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CARLEMAN ESTIMATES FOR TIME-DISCRETE PARABOLIC
EQUATIONS AND APPLICATIONS TO CONTROLLABILITY™

FrRANCK BOYER! AND VicTOR HERNANDEZ-SANTAMARIAZ**

Abstract. In this paper, we prove a Carleman estimate for a time-discrete parabolic operator under
some condition relating the large Carleman parameter to the time step of the discretization scheme.
This estimate is then used to obtain relaxed observability estimates that yield, by duality, some con-
trollability results for linear and semi-linear time-discrete parabolic equations. We also discuss the
application of this Carleman estimate to the controllability of time-discrete coupled parabolic systems.
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1. INTRODUCTION

1.1. Null-controllability of the heat equation

Let Q C R% d > 1 be a bounded open set with boundary 9 regular enough. For a given time 7' > 0, we
denote by Q@ = Q2 x (0,T) and ¥ = 9Q x (0,T). Let w be a nonempty subset of 2. We consider the linear heat
equation

Oy —Ay=1,0 inQ,
y=0 on %, (1.1)
y(z,0) = yo(x) in Q.

In (1.1), y = y(x,t) is the state, v = v(x,t) is the control function acting on the system on the control domain
w, and yp is a given initial data. As usual, 1,, denotes the characteristic function of w.

It is well-known that for any yo € L?(Q) and v € L?(w x (0,T')), the corresponding solution to (1.1) is globally
defined in [0,7]. More precisely, one has
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One of the key questions in control theory is to determine whether a system enjoys the so-called null con-
trollability property. System (1.1) is said to be null-controllable at time T if, for any yo € L?(Q), there exists a
control v € L?(w x (0,T)) such that the corresponding solution satisfies

y(-,T)=0 1in Q.

Observe that the regularity (1.2) justifies the definition we have introduced.

It is by now well-known that (1.1) is null-controllable for any T' > 0 and for any nonempty open set w C €.
In fact, this problem was addressed independently in the 90’s by Lebeau & Robbiano [15] and by Fursikov &
Imanuvilov [12]. By a duality argument, the null-controllability of (1.1) is equivalent to the observability of the
associated adjoint states. More precisely, for each qr € L?(f2), consider the adjoint system

—0iq—Aq=0 in Q
g=20 on %, (1.3)
q(z,T) = qr(x) in Q.

Then, (1.1) is null-controllable if and only if there exists Cyps > 0 such that the following observability inequality
holds

19(0)|L2(2) < Cobs (// |Q|2dl’dt> , Vgr € L*(Q). (1.4)
wx (0,T)

1.2. Time-discrete setting

In this paper, we shall use the notation [a, b] = [a,b] NN, for any real numbers a < b.

We are interested in studying controllability and observability properties for the time-discrete counterparts
to (1.1) and (1.3), but also for more general parabolic systems (see Sects. 4 and 5). To be more precise, for any
given M € N*, we set At = T'/M and introduce the following discretization for the time variable

O=to<t1 <...<ty =T, (1.5)

with ¢, = nAt and n € [0, M]. We also introduce ¢, ;1 = (tn41 +tn)/2, for n € [0, M — 1], see Figure 1.

For any time discrete control sequence v = vt ), o.m—11 C L?(Q), consider the sequence y =
€[o, 1
{y"}nego,my C L*(Q) verifying the recursive formula

yn-i-l _yn N

Ay Ay" Tt =1,0" e, n € [0,M —1],

Yl =0, neo,M 1], (16)
yO = Yo,

where 3™ (resp. v"72) denotes an approximation of y (resp. v) at time &, (resp. tny1)- Observe that (1.6) is
precisely an implicit Euler discretization of the heat equation. Evidently, there exist many other methods to
discretize (1.1), but we have chosen this method for the sake of simplicity.

As in the continuous case, we can introduce the notion of controllability for the discrete scheme, namely,
system (1.6) is said to be null controllable if for any yo € L*(Q2) there exists a sequence {'Un+%}ne[[07]y1_1ﬂ such
that the corresponding solution satisfies

y™M = 0. (1.7)

Notice that for any fixed At and for each n € [0, M — 1], (1.6) can be regarded as a system of controlled elliptic
equations.
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There are only a handful of works in the literature addressing the controllability of time-discrete systems
such as (1.6). This may come from the fact that, as pointed out in ([23], Thm. 1.1), system (1.6) is not even
approximately controllable for any given At > 0, except for the trivial case when w = Q. In view of this negative
result, it is natural to ask whether the controllability requirement (1.7) for system (1.6) can be relaxed. In this
direction, in [23], the controllability for (1.6) is achieved by considering the projections of solutions over a
suitable class of low frequency Fourier components. Using a time-discretized Lebeau-Robbiano strategy (see e.g.
[15, 16]), the author proves a uniform controllability result (with respect to At) for the low frequency part of
the solution.

In [7], the authors prove in a quite general framework that any controllable parabolic equation (even if it
is discretized in the space variable) is null controllable after time discretization by an appropriate filtering
of the high-frequencies. In [5], the authors study in a general setting the null-controllability of fully-discrete
approximations for parabolic equations and its convergence rate towards the semi-discrete (in space) case. There,
the authors prove some relazed observability estimates (uniform with respect to the discretization parameters)
allowing to recover classical results for the continuous case. However, both of these works rely on spectral
analysis tools and therefore the results are limited to autonomous linear control systems. We finally mention the
works [8, 21, 22] which encompass the controllability of time discretization schemes for wave-like, Schrodinger
and KdV equations.

Here, inspired in the strategy outlined in [6] (see also [4]) for the space discretization of parabolic equations,
we derive a Carleman estimate for time-discrete approximations of the parabolic operator —d, — A and from
there we deduce a relaxed observability inequality for a suitable adjoint system. We shall refer to it as a relaxed
inequality due to the presence of an extra term on the right-hand side (as compared to (1.4)). This inequality,
in turn, allows to obtain by duality a controllability result where a small target is reached and whose size goes
to zero exponentially as At — 0, more precisely, we achieve

™| 22(0) < Cobs VO(L) Yo 12(0),

where Cops is a positive constant uniform with respect to At and At — ¢(At) is a suitable function of the
discretization parameter At. For this reason, in the spirit of [6], we shall speak of a ¢(At)-null controllability
result.

The main goal and novelty of our approach are twofold. By deriving directly a Carleman estimate for the
time-discrete operator, we can deduce controllability results for more general systems (e.g., equations with
time-dependent coefficients, right-hand side terms, etc) since we are no longer restricted to spectral techniques
(as in [5, 7, 23]). Moreover, our methodology can be readily adapted to derive the analogous counterpart of
well-known controllability results in the continuous case, commonly relying on Carleman inequalities, such as
the cases of semilinear systems, coupled equations, or non-standard problems as the insensitizing control.

1.3. Notations and functional framework

Before introducing our main results, we establish the framework of the discrete setting we shall work with.
The notation introduced here allow us to use a formalism as close as possible to the continuous case and, in
this way, most of the computations will be carried out in a very intuitive manner.

From the discretization points (1.5), we will denote by P := {t,, : n € [1, M]} the (primal) set of points
excluding the first one and we write P := P U {to}. To handle in an efficient way computations related to the
approximation of the time derivatives, we will naturally work on another (dual) set of points lying at the middle
points of P. More precisely, we define D := {¢,, y1inE [0, M — 1]}. It will be convenient to consider also an
extra point {t;;, 1} which lies outside the interval [0, 7] (see Fig. 1) and to write D:=DuU {Thnr4 1} Observe

that both P and D have a total number of M elements.
We denote by R” and RP the sets of real-valued discrete functions defined on P and D. If u” € R” (resp.

uP € RP), we denote by u™ (resp. u""2) its value corresponding to ,, (resp. t,, +1)- For u” € R” we define the
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; tM,% 75M+% P = (tn)nefo,m]
L 1 L : I I

0=to tq to th—1 ty =T D= (thr%)nG[[O,]W]]

Figure 1: Discretization of the time variable and its notation.

time-discrete integral

T M
/ u” = ZAtu", (1.8)
0 n

=1
and, analogously, for u? € R? we define

M-1

T
ul = Atu’”r%. 1.9
]g 3 (1.9)

n=0

Remark 1.1. To ease the notation and thanks to the introduction of two different integral symbols, in what

follows we shall write u indistinctly to refer to functions u” or uP.

Let {X,]-|x} be a real Banach space. We denote by X7 and X7 the sets of vector-valued functions defined
on P and D, respectively. Using the definitions (1.8) and (1.9) for the discrete integrals, we denote by L%, (0, T X)
(resp. L5(0,T; X)), 1 < p < oo, the space X (resp. XP) endowed with the norm

1/p

T T

el o.73) = (/ |u|f;<> resp. [Jull e o.rix) = (f |u|§<>
0 0

We also define the space L% (0,73 X) (resp. L (0,T; X)) by means of the norm

1/p

1
lullLss 0,75y == sup |u”[x (fesp lullzzomx) = sup  [u"F2 |X> :
ne[l,M] nel0,M—1]

In the case where p = 2 and X is replaced by a Hilbert space {H, (-,-)i}, H” (resp. HP) becomes a Hilbert
space for the norm induced by the inner product

T M T M—-1 .
/ (u,v) g = Z At (u", 0™y (resp. 7£ (u,v) = Z At (u”+2,v"+5)H> .
0 —t 0

Particularly, if H = L?(2) we shall use the notation

//Q w = /OT(u,v)Lz(Q) (resp. %/Q u = ﬁT(u,v)Lz(QJ ,

Remark 1.2. For short and in accordance with the notation used in the continuous case, we will denote the
spaces L% (0,T; L?(2)) as L%(Q) and we use L¥(Q) to indicate the space L (0, T; L°°(2)). The same notation
holds for functions defined on the dual grid D.

To manipulate time-discrete functions, we define translation operators for indices tt: XP -5 XP and t~ :
XP — XP as follows:

(ttu)" 7 = ut ()"t =0, ne[0,M —1].
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With this, we can define a difference operator D; as the map from X7 into XP given by

unJrl

1 fu" 1 _ n+§
(Dtu)n+§ :N:(At (t+—t )u) s nE[[O,M—l]]

In the same manner, we can define the translation operators t+ : X D5 XPandt : XP — X7 as follows:

1

Etu)" =u"t3, (®w)" =u""3,  ne[l,M], (1.10)
as well as a difference operator D; (mapping X7P into X P) given by

— u"""% —u"2

(Dyu)™ =y = (Alt (t+—t_)u) , ne[l,M].

These definitions, together with the integral symbols (1.8) and (1.9), allow us to obtain a series of results for
handling in quite natural fashion the application of the derivatives D; and D; to functions either continuously
defined or discrete. For convenience, we have summarized in Appendix B the main tools and estimates used

along this document. As an example, for functions u € [L2(Q)]” and v € [L%(Q)]P, we have the following useful

formula
7[/ (Dyu)v = —(u®,v
Q

which resembles classical integration by parts. Expressions like (1.11) allow us to present and perform
computations intuitively, facilitating also the presentation and reading of this paper.

Nl

)LZ(Q) + (UIVI/UMJF%)L?(Q) - //Q(Dtv)ua (111)

1.4. Statement of the main results
1.4.1. Carleman estimate

Let us introduce several weight functions that will be useful in the remainder of this paper. We introduce a
special function whose existence is guaranteed by the following result ([12], Lem. 1.1).

Lemma 1.3. Let By CC Q be a nonempty open subset. Then, there exists ¢» € C?(Q) such that

P(x) >0 allx e, Y|oa =0,
V| >0 for all z € Q\By.

Let K > [[¢||¢ ) and set
= M) _ K <

p(x) . () =M, (1.12)
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and

1

o) = GonT r T =o'

(1.13)

for some 0 < § < 1/2. The parameter § is introduced to avoid singularities at time t = 0 and ¢ = T.
We state our first result, a uniform Carleman estimate for the time-discrete backward parabolic operator
formally defined on the dual grid as follows

(LDQ)n = 7(th)n - A(1_37Q)n, ne HLM]], (114)

for any ¢q € (HQ(Q))f. The result is the following.

Theorem 1.4. Let By be a nonempty open set of  and a function i provided by Lemma 1.3 and define ¢
according to (1.12). Let B another open subset of Q such that By CC B. For the parameter A > 1 sufficiently
large, there exist C, 19 > 1, g > 0, depending on B, By, T and X\ such that

T—l// G (|th|2+ At q)| +r// (€77°0)|V(Eg)]> + 7 // (e77%0°) (2~ q)?
o[ e s f[, emney)
Bx(0,T)
1 2
+ (L) (/‘ 70043 /’ T0¢q) +/ ’(eTW’Vq)M+’
Q

for all T > 70(T +T?), and for all At >0 and 0 < § < 1/2 satisfying the condition

2) , (1.15)

4At( mln{T3 TG}) < gy,

and q is any time discrete function in (H*(Q) N H} Q)P

To prove the Carleman estimate, we proceed as close as possible to the continuous case and follow the
procedure presented in [10]. During the proof, we will clarify the main differences and difficulties introduced by
time discretization. As compared to other discrete (in space) Carleman results (see [6]), it seems that the last
term corresponding to the gradient of the function ¢ cannot be avoided. Actually, this term also appears during
the proof of the estimate presented in ([6], Thm. 1.3) but since the functions are discrete in the space variable,
it is approximated as Vq ~ Ch~!q, where h is the mesh step size. In our case, it is not clear how to remove this
term and how to prove estimate (1.15) without the last term remains open.

Even though it does not explicitly appear in our Carleman estimate since it is hidden in the definition (1.13)
of 0, the parameter § plays a key role in the proof. The main interest is to avoid the singularity of the weight ()
at times t = 0 and ¢t = T (these singularities, which correspond to the case § = 0, are systematically exploited
in the continuous setting, see e.g. [12], but are rather difficult to handle in the discrete framework). Here, by
taking § > 0, we enable two different things: on one hand, we can define continuously the weight outside the
time interval [0, T, since functions on the dual mesh D have one extra point lying outside this interval (see
Fig. 1). On the other, it allow us to estimate the derivative of 6 (see Lem. B.4) and set a suitable change of
variables (see Eq. (2.1)), which is the starting point of the proof.

Remark 1.5. Some remarks are in order.

— One can readily recognize from (1.15) the classical structure of a Carleman inequality in the continuous
setting (cf. [10], Lem. 1.3). The last three terms are, however, specific to the discrete case and arise
during the proof. In fact, the presence of these terms is important: otherwise we could obtain a classical
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observability inequality (not relaxed) leading to a uniform controllability result (w.r.t At) for (1.6), which
would be a contradiction with the known results (see [23]).

— Despite the presence of a (At)~! factor in the last three terms of (1.15), we can make them exponentially
small by connecting the discretization parameters At and §. In fact, for controllability purposes, we can
choose § of order (At)!/* (see Eq. (3.13)) and use the fact that ¢ < 0 and 6 is large (close to s37) near
t =0 and t = T to deduce the smallness of these terms. By selecting the parameter § in this way, we
ensure that as At — 0 we recover the well-known results for the continuous case. Otherwise, even if (1.15)
is valid for any fixed 0 < § < 1/2, the last three terms would blow-up in the limit.

Remark 1.6. Let us comment on some possible variants of the above estimate.
— The same estimate holds for a more general variable coefficient equation of the following form
n

y"t —y

N’ — div (c"“(m)Vy"'H) _ 1wvn+%’

as soon as the functions ¢" are (uniformly) Lipschitz in space and satisfy a uniform Lipschitz estimate in
the time variable ||t — ¢"| L~ < CAt.
— If one considers instead of Lp the following forward-in-time operator

([N/Dq)” = (Diq)" — A(xTq)", ne[1,M],

for any ¢ € (H2(Q) N HL(Q))?, then a similar Carleman estimate can be obtained: it is just needed to
replace all the £~ operators by €+ and the last term by

J

— Using the tools in Appendix B, Theorem 1.4 can be easily adapted to discrete parabolic operators acting
on primal variables. For instance, we can consider the forward-in-time parabolic operator defined as follows

1 2
(e7¢Vq)?

(Lpy)™ ™2 = (Dyy)"+2 — A(tTy)" 3, nelo,M - 1],

forally € (H*(Q)NH (€2))”. Then, under the same conditions of Theorem 1.4, we can prove the following
estimate

7’—17/;/Qt+(327’9999—1) (|Dty‘2+ |A(t+y)‘2) +7_7/;/Q t+(627—«9¢9)|v(t+y)|2+7_37£/Q t+(€27—9¢93)(t+y)2

roan </Q‘(679“’y)0|2+/ﬂ!(eTe“oy)M|2+/Q|(679“”Vy)0|2>, (1.16)

for any time discrete function y € (H*(Q) N H&(Q))5
As in the previous remark, we can adapt the result to the associated backward-in-time operator

(ipy)’H'% = —(Dty)”Jr% —AG"y)", nelo,M—1].

— We shall mention that more general non-uniform meshes for discretizing the time variable can be taken
into account by following the spirit in ([4], Sect. 5). By considering non-uniform meshes obtained as the
smooth image of a uniform grid, we can follow and adapt the procedure in [4] to deduce a Carleman
estimate (and then a controllability result) in a more general setting. However, the problem of deducing a
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Carleman estimate in general non-smooth meshes (either for the time or space variable) is a difficult and
interesting problem that remains open.

1.4.2. Controllability results: the linear case

By considering a standard implicit Euler scheme for the time variable, the time-discrete homogeneous heat
equation with potential a € L¥ (Q) reads as follows

Yyt =y 1 1 n+1

T—Ay”+ +a" Tyt =0, n € [0,M —1],

Ykl =0, nelo,M—1], (1.17)
yO = Yo-

With the notation introduced previously, we can rewrite system (1.17) as

{(Dty)”+é — A(tty)"t3 + (ttay)"tz =0, ne[0,M 1],
0
Yy = Yo,

where, for convenience, we shall not explicitly write the homogeneous Dirichlet boundary conditions in such
compact formulas since we will not deal with other boundary conditions in this paper.

Observe that the equation verified by y is written on the dual grid D. This motivates us to look for a time-
discrete control v which is naturally attached to this grid (¢f. Eq. (1.6)). Thus, we will consider controlled
systems of the form

{(Dty)’”é — A(tTy)"3 4 (tTay)"tr = 1,077, ne0,M —1], (1.18)

¥ = yo.
Following the well-known Hilbert Uniqueness Method (see Prop. 3.3), we can build a control function by

minimizing a quadratic functional defined for the solutions to the adjoint of (1.18), which in this case is given
by

n—% _ n—i—%
%—Aqn_%—i—a”qn_% =0, n € [1, M],

At
el (1.19)
Qp0” =0, n € [1, M],
1
Mtz =gqr.

System (1.19) is the proper adjoint system of (1.18). With our notation, we can rewrite (1.19) in a more compact
way, namely,

{_(th)" —ARTQ" +a(ETg" =0, me[lM], (1.20)

1
Mz = qr.

Applying the Carleman inequality (1.15) to (1.20) and after a series of steps, we will deduce an observability
inequality of the form

__Ca 2
431u2w) < Conr (][/ (0,7) gl +e @0t |qT|§{3(Q)> ’ (1.21)
wx (0,

for some positive constants Cyps and Co only depending on T', w and ||a/|co-
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As mentioned before, this inequality has an extra term in the right-hand side as compared with the similar
estimate in the continuous setting (1.4). This extra term is exponentially small which is actually an improvement
compared to the similar inequality proved in [7].

With this inequality we are able to prove that there exists a discrete control v € L%(0,T; L*(w)) with
0] L2, (0,7 L2(wy) < € uniformly with respect to At, such that the associated solution of (1.18) satisfies

M g-1@) < CVO(A)yol L2 () (1.22)
where At — ¢(At) is any given function of the discretization parameter such that
A
lim inf $(20) > 0. (1.23)

At—0 e—C2/(At)1/4

Actually, this means that we reach a small target y™ whose size goes to zero as the time step At — 0, at
the prescribed rate 1/@(At) with controls that remain uniformly bounded with respect to At. In practice,
computing such a control can be done by a minimization algorithm for which one can choose the function ¢
in such a way that the error \/¢(At) on the target is comparable to the actual accuracy of the discretization
scheme. We refer to [2] for a more complete discussion on that point.

The precise result is given by the following theorem.

Theorem 1.7. Let us consider T > 0 and a discretization parameter At sufficiently small. Then, for any
Yo € L3(Q) and any function ¢ verifying (1.23), there exists a time-discrete control v € L%(0,T; L*(w)) such
that

vl 0.1:L2w)) < Clyolr2(e),

and such that the associated solution y to (1.17) verifies (1.22), for a positive constant C' only depending on ¢,
T and ||al|s as in (3.3).

Observe that Theorem 1.7 only yields a controllability result in H~!. This is due to the presence of the term
lgr|m; in the estimate (1.21) which in turn comes from the Carleman inequality (1.15) and is closely related to
the selection of the weight function (1.12) (see Rems. 1.5 and 2.1). Using classical parabolic regularity results,
we can actually obtain a controllability result in a L?-setting.

Theorem 1.8. Let us consider T > 0 and a discretization parameter At sufficiently small. Let 0 < Cy < Cs.
Then, for any yo € L?(Q) and any function ¢ verifying

lim inf o(A1)

i N RTITIE (1.24)

there exists a time-discrete control v such that
vl 0.1:22(w)) < Clyolz2(e),

and the associated solution y to (1.18) verifies

™M [ L2(0) < CVO(AY) Yol 120, (1.25)

where the positive constant C depends only on ¢, T and ||al|« as in (3.3).

The methodology to prove Theorem 1.8 is to split the time interval in two parts. In the first (large) subinterval,
we choose v such that y satisfies (1.22). In the second one, we set v = 0 and let evolve the uncontrolled system.
Then, from an elliptic regularity result, we finally deduce (1.25).
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1.4.8. Applications to the semilinear case

One of the main advantages of using Carleman estimates for proving controllability results is the possibility
of addressing nonlinear problems. Unlike [7] or [23], where spectral properties of the equations are needed
(therefore restricted to the linear case), here we will study the controllability of the following implicit Euler
scheme

yn+1 _ yn )
T _ Ayn—i-l + f(yn-i-l) — 1wvn+57 n e [[07M _ 1]]7

n 1.26
y|3—51 =0, ne [IO7 M — 1]]3 ( )
yO = Yo,

where f € C*(R) is a globally Lipschitz function with f(0) = 0. The result is the following.

Theorem 1.9. Let us consider T > 0 and assume that At is small enough. Then, for any yo € L*(Q) and any
function verifying (1.23), there exists a uniformly bounded time-discrete control v € L%(0,T; L?(w)) such that
the associated solution y to (1.26) verifies (1.22).

The proof of Theorem 1.9 follows other well-known controllability results for nonlinear systems (see, for
instance, [9, 11, 19]). First, we prove the existence of a ¢(At)-null control for a linearized version of (1.26) and
then, after a careful analysis on the dependence of the constants appearing in (1.21) and using a fixed point
argument, we deduce the result for the nonlinear case.

1.5. Outline

The rest of the paper is organized as follows. In Section 2 we present the proof of Theorem 1.4. As in the
continuous case, the proof basically consists in writing the equation after conjugation with the Carleman weight,
splitting the resulting equation into two parts and then estimating the L? scalar product between those two
parts. To ease the reading, we have divided the necessary computations into several steps: some of them are very
close to the continuous setting and others (particularly Steps 2 and 5) need a special care related to discrete
operators.

Section 3, devoted to the applications to controllability results, is divided in two parts: in the first one, by
employing the Carleman estimate (1.15), we obtain a relaxed observability inequality and then we use it to
deduce the ¢(At)-null controllability result stated in Theorem 1.7. In the second one, we prove the L?-null
controllability result presented in Theorem 1.8. We devote Section 4 to prove the nonlinear result enunciated
in Theorem 1.9. Finally, in Section 5 we present additional results and a brief discussion on the applicability of
the Carleman estimate (1.15) for handling control problems for coupled systems.

2. DISCRETE-IN-TIME CARLEMAN ESTIMATE

In this section, we present the proof of Theorem 1.4. For the sake of clarity, we have divided the proof in
several steps. The ideas presented here try to follow as close as possible the proofs presented in [10, 12] for the
continuous case.

As in other works devoted to Carleman estimates, we will keep track of the dependence of all constants with
respect to the parameters A, 7 and T'. In addition, due to the discrete nature of our problem, we will pay special
attention in the dependence with respect to the discrete parameters At and 9.

In order to ease the computations, we introduce the following instrumental functions

s(t)y=70(t), 7>0, te(=6T,T+6T),
r(z,t) = W@ plat) = (r(z,t)™',  x€Q, te(=6T,T+4T).
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We begin by assuming that ¢ € (C%(Q) N H(Q))?, since we may then extend the result to functions in
H?(Q) by an usual density argument. We introduce the change of variables

2 = (G tey0)d" T2, noe [0,M], (2.1)

and then we will look for the equation satisfied by z. From now on, we will simplify the notation in such formulas
by simply writing z = rq which implicitely means that the (continuous) weight function r is evaluated on the
same grid (primal or dual) and at the same time as the one attached to the discrete variables. This will not
lead to any ambiguity.

Since 1 € C%(Q) and ¢ € C?(Q)P, we take the partial derivative with respect to the variable z; to obtain
0;z = r0iq + TONPO )z (2.2)
where we have used that
dip = AP0y
A further derivation yields
0; (0i2) =rd2q + T20°X2(0:0)* 2 + TON* (04)* bz (2.3)
+ 2700 prdiq + TONI .
Replacing (2.2) on the fourth term in (2.3), we get
0; (0;2) =r0;q — T*0*N*(0:)* 6"z + TON(9i¢))* ¢
+ 270N 0 2 + TONI 2.

Now, since r(z,t) and 6(¢) are continuously defined for ¢ € (=T, T + ¢T'), we can use the translation operator
(1.10) to write the following equality on the primal grid P,

A(E2) =(E 1) A®Eq) — 2(EO)N[VY62(E =) + r(EON|V20(E )

24
+27(E70)AOVY - V(T 2) + T(E7O)ANAYP(E 2). 24
On the other hand, from Lemma B.4, formula (B.1) and the change of variables (2.1) we easily obtain
Diz = (£ 7)(Deq) + (£1q)(Dyr)
R p— _ T 72 _
~ E @)+ [0+ 0 (e + 57 ) 0] (842 25)

provided At7(T3§%)~1 < 1. Observe that, unlike the continuous case, two additional terms corresponding to
the time derivative D;r appear. This will translate later into additional terms appearing on the right-hand side
of the Carleman inequality.

Now, putting together (2.4)—(2.5) and using (1.14), we have that z verifies, on the primal grid P, the equation

(Diz) + At 2) = — (£ 7)(Lpq) — T2 (X 0H)N VY202 (7 2) + 7(E )N VY[2p(E 2)
F2r(E )NV - V(T 2) + T(EONAYS(E2) + 7(ET0)p(E2)

T 7'2

(2.6)
+ At < + ) Ox(1)(tT2).

63T+~ 4TS
Using the definition of the difference operator D;, we can express the second last term in the above equation as

T(EH0)G(ET2) = T(E0)P(E2) + TALETO )¢ Dy 2. (2.7)
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We conveniently rewrite (2.6)—(2.7) as follows
Az+Bz=g
where Az = A1z + Asz + A3z, Bz = B1z + Boz + B3z with

9=~ (1) Lpq+ 7t OAAYH(E72) — T(ETO)N[VY[*p(t2)

T T2

LAt (w + n) OA(1)(E*2) + TAHE"0')6D 2

and

A1z = 27RO\ |VY|2p(t72), Asz=—21(t 0)ApVY -V(t 2), Az = Dz,
Biz = T2(£70)2 N2V |2% (€ 2), Bz = A(t72), Bzz=—-1o(tT0) (T 2).

With the notation introduced in Section 1.3, we can take the L%-norm in (2.8), which yields

1421172 () + 1 B2II72 () + 2(A2, B2) 12,0 = l9ll72 ()-

(2.8)

(2.10)

(2.11)

The rest of the proof will be dedicated to estimate the term (Az, Bz) 12,(q)- For clarity, we have divided it in

several steps. Developing the inner-product (Az, Bz)L%(Q), we set I;; = (4;z, sz)L%(Q).

Step 1. Estimates that do not involve the discrete operations

Here, we will obtain lower bounds for different terms that do not involve the time discrete derivative Dj.
They can be carried out as in the continuous case, that is with suitable integration by parts in space, with some

minor modifications. For the sake of completeness, we include the computations.

Estimate of 111 + I21. First, it is clear that
I =20 [ [ @07 vuliel a2
Q
On the other hand, we have
= 30X [[ (@ 000uliet @ 2 + 0 [ [ @ 0PIVuP A E o
Q Q

N
+ 92733 0 381‘ 0510 8 e 2
i 1]2—1//Q( )20 0i1 099" (£ 2)

1 2 3
= 12(1) + 12(1) + 12(1)5

where we have integrated by parts with respect to the space variable. Then, adding up I;; and IQ(

into account the properties of the weight function 1, it is not difficult to see that

Ly + IV > o3\t // (£0)%¢3(E 2)2 — O3\t // (£70)3¢% (% 2)2.
Q Bo x(0,T")

and taking
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Since 1 € C?(€), we can take the parameter A sufficiently large to absorb 12(1 and 121 in the above inequality.
More precisely, we have

Ly + I > Cr3\! // (T70)3¢* (£ 2)? — Or3\* // (£70)3¢% (" 2)? (2.12)
Q BoX(O T)
for any A > C.

Estimate of 112 + I2o. Integrating by parts with respect to the space variable we have

Iy = 27X // (86) V24|V (E2)[? + 20\ // 0) VY2V - V(E2)(E )

+ 473 (t70)0:00ij100;(t 2)(t ™ 2)
- Uzl// y z z

=10+ 124 19

We will keep the term I, (1) For the other two terms, we can use Cauchy-Schwarz and Young inequalities, together
with the properties of w, to obtain

1 _ 4 - T— 2 _ 2 - D
Iy > 10— C7a //Q(t 0)6(E =) — C7A //Q(t 0)6|V(E =)
o 2A4 £ 0 2 2/x— _\2 )\2 r— 2'
cr //Q<t PeR(E ) - C /th )l
Hence, taking 7 > CT?, we get
I I(l) ! 22 =02 2)4 £ 0)262(5 2)2. ]
2> c//@ (r(E0)6 + X2) [V(E =) - O //Q<t P262(52) (2.13)

Now, let us estimate the term I5. Integrating by parts, we obtain

12%72// OAGVY - V(T 2)A(E 2)
—27)\//8QX(0’T)(E )qszif ot~ +2 /\Z// 0) ;10 (£~ 2);(2 2) (2.14)

8n
+27)\2 //Q(t_(‘))¢|Vz/J~V(t_z)|2—l—T)\//Q(t_H)gbVq/)-V|V(t_z)|2,

— n 1 .
where we have used the fact that V(t72) - v = a(gyz) since z‘agz = 0 for any n € [0, M — 1]. Integrating by
parts in the fourth term of the above expression yields

A// (& 0)Ave|V(E =)

T)\//tﬁgbvw VIV(t™2)| —T)\// (t19) ov 19
652><(0T ov 3”

- [ /Q (£-0)[ VoLV (E )

(2.15)
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C
au

Thus, putting together (2.14) and (2.15), we obtain

o ou )

Ly = =7\ (t0)p—— + 27\ Z t ~0)¢dij10i (2 2)0;(T 2)
80 (0,T) v )

+27>\// (& 0)p|Vy-V(E 2) —T)\// (£ 0)Avo|V(E 2) —T)\Q// 0)|Vy|* 6|V (t 2)|?
5

S

j=1

From this expression, it is clear that 12(2 is a positive term. Moreover, from the properties of the weight ¢, we
also have that Izé) > 0. Since ¢ € C%(Q), we can bound from below the second and fourth terms in the above

expression to obtain
I 77')\2 0)|Vy gb V(t 2 —CTA t70)o|V(t™ 2, 2.16

Collecting estimates (2.13) and (2.16), and taking A large enough, we get

s+ Iy > C7A2 //Q(t_9)¢|V(t_z)|2 _ o2 //B o (EOOVE P
o X (0

_ o //Q(t—e>2¢2(t—z)2.

Then, using estimates (2.12) and (2.17) in equation (2.11), our Carleman inequality reads momentarily as
follows

(2.17)

// (PN E 06 (E2)? + TAUE 0OV E2)) + 421125 ) + I1B2I22 o)

+I31+I32+ZIJ3 < |g|L2(Q)—|—C<//

(TINYET0)%° (2 2)2 +7A2(EG)¢|V(E2)2)>
Box(0,T)

(2.18)

for A\> C and 7 > CT?.

Step 2. Estimates involving discrete computations

In the second part of the proof, we will use the discrete calculus results presented in Appendix B. They will
help us to handle the remainder terms that arise when integrating by parts with respect to the time variable.

Estimate of I3;. Using formula (B.2) we have
B =72 [ / (80262 V(5 2)Dyz
1 At __ — 2
W// £-0)262 V4 Di(|4I?) - TW//Q(t 02621V (Dy2)

1, @)
=1+ I8
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Integrating by parts with respect to time in the first term of the above expression, that is using (B.7), we obtain
) = =528 [(ODPRIVURER? 4 5ro [ (092 T
+ %T2x\2 / g [VY|2$* D, (6%) (1 2)°.
Using estimate (B.12) and shifting the indices with (B.4)—(B.5) in the last term of the above expression yields

2/\2 // Vo [26°Di(6%)(F2)%| < Cr2A? // V)| ¢2[ £70)° + T%EJ (EF2)?

:CTQ)\Q/ V|22 [T(t_9)3+ T%;] (£ 2)?

At .
+C’72)\2/ V2 ¢? [T (6M+3) TWJ (2MF2)?
_07'2)\2 |V¢| ¢2 [T % : T654:| (z %)2-

Hence, using that 1 € C%(Q), we get

Is1 > — CT*N°T / P*(t70)*(t 2) CAtTQ)\Q// £0)%¢* (Dy2)’

(2.19)
072)‘2 //Q ¢2T664 (E_Z)2 - le
where
1 1 1 At 1
Wy = Cr2x? /( 0})20%(:4)2 + cﬂ?/ 4 {T(@MJr%)S + T%J (M2,
Q Q
Estimate of I32. Integrating by parts in the space variable and using (B.3), we have
1 — 9 1 — 2
132 = —= Dt (‘VZl ) + —At (DtVZ> 5
2J)Jq 2 Q
and then integrating in time
]_ 1 1 At
L= & (/ Vb2 _/ |VZM+2|2> + —/ Dy(V2)[?
2 Q Q 2 Q
1
> _7/ (VM43 |2 = Wy, (2.20)
2 Ja

Remark 2.1. Observe that in the continuous case the term I35 is equal to zero. Here, a new term depending
on VzM+z appears and is related to the special structure of the function 6 which prevents that the exponential
weight vanishes at t = T.

Estimate of I3. A straightforward computation gives

ha =20 [ [ [VUPE 00 @ 0)(E 2,
Q
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then using (B.13) and that ¢ € C%(Q), we readily obtain

3] < C (TWT//Q P*(E0)3 (T 2) + 72N //Q ¢2Tf§3 (t_z)Q). (2.21)

Estimate of Is3. Integration by parts in the space variable yields

Iy — —QTQA//(Q(t_9)¢2(t+9’)Vw V(E)(E2)
:TQA// (E70)(ET0) P2 Anh(E 2)% + 272\? // (T70)(ET0)?| VY2 (R 2)2.
Q Q

From estimate (B.13) and since ¢ € C?(Q) it is not difficult to see that for A > 1 we have

|123|<c( INT // (270)%¢*(t 2) +72)\2// T453(t_z)2). (2.22)

Estimate of I33. Using formula (B.3) we can write

I3z = —7 //Q d(ET0)Dyz(t 2)
_ _%T / /Q S(ET0)Di(22) + %mt / /Q S(E0')(Dy2)?

and integrating by parts on the first term, with (B.7), we obtain

1 1

1 1 1 _— —
)E(z3)2 - 2 M+ M43 1 N
ha =57 [ 0(#) 57 | @ o [ oDy
+27At/Q¢(E+9/)(Dt2)2

From this expression and the definition of @, it is clear that the first two terms are negative. Moreover, from
(B.14) we observe that the third term is positive. A further computation using (B.13) yields

I35 > W3—CTTAt/ H(E0)%(Dy2)? — T463 // #(D (2.23)

where

mh—t

;:77/¢9’M+(M+ /¢ e

Conclusion of Step 2. We will use inequalities (2.19)—(2.23) to estimate the left-hand side of (2.18).
Notice that the first term of estimates (2.19), (2.21), and (2.22) are analogous to those appearing in the
continuous case and they can be absorbed as soon as A > 1 and 7 > CT'. The other terms contain parameters
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related to the time discretization (i.e., At or §) and will be handled in a later step. Momentarily, we have

//Q (PN E0)*6*(F2)? + TAAE 0OV (E2) ) + 422 o) + 1B o)

< ||g||2L§>(Q) +C (//B o (7-3)\4(1_;79)3¢3(.E72)2 +T)\2(1_39)¢|V(‘Ez)2)> (2.24)

+C(W+X+Y),

for any A > C and 7 > C(T + T?) and where we have used the notation W = Wy + Wy + W3 and

K e ey [ e //¢T453 e

Y = At7'2/\2// (t70)°¢* (D;2) +T7-At/ #(t~0)*(Dy2) / $(D;z)? (2.26)

T453

Step 3. Adding Dz and A(t™z) in the left-hand side

In this step, we will add integrals containing the terms |D;z|? and |A(t~2)|? to the left-hand side of (2.24).
The former will help to absorb the terms in Y (see Eq. (2.26)) and the latter will be useful to eliminate the
local term of V(t~z).

Using the equation verified by Az (see Eq. (2.10)), it is not difficult to see that

Tl//cg(tf))lgél(th)? <C(||Az||i%@)+7)\4//@(t9)¢(tz)2+7>\2 //Q(t0)¢|V(tz)|2>, (2.27)

and, from (2.10) and (B.13), we deduce for 7 > C'T?

7'_1//Q(t_9)_1¢_1|A(t_2)2 SC(||BZ||2L%(Q)_~_T3)\4// e —

(2.28)
+TT2//t9 T856 / ¢>tz>
Combining estimates (2.24) and (2.27)—(2.28), we can absorb the lower order terms to obtain
—1// [(De2)? + |AE 2)[? +TS)\4// (£-0)363 () +m2// € 0)6|VE =)
<lglliz ) +C (// (FPNE0) 6 (E =) + 7')\2(1_:9)¢|V(Ez)|2)>
L Box(0,T)
+C(W+)?+Y), (2.29)

for \>1and 7 > CT?, with X = X + AT?(;ET fo d(t™2)

Step 4. Local estimate of the V(tT2)

We are now ready to eliminate local term of V(™ z) in (2.29). We will proceed as in [10]. To this end, consider
a cut-off function n = n(x), with

neC(B), n=1 inBy, 0<n<L
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Then, one can readily see that

2 __ e ) - o
[ v s [ @ 0umE

=—7\2 t~ t72)(t 2
- [ o EOBAEE
-, //BX(O?T)(EH)gan V(E2)(E %)

— 73 t~ -V 2)(t 2
A //MT)“ 0)6Vi - V(E2)(E 7).

and whence, employing Cauchy-Schwarz and Young inequalities, we get

2 t- £ 2)2 N L N
- //BDX(O’T)& 0)¢|V (& 2)| sv//QT (506 |AE )

34033 (5 2)2 + 704 (5 T 2)2
+C’Y//B><(O,T)(T/\(t 0)°¢° (£~ 2)° + TAY(E0)p(t 2)7)

for v > 0 small enough and where we have used the fact that A > 1 (indeed this was used to go from A% to \*
in the last term). This estimate together with (2.29) yield

—1// 70) o7 [(Di2)? + AR 2))? +T3)\4// 70203 (€ 2) +TA2// t70)0|V(E2)

<|gllz gy +C | 7°N // E 0P 22+ W+ X +Y |, (2.30)
” Bx(0,T)
for A\ > C and 7 > C(T + T?).

Step 5. Estimate of g and absorbing the remaining terms

In this step, we will absorb the remaining terms in the right-hand side of (2.30). This will be achieved by
selecting in a specific order the parameters involved in the Carleman inequality. From now on, We will choose
Ao > 1 sufficiently large (depending only on By and B) according to the first four steps and set A = )¢ for the
remainder of the proof.

We begin by providing an upper bound on the norm of g appearing in (2.11). The result is the following:

Lemma 2.2. We have

lol @ < O ([ € r2lLmal 72 [[ &0 )
(I ([ ferrr)
+ 0 (TQ(At)2T2 / /Q € 0)"(Diz)? + ATZ;Q / / D,2) )
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Proof. The proof follows from straightforward computations and successive applications of triangle and Young
inequalities. The first term is obvious. The second and third term of g can be bounded as follows

/ [ Ir(EAvo(E2) (5 0N VYo )

<OTN° //Q(t_ﬁ)2¢>2(t_z)2+072)\4 //Q(t_0)2¢2(t_z)2
< Oy, 72 //Q(t—e)z’(t 2)2

where we have used that ¢ € C%(Q) and X has been set to a fixed value Ag. For the fourth term we readily

obtain
T 2\ 2
C)\OAt2 <63T4 + 647_,6> // ('E+Z)2
A2 (APt
<o (Go+ e ) ([ o+ [0 - 7).

where we have shifted the indices of the sum. Finally, from Lemma B.5 and Remark B.6, we have that |(t16)|? <

T2(3-0)* + C 4k, thus

2N // (®10)20%(Dy2)? < Oy, 72 (AL)?T? // (£ 6)4(D;z)? +CAO§;48 // (Dy2)?
Q Q Q

The conclusion follows by gathering the above estimates and dropping the negative term appearing in
inequality (2.32). O

(2.32)

N

Using (2.31) in the inequality (2.30), and recalling that A = Ay has been fixed, we deduce that the following
inequality holds

—1// [(Di2)® + AR 2)? +T//t9 (t72) +r//t9|Vtz\
< Cy, ( / /Q (& r)?|Lpg* +7° / /B X<0,T>(H)3(EZ)Z+W+X+Y>’ (2.33)

for any 7 > 79(T + T?), where 7y is a positive constant depending on \g and where we have grouped similar
terms with the expressions of W, X and Y to obtain

1 1 1 At 1 1
Esz/(QZ)Q(w)Z—i-TQ/ [T(9M+2)3+T654} (ZM+2)2+/ |V Mtz )2
0 Q Q

1 1 1,1 (AP 72 (A T Maly2
—|—7'/ g Mtz ZM+22—7'/ 0)2(22)% + /z t2)2
(AT Ly RUGLTP SN I s Q( )

e e [ A [ 2
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(At)272 o (B9 27t
T 7856 TS8TIZ
Y = Atr? // (t 9 th +TTAt// (t 9 th T463 / DtZZ
4= (At)Ar2
Q(At)QTQ//Q(t 0)*(Dy2)* + 56 //

Notice that in the definitions of X and Y there are some terms containing powers of 7 greater than their
counterparts in the left-hand side of (2.33) and thus preventing us from absorbing them directly. Using the
discretization parameters § and At we will be able to do so. More precisely, we have

Lemma 2.3. For any T > 1, there exists € = e(\g) such that for
0 < Atr*(min{T3,T%}5*) ! <, (2.34)

the following estimate holds

X+Y<e <73 //Q(‘Ee)g’(fz)Q) te (H //Q(Ee)l(thF) , (2.35)

for all T > 7o(T + T?).

We provide the proof of this result in Appendix A. Observe, in particular, that condition (2.34) is in agreement
with the hypothesis of Lemma B.4, this is, (2.34) is a stronger condition that directly implies the one in
Lemma B.4.

By using Lemma 2.3 with g9 = 1/2C),, where C), is the constant appearing in (2.33), we can absorb all of
the terms in X and Y, whence

71//62(‘39)1 [(Di2)* + |AGR2) 2] + 73 //Q(ﬁ9)3(52)2+T//Q(59)|V(EZ)2
<Oy, ( J[L oo o [ o EONE W) | (2.36)

As in other related works for the controllability of discretized systems (cf. [3, 4, 6]), the terms appearing in
W cannot be removed and they can only be estimated. We have the following result

Lemma 2.4. Under the hypothesis of Lemma 2.3, the following estimate holds

W <e(At)! (/Q(zé)2 JF/Q(ZJ‘“%)2 +/Q|VZM+%|2>. (2.37)

Proof. Under the hypothesis of the lemma and recalling that § < 1/2, we may deduce that At < §7/2 and
therefore

2
max 6(t) < — and max (2.38)

te[0,T+At — 07?2 te[0, T+ At ) = 5273

Then, inequality (2.37) follows from the above estimates and straightforward computations. O
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Combining (2.36) with (2.37) we obtain

Tl//Q(te)l [(D:2)? + AR 2)%] +7'3//Q(t9)3(tz)2+7//Q(t0)|V(tz)2
<Oy, ( / /Q (& rPILog? +7° [ /B X(m@—e)m—z)z)
(a0 ( Lt [ [ VZM+%|2), (2.39)

for 7 > 70(T + T?) and Atr*(min{T3,T%}6%)~! < g.

Step 6. Returning to the original variable and conclusion

To conclude our proof, we will return to the original variable g. Recall that we have employed the change of
variables z = rq. Thus, from (2.39), we readily obtain

7—1//(13—9)—1 [(Di2)* + AR 2) // )7 q) +r// E0)V(E 2)?
<C,\0<//t r)?|Lpgl* + //BXOT)_ s7) (&~ Q)>

([ e[+ [ e+ [ feevarf

where we recall that s(t) = 76(t) and where we have used formula (2.2) in the last term of (2.39). Using once
again (2.2), it is not difficult to see that

[[eavEar<a, [[ @avEapo, [[ & eE 2
Q Q Q
Therefore, we can add the integral of |V (t~¢)| to the left-hand side of (2.40), that is

7-*1//(5*9)*1 (De2)? + A 2) // (5 q)? // (r25)| V(8 q)

Q
<0, < J[ @ rrieod + / / f(r%g)(fq)?)
Bx(0,T)
+ Oy (A1) (/‘ s0e g [ /’( s g) /‘ (=g )M

Now, we use identity (2.3) and multiply both sides by £~ (r?s71)A(t~¢). Integrating in L?(£2), summing over
n, and using Holder and Young inequalities yields

// 21Atq|2<0>\0<//t8 HAGET2)]2 + // (r?s) (7 y)?
+//Qt_“”23)'v("_y>|2 +f /Q t‘<r283><t—y>2) .

) , (2.40)

) (2.41)
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Since 19 < 79 (1/T + 1) < 70(t) = s(t) for all 0 <t < T, we obtain from the above expression

JLE e o < o (ff @ omaE R+ [] e e
] t-<r28>|v<t—y>|2) ,
Q
and, consequently, we can add the term containing |A(t~¢)| to the left-hand side of (2.41), that is,
71//1:9 (D;2)? // “HIAE Q) + // )(t7q)? // (r25)|V (€t q)?
< Oy ( J[Errieod + / | t-<r2s3><t-q>2>
B‘><(0 T)

# o007 ([ fie st [+ [ i s [ [eorvgrres]
Q

Finally, we add the integral corresponding to |D¢g| to the left-hand side of (2.42). This simply follows from
the fact that —D:q = f + A(t ™ ¢). Indeed, we have

JL = et <2 [[ et i [ ot hiae o (243
Increasing, if necessary, the value of 7 so (70(t))™! < 1 and (2.43) yields
//f’( )(D:a)? // (s HIAGT QP + // )(E"a)? // (rs)|V(E )
Q
< oy ( J[ & rrieodt+ [ t-<r2s3><t-q>2>
Bx(0,T)
+ Chy,ro (AE) T </ ’ ¢ % / ‘( M-‘rz / ‘ Gsﬁvq )

This concludes the proof. O

) : (2.42)

3. ¢(At)-NULL CONTROLLABILITY: THE LINEAR CASE

In this section, we will use the Carleman estimate (1.15) to deduce control properties of linear parabolic
systems. First, we prove Theorem 1.7 which gives a controllability result where we reach a small target in
H~1(Q). Then, using this result and some regularity estimates, we present the strategy to obtain a controllability
result in the L?-setting.

3.1. Proof of Theorem 1.7

Let us consider the following time-discrete parabolic problem with potential

(3.1)

{(Dty)’”é — A(sty)™tE 4 (ttay)"tE = 1,0"5,  ne0,M 1],
0
Y =Yo-
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To achieve a ¢(At)-controllability result for (3.1), we begin by proving a relaxed observability estimate for
the solutions to the associated adjoint system, which in this case is given by

{q—]é%qwq—A<tq>”+a”<tq>” =0, ne[LM], 52)
2 = qr.

We have the following observability estimate:

Proposition 3.1. There exist positive constants Cy, C1 and Cy such that for all 0 < T < 1, all potential
functions a € L¥ (Q) and At < min {At, (4||a\|oo)_1} where

At = Co(T + T2 + T?||a)|2) 3T,

any solution to (3.2) with qr € HE () satisfies
1 2 - &5 2
9]z < Cons ]ﬁ/ lg|* +e @OV Varliag) |
wx(0,T)

Oy, = Cr0+ A +]al2L2+Tlalloc) (3.3)

Nl=

where

Remark 3.2. Without loss of generality and since we are mostly interested in controllability in small time,
we consider that 0 < 7' < 1 so that we have min{73,7¢} = TS. For T > 1, the procedure can be adapted
straightforwardly.

Proof. Applying the Carleman estimate (1.15) to the solutions of (3.2) with B = w, we have that

[ & @ <c<//tew|atq2 J] o q>)

oo (|evar, + |(erewget

+ ‘(esgpq)l\/ﬂrz

L2(Q) L2(Q)

112
2 31
LQ(SZ)) 34)

for all 7 > 70(T + T?) and 74At(6*T%)~! < gy. The first term in the right-hand side can be controlled by the
one in the left-hand side by choosing 7 large enough. Indeed, a straightforward computation yields

// 25)|a (£ ) < Cllall2, T// P 6%)(5 )

where we have used the fact that a € L¥(Q) and = < CT?. Then, using the above estimate in (3.4), we
observe that the new term can be controlled by left-hand side as long as

5% =7°0% > CT%|a||% 6°

2/3

which translates into choosing 7 > C'T?||a||55”. Thus, we have obtained

e se(jf o)

ro@an (\Wq)% 2

* ‘(es“’q)ﬂ“%

 flereares

;m)) (35)

L2(Q) L2(Q)
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for 71 > 7p sufficiently large and
72T+ 17+ T%|al2°).

From (3.2), observe that ¢" 7 solves the equation

1

¢"F —¢"E — ALAQ"TE 4 Ata"q" 2 =0, ne [1,M].

Multiplying this expression by q”_% in L2(Q) and integrating by parts, we readily obtain
1 n—— n+3 2 1 n—=x n+1,2 n—— 2 n| n—sz|2
B (\q 2[72() — la 2|L2(Q)) + §|q 2= 4" 22 + At ; V" 2" = —At Qa "2 2.

A further computation gives, as soon as 2At|lal|e < 1,

n—i 1 n+i
‘q 2 |2L2(Q) S mm +3 |2L2(Q)’ n e HI,MH (36)

Using the well-known inequality e?* > 1/(1 — z) for 0 < z < 1/2 and from estimate (3.6), we deduce that

1 a nt1
|q2 |2Lz(Q) S SCT” ”°°|q i |2L2(Q)> n e [[LM]]v (37)

provided Atllallco < 1/4.
Now, we will obtain a lower bound for the left-hand side of (3.5). Since we are adding positive terms, we can
restrict to the indices n € [M/4,3M /4] and hence

// 25@8 Q) Z At 7_3/(627-999)n—%(93)n—%| n—%|2.
Q

ne[M/4,3M /4]

Recalling that ¢ is negative and independent of time, we deduce that

1 257 K,

(e2709)""3 > ¢~ mr? | Vn e [M/4,3M/4], (3.8)

where Ky := max_5{—¢(z)}. Moreover, since § > 1/T? for all ¢ € [0,T], we get

25
// @eE 0> Y At w0 ).

ne[M/4,3M /4]

Using estimate (3.7) in the above inequality and adding up, we get

// 2”3 q) (Z —At) 355 —CTllallco p— 6|q |2

>CTe™ T2 CTH“”OO|q%|%2(0)7 (39)

for some C' > 0 only depending on  and w and where we have used that 7 > 7, T2.
From (2.38) and (3.7), we have that

2 2
sp \M+1 < 5 =or 2 6 o5 M+1 2
+‘(e q) L g2 2 + e 57 M+ 3|

< e—cﬁf+CT|\a|\oo|qM+%|27 (310)

‘(es“”q)%

L2(Q)
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where we have denoted kg := min_ 5{—¢(x)}. Using Poincaré inequality and the above estimate, we see that
the last three terms in (3.5) can be bounded as

2 2 2
‘(ewq)% < e~ CrprtCTlollo [y g+ 2.

n ‘(eswq)MJr%

+ ’(e”Vq)MJF%

L2(Q) L2(Q) L2(Q)

On the other hand, observe that the following estimate holds

23]€0T
T2

€253 < 3257 6 exp < ) <C, Vz,t)eqQ, (3.11)

uniformly for 7 > ¢ T2 This, together with (3.9)—(3.10) can be used in (3.5) to obtain

033y < CT 15T [ (g g o(antem @D Mol [, o
x(0,T)

for any 7 > 7o(T + T2 + T2||a||gé3) with 79 = max{ry,3/8ko}. For 0 < § < §; < dp, with §; small enough, we
obtain

|q%|2L2 < CT e +0Tlall // (t 9>+ C(At) e 6T2+CT”“”°°\VqM+2|L2(Q (3.12)
><(0T)

To conclude the proof, we recall the condition of Theorem (1.4)

TANE
W < €o,

which has to be fulfilled along 0 < § < &; and At||alle < 1/4. Let us fix 7 = 7o(T 4+ T? + T?||a|?*/?) and define

Bt = 230} (T + 17 + 1ol 27)°T°,
2

whence

SR

5
Now, we choose At < min{Kt, 1/4||al|s} and set

At)4s

5= ((Ki)ml <. (3.13)

We then find that

TNt

sizs = <o

Therefore, 7/(T28) = e/4T=1/2/(At)"/* and from (3.12) we deduce

Co
1,00 2/3 L Tllallso 2, +CTalloo | M+12
|q |L2 @ <OT~ (A5 +allZ2P+Tllall // OT) T7q) e o/t Vg +2|L2(Q)'
w><
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Finally, shifting the indices in the integral term and grouping similar terms, we obtain

Ca
1 1 2/3 - 1
g3 22y < A HIIL 4 Tlall) <][/ o g + e @073 |VqM+2li2<m> .
wx (0,

Thus, the proof is complete. O

With the result of Proposition 3.1, we are in position to prove the following ¢(At)-null controllability result
for (3.1).

Proposition 3.3. Let us consider T > 0 and a discretization paramenter At chosen as in Proposition 3.1. There
exists a continuous and linear map Lﬁta : L2(Q2) — L%(0,T; L?(w)) such that for all initial data yo € L*(Q),

there exists a time-discrete control function v given by v = L%Z(yo) such that the solution to (3.1) satisfies
WM r-10) < Cobs VO(AL) Yo 12(0)
and
[vll£2 0,7:22(w)) < Cobs|yolr2(e)

with Cops as given in Proposition 3.1.

Proof. Consider the adjoint system (3.2). From the relaxed observability of Proposition 3.1 we have

2
|q% |z2(0) < Cobs <7£/ |Q‘2 + ¢(At)|QT§{é(Q)> ) (3.14)
wx (0,T)

where we have chosen

C;

S(AL) = ¢ @O (3.15)
We introduce the functional
1 o(t 1
Jualar) = 5 f[ 1P+ A iy, + 0 aDiacor, Var € @) (3.16)
2)Juxo,1) 2 0

defined for the solutions to (3.2). It is clear that the functional J is continuous and strictly convex. Moreover,
using Hoélder and Young inequality in the last term of the above expression, we have

1 S(A1) 1 .
J > 7£ 2 A o = ¥ 2oy — Covsltol22en-
atlqr) = 5 /wx(O,T) lq” + 5 9753 (@) 4Cobs|q 220 obs|Yol 12 (0)

Using inequality (3.14), we readily deduce that

1 d(At)
S 2 2 2 B 2
Jailar) = 47[/%(0’71) lal” + = larliy @) — CovslyolL2()

and therefore we can conclude that .J is coercive. This guarantees the existence of a unique minimizer that we
denote gr.

Now, consider ¢ the solution to (3.2) with initial datum gr. The Euler-Lagrange equation associated with
the minimization of functional (3.16) reads

7[/ ( )q“q + ¢(AL) (Var, Var) r2q) + (0,4%)r2(e) =0, Var € HY(R). (3.17)
wx (0,7
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We set the control v = L:%;’;(yo) = (1wa”+%)n€[O’M71H and consider the solution y to the controlled problem
{<Dty>”+% — Aty (tray)mtE = 1,g"F ne[o,M 1],
0
Y = Yo.

By multiplying this equation by q”*é at each point of D, and integrating by parts, we deduce

]L/ qq= <Z/M,QT>—1,1 - (y07q%)L2(Q) (3~18)
wx (0,T)

where (-,-)_1,1 stands for the duality pairing between H~!(£2) and H{ (£2). With (3.17) and (3.18), we conclude
that

y™M = p(A)AGr. (3.19)
By taking ¢r = ¢r in (3.17), we readily obtain
I ~ 1
11172 0,7:02 () + $(AONTTI 1 0y = — 0,82 20
4
< yolr2() |72 22

and from the observability inequality (3.14) we have

~L ~
@20 < Ch (7[/ ol ¢<At>|qTig<m> ~
wx (0,

Combining the above expressions yields

1ol 22 0,7:22(w)) = @1l 22 0,7522(w)) < Cobs|Yolr2(e)

and

O(A)|ar| a1 ) < Cobs|yolL2(0)- (3.20)
Hence, the linear map

Lyl « LX) = L3(0,T; L* (w))

Yo — v

is well-defined and continuous. Finally, from the expressions (3.19)-(3.20) and the definition of the H~!-norm,
it is not difficult to see that

™| r-1(02) < Cobs VOO Yol 12(0)-

This finish the proof for ¢ as in (3.15). The claim immediately follows for any other function ¢ satisfying (1.23),
changing the value of Cy;s if necessary. O

3.2. Proof of Theorem 1.8

The proof of Theorem 1.8 relies on Proposition 3.3. We will deduce that system (3.1) is ¢(At)-null controllable
in L2(Q2) by driving the solution first to a small target in H~! and then by letting the solution to evolve



28 F. BOYER AND V. HERNANDEZ-SANTAMARIA

uncontrolled. In this way, by elliptic regularity, we will obtain a better estimate of the final target. Our strategy
is as follows. Let ¢ satisfying (1.24) and let us set

P(At) = At g(At),

in such a way that ¢ satisfies (1.23).
Let us fix T > 0, the initial data yo € L*(Q2) and consider the time partition (1.5). We choose some (large)
To < T and set My = L%J From Proposition 3.3, we know that there exists a time-discrete control vy =

+3 .
(v ? Jnefo,Mo—1] With
Tt
10l 22,0, 70522(w)) < Cops|Yolr2(02)

such that y solution to

n+l _ ,n 1
Y . vy Ay gntlyntl = 1wvg+27 n € [0, My — 1],
yio =0, n € [0, My — 1], (3.21)
¥ = yo,
verifies
™M g-1i0) < CI2A (A Yol r2(0) (3.22)

where C’g;?s is the observability constant corresponding to the time interval (0,7,). This defines the state y™ for
all n € [0, Mo].
Now, we set v"*2 = 0 for n € [My, M — 1] and consider the uncontrolled system

ynH —y" +1 +1, n+1
27 Ay ntlyntl — Mo, M — 1

At yooay . neM, Ik (3.23)
yloe =0, n € [Moy, M — 1],

with initial data y™° coming from the sequence (3.21). Observe that for n = My, the equation verified for y*o+1

is given by
— At AyMotl (1 + aMOH) yMotl —yn  in Q,
from which we obtained the classical elliptic energy estimate
\/E|9M0+1|H(}(Q) < C(, llalloo) [y r-1(0-

This, together with estimate (3.22) and Poincaré’s inequality yields

d(At
Mot p2q) < C (At ) 1Y02(0);

for some C' > 0 only depending on 2, T' and ||a||o. Arguing as in the proof of Proposition 3.1, we can iterate
for indices n € [My + 1, M] to deduce that

™ 20) < CVO(AL) |yolr2 @),

where we have used the definition of ¢.
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Therefore, we have constructed a sequence y = {y" },,c[o,a] by means of the auxiliary problems (3.21) and
(3.23) such that y™ verifies a ¢(At)-null controllability constraint in L?(€2). This concludes the proof.
4. THE NONLINEAR CASE

We devote this section to prove the existence of controls for the semi-linear scheme (1.26). The proof fol-
lows well-known results for the controllability of semi-linear systems (see, for instance, [9, 11]) with some
particularities due to the discrete nature of the problem.

Let us define
(s o)y s 20,
§) =
g F(0) ifs=0.

The assumptions on f guarantees that g and f’ are well defined, continuous and bounded functions. For
¢ € L%(Q), we consider the linear system

yn—i-l _ yn .

T — Ayn+1 + g(C”H)y"H = :lw’l)n—i_§7 n e [[07 M — 1]],

n 4.1
Yo =0, n e [0, M — 1], (4.1)
yo = Yo-

We set a? = g(C"), so that we have

laclleo < K, V¢ € LB(Q), (4.2)

where K is the Lipschitz constant of f.
In view of Propositions 3.1 and 3.3, for At chosen sufficiently small, i.e.,

At < min(At, (4K)™) (4.3)
with
At = C(T +T? + T>K?/3) 376

we can build a control ve = L?ﬁlc (yo) and the associated controlled solution to (4.1) such that

_ C2
& |2@) < Ce @ yol 2@y, Nvellzz 0,702 < Clyolza) (4.4)

where C; > 0 and C' = exp [C’(l + % + K?3 4+ TK )] are uniform with respect to ¢ and the discretization
parameter At. Notice that by selecting the parameter At as in (4.3) guarantees on one hand the existence of
a solution to (4.1) and the stability of the discrete scheme, while on the other we ensure the uniformity with
respect to ¢ in the estimates (4.4) which is important in what follows.

Let us define the map

A:LH(Q) = L3 (Q)
¢ ye

where y is the solution to (4.1) associated to ap = g(¢"), n € [1, M], and control as in (4.4). Arguing as in the
proof of Proposition 3.1, we can readily deduce the energy estimate

||’(J<||L2 @ = eTlacl ||Uc||L2 (0,T;L2(w))" (4.5)
P D
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Taking into account (4.2)—(4.5), we deduce that the image of A is bounded, implying that there exists a closed
convex set in L% (@) which is fixed by A. Moreover, it can be easily verified that A is a continuous map from
L%(Q) into itself, while the uniform estimate

el L2, 0,750 ) < C'lyolr2(0)

for the solutions to (4.1) allows to conclude that A is a compact map since H}(2) < L?(2) with compact
embedding

All of the previous properties allow us to to apply Schauder fixed point theorem to deduce that there exists
y € L%(Q) such that A(y) = y. Setting v = Lﬁtay (yo) we obtain

n+l _ ,n

% — Ayt fymt) = 1,07, ne [0, M — 1],
yrggzl:oa ”E[[OaM*H]v
yO = Yo,

which concludes the proof as we have found a control v that drives the solution of the semilinear semi-implicit
parabolic system to a final state y™ satisfying estimates (4.4).

5. APPLICATIONS TO CONTROLLABILITY OF COUPLED SYSTEMS

Carleman estimate (1.15) can be used to study other controllability problems. We devote this section to
study the controllability problem for a kind of coupled parabolic system. More precisely, we consider the 2 x 2
system

n+1 )
P A g el g = 1, e [0,M 1]
yn-{—l o yn
thz — Ayt +an Tyt +ag Myt =0, n € [0,M —1] (5.1)
(y?ﬂ)m = (ygﬂ)‘aQ =0, n e [0,M —1]
y? = Y1,0, 3/8 = Y2,0,

for given initial data y; o and yg 0. with coupling coefficients a; ; € LE(Q).
The idea here is to steer the solution to zero by acting only on the first equation of the system. As before,
the control problem can be reduced to prove an observability inequality for the adjoint system

1 1
qu 2_q111+2 n—1i n n—1 n n—i
7 —Agqy *+adhq *tang =0, n € 1, M],
1 1
e AN = S S
At 7Aq2 +a12‘]1 +a22q2 :07 n e [[LM]]; (52)
n—x n—1%
(a 2)\392(‘12 2)|6Q:0’ n € [1,M],
M+3 _ M+3 _
91 =q,7, 43 =dq2,T-

This can be done by employing (1.15) on each equation of system (5.2) and using local energy estimates to
eliminate the observation of the variable g3. The result is the following.

Theorem 5.1. Assume that for some nonempty open set wyg C w, the coefficient as verifies

aby >ap>0 or —ay >a9>0 Vo€ wy, nell,M]. (5.3)
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Then,wthere exist positive constants Cy, C1 and Co such that for all 0 < T < 1, under the condition A\t <
min{At, (8M) ™'} with

/Avt _ Co(T+T2 +T2M2/3)_5T8

any solution to (5.2) satisfies

1 1 - M+1 M+l
|42 172() + 143 132(q) < Cls (f/ 0T\f11|2+e i [|Vq1 1o + Ve 2|2i2<9)} )
w X

. 1 2/3
with Cops = AT THTMITATM) g M = maxi <4 j<2 [|aij||oo-

This is an analogous result to the one presented in [13] for the observability of m-coupled equations with one
control force. Indeed, we will adapt their proof and take into account the differences introduced by the time
discretization scheme. It is worth noting that we can also extend our theorem for the case of coupled systems
in cascade form (see condition (6) in [13]) but for convenience we only present a simpler case. Finally, we shall
mention that for brevity we only present the proof of the observability inequality of (5.2), the controllability
result for (5.1) can be readily obtained by arguing as in the previous sections.

Proof of Theorem 5.1. For the sake of clarity, we have divided the proof in three steps. We will keep track of
the dependences of the constants. As before, since we are interested in controllability in small time, we have
min{73, 7%} = T%. We also recall that system (5.2) can be rewritten in the more convenient form

—(Deq1)" = A" q)" +afy(Fq1)" + a5y (87¢2)" =0,  ne[l,M],
—(D1g2)" = A(R7q2)" + afa(t )" +ata(t7q2)" =0,  ne[l,M], (5.4)
M+3 M+1 _

q1 =4q1,T, ¢ 2 =dq2T

Step 1. Given wy C w, we choose @ CC wy. We begin by applying the Carleman estimate (1.15) with B =& to
each equation of (5.4). To abridge the notation, we have denoted by Z(q) the left-hand side of (1.15), thus we
have

T(q1) + Z(g2) <c< // (2553 (£ qs) +ZZ\|%H2 // (€Y (5 q,)?
% (0, T) i=1j=1
2 L 2
c(an)~t ‘ )2
+ ;( e’ q 2 LZ(Q))

for all 7 > 7o(T + T?) and 72 At(5*T%)~1 < g¢. As in the scalar case, all the lower order terms can be absorbed
by taking 7 large enough, this is

Z(q1) +Z(q2) <//x(o . (e**?5%)(t " q1)? //W(OT) (€*°%5°) (" o) )

+ (A" Z <‘(€s“"fh)§ i?(ﬂ))

i=1
> 2 2 12/3Y. )
2T+ T2+ T max a2 (56)

2 2

S (GagDkas:

+|(erevg

L2(Q) L2(Q)

2 1

+ ‘(escpq:) +%

‘( Scpqu)

L2(2) L2(Q)

for all
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Step 2. Now, we will see that thanks to hypothesis (5.3), we can eliminate from (5.5) the observation term
corresponding to g2. To this end, consider two open sets O and Qg such that © C O CC Oy C wy, and a cut-off
function ¢ € C§°(Q) verifying

0<¢<1inQ, ¢=1in0, supplC O (5.7)
A v
Cl/i L>=(Q), CI/CQ € L>(Q)%. (5.8)

Such function exists. For obtaining condition (5.8) it suffices to take ¢ € C5°(Q) satisfying (5.7) and define
¢ = ¢*. In this way, ¢ will verify both (5.7)—(5.8).

By assumption, the coefficient aq; satisfies (5.3) and, for convenience, we suppose that a}; > ag for all z € Q
and n € [1, M]. From (5.4), we multiply the equation satisfied by q; by £~ (€25953)" (£ ~¢2)"¢ in L?(2) and sum
over n. We get

ao// Tt (e%¢5%)(t qo)? // ant™ (€*¥5°)(t7q2)%¢
Ox(0,T)

B // (€**%5°) (27 g2) [(Dean) + AR 1) — an1 (8" q1)] ¢

: Z K;. (5.9)

We proceed to estimate each K;, 1 < i < 3. Integrating by parts using formula (B.7) in the first term we
obtain

K, =/ (Diqr) (2 e**%5°ga)¢
Q

= (P et ) (s e

- //Q(tJr%)Dt (e*%5%q2) ¢

3
: ZK{j). (5.10)
j=1

>L2(Q)

The first two terms can be easily bounded by using Holder and Young inequalities, i.e.,

’ ) . (5.11)

L2(Q)

+ ‘(€S¢33/QQ¢)M+%

2
2
(1) (2) sp3/2 N\
1Y)+ [ 'SC;_f(‘(e COLI .

By using formula (B.1) in the last term of (5.10), we obtain

- //Q)(t+q1)Dt (€*%5%g2) ¢
-/ /Q (€ 0 (75 D) - [ /Q (E¥a1) (87 ) D (257

=: H1 + HQ.
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From the fact that (tTq;) = AtDyq1 + (£~ ¢q1) and properties (5.7), we can use Holder and Young inequalities
to obtain

c o T
|H1|<—Z// (25%5%) (Dyqi)*C + M // (2571 (Dyga)? +—// (5T (& q1)?
Y1 O x(0,T)

for any v; > 0. Now, let us choose £; small enough such that ¢; < min{eg, ap/2C} where C is the constant
appearing in (5.5) and verifying

VN7
GiTs S €1 (5.12)

Then, we have

C __ __
|Hy| < e Z// (e**?s7 ) (Dygi)* + 1 // (%57 1) (Dyqo)* + —// t(e®?sT) (2 qn)2
71 JJ0ex(0,T)

(5.13)
Estimating the term Hs follows after a straightforward but long calculation since it involves the time derivative
of the Carleman weight. Using formula (B.1), we have

51&(625@93) = (EJFe?SSO)(Et@?)) + ({3793)(bt625¢),
Therefore,
Hy = _//Q(t+q1)(t+q2)(t+e28¢)7‘3(Dt93)g _ //Q(t+Q1)(t+Q2)(t_S3)(Dt62w)C

=: I]_ + 12.

Using formula (B.12) with £ = 3 on I yields

_ _ _ N _ N Atr3
L) < / / (B4l (E+g2)| £+ (25h)C + / / (E q)lI(E g (BHe29) 20T ¢
Provided
Atr3
Tog <2 (5.14)

and using the properties of the function (, we get after applying Holder and Young inequalities that

_ _ C ) )

| <m // (t+QQ)2(t+e2s"”s3) + = // (t+q1)2(t+e2ws5)
Q@ M JJoex(0,1)
Q Y1 JJoex(0,1)

for some positive constant C' only depending on e5. Modifying 71, if necessary, so (76(t))~! < 1 for t € [0, 7]
and shifting the indices in the above expression, we get

|| <2m // t- qg 2“"3 // (t~ q1 t (e 2“""55)
Vl Oox(0, T)

(5.15)
2 2

CA ‘ sp 5/2, \M+31 ’ sp 3/2  \M+1 .
i ((e =) (s L2(Q)

L2(Q)
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From Lemma B.4 and (B.13), we get
) s ¥ s ¥ ¥ S AtTQ
|(Dt€2 fl<ce ((tJre2 “’)72(1;"’9)2 + (t"'e2 w)@) .

Arguing as above and provided (5.14) holds, we have

[Ia] < 27y // (t7q2)t ™ (e*95%) // (T @)t (e*%s7)
’Yl O x OT)

2 2
+ CAt <‘(es‘ps7/2Q1)M+2 ) .
L3(Q)

Combining estimates (5.11) and (5.15)—(5.16), we can bound the first term of (5.9) as

— _ C _ _
K] < e Z// (e**?s7 1) (Dygqi)* + 57 // T (e (E ) + — // T (e2¢57)(t " q1)?
Q il Oox(0,T)
2 2
sp 3/2 i
+ CZ <‘ S qz 2 LZ(Q)>

£2()
2
L2(9)> '

(5.16)

v

L2(Q)

* ‘(ewsg/ZQi)MJr%

112

+CONt (‘(6%7/ )tz

+ (e 2g5) M

L2(Q)
(5.17)
For the term K> in (5.9), we can integrate by parts in the space variable, thus
K, = // (e*?53)C(E ) AR q1)
=[] e Ve - [ st a) Ve
Using (5.8) is not difficult to show that
’V [t (623“"53)CH < Ct_(ezs‘ps4)cl/2
and therefore, using Holder and Young inequalities, we get
\K2|<’Yl// (e2*¢5%)(t 7 q2) +’Yz// (e2°¢5)|V (£ g2)|?
(5.18)

+c(% 72)//00m)t (e2%57)|V (£~ q)|?

for any o > 0.
For K3, we readily have

C _ __
|K5) <7 // 2”3 (t qg) —1——// t*(ezws?’)(t ql)z. (5.19)
71 0o x(0,T)
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Recalling that we have chosen 7; large enough so that (76(t))~! < 1, we can combine (5.17)—(5.19) to obtain
the local energy estimate

ao //~ T (e%%%5%) (T q2)?
Ox(0,T)
<€12// (e**?s™1)(Dygi)* + T // (e%%5%) (7 ¢o)?
+ 72 // (e*¢5)|V(t q)|* + *// (e**?5) (T q1)* (5.20)
OoX OT
+C< )// T (299 |V(t ¢
) L e

2 2
L2<n>> ’

et 3= (oo
i=1

where we have used condition (5.14) to simplify the last term. Replacing (5.20) in (5.5), and taking ~; small

enough, we obtain

(@) +Z(a2) <c<//@0X(OT 25057 (£ qy)? //OOX(OT)t (e3¢5 |V (&~ q1>|>

+ (L) Z(‘(e Qi)% L2(Q)>

i=1
Step 3. To eliminate the local term corresponding to V(t~¢q1), we consider a function n € C§°(2) with
properties analogous to (5.7)—(5.8) chosen for the sets Op and wy. In this way, we have

oo T OIE P < [ &9 by
// (e*?s”) AR q) (X q1)n

// (€>¢s°)n] - V(E~q1) (& q1),

where we have integrated by parts. Using that ’V [ (e25¢5%) 77] ‘ < C'E_(ezs*”sﬁ)nl/z, we readily have

// £ (e2%5°)|V(t q1) |2<73// (€% HAR @) \2+W4// )IV(E )l
OoX(O,T)
+O< )// (s (& q)?
UJUX(OT)

for any 73,74 > 0. Using estimate (5.22) in (5.21) and taking the parameters 7; small enough, we obtain

I(q1) + Z(q2) (// (OT) (s () )

+C(AY)” Z <‘(€S“"qi)5 i

i=1

2

+ ‘(eSWQi)M+%

L2(Q)

(5.21)
2

2
s M+%
RGO

+ |(e e vg,)+E

L2()

(5.22)

(5.23)

+ ‘(eS‘PQi)M—F%

g

112
3
L2(9)>

L2() L2(Q)
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for all T as in (5.6) and AtT3(T86%)~1 < eq, with C' > 0 only depending on (2, w and aq.
Step 4. Following the proof of Proposition 3.1, for At maxi<; j<2 ||aij]lec < 1/8, we can obtain the estimate

2 2

1 1
> 1g2 oy < O mrasiasz Il Y g R, 0 Vi€ [1, M]. (5.24)
: i=1

Moreover, from (3.8) and (5.24), we get

Z// 2s<p3 ) > CTe™ W—CTYH&X1<1 j<2 llaijlloo Z |q2 |L2(Q) (525)

1=1

Using Poincaré inequality and (5.24), we have that the last three terms of (5.23) can be bounded as follows

112
3
L2(9)>

2
. 1
< ¢ Capz TCT maxi<ij<z2 llaijllo § \quM+2 |%2(Q)

2

Z (’(ew%)é

i=1

2 2

+ ‘(GS¢Qi)M+%

g

L2(Q) L2(Q)

(5.26)

=1

On the other hand, observe that if 7 > Sk T2’ the weight function e?*%s!! is uniformly bounded for all
(z,t) € Q (cf. (3.11)). Therefore, from estimates (5.23) and (5.25)—(5.26) together with the fact that wy C w,
we obtain

2
1 cr o . -
Z |qi2 |2L2(Q) < OT les TOT maxic; j<2 llaijlloo // (t Q1)2
i—1 wx(0,T)

, (5.27)

_Cr L - M+1
+ e~ 512 +CT maxi<i j<2 @il Z |qu 2 ‘%2(9)
i=1

for any 7 > 7o(T + T2 + T? maxi<; j<2 || @ij|| o) With 72 = max{7;,11/8ko} and any & small enough. To conclude
the proof, we have will fix the parameters involved. Recall that the condition

Atrd <
55 =

has to be fullfilled along 0 < 6§ < 6;. We fix 7 = (T + T? + T2 maxi<; ;<2 ||@ij|loc) and define
At = %6?(T +T? 4+ T2 max |ai;||*?)~°T®
75 1<i,j<2
which gives
N

DT

Now, we choose At < min{Kt, 1/8M} and set § = %@‘:1 < 1. We find then

TONE
0578

= &9.
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Therefore, 7/(T%6) = (e2T~2)'/%/(At)'/5 and from (5.27) we get
= 2 CrL(1+ 2 +M2/B 4T M 9 | ——1Rars 2 M+1
Z |qi2 ‘LZ(Q) <e 1(1+ 7+ +TM) 7[/ lg1]* +e (Ani/57275 Z |ti 2 ‘L2(Q) )
i=1 wx(0,T) =1
This concludes the proof. O

Remark 5.2. The approach presented here can be used to address other well-known control problems for
coupled systems in the discrete setting. To fix ideas, let O C €2 be an observation subset and consider the
functional

LM
U(y) = B Z Atly" %20
n=1

and the control system

n+l _ ,n

T - Ay =1t gt e oM - 1],
Ykl =0, ne 0, M 1], (5:28)
y° = yo + owo,

where yo € L?(Q2) and ¢ € L%(Q) are given functions and the data of equation (5.28) is incomplete in the
following sense: wy € L?() is unknown with |wg|r2(q) = 1 and o € R is unknown and small enough. The idea

is to look for a control v = (Un+%)n€[[O,M—1]] such that

¥ (y)
oo

=0, VYw < L*(Q). (5.29)

o=0

This is the so-called insensitizing problem (see the seminal work [17]) and has been thoroughly studied in
different contexts, see, for instance, [1, 14, 18, 19, 20].

As classical in this framework, the insensitizing control problem is equivalent to study the null-controllability
of a cascade system of parabolic PDEs (see, e.g., [19, Thm. 1]). At the discrete level, (5.29) translates into
finding a control v such that

Nl=

g2 =0, (5.30)

where g = (q”“‘%)ne[[o, m—1] can be found from the following forward-backward cascade system

yn+1 _yn . .
T AT =1t et e o.M 1],
yfggll =0, n € [0,M —1],
3/0 =Y%o

n _ Nt
g 2Atq L Aq"_% =1py", n € [1, M],

_1
qragz =0, nec [[1,M]],
qM+% =0

However, as discussed in Section 1, we cannot expect to obtain such kind of result for (5.28) but
rather to obtain a relaxed condition. In view of previous results for discrete-in-space insensitizing problems
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(see [3, Thm. 1.4]), the Carleman inequalities (1.15) and (1.16) and the procedure developed in this section, we
can expect that a relaxed notion of ¢(At)-insensitizing control also holds for (5.28).

APPENDIX A. PROOF OF LEMMA 2.3
Proof of Lemma 2.3. We begin by increasing the value of 7, if necessary, so that 74 > 1 and 7 > 1. Notice that
1<n(1/T+1) <70(t) =s(t), forall0<t¢<T. (A.1)

Now, we rewrite X = Zle X @, Provided

TAL
T463 é €1, (A.2)
holds with &1 > 0 small enough and from (A.1), we have
xﬂnzgel(/]kf@3@zﬁ),
Q
In the same way, it is not difficult to see that
X® < ¢, <// (55)3(52)2) ,
Q
for some g5 > 0 sufficiently small such that
T2AL
TT(54 < 2. (A3)
Moreover, we have
X0 < gq (// (t75)3(% z)2>
Q
for some 3 > 0 such that
T2AL
Tig3 = €3 (A4)

Using the expressions verified by (A.2) and (A.3), the last two terms of X can be bounded as

XW 4 x0) <2 <//Q(‘Es)3(1_:z)2> + €2 <//(£s)3(£z)2> .

Reasoning as above, we can also deduce bounds for the terms in Y. Using a similar notation and from the
fact that max,cjo. )0 < (67%)7!, we get

YO = Apr? //Q(t_G)Q(th)Q _ AL //Q(t_e)?’(th)2(t_s)_1

gm<[4@s>%maﬁ7

where the condition
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holds for some ¢4 > 0 small enough.
In the same spirit, we get

2)—T7At// 2(Dy2)? TT2At// (&7 0)*(Di2)(t7s)~"
< [[ @0 Doy

provided the following condition

A straightforward computation yields

o forme).

TAL
S8 = €6 (A7)

for some eg verifying

For the fourth term of Y, we may use (A.1) to write

YO = 22(Ap)2T? / / (& 0)(D,2)?
Q

(a1 [ [ E6)5(Diz)2(Es)
<t>T//Q<t 6(Dy2)2(8s)

Hence, if condition (A.6) holds, we have

YW < &2 (//Q(t_s)_l(th)2> .

For the last term of Y, using again (A.1) and arguing as above, we obtain

y®) <ed <T—1/Q(th)2(t—9)-l>.

Recall that § < 1/2 and 7 > 1, then conditions (A.2)—(A.7) can be simplified into a general one verifying

TN -
min {73,76} §* —
for some & = £(\g) small enough. Finally, collecting the estimates for X® and Y, i =1,...,5, we obtain the
desired inequality (2.35). This concludes the proof. O

APPENDIX B. SOME TECHNICAL LEMMAS

The goal of this appendix is to summarize a series of tools that allow to manipulate the discrete operators
D; and D; and provide estimates for the application of such operators on the weight functions.
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To avoid introducing additional notation, we introduce the following continuous difference operator. For a
function f defined on R, we set

tTf(t) = ft+ A1), (1) = f(D),
Def = é(ﬁ— —t7)f

In this way, discrete versions of the results given below will be natural. With the notation given in the intro-
duction, for a function f continuously defined on R, the discrete function D;f is in fact D;f evaluated at the
mesh points P and D, f amounts to evaluate D;f at the points D. This can be readily seen just by considering

the change of variables t — ¢t — %.

Lemma B.1. Let the functions fi and fo be continuously defined over R. We have
Di(fif2) =t* fiDifa+ Difit™ fo.

The same holds for
Di(fif2) =t~ fiDifa + Difit™ fa.

From the above formulas, if f1 = fo = f, we have the useful identities
4 1 9 1 9 _ 1 9 1 2
tTfDf = iDt (f )+§At(th) , t7fDf = §Dt (f ) — §At(th) .

The translation of the result to discrete functions f,g1,g92 € H D g

Di(g192) = (t191)Diga + Dig1(t~ g2),

— ST (B.1)
Di(9192) = (t791)Deg2 + Digr (7 g2),

and
(£ 1)Def = 5D. (/%) + S Ai(D.f), (3.2)
(& 1)Duf = D0 () — 554D (B.3)

Of course, the above identities also hold for functions f, g1, g2 € HP and their respective translation operators
and difference operator t* and D;.
The following result cover discrete integration by parts and some useful related formulas.

Proposition B.2. Let {H, (-,-)u} be a real Hilbert space and consider v € H” and v € HP. We have the
following:

T T

]ﬁ (tTuv), = /0 (w,E7v) (B.4)
T ) ) T

]g (t7u,v),, = At(u®,07) g — At oM 2) +/O (u,t70) (B.5)

Moreover, combining the above identities, we have the following discrete integration by parts formula

T ) . T
f (Dyu,v) gy = —(u®,02) g + (WM oM T2y — / (Dtv,u)H . (B.6)
0 0
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Remark B.3. If we consider two functions f, g € HD, we can combine (B.4) and (B.6) to obtain the formula

1

T T
— . 11 1 1 e
/ (D f,t g)H=—(f2,92)H+(fM+2,gM+2)H—/ (£"f.Dig),, - (B.7)
0 0
Analogously, for f,g € H 5, the following holds

T T
7€ (that+g)H:_(foagO)H+(fM7gM)H_7£ (t_vatg)H' (BS)

Observe that in these formulas, the integrals are taken over the same discrete points. These will be particularly
useful during the derivation of the Carleman estimates (1.15) and (1.16).

We present here some technical results of discrete operations performed on the Carleman weights. These are
of particular interest in the demonstration of Theorem 1.4 and for dealing with coupled parabolic problems as
in Section 5. To be consistent with Section 1.4, we set 7 = e*? and p = r~!. We highlight the dependence on 7,
0, At and A in the following estimates.

Lemma B.4 (Derivative of the Carleman weight). Provided AtT(T36%)~! <1, we have
_ Ry T 72
Proof. The result follows from the Taylor formula

n—1 )nfl

fen) =3 B0 o [ G

=1 F™(t 4 oy)do (B.10)
5=0

at order n = 2. Applying formula (B.10) with f = %% and y = At, we have

es(t+At)go _ es(t)«p

At

1
=70/ (1) pe* D% + At / (1 - 0)d2esttobte ],
0

Taking the second derivative of the weight function and factorizing the term e*(Y¢, we obtain
eSt+A) e _ os(t)e

At

1
= (7-6’(t)g0 + At/ (1 — 0)emtHote=m0erg" (1 4 o At)pdo
0
1
+At/ (1 _ O_)eTO(t+aAt)<,a—7'9(t)ap7_2(0/)2(t + O'At)(p2d0') eTO(t)gp_
0

This expression, together with the fact that [[¢[|og) = Oa(1) and

. 1
) « = 5
tgf?f:?]e < sz J =0,1,... (B.11)
yield formula (B.9) by choosing Atr(T362)~t < 1. O

Lemma B.5 (Discrete operations on the weight 6). There exists a universal constant C > 0 uniform with
respect to At, § and T such that
Dy(0Y)] < (Tt () + O——20 119 B.12)
| t( )|— ( )+ ge+220+2’ = 4. ( :
At

[%(0)] < Tt~ () + C g

(B.13)
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. At
0 < D) <CT*t™(6%) +C ST75 (B.14)
Proof. The proof of (B.12) follows from Taylor formula (B.10) at order n = 2 and the estimate
c
209t —
tg&);]at(@)gm, [—1,2,

Inequality (B.13) can be readily deduced from (B.10) at order n = 1 and using that ;6 = (2t — T')f. Finally,
estimate (B.14) is consequence of Taylor formula at order n = 2, estimate (B.11) and the fact 870 < CT?¢3. O

Remark B.6. Some remarks are in order.

— We can directly use Lemmas B.4 and B.5 to obtain estimates for the discrete operators D; and t* applied
to the Carleman weights. Since r(z,t) and 6(t) are continuously defined for ¢t € [-At, T + At] with At
small enough, formulas (B.9) and (B.12)—(B.14) are equally valid if we sample them at the discrete points
D, thus providing estimates for operators Dy and t+.

— As it be of interest during the proof of Theorem 1.4, expression (B.9) and the estimates (B.12) and (B.14)
are also valid (for a possible different constant C' > 0 but still uniform) if we replace t~ by t* everywhere.
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