small, let u¢ be the value
function, defined as in (1.16), for the game with (¢ = 0. Then u and u given in (1.25) are respectively a
subsolution and a supersolution of (DP1).

Remark 4.2. Tt is also possible to have a game for (DP1) by still having (1.13) and substituting (. with ¢,
for any fixed 7 € (0,1); the expansion (1.29) on the boundary implies

Oput + an(xE, Vus, V2uf) 4 "¢ H(z., Vuf) = o(1).

It is then straightforward to get (1.30) in the viscosity sense. This method seems more complicated, but intro-
ducing such an additional parameter 7 > 0 enables us to compare with the games for the classical Neumann
condition in Section 4.2.

Concerning the initial data, the result in Proposition 3.4 still holds even if we take (. = 0. However, we are
not able to prove the convergence of u¢, since the boundary Hamiltonian does not satisfy (1.11) and comparison
results are not known in general. In fact, viscosity solutions of (DP1) are in general not unique, as shown in
[1, Example A.5]. On the other hand, we refer the reader to [32] for a uniqueness result for (DP1) in a half space.

The problem (DP1) looks equivalent, at least formally from the game perspective, to the following Cauchy-
Dirichlet problem

Opu + F(x,Vu, V?u) =0 in Q x (0, 00),

(DP3) { =g on Q x {0} and 99 x (0,00).
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In fact, due to the choice {, = 0, the interior game dynamics gradually vanishes when approaching the
boundary; such kind of method to generate the Dirichlet boundary condition is employed in [5] in the Tug-of-war
game for oo-Laplacian.

A rigorous analysis for the relation between (DP1) and (DP3) (either a proof of equivalence or counterex-
amples to indicate their difference) would be interesting. We below show the equivalence in special cases with
additional assumptions.

The game above precisely characterizes the classical Dirichlet problem (DP3) provided that boundary barriers
can be constructed from both above and below. In order to guarantee the convergence of game values, we need
a comparison principle in the following form:

(CP) Let u € USC(Q x [0,00)) and v € LSC(£2 x [0,00)) be respectively a subsolution and a supersolution of
(1.1). If w(z, t) < wv(z,t) for any (z,t) € Q x {0} and (z,t) € 90 x (0,00), then u < v in Q x [0, c0).

Besides, we also assume the existence of barriers at any boundary points:

(F5) For any zo € 0 and 7 > 0, there exists ¢ € C*(Q) such that

VY (z0) — 7 < uo(xo) < Y5 (o) + 7,

Y, <wug <l inQ, and

F(z, Vit (x), V2t (x)) >0, F(z, Vi (), V0 (z)) <0 forall z € Q. (4.1)

Such boundary barriers are also indispensable when one attempts to use Perron’s method to show existence
of solutions to the classical Dirichlet problem (DP3). We refer to [14] for concrete examples on how to construct
the barriers.

Theorem 4.3 (Classical Dirichlet boundary problems). Assume that  C R™ is a bounded C? domain. Assume
that (F1), (F2) and (F5) hold. Assume (1.20)—(1.24). Assume that ug is Lipschitz in Q. Let u® be the value
function, defined as in (1.16), of the game for (DP1) with (. = 0. Then @ and u given in (1.25) are respectively
a subsolution and a supersolution of (1.1) satisfying (3.10) and

u(-,t) =uo = u(-,t) on N for allt > 0. (4.2)

Moreover, if the comparison principle (CP) holds, then u® — u locally uniformly in Q x [0,00) as € — 0, where
u is the unique solution of (DP3).

Proof. Our results in the previous sections already show that @ and u given in (1.25) are respectively a subso-
lution and a supersolution of (1.1) satisfying (3.10). It remains to prove (4.2). Let us fix 7 > 0, z9 € 09 and
take ¢} as given in (F5). Since S¢ is monotone and ug < ¥} in Q, we have
W (,%) = S%[ug)(x) < STwF](x) in .
By the consistency result in Lemma 3.1, it follows that
u(z,€%) < ¢ (z) — EnZF (VYT (2), V¢ (2)) + o(e?)

for all € Q. In view of the assumption (4.1), we thus get

u(2,6%) < ¥f () + o(e?) (4.3)
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for all z € Q. Since u®(z,e2) = up(x) for x € N by definition, we obtain (4.3) for all z € Q.
Tterating this argument yields

ut(a,t) < ¢F(z) +o(1)
for all z € Q and t > 0. Letting ¢ — 0 and then 7 — 0, we end up with
U(wo,t) < uo(wo)
for all £ > 0. We may apply a symmetric argument to deduce that
u(z0,t) > uo(wo)
and the proof of (4.2) is complete. O

4.2. Connection with the Neumann-type problem

Game interpretations of Neumann-type boundary problems for various nonlinear elliptic and parabolic
equations are studied in [3, 12, 15, 31] etc.

We can slightly modify the game for (DBP1) described in Section 1.3 to provide an alternative game-theoretic
approach to the following oblique boundary problem

Opu + F(x, Vu, Viu) =0 in Q x (0,00),
(OP) (Vu,v) =0 on 99 x (0, 00), (4.4)
u(-,0) = ug in Q,

where 7 is a given oblique outward unit normal vector to 9. We assume that 7o satisfies (H1) and (H2).

Indeed, in the game setting we set A to be a singleton {0}, let f = 0 and take g(x,0) = g(x) for all x € 9.
We assume that v satisfies (H1) and (H2). Moreover, we also need to change the game rules: fix 7 € (0,1) and
replace (. in (1.14) and in (1.15) by e~ 7., i.e., we set

hi = V2ene(zr)or — 77 (@ )0 (k) (4.5)

Ik = V2ene (1) (pr, vi) + 202 (xx) (Xkvr, vi) + F(yk, v, X&) + 277 Coglar). (4.6)

One should view such changes as an emphasis on the boundary game activity; the order was reduced from &2
to €277,

Despite these changes, the whole argument of the derivation in the previous section will work. We therefore
obtain the following variant of (1.29):

Opu® (ze, te) + ngF(xs, Vu® (e, te), Vgus(xg, te))

_ (4.7)
+e ¢ ((Vu (2, te),70(2:)) — g(ze)) = o(1).

— Ife77¢. — o0 as € — 0, we end up with the oblique boundary condition (4.4).
— Ife7 "¢, — 0 as € — 0, then we get the equation (1.1) on 99 x (0, 00).
— A mixed case shows up when e~ 7(. — ¢ for ¢ > 0.

We therefore can obtain the following result for (OP).
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Theorem 4.4 (Neumann-type boundary problem). Assume that Q C R™ is a bounded C? domain. Assume
that (F1) and (F2) hold. Let o be an oblique outward unit normal vector to 0 satisfying (H1) and (H2) with
A = {0}. Let ug and g be Lipschitz in . Assume (1.20)—~(1.24). For any € > 0 small, let u® be the value function
defined as in (1.16) for the game with A = {0}, f =0 in Q and (. replaced by e~ 7. with 0 <7 < 1. Then u
and u given in (1.25) are respectively a subsolution and a supersolution of (OP). Moreover, if the comparison
principle for (OP) holds, then u — u locally uniformly in Q x [0,00) as e — 0, where u is a unique solution of

(OP).

It is clear that when g = v, this result reduces to a game-theoretic interpretation for the Neumann problem
(NP).

It seems that one cannot take 7 = 1 for the game interpretation above; when 7 = 1, in (4.7) there is an extra
term <V2u570, *yo> coming into play. We are not able to remove this term in our expansion.

Remark 4.5. It is worth pointing out that our game construction for Neumann boundary conditions here is
still different from those in [15], though the target equation is the same. The main difference is that in (4.5) we
maintain a “push” at the direction of —vy with magnitude of order €2~ while in the game described in [15] such
a term (but of order €) appears as a projection to 952, depending on how far the game position is away from
Q if an exit occurs in the previous step. Our interpretation of Neumann boundary conditions is also different
from that in [31, 41], where reflections on 92 are employed.

5. FAST EVOLUTION ASYMPTOTICS AND ELLIPTIC PROBLEMS

In this section, we intend to adopt the game-theoretic approach to study the asymptotic behavior of the
solution to (DBP2) as the given parameter § tends to 0. We assume that H still has the form (1.8) and all
assumptions in Theorem 1.1 still hold.

Using the game described in Section 1.3, we can construct a family of games whose value functions u
converge, as € — 0, to the unique solution of (DBP2), denoted by ws. In fact, in this case one can simply replace
the running cost F' in (1.15) by F/§ in the game introduced in Section 1.3 and then still take u° to be the
value function defined by (1.16).

The dynamic programming principle for the new game is as below:

£,0

u®° (2,t) = min max {us";(x +h,t—e?) — s}, (5.1)

p,X a,v

where |p| < &7, |X|<e P a€ Aand [v] <e77, and h is given by (1.18) and

ls = V2en. () (p,v) + £°n(x) ((Xv, v) + ;F(w,nX)) +e%C(2)9(, a). (5.2)

Tt is clear that we need to assume 0 > €° with o satisfying (1.38) to guarantee the smallness of I5 as ¢ — 0.

We are interested in the behavior of u? as (g,d) — 0, since this will also give us asymptotic behavior for
ug as 0 — 0. This part of our work is inspired by recent results on similar asymptotic problems for the eikonal
equation [1] and heat equations [26] with linear dynamical boundary conditions. In the context of diffusion
problems, limiting behavior of us as § — 0 for parabolic equations is called large diffusion behavior [26]. As
shown in [1, 26], one can expect that us converges to U as § — 0, where U solves (DBP3).

Here u« is obtained as the large-time limit of the solution of (DP1) with the Dirichlet condition (1.30). The
problem (DBP3) can be viewed as an (interior) stationary version of (DBP1). The appearance of u, reveals
the existence of an initial layer in the limit process for (DBP2) as § — 0. A simple example to show such
asymptotics will be given in Section 5.1 below.

We actually give a slightly stronger result by investigating the limit of our game value u®? for (DBP2) as
e — 0 and § — 0 simultaneously. It turns out that, under proper assumptions on F' and requirements on the
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vanishing rate on d(¢), we can obtain a limit U of u*®, which uniquely solves (DBP3). Moreover, by considering
such a joint limit for € and §, we can obtain a game interpretation for fully nonlinear elliptic equations with
dynamic boundary conditions.

5.1. An example of large diffusion behavior

Let us start with a typical example on the behavior of the solution of (DBP2) as § — 0.

Example 5.1. Let us consider the following linear problem in one space dimension:

80 — gy =1 in (—1,1) x (0, 00),

Ou+u, =0 on {1} x (0, c0),
) Ou —uy =0 on {—1} x (0, 00),
u(+,0) = uo in [—1,1],

where ug is a given Lipschitz function in [—1, 1] satisfying uo(£1) = 0. We can show that the unique solution
us — U locally uniformly in [—1, 1] x (0,00) as § — 0, where

Uz, t) = %(1—x2)+t

for all (z,t) € [-1,1] x [0, 00).
Indeed, since uy is Lipschitz in [—1, 1] and satisfies ug(£1) = 0, we can find ¢g > 1 such that for any = € [—1, 1]

[uo(@)] < F (1~ 2?).

Letting
0 Cof]. 6 1+CO
fh=2mO 2 =2t
SR T R
for any § € (0,¢o — 1), one can show that
1 _ 2t 2 .
5((1—co)e ; —1)(35 ~ 1) + 2¢ot ifo<t<t
w57+($7t): 1

7@+ 11~ )+ (S + V)t + (200 — 6 — 1)ty ift >t
and

((1 teg)e ¥ - 1) (@2 —1)—2cot fO<t<ty
w&*(xj) =

N~ N —

(6 —1)(2® = 1)+t — (2c0 + Vta  ift >ty

are respectively a continuous supersolution and a continuous subsolution of (E). By comparison principle for
(DBP1), we get

ws— <us < w4 in [_17 1] X [0,00)

Since ws,+ — U locally uniformly in [—1, 1] x (0,00) as 6§ — 0, we obtain the convergence us — U as well.
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Let us denote
1 2
Uoo (T) = 5(1 — ).

We can easily verify that U solves the following dynamic boundary problem

—Upe =1 in (=1,1) x (0, 00),
U +U, =0 on {1} x (0, 00),
oU—-U; =0 on {—1} x (0, 00),
U(+,0) = tuo in [-1,1],

and uo is the large time limit of the solution to

Ol — Ugy = 1 in (—1,1) x (0, 00),
u=0 on {£1} x (0, 00),
u(+,0) = uo in [-1,1]. (5.3)

5.2. Comparison principles

As is mentioned before, we aim to show that the game value u*? for (DBP2) converges to a unique solution
U of (DBP3) as £,0 — 0. To this end, we need to prepare two comparison principles. One is for the Dirichlet
problem (DP2), which is used to uniquely determine the initial value us, of (DBP3). The other one is for
(DBP3), which is already stated in Theorem 2.5. It gives the uniqueness of solutions to (DBP3) and enables us
to conclude the convergence of u®?°.

A comparison result for (DP2) allows us to find the large-time profile us for (DP1). One difficultly lies at
a possible loss of the Dirichlet boundary data in (DP2). In order to overcome this difficulty, we again assume
(F5) for the existence of boundary barriers so that (1.30) can be interpreted in the strict sense.

We remark that (F5) is in general quite restrictive and u., may be uniquely determined as the large-time
profile for (DP1) under weaker assumptions. In [1], although the equation and boundary conditions are more
specific, no assumptions like (F5) are imposed there and the large-time behavior for (DP1) is investigated with
(1.30) interpreted in the viscosity sense.

Theorem 5.2 and Proposition 5.4 given below are mainly concerned with the Dirichlet problem (DP2). We
assume (F4) in these results only for the operator F' and the condition (2.1) is irrelevant.

Theorem 5.2 (Comparison principle for stationary Dirichlet problems). Assume that Q C R™ is a bounded
domain. Assume that (F3) and (F4) hold. Let uw € USC(Q) and v € LSC(Q) be respectively a bounded
subsolution and a bounded supersolution of (1.36). If u < v on O then u <wv in €.

We refer to [34] for such a result in the first order case. It is not difficult to see that the operator in Example 5.1
satisfies the assumptions (F3) and (F4). The idea of proving this comparison result under the assumption (F4)
is to first compare the subsolution uw with a strict supersolution

vj 1= Ajo + |1 — Aj|sup |v(z)|
eQ

of (DP2) and then let A\; — 1. As the proof is standard, we omit the details here.

Remark 5.3. The assumption (F4) is typically used to find a strict sub- or supersolution. There are certainly
many other ways to do this. For example, (F4) actually fails to hold when F is the Laplacian operator, i.e.,
F(z,p,X) = —tr X. However, one can subtract a positive quadratic function from a supersolution to construct
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a strict supersolution; namely, if v is a supersolution, then
2
oa(z) = v(z) — Alz|

is a supersolution of —Awy = 2nA in Q C R” for any A > 0. Raising slightly the boundary data, we can get a
strict supersolution of Dirichlet problem and proceed to the same comparison argument before sending A — 0.
We choose to impose (F4) for our convenience in providing a general result including the first order equations.

The following is an immediate consequence of Theorem 5.2.

Proposition 5.4 (Large-time asymptotics). Assume that Q C R" is a bounded domain. Assume that (F'3),
(F4) and (F5) hold. Let ug be Lipschitz in Q. Let @ be the unique viscosity solution of (DP1). Then

(-, t) = Uso  uniformly in Q as t — oo, (5.4)

where U s the unique solution of (DP2).

To show this result, one can rescale u with a parameter A > 0 to get
Ox(x,t) = a(x, t/N), (x,t) € Q x [0, 00),
which can be easily verified to be the solution of
Oy + F(x,Viy, V20y) =0 in Q x (0,00)

with 9y = ug on Q x {0} and on 9N x (0, 00) under the assumption (F5). By the standard stability theory and
the comparison principle for (DP2), it follows that @y converges to us, locally uniformly in © x (0,00) as A — 0.
This completes the proof of (5.4).

On the other hand, Theorem 2.5 can be obtained by adapting the uniqueness arguments in [8]. Let us first give
a comparison result for a subsolution and a strict supersolution. More precisely, for any given ¢ > 0, assuming
that u is a subsolution of (1.34) and (1.2) while v is a supersolution of

F(x,Vu,V?u) =c¢ in Q x (0,00) (5.5)

with (1.2), we prove that u < v in Q x [0, 00).

Theorem 5.5 (Comparison principle for strict sub/supersolutions). Assume that 2 is a bounded C?1 domain
in R™. Assume that (F3), (H1), (H2), (B1) and (B2) hold. Let u € USC( x [0,00)) be a subsolution of (1.34)
and (1.2). Let v € LSC (2 x [0,00)) be a supersolution of (5.5) and (1.2) with ¢ > 0. If u <wv on Q x {0}, then

u <wvin Q x [0,00).

Since comparison results like Theorem 5.5 are not explicitly available in the literature, we give a proof of
Theorem 5.5 in Appendix A for the reader’s convenience.

We can prove Theorem 2.5 with ease by utilizing the assumption (F4) and the comparison result in
Theorem 5.5.

Proof of Theorem 2.5. For the given supersolution v, we take

v;(2,t) = Aju(,t) + |1 = Aj|sup [v(z, 0)], for all (z,t) € Q x [0, 00).
€N
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In view of (F4), it is not difficult to see that v; is a supersolution of (5.5) with ¢ = ¢; > 0 and the dynamic
boundary condition (1.2). Moreover, since

vj(z,0) > v(x,0), for any x € Q,
we may apply Theorem 5.5 to deduce that
u<wv; inQx[0,00).

Sending j — 0o, we end up with u < v in Q x [0, 00), as desired. O

We conclude this section by emphasizing that Remark 5.3 also applies to elliptic equations with dynamic
boundary conditions. The assumption (F4) is only a sufficient condition to find strict sub- and supersolutions
of (DBP3). One can find a different way to construct sub- or supersolutions when (F4) does not hold.

5.3. Game approximation

We finally study limit behavior of u as (g,8) — 0 with a requirement on the dependence 6(g). We first
examine a general case under the weaker assumptions (F1), (F2) and (F5). Later we additionally impose (F'3)
and (F4) so as to use the comparison results in Section 5.2 to conclude the convergence of u®°.

5.3.1. General results

Let us first discuss the general case when only assumptions (F1) and (F2) are imposed. In this case, besides
the conditions (1.20)—(1.24) on «, 8 and 7, we need to assume that § > £ with o > 0 satisfying (1.38)—(1.41).

Taking these extra assumptions on ¢ into consideration, we define a modified version of the half relaxed
limits of u®°® as (g,8) — 0: for any (z,t) € Q x [0, 00), fix & > 0 satisfying (1.38)-(1.41) and let

u’ (z,t) :}i_r{(l)sup{ue"s(y,s) (y,8) € Qx[0,00), [z —y|+[t—s|+e+d<r,d>e},

s _ i (5.6)
gg(a:,t):}g%mf{u’ (y,5): (y,8) € QAx[0,00), |z —y|+|t—s|+e+d<rd>e"}.

The boundedness of u* uniformly in (e, §) will be justified later in Lemma 5.9.

Theorem 5.6 (Half limits of game values). Assume that Q C R™ is a bounded C*' domain. Assume that (F1),
(F2), (F4), (F5), (H1), (H2), (B1) and (B2) hold. Assume that (1.20)—(1.24) hold. Assume that ug is Lipschitz
in Q. Let ,6 >0 and u’ be the game value in (1.16) but with running cost F in (1.15) replaced by F/5. Let
u” and u, be defined by (5.6). Then u® are u, are respectively a subsolution and a supersolution of (1.34) with
dynamic boundary condition (1.2).

Remark 5.7. Concerning the condition ¢ > €7 in (5.6), it is equivalent to assume that there exists C' > 0 such
that § > Ce? for any € > 0 sufficiently small, or

lim inf i > 0.
e—=0 g9

These weaker assumptions will not change our result in Theorem 5.10. We choose to keep our current form for
simplicity of exhibition.

Let us take an analogue of (3.1); we define S5 : C(Q) — C(Q) by

S5lul(x) = minmax (w(e -+ ) ~ 1;} (5.7
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for any w € C (), where h and I; are respectively given by (1.18) and (5.2). It is clear that S§ is monotone.

Lemma 5.8 (Consistency for elliptic problems). Suppose that Q C R™ is a bounded C* domain. Assume that
(H1), (H2), (F1), (F2), (B1) and (B2) hold. Let H be given by (1.8). Assume that (1.20)~(1.24) hold and § > &
with o > 0 satisying (1.38)—(1.41). Let S5 be given by (5.7). Then for any ¢ € C*(Q) and x € ,

S51Al(@) = pla) = 287 2 (@) Fla, Vipla), V(@) — G (2) H (. Vip(a) .

+0 (2072 (z) + &%) . .

Here and in the rest of this section, we abuse the notation o(-) to express higher order terms as both

parameters €, — 0 with § > ¢?. Under the restriction § > £, for any two positive quantities ¢1, ¢5 fulfilling
Li(g,0) = 0 as (g,0) — 0 for both i = 1,2, by writing ¢5 = o(¢1), we mean that ¢5/¢; — 0 as (¢,d) — 0.

The proof of Lemma 5.8 is quite similar to that of Lemma 3.1. However, since the estimate (5.8) involves the

additional parameter § with more conditions, we below give full details, explaining how to use the condition
d > % and (1.38)—(1.41).

Proof of Lemma 5.8. For any ¢ € C®(Q), z € Q and § > &7, by Taylor expansion we have

S5l - plo) = mipmax { (Vle). ) + 5 (Tpl)huh) = 15| +0(e?), 5.9)

where h and l5 are given as in (1.18) and (5.2). As mentioned before, (1.38) is used to guarantee that l5 — 0
as € — 0. The condition (1.20) is adopted to deduce that |h|? is of order o(e?). We write the right hand side of
(5.9) as Q1 + Q2, where

@1 := min max {ﬁeng(x) (V(x) — p,v) +e*n(x) <(V2<p(m) — X)v, U>

p,X

(5.10)
— 25 2 (2) F(, p, X)}
and @ is the same as that in (3.5).
Similar to the proof of Lemma 3.1, our next step is to show that
Q1= =252 () F(x, Vop(a), Vip(x)) + o(e?6112). (5.11)

The proof for “<” is based on the choice p = Vi(x) and X = V2p(z) in (3.3). It suffices to show that “>”
holds.
The conditions (1.22) and (1.39) allow us to take ¢ such that

0<g<min{l—v—-8, 1+7v—0— foz}. (5.12)

We discuss the following cases.
(a) Suppose |Vo(z) — p| < &% and VZp(x) < X +71. Then we may take v = 0 so that

Q1 > —e20 'n2(2)F(z,p, X)
> —e*6 2 (x)F(x,Vo(x), Vip(x)) — Le6 n2(x)(e? + €7),

where L = Lp(R) is the local Lipschitz constant of F' in (F1) for R =1+ [|¢| 2. This yields (5.11)
immediately.
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(b) Suppose |V (x) —p| < e? and X + 71 — V2p(x) is not positive semi-definite. Denote by A the maximum

positive eigenvalue of V2¢(z) — X —e71. Let v be an eigenvector associated to the eigenvalue A with |v| =&~7.
Moreover, we may adjust the sign of v such that

(Ve(z) —p,v) = 0.
By the Lipschitz continuity (F1) of F and the growth condition (F2) again, it follows that

Q1 > —*5 "2 (2) F(z, Vip(x), V2p(x) — M) + %2 (x) (e +77)
— Le*6™ 2 (x) (e +€7),

which yields
Q1 > =072 (x) F(x, V() Vip(x)) + &2 (x) (Ae ™7 — C3'A72) — 0?0~ 'n2(x))
for some C > 0 large. Noticing that A < C(1+ ¢~ #) and § > €7, we have
A = O5 N 2 A (£72 = Cem A ) 2 0

when e > 0 is small, since (1.41) holds. We therefore get (5.11) in this case too.
(¢) Suppose that |[Vp(x) — p| > €9. Take v parallel to Vo(x) — p with |v| = e~7. Then, by (F2), we get

Q1 > V2e' . (2)|[Vep(z) — p| — CnZ (@) (277727 + 57 1e27772) — O 2 () [p| ™,
for some C' > 0 and & > 0 small, which, in view of (5.12), implies that
Q1 > ' (@)|Vep(x) — p| — Ce26 2 (x)[p| ™,

due to the assumption § > 7.
If |p| < 2|Vp(x)], then for € > 0 small we have

e ()| Vp(x) — p| — C267 2 (2)[pl|”* > €' ne(2)|Vip(a) — p| — O(e?6~ 2 (x))
> %Elfvﬂng(x).
The last inequality comes from the fact that 1 — v+ ¢ < 2 — o due to (5.12) again.
If |p| > 2|Vp(x)|, which yields |p| > 2¢7/3, then
- - g 1 - - o1
e |Vip(w) — pl = Ce*0 72 |p|™ = Set T Tnelp| = O |
_ 1 1 yor—
> e (5 - ool
1
> ) (3 - ot ).

It follows from the assumption ¢ > ¢ again and (1.40) that

_ o1 1,
e e () lpl — CePnE()lp|™ = 76" (@) lp| = 651 T2 (z)
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when € > 0 is small. In either case, we obtain

Q1 2 —€%6 1 (x) F(x, Vip(a), VZi(x))

for any ¢ > 0 small by using (5.12) again. We thus complete the proof of the claim (5.11).
Moreover, it is clear that (3.8) still holds for Q2 here. We thus conclude the proof of (5.8) by combining (5.9),
(5.11) and (3.8). O

Let us prove uniform boundedness of u*° in € and 6.

Lemma 5.9 (Uniform boundedness). Assume that Q C R" is a bounded C*' domain. Assume that (F1), (F2),
(F4), (F5), (H1), (H2), (B1) and (B2) hold. Assume that ug is Lipschitz in Q. Assume that (1.20)—(1.24) hold
and § > €% with o > 0 satisying (1.38)~(1.41). Let u? be the game value in (1.16) but with running cost F in
(1.15) replaced by F/5. Then for any T > 0, u? is bounded in Q x [0, T] uniformly for such small £,§ > 0.

Proof. We first take a smooth function ¢ as in (F5), for any 7 > 0 and x¢ € 92 arbitrarily taken, such that

ug < ’l/}j-_ in ﬁv

Y (x0) < uo(wo) + 7,
and
F(x, Vi (x), V2] (2)) >0 for any = € Q.

Using (F4), we can take ¢ := \; (¢ + ¢) in Q with ¢ > 0 small and A; > 0 sufficiently close to 1 such that

up <Y in Q
and

ig F (z,Vi(z), V2 (z)) > 0. (5.13)

Applying Lemma 5.8 and (5.13), we have

€,0

u= (z,€%) = S5[uo)(x) < S5[¥](x )
< P(x) = 67 P2 (@) F (a, WJ( ), V2 () = €2C(2) H (2, Vip(2)) + o(6~ e*n2 (z) + €2)
< Y(z) -0~ 152775 (z) (F ( (), V2 (@) + 0(1)) = e*C(x) H (2, Vip(x)) + o(?)

< W(2) — 2 (x)H (2, VY )+ o(e?).

for €7 < § <1 with & > 0 small. Since {.(z)H (z, Vi(z)) is uniformly bounded for all z € Q and & > 0 small,
we have

uf (z,e?) < P(x) +2M,,
where M, > 0 depends only on H and 1. By iteration, it follows that

u? (1) <Y+ Myt in Q forall ¢ >0, (5.14)
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which shows the boundedness of u® from above uniformly for such small ¢ and §. A lower bound can be
obtained in a symmetric manner by taking ¢~ in (F5) and ¢ := (¢ —¢)/A; in Q. O
Proof of Theorem 5.6. We only show that u’ is a subsolution. Assume that there exist (zo,%y) € 2 x (0, 00)
and ¢ € C*°( x [0,00)) such that @ — ¢ attains a unique maximum over 2 x [0,00) at (zg,to). By definition
of w7, there exist r > 0 and a sequence (x5, 5) € Q x (0,00) with § > &7 such that (zcs,tc5) — (0,t0) as
(e,6) — 0 and

(u€’5 — @) (ze5,te5) > sup (u® — @) — 352,
B,.(wsvg,tfe,(s)

For simplicity of notation below, we use j to denote the index pair (g,9) with § > &°.
It follows that

¢(xj,t5) < S5[pjl(x;) + %62,
where p; = ¢(-,t; —?). Applying Lemma 5.8 with ¢ = ¢; and z = z;, we deduce that

Gz, ty) — ¢z, t; — %) < =26 "2 (2 F(j, Vd(xj,t; — ), V2p(xy,t; — 7))
—&%C () H (x5, V(. t; — %)) + 0 (26 02 (x;) + €7),

which yields that

20ip(xj,t5) < =0 2 () F (x5, Vo(ay, t; — ), Vie(x;, t; —?))

N (5.15)
— 52§5(xj)H (xj, Vo(z;,t; — 52)) +o0 (525 lng(xj) + 52) .
Suppose that x¢ € €. In this case, we aim to show that
F(l‘o,V(b(l‘(),t()),de)(CC(),to)) S 0. (516)

We may assume that x; € Q. It follows from (5.15) that
02 (2;)F (25, Vo(xj,t; — ), Vio(aj,t; — %))
< —00,(xj,15) + 8 (x5) H (w5, V(.15 — ) + o(1).
Since n.(xz;) — 1 as j — 0, we are led to (5.16) by letting j — 0.
We next use (5.15) to verify the boundary condition. Suppose that ¢ € 9. By taking a further subsequence,
we may discuss the following two cases.
Case 1. If 6~ 'n2(z;) — oo as j — 0, then we may divide (5.15) by €26 ~'n? and pass to the limit to get (5.16).

Case 2. If 57 'n2(x;) — c as j — 0 for some ¢ > 0, then we have n2(z;) — 0 and therefore (. — 1 as j — 0.
Dividing (5.15) by 2 and sending ¢ — 0 yield that

cF (w0, Vé(xo,t0), V(0. t0)) + 8yp(w0, to) + H (0, Vé(xo,t0)) < 0.
Hence, combining both cases above, we are led to
min { F(xo, V(xo,to), V:p(x0, %)), drd(z0, t0) + H (0, V(xo,t0))} <0,

which completes the proof. O
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5.3.2. Game convergence

Suppose that (F3) holds. As pointed out in Remark 3.5, the ranges for «, 3,~ in this case become simpler;
see (3.11). For convergence of u®? with 6 > €7, the choice of o becomes also simpler. Indeed, as o1 = 09 = 1,
the conditions (1.38)—(1.41) reduce to only o < 2.

Theorem 5.10 (Game convergence for elliptic equations with dynamic boundary conditions). Assume that
Q C R" is a bounded C** domain. Assume that (F3), (F4), (F5), (H1), (H2), (B1) and (B2) hold. Assume
that (1.20)-(1.24) hold. Assume that ug is Lipschitz in Q. Let €,6 > 0 and u®° be the game value in (1.16) but
with running cost F in (1.15) replaced by F/§. Then u®° — U locally uniformly in Q x (0,00) as (£,8) — 0
provided that § > €% with o < 2, where U is the unique solution of (DBP3) with the initial value us being the
unique solution of (DP2).

Remark 5.11. The convergence of u*° does not apply to the initial moment. This is certainly due to an instant
jump from ug t0 Use.

Since in Section 3 we have shown the locally uniform convergence u®? to us as € — 0, Theorem 5.10
immediately implies the following result.

Corollary 5.12 (Fast evolution behavior). Assume that Q C R™ is a bounded C*' domain satisfying (H1) and
(H2). Assume that (F3), (F4), (F5), (B1) and (B2) hold. Assume that ug is Lipschitz in Q0. Let us be the unique
solution of (DBP2). Then us — U locally uniformly in Q x (0,00) as & — 0, where U is the unique solution of
(DBP3) with ue being the unique solution of (DP2).

Let us show Theorem 5.10 by using Theorem 5.6. Under the assumption (F3) we can assume 0 < o < 27v in
place of (1.38)—(1.41). We prove that u” and u, above essentially satisfies the initial value (1.35).

Proposition 5.13 (Initial verification). Assume that Q C R™ is a bounded C? domain satisfying (H1) and
(H2). Assume that (F3), (F4), (F5), (B1) and (B2) hold. Let ug be Lipschitz in Q. Let £,6 > 0 and u° be the
game value in (1.16) but with running cost F' in (1.15) replaced by F/§. Let u® and u, be defined as in (5.6)
for 0 < o < 2v. Then @ (x,t) and u,(x,t) converge to us(x) uniformly for all x € Q ast — 0.

Proof. The first part of our proof is based on the construction of barrier functions in the proof of Lemma 5.9
for any fixed point zg € 9. By taking the relaxed limit for (5.14) as €,8 — 0 and then sending A\; — 1,¢ — 0,
we have, for any 7 > 0 and ¢ > 0,

w7 (zo,t) < uo(xo) + 7+ Mt
A symmetric argument yields
u, (2o, t) > uo(xo) — 7 — M t.
It follows that @’ (-,0) = u,(-,0) = ug on 9N due to the arbitrariness of 7 > 0 and xg € 9.

Moreover, by Theorem 5.6, we see that @’ and u,, as functions of (z,t) in Q x (0,00), are respectively a
subsolution and a supersolution of (1.34), which implies that @?(-,t) and u,(-,t) are respectively a subsolution
and a supersolution of (1.34) for all ¢ > 0.

Indeed, suppose that for any fixed to > 0, there is a function ¢ € C*°(2) such that u”(-,to) — ¢ attains a
strict maximum at xy € €. Then, due to the boundedness of u and €, for any m > 0 large,

(z,t) = 7% (z,t) — p(x) —m|t — to|?

attains a local maximum at (z,,,t,) € Q x (0,00). We then have

@ (T, tim) = P(2m) — mltm —to]* = 7% (0, t0) — @(x0), (5.17)
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which yields ¢, — to as m — oo. This further implies that z,, — x¢ as m — oo. If this is not the case, we may
take a subsequence, still indexed by m for convenience, such that x,, — & €  as m — oco. Then by (5.17), we
have

u’ (&, to) — (&) = limsup (@7 (€m; tm) — p(2m)) = 0 (20,t0) — ¢(20),

m—r o0

which is a contradiction. Hence we have z,, € .
By the definition of viscosity subsolutions of (1.34), we thus obtain

F(zpm, Vo(xm), V2g0(xm)) <0,
and therefore
F(z0, Ve(zo), VZo(x0)) <0

by letting m — oo. The same argument applies to u, as well.
Recall from Proposition 5.4 that us the unique solution of (DP2). We can use the comparison principle for
(DP2) (Thm. 5.2) to get

W (z,t) < uoo(z) + 7 + Mt + w(t)
for all (z,t) € Q x (0,00) and any 7 > 0. A symmetric argument yields
U, (T, 1) > oo () — T — Myt 4+ w(t)
for all (z,t) € Q x (0,00) and any 7 > 0. Noticing that u, < u’, we have
[0 (x,t) — oo ()| <74+ Mt + w(t).
This means that for any A > 0, we can let
[T7(2,t) — too| < A

by choosing 7 < A/2 first and then letting ¢ > 0 small such that Mt + o(t) < A/2. This shows that u”(-,t)
uniformly converges to us in €2 as t — 0. A similar result holds also for u,,. O

We are now in a position to prove Theorem 5.10.

Proof of Theorem 5.10. By Theorem 5.6, we see that u” and u,, are respectively a subsolution and a supersolu-
tion of (1.34) satisfying the dynamic boundary condition (1.2). Moreover, Proposition 5.13 allows us to redefine
the initial values of w” and u, to be

1 (+,0) = u,(+,0) = us in L

The convergence of u®% to the unique solution of (DBP3) is therefore a consequence of Theorem 2.5. O
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APPENDIX A. COMPARISON PRINCIPLE FOR ELLIPTIC EQUATIONS WITH
DYNAMIC BOUNDARY CONDITIONS

We below give a proof of Theorem 5.5 based on an adaptation of the arguments by Barles [8]. Let us
prepare several preliminary results that will be used in the proof of Theorem 5.5. Given A > 0 small, (z,b,p) €
(Q\ ) x R x R™, we choose a real number C(z,b,p) such that

b+ H(z,p+ C(x,b,p)v(z)) = 0. (A1)

Using the method in [7, 8], we can extend C' to a function defined in R” x R x R™ and approximate this function
by a family of smooth functions {C),},>0.

Proposition A.1. Assume that Q is a bounded C*' domain. Assume (B1) and (B2). Let H be given by (1.8).
Let C: (2\ Qy) x R xR™ = R be the function satisfying (A.1). Then for each n > 0 there exists a smooth
function Cy) : R® x R x R® — R such that for any R > 0,

|C77(.T,b,p) - C(Z‘,b,p)| < KO(n + |<p,U($)>|) (A2)

holds for all (z,b,p) € (2\ Q) x [-R, R] x R™ with Ky > 0 independent of n,z,b, p, and

|Cyy(2,0,0)| < K, (A3

|V Cy(x,b,p)| < K(1+ |pl), (A4)

‘gbcn(x,b,p)' <K, (A.5)

IVpC(z,b,p)| < K, (A.6)

[V2Cy (2, b,p)| < K(1+ [p))*(n + | (p,v(2)) ), (A7)

V2Cn (b, p)| < K(1+[p))(n + [ (p, v()) )7, (A.8)
[V2Cy(x,b,p)| < K(n+ | (p,v(z) )" (A.9)

hold for all (x,b,p) € R™ x [-R, R] x R", where K > 0 depends on n and R.

We omit precise description on how to construct Cy, which can be found in [8, Proof of Lemma 5.1, Step 1].
Note that the boundary condition considered in [8, Lemma 5.1] does not include the time derivative u; (repre-
sented by b above) but depends on the unknown function u instead. We actually can build C,, here by letting b

take the role of w in the regularization process there and all estimates still hold for our purpose.
As a result, we obtain the following.

Proposition A.2. Suppose that all assumptions in Lemma A.1 hold. Then C,, in Lemma A.1 satisfies
b+ H(z,p+ Cy(x, b, p)v(x))] < Ko(n + |(p, v(2))]) (A.10)
and
|Cy(2,b,p)| < K(1+ [0 +[p]) (A.11)

for all (z,b,p) € R™ x [-R, R] Xx R™ and n > 0.
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Proof. Recall that (B1) implies the Lipschitz regularity (1.10) of H. Using (A.1), (1.10) and (A.2), we have

b+ H(z,p+ Cy(x,b,p)v(x))| = |H(z,p+ C(z,b,p)v(x)) — H(x,p+ Cy(z,b,p)v(z))|
< L|Cy(,b,p) — C(2,b,p)| < LKo(n + |(p, v(x))]).

We thus obtain (A.10) by resetting LKy = Kj. Next, it follows from (A.3), (A.5) and (A.6) that
|C77(.Z',b,p)| < |C77(3;‘,0,0)| + |C77(.Z',b,p) - Cn(xa0,0)| < K+ K([b] + |pl),

which shows (A.11). O

Lemma A.3 ([7, page 99 (20)]). Assume 2 is a bounded C* domain. Let d(x) denote the signed distance from
z € Q to 0. Then for all x,y € Q

) - () = (o= 2w (Z52) ) + Ol - o) (A.12)

In particular, if © € 982, then

r+y
(= (T52) ) = aw + Ol -y (A13)
Proof. By the regularity of d we have

d(z) — d(y) = (Vd(y),z — y) + O(|z — y[*)

and
T+ T+
Vi) = va (15 ) + 0l - ) =~ (T52) + 00z~
These two equations yield (A.12). Also, (A.13) is an immediate consequence of (A.12) since d(z) = 0. O

Proof of Theorem 5.5. Suppose by contradiction that M := u(zg,ty) — v(xo,to) > 0 for some (zg,to) € Q x
(0,00). Fix T > .

Step 1. Doubling variables N
Define an upper semicontinuous function @ : (Q x [0,7)))? — R by

b(x,t,y,s) = u(z,t) —v(y,s) —Y(x,ty,s),

where
e b0 9) e ;2y| G ;23) N A(d(x); dy)? T(i - Tfi .
_ Cn (Ji ‘; y7 Q(ta—2 8), 2(335; y)) (d(x) _ d(y))

Here § is taken to be 4M/(T —tp) and A > 0 is a large constant to be determined later. We may let &, > 0
and 7 > 0 small such that ® attains a maximum over (Q x [0,7))? at a point Z. = (wc, te, ye, Sc ).
A standard viscosity argument then yields that
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— There exists (Z,t,7,5) € (2 x [0,T))? such that

Ze = (T, te, Ye, 5¢) — (T,¢, T, 5)

as € — 0 by taking a subsequence; below we still index the subsequence by e for convenience.

— Z¢,ye are close to each other in the sense that

|$6 - ya|2

5 —0 ase—0.
€

— t. #0 and s. # 0 and
[te — se| < a,

for all €, & small enough. We fix such a > 0.

Set

Q=

(a:+y 2t — s) 2(x—y)>.

2 7 a7 g2

(A.14)

(A.15)

As (A.15) essentially gives a bound 2/« for the variable b of C),, below we will apply the estimates (A.3)-(A.11)

with R = 2/a. For later use, we differentiate 1) to obtain

R o

- (5%:0n(@ + 59,6,(@)) (@) - dw) - €@ Vo)

V(@b y,s) = _2(:; y) 2A(d(x22— d(y))Vd(y)

- (5%/0(@ - 59,0, ) @) - dw) + €@ V),

Step 2. Violation of the boundary conditions
Let us show that

OY(Ze) + H(we, Vap(Ze)) >0 if 2. € 0Q
and

— 0s¥(Z:) + H(ye, —Vy¥(Z;)) <0 if y. € 00

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)
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for £ > 0 small enough. Here we only give the proof of (A.19) since the same argument works for (A.20). If
x. € 09, since d(z.) = 0 and Vd(z) = —v(z), by (A.16) and (A.17) we have

2(te — sc) ] 2d(y.) OC
a? (T —t.)2 T (%n (Qe),
2(xe — Ye 2Ad(y.
(1' = Y ) + Egy )Z/(Z‘E)

N (;vwcmg) . ;vpcn@g)) A(ye) + ColQIv (o).

5#/}(28) =

Vﬂb(z@) =

where

L Ze + Ye 2(ts B 55) 2(%5 B ys)
QE T 2 ) a2 ) 52 .
Let us now give an estimate for each term on the left hand side of (A.19) for € > 0 small.
By (A.5), we get

2K |z — ye|

(%

2d(ye) 0
) o)

for € > 0 small. Here and in the sequel, the constant implied in the error term o(1) also depends on «, A, 8, 7.
We next use (A.10) and (A.13) to deduce that

2(t5—85)+H<$s+ys 2($5_y6)+cn(Q Y <$s+y€>)
g2 c

o? 2 2

(2 (252

> o (1 25 (4000) + Ollne = ) ) =~ — 20 o0,

Y]

Moreover, using the Lipschitz regularity of H as in (1.10) implied by (B1), we see that

H (2., Vo(Z.)) > H (x 2(%52_ be) 2A(€1§y8)y(%) + Cn<cza>v<xa>) s
- Lir| 5C0(Q0) + 59,6(Q0)] o) o
It follows by (1.11) (due to (B2)) that
H (0, Vao(Z) 2 1 (0 222 4 QUi ) + 2225000 "
L [§9:C(Q0) + 5 9,6(Q0) ) o

Our goal is to estimate from below the difference

(0 Va(20) — 1 (252 220 oy (1) ).
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To this end, adopting (A.4) and (A.6), we see that the last term on the right hand side of (A.24) satisfies

1 2
LH ‘2vzcn(Qs) + ;vpcn(QE) d(ye)
L d
< P 19,0,(Q0)1d(w.) + 2L 9,0, (Q0)| “ % (A.25)
LgK 2|z, — d d
< H (1+ ‘IEQ y5|>|$5_y5|+2LHK (y;):o(l)—i—ZLHK (y;)
2 € € €
On the other hand, in view of (1.10) we deduce that
Te +
H ( - 9 ysaQs,?) - H(xsaQE,l)
N (A.26)
Te — x
<Lar (14 gl + e |52+ LlCy @ [ptae) = v (P52 ).
where
2(xe —
gen = 2 4@t
2(xe — Te +
Gon = M 0 (Q)r (Elk) .
€ 2
Thanks to (A.15) and (A.11), the right hand side of (A.26) can be estimated as follows:
Te — 4|z — Te —
L0+ gl +laeal) 252 | < 2 (14 22 420, 0y ) e
4|z — 2 2x. — —
<Ly (14 el o (14 2 A el ) ) b el
€2 a g2 2
Te + 2 2z, —
LlCy@lpteo) —v (5| < Laric (14 24 2 20 010, — ) = o),
Hence, we have
Te + Ye
H(z:,q.1)— H 5 e > o(1). (A.27)
Combining (A.24), (A.25) and (A.27), we are led to
e + 2(x. — Te +
H (o, V(20 1 (P22 2020 Qo (7521 )
(A.28)

> QPAi(ys) 3 QLHKd(yE)

6 2 +o(1).
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We finally obtain the estimate

Op(Z:) + H(we, Vaop(Z2))

4 d(ve)
>___ -
Z T2 Kon + -2

(2pA —2Ky— 2Ly K) —o(1).

This shows that (A.19) holds for € > 0 small enough when 7 and A are chosen to satisfy

n < 1) - AZK()-FLHK
2K T P

Step 3. Further estimates for the derivatives of 1
We first consider V.9 (Z.) + V9 (Z.), which is estimated using (A.17) and (A.18) as follows:

Vah(Z2) + V()
< |2 24D = Q) (g, - wa) - 20y (@u)(A() — )
< 2Aze) QU 1O QN 94(r,) — vagye)| +19.0,(@2)lld(z) — diye)

IN

2A 4 2K)|x. — 2|z —
<K+ ( 82)‘ - y5|> O(|x5_y6|)+K(1+€€2y5|> |ze — el

We thus have
IVath(Ze) + Vyh(Ze)| = o(1). (A.29)
Utilizing (A.17) again, we observe that

2 e — Ye 2Ad £ _d €
Vap(z) < A vl 240G 24wl 6, )

+ (317:C(Qal + 519,60(@a) ) ) — ()

< 2"1:6 _y5| + QA‘xe _y5| + K (1 + 2"1:6 _y6|>

- g2 €2 g2

1 2|z — ye| 2
+(2K<1+52 +€7K |.’175—y5|,

which implies that

|vxw(zs)||$a - ye| = 0(1) (A30)

when & > 0 is sufficiently small. In a similar way, we have

IVyh(Ze)l|ze — ye| = o(1). (A.31)
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The second derivative of ¢ is more involved to handle. In the same manner as in [7, p. 99, 100], we can obtain

V2(2.) < O (;2) (_II _II) +o(1) (é ?) . (A.32)

Indeed, besides the standard estimates for the second derivatives of |z — y|?/e2, we also need to calculate
those of A(d(x) —d(y))?/e? as well as those of

C(ZL', 1Y, S) = CT](Q)(d(‘T) - d(y))

Since the calculation for the former is similar to that for |z — y|?/e2, we focus our attention on C. By direct
calculations, we have

3 6
V2C~’(I7taya S) = ZDZ(Q)(d(x) - d(y)) + ZDi(Ivta Y, 5)7 (A33)
=1 1=4
where
L L(V20(Q) —V2C(Q) 2 (V2,0,(Q) 0
Di@)=3 (vzc”n@) V2C,(Q) ) D2(@Q) = ( 0 vzpcn<c2>>’
4 (VI0,Q) —VEC,Q)
Ds(Q@) = (—vzcn@) V20, (Q) )
and
Dty s) = 1( 2V,Cy(@) © Vd(z) Vzcn@)@(wx)va(y)))*
Wby =5 (v,0,Q) @ (Vd(@@) - Vd(y)  —2V.C,(Q e Vdly) )

Ds(z.tiy.s) = 2 2V,C,(Q) ® Vd(x) ~V,C, @ (Vd(z) + Vd(y))\
S\ELY )= 2\ v, @ (Vd(z) + Vd(y) 2V,C,(Q) ® Vd(y) :

Dg(x,t,y,s) = Cy(Q) <V2(3(x) —Vgod(y)> '

Here A* denotes the symmetrized matrix of A, i.e., A* = (A + AT)/2.
We next verify that, evaluated at Z., all terms in the sums appearing in (A.33) can be estimated by the right
hand side of (A.32). First, by (A.7), (A.12) and (A.14), we have
[D1(Q:)] d(ze) — d(ye)|

< i (14 2o 0l) (e 2o —w0 (2 ))) ) - o)

2 22
2
§K<1+52|$5—ya|) (2+n0($5_y6 )) = o(1).

ol
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Next, for the term with Dy, we use (A.8), (A.12) and (A.14) to similarly get

2 e 1
92,C@a) a0 sl < & (14 Fhoe =l ) (5 + 10 (hoe = ) ) = o(e),
which implies that

(d(z) — d(ye)) (D2(Qe) (w1 & w2), w1 & wa) < : o lwn - wa® +0(1) (Jwi|* + fwel?)

for all wy,ws € R™. This shows that D;(Q:)(d(z:) — d(ye)) is bounded by the right hand side of (A.32).
Moreover, since we can utilize (A.9) and (A.12) to deduce

1 K /(1 1
21 [VpCa(@o)] d(ee) —dw)l < 55 (2 + 50 (Jo. - y52)> ,

which yields

D)) - a <0 (%) (1 7).

The terms Dy(Z.), D5(Z.), Dg(Z:) can be similarly estimated. For instance, by direct computation, we have

(Da(Z2)wy & wa, wy & wa)
<v ( &) ® Vd(‘rs)wh w1> - <VICU(Q5> ® Vd(ys)w27 w2>
+ (Vo Oy (Qe)wr) (Vd(z2) = Vd(ye), w2) + (Vo Cp(Qe), w2) (Vd(ze) — Vd(ye), w1)

for any wy,wy € R™. By (A.4) and (A.14), we are led to

(Dy(Ze)wy @ wa, w1 O wa)
<V Cy(Qo)|VA(2)[|wr — walwy + wa| + 2V, Cp(Q:)[Vd(z2) — Vd(ye)|(Jw:|* + [wa|?)

1
<o (2] ur = wnlr -+ ]+ of0)un P+
1
<0 (%) lun - waP + o) + fuaP)

as desired. We omit the tedious but analogous estimates for D5(Z.) and Dg(Z.). In the estimate of Dg(Z.), we
need the Lipschitz continuity of V2d, which justifies our assumption on C?' regularity of (2.

As the other terms in V23(Z.) can be estimated in a standard way, we conclude the proof of (A.32) by
omitting the rest of the details.

Step 4. Use of Crandall-Ishii lemma
Making use of Crandall-Ishii lemma, we see that there exist X., Y. € S” such that

(Varb(Z2), 000(22)), X2) € P~ u(ze, ), (A.34)

(=Y (Z.), —0s(2.)), =Y2) € P2 v(ye, 52), (A.35)
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(‘)éf g) < V2Y(Z.) + 2(V2(Z.))2. (A.36)

By (A.32), the last condition (A.36) implies that

X. + Y. < o(1). (A.37)

Since u is a subsolution of (1.34) and (1.2), then (A.19) implies

F(xe,VoYp(Ze), Xe) <0 (A.38)

even if x. € 00. Similarly, since v is a supersolution of (5.5) with (1.2) and (A.20) holds, we get

F(ye, =V (Ze), —Ye) > c. (A.39)

Subtracting (A.38) from (A.39), and applying (F3) and (A.37) together with the ellipticity of F, we obtain

c< F(ye, —Vy¢(Ze), _Ye) - F(CEE, vaﬂ;[}(zs)vXa)
< Lp (1 + [Va(Ze)| + IV (Ze)D|we — ye| + [Vatp(Ze) + Vyb(Ze)| + o(1)) .

By (A.29)—(A.31), we see that

¢ <o(1),

which is clearly a contradiction when € > 0 is sufficiently small. O
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