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STABILITY AND REGULARITY TRANSMISSION FOR COUPLED
BEAM AND WAVE EQUATIONS THROUGH BOUNDARY
WEAK CONNECTIONS*

BAo-ZHU Guol?3* AND HAN-JING REN!?2

Abstract. In this paper, we consider stability for a hyperbolic-hyperbolic coupled system consisting
of Euler-Bernoulli beam and wave equations, where the structural damping of the wave equation is
taken into account. The coupling is actuated through boundary weak connection in the sense that
after differentiation of the total energy for coupled system, only the term of the wave equation appears
explicitly. We first show that the spectrum of the closed-loop system consists of three branches: one
branch is basically along the real axis and accumulates to a finite point; the second branch is also
along the real line; and the third branch distributes along two parabola likewise symmetric with the
real axis. The asymptotic expressions of both eigenvalues and eigenfunctions are obtained by means of
asymptotic analysis. With an estimation of the resolvent operator, the completeness of the root subspace
is proved. The Riesz basis property and exponential stability of the system are then concluded. Finally,
we show that the associated Cp-semigroup is of Gevrey class, which shows that not only the stability
but also regularity have been transmitted from regular wave subsystem to the whole system through
this boundary connections.
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1. INTRODUCTION

System coupling is ubiquitous in systems control. One control plant together with controller represents usually
a coupled system. Consider for instance an ODE system with time delay in input:

z(t) = u(t — 7), (1.1)
where wu(t) is the control that has a time delay 7 > 0. Make a transform of the following
z(z,t) =u(t —z7), x€0,1].
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Then, z(x,t) satisfies a partial differential equation:

{ Tze(2,t) + 25 (z,t) = 0,
2(0,t) = u(t).

System (1.1) is then transformed into a coupled ODE+PDE system:

i(t) = 2(1,1),
Tze(2,t) + 22 (2, 1) = 0, (1.2)
2(0,1) = u(?),

where the ODE part is actuated by PDE part through a boundary connection.

In the past two decades, much effort has been concentrated on control and stability analysis for coupled
systems described PDEs. Multiple references have investigated the parabolic-hyperbolic coupled systems like
heat-wave system, heat-beam system, heat-Schrodinger system and thermoelastic systems. In [24, 25], stability
and controllability for a heat-wave system which is arising from the fluid-structure interaction were analyzed.
Stabilization for an interconnected systems of Euler-Bernoulli beam and heat equation with boundary weak
connections have been treated in [21, 26] where the heat is the controller to the whole system. The heat
controller was also applied to stabilization and the Gevrey regularity property for coupled Schrédinger and
heat equations in [22]. The exponential stability and Riesz basis property for coupled heat equation and elastic
structure were discussed in [5, 6]. It is seen that the heat equation is mainly motivated for these coupled systems
through boundary weak connections. The main reason is that the heat equation has much more regularity which
is transmitted without time from boundary to the whole coupled system through boundary connections. From
mathematical point of view, all these coupled system are of compact resolvent and hence only the point spectra
are available for these systems.

In this paper, we consider a hyperbolic-hyperbolic coupled system consisting of an Euler-Bernoulli beam and
a wave equation where the structural damping of the wave equation is taken into account making the wave
subsystem part have more regularity likewise the heat equation. The system is described by following partial
differential equations:

Wit (2, 1) + Wazze (T, 1) = 0, 0<z<1,t>0,
U (@, 1) = Ugg (2, 8) + Pugae(2,t), 0<z<1,t>0,
w(l,t) = wee(1,1) = w(0,t) =0, >0,
u(1,t) =0, t>0,
Wey (0, 1) = aug (0, 1), t>0,
Bug(0,t) + uz(0,1) = —awg(0,t), ¢ >0,
w(z,0) = wo(z), w(x,0) =wi(z), 0<w<1,

wu(z,0) = up(x), ue(x,0) = uy (z), 0<z<1,

where (wg, w1, ug, u1) is the initial state and o # 0, 8 > 0 are constants. It is seen that the wave subsystem has
taken the effect of the structural damping Su,.:(x,t) into account, and the connection between the beam and
wave is performed only through boundaries. The total energy of system (1.3) is given by

1
E(t) = %/0 [wf(z,t) + wix(:c,t) + uf(z,t) + ui(z,t)}dx.
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Formally, the derivative of F(t) with respect to time ¢ satisfies

E(t) = — /0 1 Bu2,(z,t)dz <0, (1.4)

which shows that E(t) is non-increasing with time. However, the right-hand side of (1.4) has no explicit terms
for the part of the beam subsystem. We refer such boundary connections to as boundary weak connections.
This gives rise to a serious problem for the stability of system (1.3). In this paper, we adopt the Riesz basis
approach to tackle this problem, by which we are not only able to conclude the exponential stability but also
the regularity of system (1.3).

A general mathematical model of elastic systems with structural damping was proposed in [2]. The controlla-
bility of a wave equation with structural damping was investigated in [16]. Paper [17] studied the rate of decay
of solutions to a wave equation with structural damping in the whole spatial space. It is also noted that the
structural damping is a special case of the general Kelvin-Voigt damping studied in [10].

We proceed as follows. In next section, Section 2, we transform system (1.3) into an evolution equation
in the energy Hilbert space and the well-possedness of the system is then concluded by Cy-semigroup theory,
and the main result is stated. In Section 3, we analyze the distribution of spectrum to obtain the asymptotic
expansion of eigenvalues and eigenfunctions. It is shown that the eigenvalues of system (1.3) consist of three
branches: one branch is basically along the real axis and accumulates to a finite point; the second branch is also
along the real line and is represented by the wave equation part; and the third branch, very similar to the one
studied in [9, 21], distributes along two parabola likewise symmetric with the real axis, which represents the
beam equation part but is strongly affected by the wave part with real parts of spectra approaching infinity.
With a careful estimation of the resolvent operator of the system, the completeness of the root subspace of the
system is concluded in Section 4. Section 5 is devoted to the Riesz basis generation of the system, by which
we can show in Section 6 that the Cy-semigroup associated with system has the Gevrey regularity which lies
between differentiable semigroups and analytic semigroups [1, 19, 20]. The exponential stability is concluded by
the spectrum-determined growth condition which is a consequence of the Riesz basis property. Some concluding
remarks are presented in Section 7.

2. WELL-POSEDNESS AND MAIN RESULT

We consider system (1.3) in the energy Hilbert space H = H? x L? x H} x L? with H} = {f|f €
H2(0,1), f(0) = f(1) = 0}, Hi = {h|h € H*(0,1),h(1) = 0} and the norm in # is induced by the following
inner product

1
(X1, X3) :/ [f1 (@) f3 (2) + g1(2)g2(2) + by (2)hy(2) + i (2)l2(2)]dz,
0
for all X; = (fi, 9:, hi,l;) € H,i =1,2. Define the system operator A by

A(f.g,h,1) = (g, —fD, 1, (h +BU')),Y (f,9,h,1) € D(A),
K + Bl e HY(0,1),

"

o) e e fo(l)_ol’ i (2.1)
(4) = Alf.ahl) € H gf/)—g()—()—, :
1(0) = al(0),

BI(0) + 1 (0) = —ag (0)
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Then system (1.3) can be written as an abstract Cauchy problem in H:

X(t)=AX(t),t >0,
X(0) = Xo,

where X (t) = (w(-, t), we(-, 1), u(-, ), ue (-, t)) and Xy = (wg, w1, ug, u1).

Theorem 2.1. Let A be defined by (2.1). Then, A™" exists. Moreover, A generates a Cy-semigroup e of
contractions on H.

Proof. For any (¢,%,w,v) € H, solve

A(fagahal) = (¢,¢,w,u)

to obtain g(z) = ¢(z) and l(x) = w(x). To get h(z), we solve

to obtain

z ., 1 . (23)
- [ [ a-a0( - 50" @+ [ - 90 - O]

For f(x), we solve

{ 7O (@) = —(a), |

F(0) = £(1) = £'(1) = 0, " (0) = aw(0),
to obtain
i@ = [ @-epede—a [ (1-epe)e,
R,

x 1
plz) = /0 (€ — 2)p(€)de + @ /O (1 — EY(E)E + aw(0)(1 — ).

By (2.3) and (2.4), g(z) = ¢(z) and I(z) = w(z). It is easy to check that
W (x) + Bl (z) = / " L€ — ag (0) € HY(0,1),
0

Thus, we obtain a unique (f,g,h,l) € D(A). Obviously, A~! is bounded and hence 0 € p(A). We next show
that A is dissipative in H. Setting X = (f, g, h,l) € D(A), we have

1

(AX,X) = (g, —f D, (W +81)), (f.9,h,1)) = /O (9T = f DG+ U+ (0 + )]z

1 —_— 11— I ’ [N 11— 7 AN
— [T £ U 0 80T o gl £ T 0+ 50T
0
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= [ [T =T W = KT e+ 10)T0) - W 0] - T ) = 0)

1
—ﬁ/\ﬂwa
0

and hence
1 !
Re(AX, X) = -8 / 1 (2)[2dz < 0. (2.5)
0

This shows that A is dissipative and therefore, A generates a Cy-semigroup e!* of contractions on H by the
Lumer-Philips Theorem ([15], Thm. 4.3, p.14). O

The main result of this paper is stated in succeeding Theorem 2.2 which will be proved at the end of Section 5.

Theorem 2.2. Let A be defined by (2.1). Then, the spectrum-determined growth condition holds for
et w(A) = S(A) where w(A) = inf{w| there exists an M such that ||eAt|| < Me*t} is the growth bound
of the Cy-semigroup, and S(A) = sup{Re(A)|\ € o(A)} is the spectral bound of A. Furthermore, the
Co-semigroup et is exponentially stable:

le]] < Me™r,

for some M, >0 and up < 1/8.

3. SPECTRAL ANALYSIS

In this section, we consider eigenvalue problem for system operator A. Let AX = AX, where X = (f,g,h,l) €
D(A). Then, g(z) = Af(x),l(x) = M(x), and f(x) and h(x) satisfy:

f(4) (z) + Azf(x) =0,
(1+ BNR" (2) = Ah(z),
F(1) =f"(1) = f(0) = h(1) =0, (3.1)

£7(0) = arh(0),
(14 BN (0) = —aXf (0).

From the eigenvalue problem (3.1), we can say a few words on the principle of connections of system (1.3).
In the first boundary connection f (0) = aAh(0), the f”(0) is the same order as Ak(0); and in the second
connection (1 + BA)A'(0) = —aAf (0), &' (0) and f'(0) are also of the same order, both with respect to A. If
the wave is only a lower order perturbation of the beam not as strong feedback control as what we have in this
paper, the exponential stability for the whole system is not expected. Physically, w.,(0,t) = cu:(0,¢) means
that the bending moment of the beam is under the feedback of the velocity of the wave by choosing « so that
the both sides are equidimensional. Precisely, the dimension of the bending moment w,(0,t) is K N.M and the
dimension of velocity u.(0,t) is M/S. To make w4, (0,t) = au(0,t) physically meaningful, we need to take the
dimension of « to be KN.M/(M/S).

Lemma 3.1. Let A be defined by (2.1). Then, Re(X) < 0 for any X € o,(A), the point spectrum of A.
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Proof. Since by Theorem 2.1 A is dissipative, it must have Re(\) < 0 for every A € 0,(A). We thus only need to

show that there is no eigenvalue of A located on the imaginary axis. Letting 0 # A = ip? € 0,,(A) with p € RT
and X = (f,g,h,l) € D(A) be the corresponding eigenfunction, it follows from (2.5) that

1
0 = Re(ip®X, X) = Re(AX, X) = —ﬂ/ ' (z)]2dz.
0

Hence, I'(z) = 0 and so k' (z) = 0. By k(1) = I(1) = 0, it has h(z) = I(z) = 0, and hence f (0) = 0. This,
together with (3.1), shows that f(x) satisfies

/

{ fW(2) = p*f(2),
F0) = f(1) = £ (0) = f"(0) = f(1) = 0.

It is easily shown that f(x) = 0 and hence g(x) = 0. Therefore, there is no eigenvalue of A located on the
imaginary axis, proving the lemma. O

Setting A = ip? in (3.1), we obtain the eigenvalue system of (1.3):

fW(@) = p*f(z) =0,

4

1" —p
h =———h
@) = 1 15h(@).
1 3.2

1(0) = 1" (1) = £(0) = h(1) =0, 3.2)

£7(0) = iap*h(0),

(1+i8p*) (0) = —iap® £ (0).
By Lemma 3.1, all eigenvalues are located on the open left complex plane. Let a = % Then, the general

solution of (3.2) can be expressed as
f(x) = 167" 4 coe™P" + 3" + e h(x) = d1e®” 4 dye 7, (3.3)

where ¢;,1 = 1,2,3,4;d;,7 = 1,2 are scalars. By the boundary conditions of (3.2), we obtain that ¢;,i =
1,2,3,4;d;,7 = 1,2 are not identical to zero if and only if det(B) = 0, where

1 1 1 1 0 0
ef e ” e'r e '* 0 0
2.0 2.—p _ 24p _ 2,—ip
s=| "y "o T e(l EQG . (3.4)
p? p? —p? —p? —iap?  —iap?

Since by Lemma 3.1, all eigenvalues are symmetric to the real axis, we only need to consider those A which
lie in the second quadrant of the complex plane:

N:=ip?,peS:= {pE(C‘OSargpS%}.
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For any p € S,

Re(—p) = —|p[ cos(arg p) < ———|p| <0,
Denote S = §; U Sy with
S ={peCr/8<argp <w/4}, So={pecC|0<argp <nw/8}.

The succeeding Theorem 3.2 gives asymptotic distributions of the eigenvalues in §; and Ss.

Theorem 3.2. Let A be defined by (2.1). Then, the eigenvalues of A have two families:
op(A) = {A\],, AL, € NFU {Dan, Ao, € N,

where )\fn, A1, oand Ao, have the following asymptotic expansions:

0.\ 1 1
+o_ o1 _1 1
M= (e ) # 50 (ia).
_ 1 1 1
)\ln__ﬂ_(nﬂ+02l)253+0<n3)’

(m3) (%) ] o (5):

[%
Aoy, = <mr—|—22> Inr+1

where n are positive integers and

M % :arctan@ r= o +25
28—at ' ? 2B’ ot +2v/2a2\/B + 2

01 = arctan

As a result, for any a # 0 and 8 > 0,
Re(\f)), Re(Aa,) — —o0, Re(M\},) — f% as n — 0o.
Proof. When p € Sy,
Re(ip) = —|p|sin(arg p) < —|p|sin(7/8) < 0.
Combining with (3.5), it has
le™P| = O(eflp\)7 lelP| = O(eflpl).

Since

D N e S, »
a_\/1+ﬂz\_\/1+iﬂp2_\/3p+0(|p| ) as |p| = oo

<1,Inr <0.

(3.5)

(3.6)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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and
—Re(Vip) = —|p| cos(arg p + 7/4) <0,

it has

—a ip —1
e =levZ|+O(pl ") < 1.

By multiplying some factors, we make each entry of the matrix det(B) be bounded as p — oo:

e 1 1 e’ 0 0
1 e” el” 1 0 0
e PelPe @ 1 e P —e -1 0 0
gt BI=1 0 0 0 1 e
e’ 1 -1 —e?  —ae? —ia
_leag—p laa ax _aagip e @ 1
P P p P
By (3.12), (3.13), and the fact <% = O\“Fg + O(|p|~2), it is easily seen that
0 1 1 0 0 0
1 0 0 1 0 0
e—PeiPe—a 1 0 0 —1 0 0 B
ap? det(B) =|o 0 0 0 1 e |TO0p™)
0 1 -1 0 —ixe™ —ia
(—1)3/4q Vo —a _
0 il il 0 e 1
.2v/20? .2v/2a?
= <4 + 1\§B> +e 2 (4 — 1\\53) +O(|p|™2).
From this, we see that det(B) = 0 if and only if
44i2v2 .
et = s + 0lsl ) = +0(al ),
—4+1i oz

where 6; is given by (3.9). The roots of e~2¢ = el1 are
0
a=—i (n7r+ 21> ,n=0,1,2,....

By using Rouché’s theorem, the roots of (3.15) have the following asymptotic expression

1
a=—i mr—l—ﬁ +0(—=),n> N,
2 n2

(3.13)

(3.14)

(3.15)

(3.16)
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where N; is a sufficiently large positive integer. Since a = % or A2 — Ba?)\ — a? = 0, it has

2
+ _/80/ 4

Using the Taylor expansion, we obtain the expressions of ], and A}, given by (3.8). Moreover, by using A = ip?,
we obtain the asymptotic expressions of p; and pj, :

pfn=\/ﬁ(m+921>+0(i),

. . . (3.17)
o5 e o)

Similarly, when p € Sa, it is easily to verify that there exists a v > 0 such that

Re(—a) <~lpl,
(3.18)
Re(ip) = —|p[sin(arg p) < —[p[sin0 < 0,
which, together with (3.5), gives
le™?] = O(e™ 1P, [e7¢| = O(e™IP), || < 1. (3.19)
By (3.14), (3.19) and the fact 22 = 24+ O(|p|~2),
0 1 1 e’ 0 0
1 0 el? 1 0 0
e—peipe—a 1 0 _eip -1 0 0 _
Tt 4B =10 o 0 0 10 [tO(7?)
0 1 -1 - 0 —ia
(—1)3/4a V=1la _ ¥Y=la_ ip _
0 73 77 75 © 0 1
2ir(_2y2a2%—4/B i 2 _
= ¢ ( g )+ 4\/34:/%\/5@ +0(lp|72).
From this, we can easily derive that det(B) = 0 if and only if
o 2y/B +iv2a? _ i _
oo = B EWIO 615172 — rei® 4 O((oI ), (320)

© V2a2 128

where 5 and r are given by (3.9). The roots of e?# = rei®2 are

1

T lnr +i(f2 + 2nm)],n=0,1,2,...
i

P2n =

Once again, by Rouché’s theorem, the roots of (3.20) have the following asymptotic expression

1 1
pon = o [Inr+i(0> + 2nm)] + O (n> ;m > Na, (3.21)
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where Ny is a sufficiently large positive integer. By using A = ip?, we eventually get Ao, given by (3.8). O

Remark 3.3. By the asymptotic expression (3.8), we can see the relationship between eigenvalues and «, 3.
Actually, from 6; and 6y given by (3.9), we can see that o = 0 represents the situation where no connection
occurs for wave and beam, and the three branches of the eigenvalues are those of wave and beam systems
separately:

Afn:_(nﬂ)25_;+o(12)a

_ 1 1 1
=5~ G 0 (58):
Aoy :i(nﬂ')2+0 (;),

where the wave eigenvalues are consistent with the eigenvalues of single wave equation obtained in [4, 10].
When « # 0, these relations can be seen clearly from (3.8) and (3.9), where  plays an important role for the
asymptotic behavior of the eigenvalues.

Theorem 3.4. Let A be defined by (2.1) and 0,(A) = {\],,A\[,,,n € N} U {Aan, Aon,n € N}, be the point
spectrum of A. Let X[ =i(p};)%, A}, = i(py,,)? and Aoy = i(p2n)? with pf,, pi., and pay, given by (3.17) and
(8.21), respectively. Then, there are three families of approximated normalized eigenfunctions of A:

(1) One family {®F = (f,, M, i, AhT),n € N}, where 7., is the eigenfunction of A corresponding to

In>
the eigenvalue A, has the following asymptotic expression:

in>
(fi)" (@) VIia(ePht 4 e—rh)
. X
)\fltl(x) \/ia(elplnx _’_e_plnm) .
i) ) 0 +0 (n> : (3.22)
(hi) (x)
+ _ax . a2 e ] 2
Hinle) e (Vai+35) + e (VR - 55)

where py, and a are given by (3.17) and (3.16) respectively.
(2) The second family {®1,, = (fin AM1ns Pin, ART,)s 1 € N}, where ®7,, is the eigenfunction of A correspond-

In>
ing to the eigenvalue A\, , has the following asymptotic expression:

In>

(i) () 0

M) | 0 1

(hl_n)/(x) = R + O <n) . (3.23)
Ah,, () 0

where a is given by (3.16).
(3) The third family {®2, = (fon, Afon, hon, A2y ),n € N}, where ®q,, is the eigenfunction of A corresponding
to the eigenvalue Aoy, has the following asymptotic expression:

(fan) (@) (cfPen (1) — gmipan(1=0) 4 isin pgy,ePen)
Manle) | _ [ o070 = o700 gigin e | (1> R
(han) (z) 0 n

Ao () 0
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where pan is given by (3.21).

Proof. Firstly, we look for ®f  associated with /\Tn. From the expression of pf‘n given by (3.17) and a given by
(3.16), it has

eiPin® = o(— PN+ F)+0(8) | o=rlat = o= FED (it G2 +0()

(3.25)

00T _ e—i(nﬂ—i—%)x—‘—O(ﬂ%)

e—aT _ ei(nﬂ'+%)m+0(n%)
s .

According to (3.4) and some linear algebra calculations, for p;, given by (3.17), one gets

1 1 1 1 0 0
eP e~ P 4 e~ i 0 0
n eip p2ep p2efp _p2€ip _p2€7ip 0 0
1 (@) = apTeP eP e—PT olpz o—ipT 0 0
p? p? —p? —p? —iap? —iap?
ia’a ia’a a’a ala
—weao oo aa —4a a —a
p p p p
By (3.12), we can write
0 1 1 0 0 0
1 0 0 1 0 0
1 1 0 0 -1 0 0 _
1+(.’E) = E e—p(l—x) e—PT eipz eip(l—:n) 0 0 + O(e Ipl)
0 1 -1 0 —la —la
0 % o 0 1 —1
By (3.25), it has further that
0 1 1 0
2ia 1 0 0 1 _ dic, o0 . _
;’_(.’E):? 1 0 0 1 +O(e Ipl)zfﬁ(ep — € P )+O(e |P|)

o—p(l—2)  o=pr  Gipz  Gip(1—x)
It then follows that

(1) (@) = 4ia(e® +e7"*) + O(e™ ),
and

M () = da(elP® —e7PT) 4 O(e™IPh.
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Similarly, by (3.12) and (3.25),

1 1 1 1 0 0
ef e’ e'r e 'r 0 0
N eip p2ep p267p _p2€ip _p2efip 0 0
i) =5 | o 0 0 0 ¢ emam
2 2 P P iap?  —iap?
ia’a ia’a a’a a“a a —a
p p p
0 1 1 0 0 0
1 0 0 1 0 0
1{1 0 0O -1 0 0
_ —lpl
0 1 -1 0 —-la -i«a
0 lae e o 1 -]
p p
1 1 0 0
2 0 0 e e ~0 1
T2 1 -1 Sla —a n2
ea oo 1 -1
o p
It then follows that
1 1 0 0
/ 2a | 0 0 e% e 9 1
+ _ - J—
@ =-3 1 2 S T [FOET 0(n)
R S|
p P
and
1 1 0 0
0 0 e e ™ _
Af(z) ==2i| | O . ., |+O@)
laa ax 1 71
p p
2 — 2i)aa? 2 —2i
_ e—az |:4 + ( l)aa :| axr |:41_ ( l)a’a :| O(e—|p|)
220 2v/2a2
N ] + \[Oé + ar [ 45 — \[0[ _|_O(C*|P|)
VB VB
By setting
fin(2) fi (@)
or _ | ME@ |1 [ @
" hi, () 2v2 | hf(z) |

Ahi, (@) ARy (@)
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we obtain (3.22). Now we look for @7, . According to the expression of pj, given by (3.17), we can obtain
similarly that

1 1 1 1 0
e’ e’ elr e~lr 0
B 1 p2ep p2efp _p2eip _p2efip O
F@ =g | o e G e 0 o

o O O

2 2 2 2 s 2 i 2
A A i
_ie’a iafa a‘a a‘a a —a
2 2 2 2
1 1 1 1
i _ /i i/ 4 —i./L
ia|eVP e VE eVE e V7

It then follows that

and

Similarly, we further have

1 1 1 1 0 0
e” e’ elr e~lp 0 0
B 1 epp2 e—pp2 _eipp2 _e—ipp2 0 0
hy (z) = adpt| O 0 0 0 et e
2 2 —p? 2 —iap? —iap?
iala  ia’w a’a a’a
—es as e —aa a —a
p p p p
1 1 1 1 0 O
V7 e_\/fIj ei\/% e_i\/fI* 0 0
1 i
a

0 0 0 0

1 1 -1 -1 —la —ia
—/iBa ifa iVifa —ivifa 0 0

eV? e_\/% fei\/% fe_i\/g 0 0 +O<1)
et g—aw n

e
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i 1 1
— _10[01 (eaz _ e—am) _|_ O () = O ( ) )
a n n

1 1 1 1
NF VB ei\/g e_i\/%

where C7 = - - A /|- It then follows that
eV? 67\/; —e' V7 —67\/;
—av/iB  an/if  ianif  —ion/iB
- : ax —ax 1
(k) (z) = —iaCi(e™ + e )+O(n>’
and
il e 1y (1
i) = 2 r ey 0 (D) 2o (1)
By setting
Jin(2) fi (z)
o _| M@ |1 | Ar@
i hin () —iaCy | hy(z) |’
Ah, () Ahy ()

we obtain (3.23). Finally, we look for ®g,,. According to the expression of po, given by (3.21),

{ e:i:ipgn(l—r) _ e:i:%[i(9;_>+2n71')+1n7"](1—z)+0(%)7

2
e PT — e—%[92+2nﬂ—ilnr]x+0(%). (3 6)

This, together with (3.19), gives analogously that

1 1 1 1 0 0
e’ e P eip_ e*ip_ 0 0
f (:17) B 1 p2€p p2e—p _p261p _p26—1p 0 0
2T pbeaer | 0O 0 0 0 e  e@
PLE —.,02 _P2 “iap? —iap?
et eTPT  lPT e !PT 0 0
0 1 1 1 00
1 0 e” e 0 0
1 1 0 —€? —e 0 0
= — _"/‘p‘
20 0 0o o 10 |TOCT
0 1 -1 -1 0-i«a
efp(lfw) e—PT pipz o—ipT 00
2ic 1 1 1

=——5| 0 e? e + O(e7IPh,
1Y e~ Pz eipx efipa:
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It then follows that

1
fo(x) = =2ia| 0
e rr
and
1
Afa(z) =2a| O
e P
Similarly,
ha(z) =
It then follows that
hy(x) =
and
)\hg (IE) =
By setting

1
elP
7eip:1:

1
elr

elrz

O OO == O

i)
=
SO OO == O

O OO == O

15

+0 () =0 (;) .

1
e ip + O(e‘”lp‘) = 2ia(ei”(1_”) — e (1=2) 4 9igin pe~P¥) + O(e_'y‘p‘)7
—eipz
1
e~ir | 4 O(e*vlpl) - 2a(eip(1*1) _ o~ip(1=2) _ o4 sin pe P + O(efv\p\).
e~ ir
1 1 1 1 0 0
e’ e ” elr e~lp 0 0
epp2 efpp2 _eipp2 _efipp2 0 0
0 0 0 0 e? e @
p? p? —p? —p? —iap® —iap?
0 0 0 0 e” e 4%
1 1 1 0 0
0 e e ir 0 0
0 —e? —eip 0 0
0 0 0 1 0
1 -1 -1 0 —ia
0 0 0 erellza) graw
1 1 1 0 0
0 €7 e~ir 0 0
0 —e? —e'# 0 0
0 0 0 1 o |tor W)O(
1 -1 -1 0 —ia
0 0 0 eellma) _ear
1 1 1 0 0
0 e e ir 0 0
0 —e? —eip 0 0
0 0 0 1 0
1 -1 -1 0 —ia
0 0 0 eallza) grow
Jon () fa()
o, _ | M@ |- 1| AR
hgn(fﬂ 2 hg(iL‘) ’
Aoy () Aho(z)
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and substituting (3.21) we can obtain (3.24). This completes the proof of the theorem. O

To end this section, we remark that the same method can be used to produce asymptotic expressions of the
eigenpairs of A*, the adjoint operator of A, which is defined by

A*(f, 9.0, 1) = (=g, fD, =1, (=1 + B)"),¥(f,9,h,1) € D(A*),
—h' + Bl e HY(0,1)
fa=0
. (f.g,h,1) €H, - o (3.27)
D(A*) = Ao hD e H g§l0> =g(1)=1(1)=0 ;.
£7(0) = al(0)
BI(0) — ' (0) = ag (0)

Lemma 3.5. Let A be defined by (2.1). Then, o,(A) = o,(A%).

Proof. Let A*X = AX, where X = (f, g, h,1) is the eigenfunction of A* corresponding to the eigenvalue . Then,

FO(x) - p*f(a) =0,
12 o —p4
h (ff) = Wh(w),
F0) = f"(1) = f(0) = h(1) = 0,
£7(0) = —iap®h(0),

(1+iB8p*)h (0) = iap?f (0).

(3.28)

With the same process of finding the eigenvalues of A, we know that A is an eigenvalue of A* if and only if

det(B) = 0, where

1 1 1 1 0 0
ef e P e'f e 0 0
2.p 2,.—p 2.ip 2,—ip

. pe pre poe poe 0 0

B = O O 0 0 ea e—a (329)
0? 02 2 2 iap?  iap?
l(lza la” o a2a a o« —a a

P P P P
A direct computation shows that det(B) = — det(B), that is, A* has the same eigenvalues with A. O

As in the proof of Theorem 3.4, the eigenfunctions of A* can be obtained.

Theorem 3.6. Let A* be defined by (3.27) and o,(A*) = 0,(A) = {\],,, \1,,, » € N} U {Aan, Aan, n € N}, where
AL =1(p1)? , AL, = i(p1,)? and Aay, = i(p2n)? with py,,, pr,, and pe, given by (3.17) and (3.21), respectively.
Then, there are three families of approrimated formalized eigenfunctions of A*:
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1) One family {V = (fi5  Nfit b AhT ), n € N}, where U is the eigenfunction of A corresponding to
In In In>'%1In In In
the eigenvalue )\fn, has the following asymptotic expression:

(fih)" (x) —VZia(elPin® + e=PinT)
Afin() —V2a(elPln® 4 e=plno) ( 1 >

' - +0| - ’ 3.30
(ht,) (@) 0 n (3.30)
Wi ) oo () e (a5

where py,, and a are given by (3.17) and (3.16) respectively.
(2) The second family {1, = (fin, AM1ns Pins ART,)s 1 € N}, where U7, is the eigenfunction of A* correspond-

In>

ing to the eigenvalue A1, , has the following asymptotic expression:

In>

(i) @) 0

M@ | | o 1

)@ | | e e | TO () (331
Nz, (2) 0

where a is given by (3.16).
(3) The third family { s, = (fon, Afon, han, Ahan),n € N}, where Uy, is the eigenfunction of A* corresponding
to the eigenvalue Aoy, has the following asymptotic expression:

(fan) (@) (e (1-9) — @20 (1-2) 1 9isin 0720
(han) (z) 0 n
where pay, is given by (3.21).
4. COMPLETENESS OF THE ROOT SUBSPACE
Let A be defined by (2.1) and for z € [0,1] and p € C, and let
— sign@=&)rop(e—8) _ o—p(e=8) 4 jeir(e—§) _ je—in(z—¢)

Ol 6) = A e a(a:f)p —Iwi? e (4.1)
Qu(,€) = yasign(z — [0 — ez,

For any A = ip? ¢ 0,(A) with A\ # 0 and (¢, ¥, w,v) € H, we consider the invertibility of operator A — A. Let

Fo(z, p) = / Qu (2, )[i6(E) + (©)dx, Holz,p) = / Qal, O)[-Bw (€) +ipPw(€) + v(©))dz.  (4.2)

Lemma 4.1. Assume (4.1) and (4.2). Then, the solution of the equation (A — A)(f,g,h,l) = (¢,¥,w,v) is
given by

_ F(z,p)
det(B)

f(@) 9la) = M) = 6(0), ha) = I Ua) = Mi(a) — (o), (43)
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where the matriz B is defined by (3.4),

exp e—xp eixp e—ixp 0 0
1 1 1 1 0 0
e’ e’ elr e '* 0 0
F(z,p)=| p°e" ple? —p’* —p’e™™ 0 0
0 0 0 0 e e @
o 0 _p? _p? Ciap?  —iap?
ia’a @ a‘a a’a a —a
o p p P
0 0 0 0 e” e *
1 1 1 1 0 0
e e ? elr e lr 0 0
H(z,p)=| €p> e ’p* —e¥p® —ep* 0 0
0 0 0 e e ¢
0 ? _p? —p? “iap?  —iap?
lCL2OL 1(1204 a” o lea
) P p P a —a

and F,k=1,2,3,5,6, Hs,s = 4,5,6 are constants given by

4p°

p

and

2p*

o 20

7%

Fo(l’, p)
Fy
I3
F3
Hy
Fs — Hs + aw(0)

Fs + Hg + 22/ (0) + 2L w'(0)

Ho(x,p)
Iy
Iy
F3
Hy
Fs — Hs + aw(O)

2 2
Fs + He + apTafﬁ/(O) + apTBW/(O)

1
= [ (5 i ) i) 416

1
1 . i(1— . i(1— .
= / yve (e(l—é)p — e~ (1=8p 4 joi(1=8p _jo-i(1 f)p) (1,02<b(§) + w(g)) de,
0

1 1 . .
Py = / % (e(]—g)p _ e~ (1=80p _ 6i(1=6)p + iefl(lfﬁ)ﬂ) (ipz(b(f) + 1/}(5)) d¢,
0
1 1 . .
F5 = / —Zp (e—fp — efp + ielgp — ie_lfp) (lp2¢(f) + ¢(5)) d€7
0
1.2
Fe = / IZ,O? (€7 + e — 2 —7I) (ip?(€) + 9 (€)) d,
0

1
— [ Y (pa=8) _ g—a(1=9)) (_g," ip2 () d
= [ g (079 = e 070) (<€) + irtul) + 1(6) de,
1
Hs = —iap? / (€798 — %) (—Bu" () + ipPw(€) + v(€)) dE,

1 a2
He = /0 (€77 +e%) (—Bw" (&) +ip*w(&) + v(€)) d&.

Proof. For any (¢,9,w,v) € H and X\ =ip? ¢ 0,(A) with X # 0, solving the equation

()\I—A)(f,g,hJ) = (¢7¢7an)

(4.4)

(4.5)
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yields g = Af — ¢,l = \h — w, with f(z) and h(z) satisfying

FD(@) = p*f(z) = ip’(x) + ¥(=),

" 4 B ” ip? 1
h (z)+ 15182 +piﬁp2 h(z) = 1582 i@’pQw p
F0)=f1)=f"(1) = h(1) =0, (4.6)

1"

f(0) = aip®h(0) — aw(0),

’ ()élp2 ’ [0 ’ o

h (0) + Wf (0) = Wu’ (0) + Tiﬁngb(o)'

Denoting a = % as previously, (4.6) has general solution:

{ f(@) = c1e”” 4 coe™P* + 3¢ + cae T + Fy(x, p), (47)

h(z) = d1e** + doe™** + Ho(z, p),

where Fy(x, p) and Hy(x, p) are given by (4.2). Substituting f(z) and h(x) into the boundary conditions of (4.6)
¢j,J =1,2,3,4 and dy, dy satisfy the following algebraic equation:

c1+catez ey =1,

c1€” + coe™P + g€l + cpeTP = —F,
c1p’e? + cap’e P — czp?el’ — cyp’eTVP = —Fy,
die® + doe™ = —Hy, (48)
c1p® + cap? — c3p? — cap® —iap?dy — iap?dy = —F5 + Hs — aw(0),
;2 ;2 2 2 2 2
ia*a ia*a a’a fte! a*B a‘a
- c + ) 02+703—TC4+CLCZ1—adQZ—FG—H(;—wa (0)—F¢ (0).

Since A = ip? ¢ 0,(A), namely, det(B) # 0, (4.6) admits a unique solution. Moreover, the solution f(x) and
h(x) of (4.7) can be written as (4.3). O

Proposition 4.2. Let A be defined by (2.1). Then, all A\, = {\|;,,A\},,, \an} € 0,(A) represented in (5.8) are
algebraically simple with sufficiently large n.

Proof. We only need to prove the case when p € S since the proof of the symmetrical part is similar. From
Lemma 4.1, the order of each A € 0,,(A), as a pole of (\] — A)~!, is less than or is equivalent to the multiplicity
of X as a zero of the entire function of p det(B) = 0 with n large sufficiently. Furthermore, it is easy to see
that X is geometrically simple and from (3.15) and (3.20), we can show that all the zeros of det(B) = 0 are
simple in S7 and S respectively with n large sufliciently. Thus, the result follows from the formula: m, < p-my
[13], where p denotes the order of the pole of the operator (A — A)~! and m,, m, denote the algebraic and
geometric multiplicities respectively. O

To estimate the norm of (A — A)~!, we recall a lemma in [11] and [18].

Lemma 4.3. Let

D) =1+ f:Qi()\)ea“\7
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where Q; are polynomials of A\, a; are some complex numbers, and n is a positive integer. Then, for all A outside
those circles of radius € > 0 that centered at the roots of D(+), it has

IDV)| > C(e) > 0

for some constant C(e) that depends only on e.

Theorem 4.4. Let A be defined by (2.1) and for A ¢ o,(A) U {—%} For the operator (A — A)~!, there exists
M > 0 independent of \ such that

I =) < M3+ A,

for all A = ip? with p € C lying outside all circles of radius € > 0 that centered at the zeros of det(B).

Proof. We first consider those A = ip? with p € S. Let p € S with p # 0. For (¢,¢,w,v) € H, (f,g,h,1) =
(A — A)~Y(¢,1h,w,v) has the expression given by (4.3). Since in sector S, it holds

Re(—p) <0, Re(Vip) <0, Re(—a) <0,

and there exits a constant M such that la/p| < M from the expression of a, we need to use the transformation
of each entry in the determinant given by (4.4) and (4.5) stable. For (4.4) and (4.5), multiplying the ith column
by factors L; given by

1

1

7 (ip*¢(€) + ¥(€)) de,

Lo (970(6) + () de,

1

3¢ (070 (&) + v (€)) d,

I
L=
/1
wela

/0 € (—Bu(€) + ipPw(€) + v(€)) de,

1 a
L= / e (<€) + () + 1(6)) de,

and adding these columns to the last column of F(z, p) and H(x, p) respectively, we obtain

e~ % PelP ~ e %~ PelP ~
—F =F —H =H
ap (z,p) = F(z,p), ap (z,p) (z, p),



STABILITY TRANSMISSION OF COUPLED BEAM AND WAVE EQUATIONS

where for K =0,1,2

OFF(x,p)
proxk -

and for s = 0,1

O°H(z, p)
ox?

Here

with

and

Fy — Hs + apw(0)

Fo+ He + %4/ (0) +

554 (0)

F5 — Hs + apw(0)

Fe + He + “x¢'(0)

I A U ) e O (R
e’ 1 1 e 0 0
1 e P eip 1 0 0
1 e ? —e'? -1 0 0
0 0 0 0 1 e_a
e~ P 1 -1 —e'? —iae™® —ia
_isagp  aa aa aa gip et -1
P 2 4 4
0 0 0 0 a%e’@ D (—qg)te
e P 11 elr 0 0
1 e P glP 1 0 0
1 0 0 -1 0 0
0 0 0 0 1 e
e P 1 —1 —elr —iae™@ —ia
laa ,—p i(i)a % _%eip e @ -1
O Fy(z, p) % P(x,¢€)
iz 1 /0 T 20(6) + (),
d°Hy(z, p) _a /1 0°R(x,€), , 4 . 9
T i e CCRGRORGIE
—eP#=8) 4 jelr(v=8) g > ¢,
P(JZ, ) - _e*P(ffw) + Z'eip(gfw)’ T < 57
efa(w7£)7 T 2 57
R(z,§) = { e-al6=a) g < ¢,
. 1t :
Fi=—g / (e — 1) (ip%(€) +(€)) de,
0
1! -
5/ (e p(1-6) iem(k&)) (ip2(€) + (&) de,
0
1 1
By= 5/ ( p1-6) | i1 s)p) (ip26(€) + ¥(€)) de,
0
~ I
F= ) / (77 +1e8) (ip26(€) + 1(€)) de,
0
. 1
~ aol _ i .
5=, | (e77 — &%) (ip?(&) + ¥ (€)) d&,

+ %w/(O)

21
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- a ! 1 1" . 2

= / 209 (5" (€) — ipPw(€) — v(€)) &,
= 01 e (8" () — ip?w(€) — 1(©)) e,
- e [t " . 9

iy =2 / e (Bw"(€) — ip*w(€) — (€)) dg,

By Lemma 4.3, there exists M7 > 0 such that

< o [ / <|A|¢><£>|+|w<5>|+|A||w<§>|+|v<s>|>df],
9(2)| < |—|1 [ / (INI6(E)] + (O] + IMw(©)] + |u<5>>dg} +16(),
h <>M2 [/ (INl6(e >|+w<5>|+|x|w<s>|+u(f)Ddf]
)] < My { / (NI + (O] + IMw(©)] + |u<5>|>da] (@),

for all A = ip? with p € S lying outside all circles of radius & > 0 that are centered at the zeros of det(B). Since
lu(z)] < |lu |z < |lu g2 for any z € [0,1] and u € HZ[0, 1], it follows that for any (¢, v, w,v) € H,

£ T 6 e + e+ P o + v]22].

M
lg(z)] < ﬁ [IAH|¢ lze + 19l 2 + [Alllw [l 22 + Hvl\m] + [18ll 2
P (4.9)

/ M1 12 ’
@)1 < o [N e+ e+ N e+ ]

)] < M [IAIS e + e + A e + ]z2] + 122
It is seen from (4.9) that we can find constants My > 0 and K > 0 independent of A such that

[(f59, 0, DIl < Ma(1 + [A)[(9, 9, w, V)

for all [A| = |p?| > k > 1 with p € S lies outside all circles of radius € > 0 that are centered at the zeros of
det(B). Moreover, for |\| < K, there exists M > My such that ||(f, g, h,1)|| < M||(¢,,w,v)||. Therefore,

1(f59, k. Dl < M+ [AD[[(, %, w, V)|
for all A = ip? with p € S lying outside all circles of radius & > 0 that are centered at the zeros of det(B).
This result can be extended to all other p’s by the exact same arguments of [14]. This completes the proof

of the theorem. O

To get the completeness of the root subspace, we need following result from [12].
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Lemma 4.5. Suppose that f(z) is analytic in the whole complex plane. Denote

My (r) = max | f(z)].

|z|=r

If for a nonnegative «, there holds

lim inf
T—00

M;(r) _
ro ’

then, f(z) is a Polynomial with degree not exceeding .

Theorem 4.6. Let A defined by (2.1). Then, both the root subspaces of A and A* are complete in H, that is,
Sp(A) = Sp(A*) = H where Sp(A) denotes the root subspaces of A.

Proof. Since the completeness for the root subspace of A* is almost the same, we only show the result for A.
By linear operator theory [3], it holds

where o4 (A*) consists all of those Y € H so that R(A, A*)Y is analytic with respect to A in the whole complex
plane. We therefore only need to prove o, (A*) = {0}.

Suppose for Y € 0,(A*), R(A, A*)Y is an analytic function of A and so is for p due to A\ = ip?. By the
maximum modulus principle, || R(\, A*)|| = ||R(X, A)||, and Theorem 4.4, there exists constant M > 0 such that

1RO\ AY | < M1+ [AD]lyll,v A € C.

By Lemma 4.5, R(\, A*)Y is a polynomial of A with degree less or equal to one, i.e., R(A, A*) = Yy + AY; for
some Yy, Y7 € H. Thus,

Y = (A= A")(Yo + AV1).
On account of the closeness of A*, we conclude that Yy, Y; € D(A*). Thus,
—A*Yy + MY — A*Y1) + A?Y; =Y,V A e C.
This leads to Y = Yy = Y7 = 0 and the proof is complete. O

5. RIESZ BASIS PROPERTY AND EXPONENTIAL STABILITY
The following Lemma 5.1 comes from [23].

Lemma 5.1. An approzimately normalized sequence {e;}2, and its approzimately normalized biorthognal
sequence {ef}5°, are Riesz basis for a Hilbert space H if and only if
1) both {e;}32, and {e}}2, are complete in H; and
2) both {e;}32, and {el}$2, are Bessel sequences in H, that is, for any f € H, two sequences {(f,e;)}24,
{{f,er)}52, belong to 1.
The succeeding Lemma 5.2 comes from [18].

Lemma 5.2. Let {u,} be a sequence which has asymptotic

n =u(n+ivlnn) +O(1),u #0,n=1,2,3,..., (5.1)
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where v is a real number. If (i, satisfies sup,,~; Re(uy) < 00, then, the sequence {e’"*}>2, is a Bessel sequence
in L2(0,1). -

Lemma 5.3. Let pf, a and pa, be given by (3.17), (3.16) and (3.21) respectively. Then, the sequences
{eiplttz}z":l, {efpltlz}%o:l, {eFaryoo | fetiran(I=)100 gnd {e=P2n®}0  are Bessel sequences in L?(0,1).

Proof. By (3.25), if we take u = i,/if7, v =0 in eip;rn””, u = —+/ifm, v =0in e-ﬂﬂ{ u = —im, v =0 in e** and
u =im, v = 01in e~ respectively, then, by Lemma 5.2, the sequences {ei";rn’”}ff:l, {e—pfnx};o:l and {eT®}o0

are the Bessel sequences in L*(0,1).

Similarly, by (3.26), if we take u = ir, v = 0 in €?>»(1=%) ¢ = —ix, v =0 in e (=% and u = —7, v =0
in e=P2n respectively, then, by Lemma 5.2, it follows that the sequences {e*#2n(1=2)1%0  and {e=r2»®}2 | are
the Bessel sequences in L?(0, 1). O

Theorem 5.4. Let A be defined by (2.1). Then, the generalized eigenfunctions of A form a Riesz basis for H.

Proof. Let o,(A) = {\|,, \1,,, A2n, A2n } be the eigenvalues of A given by Theorem 3.2. By Proposition 4.2,
there exists an integer N > 0 such that all A\, A\, Aan, A2n with n < N, are algebraically simple. For n < N,

1n7 in>
suppose that the algebraic multiplicities of A7, A}, and )\gn are mj, , my, and ma, respectively, then, we can

find the corresponding generalized eigenfunctions {®7, ; Tlf, {®7, ]}ml" and {®a,,;}22 by solving
(A— Ai )‘Di 1=0 (A—X2p)®2p1 =0
(A Ai )(I)itn 2 = (I)lin 1 (A - >\2n)(1>2n,2 = (I)Zn,l
and

(A— i)t - =ot |

In,my, —1

(A - AQn)(I)Zn,mzn = (b2n,m2n—1

in

Then,
mi —_
R Hr SNUR Lo RESVIUR (L I Dy i) MEITE C IS oo P (5:2)
are all linearly independent generalized eigenfunctions of A. On the other hand,
mi man U,
{{\Ilitn,]}_/:lf} ne N U {\I] }n>N U {{lIIQn e \11277, J z n<N U {\IIQn, \IIQn}nZN (53)

are all linearly independent generalized eigenfunctions of A*. Let

+

\\/] .
+x in,j - +
Pl = 7m,n<N,]—l,2, Ly M,
! (5.4)
+x \Iji
= ﬁ n > N,
<(I>1n’\IJ >
and
v n,j .
(I);n,j:ﬁ7n<‘]\[?]:172a"' y M2n,
;Jn,jv 2n,j (55)
Prr—_"2" >N,

<(I)2na lI/2n> 7
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Then,

+ JE—
{{(I)ln ]};n:l?} <N U {(I) }n>N U {{(I)Qn 77 2n ,J _;nzzf n<N U {(I)Z'rw (I)Sn}nZN (56)

are all linearly independent generalized eigenfunctions of A* and they are biorthognal to (5.2). From
Theorem 4.6, all the sequences given by (5.2), (5.3) and (5.6) are complete in H.
According to Lemma 5.1, we only need to prove that (5.2) and (5.6) are Bessel sequences in H. Since both

+
{{o%, y i {®2n,;} 27 bna v and {{<I>1n]}m1” {@3,, ;1721 tn<n are finitely many, we only need to show that

Jj=1 =1
both the eigenfunctions {<I>1n, Dy, bn>n and {@ﬁf, &5 tn>n of Aand A*, respectively, are Bessel sequences in H.

Besides, from (5.4) and (5.5), we know that {®L*, &5}, is a Bessel sequence if and only if {0, Uy, },5y isa
Bessel sequence. Therefore, to show the Riesz basis property of the system, it suffices to show that { <I>1in, D
and {\Illn, Uy, >N are Bessel sequences in H.

For all n > N, from the expressions of {<I>1n,<I>2n }n>n and {\Illn, \I/zn}n>N given by Theorem 3.4, Theo-
rem 3.6 and Lemma 5.3, all nonzero components of {®7. , P2, }n>n and {\Illn, Won tn>n are Bessel sequences
in L2(0,1). Hence, {<I>1in7 Doy }n>n and {\Illin, Uy tn>n are also Bessel sequences in 7. The result then follows
from Lemma 5.1. O]

Now we are in a position to prove Theorem 2.2.

Proof of Theorem 2.2. The spectrum-determined growth condition follows from Theorem 5.4 and Proposition
4.2. By Lemma 3.1, for every A € 0,(A), Re(A) < 0. According to the distribution of spectra of the operator A

given by (3.8)—(3.10), A has one (and only one) continuous spectrum A = —1/8 which is an accumulation point
of the eigenvalues, and hence p < 1/3. The exponential stability then follows from the spectrum-determined
growth condition, which is similar to [4, 7, 8]. |

6. GEVREY REGULARITY

In what follows, we show that the Cy-semigroup e generated by A is of a Gevrey class § with any § > 2,
which is the semigroup class between the differentiable Semigroups and the analytical ones.

Definition 6.1. [1, 20] A Cy-semigroup T'(¢) is of a Gevrey class 0 > 1 for t > ¢¢ if T'(¢) is infinitely differentiable
for t > to and for every compact subset K C (tg,00) and each 6 > 0, there is a constant C' = C(K, ) such that

IT™ @) < Com(n)?, vVt € K,n=0,1,2,....

In order to get the Gevrey regularity of the system (2.2), we need the following theorem established by Taylor
in [20].

Theorem 6.2. Let e be a Cy-semigroup satisfying ||edt|| < Me“t. Suppose that for some u > w and o
satisfying 0 < a < 1,

‘ llim sup |7|*|R(p + it, A)|| = C < 00, T € R.
T|—00

Then, e4t is of Gevrey class 6 with § > 1/a for t > 0.
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Theorem 6.3. Let A be defined by (2.2). Then, the semigroup e, generated by A, is of Gevrey class § > 2

Proof. From Theorem 2.2, we know that A generates an exponentially stable Cy-semigroup e?* in #. By
Theorem 6.2, we only need to show

lim |7|||R(iT, A)||> = C < 00, T €R. (6.1)
T—00
By Theorem 5.4,
+ -
{{‘I’my ?:1?} " {2, }nzn U {{@gn],@gm}m%} . U{®2n, Pontn>n (6.2)

forms a Riesz basis for H. For any Y € H,

N—-1 [my, my, oo
Y = Z afn,j In,j + Z aln N ln,] + Z (aTn(I)Tn + al_nq)l_n)
n=1 j=1 n=N
N-—1 mon oo -
+ Z Z (a2n,Pon,; + ban,jPon ;) + (a2n®an + b2nPon) (6.3)
n=1 j=1 n=N
and
N—1 mln my, [e%s}
||Yr||2 = Z Z'aln]|2+2|alnj + Z (‘a1n|2+|a’1n‘ )
n=1 j=1 n=N
N—1map, e’}
+ 3> (laza s + [b2n?) + Y (laznl® + [b2n]?) (6.4)
n=1 j=1 n=N

where “W < Z” means the equivalence of the norm: There are constants cg,c; > 0 independent of W and Z
such that ¢o|| Z|| < ||[W]| < e1]|Z]|. Let 7 > 0. Then, it € p(A) and hence

N-1 fmi, + &+ Min = T o + &+ - H-

ahm‘q)ln j A1y jq)ln j ay,, P ar,
R, A)Y = —l e — 0 n_‘n o4 __In_ln
nz::l Z ir — A Z it — A, Z ir— )\, it—)j

j=1 In j=1 1n n=N In

N-1 n - _—
n & <a2n,j(1)2n,J an,j(I)Zn,j) + i <.a2n¢2n + b2n(1)2n>
n=N

=1 j=1 17 — )\2n 17 — )\Qn 17 — )\Zn it — )\Qn
N-1 1

n [o () e < i
n=1 |IT - )\ |IT 17L|

+ (mp) O (m)]’ (6:5)
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and
N— m-l'—n mln oo — 12
i = 3 (57 S8 S (Ll
= |1T—)\+ |2 it — = |17’7 W2 iT = AL,
N—1mas, 2 2 o 2 2
|a2n,41 |b2n, ) ( |azn| |b2n| )
i ML) N 1N : + C— 6.6
;; ('17—_)\271'2 |iT*)\2n|2 7;\[ ‘IT_AQn‘Q |iT*)\2n|2 ( )
where {\L,,n € N} and {\gn, Aan,n € N}, given by (3.8), are eigenvalues of A.
Now we estimate |iT — AL, |2, [it — Agp|? and it — Az, |?. In terms of A, and A7, given by (3.8), for n large
enough,
0\, 1 1
lir = AL |2 = 1T+<nﬂ'+1> 8+ +O( 2)
2 B
2 91 * 2 2
=T+t o B+ 0(1) > Myr=, (6.7)
1 1 1 ’ 1
it — A = iT+—|—2+O<3) =7 +2+O( >>M27-
b meg) e An v

for some M7, My > 0 independent of 7. In terms of Ay, given by (3.8), for n large enough, there exists C' > 0
such that

[Re(A2n)| = CIm(Ao,)| M2
We thus have
it — A2nl® > |7 — Im(A2n) > + C?Im(A2n)]. (6.8)
Let 0 < & < 1 be given. If Im(Ay,,) > e7, then,
it — Aan|? > C?Im(Agy,)| > Cer. (6.9)
If Im(Agy,) < e7, then, for 7 > 1,
[iT — Agn|? > |7 — Im(A2,)|* > (1 —€)?7% > (1 —¢)*r. (6.10)
Hence, by (6.9) and (6.10), there exists a constant M3z > 0 such that
it — Aon|® > MsT. (6.11)
For Mg, with sufficiently large n, we have

i — Aanl? = |7+ Im(X2p)|? 4 |Re(A2n)| > it — Aop|® > MaT. (6.12)
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By (6.6)—(6.12), there is an M > 0 such that

lim  sup |7|||R(u + ir, A)||> = M. (6.13)
| 7| =400

On the other hand, with similar way, for 7 € R and 7 < 0, we also have

lim sup |7||R(u +ir, A)||? = M. (6.14)
| 7| =400
This proves (6.1), and by Theorem 6.2, the semigroup e4? is of Gevrey class § > 2 with ¢y = 0. O

7. CONCLUDING REMARKS

In this paper, we study stability for a wave-beam coupled system where a damped wave that connects with
a beam through boundary weak connections is considered as a controller of the beam system. We develop all
properties including mainly the Riesz basis generation, the spectrum-determined growth condition, the expo-
nential stability and the Gevrey regularity for this system, which is parallel to a heat-beam system considered
in [21]. Tt is quite unexpected that a damped wave subsystem which can change shape arbitrarily can stabilize
exponentially a beam which cannot change arbitrary the shape. Obviously, the wave controller is much more
easily implemented than heat in some engineering beam structures, which is considered as a new discovery from
the engineering point of view.

Secondly, in paper [21] and most of other same type of papers, the resolvent of the system operator is always
compact. This means that system has only eigenvalues. However, the spectrum of the system operator in this
paper has no compact resolvent. It has both eigenvalues and continuous spectrum. This results in the spectrum
of the wave part not being symmetric on the real axis. Actually, the wave part has two branches of eigenvalues,
where one branch approaches infinity and another finite branch approaches a finite accumulation point. As a
result, the eigenfunctions are very different with that in existing literature including [21], in particular for the
branch of eigenfunctions corresponding to the eigenvalues that have finite accumulation point. This is another
new discovery from the mathematical point of view.
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