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STABILITY AND REGULARITY TRANSMISSION FOR COUPLED

BEAM AND WAVE EQUATIONS THROUGH BOUNDARY

WEAK CONNECTIONS∗

Bao-Zhu Guo1,2,3,∗∗ and Han-Jing Ren1,2

Abstract. In this paper, we consider stability for a hyperbolic-hyperbolic coupled system consisting
of Euler-Bernoulli beam and wave equations, where the structural damping of the wave equation is
taken into account. The coupling is actuated through boundary weak connection in the sense that
after differentiation of the total energy for coupled system, only the term of the wave equation appears
explicitly. We first show that the spectrum of the closed-loop system consists of three branches: one
branch is basically along the real axis and accumulates to a finite point; the second branch is also
along the real line; and the third branch distributes along two parabola likewise symmetric with the
real axis. The asymptotic expressions of both eigenvalues and eigenfunctions are obtained by means of
asymptotic analysis. With an estimation of the resolvent operator, the completeness of the root subspace
is proved. The Riesz basis property and exponential stability of the system are then concluded. Finally,
we show that the associated C0-semigroup is of Gevrey class, which shows that not only the stability
but also regularity have been transmitted from regular wave subsystem to the whole system through
this boundary connections.
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1. Introduction

System coupling is ubiquitous in systems control. One control plant together with controller represents usually
a coupled system. Consider for instance an ODE system with time delay in input:

ẋ(t) = u(t− τ), (1.1)

where u(t) is the control that has a time delay τ > 0. Make a transform of the following

z(x, t) = u(t− xτ), x ∈ [0, 1].
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Then, z(x, t) satisfies a partial differential equation:{
τzt(x, t) + zx(x, t) = 0,

z(0, t) = u(t).

System (1.1) is then transformed into a coupled ODE+PDE system:
ẋ(t) = z(1, t),

τzt(x, t) + zx(x, t) = 0,

z(0, t) = u(t),

(1.2)

where the ODE part is actuated by PDE part through a boundary connection.
In the past two decades, much effort has been concentrated on control and stability analysis for coupled

systems described PDEs. Multiple references have investigated the parabolic-hyperbolic coupled systems like
heat-wave system, heat-beam system, heat-Schrödinger system and thermoelastic systems. In [24, 25], stability
and controllability for a heat-wave system which is arising from the fluid-structure interaction were analyzed.
Stabilization for an interconnected systems of Euler-Bernoulli beam and heat equation with boundary weak
connections have been treated in [21, 26] where the heat is the controller to the whole system. The heat
controller was also applied to stabilization and the Gevrey regularity property for coupled Schrödinger and
heat equations in [22]. The exponential stability and Riesz basis property for coupled heat equation and elastic
structure were discussed in [5, 6]. It is seen that the heat equation is mainly motivated for these coupled systems
through boundary weak connections. The main reason is that the heat equation has much more regularity which
is transmitted without time from boundary to the whole coupled system through boundary connections. From
mathematical point of view, all these coupled system are of compact resolvent and hence only the point spectra
are available for these systems.

In this paper, we consider a hyperbolic-hyperbolic coupled system consisting of an Euler-Bernoulli beam and
a wave equation where the structural damping of the wave equation is taken into account making the wave
subsystem part have more regularity likewise the heat equation. The system is described by following partial
differential equations: 

wtt(x, t) + wxxxx(x, t) = 0, 0 < x < 1, t > 0,

utt(x, t) = uxx(x, t) + βuxxt(x, t), 0 < x < 1, t > 0,

w(1, t) = wxx(1, t) = w(0, t) = 0, t ≥ 0,

u(1, t) = 0, t ≥ 0,

wxx(0, t) = αut(0, t), t ≥ 0,

βuxt(0, t) + ux(0, t) = −αwxt(0, t), t ≥ 0,

w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 ≤ x ≤ 1,

u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 ≤ x ≤ 1,

(1.3)

where (w0, w1, u0, u1) is the initial state and α 6= 0, β > 0 are constants. It is seen that the wave subsystem has
taken the effect of the structural damping βuxxt(x, t) into account, and the connection between the beam and
wave is performed only through boundaries. The total energy of system (1.3) is given by

E(t) =
1

2

∫ 1

0

[w2
t (x, t) + w2

xx(x, t) + u2t (x, t) + u2x(x, t)]dx.
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Formally, the derivative of E(t) with respect to time t satisfies

Ė(t) = −
∫ 1

0

βu2xt(x, t)dx ≤ 0, (1.4)

which shows that E(t) is non-increasing with time. However, the right-hand side of (1.4) has no explicit terms
for the part of the beam subsystem. We refer such boundary connections to as boundary weak connections.
This gives rise to a serious problem for the stability of system (1.3). In this paper, we adopt the Riesz basis
approach to tackle this problem, by which we are not only able to conclude the exponential stability but also
the regularity of system (1.3).

A general mathematical model of elastic systems with structural damping was proposed in [2]. The controlla-
bility of a wave equation with structural damping was investigated in [16]. Paper [17] studied the rate of decay
of solutions to a wave equation with structural damping in the whole spatial space. It is also noted that the
structural damping is a special case of the general Kelvin-Voigt damping studied in [10].

We proceed as follows. In next section, Section 2, we transform system (1.3) into an evolution equation
in the energy Hilbert space and the well-possedness of the system is then concluded by C0-semigroup theory,
and the main result is stated. In Section 3, we analyze the distribution of spectrum to obtain the asymptotic
expansion of eigenvalues and eigenfunctions. It is shown that the eigenvalues of system (1.3) consist of three
branches: one branch is basically along the real axis and accumulates to a finite point; the second branch is also
along the real line and is represented by the wave equation part; and the third branch, very similar to the one
studied in [9, 21], distributes along two parabola likewise symmetric with the real axis, which represents the
beam equation part but is strongly affected by the wave part with real parts of spectra approaching infinity.
With a careful estimation of the resolvent operator of the system, the completeness of the root subspace of the
system is concluded in Section 4. Section 5 is devoted to the Riesz basis generation of the system, by which
we can show in Section 6 that the C0-semigroup associated with system has the Gevrey regularity which lies
between differentiable semigroups and analytic semigroups [1, 19, 20]. The exponential stability is concluded by
the spectrum-determined growth condition which is a consequence of the Riesz basis property. Some concluding
remarks are presented in Section 7.

2. Well-Posedness and main result

We consider system (1.3) in the energy Hilbert space H = H2
L × L2 × H1

L × L2 with H2
L = {f |f ∈

H2(0, 1), f(0) = f(1) = 0}, H1
L = {h|h ∈ H1(0, 1), h(1) = 0} and the norm in H is induced by the following

inner product

〈X1, X2〉 =

∫ 1

0

[f
′′

1 (x)f
′′
2 (x) + g1(x)g2(x) + h

′

1(x)h
′
2(x) + l1(x)l2(x)]dx,

for all Xi = (fi, gi, hi, li) ∈ H, i = 1, 2. Define the system operator A by

A(f, g, h, l) = (g,−f (4), l, (h′ + βl
′
)
′
),∀ (f, g, h, l) ∈ D(A),

D(A) =


(f, g, h, l) ∈ H,

A(f, g, h, l) ∈ H

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h
′
+ βl

′ ∈ H1(0, 1),

f
′′
(1) = 0,

g(0) = g(1) = l(1) = 0,

f
′′
(0) = αl(0),

βl
′
(0) + h

′
(0) = −αg

′
(0)


.

(2.1)
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Then system (1.3) can be written as an abstract Cauchy problem in H:{
Ẋ(t) = AX(t), t > 0,

X(0) = X0,
(2.2)

where X(t) = (w(·, t), wt(·, t), u(·, t), ut(·, t)) and X0 = (ω0, ω1, u0, u1).

Theorem 2.1. Let A be defined by (2.1). Then, A−1 exists. Moreover, A generates a C0-semigroup eAt of
contractions on H.

Proof. For any (φ, ψ, ω, ν) ∈ H, solve

A(f, g, h, l) = (φ, ψ, ω, ν)

to obtain g(x) = φ(x) and l(x) = ω(x). To get h(x), we solve{
h
′′
(x) = ν(x)− βω′′(x),

h(1) = 0, h
′
(0) = −αφ′(0)− βω′(0),

to obtain

h(x) = (αφ
′
(0) + βω

′
(0))(1− x)

−
[∫ x

0

(1− x)(ν(ξ)− βω
′′
(ξ))dξ +

∫ 1

x

(1− ξ)(ν(ξ)− βω
′′
(ξ))dξ

]
.

(2.3)

For f(x), we solve {
f (4)(x) = −ψ(x),

f(0) = f(1) = f
′′
(1) = 0, f

′′
(0) = αω(0),

to obtain 
f(x) =

∫ x

0

(x− ξ)p(ξ)dξ − x
∫ 1

0

(1− ξ)p(ξ)dξ,

p(x) =

∫ x

0

(ξ − x)ψ(ξ)dξ + x

∫ 1

0

(1− ξ)ψ(ξ)dξ + αω(0)(1− x).

(2.4)

By (2.3) and (2.4), g(x) = φ(x) and l(x) = ω(x). It is easy to check that

h
′
(x) + βl

′
(x) =

∫ x

0

ν(ξ)dξ − αφ
′
(0) ∈ H1(0, 1).

Thus, we obtain a unique (f, g, h, l) ∈ D(A). Obviously, A−1 is bounded and hence 0 ∈ ρ(A). We next show
that A is dissipative in H. Setting X = (f, g, h, l) ∈ D(A), we have

〈AX,X〉 = 〈(g,−f (4), l, (h
′
+ βl

′
)
′
), (f, g, h, l)〉 =

∫ 1

0

[
g
′′
f ′′ − f (4)g + l

′
h′ + (h

′
+ βl

′
)
′
l
]

dx

=

∫ 1

0

[
g
′′
f ′′ − f

′′
g′′ + l

′
h′ − (h

′
+ βl

′
)l′
]

dx− f (3)g|10 + f
′′
g′ |10 + (h

′
+ βl

′
)l|10
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=

∫ 1

0

[
g
′′
f ′′ − f

′′
g′′ + l

′
h′ − h

′
l′
]

dx+ l(0)[βl′(0)− h′(0)]− l(0)[βl
′
(0)− h

′
(0)]

− β
∫ 1

0

|l
′
|2dx,

and hence

Re〈AX,X〉 = −β
∫ 1

0

|l
′
(x)|2dx ≤ 0. (2.5)

This shows that A is dissipative and therefore, A generates a C0-semigroup eAt of contractions on H by the
Lumer-Philips Theorem ([15], Thm. 4.3, p.14).

The main result of this paper is stated in succeeding Theorem 2.2 which will be proved at the end of Section 5.

Theorem 2.2. Let A be defined by (2.1). Then, the spectrum-determined growth condition holds for
eAt: ω(A) = S(A) where ω(A) = inf{ω| there exists an M such that ‖eAt‖ ≤ Meωt} is the growth bound
of the C0-semigroup, and S(A) = sup{Re(λ)|λ ∈ σ(A)} is the spectral bound of A. Furthermore, the
C0-semigroup eAt is exponentially stable:

‖eAt‖ ≤Me−µt,

for some M,µ > 0 and µ ≤ 1/β.

3. Spectral analysis

In this section, we consider eigenvalue problem for system operator A. Let AX = λX, where X = (f, g, h, l) ∈
D(A). Then, g(x) = λf(x), l(x) = λh(x), and f(x) and h(x) satisfy:

f (4)(x) + λ2f(x) = 0,

(1 + βλ)h
′′
(x) = λ2h(x),

f(1) = f
′′
(1) = f(0) = h(1) = 0,

f
′′
(0) = αλh(0),

(1 + βλ)h
′
(0) = −αλf

′
(0).

(3.1)

From the eigenvalue problem (3.1), we can say a few words on the principle of connections of system (1.3).
In the first boundary connection f

′′
(0) = αλh(0), the f ′′(0) is the same order as λh(0); and in the second

connection (1 + βλ)h
′
(0) = −αλf ′(0), h

′
(0) and f

′
(0) are also of the same order, both with respect to λ. If

the wave is only a lower order perturbation of the beam not as strong feedback control as what we have in this
paper, the exponential stability for the whole system is not expected. Physically, wxx(0, t) = αut(0, t) means
that the bending moment of the beam is under the feedback of the velocity of the wave by choosing α so that
the both sides are equidimensional. Precisely, the dimension of the bending moment wxx(0, t) is KN.M and the
dimension of velocity ut(0, t) is M/S. To make wxx(0, t) = αut(0, t) physically meaningful, we need to take the
dimension of α to be KN.M/(M/S).

Lemma 3.1. Let A be defined by (2.1). Then, Re(λ) < 0 for any λ ∈ σp(A), the point spectrum of A.
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Proof. Since by Theorem 2.1 A is dissipative, it must have Re(λ) ≤ 0 for every λ ∈ σp(A). We thus only need to
show that there is no eigenvalue of A located on the imaginary axis. Letting 0 6= λ = iρ2 ∈ σp(A) with ρ ∈ R+

and X = (f, g, h, l) ∈ D(A) be the corresponding eigenfunction, it follows from (2.5) that

0 = Re〈iρ2X,X〉 = Re〈AX,X〉 = −β
∫ 1

0

|l
′
(x)|2dx.

Hence, l
′
(x) = 0 and so h

′
(x) = 0. By h(1) = l(1) = 0, it has h(x) = l(x) = 0, and hence f

′
(0) = 0. This,

together with (3.1), shows that f(x) satisfies{
f (4)(x) = ρ4f(x),

f(0) = f(1) = f
′
(0) = f ′′(0) = f ′′(1) = 0.

It is easily shown that f(x) = 0 and hence g(x) = 0. Therefore, there is no eigenvalue of A located on the
imaginary axis, proving the lemma.

Setting λ = iρ2 in (3.1), we obtain the eigenvalue system of (1.3):



f (4)(x)− ρ4f(x) = 0,

h
′′
(x) =

−ρ4

1 + iβρ2
h(x),

f(0) = f
′′
(1) = f(0) = h(1) = 0,

f
′′
(0) = iαρ2h(0),

(1 + iβρ2)h
′
(0) = −iαρ2f

′
(0).

(3.2)

By Lemma 3.1, all eigenvalues are located on the open left complex plane. Let a =
√

λ2

1+βλ . Then, the general

solution of (3.2) can be expressed as

f(x) = c1eρx + c2e−ρx + c3eiρx + c4e−iρx, h(x) = d1eax + d2e−ax, (3.3)

where ci, i = 1, 2, 3, 4; dj , j = 1, 2 are scalars. By the boundary conditions of (3.2), we obtain that ci, i =
1, 2, 3, 4; dj , j = 1, 2 are not identical to zero if and only if det(B) = 0, where

B =



1 1 1 1 0 0
eρ e−ρ eiρ e−iρ 0 0
ρ2eρ ρ2e−ρ −ρ2eiρ −ρ2e−iρ 0 0

0 0 0 0 ea e−a

ρ2 ρ2 −ρ2 −ρ2 −iαρ2 −iαρ2

− ia2α
ρ

ia2α
ρ

a2α
ρ −a

2α
ρ a −a

 . (3.4)

Since by Lemma 3.1, all eigenvalues are symmetric to the real axis, we only need to consider those λ which
lie in the second quadrant of the complex plane:

λ := iρ2, ρ ∈ S :=
{
ρ ∈ C

∣∣0 ≤ argρ ≤ π

4

}
.
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For any ρ ∈ S,

Re(−ρ) = −|ρ| cos(arg ρ) ≤ −
√

2

2
|ρ| < 0, (3.5)

Denote S = S1 ∪ S2 with

S1 = {ρ ∈ C|π/8 < arg ρ ≤ π/4}, S2 = {ρ ∈ C|0 ≤ arg ρ ≤ π/8}. (3.6)

The succeeding Theorem 3.2 gives asymptotic distributions of the eigenvalues in S1 and S2.

Theorem 3.2. Let A be defined by (2.1). Then, the eigenvalues of A have two families:

σp(A) = {λ+1n, λ
−
1n, n ∈ N} ∪ {λ2n, λ2n, n ∈ N}, (3.7)

where λ+1n, λ
−
1n and λ2n have the following asymptotic expansions:



λ+1n = −
(
nπ +

θ1
2

)2

β − 1

β
+O

(
1

n2

)
,

λ−1n = − 1

β
− 1

(nπ + θ1
2 )2β3

+O

(
1

n3

)
,

λ2n =

(
nπ +

θ2
2

)
ln r + i

[(
nπ +

θ2
2

)2

−
(

ln r

2

)2
]

+O

(
1

n

)
,

(3.8)

where n are positive integers and

θ1 = arctan
2
√

2α2
√
β

2β − α4
, θ2 = arctan

√
2α2

2
√
β
, r =

√
α4 + 2β

α4 + 2
√

2α2
√
β + 2β

< 1, ln r < 0. (3.9)

As a result, for any α 6= 0 and β > 0,

Re(λ+1n), Re(λ2n)→ −∞, Re(λ−1n)→ − 1

β
as n→∞. (3.10)

Proof. When ρ ∈ S1,

Re(iρ) = −|ρ| sin(arg ρ) ≤ −|ρ| sin(π/8) < 0. (3.11)

Combining with (3.5), it has

|e−ρ| = O(e−|ρ|), |eiρ| = O(e−|ρ|). (3.12)

Since

a =

√
λ2

1 + βλ
=

√
−ρ4

1 + iβρ2
=

√
i√
β
ρ+O(|ρ|−1) as |ρ| → ∞
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and

−Re(
√

iρ) = −|ρ| cos(arg ρ+ π/4) ≤ 0,

it has

|e−a| = |e
√
iρ√
β |+O(|ρ|−1) ≤ 1. (3.13)

By multiplying some factors, we make each entry of the matrix det(B) be bounded as ρ→∞:

e−ρeiρe−a

aρ4
det(B) =

∣∣∣∣∣∣∣∣∣∣∣∣

e−ρ 1 1 eiρ 0 0
1 e−ρ eiρ 1 0 0
1 e−ρ −eiρ −1 0 0
0 0 0 0 1 e−a

e−ρ 1 −1 −eiρ −iαe−a −iα
− iaα

ρ e−ρ iaα
ρ

aα
ρ −aαρ eiρ e−a −1

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.14)

By (3.12), (3.13), and the fact aα
ρ = α

√
i√
β

+O(|ρ|−2), it is easily seen that

e−ρeiρe−a

aρ4
det(B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 0 0 0
1 0 0 1 0 0
1 0 0 −1 0 0
0 0 0 0 1 e−a

0 1 −1 0 −iαe−a −iα

0 (−1)3/4α√
β

4
√
−1α√
β

0 e−a −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
+O(|ρ|−2)

=

(
4 + i

2
√

2α2

√
β

)
+ e−2a

(
4− i

2
√

2α2

√
β

)
+O(|ρ|−2).

From this, we see that det(B) = 0 if and only if

e−2a =
4 + i 2

√
2α2
√
β

−4 + i 2
√
2α2√
β

+O(|ρ|−2) = eiθ1 +O(|a|−2), (3.15)

where θ1 is given by (3.9). The roots of e−2a = eiθ1 are

a = −i

(
nπ +

θ1
2

)
, n = 0, 1, 2, . . . .

By using Rouché’s theorem, the roots of (3.15) have the following asymptotic expression

a = −i

(
nπ +

θ1
2

)
+O

(
1

n2

)
, n > N1, (3.16)
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where N1 is a sufficiently large positive integer. Since a =
√

λ2

1+βλ or λ2 − βa2λ− a2 = 0, it has

λ±1n =
βa2

2

(
1±

√
1 +

4

β2a2

)
.

Using the Taylor expansion, we obtain the expressions of λ+1n and λ−1n given by (3.8). Moreover, by using λ = iρ2,
we obtain the asymptotic expressions of ρ+1n and ρ−1n:

ρ+1n =
√

iβ

(
nπ +

θ1
2

)
+O

(
1

n

)
,

ρ−1n =

√
i

β

[
1 +

1

2β2
(
nπ + θ1

2

)2 +O

(
1

n3

)]
.

(3.17)

Similarly, when ρ ∈ S2, it is easily to verify that there exists a γ > 0 such that{
Re(−a) ≤ γ|ρ|,

Re(iρ) = −|ρ| sin(arg ρ) ≤ −|ρ| sin 0 ≤ 0,
(3.18)

which, together with (3.5), gives

|e−ρ| = O(e−|ρ|), |e−a| = O(e−γ|ρ|), |eiρ| ≤ 1. (3.19)

By (3.14), (3.19) and the fact aα
ρ = α

√
i√
β

+O(|ρ|−2),

e−ρeiρe−a

aρ4
det(B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 eiρ 0 0
1 0 eiρ 1 0 0
1 0 −eiρ −1 0 0
0 0 0 0 1 0
0 1 −1 −eiρ 0 −iα

0 (−1)3/4α√
β

4
√
−1α√
β

−
4
√
−1α√
β

eiρ 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
+O(|ρ|−2)

=
e2iρ(−2

√
2α2−4

√
β)√

β
+ 4
√
β+i2

√
2α2

√
β

+O(|ρ|−2).

From this, we can easily derive that det(B) = 0 if and only if

e2iρ =
2
√
β + i

√
2α2

√
2α2 + 2

√
β

+O(|ρ|−2) = reiθ2 +O(|ρ|−2), (3.20)

where θ2 and r are given by (3.9). The roots of e2iρ = reiθ2 are

ρ2n =
1

2i
[ln r + i(θ2 + 2nπ)], n = 0, 1, 2, . . .

Once again, by Rouché’s theorem, the roots of (3.20) have the following asymptotic expression

ρ2n =
1

2i
[ln r + i (θ2 + 2nπ)] +O

(
1

n

)
, n > N2, (3.21)
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where N2 is a sufficiently large positive integer. By using λ = iρ2, we eventually get λ2n given by (3.8).

Remark 3.3. By the asymptotic expression (3.8), we can see the relationship between eigenvalues and α, β.
Actually, from θ1 and θ2 given by (3.9), we can see that α = 0 represents the situation where no connection
occurs for wave and beam, and the three branches of the eigenvalues are those of wave and beam systems
separately: 

λ+1n = − (nπ)
2
β − 1

β
+O

(
1

n2

)
,

λ−1n = − 1

β
− 1

(nπ)2β3
+O

(
1

n3

)
,

λ2n = i (nπ)
2

+O

(
1

n

)
,

where the wave eigenvalues are consistent with the eigenvalues of single wave equation obtained in [4, 10].
When α 6= 0, these relations can be seen clearly from (3.8) and (3.9), where β plays an important role for the
asymptotic behavior of the eigenvalues.

Theorem 3.4. Let A be defined by (2.1) and σp(A) = {λ+1n, λ
−
1n, n ∈ N} ∪ {λ2n, λ2n, n ∈ N}, be the point

spectrum of A. Let λ+1n = i(ρ+1n)2, λ−1n = i(ρ−1n)2 and λ2n = i(ρ2n)2 with ρ+1n, ρ−1n and ρ2n given by (3.17) and
(3.21), respectively. Then, there are three families of approximated normalized eigenfunctions of A:

(1) One family {Φ+
1n = (f+1n, λf

+
1n, h

+
1n, λh

+
1n), n ∈ N}, where Φ+

1n is the eigenfunction of A corresponding to
the eigenvalue λ+1n, has the following asymptotic expression:


(f+1n)

′′
(x)

λf+1n(x)

(h+1n)
′
(x)

λh+1n(x)

 =



√
2iα(eiρ

+
1nx + e−ρ

+
1nx)

√
2α(eiρ

+
1nx + e−ρ

+
1nx)

0

e−ax
(√

2i + α2
√
β

)
+ eax

(√
2i− α2

√
β

)

+O

(
1

n

)
, (3.22)

where ρ+1n and a are given by (3.17) and (3.16) respectively.
(2) The second family {Φ−1n = (f−1n, λf

−
1n, h

−
1n, λh

−
1n), n ∈ N}, where Φ−1n is the eigenfunction of A correspond-

ing to the eigenvalue λ−1n, has the following asymptotic expression:
(f−1n)

′′
(x)

λf−1n(x)

(h−1n)
′
(x)

λh−1n(x)

 =


0

0

eax + e−ax

0

+O

(
1

n

)
. (3.23)

where a is given by (3.16).
(3) The third family {Φ2n = (f2n, λf2n, h2n, λh2n), n ∈ N}, where Φ2n is the eigenfunction of A corresponding

to the eigenvalue λ2n, has the following asymptotic expression:
(f2n)

′′
(x)

λf2n(x)

(h2n)
′
(x)

λh2n(x)

 =


i(eiρ2n(1−x) − e−iρ2n(1−x) + 2i sin ρ2ne−ρ2nx)

eiρ2n(1−x) − e−iρ2n(1−x) − 2i sin ρ2ne−ρ2nx

0

0

+O

(
1

n

)
, (3.24)
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where ρ2n is given by (3.21).

Proof. Firstly, we look for Φ+
1n associated with λ+1n. From the expression of ρ+1n given by (3.17) and a given by

(3.16), it has

 eiρ
+
1nx = e(−

√
2β
2 +

√
2β
2 i)(nπ+

θ1
2 )x+O( 1

n ), e−ρ
+
1nx = e(−

√
2β
2 −

√
2β
2 i)(nπ+

θ1
2 )x+O( 1

n ),

eax = e−i(nπ+
θ1
2 )x+O( 1

n2 ), e−ax = ei(nπ+
θ1
2 )x+O( 1

n2 ).
(3.25)

According to (3.4) and some linear algebra calculations, for ρ+1n given by (3.17), one gets

f+1 (x) =
eiρ

aρ6eρ

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 0 0
eρ e−ρ eiρ e−iρ 0 0
ρ2eρ ρ2e−ρ −ρ2eiρ −ρ2e−iρ 0 0
eρx e−ρx eiρx e−iρx 0 0
ρ2 ρ2 −ρ2 −ρ2 −iαρ2 −iαρ2

− ia2α
ρ

ia2α
ρ

a2α
ρ −a

2α
ρ a −a

∣∣∣∣∣∣∣∣∣∣∣∣
.

By (3.12), we can write

f+1 (x) =
1

ρ2

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 0 0 0
1 0 0 1 0 0
1 0 0 −1 0 0

e−ρ(1−x) e−ρx eiρx eiρ(1−x) 0 0
0 1 −1 0 −iα −iα
0 iaα

ρ
aα
ρ 0 1 −1

∣∣∣∣∣∣∣∣∣∣∣∣
+O(e−|ρ|).

By (3.25), it has further that

f+1 (x) =
2iα

ρ2

∣∣∣∣∣∣∣∣
0 1 1 0
1 0 0 1
1 0 0 −1

e−ρ(1−x) e−ρx eiρx eiρ(1−x)

∣∣∣∣∣∣∣∣+O(e−|ρ|) = −4iα

ρ2
(eiρx − e−ρx) +O(e−|ρ|).

It then follows that

(f+1 )
′′
(x) = 4iα(eiρx + e−ρx) +O(e−|ρ|),

and

λf+1 (x) = 4α(eiρx − e−ρx) +O(e−|ρ|).
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Similarly, by (3.12) and (3.25),

h+1 (x) =
eiρ

aρ6eρ

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 0 0
eρ e−ρ eiρ e−iρ 0 0
ρ2eρ ρ2e−ρ −ρ2eiρ −ρ2e−iρ 0 0

0 0 0 0 eax e−ax

ρ2 ρ2 −ρ2 −ρ2 −iαρ2 −iαρ2

− ia2α
ρ

ia2α
ρ

a2α
ρ −a

2α
ρ a −a

∣∣∣∣∣∣∣∣∣∣∣∣

=
1

ρ2

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 0 0 0
1 0 0 1 0 0
1 0 0 −1 0 0
0 0 0 0 eax e−ax

0 1 −1 0 −iα −iα
0 iaα

ρ
aα
ρ 0 1 −1

∣∣∣∣∣∣∣∣∣∣∣∣
+O(e−|ρ|)

= − 2

ρ2

∣∣∣∣∣∣∣∣
1 1 0 0
0 0 eax e−ax

1 −1 −iα −iα
iaα
ρ

aα
ρ 1 −1

∣∣∣∣∣∣∣∣ = O

(
1

n2

)
.

It then follows that

(h+1 )
′
(x) = −2a

ρ2

∣∣∣∣∣∣∣∣
1 1 0 0
0 0 eax e−ax

1 −1 −iα −iα
iaα
ρ

aα
ρ 1 −1

∣∣∣∣∣∣∣∣+O(e−|ρ|) = O

(
1

n

)
,

and

λh+1 (x) = −2i

∣∣∣∣∣∣∣∣
1 1 0 0
0 0 eax e−ax

1 −1 −iα −iα
iaα
ρ

aα
ρ 1 −1

∣∣∣∣∣∣∣∣+O(e−|ρ|)

= e−ax
[
4i +

(2− 2i)aα2

ρ

]
+ eax

[
4i− (2− 2i)aα2

ρ

]
+O(e−|ρ|)

= e−ax

(
4i +

2
√

2α2

√
β

)
+ eax

(
4i− 2

√
2α2

√
β

)
+O(e−|ρ|).

By setting

Φ+
1n =


f+1n(x)

λf+1n(x)

h+1n(x)

λh+1n(x)

 =
1

2
√

2


f+1 (x)

λf+1 (x)

h+1 (x)

λh+1 (x)

 ,
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we obtain (3.22). Now we look for Φ−1n. According to the expression of ρ−1n given by (3.17), we can obtain
similarly that

f−1 (x) =
1

a3ρ4

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 0 0
eρ e−ρ eiρ e−iρ 0 0
ρ2eρ ρ2e−ρ −ρ2eiρ −ρ2e−iρ 0 0
eρx e−ρx eiρx e−iρx 0 0
ρ2 ρ2 −ρ2 −ρ2 −iαρ2 −iαρ2

− ia2α
ρ

ia2α
ρ

a2α
ρ −a

2α
ρ a −a

∣∣∣∣∣∣∣∣∣∣∣∣

=
iα

a2

∣∣∣∣∣∣∣∣∣∣

1 1 1 1

e

√
i
β e

−
√

i
β e

i
√

i
β e

−i
√

i
β

e

√
i
β e

−
√

i
β −e

i
√

i
β −e

−i
√

i
β

e

√
i
β x e

−
√

i
β x e

i
√

i
β x e

−i
√

i
β x

∣∣∣∣∣∣∣∣∣∣
+O

(
1

n4

)
= O

(
1

n2

)
.

It then follows that

(f−1 )
′′
(x) =

iα

a2

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

e

√
i
β e

−
√

i
β e

i
√

i
β e

−i
√

i
β

e

√
i
β e

−
√

i
β −e

i
√

i
β −e

−i
√

i
β

i
β e

√
i
β x i

β e
−
√

i
β x − i

β e
i
√

i
β x − i

β e
−i

√
i
β x

∣∣∣∣∣∣∣∣∣∣∣
+O

(
1

n4

)
= O

(
1

n2

)
,

and

λf−1 (x) = −αρ
2

a2

∣∣∣∣∣∣∣∣∣∣

1 1 1 1

e

√
i
β e

−
√

i
β e

i
√

i
β e

−i
√

i
β

e

√
i
β e

−
√

i
β −e

i
√

i
β −e

−i
√

i
β

e

√
i
β x e

−
√

i
β x e

i
√

i
β x e

−i
√

i
β x

∣∣∣∣∣∣∣∣∣∣
+O

(
1

n4

)
= O

(
1

n2

)
.

Similarly, we further have

h−1 (x) =
1

a3ρ4

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 0 0
eρ e−ρ eiρ e−iρ 0 0

eρρ2 e−ρρ2 −eiρρ2 −e−iρρ2 0 0
0 0 0 0 eax e−ax

ρ2 ρ2 −ρ2 −ρ2 −iαρ2 −iαρ2

− ia2α
ρ

ia2α
ρ

a2α
ρ −a

2α
ρ a −a

∣∣∣∣∣∣∣∣∣∣∣∣

=
1

a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 0 0

e

√
i
β e

−
√

i
β e

i
√

i
β e

−i
√

i
β 0 0

e

√
i
β e

−
√

i
β −e

i
√

i
β −e

−i
√

i
β 0 0

0 0 0 0 eax e−ax

1 1 −1 −1 −iα −iα
−
√

iβα
√

iβα i
√

iβα −i
√

iβα 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+O

(
1

n

)



14 B.-Z. GUO AND H.-J. REN

= − iαC1

a
(eax − e−ax) +O

(
1

n

)
= O

(
1

n

)
,

where C1 =

∣∣∣∣∣∣∣∣∣∣
1 1 1 1

e

√
i
β e

−
√

i
β e

i
√

i
β e

−i
√

i
β

e

√
i
β e

−
√

i
β −ei

√
i
β −e−i

√
i
β

−α
√

iβ α
√

iβ iα
√

iβ −iα
√

iβ

∣∣∣∣∣∣∣∣∣∣
. It then follows that

(h−1 )
′
(x) = −iαC1(eax + e−ax) +O

(
1

n

)
,

and

λh−1 (x) =
iαC1

aβ
(eax − e−ax) +O

(
1

n

)
= O

(
1

n

)
.

By setting

Φ−1n =


f−1n(x)
λf−1n(x)
h−1n(x)
λh−1n(x)

 =
1

−iαC1


f−1 (x)
λf−1 (x)
h−1 (x)
λh−1 (x)

 ,

we obtain (3.23). Finally, we look for Φ2n. According to the expression of ρ2n given by (3.21),

{
e±iρ2n(1−x) = e±

1
2 [i(θ2+2nπ)+ln r](1−x)+O( 1

n ),

e−ρx = e−
1
2 [θ2+2nπ−i ln r]x+O( 1

n ).
(3.26)

This, together with (3.19), gives analogously that

f2(x) =
1

ρ6eaeρ

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 0 0
eρ e−ρ eiρ e−iρ 0 0
ρ2eρ ρ2e−ρ −ρ2eiρ −ρ2e−iρ 0 0

0 0 0 0 ea e−a

ρ2 ρ2 −ρ2 −ρ2 −iαρ2 −iαρ2

eρx e−ρx eiρx e−iρx 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

=
1

ρ2

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 0 0
1 0 eiρ e−iρ 0 0
1 0 −eiρ −e−iρ 0 0
0 0 0 0 1 0
0 1 −1 −1 0 −iα

e−ρ(1−x) e−ρx eiρx e−iρx 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
+O(e−γ|ρ|)

= −2iα

ρ2

∣∣∣∣∣∣
1 1 1
0 eiρ e−iρ

e−ρx eiρx e−iρx

∣∣∣∣∣∣+O(e−γ|ρ|).
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It then follows that

f
′′

2 (x) = −2iα

∣∣∣∣∣∣
1 1 1
0 eiρ e−iρ

e−ρx −eiρx −e−iρx

∣∣∣∣∣∣+O(e−γ|ρ|) = 2iα(eiρ(1−x) − e−iρ(1−x) + 2i sin ρe−ρx) +O(e−γ|ρ|),

and

λf2(x) = 2α

∣∣∣∣∣∣
1 1 1
0 eiρ e−iρ

e−ρx eiρx e−iρx

∣∣∣∣∣∣+O(e−γ|ρ|) = 2α(eiρ(1−x) − e−iρ(1−x) − 2i sin ρe−ρx) +O(e−γ|ρ|).

Similarly,

h2(x) =
1

ρ6eaeρ

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 0 0
eρ e−ρ eiρ e−iρ 0 0

eρρ2 e−ρρ2 −eiρρ2 −e−iρρ2 0 0
0 0 0 0 ea e−a

ρ2 ρ2 −ρ2 −ρ2 −iαρ2 −iαρ2

0 0 0 0 eax e−ax

∣∣∣∣∣∣∣∣∣∣∣∣

=
1

ρ4

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 0 0
1 0 eiρ e−iρ 0 0
1 0 −eiρ −e−iρ 0 0
0 0 0 0 1 0
0 1 −1 −1 0 −iα
0 0 0 0 e−a(1−x) e−ax

∣∣∣∣∣∣∣∣∣∣∣∣
+O

(
e−γ|ρ|

)
= O

(
1

n5

)
.

It then follows that

h
′

2(x) =
a

ρ4

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 0 0
1 0 eiρ e−iρ 0 0
1 0 −eiρ −e−iρ 0 0
0 0 0 0 1 0
0 1 −1 −1 0 −iα
0 0 0 0 e−a(1−x) −e−ax

∣∣∣∣∣∣∣∣∣∣∣∣
+O(e−γ|ρ|) = O

(
1

n4

)
,

and

λh2(x) =
i

ρ2

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 0 0
1 0 eiρ e−iρ 0 0
1 0 −eiρ −e−iρ 0 0
0 0 0 0 1 0
0 1 −1 −1 0 −iα
0 0 0 0 e−a(1−x) e−ax

∣∣∣∣∣∣∣∣∣∣∣∣
+O(e−γ|ρ|) = O

(
1

n3

)
.

By setting

Φ2n =


f2n(x)
λf−1n(x)
h2n(x)
λh2n(x)

 =
1

2α


f2(x)
λf2(x)
h2(x)
λh2(x)

 ,
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and substituting (3.21) we can obtain (3.24). This completes the proof of the theorem.

To end this section, we remark that the same method can be used to produce asymptotic expressions of the
eigenpairs of A∗, the adjoint operator of A, which is defined by



A∗(f, g, h, l) = (−g, f (4),−l, (−h′ + βl
′
)
′
),∀(f, g, h, l) ∈ D(A∗),

D(A∗) =


(f, g, h, l) ∈ H,

A∗(f, g, h, l) ∈ H

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−h′ + βl
′ ∈ H1(0, 1)

f
′′
(1) = 0

g(0) = g(1) = l(1) = 0

f
′′
(0) = αl(0)

βl
′
(0)− h

′
(0) = αg

′
(0)


.

(3.27)

Lemma 3.5. Let A be defined by (2.1). Then, σp(A) = σp(A
∗).

Proof. Let A∗X = λX, where X = (f, g, h, l) is the eigenfunction of A∗ corresponding to the eigenvalue λ. Then,



f (4)(x)− ρ4f(x) = 0,

h
′′
(x) =

−ρ4

1 + iβρ2
h(x),

f(0) = f
′′
(1) = f(0) = h(1) = 0,

f
′′
(0) = −iαρ2h(0),

(1 + iβρ2)h
′
(0) = iαρ2f

′
(0).

(3.28)

With the same process of finding the eigenvalues of A, we know that λ is an eigenvalue of A∗ if and only if
det(B̂) = 0, where

B̂ =



1 1 1 1 0 0
eρ e−ρ eiρ e−iρ 0 0
ρ2eρ ρ2e−ρ −ρ2eiρ −ρ2e−iρ 0 0

0 0 0 0 ea e−a

ρ2 ρ2 −ρ2 −ρ2 iαρ2 iαρ2

− ia2α
ρ

ia2α
ρ

a2α
ρ −a

2α
ρ −a a

 . (3.29)

A direct computation shows that det(B̂) = −det(B), that is, A∗ has the same eigenvalues with A.

As in the proof of Theorem 3.4, the eigenfunctions of A∗ can be obtained.

Theorem 3.6. Let A∗ be defined by (3.27) and σp(A
∗) = σp(A) = {λ+1n, λ

−
1n, n ∈ N} ∪ {λ2n, λ2n, n ∈ N}, where

λ+1n = i(ρ+1n)2 , λ−1n = i(ρ−1n)2 and λ2n = i(ρ2n)2 with ρ+1n, ρ−1n and ρ2n given by (3.17) and (3.21), respectively.
Then, there are three families of approximated formalized eigenfunctions of A∗:
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(1) One family {Ψ+
1n = (f+1n, λf

+
1n, h

+
1n, λh

+
1n), n ∈ N}, where Ψ+

1n is the eigenfunction of A corresponding to
the eigenvalue λ+1n, has the following asymptotic expression:


(f+1n)

′′
(x)

λf+1n(x)

(h+1n)
′
(x)

λh+1n(x)

 =


−
√

2iα(eiρ
+
1nx + e−ρ

+
1nx)

−
√

2α(eiρ
+
1nx + e−ρ

+
1nx)

0

e−ax
(√

2i + α2
√
β

)
+ eax

(√
2i− α2

√
β

)

+O

(
1

n

)
, (3.30)

where ρ+1n and a are given by (3.17) and (3.16) respectively.
(2) The second family {Ψ−1n = (f−1n, λf

−
1n, h

−
1n, λh

−
1n), n ∈ N}, where Ψ−1n is the eigenfunction of A∗ correspond-

ing to the eigenvalue λ−1n, has the following asymptotic expression:
(f−1n)

′′
(x)

λf−1n(x)

(h−1n)
′
(x)

λh−1n(x)

 =


0

0

eax + e−ax

0

+O

(
1

n

)
. (3.31)

where a is given by (3.16).
(3) The third family {Ψ2n = (f2n, λf2n, h2n, λh2n), n ∈ N}, where Ψ2n is the eigenfunction of A∗ corresponding

to the eigenvalue λ2n, has the following asymptotic expression:
(f2n)

′′
(x)

λf2n(x)

(h2n)
′
(x)

λh2n(x)

 =


i(eiρ2n(1−x) − e−iρ2n(1−x) + 2i sin ρ2ne−ρ2nx)

eiρ2n(1−x) − e−iρ2n(1−x) − 2i sin ρ2ne−ρ2nx

0

0

+O

(
1

n

)
, (3.32)

where ρ2n is given by (3.21).

4. Completeness of the root subspace

Let A be defined by (2.1) and for x ∈ [0, 1] and ρ ∈ C, and let{
Q1(x, ξ) = sign(x−ξ)

4ρ3 [eρ(x−ξ) − e−ρ(x−ξ) + ieiρ(x−ξ) − ie−iρ(x−ξ)],

Q2(x, ξ) = a
2ρ4 sign(x− ξ)[ea(x−ξ) − e−a(x−ξ)].

(4.1)

For any λ = iρ2 /∈ σp(A) with λ 6= 0 and (φ, ψ, ω, ν) ∈ H, we consider the invertibility of operator λ−A. Let

F0(x, ρ) =

∫ 1

0

Q1(x, ξ)[iρ2φ(ξ) + ψ(ξ)]dx, H0(x, ρ) =

∫ 1

0

Q2(x, ξ)[−βω
′′
(ξ) + iρ2ω(ξ) + ν(ξ)]dx. (4.2)

Lemma 4.1. Assume (4.1) and (4.2). Then, the solution of the equation (λ − A)(f, g, h, l) = (φ, ψ, ω, ν) is
given by

f(x) =
F (x, ρ)

det(B)
, g(x) = λf(x)− φ(x), h(x) =

H(x, ρ)

det(B)
, l(x) = λh(x)− ω(x), (4.3)
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where the matrix B is defined by (3.4),

F (x, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

exρ e−xρ eixρ e−ixρ 0 0 F0(x, ρ)
1 1 1 1 0 0 F1

eρ e−ρ eiρ e−iρ 0 0 F2

ρ2eρ ρ2e−ρ −ρ2eiρ −ρ2e−iρ 0 0 F3

0 0 0 0 ea e−a H4

ρ2 ρ2 −ρ2 −ρ2 −iαρ2 −iαρ2 F5 −H5 + αω(0)

− ia2α
ρ

ia2α
ρ

a2α
ρ

−a2α
ρ

a −a F6 +H6 + a2α
ρ4
φ′(0) + a2β

ρ4
ω′(0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (4.4)

H(x, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 eax e−ax H0(x, ρ)
1 1 1 1 0 0 F1

eρ e−ρ eiρ e−iρ 0 0 F2

eρρ2 e−ρρ2 −eiρρ2 −e−iρρ2 0 0 F3

0 0 0 0 ea e−a H4

ρ2 ρ2 −ρ2 −ρ2 −iαρ2 −iαρ2 F5 −H5 + αω(0)

− ia2α
ρ

ia2α
ρ

a2α
ρ

−a2α
ρ

a −a F6 +H6 + a2α
ρ4
φ′(0) + a2β

ρ4
ω′(0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (4.5)

and Fk, k = 1, 2, 3, 5, 6, Hs, s = 4, 5, 6 are constants given by



F1 =

∫ 1

0

− 1

4ρ3
(
e−ξρ − eξρ + ie−iξρ − ieiξρ

) (
iρ2φ(ξ) + ψ(ξ)

)
dξ,

F2 =

∫ 1

0

1

4ρ3

(
e(1−ξ)ρ − e−(1−ξ)ρ + iei(1−ξ)ρ − ie−i(1−ξ)ρ

) (
iρ2φ(ξ) + ψ(ξ)

)
dξ,

F3 =

∫ 1

0

1

4ρ

(
e(1−ξ)ρ − e−(1−ξ)ρ − iei(1−ξ)ρ + ie−i(1−ξ)ρ

) (
iρ2φ(ξ) + ψ(ξ)

)
dξ,

F5 =

∫ 1

0

− 1

4ρ

(
e−ξρ − eξρ + ieiξρ − ie−iξρ

) (
iρ2φ(ξ) + ψ(ξ)

)
dξ,

F6 =

∫ 1

0

ia2α

4ρ4
(
e−ξρ + eξρ − eiξρ − e−iξρ

) (
iρ2φ(ξ) + ψ(ξ)

)
dξ,

and



H4 =

∫ 1

0

a

2ρ4

(
ea(1−ξ) − e−a(1−ξ)

) (
−βω′′(ξ) + iρ2ω(ξ) + ν(ξ)

)
dξ,

H5 = −iαρ2
∫ 1

0

a

2ρ4
(
e−aξ − eaξ

) (
−βω′′(ξ) + iρ2ω(ξ) + ν(ξ)

)
dξ,

H6 =

∫ 1

0

− a2

2ρ4
(
e−aξ + eaξ

) (
−βω′′(ξ) + iρ2ω(ξ) + ν(ξ)

)
dξ.

Proof. For any (φ, ψ, ω, ν) ∈ H and λ = iρ2 /∈ σp(A) with λ 6= 0, solving the equation

(λI −A)(f, g, h, l) = (φ, ψ, ω, ν)
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yields g = λf − φ, l = λh− ω, with f(x) and h(x) satisfying

f (4)(x)− ρ4f(x) = iρ2φ(x) + ψ(x),

h
′′
(x) +

ρ4

1 + iβρ2
h(x) =

β

1 + iβρ2
ω
′′
(x)− iρ2

1 + iβρ2
ω(x)− 1

1 + iβρ2
ν(x),

f(0) = f(1) = f
′′
(1) = h(1) = 0,

f
′′
(0) = αiρ2h(0)− αω(0),

h
′
(0) +

αiρ2

1 + iβρ2
f
′
(0) =

α

1 + iβρ2
ω
′
(0) +

α

1 + iβρ2
φ(0).

(4.6)

Denoting a =
√

−ρ4
1+iβρ2 as previously, (4.6) has general solution:

{
f(x) = c1eρx + c2e−ρx + c3eiρx + c4e−iρx + F0(x, ρ),

h(x) = d1eax + d2e−ax +H0(x, ρ),
(4.7)

where F0(x, ρ) and H0(x, ρ) are given by (4.2). Substituting f(x) and h(x) into the boundary conditions of (4.6)
cj , j = 1, 2, 3, 4 and d1, d2 satisfy the following algebraic equation:

c1 + c2 + c3 + c4 = −F1,

c1eρ + c2e−ρ + c3eiρ + c4e−iρ = −F2,

c1ρ
2eρ + c2ρ

2e−ρ − c3ρ2eiρ − c4ρ2e−iρ = −F3,

d1ea + d2e−a = −H4,

c1ρ
2 + c2ρ

2 − c3ρ2 − c4ρ2 − iαρ2d1 − iαρ2d2 = −F5 +H5 − αω(0),

− ia2α

ρ
c1 +

ia2α

ρ
c2 +

a2α

ρ
c3 −

a2α

ρ
c4 + ad1 − ad2 = −F6 −H6 −

a2β

ρ4
ω
′
(0)− a2α

ρ4
φ
′
(0).

(4.8)

Since λ = iρ2 /∈ σp(A), namely, det(B) 6= 0, (4.6) admits a unique solution. Moreover, the solution f(x) and
h(x) of (4.7) can be written as (4.3).

Proposition 4.2. Let A be defined by (2.1). Then, all λn = {λ+1n, λ
−
1n, λ2n} ∈ σp(A) represented in (3.8) are

algebraically simple with sufficiently large n.

Proof. We only need to prove the case when ρ ∈ S since the proof of the symmetrical part is similar. From
Lemma 4.1, the order of each λ ∈ σp(A), as a pole of (λI −A)−1, is less than or is equivalent to the multiplicity
of λ as a zero of the entire function of ρ det(B) = 0 with n large sufficiently. Furthermore, it is easy to see
that λ is geometrically simple and from (3.15) and (3.20), we can show that all the zeros of det(B) = 0 are
simple in S1 and S2 respectively with n large sufficiently. Thus, the result follows from the formula: ma ≤ p ·mg

[13], where p denotes the order of the pole of the operator (λI − A)−1 and ma, mg denote the algebraic and
geometric multiplicities respectively.

To estimate the norm of (λ−A)−1, we recall a lemma in [11] and [18].

Lemma 4.3. Let

D(λ) = 1 +

n∑
i

Qi(λ)eαiλ,
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where Qi are polynomials of λ, αi are some complex numbers, and n is a positive integer. Then, for all λ outside
those circles of radius ε > 0 that centered at the roots of D(·), it has

|D(λ)| ≥ C(ε) > 0

for some constant C(ε) that depends only on ε.

Theorem 4.4. Let A be defined by (2.1) and for λ /∈ σp(A) ∪ {− 1
β }. For the operator (λ− A)−1, there exists

M > 0 independent of λ such that

‖(λ−A)−1‖ ≤M(1 + |λ|),

for all λ = iρ2 with ρ ∈ C lying outside all circles of radius ε > 0 that centered at the zeros of det(B).

Proof. We first consider those λ = iρ2 with ρ ∈ S. Let ρ ∈ S with ρ 6= 0. For (φ, ψ, ω, ν) ∈ H, (f, g, h, l) =
(λ−A)−1(φ, ψ, ω, ν) has the expression given by (4.3). Since in sector S, it holds

Re(−ρ) ≤ 0, Re(
√

iρ) ≤ 0, Re(−a) ≤ 0,

and there exits a constant M̂ such that |a/ρ| ≤ M̂ from the expression of a, we need to use the transformation
of each entry in the determinant given by (4.4) and (4.5) stable. For (4.4) and (4.5), multiplying the ith column
by factors Li given by



L1 =

∫ 1

0

− 1

4ρ3
e−ξρ

(
iρ2φ(ξ) + ψ(ξ)

)
dξ,

L2 =

∫ 1

0

− 1

4ρ3
eξρ
(
iρ2φ(ξ) + ψ(ξ)

)
dξ,

L3 =

∫ 1

0

i

4ρ3
e−iξρ

(
iρ2φ(ξ) + ψ(ξ)

)
dξ,

L4 =

∫ 1

0

i

4ρ3
eiξρ

(
iρ2φ(ξ) + ψ(ξ)

)
dξ,

L5 =

∫ 1

0

− a

2ρ4
e−aξ

(
−βω′′(ξ) + iρ2ω(ξ) + ν(ξ)

)
dξ,

L6 =

∫ 1

0

− a

2ρ4
eaξ
(
−βω′′(ξ) + iρ2ω(ξ) + ν(ξ)

)
dξ,

and adding these columns to the last column of F (x, ρ) and H(x, ρ) respectively, we obtain

e−ae−ρeiρ

aρ
F (x, ρ) = F̃ (x, ρ),

e−ae−ρeiρ

aρ
H(x, ρ) = H̃(x, ρ),
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where for k = 0, 1, 2

∂kF̃ (x, ρ)

ρk∂xk
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e(x−1)ρ (−1)ke−xρ ikeixρ (−i)ke−i(x−1)ρ 0 0 ∂kF̃0(x,ρ)

∂xk

e−ρ 1 1 eiρ 0 0 F̃1

1 e−ρ eiρ 1 0 0 F̃2

1 e−ρ −eiρ −1 0 0 F̃3

0 0 0 0 1 e−a H̃4

e−ρ 1 −1 −eiρ −iαe−a −iα F̃5 − H̃5 + αρω(0)

− iaα
ρ

e−ρ iaα
ρ

aα
ρ

−aα
ρ

eiρ e−a −1 F̃6 + H̃6 + aα
ρ
φ′(0) + aβ

ρ
ω′(0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and for s = 0, 1

∂sH̃(x, ρ)

∂xs
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 asea(x−1) (−a)se−ax ∂sH̃0(x,ρ)
∂xs

e−ρ 1 1 eiρ 0 0 F̃1

1 e−ρ eiρ 1 0 0 F̃2

1 0 0 −1 0 0 F̃3

0 0 0 0 1 e−a H̃4

e−ρ 1 −1 −eiρ −iαe−a −iα F̃5 − H̃5 + αρω(0)

− iaα
ρ e−ρ iaα

ρ
aα
ρ −aαρ eiρ e−a −1 F̃6 + H̃6 + aα

ρ φ
′(0) + aβ

ρ ω
′(0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Here

∂kF̃0(x, ρ)

∂xk
=

1

2

∫ 1

0

∂kP (x, ξ)

∂xk
(iρ2φ(ξ) + ψ(ξ))dξ,

∂sH̃0(x, ρ)

∂xs
=
a

ρ

∫ 1

0

∂sR(x, ξ)

∂xs
(βω′′(ξ)− iρ2ω(ξ)− ν(ξ))dξ,

with

P (x, ξ) =

{
−e−ρ(x−ξ) + ieiρ(x−ξ), x ≥ ξ,
−e−ρ(ξ−x) + ieiρ(ξ−x), x < ξ,

R(x, ξ) =

{
e−a(x−ξ), x ≥ ξ,
e−a(ξ−x), x < ξ,

and 

F̃1 = −1

2

∫ 1

0

(
e−ξρ − ieiξρ

) (
iρ2φ(ξ) + ψ(ξ)

)
dξ,

F̃2 = −1

2

∫ 1

0

(
e−ρ(1−ξ) − ieiρ(1−ξ)

) (
iρ2φ(ξ) + ψ(ξ)

)
dξ,

F̃3 = −1

2

∫ 1

0

(
e−ρ(1−ξ) + iei(1−ξ)ρ

) (
iρ2φ(ξ) + ψ(ξ)

)
dξ,

F̃5 = −1

2

∫ 1

0

(
e−ρξ + ieiρξ

) (
iρ2φ(ξ) + ψ(ξ)

)
dξ,

F̃6 =
aαi

2ρ

∫ 1

0

(
e−ξρ − eiξρ

) (
iρ2φ(ξ) + ψ(ξ)

)
dξ,
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H̃4 =
a

ρ

∫ 1

0

e−a(1−ξ)
(
βω′′(ξ)− iρ2ω(ξ)− ν(ξ)

)
dξ,

H̃5 =
iαa

ρ

∫ 1

0

e−aξ
(
βω′′(ξ)− iρ2ω(ξ)− ν(ξ)

)
dξ,

H̃6 =
a

ρ

∫ 1

0

e−aξ
(
βω′′(ξ)− iρ2ω(ξ)− ν(ξ)

)
dξ.

By Lemma 4.3, there exists M1 > 0 such that

|f
′′(x)| ≤ M1

|ρ|

[∫ 1

0

(|λ‖φ(ξ)|+ |ψ(ξ)|+ |λ‖ω(ξ)|+ |ν(ξ)|) dξ

]
,

|g(x)| ≤ M1

|ρ|

[∫ 1

0

(|λ‖φ(ξ)|+ |ψ(ξ)|+ |λ‖ω(ξ)|+ |ν(ξ)|) dξ

]
+ |φ(x)|,

|h
′
(x)| ≤ M1

|ρ|2

[∫ 1

0

(|λ‖φ(ξ)|+ |ψ(ξ)|+ |λ‖ω(ξ)|+ |ν(ξ)|) dξ

]
,

|l(x)| ≤M1

[∫ 1

0

(|λ‖φ(ξ)|+ |ψ(ξ)|+ |λ‖ω(ξ)|+ |ν(ξ)|) dξ

]
+ |ω(ξ)|,

for all λ = iρ2 with ρ ∈ S lying outside all circles of radius ε > 0 that are centered at the zeros of det(B). Since
|u(x)| ≤ ‖u′‖L2 ≤ ‖u′′‖L2 for any x ∈ [0, 1] and u ∈ H2

L[0, 1], it follows that for any (φ, ψ, ω, ν) ∈ H,



|f
′′(x)| ≤ M1

|ρ|

[
|λ‖|φ

′′
‖L2 + ‖ψ‖L2 + |λ‖|ω

′
‖L2 + ‖ν‖L2

]
,

|g(x)| ≤ M1

|ρ|

[
|λ‖|φ

′′
‖L2 + ‖ψ‖L2 + |λ‖|ω

′
‖L2 + ‖ν‖L2

]
+ ‖φ‖L2 ,

|h
′
(x)| ≤ M1

|ρ|2
[
|λ‖|φ

′′
‖L2 + ‖ψ‖L2 + |λ‖|ω

′
‖L2 + ‖ν‖L2

]
,

|l(x)| ≤M1

[
|λ‖|φ

′′
‖L2 + ‖ψ‖L2 + |λ‖|ω

′
‖L2 + ‖ν‖L2

]
+ ‖ω

′
‖L2 .

(4.9)

It is seen from (4.9) that we can find constants M2 > 0 and K > 0 independent of λ such that

‖(f, g, h, l)‖ ≤M2(1 + |λ|)‖(φ, ψ, ω, ν)‖

for all |λ| = |ρ2| > k > 1 with ρ ∈ S lies outside all circles of radius ε > 0 that are centered at the zeros of
det(B). Moreover, for |λ| ≤ K, there exists M > M2 such that ‖(f, g, h, l)‖ ≤M‖(φ, ψ, ω, ν)‖. Therefore,

‖(f, g, h, l)‖ ≤M(1 + |λ|)‖(φ, ψ, ω, ν)‖

for all λ = iρ2 with ρ ∈ S lying outside all circles of radius ε > 0 that are centered at the zeros of det(B).
This result can be extended to all other ρ′s by the exact same arguments of [14]. This completes the proof

of the theorem.

To get the completeness of the root subspace, we need following result from [12].
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Lemma 4.5. Suppose that f(z) is analytic in the whole complex plane. Denote

Mf (r) = max
|z|=r

|f(z)|.

If for a nonnegative α, there holds

lim
r→∞

inf
Mf (r)

rα
= 0,

then, f(z) is a Polynomial with degree not exceeding α.

Theorem 4.6. Let A defined by (2.1). Then, both the root subspaces of A and A∗ are complete in H, that is,
Sp(A) = Sp(A∗) = H where Sp(A) denotes the root subspaces of A.

Proof. Since the completeness for the root subspace of A∗ is almost the same, we only show the result for A.
By linear operator theory [3], it holds

H = σ∞(A∗)⊕ Sp(A),

where σ∞(A∗) consists all of those Y ∈ H so that R(λ,A∗)Y is analytic with respect to λ in the whole complex
plane. We therefore only need to prove σ∞(A∗) = {0}.

Suppose for Y ∈ σ∞(A∗), R(λ,A∗)Y is an analytic function of λ and so is for ρ due to λ = iρ2. By the
maximum modulus principle, ‖R(λ,A∗)‖ = ‖R(λ,A)‖, and Theorem 4.4, there exists constant M > 0 such that

‖R(λ,A∗)Y ‖ ≤M(1 + |λ|)‖y‖,∀ λ ∈ C.

By Lemma 4.5, R(λ,A∗)Y is a polynomial of λ with degree less or equal to one, i.e., R(λ,A∗) = Y0 + λY1 for
some Y0, Y1 ∈ H. Thus,

Y = (λ−A∗)(Y0 + λY1).

On account of the closeness of A∗, we conclude that Y0, Y1 ∈ D(A∗). Thus,

−A∗Y0 + λ(Y0 −A∗Y1) + λ2Y1 = Y,∀ λ ∈ C.

This leads to Y = Y0 = Y1 = 0 and the proof is complete.

5. Riesz basis property and exponential stability

The following Lemma 5.1 comes from [23].

Lemma 5.1. An approximately normalized sequence {ei}∞i=1 and its approximately normalized biorthognal
sequence {e∗i }∞i=1 are Riesz basis for a Hilbert space H if and only if

1) both {ei}∞i=1 and {e∗i }∞i=1 are complete in H; and
2) both {ei}∞i=1 and {e∗i }∞i=1 are Bessel sequences in H, that is, for any f ∈ H, two sequences {〈f, ei〉}∞i=1,
{〈f, e∗i 〉}∞i=1 belong to l2.

The succeeding Lemma 5.2 comes from [18].

Lemma 5.2. Let {µn} be a sequence which has asymptotic

µn = u(n+ iv lnn) +O(1), u 6= 0, n = 1, 2, 3, . . . , (5.1)
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where v is a real number. If µn satisfies supn≥1 Re(µn) <∞, then, the sequence {eµnx}∞n=1 is a Bessel sequence
in L2(0, 1).

Lemma 5.3. Let ρ+1n, a and ρ2n be given by (3.17), (3.16) and (3.21) respectively. Then, the sequences

{eiρ
+
1nx}∞n=1, {e−ρ

+
1nx}∞n=1, {e±ax}∞n=1, {e±iρ2n(1−x)}∞n=1 and {e−ρ2nx}∞n=1 are Bessel sequences in L2(0, 1).

Proof. By (3.25), if we take u = i
√

iβπ, v = 0 in eiρ
+
1nx, u = −

√
iβπ, v = 0 in e−ρ

+
1nx, u = −iπ, v = 0 in eax and

u = iπ, v = 0 in e−ax, respectively, then, by Lemma 5.2, the sequences {eiρ
+
1nx}∞n=1, {e−ρ

+
1nx}∞n=1 and {e±ax}∞n=1

are the Bessel sequences in L2(0, 1).
Similarly, by (3.26), if we take u = iπ, v = 0 in eiρ2n(1−x), u = −iπ, v = 0 in e−iρ2n(1−x) and u = −π, v = 0

in e−ρ2nx, respectively, then, by Lemma 5.2, it follows that the sequences {e±iρ2n(1−x)}∞n=1 and {e−ρ2nx}∞n=1 are
the Bessel sequences in L2(0, 1).

Theorem 5.4. Let A be defined by (2.1). Then, the generalized eigenfunctions of A form a Riesz basis for H.

Proof. Let σp(A) = {λ+1n, λ
−
1n, λ2n, λ2n} be the eigenvalues of A given by Theorem 3.2. By Proposition 4.2,

there exists an integer N > 0 such that all λ+1n, λ−1n, λ2n, λ2n with n ≤ N , are algebraically simple. For n < N ,
suppose that the algebraic multiplicities of λ+1n, λ−1n and λ2n are m+

1n, m−1n and m2n respectively, then, we can

find the corresponding generalized eigenfunctions {Φ+
1n,j}

m+
1n

j=1 , {Φ−1n,j}
m−1n
j=1 and {Φ2n,j}m2n

j=1 by solving



(A− λ±1n)Φ±1n,1 = 0

(A− λ±1n)Φ±1n,2 = Φ±1n,1

...

(A− λ±1n)Φ±
1n,m±1n

= Φ±
1n,m±1n−1

and



(A− λ2n)Φ2n,1 = 0

(A− λ2n)Φ2n,2 = Φ2n,1

...

(A− λ2n)Φ2n,m2n = Φ2n,m2n−1

.

Then, {
{Φ±1n,j}

m±1n
j=1

}
n<N

∪ {Φ±1n}n≥N ∪
{
{Φ2n,j ,Φ2n,j}m2n

j=1

}
n<N

∪ {Φ2n,Φ2n}n≥N (5.2)

are all linearly independent generalized eigenfunctions of A. On the other hand,{
{Ψ±1n,j}

m±1n
j=1

}
n<N

∪ {Ψ±1n}n≥N ∪
{
{Ψ2n,j ,Ψ2n,j}m2n

j=1

}
n<N

∪ {Ψ2n,Ψ2n}n≥N (5.3)

are all linearly independent generalized eigenfunctions of A∗. Let
Φ±∗1n,j =

Ψ±1n,j

〈Φ±1n,j ,Ψ
±
1n,j〉

, n < N, j = 1, 2, · · · ,m±1n,

Φ±∗1n =
Ψ±1n

〈Φ±1n,Ψ
±
1n〉

, n ≥ N,

(5.4)

and 
Φ∗2n,j =

Ψ2n,j

〈Φ2n,j ,Ψ2n,j〉
, n < N, j = 1, 2, · · · ,m2n,

Φ±∗2n =
Ψ2n

〈Φ2n,Ψ2n〉
, n ≥ N.

(5.5)
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Then,

{
{Φ±∗1n,j}

m±1n
j=1

}
n<N

∪ {Φ±∗1n }n≥N ∪
{
{Φ∗2n,j ,Φ∗2n,j}

m2n
j=1

}
n<N

∪ {Φ∗2n,Φ∗2n}n≥N (5.6)

are all linearly independent generalized eigenfunctions of A∗ and they are biorthognal to (5.2). From
Theorem 4.6, all the sequences given by (5.2), (5.3) and (5.6) are complete in H.

According to Lemma 5.1, we only need to prove that (5.2) and (5.6) are Bessel sequences in H. Since both

{{Φ±1n,j}
m±1n
j=1 , {Φ2n,j}m2n

j=1 }n<N and {{Φ±∗1n,j}
m±1n
j=1 , {Φ∗2n,j}

m2n
j=1 }n<N are finitely many, we only need to show that

both the eigenfunctions {Φ±1n,Φ2n}n≥N and {Φ±∗1n ,Φ∗2n}n≥N of A and A∗, respectively, are Bessel sequences inH.
Besides, from (5.4) and (5.5), we know that {Φ±∗1n ,Φ∗2n}n≥N is a Bessel sequence if and only if {Ψ±1n,Ψ2n}n≥N is a
Bessel sequence. Therefore, to show the Riesz basis property of the system, it suffices to show that {Φ±1n,Φ2n}n≥N
and {Ψ±1n,Ψ2n}n≥N are Bessel sequences in H.

For all n ≥ N , from the expressions of {Φ±1n,Φ2n}n≥N and {Ψ±1n,Ψ2n}n≥N given by Theorem 3.4, Theo-
rem 3.6 and Lemma 5.3, all nonzero components of {Φ±1n,Φ2n}n≥N and {Ψ±1n,Ψ2n}n≥N are Bessel sequences
in L2(0, 1). Hence, {Φ±1n,Φ2n}n≥N and {Ψ±1n,Ψ2n}n≥N are also Bessel sequences in H. The result then follows
from Lemma 5.1.

Now we are in a position to prove Theorem 2.2.

Proof of Theorem 2.2. The spectrum-determined growth condition follows from Theorem 5.4 and Proposition
4.2. By Lemma 3.1, for every λ ∈ σp(A), Re(λ) < 0. According to the distribution of spectra of the operator A
given by (3.8)–(3.10), A has one (and only one) continuous spectrum λ = −1/β which is an accumulation point
of the eigenvalues, and hence µ ≤ 1/β. The exponential stability then follows from the spectrum-determined
growth condition, which is similar to [4, 7, 8]. �

6. Gevrey regularity

In what follows, we show that the C0-semigroup eAt generated by A is of a Gevrey class δ with any δ > 2,
which is the semigroup class between the differentiable Semigroups and the analytical ones.

Definition 6.1. [1, 20] A C0-semigroup T (t) is of a Gevrey class δ > 1 for t > t0 if T (t) is infinitely differentiable
for t > t0 and for every compact subset K ⊂ (t0,∞) and each θ > 0, there is a constant C = C(K, θ) such that

‖T (n)(t)‖ ≤ Cθn(n!)δ, ∀ t ∈ K,n = 0, 1, 2, . . . .

In order to get the Gevrey regularity of the system (2.2), we need the following theorem established by Taylor
in [20].

Theorem 6.2. Let eAt be a C0-semigroup satisfying ‖eAt‖ ≤ Meωt. Suppose that for some µ ≥ ω and α
satisfying 0 < α ≤ 1,

lim
|τ |→∞

sup |τ |α‖R(µ+ iτ,A)‖ = C <∞, τ ∈ R.

Then, eAt is of Gevrey class δ with δ > 1/α for t > 0.
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Theorem 6.3. Let A be defined by (2.2). Then, the semigroup eAt, generated by A, is of Gevrey class δ > 2
with t0 = 0.

Proof. From Theorem 2.2, we know that A generates an exponentially stable C0-semigroup eAt in H. By
Theorem 6.2, we only need to show

lim
τ→∞

|τ |‖R(iτ,A)‖2 = C <∞, τ ∈ R. (6.1)

By Theorem 5.4,

{
{Φ±1n,j}

m±1n
j=1

}
n<N

∪ {Φ±1n}n≥N ∪
{
{Φ2n,j ,Φ2n,j}m2n

j=1

}
n<N

∪ {Φ2n,Φ2n}n≥N (6.2)

forms a Riesz basis for H. For any Y ∈ H,

Y =

N−1∑
n=1

m+
1n∑

j=1

a+1n,jΦ
+
1n,j +

m−1n∑
j=1

a−1n,jΦ
−
1n,j

+

∞∑
n=N

(
a+1nΦ+

1n + a−1nΦ−1n
)

+

N−1∑
n=1

m2n∑
j=1

(
a2n,jΦ2n,j + b2n,jΦ2n,j

)
+

∞∑
n=N

(
a2nΦ2n + b2nΦ2n

)
, (6.3)

and

‖Y ‖2 �
N−1∑
n=1

m+
1n∑

j=1

|a+1n,j |
2 +

m−1n∑
j=1

|a−1n,j |
2

+

∞∑
n=N

(
|a+1n|2 + |a−1n|2

)

+

N−1∑
n=1

m2n∑
j=1

(
|a2n,j |2 + |b2n,j |2

)
+

∞∑
n=N

(
|a2n|2 + |b2n|2

)
, (6.4)

where “W � Z” means the equivalence of the norm: There are constants c0, c1 > 0 independent of W and Z
such that c0‖Z‖ ≤ ‖W‖ ≤ c1‖Z‖. Let τ > 0. Then, iτ ∈ ρ(A) and hence

R(iτ,A)Y =

N−1∑
n=1

m+
1n∑

j=1

a+1n,jΦ
+
1n,j

iτ − λ+1n
+

m−1n∑
j=1

a−1n,jΦ
−
1n,j

iτ − λ−1n

+

∞∑
n=N

(
a+1nΦ+

1n

iτ − λ+1n
+

a−1nΦ−1n
iτ − λ−1n

)

+

N−1∑
n=1

m2n∑
j=1

(
a2n,jΦ2n,j

iτ − λ2n
+
b2n,jΦ2n,j

iτ − λ2n

)
+

∞∑
n=N

(
a2nΦ2n

iτ − λ2n
+

b2nΦ2n

iτ − λ2n

)

+

N−1∑
n=1

[
O

(
1

|iτ − λ+1n|2

)
+O

(
1

|iτ − λ−1n|2

)

+

(
1

|iτ − λ2n|2

)
+O

(
1

|iτ − λ2n|2

)]
, (6.5)
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and

‖R(iτ,A)Y ‖2 �
N−1∑
n=1

m+
1n∑

j=1

|a+1n,j |2

|iτ − λ+1n|2
+

m−1n∑
j=1

|a−1n,j |2

|iτ − λ−1n|2

+

∞∑
n=N

(
|a+1n|2

|iτ − λ+1n|2
+
|a−1n|2

iτ − λ−1n

)

+

N−1∑
n=1

m2n∑
j=1

(
|a2n,j |2

|iτ − λ2n|2
+
|b2n,j |2

|iτ − λ2n|2

)
+

∞∑
n=N

(
|a2n|2

|iτ − λ2n|2
+

|b2n|2

|iτ − λ2n|2

)
, (6.6)

where {λ±1n, n ∈ N} and {λ2n, λ2n, n ∈ N}, given by (3.8), are eigenvalues of A.
Now we estimate |iτ − λ±1n|2, |iτ − λ2n|2 and |iτ − λ2n|2. In terms of λ+1n and λ−1n given by (3.8), for n large

enough,

|iτ − λ+1n|2 =

∣∣∣∣∣iτ +

(
nπ +

θ1
2

)2

β +
1

β
+O

(
1

n2

)∣∣∣∣∣
2

= τ2 +

(
nπ +

θ1
2

)4

β2 +O(1) ≥M1τ
2,

|iτ − λ−1n|2 =

∣∣∣∣∣iτ +
1

β
+

1(
nπ + θ1

2

)2
β3

+O

(
1

n3

)∣∣∣∣∣
2

= τ2 +
1

β2
+O

(
1

n2

)
≥M2τ

2,

(6.7)

for some M1,M2 > 0 independent of τ . In terms of λ2n given by (3.8), for n large enough, there exists C > 0
such that

|Re(λ2n)| ≥ C|Im(λ2n)|1/2.

We thus have

|iτ − λ2n|2 ≥ |τ − Im(λ2n)|2 + C2|Im(λ2n)|. (6.8)

Let 0 < ε < 1 be given. If Im(λ2n) ≥ ετ , then,

|iτ − λ2n|2 ≥ C2|Im(λ2n)| ≥ C2ετ. (6.9)

If Im(λ2n) < ετ , then, for τ ≥ 1,

|iτ − λ2n|2 ≥ |τ − Im(λ2n)|2 ≥ (1− ε)2τ2 ≥ (1− ε)2τ. (6.10)

Hence, by (6.9) and (6.10), there exists a constant M3 > 0 such that

|iτ − λ2n|2 ≥M3τ. (6.11)

For λ2n with sufficiently large n, we have

|iτ − λ2n|2 = |τ + Im(λ2n)|2 + |Re(λ2n)| ≥ |iτ − λ2n|2 ≥M3τ. (6.12)
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By (6.6)–(6.12), there is an M > 0 such that

lim
|τ |→+∞

sup |τ |‖R(µ+ iτ,A)‖2 = M. (6.13)

On the other hand, with similar way, for τ ∈ R and τ < 0, we also have

lim
|τ |→+∞

sup |τ |‖R(µ+ iτ,A)‖2 = M. (6.14)

This proves (6.1), and by Theorem 6.2, the semigroup eAt is of Gevrey class δ > 2 with t0 = 0.

7. Concluding remarks

In this paper, we study stability for a wave-beam coupled system where a damped wave that connects with
a beam through boundary weak connections is considered as a controller of the beam system. We develop all
properties including mainly the Riesz basis generation, the spectrum-determined growth condition, the expo-
nential stability and the Gevrey regularity for this system, which is parallel to a heat-beam system considered
in [21]. It is quite unexpected that a damped wave subsystem which can change shape arbitrarily can stabilize
exponentially a beam which cannot change arbitrary the shape. Obviously, the wave controller is much more
easily implemented than heat in some engineering beam structures, which is considered as a new discovery from
the engineering point of view.

Secondly, in paper [21] and most of other same type of papers, the resolvent of the system operator is always
compact. This means that system has only eigenvalues. However, the spectrum of the system operator in this
paper has no compact resolvent. It has both eigenvalues and continuous spectrum. This results in the spectrum
of the wave part not being symmetric on the real axis. Actually, the wave part has two branches of eigenvalues,
where one branch approaches infinity and another finite branch approaches a finite accumulation point. As a
result, the eigenfunctions are very different with that in existing literature including [21], in particular for the
branch of eigenfunctions corresponding to the eigenvalues that have finite accumulation point. This is another
new discovery from the mathematical point of view.
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