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SHARP ESTIMATES AND HOMOGENIZATION OF THE CONTROL

COST OF THE HEAT EQUATION ON LARGE DOMAINS

Ivica Nakić1, Matthias Täufer2, Martin Tautenhahn3,*

and Ivan Veselić4

Abstract. We prove new bounds on the control cost for the abstract heat equation, assuming a
spectral inequality or uncertainty relation for spectral projectors. In particular, we specify quanti-
tatively how upper bounds on the control cost depend on the constants in the spectral inequality.
This is then applied to the heat flow on bounded and unbounded domains modeled by a Schrödinger
semigroup. This means that the heat evolution generator is allowed to contain a potential term. The
observability/control set is assumed to obey an equidistribution or a thickness condition, depending
on the context. Complementary lower bounds and examples show that our control cost estimates are
sharp in certain asymptotic regimes. One of these is dubbed homogenization regime and corresponds to
the situation where the control set becomes more and more evenly distributed throughout the domain
while its density remains constant.
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1. Introduction

Let us start by describing the most important example which has motivated our study of control cost estimates
for the heat equation. Consider the inhomogeneous heat equation with heat generation term −V on suitable
domains Ω ⊂ Rd (in particular, Ω = Rd is allowed as well) given by

ẇ + (−∆ + V )w = 1Su, w(0) = w0 ∈ L2(Ω), (1.1)

where w, u ∈ L2([0, T ]×Ω), V ∈ L∞(Ω), and where the control set S ⊂ Ω is measurable with a positive measure.
Hence the influence of the control function u is restricted to the set S. The system (1.1) is null-controllable if
for every w0 ∈ L2(Ω) there exists a control function u = uw0

∈ L2([0, T ] × Ω) such that the solution of (1.1)
satisfies w(T ) = 0, cf. [46]. In this case, the control cost in time T is the least constant CT such that

‖uw0‖L2([0,T ]×Ω) ≤ CT ‖w0‖L2(Ω)
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holds for all w0 ∈ L2(Ω).
The aim of this paper is to investigate sharp upper and lower bounds on the control cost in time T > 0 of

the controlled heat equation (1.1), in particular, its dependence on the geometry of S. This is a natural aim
since it has been shown recently that in the case Ω = Rd, if the system is null controllable, S necessarily has to
satisfy certain geometric conditions [11, 48].

We are able to establish the optimality of our bounds in certain asymptotic regimes. A particularly appealing
geometric regime is the homogenization scenario, in which the control set S ⊂ Ω becomes more and more evenly
distributed over Ω while keeping an overall lower bound on the relative density. This corresponds to reducing
local fluctuations in the density of the control set S. In such a homogenization regime we study the asymptotic
behavior of the upper bound of the control cost.

Note that in the context of control theory homogenization scenarios have been studied before, see e.g. [29, 49].
There however, as in classical homogenization theory, it is the differential operator generating the semigroup
which is being homogenized, rather than the observability set.

So far, much more attention has been devoted to identifying the dependence of the control cost on the
time parameter than to its geometric counterparts. In [42] Seidman proved that for one-dimensional controlled
heat systems the control cost in small time regime blows up at most exponentially. This result was extended
to arbitrary dimension by Fursikov and Imanuilov in [14]. That the exponential blowup indeed occurs was
established by Güichal [16] for one-dimensional systems and by Miller [31] in the general case. Since then the
bounds on the control cost have received a lot of attention [1, 3, 7, 11–13, 22, 23, 27, 28, 30, 32–35, 38, 39, 43, 44].
Most of the results were obtained for bounded domains, but recently unbounded domains also became a focus
of interest [2, 8–11, 48]. Note that there has been also interest in observability estimates if the measurement
occurs only during a positive-measure subset of the time interval, see for instance [47].

The most common way to obtain a bound on the control cost is a final-state-observability estimate (an
estimate concerning the dynamics of the corresponding adjoint system) which in our context states that for all
T > 0 there is a T -dependent constant Cobs such that

‖e(∆−V )Tφ‖2L2(Ω) ≤ C
2
obs

∫ T

0

‖e(∆−V )tφ‖2L2(S)dt for all φ ∈ L2(Ω).

Here t 7→ e(∆−V )t denotes the C0-semigroup generated by ∆ − V . The duality between null-controllability
and final-state-observability implies that Cobs is an upper bound for the control cost. In the seminal papers
[18, 25, 26] it has been shown that one way to establish observability estimates is to prove a spectral inequality
(a particular type of uncertainty relation)

‖φ‖L2(Ω) ≤ Cec
√
λ−κ‖φ‖L2(S) for all λ > κ and φ ∈ RanP−∆+V (λ),

where C, c > 0 are constants, P−∆+V (λ) is the projector to the spectral subspace of −∆ + V below λ, and κ is
the minimal spectral point of −∆ + V . This is a particularly attractive technique since the spectral inequality
does not involve the time variable, i.e. it concerns only the corresponding stationary system. Consequently, quite
a number of works developed abstract theorems to derive bounds on the control cost from spectral inequalities,
each tailored for certain applications in mind. Among them are [2, 35, 44], which are also most closely related
to our present paper. In spite of the variety of such earlier results, none of them is sufficient for our purposes,
namely to provide sharp bounds on the control cost in several asymptotic scenarios of interest to us.

Hence, the first step to analyze heat control problems as described at the beginning of this section was to
establish null-controllability of an abstract parabolic system from a suitable spectral inequality, together with
an upper bound on the control cost. This is spelled out in Theorem 2.8 whose proof is inspired by the direct
approach of [44], since it turned out to be the one which can be best generalized and optimized for the geometric
situations we had in mind. A simplified version of Theorem 2.8 states that if a non-negative operator A on a
Hilbert space X satisfies for all φ ∈ X and for all λ > 0

‖PA(λ)φ‖2X ≤ d0ed1λ
γ

‖B∗PA(λ)φ‖2U
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where d0 > 0 , d1 ≥ 0 and γ ∈ (0, 1) are constants and B : U → X a bounded operator between Hilbert spaces,
then for all T > 0 and all φ ∈ X we have the observability estimate

∥∥e−ATφ
∥∥2

X
≤ C2

obs

∫ T

0

∥∥B∗e−Atφ∥∥2

U
dt,

with

C2
obs =

C1d0

T
KC2

1 exp

(
C3

(
d1

T γ

) 1
1−γ
)

and K1 = 2d0‖B‖2L(U,X) + 1.

Theorem 2.12 gives an extension of this result to the case where A is merely lower semi-bounded, but not neces-
sarily non-negative. It is complemented by lower bounds, spelled out in Theorem 2.13, and Table 1 comparing
upper and lower bound is several asymptotic scenarios.

On the quantitative level, the key improvement over the existing results is the dependence of our control cost
estimate on the parameters coming from the spectral inequality, cf. Remark 2.9. While Theorems 2.8 and 2.12
also cover the case when the control operator B is not bounded, hence enabling its use in the case of boundary
control, we do not pursue this question in the present paper. Let us also note that our paper has inspired a
follow up work in the more general framework of control theory in Banach spaces [15].

Since our abstract theorem reduces the control cost estimate to a spectral inequality, it is also paramount for
these spectral inequalities to have an explicit and – if possible – optimal dependence on parameters of interest.
Recently, spectral inequalities with explicit geometry dependence on bounded and unbounded domains have
been proved: in [9, 11] for the free heat equation controlled by a thick set, and in [36] for the heat equation with
potential with control supported on an equidistributed set. We combine these two spectral inequalities with
our abstract theorem and obtain control cost estimates for the heat equation which are valid in a large class of
(bounded and unbounded) domains and which depend on the control set S via its geometric parameters. Our
bounds are uniform in the heat generation term V (they only depend on ‖V ‖∞) and are also uniform in Ω and
S in a certain sense. The obtained estimates are much more explicit than what existed before and, together
with the uniformity in Ω and S allow for the first time to study homogenization and de-homogenization limits.

The paper is divided in three parts. The core of Section 2 are two theorems which spell out that spectral
inequalities imply observability estimates. The first one, Theorem 2.8, concerns non-negative operators, the
second one, Theorem 2.12, general lower semi-bounded operators. In the case of lower semi-bounded operators,
the long time asymptotics of control cost depends on the growth bound of the corresponding semigroup. In
order to better understand the upper bounds proven in Theorems 2.8 and 2.12, we compare them to lower
bounds on the control of the heat equation for abstract systems and prove their sharpness in Theorem 2.13. In
this section we also provide a thorough discussion of the lower and upper bounds of abstract control systems in
Remark 2.16 and Table 1. The following Section 3 contains the proofs of Theorems 2.8 and 2.12 and a technical
lemma, completing the first part of the paper.

In Section 4 we then turn to system (1.1) and combine Theorem 2.12 with the spectral inequalities from
[11] and [36] to obtain bounds on the control cost for the free heat equation and free fractional heat equation
controlled by a thick set, and a heat equation with a generation term controlled by a equidistributed set.

Finally, Section 5 is devoted to studying homogenization and de-homogenization of the control cost.

2. Abstract observability and null-controllability

For normed spaces V and W we denote by L(V,W ) the space of bounded linear operators from V to W . Let
X and U be Hilbert spaces with inner products 〈·, ·〉 and 〈·, ·〉U and norms ‖·‖ and ‖·‖U , respectively. Let A
be a lower semibounded self-adjoint operator in X with domain D(A). We define κ = minσ(A) and denote by
{PH(λ) : λ ∈ R} the resolution of identity of a self-adjoint operator H. Next we will introduce the structure of
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a rigged Hilbert space or a Gelfand triple. Let β ∈ R. On X we define the scalar product and norm

〈x, y〉β :=
〈
(I +A2)β/2x, (I +A2)β/2y

〉
, ‖x‖β := ‖(I +A2)β/2x‖. (2.1)

For β > 0 we denote by Xβ := D(I +A2)β/2 the subset of X consisting of all elements x with finite ‖x‖β norm.
If we equip Xβ with the scalar product (2.1) we obtain a Hilbert space, usually called the interpolation space.
For β ≤ 0 we denote by Xβ ⊃ X the Hilbert space obtained as the completion of X with respect to the norm
‖ · ‖β in (2.1), usually called the extrapolation space. Note that X−β is the dual space of Xβ with respect to
the pivot space X. From now on we assume that β ≤ 0 and B ∈ L(U,Xβ). Clearly, X0 = X and the case β = 0
is of particular interest for our applications in Sections 4 and 5.

For T > 0, we study the abstract inhomogeneous Cauchy problem

ẇ +Aw = Bu, w(0) = w0 ∈ X, (2.2)

where w ∈ L2([0, T ], X) and u ∈ L2([0, T ], U). The function u is called control function. The mild solution of
(2.2) is given by

w(t) = e−Atw0 +

∫ t

0

e−A(t−s)Bu(s)ds, t ∈ [0, T ]. (2.3)

Note that since RanB ⊂ Xβ , we need to give a meaning to the term e−A(t−s)Bu(s). For this purpose we
introduce the semigroup S(t) in X with generator −A and use the symbol e−A· for the unique extension of S(t)
to the space Xβ . More precisely, let Uβ ∈ L(X,Xβ) be the isometric operator given as the unique extension of
(I +A2)−β/2 ∈ L(X−β , X). Then we have e−At = UβS(t)Uβ

−1.

Remark 2.1. Although we do not assume that B is an admissible control operator (for the definition, see, for
example [46]), we still have that

for all T > 0 t ∈ [0, T ] the function defined in (2.3) satisfies w(t) ∈ X.

This follows from

e−AtXβ = UβS(t)Uβ
−1Xβ = UβS(t)X = UβD(A∞) ⊂ UβX−β = X

for all t > 0 where D(A∞) =
⋂
n∈ND(An). Here, the equality UβS(t)X = UβD(A∞) follows from the fact that

S(t) is an analytic semigroup, cf. ([19], Chap. IX.1.6). This shows e−A(t−s)Bu(s) ∈ X for all s ∈ [0, t) which
implies w(t) ∈ X.

We now introduce two concepts, null-controllability and final-state-observability.

Definition 2.2. The system (2.2) is null-controllable in time T > 0 if for every w0 ∈ X there exists a control
function u = uw0

∈ L2([0, T ], U) such that the solution (2.3) satisfies w(T ) = 0. We call such a control function
null-control function in time T . The input map in time T is the bounded mapping BT : L2([0, T ], U)→ X given

by BTu =
∫ T

0
e−A(T−s)Bu(s)ds.

Remark 2.3. Note that if the system (2.2) is null-controllable in time T > 0, then, by linearity of e−AT, it is
also controllable on the range of e−AT. This means that for every w0 ∈ X and every uT ∈ Ran e−AT there is a
control function u ∈ L2([0, T ], U) such that the solution of (2.2) satisfies w(T ) = uT .

Taking into account (2.3), a null-control function u in time T satisfies e−ATu0 + BTu = 0. Thus, the system
(2.2) is null-controllable in time T > 0 if and only if one has the relation RanBT ⊃ Ran e−AT, which gives an
alternative definition of null-controllability in terms of the input map.

We will always take duals of the spaces Xβ with respect to the pivot space X. Hence, the dual of Xβ is X−β
for all β ∈ R and in particular B∗ ∈ L(X−β , U). In order to introduce the notion of final-state-observability, we
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consider the adjoint system

ḟ +Af = 0, y = B∗f, f(0) = f0 ∈ X, (2.4)

where f ∈ L2([0, T ], X).

Definition 2.4. The system (2.4) is called final-state-observable in time T > 0 if there is a constant Cobs > 0
such that for all f0 ∈ X we have

‖e−AT f0‖2X ≤ C2
obs

∫ T

0

‖B∗e−Atf0‖2Udt. (2.5)

Inequality (2.5) is called observability inequality.

By an analogous reasoning as above, we see that f(t) = e−Atf0 ∈ X−β for all t > 0 whence (2.4) and the
right hand side of (2.5) are well-defined. The following lemma, due to Douglas [6] and Dolecki and Russell [5],
puts these concepts into relation. For a proof we refer also to [44, 46].

Lemma 2.5. Let H1,H2,H3 be Hilbert spaces, and let X : H1 → H3, Y : H2 → H3 be bounded operators. Then,
the following are equivalent:

(a) RanX ⊂ RanY.
(b) There is c > 0 such that ‖X ∗z‖ ≤ c‖Y∗z‖ for all z ∈ H3.
(c) There is a bounded operator Z : H1 → H2 satisfying X = YZ.

Moreover, in this case, one has

inf{c : c as in (b)} = inf{‖Z‖ : Z as in (c)}, (2.6)

and both infima are actually minima.

We note that (a) corresponds to null-controllability (with X = e−AT : X → X) and (b) corresponds to final-

state-observability (with Y : L2([0, T ], U) → X, Yu =
∫ T

0
e−A(T−s)B(s)u(s)ds). Lemma 2.5 provides another

equivalent statement (c). It implies that there exists an operator F : X → L2([0, T ], U) such that −e−AT = BTF .
Hence Fw0 provides a null-control function in time T . Moreover, according to (2.6) the operator F can be chosen
with minimal norm.

Remark 2.6. The operator F can even be chosen to be pointwise minimal. Let w0 ∈ X, T > 0, and u be a
null-control function in time T . Then the set of all null-control functions in time T is a closed affine space of
the form

u+ KerBT .

Let now P denote the orthogonal projection onto KerBT . Then we have −e−AT = BT (I−P )F and the operator
(I − P )F does not depend on the choice of F . Moreover, it is easy to see that for every w0 ∈ X, the function
(I − P )Fw0 ∈ L2([0, T ], U) is the unique control with minimal norm associated to the initial datum w0. This
implies in particular the second equality in (2.7).

Definition 2.7. Assume that the system (2.2) is null-controllable. We define the control cost in time T as

CT := sup
‖w0‖=1

min{‖u‖L2([0,T ],U) : e−ATw0 + BTu = 0} = min{Cobs : Cobs satisfies (2.5)}. (2.7)

Our first result concerns an observability inequality and hence null-controllability for an abstract parabolic
system of the form (2.4). In the theorem, we assume a so-called spectral inequality, given in Inequality (2.8).
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Theorem 2.8. Let A be a non-negative, self-adjoint operator on X and assume that there are d0 > 0, d1 ≥ 0
and γ ∈ (0, 1) such that for all λ > 0 and all φ ∈ X we have

‖PA(λ)φ‖2 ≤ d0ed1λ
γ

‖B∗PA(λ)φ‖2U . (2.8)

Then for all T > 0 and all φ ∈ X we have the observability estimate

∥∥e−ATφ
∥∥2 ≤ C2

obs

∫ T

0

∥∥B∗e−Atφ∥∥2

U
dt, (2.9)

where Cobs satisfies

C2
obs =

C1d0

T
KC2

1 exp

(
C3

(
d1 + (−β)C4

T γ

) 1
1−γ
)

with K1 = 2d0e−β‖B‖2L(U,Xβ) + 1.

Here, Ci > 0, i ∈ {1, 2, 3, 4}, are constants depending only on γ. They are explicitly given by equation (3.13).
Moreover, for all T > 0 the system (2.2) is null-controllable in time T with cost satisfying CT ≤ Cobs.

Note that the right hand side in (2.8) is well-defined since RanPA(λ) ⊂ X−β for all λ ∈ R, and (2.9) is well-
defined as discussed below Definition 2.4. The mere statement that spectral inequalities imply observability
estimates is not new. The novel aspects of Theorem 2.8 are discussed in the following remark, while the proof
is deferred to the next section.

Remark 2.9. There exists a huge amount of earlier approaches which transfer spectral inequalities to observ-
ability inequalities, see e.g. [2, 23, 25, 35, 44]. Some of them are formulated in a more general setting and unlike
our result do not require self-adjointness of A. However, the estimates on C2

obs therein are, with respect to the
dependence on d0 and d1, not sufficient for our purpose in Section 4. Let us explain this in more detail, and
assume within this discussion that β = 0 and γ = 1/2. Our upper bound

C2
obs =

C1d0

T
KC2

1 exp

(
C3d

2
1

T

)
from Theorem 2.8 features the following properties:

(i) The exponent tends to zero if d1 → 0.
(ii) The pre-factor C1d0K

C2
1 /T does not depend on d1 and is proportional to T−1.

(iii) The estimate holds in a d1-independent time interval (in our case (0,∞)).

All three properties are paramount for the applications to homogenization and de-homogenization in Section 5.
Let us stress that none of the earlier bounds we are aware of carry the features (i)–(iii) at the same time. For
example, the papers [2, 35] provide a bound of the form

C2
obs ≤ C1 exp

(
C2

T

)
, (2.10)

where the dependence of the positive constants C1 and C2 on d0 and d1 can be inferred from their proof. Note
that the bound (2.10) is missing the pre-factor 1/T . Thus, C2 in (2.10) cannot be proportional to d2

1 since for
d1 = 0 (full control) this contradicts the universal lower bound of order 1/T , cf. Theorem 2.13.

In order to obtain our bound in Theorem 2.8, we improve techniques developed in [44]. Note that the
bound given in Theorem 1.2 of [44] already satisfies properties (i) and (iii), and carries the overall pre-factor
1/T . However, it does not ensure that the influence of d1 is confined only to the exponential term. Intricate
parameter choices and estimates – spelled out in Lemma 3.1 – were necessary in order to achieve an estimate of
the required form. Moreover, in contrast to [44], we do not require that the operator A has discrete spectrum,
thus extending the applicability e.g. to Schrödinger operators on unbounded subsets of Rd.
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Remark 2.10. The arguments used in the proof of Theorem 2.8 can be extended to the case where B : [0, T ]→
L(U,Xβ) is time-dependent with only minimal modifications. For the basic results about the integration theory
on Hilbert spaces used here we refer to [17] and [4]. Let Hi for i ∈ {1, 2, 3} be separable Hilbert spaces and I ⊂ R
an interval. Then if I 3 t 7→ B(t) ∈ L(H1,H2) and I 3 t 7→ A(t) ∈ L(H2,H3) are measurable then the product
I 3 t 7→ A(t)B(t) ∈ L(H1,H3) is measurable as well. If additionally I 3 t 7→ x(t) ∈ H1 is measurable, then
I 3 t 7→ B(t)x(t) ∈ H2 is measurable as well. Consequently the map I 3 t 7→ ‖B(t)x‖2 = 〈x,B(t)∗B(t)x〉 ∈ R
is measurable too.

In what follows let us assume that the Hilbert spaces U and Xβ are separable, and that B : [0, T ]→ L(U,Xβ)
is measurable and uniformly bounded, meaning

ess sup
t∈[0,T ]

‖B(t)‖L(U,Xβ) <∞. (2.11)

Note that for any dense countable U ′ ⊂ U \ {0} we have

‖B(t)‖L(U,Xβ) = sup
u∈U ′
‖B(t)u‖Xβ/‖u‖U ,

so that t→ ‖B(t)‖L(U,Xβ) is measurable and the essential supremum (w.r.t. Lebesgue measure on [0, T ]) makes

sense. Note that for every t ∈ (0, T ], the map [0, t] 3 s 7→ e−A(t−s) is strongly continuous, hence measurable.
An argument analogous to the discussion at the beginning of Section 2 shows that we even have e−A(T−s)B(s)

u(s) ∈ X for almost all s ∈ [0, T ]. In particular,

BT f(t) =

∫ t

0

e−A(t−s)B(s)u(s)ds ∈ X

is well-defined for every u ∈ L2([0, T ], U). For each initial state w0 ∈ X and every u ∈ L2([0, T ], U), the evolution

w(t) = e−Atw0 + BTu(t), t ∈ [0, T ],

solves the equation

ẇ(t) +Aw(t) = B(t)u(t), w(0) = w0 ∈ X.

The following theorem is the natural generalization of Theorem 2.8 to time-dependent B:

Theorem 2.11. Let β ≤ 0, d0 > 0, d1 ≥ 0, T > 0, and γ ∈ (0, 1). Let U,Xβ be separable, A ≥ 0, and let
B : [0, T ]→ L(U,Xβ) be measurable and satisfy (2.11). Assume that

‖PA(λ)φ‖2 ≤ d0ed1λ
γ

‖B(t)∗PA(λ)φ‖2U for almost all t ∈ [0, T ].

Then for all φ ∈ X we have the observability estimate

∥∥e−ATφ
∥∥2 ≤ C2

obs

∫ T

0

∥∥B∗e−Atφ∥∥2

U
dt,

where Cobs satisfies

C2
obs =

C1d0

T
KC2

1 exp

(
C3

(
d1 + (−β)C4

T γ

) 1
1−γ
)

with K1 = 1 + ess supt∈[0,T ]

(
2d0e−β‖B(t)‖2L(U,Xβ)

)
.

Here, Ci > 0, i ∈ {1, 2, 3, 4}, are constants depending only on γ. They are explicitly given by equation (3.13).
Moreover, the system (2.10) is null-controllable in time T with cost satisfying CT ≤ Cobs.
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Proof. The observability estimate is proved by following verbatim the proof of Theorem 2.8. To prove null-
controllability and the control cost bound one uses part (b) of Lemma 2.5 with X = e−AT : X → X and

Y : L2([0, T ], U)→ X, Yu =
∫ T

0
e−A(T−s)B(s)u(s)ds. Note that a priori B(s)u(s) ∈ Xβ . However, similarly to

Remark 2.1 we see that e−A(T−s)B(s)u(s) ∈ X for almost all s ∈ [0, T ]. This shows that Y indeed maps into X
and not just into Xβ . Boundedness of Y follows, arguing as in (3.2), from

‖Yu‖2 =

∫ T

0

‖e−A(T−s)B(s)u(s)‖2Xβds ≤
∫ T

0

‖B(s)u(s)‖2ds

≤
∫ T

0

‖B(s)‖2L(U,Xβ)‖u(s)‖2Uds ≤ ess sup
t∈[0,T ]

‖B(t)‖2L(U,Xβ)‖u‖
2
L2([0,T ],U) <∞.

So far, we have only treated the case of non-negative A. The next theorem is an equivalent formulation of
Theorem 2.8 and also treats the situation where A is not assumed to be non-negative any more but merely
lower semibounded. Recall that minσ(A) = κ.

Theorem 2.12. Assume that there are d0 > 0, d1 ≥ 0 and γ ∈ (0, 1) such that for all λ > κ and all φ ∈ X we
have

‖PA(λ)φ‖2 ≤ d0ed1(λ−κ)γ‖B∗PA(λ)φ‖2U .

Then for all T > 0 and all φ ∈ X we have the observability estimate

∥∥e−ATφ
∥∥2 ≤ C2

obs

∫ T

0

e−2κ(T−t)∥∥B∗e−Atφ∥∥2

U
dt, (2.12)

where Cobs is as in Theorem 2.8. Moreover, for all T > 0, the system (2.2) is null-controllable in time T . Let
K1 = 2d0e−β‖B‖2L(U,Xβ) + 1.

(a) If κ < 0, then the cost satisfies

C2
obs ≤ inf

t∈(0,T ]

C1d0

t
KC2

1 exp

(
C3

(
d1 + (−β)C4

tγ

) 1
1−γ

− 2κt

)
.

(b) If κ = 0, then the cost satisfies

C2
obs ≤

C1d0

T
KC2

1 exp

(
C3

(
d1 + (−β)C4

T γ

) 1
1−γ
)
.

(c) If κ > 0, then the cost satisfies

C2
obs ≤ inf

t∈[0,T )

C1d0

T − t
KC2

1 exp

(
C3

(
d1 + (−β)C4

(T − t)γ

) 1
1−γ

− 2κt

)
.

The proof of the theorem is deferred to the next section.
In order to investigate the sharpness of the estimates obtained above, we compare them to lower bounds.

While these lower bounds are not too difficult to obtain, we provide a proof as a convenience for the reader.

Theorem 2.13. Let T > 0 and assume that the system (2.2) is null-controllable in time T . Then

C2
T ≥ ‖B‖−2

L(U,Xβ)(1 + κ2)β ·


1
T if κ = 0,

2κ
exp(2κT )−1 if κ 6= 0.
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Remark 2.14. If B is (a multiple of) the identity, one immediately sees from the proof that the bound in
Theorem 2.13 becomes an equality. This means that Theorem 2.13 is sharp as a universal lower bound.

Corollary 2.15. In the situation of Theorem 2.13 we have

C2
T ≥ ‖B‖−2

L(U,Xβ)(1 + κ2)β ·


(

1
2T − κ

)
if κ < 0,

1
T if κ = 0,

1
T exp(−2κT ) if κ > 0.

Furthermore,

inf
T>0

C2
T ≥ ‖B‖−2

L(U,Xβ)(1 + κ2)β ·

{
−2κ if κ < 0,

0 if κ ≥ 0.

Proof of Theorem 2.13. Since the system (2.2) is null-controllable in time T , an observability inequality holds
and thus we have

∀φ ∈ X \ {0} :

∫ T

0

‖B∗e−Atφ‖2Udt 6= 0.

Hence, by definition we have

C2
T = sup

φ∈X\{0}

‖e−ATφ‖2∫ T
0
‖B∗e−Atφ‖2Udt

. (2.13)

Let ε > 0 and 0 6= φ0 ∈ PA(κ+ ε), where κ = minσ(A). By spectral calculus we find

‖e−ATφ0‖2 =

∫ κ+ε

κ

e−2λTd‖PA(λ)φ0‖2 ≥ e−2(κ+ε)T ‖φ0‖2

and ∫ T

0

‖B∗e−Atφ0‖2Udt ≤ ‖B‖2L(U,Xβ)

∫ T

0

‖e−Atφ0‖2X−βdt

= ‖B‖2L(U,Xβ)

∫ T

0

(∫ κ+ε

κ

(1 + λ2)−βe−2λtd‖PA(λ)φ0‖2
)

dt

≤ ‖B‖2L(U,Xβ)(1 + (κ+ ε)2)−β‖φ0‖2
∫ T

0

e−2κtdt.

For the latter integral we obtain T if κ ≥ 0, and (1− e−2κT )/(2κ) if κ 6= 0. We choose φ = φ0 in equation (2.13)
and obtain an ε-dependent lower bound on CT . The statement of the theorem follows since ε > 0 is arbitrary.

In particular, we see from Corollary 2.15 that if κ < 0, then C∞ := inft>0 CT is strictly positive. This is in
contrast to the situation κ ≥ 0, where C∞ = 0, i.e. the control cost vanishes in the large time limit.

Remark 2.16. Let us now compare the lower bounds from Theorem 2.13 with the upper bounds from
Theorems 2.8 and 2.12 in the special case β = 0. We focus on this case since in all our applications below
we have β = 0.

In Table 1, we summarize the asymptotic behavior of the upper and lower bounds on the control cost in
the large and small time asymptotic regime. We only keep track of the parameters T , d1 and κ and omit
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Table 1. Asymptotic behavior of lower and upper bounds on C2
T in the case β = 0.

Lower bound Upper bound

κ < 0

T →∞ −κ (−κ) exp

(
Cd

1
1−γ
1 (−κ)

γ
1−γ

)
T → 0 T−1 T−1 exp

(
C
(
d1

Tγ

) 1
1−γ
)

κ = 0

T →∞ T−1 T−1

T → 0 T−1 T−1 exp
(
C
(
d1

Tγ

) 1
1−γ
)

κ > 0

T →∞ T−1e−2κT e−2κT exp

(
Cd

1
1−γ
1 + 2κ

)
T → 0 T−1 T−1 exp

(
C
(
d1

Tγ

) 1
1−γ
)

multiplicative constants depending only on d0, γ, and ‖B‖L(U,X). The parameter C stands for a constant which
only depends on the parameter γ, and might change from case to case.

In the case κ < 0 or κ > 0, the upper bounds in Theorem 2.12 are given in terms of infima over t ∈ (0, T ] or
t ∈ (0, T ), respectively. In order to obtain the upper bounds in the table, for T → 0 we choose t = T/2, while
in the regime T → ∞ we choose t = (−κ)−1 if κ < 0 and t = T − 1 if κ > 0. To discuss these bounds, let us
first consider the case d1 = 0. This implies that we have full control in the sense that the control operator B
is boundedly invertible. In this situation, the upper and lower bounds in Table 1 coincide except for the case
when κ > 0 in the regime T →∞.

Let us now assume d1 > 0. The lower bounds are consistent with Theorem 2.13 and cannot be improved in
general, as Remark 2.14 shows. In the large time regime, the upper and lower bounds exhibit qualitatively the
same asymptotic behavior except for the case when κ > 0. The different asymptotic behavior which we observe
in the small time regime cannot be avoided. In fact, there exist examples where the exponential blowup of the
type exp(CT−γ/(1−γ)) indeed occurs, see e.g. [13, 31]. They consider the controlled heat equation with control
in a subset of the domain, see Section 4 for details on the controlled heat equation. Note that this example
corresponds to γ = 1/2. This shows in particular that the upper bounds in Table 1 are sharp in this regime.

Remark 2.17. Let X = U , β = 0 and B = I. In this case one can explicitly construct null-control functions
in time T > 0. We give two examples. The first one is given by

u1(t) =

∫ ∞
κ

fT (λ)dPA(λ)w0, where fT (λ) =

{
−T−1 if λ = 0,
−λ

eλT−1
if λ 6= 0.

The second one is given by

u2(t) =

∫ ∞
κ

eλtgT (λ)dPA(λ)w0, where gT (λ) =

{
−T−1 if λ = 0,
−2λ

e2λT−1
if λ 6= 0.

The fact that u1 and u2 are null-control functions in time T follows from the Duhamel formula (2.3) and
spectral calculus. Note that u1 is time-independent while u2 is time-dependent. Moreover, it follows that CT ≤
‖ui‖L2([0,T ],X), i ∈ {1, 2}. We estimate

C2
T ≤ ‖u1‖2L2([0,T ],U) ≤

{
T−1 if κ = 0,

T
∣∣ κ

eκT−1

∣∣2 if κ 6= 0
(2.14)
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and

C2
T ≤ ‖u2‖2L2([0,T ],X) ≤

{
T−1 if κ = 0,

2κ
e2κT−1

if κ 6= 0.
(2.15)

Since the upper bound in (2.15) coincides with the lower bound in Theorem 2.13, we conclude that u2 is the
(unique) null-control function in time T with minimal norm. Furthermore, the inequalities in (2.15) are actually
equalities.

If κ = 0 the bounds in (2.14) and (2.15) coincide. Hence, in this case, the optimal null-control function in
time T is a time-independent function.

We also see that for certain choices of T and κ, there is a constant-in-time null-control function in time T with
norm which is close to the optimal one. This is related to the so-called turnpike property, see, for example [45].

3. Proofs of Theorems 2.8 and 2.12

Proof of Theorem 2.8. Let T > 0. For φ ∈ X ⊂ Xβ , t ∈ (0, T ], and λ > 0 we use the notation

F (t) =
∥∥e−Atφ

∥∥2
, Fλ(t) =

∥∥e−AtPA(λ)φ
∥∥2
, F⊥λ (t) =

∥∥e−At(I − PA(λ))φ
∥∥2
,

G(t) =
∥∥B∗e−Atφ∥∥2

U
, Gλ(t) =

∥∥B∗e−AtPA(λ)φ
∥∥2

U
, G⊥λ (t) =

∥∥B∗e−At(I − PA(λ))φ
∥∥2

U
.

Since A ≥ 0 we have F (t1) ≥ F (t2), Fλ(t1) ≥ Fλ(t2), and F⊥λ (t1) ≥ F⊥λ (t2) if t1 ≤ t2 and λ > 0. By monotonicity
and our assumption (2.8), we obtain for all t ∈ (0, T ] and all λ > 0

Fλ(t) =
2

t

∫ t

t/2

Fλ(t)dτ ≤ 2

t

∫ t

t/2

Fλ(τ)dτ ≤ 2d0ed1λ
γ

t

∫ t

t/2

Gλ(τ)dτ. (3.1)

By spectral calculus and since ‖B∗‖L(X−β ,U) = ‖B‖L(U,Xβ) we have

G⊥λ (t) ≤ ‖B‖2L(U,Xβ)‖e
−At(I − PA(λ))φ‖2X−β

= ‖B‖2L(U,Xβ)‖(I +A2)−β/2e−At(I − PA(λ))φ‖2

= ‖B‖2L(U,Xβ)

∫ ∞
λ

(1 + µ2)−βe−2µtd‖PA(µ)φ‖2. (3.2)

Note that this justifies that e−At(I − PA(λ))φ is indeed in X−β . Recall that β < 0. Let Θ > 0 to be specified
later. For µ, t > 0 we estimate

(1 + µ2)−βe−µt ≤

(
1 +

(
−2β

t

)2
)−β

≤ exp

(
CΘ

tΘ
− β

)
, CΘ = 2Θ(−β)Θ+1

(
2 + Θ

Θ

)
,

where the first inequality follows by maximizing with respect to µ, and the second one follows from the inequality
ln(1 + x) ≤ (2/Θ + 1)xΘ/2 + 1 for x ≥ 0. Hence,

G⊥λ (t) ≤ ‖B‖2L(U,Xβ)

∫ ∞
λ

eCΘ/t
Θ−β−µtd‖PA(µ)φ‖2 ≤ ‖B‖2L(U,Xβ)e

CΘ/t
Θ−β−λt/2F (t/2). (3.3)

Similarly we find

F⊥λ (t) =

∫ ∞
λ

e−2µtd‖PA(µ)φ‖2 ≤ e−3λt/2

∫ ∞
λ

e−µt/2d‖PA(µ)φ‖2 ≤ e−3λt/2F (t/4).
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From the last inequality and Inequality (3.1) we obtain

F (t) = Fλ(t) + F⊥λ (t) ≤ 2d0ed1λ
γ

t

∫ t

t/2

Gλ(τ)dτ + e−3λt/2F (t/4).

Since Gλ(t) ≤ 2(G⊥λ (t) +G(t)) and by Inequality (3.3) we obtain for all t ∈ (0, T ] and all λ > 0

F (t) ≤ 4d0ed1λ
γ

t

∫ t

t/2

(G⊥λ (τ) +G(τ))dτ + e−3λt/2F (t/4)

≤ 4d0ed1λ
γ

t

∫ t

t/2

G(τ)dτ +
4d0e−βed1λ

γ‖B‖2L(U,Xβ)

t

∫ t

t/2

F (τ/2)

eλτ/2−CΘ/tΘ
dτ +

F (t/4)

e3λt/2
.

Since F (τ/2) ≤ F (t/4), e−λτ/2 ≤ e−λt/4, and eCΘ/τ
Θ ≤ e2ΘCΘ/t

Θ

for τ ≥ t/2, we obtain

F (t) ≤ 4d0ed1λ
γ

t

∫ t

t/2

G(τ)dτ + e−λt/4+2ΘCΘ/t
Θ
(

2d0e−βed1λ
γ

‖B‖2L(U,Xβ) + 1
)
F (t/4)

≤ 4d0ed1λ
γ

t

∫ t

t/2

G(τ)dτ + e−λt/4+2ΘCΘ/t
Θ+d1λ

γ
(

2d0e−β‖B‖2L(U,Xβ) + 1
)
F (t/4).

With the notation

D1(t, λ) =
4d0ed1λ

γ

t

∫ t

t/2

G(τ)dτ, and D2(t, λ) = e−λt/4+2ΘCΘ/t
Θ+d1λ

γ
(

2d0e−β‖B‖2L(U,Xβ) + 1
)

we can summarize that for all t ∈ (0, T ] we have

F (t) ≤ D1(t, λ) +D2(t, λ)F (t/4). (3.4)

This inequality can be iterated. For k ∈ N0 let λk = ναk with ν > 0 and α > 1 to be specified later. In particular,
applying Inequality (3.4) with t = T and λ = λ0 at the first place, the term F (4−1T ) on the right hand side
can then be estimated by Inequality (3.4) with t = 4−1T and λ = λ1. This way, we obtain after two steps

F (T ) ≤ D1(T, λ0) +D2(T, λ0)
(
D1(4−1T, λ1) +D2(4−1T, λ1)F (4−2T )

)
= D1(T, λ0) +D1(4−1T, λ1)D2(T, λ0) +D2(T, λ0)D2(4−1T, λ1)F (4−2T ).

After N + 1 steps of this type we obtain

F (T ) ≤ D1(T, λ0) +

N∑
k=1

D1(4−kT, λk)

k−1∏
l=0

D2(4−lT, λl) + F (4−N−1T )

N∏
k=0

D2(4−kT, λk). (3.5)

In order to study the limit N → ∞, we assume that 4Θ+1 ≤ α, αγ ≤ α/4, and νT > 2Θ+2CΘT
−Θ + d1ν

γα.
This ensures that the constants

K1 = 2d0e−β‖B‖2L(U,Xβ) + 1, K2 = νT/4− 2ΘCΘ/T
Θ − d1ν

γ , K3 =
K2

α/4− 1
− d1ν

γ (3.6)
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are positive. Then we have that

N∏
k=0

D2(4−kT, λk) = KN+1
1

N∏
k=0

e−ν(α/4)kT/4+2ΘCΘ4Θk/TΘ+d1ν
γ(αγ)k

≤ KN+1
1

N∏
k=0

e(α/4)k(−νT/4+2ΘCΘ/T
Θ+d1ν

γ) = KN+1
1

N∏
k=0

e−K2(α/4)k . (3.7)

Since K1,K2 > 0 and α > 4 this tends to zero as N tends to infinity. From Inequality (3.7) and the definitions
of D1(4−kT, λk) and K3, we infer that the middle term of the right hand side of Inequality (3.5) obeys the
upper bound

N∑
k=1

D1(4−kT, λk)

k−1∏
l=0

D2(4−lT, λl) ≤
∫ T

0

G(τ)dτ
N∑
k=1

4k+1d0 exp(d1ν
γ(α/4)k)

T
Kk

1 exp

(
−K2

(α/4)k − 1

α/4− 1

)

=

∫ T

0

G(τ)dτ
4d0

T
exp

(
K2

α/4− 1

) N∑
k=1

(4K1)
k

exp
(
−K3(α/4)k

)
. (3.8)

Letting N tend to infinity we obtain from Inequalities (3.5), (3.7) and (3.8) that

∥∥e−ATφ
∥∥2 ≤ C̃2

obs

∫ T

0

∥∥B∗e−Atφ∥∥2

U
dt,

where

C̃2
obs =

4d0ed1ν
γ

T
+

4d0

T
exp

(
K2

α/4− 1

) ∞∑
k=1

(4K1)
k

exp
(
−K3(α/4)k

)
. (3.9)

We choose Θ, α and ν as in (3.10) and conclude the observability inequality (2.9) from Lemma 3.1.
Since (2.9) corresponds to part (b) of Lemma 2.5 with X = e−AT : X → X and Y = BT : L2([0, T ], U)→ X.

the system is null-controllable in time T . By the definition of CT we have CT ≤ Cobs.

Lemma 3.1. Let d0 > 0 , d1 ≥ 0, γ ∈ (0, 1), T > 0,

Θ =
γ2

1− γ
, α = 8 · 4

1
1−γ , and ν =

(
αd1

T
+

D

T 1−γ +
E

T

) 1
1−γ

, (3.10)

where

D = (3α ln(4K1))1−γ , E =

(
8 · 2ΘCΘ

D

) 1−γ
γ

, CΘ = 2Θ(−β)Θ+1

(
2 + Θ

Θ

)
,

and K1 = 2d0e−β‖B‖2L(U,Xβ) + 1. Then we have 4Θ+1 ≤ α, αγ ≤ α/4, and νT > 2Θ+2CΘT
−Θ + d1ν

γα.

Moreover, for all T > 0 the constant C̃2
obs from (3.9) satisfies

C̃2
obs ≤

C1d0

T
KC2

1 exp

(
C3

(
d1 + (−β)C4

T γ

) 1
1−γ
)
.

Here, Ci > 0, i ∈ {1, 2, 3, 4}, are constants depending only on γ. They are explicitly given by equation (3.13).



14 I. NAKIĆ ET AL.

Proof. It is easy to see that 4Θ+1 ≤ α, and αγ ≤ α/4. For the constant K3 from (3.6) we have

K3 =
νT/4− 2ΘCΘ/T

Θ − d1ν
γα/4

(α/4− 1)

=
νγ

α− 4

[(
αd1

T
+

D

T 1−γ +
E

T

)
T − 4 · 2ΘCΘ

TΘ

(
αd1

T
+

D

T 1−γ +
E

T

)− γ
1−γ

− d1α

]

≥ νγ

α− 4

[
DT γ − 4 · 2ΘCΘ

TΘ

E
−γ
1−γ

T
−γ
1−γ

]
=

νγDT γ

2(α− 4)
.

This shows in particular that νT > 2Θ+2CΘT
−Θ + d1ν

γα. We further estimate

K3 ≥
(

D
T 1−γ

)γ/(1−γ)
DT γ

2(α− 4)
=
D1/(1−γ)

2(α− 4)
.

For the constant K2 from (3.6) we estimate using α ≥ 8

K2

α/4− 1
≤ νT/2 =

T

2

(
αd1

T
+

D

T 1−γ +
E

T

) 1
1−γ

≤ α
1

1−γ

2

(
αd1 + E

T γ
+D

) 1
1−γ

.

Let us now note that for all A > 1, and B > 0 we have

∞∑
k=1

Ake−B2k ≤
(

2 lnA

Be ln 2

) lnA
ln 2 1

B
, (3.11)

since

∞∑
k=1

e−
B
2 2k ≤

∞∑
k=1

e−kB =
e−B

1− e−B
=

1

eB − 1
≤ 1

B

and

∞∑
k=1

Ake−B2k ≤ sup
x≥1

(Axe−
B
2 2x)

∞∑
k=1

e−
B
2 2k =

(
2 lnA

Be ln 2

) lnA
ln 2

∞∑
k=1

e−
B
2 2k .

We use α ≥ 8 and apply Inequality (3.11) with A = 4K1 > 1, and B = K3 to obtain

∞∑
k=1

(4K1)
k

exp
(
−K3(α/4)k

)
≤
∞∑
k=1

(4K1)
k

exp
(
−K32k

)
≤
(

2 ln(4K1)

K3e ln 2

) ln(4K1)
ln 2 1

K3
. (3.12)

By the above estimate on K3 and since α > 4 we find

2 ln(4K1)

K3e ln 2
≤ 2

e ln 2

ln(4K1)2(α− 4)

D1/(1−γ)
=

2

e ln 2

2(α− 4)

3α
≤ 1.

Note that the exponent ln(4K1)/ ln 2 in (3.12) is positive, and that D ≥ 1. Hence, the right hand side of (3.12)
is bounded from above by 2(α− 4). Using this, α ≥ 8, and d1ν

γ ≤ d1ν
γ +K3 = K2/(α/4− 1), we find

C̃2
obs =

4d0ed1ν
γ

T
+

4d0

T
exp

(
K2

α/4− 1

) ∞∑
k=1

(4K1)
k

exp
(
−K3(α/4)k

)
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≤ 4d0

T
(1 +K−1

3 ) exp

(
K2

α/4− 1

)
≤ 4d0

T
(1 + 2(α− 4)) exp

(
α

1
1−γ

2

(
αd1 + E

T γ
+D

) 1
1−γ
)
.

Since (a+ b)x ≤ 2x−1(ax + bx) for x > 1 and a, b ≥ 0 we obtain

C̃2
obs ≤

4d0

T
(1 + 2(α− 4)) (4K1)

3α
2−γ
1−γ 22Θ+3

exp

(
α

2
1−γ 4

γ+Θ+2
1−γ

(
Θ + 2

Θ

) 1
1−γ

(
d1 + (−β)Θ+1

T γ

) 1
1−γ
)
. (3.13)

Proof of Theorem 2.12. Since PA(λ) = PA−κ(λ− κ), we have by assumption for all λ ≥ 0 that

‖PA−κ(λ)φ‖2 ≤ d0ed1µ
γ

‖B∗PA−κ(λ)φ‖2U .

Since the operator A− κ is non-negative, we obtain from Theorem 2.8 the observability estimate

∥∥e−(A−κ)Tφ
∥∥2 ≤ C2

obs

∫ T

0

∥∥B∗e−(A−κ)tφ
∥∥2

U
dt = C2

obs

∫ T

0

e2κt
∥∥B∗e−Atφ∥∥2

U
dt,

where Cobs is as in Theorem 2.8. Dividing by e2κT yields (2.12).
If κ < 0, we have for all t > 0

∥∥e−Atφ
∥∥2 ≤ C2

obse
−2κt

∫ t

0

∥∥B∗e−Aτφ∥∥2

U
dτ.

Using the equivalence between observability and null-controllability as in the proof of Theorem 2.8, we conclude
that the system (2.2) is null-controllable in time t for all t > 0 with cost satisfying

C2
t ≤

C1d0

t
KC2

1 exp

(
C3

(
d1 + (−β)C4

tγ

) 1
1−γ

− 2κt

)
.

Note that this expression grows exponentially as t tends to infinity. However, if the system is null-controllable
in time t with cost Ct, then it is also null-controllable in time T > t with the same cost CT = Ct. For any
t ∈ (0, T ], we can choose a null-control function in time t, and apply no control in (t, T ]. This yields the upper
bound in this case.

The case κ = 0 is the statement of Theorem 2.8. If κ > 0, then we choose any t ∈ (0, T ), apply no control in
[0, t] and find

‖w(t)‖ ≤ e−κt‖w0‖.

Then, we apply Theorem 2.8 with initial state w(t) in the time interval [t, T ].

4. Spectral inequalities and explicit cost for the controlled
heat equation

In this section, we apply the results from Section 2 to the controlled heat equation with heat generation term
on bounded and unbounded domains. More precisely, our setting is as follows.
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Figure 1. Illustrations of an equidistributed set (left) and a thick set (right).

Let d ∈ N, αi, βi ∈ R ∪ {±∞} with βi − αi > 0, and

Ω =
d×
i=1

(αi, βi). (4.1)

We denote by −∆ the self-adjoint Laplace operator in L2(Ω) with Dirichlet, Neumann or periodic boundary
conditions. Here we allow for periodic boundary conditions only if Ω = ΛL = (−L/2, L/2)d for some L > 0.
Moreover, let V ∈ L∞(Ω) be real-valued, and define the self-adjoint operator HΩ in L2(Ω) by

HΩ = −∆ + V.

In L2(Ω) we consider the controlled heat equation with heat generation term (−V )

ẇ +HΩw = 1S∩Ωu, w(0, ·) = w0 ∈ L2(Ω), (4.2)

where T > 0, w, u ∈ L2([0, T ]× Ω), and where S is non-empty and measurable, usually given by a (ρ, a)-thick
set or a (G, δ)-equidistributed set, see below for definitions. Note that we simultaneously treat bounded and
unbounded domains such as Rd, half-spaces, infinite strips, or hypercubes.

Theorems 2.8 and 2.12 translate spectral inequalities into null-controllability of the corresponding controlled
Cauchy problem with explicit estimates on the control cost in all times. We will now apply them to the case
X = U = L2(Ω), A = HΩ = −∆ + V , and B = 1S∩Ω. In this setting we have in particular β = 0, and the
spectral inequality reads

∀λ > κ ∀φ ∈ L2(Ω): ‖PHΩ
(λ)φ‖2L2(Ω) ≤ d0ed1(λ−κ)γ‖1S∩ΩPHΩ

(λ)φ‖2L2(Ω). (4.3)

We start by defining two geometric situations for the subset S ⊂ Ω where (4.3) is satisfied, cf. Figure 1. For
a measurable set M ⊂ Rd we denote by |M | its Lebesgue measure, and for x ∈ Rd and ρ > 0 we denote by
B(x, r) = {y ∈ Rd : |x− y| < r} the ball of radius r centered at x.

Definition 4.1 (Equidistributed set). Let G, δ > 0. We say that a set S ⊂ Rd is (G, δ)-equidistributed if S is
measurable, and

∀j ∈ (GZ)d ∃zj ∈ ΛG + j : B(zj , δ) ⊂ S ∩ (ΛG + j).
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Definition 4.2 (Thick set). Let ρ ∈ (0, 1] and a = (a1, . . . , ad) ∈ Rd with aj > 0 for j ∈ {1, . . . , d}. We say
that a set S ⊂ Rd is (ρ, a)-thick if S is measurable, and for each parallelepiped

P =
d×
j=1

[
xj −

aj
2
, xj +

aj
2

]
with xj ∈ R for j ∈ {1, . . . , d}

we have

|S ∩ P | ≥ ρ |P | .

Note that every (G, δ)-equidistributed set is (ρ, a)-thick for some ρ and a but there exist (ρ, a)-thick sets
which are not (G, δ)-equidistributed for any G and δ.

Now, we cite three spectral inequalities, i.e. uncertainty relations for spectral projectors.

Theorem 4.3 ([36, 37]). Let G, δ > 0, Ω as in (4.1) with ΛG ⊂ Ω, S ⊂ Rd be (δ,G)-equidistributed, V ∈ L∞(Ω)
real-valued, and λ ∈ R. Then we have for all φ ∈ L2(Ω)

‖PHΩ
(λ)φ‖2L2(S∩Ω) ≥ Csi‖PHΩ

(λ)φ‖2L2(Ω),

where

Csi = sup
κ∈R

(
δ

G

)N(1+G4/3‖V−κ‖2/3
∞ +G

√
(λ−κ)+

)
,

t+ := max{0, t} for t ∈ R, and where N > 0 is a constant depending only on the dimension. In particular, we
have for all λ > κ

Csi ≥ d0ed1(λ−κ)1/2

with d0 =

(
δ

G

)N(1+G4/3‖V−κ‖2/3
∞ )

and d1 = NG ln

(
δ

G

)
.

The following result was proven in the Rd case in [20, 21] and adapted to cubes and some other geometries
in [8, 9, 11]. Such estimates are often called Logvinenko-Sereda Theorems. We do not expound the history of
this topic but refer the reader e.g. to the survey [10].

Theorem 4.4 ([9, 11, 20]). Let V = 0, and Ω = Rd or Ω = ΛL for some L > 0. Let further S ⊂ Rd be a
(ρ, a)-thick set. If Ω = ΛL we assume that aj ≤ L for all j ∈ {1, . . . , d}. Then we have for all φ ∈ L2(Ω)

‖PHΩ
(λ)φ‖2L2(Ω) ≤ d0ed1λ

1/2

‖PHΩ
(λ)φ‖2L2(S∩Ω),

where

d0 =

(
Cd

ρ

)Cd
and d1 = C|a|1 ln

(
Cd

ρ

)
.

Here, C is a universal positive constant.

Note that the domain Ω itself does not enter the constant in the upper bounds neither in Theorem 4.3 nor
in Theorem 4.4. For this reason we call such an uncertainty relation scale-free.

Remark 4.5. In the case where Ω = Rd Theorem 4.4 has been proven in [20] under the assumption that the
Fourier transform Fφ of φ satisfies

supp(Fφ) ⊂
d×
j=1

[
xj −

bj
2
, xj +

bj
2

]
for some xj ∈ R and bj > 0, j ∈ {1, . . . , d}. (4.4)



18 I. NAKIĆ ET AL.

Here, F denotes the standard Fourier transformation on L2(Rd). In the case where Ω = ΛL and periodic
boundary conditions. Theorem 4.4 has been proven in [9] under assumption (4.4). Here, the Fourier transform
Fφ of φ ∈ L2(ΛL) is given by

Fφ :

(
2π

L
Z
)d
→ C, (Fφ)(k) =

1

Ld

∫
ΛL

φ(x)e−i(x·k)dx.

In both cases, one can show that functions φ ∈ RanPHΩ(λ) as considered in Theorem 4.4 satisfy assumption (4.4)
with xj = 0, and bj = 2

√
λ. This has been carried out in Section 5 of [11]. This statement remains true if Ω = ΛL

and Dirichlet or Neumann boundary conditions are imposed, see again Section 5 of [11].

Theorem 4.4 immediately implies the following

Theorem 4.6. In the situation of Theorem 4.4, we have for all λ ≥ 0, all θ > 0 and all φ ∈ L2(Ω) that

‖P(−∆)θ (λ)φ‖2L2(Ω) ≤ d0ed1λ
1/(2θ)

‖P(−∆)θ (λ)φ‖2L2(S∩Ω) (4.5)

where

d0 =

(
Cd

ρ

)Cd
and d1 = C|a|1 ln

(
Cd

ρ

)
,

and C is a universal positive constant.

Proof. We estimate, using the transformation formula for spectral measures, cf. ([40], Prop. 4.24), and
Theorem 4.4

‖P(−∆)θ (λ)φ‖2L2(Ω) = ‖P(−∆)(λ
1/θ)φ‖2L2(Ω) ≤ d0ed1λ

1/(2θ)

‖P(−∆)(λ
1/θ)φ‖2L2(S∩Ω)

= d0ed1λ
1/(2θ)

‖P(−∆)θ (λ)φ‖2L2(S∩Ω).

Note that the exponent 1/2θ in (4.5) is smaller than one if θ > 1/2.

Remark 4.7. In the recent preprint [24], G. Lebeau and I. Moyano prove spectral inequalities for regular
Schrödinger operators with thick observation sets. More precisely, they consider Schrödinger operators HΩ =
−∆ + V , where V : Ω := Rd → R can be extended to a holomorphic function V : {z ∈ Cd : |=(z)| < ε} → R for
some ε ∈ (0, 1), which decays at infinity, i.e. lim‖x‖→∞ V (x) = 0, and satisfies for α ∈ Nd0, |α| ≤ 2 and z ∈ Cd
with |=(z)| < ε

|∂α(z)| ≤ C(1 + |z|)−ε−|α|.

(In fact, [24] allows for ∆ to be a Laplace-Beltrami operator with certain analytic metrics on Rd.)

Theorem 4.8 ([24]). Let S ⊂ Rd be a (ρ, a)-thick set and HΩ as in Remark 4.7. Then there are constants
d0, d1 ≥ 0 which depend on the properties of the potential V and the thick set S, such that for all φ ∈ L2(Rd)
one has

‖PHΩ(λ)φ‖2L2(Rd) ≤ d0ed1

√
λ+‖PHΩ(λ)φ‖2L2(S).

Now we combine the spectral inequalities from the previous theorems in this section with Theorem 2.8 and
immediately deduce the following explicit estimates on the control cost.

Theorem 4.9 (Negative Laplacian with control on thick sets). Let Ω = Rd, or Ω = ΛL for some L > 0. Let
further S ⊂ Rd be a (ρ, a)-thick set. If Ω = ΛL we assume that aj ≤ L for all j ∈ {1, . . . , d}. Then for all
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φ ∈ L2(Ω), and all T > 0 we have

‖e∆Tφ‖2L2(Ω) ≤ C
2
obs

∫ T

0

‖e∆tφ‖2L2(S∩Ω)dt, where C2
obs =

Cd
2

1

T
ρ−C2d exp

(
C3|a|21 ln2(Cd4/ρ)

T

)
.

Here, C1, C2, C3, and C4 are universal positive constants. Moreover, for all T > 0 the system (4.2) with V = 0
is null-controllable in time T , and the cost satisfies CT ≤ Cobs.

Theorem 4.10 (Fractional negative Laplacian with control on thick sets). Let Ω = Rd, or Ω = ΛL for some
L > 0 and let θ > 1/2. Let further S ⊂ Rd be a (ρ, a)-thick set. If Ω = ΛL we assume that aj ≤ L for all
j ∈ {1, . . . , d}. Then for all φ ∈ L2(Ω), and all T > 0 we have

‖e−(−∆)θTφ‖2L2(Ω) ≤ C
2
obs

∫ T

0

‖e−(−∆)θtφ‖2L2(S∩Ω)dt, where C2
obs =

C1

T
ρ−C2d exp

C3

(
|a|1 ln(Cd4/ρ)

) 2θ
2θ−1

T
1

2θ−1

 .

Here, C1, C2, C3, and C4 are universal positive constants. Moreover, for all T > 0 the system

ẇ + (−∆)θw = 1S∩Ωu, w(0, ·) = w0 ∈ L2(Ω), (4.6)

is null-controllable in time T , and the cost satisfies CT ≤ Cobs.

Theorem 4.11 (Schrödinger operator with control on equidistributed sets). Let G, δ > 0, Ω ⊂ Rd be as in
(4.1) with ΛG ⊂ Ω, S ⊂ Rd be (δ,G)-equidistributed, and V ∈ L∞(Ω) real-valued. Then for all φ ∈ L2(Ω), and
all T > 0 we have

‖e−HΩTφ‖2L2(Ω) ≤ C
2
obs

∫ T

0

‖e−HΩtφ‖2L2(S∩Ω)dt,

where

C2
obs =

(
δ

G

)−C2(1+G4/3‖V−κ‖2/3∞ )

inf
t∈(0,T ]

C1

t
exp

(
C3G

2 ln2(δ/G)

t
− 2κt

)
if κ < 0,

C2
obs =

(
δ

G

)−C2(1+G4/3‖V ‖2/3∞ )
C1

T
exp

(
C3G

2 ln2(δ/G)

T

)
if κ ≥ 0,

C2
obs =

(
δ

G

)−C2(1+G4/3‖V−κ‖2/3∞ )

inf
t∈[0,T )

C1

T − t
exp

(
C3G

2 ln2(δ/G)

T − t
− 2κt

)
if κ > 0.

Here, C1, C2, and C3 are positive constants depending only on the dimension. Moreover, for all T > 0 the
system (4.2) is null-controllable in time T , and the cost satisfies CT ≤ Cobs.

Remark 4.12. Note that the Theorems 4.9, 4.10 and 4.11 inherit the property to be scale-free, i.e. the constants
in the upper bounds are uniform in Ω ⊂ Rd. They depend on V only via its L∞-norm. This will be relevant in
certain asymptotic regimes, cf. Remark 4.14.

Theorem 4.8 of Lebeau and Moyano enables us to derive observability and control cost estimates for controls
on thick sets and Schrödinger semigroups with analytic potentials, again using Theorem 2.8. However, in this
case the explicit dependence on the geometric properties of the thick set is not exhibited.
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Figure 2. The (G, δ)-equidistributed set S ⊂ ΛL in Remark 4.14.

Theorem 4.13 (Regular Schrödinger operator with control on thick sets). Let S ⊂ Rd be a (ρ, a)-thick set, HΩ

as in Remark 4.7, and minσ(HΩ) ≥ 0. Then for all φ ∈ L2(Rd), and all T > 0 we have

‖e−HΩTφ‖2L2(Rd) ≤ C
2
obs

∫ T

0

‖e−HΩtφ‖2L2(S)dt, where C2
obs ≤

C1d0

T
(2d0 + 1)C2 exp

(
C3
d2

1

T

)
.

Here C1, C2, C3, d0, and d1 are the constants coming from Theorems 2.8 and 4.8. Moreover, for all T > 0 the
system (4.2) is null-controllable in time T , and the cost satisfies CT ≤ Cobs.

Remark 4.14. In Theorems 4.9, 4.10, and 4.11, the asymptotic behavior of the upper bound on CT in the
limit T → 0 and T →∞ is optimal as discussed in Remark 2.16, see also Table 1. We also note that the term

‖V ‖2/3∞ in the bound in Theorem 4.11 is optimal, at least in even space dimensions, see [7].
Furthermore, let us emphasize that the dependence of the rate of the exponential term on the parameter G

in Theorem 4.11 is optimal. In order to illustrate this we will choose a geometry to which our upper bounds
on the control cost apply as well as the lower bound established by Miller in [31]. Consider a hypercube of side
length L and for any G dividing L, let S ∩ ΛL be the union of right halfs of elementary G-cells in the L-torus,
see Figure 2. The set S ∩ ΛL is the restriction of a (G,G/4)-equidistributed set S to ΛL. For HΩ = −∆ with
periodic boundary conditions on Ω = ΛL Theorem 4.11 implies

lim sup
T→0

T lnCT ≤ CG2 (4.7)

with a positive constant C. Note that due to periodic boundary conditions HΩ can be considered as minus
times the Laplacians on the torus. Thus the following result of Miller [31] applies: on bounded, smooth, and
connected manifolds Ω with control operator B = χS for an open S ⊂ Ω the control cost CT in time T satisfies

sup
y∈Ω

dist(y, S)2/4 ≤ lim inf
T→0

T lnCT . (4.8)

For every G dividing L, the left hand side of (4.8) is precisely G2/64. Combining (4.8) and (4.7) gives

G2

64
≤ lim inf

T→0
T lnCT ≤ C G2 for all G which divide L. (4.9)

Now we see that for any ε > 0 a bound of the type lim supT→0 T lnCT ≤ CG2−ε is impossible by considering
the limit G → ∞. (Note that this requires L → ∞. However, this is covered by our results, since the control
cost bounds are scale-free, i.e. L-independent.) Similarly, the asymptotic behavior for G→ 0 excludes a bound
of the type lim supT→0 T lnCT ≤ CG2+ε. Since every (G, δ)-equidistributed set is (ρ, a)-thick for some ρ and a,
the above example also applies to the upper bound in Theorem 4.9.
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We also note that the restriction of L being a multiple of G in (4.9) is unnecessary: The lower bound in [31]
is based on approximate δ-functions as initial states for the heat evolution. It can be generalized from compact
manifolds to the case of Rd, see for instance [11, 48] where similar ideas are being used whence we obtain the
inequality in (4.9) for all G > 0.

Another way to interpret (4.9) is that in the exponential, the geometric parameters G is in the same relation
to the time T as the order of space and time derivatives in the underlying heat equation, i.e. lnCT ∼ G2/T .

5. Homogenization and de-homogenization

We now investigate the behavior of the control cost in two asymptotic geometric regimes: Homogenization
and de-homogenization. Although there is an intuitive relation to well known homogenization theory, we are
pursuing here a different, and to our best knowledge, novel question: How does the control cost change if we
modify the control set in a specific geometric way?

For the purpose of this paper a homogenization limit of the control set means that we consider a sequence
of operators Bn, n ∈ N, each one the indicator function of a set S(n) ⊂ Rd, with the property that S(n) is
(ρ, an)-thick, with ρ > 0 independent of n, and an → 0 for n→∞. De-homogenization is defined analogously,
see below.

The bounds of Theorems 4.9 and 4.11 provide for the first time sufficiently precise estimates in order to
pursue such an investigation. They in turn crucially rely on the abstract control cost estimate in Theorem 2.8
as well as the spectral inequalities, proved in [11, 37] and spelled out in Theorems 4.3 and 4.4 here. Indeed,
the fact that upper bounds on the control cost in earlier literature were insufficient to carry out our intended
program was the main motivation for proving the upper bounds on the control cost in Section 2.

Let us emphasize that we are here spelling out the behavior of a scalar quantity of interest, namely the control
cost bound. A fuller understanding of the (de-)homogenization limit would be provided if one would study the
convergence of the underlying operators and functions, which we do not carry out here, see also Remark 5.3.

5.1. Homogenization

We will first treat homogenization. This means that the control set S ⊂ Ω becomes more and more evenly
distributed over the space while keeping an overall lower bound on the relative density. This corresponds to
reducing local fluctuations in the density of the control set S. In the case of (G, δ)-equidistributed sets this
corresponds to G and δ simultaneously tending to 0 while their ratio remains constant. In the case of (ρ, a)-
thick sets, this corresponds to a tending to zero while ρ is kept constant. We refer to Figure 3 for an illustration in
the case of (G, δ)-equidistributed sets. The first example shows that homogenization counteracts the exponential
singularity of the control cost in the small time regime.

Example 5.1. We consider the controlled heat equation (4.2) and assume that V = 0 and Ω = Rd or Ω = ΛL.
We fix a density ρ ∈ (0, 1).

For every a ∈ Rd with positive entries (and with ai ≤ L if Ω = ΛL), and every (ρ, a)-thick set Sa, Theorem 4.9
implies that the system (4.2) with S = Sa is null-controllable in every time T > 0 with

C2
T ≤

C1

T
ρ−C2d exp

(
C3|a|21 ln2(Cd4/ρ)

T

)
. (5.1)

The exponential blow-up for small times appearing in (5.1) is sharp in the following sense: for the controlled
heat equation (4.2) with open S ⊂ Ω, S 6= Ω it is known that the control cost grows at least proportionally to
exp(const./T ) as T tends to zero, see e.g. [13, 31]. Now, recall that homogenization means that we let the vector
a tend to zero while keeping ρ constant. In the homogenization limit a→ 0, the upper bound in (5.1) tends to

C1

T
ρ−C2d. (5.2)
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Figure 3. Illustration of homogenization in the case of (G, δ)-equidistributed sets.

We see that in the limit a→ 0, the exponential singularity at T = 0, which is characteristic for controlled heat
equation, disappears. We conclude that homogenization counteracts this exp(C/T ) singularity. Moreover, we
note that the control cost is always bounded from below by the cost of a system with full control, i.e. with
S = Rd in (4.2) or B = Id in (2.2), respectively. By Theorem 2.13 we conclude that C2

T ≥ 1/T for all a ∈ Rd
with positive entries. Hence, the term 1/T cannot vanish in the homogenization limit. Note that the expression
in (5.2) coincides (up to constants) with the control cost of the system with full control and κ = 0 considered
in Remark 2.17.

The next example shows that also in the presence of a potential, homogenization annihilates the expo-
nential singularity at small times. Furthermore, the effect of potentials on the control cost disappears in the
homogenization regime – up to the effect of the potential on κ.

Example 5.2. We consider the controlled heat equation with bounded and real-valued potential V as in (4.2).
Note that κ ≥ −‖V ‖∞. For all G, δ > 0 and all (G, δ)-equidistributed sets SG,δ such that ΛG ⊂ Ω, Theorem 4.11
implies that the system (4.2) with S = SG,δ is null-controllable in every time T > 0 with

C2
T ≤

(
δ

G

)−C2(1+G4/3‖V−κ‖2/3
∞ )

inf
t∈(0,T ]

C1

t
exp

(
C3G

2 ln2(δ/G)

t
− 2κt

)
if κ < 0,

C2
T ≤

(
δ

G

)−C2(1+G4/3‖V ‖2/3
∞ )

C1

T
exp

(
C3G

2 ln2(δ/G)

T

)
if κ = 0,

C2
T ≤

(
δ

G

)−C2(1+G4/3‖V−κ‖2/3
∞ )

inf
t∈[0,T )

C1

T − t
exp

(
C3G

2 ln2(δ/G)

T − t
− 2κt

)
if κ > 0.

Homogenization now means sending G and δ to zero while keeping % := δ/G constant. In this limit, the upper
bounds tend to

%−C2 inf
t∈(0,T ]

C1

t
exp(−2κt), %−C2

C1

T
, and %−C2 inf

t∈[0,T )

C1

T − t
exp(−2κt),

corresponding to the cases κ > 0, κ = 0, and κ > 0, where we used monotonicity in order to interchange limits
and infima. It is straightforward to see that we recover the upper bounds from Table 1 with d1 = 0. This shows
that in the homogenization limit, the limit of the upper bounds on the control cost exhibits the same behavior
as the control cost of the system with full control from Remark 2.17.

Moreover we see that the influence of the potential V on the control cost is annihilated up to the effect of
the potential on κ.
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Figure 4. Illustration of the sets B1, B2, and B3 in space dimension d = 2.

Remark 5.3. We emphasize that taking limits of the parameters a and δ,G in Examples 5.1 and 5.2 does
neither require nor imply that there exist a limit of the operators 1Sa or 1SG,δ , respectively. Furthermore, even
if a limit of the operators existed, our inequality would not yield a limit of the control cost, but merely a bound
on the limsup.

However, there are situations where one could expect that in a homogenization limit, the optimal null-controls
as well as the corresponding solutions converge. For instance let us consider Ω = (0, 1)d, X = U = L2(Ω),
A = HΩ = −∆, and Bn = 1Sn∩Ω where

Sn =
⋃

k1,...,kd∈{0,...,2n−1}
k1+...+kd even

(
[0, 2−n]d + 2−n(k1, . . . , kd)

T
)

as illustrated in Figure 4. The corresponding heat equation

ẇ −∆w = 1Snu, w(0) = w0 ∈ L2(Ω),

has a unique null-control un with minimal norm. Denote the corresponding solution by wn. In this situation
we expect that the sequences will converge to the minimal null-control u and solution w, respectively, of the
equation

ẇ −∆w =
1

2
u, w(0) = w0 ∈ L2(Ω).

Related, but different approximation scenarios have been studied in [41], however under the assumption that the
sequence (Bn)n converges strongly to some limiting operator B. These results cannot be applied in the situation
spelled out above, among others since we do not have 1Sn → (1/2)1Ω in the strong topology. A detailed study
of these questions we leave for another occasion.

5.2. De-homogenization

Now we treat the complementary regime which we call de-homogenization. Let Ω = Rd. For (G, δ)-
equidistributed sets, de-homogenization means sending G and δ simultaneously to ∞ while G/δ remains
constant. In the context of (ρ, a)-thick sets this means that all coordinates of a tend to ∞ while ρ is constant.

Even though the overall relative density of the control set remains, de-homogenization allows for larger and
larger void areas between the components of S where no control is applied, see Figure 5. It is unsurprising
that for fixed time T , our upper bound on the control cost will in general increase since the diffusive nature of
the heat equation makes it harder for components of the control set to exert control in larger and larger areas
where there is no or only little control. In particular, the considerations in [31], see also Remark 4.14, show
that for fixed time, the control cost estimate must tend to ∞ in the de-homogenization limit. However, since
CT is non-increasing in time, one can ask if it is possible to keep the control cost constant by simultaneously
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Figure 5. Illustration of de-homogenization in the case of (G, δ)-equidistributed sets.

letting T tend to ∞ in the de-homogenization regime. The following example positively answers this question
and provides a rate between the required time and the order of de-homogenization.

Example 5.4. We consider the controlled fractional heat equation (4.6) and assume that Ω = Rd. We fix a
density ρ ∈ (0, 1).

For every T > 0 and every a ∈ Rd with positive entries, and every (ρ, a)-thick set Sa, Theorem 4.10 implies
that the system (4.6) with S = Sa is null-controllable in every time T > 0 with

C2
T ≤

C1

T
ρ−C2d exp

C3

(
|a|1 ln(Cd4/ρ)

) 2θ
2θ−1

T
1

2θ−1

 .

There are three model parameters here: the parameters ρ and a, describing the geometry of the control set, and
the time T . Since we already chose ρ and a, the only remaining way to accommodate for the increase in our
upper bound when a tends to infinity is to modify the remaining parameter T by choosing

T ∼ |a|2θ1

(due to the 1/T term in front of the exponential, we can even allow for a small logarithmic correction to this
relation). We have recovered the relation between time and space derivatives ẇ = −(−∆)θw from the underlying
fractional heat equation. This is an indication that our estimates on the control cost with respect to time and
space parameters are close to being optimal.

Example 5.5. We consider the controlled heat equation with bounded and real-valued potential V as in (4.2),
and assume that Ω = Rd and κ > 0. For all G, δ > 0 and all (G, δ)-equidistributed sets SG,δ, Theorem 4.11
implies that the system (4.2) with SG,δ is null-controllable in every time T > 0 with

C2
T ≤

(
δ

G

)−C2(1+G4/3‖V−κ‖2/3
∞ )

2C1

T
exp

(
2C3G

2 ln2(δ/G)

T
− κT

)
.

As in Example 5.4, the increase of the upper bound in the de-homogenization limit can be accommodated by
choosing T ∼ G4/3. Note that this exponent G4/3 is related to the counterexample in [7]. However, there are
special cases, such as a constant, positive potential V in which choosing T ∼ G is sufficient to compensate the
increase of the control cost in the de-homogenization regime.

In Example 5.5 we assumed κ > 0. In the case where κ ≤ 0 this argument does not work anymore. Indeed,
if κ < 0, we know from Theorem 2.13 and Corollary 2.15 that C∞ = infT>0 CT > 0 for every choice of G and
δ. It is an interesting question whether C∞ tends to infinity (and if yes at which rate) or remains bounded in
the de-homogenization limit. It seems that this is not accessible with the techniques presented in this paper.
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https://arxiv.org/abs/1809.10942
https://arxiv.org/abs/arXiv:1609.07020
https://arxiv.org/abs/arXiv:1810.11229
https://arxiv.org/abs/arXiv:1905.10285
https://arxiv.org/abs/arXiv:1806.00969
https://arxiv.org/abs/arXiv: 1901.03513


26 I. NAKIĆ ET AL.
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