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STATIONARY KIRCHHOFF EQUATIONS INVOLVING CRITICAL
GROWTH AND VANISHING POTENTIAL*

JoAo MaRrcos po Ol** MaRco SOouTO? AND PEDRO UBILLA®

Abstract. We establish the existence of positive solutions for a class of stationary Kirchhoff-type
equations defined in the whole R® involving critical growth in the sense of the Sobolev embedding
and potentials, which may decay to zero at infinity. We use minimax techniques combined with an
appropriate truncated argument and a priori estimate. These results are new even for the local case,
which corresponds to nonlinear Schrédinger equations.
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1. INTRODUCTION

In the present paper, we prove the existence of positive solutions for stationary Kirchhoff-type equations of
the form

fM(HVuH%) Au+V(z)u= f(u) in RV, (1.1)
>0 in RY and wue DL2(RY). :

Here, || - ||, denotes the L,—norm with respect to the Lebesgue measure. This class of problems has been studied
extensively under various assumptions on the function M, the potential V', and the nonlinearity f = f(s). A
typical example of M considered in some recent papers is M (t) = a+ bt. In this case, (1.1) becomes the standard
Kirchhoff equation. We note that problem (1.1) with M = 1 corresponds to the nonlinear Schrédinger equation

{ ~Au+V(@)u= f(u) nRY, (12)

u>0 in RY and wue DL2(RY).

This class of nonlinear elliptic equations in RY has been intensively studied in recent years motivated by a
wide variety of problems in mathematics and physics in particular for the search of standing wave solutions by
considering different approaches (see [1, 3, 5, 6, 8, 9, 32]).
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Nonlocal elliptic equations as (1.1) were introduced by G. Kirchhoff [23] to describe the transversal oscillations
of a stretched string. See also the works of Bernstein [10], Pohozaev [30] and Lions [27] for classical studies on this
class of problems. These equations may be considered as the simplest example of quasilinear evolution equations
of hyperbolic-type. Considering the intrinsic physical meaning, and also the fact that it can be expanded to
more complex equations, Kirchhoff-type equations are a relevant topic for studies. For mathematical and physical
background on these problems, we refer the readers to [4, 10, 11].

Problems like (1.1) have been extensively studied by many researchers after the abstract functional analysis
framework proposed by Lions [27]. For instance, we refer to [13, 15, 18, 21, 24-26, 29, 31, 33]. We also refer to
[19-21], where the authors have discussed about existence of solutions, compactness, uniqueness and stability
properties for Kirchhoff-type equations in closed manifolds. There are a few papers in which the existence of
solutions is considered for Kirchhoff-type problems in whole RY when the potential may decay to zero at infinity.
In [16], using a minimization argument and a quantitative deformation lemma, the authors proved the existence
of a least energy nodal (or sign-changing) solution for a class of Schrédinger—Kirchhoff problems. Moreover,
when the problem presents symmetry, they obtained infinitely many nontrivial solutions.

The main contribution of this article corresponds to the study of the critical case of the Kirchhoff equation
of type (1.1) with potentials vanishing at infinity, which is new even for the relevant case of the nonlinear
Schrédinger equation (1.2). Thus the present paper can be seen as a natural completion of recent works [1,
3], where it was studied the subcritical case for a certain class of vanishing potentials. We want to mention
that V. Benci and G. Cerami in [7] studied standing wave solutions of the critical problem —Au + a(z)u =
wN+2/(N=2) in RN involving vanishing potential requiring also that a € LN/Q(RN). They proved that this
problem has at least one solution if |la|[,~/2 is sufficiently small. We point out that if a(x) ~ |z|=¢ with
0 < 6 < p—11isin the class of potentials satisfying our assumptions, but a ¢ LV/2(RN) if § < 2, that is, a(z)
does not belongs to Benci-Cerami class (see Example 1.2).

As already mentioned, we will focus our study on the stationary Kirchhoff problem involving critical growth
defined on the whole 3-dimensional Euclidean space of the form

—M ([[Vul]3) Au+ Va(z)u = v’ + y[u/P'u in R?, (Py)
u>0 in R3 wue DLH2(R?), A

depending on p € (3,5), the potential Vy(z) = Z(z) + AV (z) and the positive real paramenter A\. We are
motivated to study our problem in dimension three because it is where the most interesting physical phenomena
occur. We recall that for N = 3, we have 2* — 1= (N + 2)/(N — 2) = 5, where 2* = 2N/(N — 2) is the critical
Sobolev exponent. This kind of potential V), = Z 4+ AV appears in some recent works to study a class of nonlinear
Schrodinger equations. See for instance [2, 5, 6] and references therein, for the case where the potential is bounded
away from zero. In the present paper M is a continuous positive function satisfying some general conditions
and the potential Vy = Z + AV may decay to zero at infinity in some direction (Z with compact support, for
instance). We mention that because of the first term in the left hand side of (P, ) this is a nonlocal problem
in essence and this leads to some very interesting features.

1.1. Assumptions

To state our main results, let us describe in a more precise way the assumptions on the potential V' and the
Kirchhoff-type function M.

Z(x) and V(x) are continuous and nonnegative functions; (1)
V(z) = 0 in some ball B, (z1) C R?; (V)
l‘irlninf lz[P~1V (z) > 0; (V3)

T|—00

The Kirchhoff function M : [0, +00) — [0, +00) is continuous; (My)
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1
M is increasing on the interval [0, +00) and M (0) =: M, > m; (M)
The function M(t)/t is nonincreasing on the interval (0, 400). (Ms)

1.2. Statement of the main results

Our first result for equation (P, ) is the following.

Theorem 1.1. Suppose that (V1)-(V3), (My)—-(M3) are satisfied and 3 < p < 5. Then, there exist v* > 0 such
that for any v > ~* there exists A\* = A*(y) > 0 such that (P» ) possesses a positive solution for all A > \*.

Let us give some examples which illustrates the above result.

Example 1.2. Given C >0, 0 < 6 <p—1 and R, > 0, we can check that any continuous and nonnegative
function V : R* — R such that V(z) = C/|z|? for all |z| > R, verifies (V3).

Example 1.3. Examples of a Kirchhoff function M verifying (M7)-(M3) are given below

1. M(t) =a+ bt witha>0and b>0.
2. We can also consider M (t) = a + bt? (In(1 + ¢))* with 0 < ¢, £and 0 < ¢+ ¢ < 1.
3. M(t) =a+ Y5 bjt?i with 0 < p; < 1.

Remark 1.4. One can see that under our assumptions, the natural functional of (P ) is not well defined. To
face this difficulty we propose a suitable modification on the nonlinearity f,(s) := s° 4+ v|s[P~!s such that the
energy functional associated to the modified problem has compactness and allow us to prove the existence of a
ground state solution by using the minimax techniques. Next, by choosing a sufficiently large ~, we verify that
the solution of the auxiliary problem is indeed a solution to our original problem (P ).

Using a similar approach as in Theorem 1.1, with some minor modifications, a more general result for the
following Kirchhoff problem can be proved.

=M ([[Vull3) Au+ Wx(z)u = u® + y[u[P~ru in R3, (Os)
u>0 in R3ue DV2(R3), A
where the family of pontentials W verifies the following hypotheses:
inf Wi(z) doe < 1; (V)
zER3 Bl(z)
There exists R, > 0 and C' > 0 such that | }r;% W (x)|z[P~ > CA. (V)

Theorem 1.5. Suppose that (Vy)—(Vs), (My)—(Ms) are satisfied and 3 < p < 5. Then, there exist v* > 0 such
that for all v > v* there is a \* = X\*(y) > 0 such that (Qx ) possesses a positive solution for all X > \*.

Example 1.6. As an example of a class of potentials which satisfies conditions (V;)—(Vs) is given by Wy (z) =
A2/(Mz|? + 1) where 0 < @ < p — 1 for |x — z| > r; and Wy bounded in |z — z| < r, uniformly in A > 0. Notice
that W) does not verifies (V7)—(V3).

Remark 1.7. According to some technical difficulties that appear in our argument due to the coefficient
of Kirchhoff, we must impose the hypothesis p > 3. This assumption implies the following crucial estimate
(p+1)M(t) —2tM(t) > M,(p— 3)t for all £ > 0. This fact is important to prove that the Palais-Smale sequences
are bounded and converge in the Lebesgue space L(R3) up to a subsequence. Moreover, we can obtain an upper

bound estimate for a mountain pass level associated with an auxiliary functional (see Prop. 2.2).
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1.3. Notation

Let us introduce the following notations:

— C, C, Cy, Cs,... denote positive constants (possibly different).

~ Bpr(zo) denotes the open ball centered at xg and radius R > 0.

— The norms in LP(RY) and L>(R”) will be denoted respectively by || - ||, and || - ||cc-
— 0p(1) denotes a sequence which converges to 0 as n — .

1.4. Outline

Our paper is organized as follows. In the Section 2, we consider some auxiliary functionals and we obtain
estimates for their mountain pass levels. Section 3 is devoted to a study of a LS-estimate on the solutions of
some auxiliary problem and its L°°-estimate is done in the Section 4. We conclude the proof of Theorem 1.1 in
the Section 5.

2. PRELIMINARIES

In this section we show some properties for the Kirchhoff function M and its primitive M with M (0) =0,
that is, M (t) = fg M(7) dr. We also obtain upper bound estimates for mountain pass levels for certain energy
functional associated to an auxiliar problem.

Lemma 2.1. The following properties involving M and its primitive M hold:

(a) M(t) > Myt, for all t > 0; A
(b) Conditions (Ms)—(Ms3) imply that the map t — 2M (t) — tM(t) is non-decreasing for t > 0;
(¢) If p > 3, conditions (Ms)—-(Ms3) imply that

(p+1)M(t) — 2tM(t) > M,(p — 3)¢t, for allt > 0.

Proof. 1t is easy to check that (M) implies that M(t) > M,t, for all t > 0, thus (a) holds.
Let us define A(t) = 2M (t) — tM(t). For 0 < s < ¢, it is not difficult to verify that

) - ae) - [ (M 20 py [7 (A MOY g

T s t
Hence A(t) is non-decreasing function provided that M (t)/t is non-increasing.

Still about M, condition (Ms) holds if, and only if, 2M (t) — tM(t) is non-decreasing for ¢ > 0. When p > 3,
we have for all ¢t > 0,

(p+ 1)M(t) — 2t M (t) = (p — 3)M(t) + 2[2M (t) — tM(2)]
(

which implies that (c¢) holds. O

We start observing that from (V}), we can introduce the natural Hilbert space

E = {v € DM(R?) : /]R Va(z)v? dz < oo}
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endowed with the scalar product and norm given, respectively, by

(u, vy = /R3 (Vu-Vo+ WV (2)uw)dz, ||ul|*= /Rg (IVul® + Va(z)u?) da.

An initial difficulty that appears to attach variational problems like (Py ) in the case that the potential
converges to zero at infinity is that, in general, we do not have the embedding “E < LPT1(R3)” for 2 < p <5
and the Euler-Lagrange functional associated to (P ) is not well defined in E. For this reason, we will consider
an auxiliary problem defined in bounded domains as we will see later.

From (V3), without loss of generality, we suppose that V(z) = 0 for all 2 € B;(0). Now let us consider the
energy functional Iy : H}(B1(0)) — R defined by

1. 1 Y
I()(u) = §M(||VU||%2(31(0))) + 5/; © Z(LC)U? dz — ]m 50 |U‘P+1 dz.
1 1

It is clear that I is well defined, belongs to class C' and does not depend on A. Moreover, under our assumptions
one can verify that Iy has the mountain pass geometry and thus it is well defined the mountain pass level:

G = enith, oy Ry o(tv):

The next proposition is a crucial upper bound estimate on this minimax level.

Proposition 2.2. There exist constants Cp, > 0 and vy, > 0 such that for all v > ~, it holds

Gy

0<d, <

Yt
In particular d, — 0 as v — +00.

Proof. Let v, € C§°(R3) such that 0 < v, < 1 and define
a:= HVU0||2L2(31(0))7 b 3:/]3 © Z(x)vg dz, c:= ||v0||i—zt+1—l(31(0))'
1

Let us estimate max;~q Ip(tv,). It is clear that the function h(t) := Iy(tv,) has a unique critical point which is
a global maximum point. Indeed, h'(t) = 0 is equivalent to

aM (at®)t 4 bt — vyct? = 0.
Thus,

M (at?) b yeth™?
at? a2t? a2

Since the left side in the last equality is decreasing and the right side is increasing, we have only one ¢ > 0 such
that A/(t) = 0.
We also have for v > 0 sufficiently large,
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If ¢, is the critical point of h(t), it is easy to check that h(t) is increasing in (0, t,) and it is decreasing in (t,, 00).
Then, since h(1) < 0, we must have ¢, < 1 such that

max h(t) = h(t,).

t>0

From condition (M;)—(Ms), for any a > 0, we have
R at
M (at) = / M(s) ds < M(a)at, for all 0 <t <1,
0

which implies

(M(a)a+ b2 Aetz+!

h(t,) < 5 il s max H(t) = H(tu)

where
H(t) = ATtQ - vpci‘;l and A= M(a)a+b.
It is easy to see that
AP (11 1 ANTT 1
I?ES{H(t) =H(tym) = o (2 — er1> == where ¢y = (c) s
Thus, setting
0, - A1 (2--4)
P = \2 pr1)

we obtain the following estimate

dy = inf maxI(tv) <maxly(tv,) < H(ty) = Cf (2.1)

vEHL(B) t>0 t>0 NPT

which completes our proof. [

From Proposition 2.2, we can choose v* > 0 such that for all v > +* it holds

2(p+1) . (M,S)% MzS3
iyt G @2

where S is the best constant for the Sobolev embedding D!?(R?) — L5(R3), that is,
S =inf {||Vo||3 : v € D"*(R?), [[v]|s = 1} .

3. AUXILIARY PROBLEM

We begin this section by recalling that since we deal with a class of potentials that may decay to zero
at infinity, the variational method cannot be applied directly, because the natural Euler-Lagrange functional
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associated with Problem (P) ) is not well defined on the space E. To overcome this difficulty, we are going to
modify the critical nonlinearity f,(s) := s® +~|s[P~!s as follows: choose R > 1 and define

1%
f+(s), if x€ Bg or fy(s) < p/\—i(—zl) s,
g(@,s) =

% V

p)‘fcl)s, if x¢ Bpg and  f,(s) > p/\J(rml) s.
Let us consider the auxiliar problem

— M(||Vu||®*)Au + Vy(2)u = g(z,u), in R3. (AP)
Tt is easy to check that g(x, s) is a Carathéodory function and its primitive
G(z,s) :/ glx,7)dr
0
is such that
: V()
G(z,s)=F,(s) if xzeBr or f,(s)< P s,

where

s 86 ’}/Sp+1
Fw(s):/o fv(T)deg‘f' Il)_||_1 .

Moreover, since f(s)/s is increasing for s > 0 and decreasing if s < 0, one can see that

sg(x,s) < s% 4 4|s|PTt,  for all s € R; (q1)
11 )
sg(x,s) — (p+ 1)G(x,s) > o1 2 Va(z)s®, for all s € R; (g2)
\%
sg(z,s) < )\—|(—x1) s?,  forall s € R and 2 € BS; (g3)
p

Using standard arguments, from condition (gs3), the corresponding energy functional J : E — R given by

M 3 1
J(u) — M + § - V)\($)u2 dx — . G(x,u) d$,

is well defined and of class C'! with

J (u)v = M(||Vul|3) /]RS VuVu dz + . Va(z)uv dz — /}R3 g(x,u)v dz for all u,v € E.

From our assumptions, one can see that J fulfills the mountain pass geometry, and then the minimax level

¢y~ = inf max J(tv
" vEE t>0 ( )
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is well defined, and satisfies 0 < ¢y 5 < d., due to J(v) < Iy(v) for all v € H}(B1(0)). We can use the Ekeland
Variational Principle [14] to produces a Palais-Smale sequence (u,,) C E at the minimax level ¢y ,, that is,

J(un) = cx~ and J'(u,) — 0. (3.1)

Lemma 3.1. The sequence (uy,) is bounded in E and ||Vuy||2 < 1, for large n.

Proof. Indeed, using (3.1) for n big enough, we have
vy + 1+ llunll = T (un) = (p+ 1) 71 (n Jun.

Thus, by Lemma 2.1 item (c) and (g2), we obtain

dy + 1+ [lunll =

M(||Vun|l3) — [[Vunl[3M([Vunl[3)
2 p+1

11 , 1
(5 op) [ art [ |t - Gl a

11 1 M,(p—3)
N b 2 Molp — o) 2
> (2 p+1> <1 ) » W(z)u; dz + 2p+ 1) [|[Vun|5

This last inequality shows that (u,) is bounded in E. Besides, using (2.2), for all n large enough, we have

2(p+1)

V|2 < (d (1) —2 <1, 3.2
| u||2—('*+0())Mo(p—3)— (3.2)
which completes the proof. O
Lemma 3.2. Up to a subsequence, we have that (u,) converges in LS(R3).

Proof. We may suppose that u,, — u weakly in DV2(R?), |Vu,|? and |u,|® converge tightly to u and v, where
i and v are bounded nonnegative measures on R®. Moreover, wu,, — u in L{OC(R?’), for all 2 < r < 6. Then, in
view of Lions concentration compactnes principle (see [28], Lem. .1, p. 158), we have

1. there exists a sequence (v;)jen in Ry, (z;)jen in R? such that

oo
6
v=u + E VjOg,;
i=1

2. besides, we have
ST
w > |Vaul® + SZ V3 0y,
j=1

Let ¢ € C2°(R?,[0,1]) such that ¢(z) = 1, if |z < 1/2 and ¢(z) = 0 if |#| > 1. For each ¢ € (0,1) let us
consider

Notice that if 2 < r < 6,

lim/ delu,|” da = / delu|” dz := By r
nJRrs R3
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and for each fixed u € E, we have supp(¢.) C B(0,1) and |pc|u|"| < |u|". Thus by Lebesgue’s dominated
convergence theorem,

lim Be ., = 0.
e—0

From (g1) we get

| (wn)gta ) da

< 7/ gz5€|un|q+1 dx—f—/ ¢6ug dz
R3 R3

and consequently

S C <Bs,u,q+1 +/ Pe dV) .
R3

lim sup
n

/R3 (un@e)g(z,up) da

By using a Holder inequality we obtain

<eg ! / u? da
|lr—x;]<2e

1
2

S

/ U, VpVu, dx
]Rii

/ |Vu,|? dz
|x—z;]|<2e

As (uy,) is bounded in E we have

1
2

<C / u?dx| , foralln, e
|z—x;]|<2e

/ U, VpVu, dx
RS

and

1
2

<’ / w?dz | , forall e,
|le—z;|<2e
) 0.

lim sup
n

/ Un VoV, dx
R3

which shows that

/ Up Ve Vu,dx
Ri}

lim (lim sup
e—0

n

Now, we can see that

(1) = 7 (un)tn62) = MUVl ) | V0, (us0) da
n\%n¥e dzr — s Un n¥e d

+ [ V@) de = [ gleu)(uo.) dr

= n 3 n2 sd i ed

MV ) [ Fuocdot [ Vi@pde ds

M|V ) / V6.V, d / 92, wn) (nd)) da,
R3 R3
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or,

M|V 2) / Vun 2. do + / Va(z)u2 . da
R3 R3

= —M(HVunH%)/ up Vo Vu, dx +/ g(x, up)(unde)) dz + 0, (1).
R3

R3

As a consequence of (3.2) and (M.1), M(||Vu,||3) is a bounded sequence between M, and M (1). We can suppose
that M (||Vu,||3) converges to some m, € [M,, M(1)]. Passing to the limit as n — oo we have:

1/2
< C Bs,u,qul + (/ ’LL2 de) y
le—zj|<e

‘mo / Godit+ Berns — / 6. dv

for all . Passing to the limit as € — 0,

mop({z;}) = v({z;}) = v;.

Combining with part (2) of Lions Lemma

u({x;}) > Sv;’®
we have
vj > mOSl/;/3 > MOSU;/B
and thus, if v; > 0 we obtain
v > LS,
which implies that
mou({z;}) = vj > (M,5)*?. (3.3)

We know that,

which together Lemma 2.1 gives

1 - 1
— |z 2 M 2 2
cr = [T 0l) = MV DIV
1 1

+[2‘p+1

_|_/R3 <p i 1ung(x,un) - G(:U,un)> dz + on(1)

Mo(p—3) . ot )
2(p+1) /RJV nl"¢e dz + 0, (1) + 02 (1).

] Va(z)up e da
R3
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Passing to the limit as n — +o00, we obtain

M(
CA”YZW/ ¢e dp+ 0:(1).

Taking to the limit as € — 0, we have

M, (p —
Cry = W p({z;}).

We also note that assumption (3.3) implies

Mo(p - 3)

c Mo(p - 3)
Y = 2mo(p+1)

(M5 2 S e+ 1

(M,S)3/2,

Now, if v; > 0 we can deduce

Mo(p - 3)

2 WOWOS)WQ’ (3.4)

Cx

which is a contradiction with the inequality ¢y 5 < d and (2.2). Then v; = 0 for all 4 and, u,, converges to u in
LS(R3). O

Lemma 3.3. The following limits hold for the sequence (uy):

lim [ Vi(z)u? dx —/ Va(z)u? dz, (3.5)
n R3 R3

lim [ g(x,u,)u, d / g(z,u)u dz, (3.6)
n R3 R3

lim [ g(x,u,)v :/gxuvdx Yv e FE (3.7)
n R3 R3

lim [ G(x,u,) / G(z (3.8)
n R3 R3

Proof. We start with the following claim:

lim [[Vu,|* + Va(z)uZ] dz = 0, uniformly in n. (3.9)

r—00 ‘ZL“ZT’

In fact, let us consider a cut-off function n € C§°(B¢, [0, 1]) such that n(z) = 1 for all |z| > 2r and |Vn(z)| < 2/r
for all x € R3. Since (u,) is bounded in E, the sequence (nu,) is also bounded in E, and then J'(u,)(nu,) =
on (1), that is,

MVuB) [ VT do+ [ V@) de = [ g un)m) o+ o,(1).

Since n(z) = 0 for all |z| < r, using (g3) we obtain

MFuB) [ 090l + Vi@)i] de <
|z|>r

1

=7 nV,\(z)ui dfo(HVunH%)/ u, Vu, Vn dz + 0,(1),
pt1Jiz>r 2| >r
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which together with hypothesis (M) implies

1 M
(MO—> [ oalvePev@e] deo< 25 [ Vel de o+ ou(1), (10
P+1) Jiz>r r<|az|<2r

r

where M; = M(1). Using Holder inequality, we can estimate

1/2
/ [Un| Vg | dz < [[Vug || L2 rs) </ |y, | d:z:)
r<lz|<2r r<|z|<2r

Since u, — u strongly in L*(By, \ B,) and ||V, ||r2rs) < 1, it follows that

1/2
limsup/ [un| |V, | de < / lu? dz (3.11)
no Jr<jel<or r<lzl<or

On the other hand, Holder inequality implies

1/2
/ lu|? dx <r / lu|® dz
r<|al<2r r<le|<2r

which together with (3.11) implies

1/3 1/6

28

limsup/ [un]|Vu,| de <r (77) / lul® dx (3.12)
n Jr<jal<er 3 r<|z|<2r

(3.10) and (3.12) show the claim.
Since u,, — u strongly in L2 _(R?), (3.5) follows from (3.9). To prove (3.6)—(3.7), we can use (3.5) together

loc

with condition (g3). O

1/6

Using Lemmas 3.2 and 3.3 we can show that v is a weak solution for the problem
—meAu + Vi(z)u = u® + g(x,u), R?

and
m0||Vu||§+/ Va(z)u? d:r:/ u d:ch/ g(z,u)u dz.
R3 R3 R3

Now passing to the limit in

M|Vt )| Vet 3 + / Va(z)a2 da = / i © iz + / 92, Yt A+ 0 (1),
R3 R3 R3

and recalling that lim,, M (||Vu,||3) = m,, we conclude that

lim ||V ||3 = [|Vul[3.
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Then u,, converges to u in £ and J(u) = ¢y . Therefore u is a ground state solution of auxiliary problem (AP)
which depends on R and satisfies

2(p+1)
Vul|l3 <d,~———~, forall R > 1,
|| H27 'YMO(p_S)
further,
- 2(p+1)
2 < S 1 2 < d 3.13
Jullg < 5711Vl < d, g (3.13)
independent on the choice of R > 1. Combining (2.1) and (3.13) we have that
lullg < Cy~ 77 (3.14)

4. A PRIORI ESTIMATES IN THE L*(R3) NORM

We derive some a priori L™ — estimates for the solutions of Auxiliary Problem (AP). For that we follow
some extraordinary ideas due to E. De Giorgi, J. Nash and J. Moser, to obtain regularity results that were
discovered in the mid 1950’s and early 1960’s. For more details see for example [12, 17, 22].

Theorem 4.1. Let u be a solution of (AP) then
Julloo < O35,
where C' is a positive constant.

Before we prove the above estimate we will need to provide some crucial results. First let us state a version
of ([17], Thm. 8.17) which is suitable to our purpose.

Lemma 4.2. Let b: RN + R be a nonnegative measurable function and let h € LY. (RN) such that

loc
1/q
[h]lq = sup / |h|? da < 00,
zERN Ba(z)

where 3 < N < 2q. Suppose that v € E is a weak solution of the problem
— Av +b(z)v = h(z) in RY. (4.1)

Then we have

z€B1(2)

1/2*
sup |v(z)| < C'[hlq (/ [v| dx) for all z € RV,
BQ(Z)

where C' depends only on q (it does not depend on b or v).

Proposition 4.3. Let the potential V, : R? = R be a nonnegative measurable function and the nonlinear term
g(z, s) be a Caratheodory function such that some «,, B, > 0,

lg(z,8)| < aols|® + Bols|  for all (z,s) € R® x R.
Suppose that u € E is a weak solution of the problem

— Au+V,(z)u = g(z,u) in R? (4.2)
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satisfying

© dalfullt < 5.
Then there is A such that

[lulloo < Allullg,

where A does not depend on' V' or u, indeed A depends only on B,. In addition we have A = O(f,

Proof. For each n € N let us consider the sets
A, :{x€R3zu4 §n2} and B, :R?’\An.
and define the function v,, € E by
vp=u’ inA, and wv,=n%uin B,.
Observe that v, € E, v,u < u® in R3,
Vv, = 5u*Vu in 4,, and Vv, = n®>Vu in B,,.

Then, using v,, as a test function in (4.2),

/ [VuVu, + Vy(z)uvy,] dx :/ g(z,u)vy, dz.
RS RS

From (4.3) we have

VuVv, dz = 5/

ut|Vul? dx+n2/ |Vu|? dz.
An

R3 B,

Now consider
wp =u® in A, and w, = nu in B,.
Note that w2 = uv, < |u|®, 0 < V,(z)w? = V,(z)uv, in R3. Moreover,

Vw, =3u’Vuin 4, and Vw, =nVuin B,.

Thus,
/ |Vw,|? de = 9/ ut|Vaul? dz + n2/ |Vu|? da.
R3 An B"

Combining (4.4) and (4.5), we obtain

/RB [(IVewn]? + Vo(2)w?] da _/

R3 An

From (4.4) we have the inequality

5/ u*|Vul? dz §/ [VuVu, + Vo(z)uv,| dz,
A RS

n

[VuVu, + Vo(z)uv,] de = 4/ u?|Vu|? dz.

) as B, — 0.

(4.3)

(4.5)
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and then
/ [[Vwn|® + Vo(z)wi] do < g/ [VuVu, + V,(x)uv,] dz.
RS R3

Since u a weak solution of (4.2), we have

/3 [[Vwn|? + Vo(2)w?] dz < 2/3 g(z,u)v, dr < 2/ g(x,u)v, dz. (4.6)
R R

R3
Observe that g(z,u)v, < a,lul®|v,| + Bolullvn] = aouw? + Bow?2 in R3. From the Hélder inequality, we get
/ [|an|2 + Vo(x)wfl] dz < 2ao/ lu[*w? dz + 250/ w? dz
R3 R3 R3

s2ao|\u||é\|wn||§+2@o/ W2 de.
]RS

Combining this last inequality with the Sobolev inequality bellow

S||wn||g§/ \an|2 dxﬁ/ [|an|2+vo(x)wi] dz,
R3 R3

under hypothesis (C), we have

3 3
[/ |wn|6 dm] < [/ \wn|6 dm] < 4605_1/ wfl dz,
An R3 R3

which together with the fact that |w,| < |ul? in R? and |w,| = |[v|? in 4,, implies

[/A |u18d4 b < (48,5~ U |u|6da:} . (4.7)

Passing to the liminf in (4.7) and using Fatou’s lemma we obtain
1
llull1s < (4868 71)% [Julle. (4.8)

Thus u € L*¥(R?)N L(R?), which implies that h = a,|ul® + B |u| € Lloc(R3)' Moreover, from (4.8) and condition
(C), we obtain

[W]1s < aollullis + CBollullis < ao(4oS™1)* [lulli + CBo(48,5 )% [Julls
< (a0 (48,57 [[ulld + CBo(48,57)* ) full
<0 (85 +88) llulls
From Lemma 4.2 there exists a positive constant A which depends only on 8, such that
lulloo < Allulfg

and the proof is completed. O
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4.1. Proof of Theorem 4.1 completed
The choice of d in (2.2) together (3.13) show that a solution u = ur above satisfies

V() 1 5 Y 1
—Au + u = u’ + ulP" u
MV v T v
and
8

— 8 B
oy eSS gl TN < 1

We will use Proposition 4.3 with «, = 2M, 1. Since

_ _ 14

|g(l’,5)| < Mo 1(‘8‘5 +’Y|S|p) < 2Mo 1‘8‘5 + Mo 17571) ‘8‘7

from Proposition 4.3 with 5, = Mo_l'yﬁ we have:

lullso < CAlullf < CyEyr.
Now we have a family of solutions u = ug of the auxiliary problems (AP) in L and

7p—19
ulloo < CyoG=D. (4.9)

where C' is a positive constant.

5. PROOF OF THEOREM 1.1

We need to show that a solution u € F of the auxiliary problem satisfies

u in |z| > R. (5.1)

Lemma 5.1. For any ground state solution of Problem (AP) it holds

R||ul|
u(z) < |||Z| , forall |z| > R. (5.2)
Proof. We notice that the function
R||ul]co .
v(z) = ||Z|| for =€ R*\ {0}

is harmonic and u(z) < v(z) if || = R. Let us consider the following test function

w(z) = max{u — v, 0}, ?f |z| > R;
0, if |x| <R.
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It is easy to see that w > 0 and w € DV2(R?). Since u is ground state solution of Problem (AP) we can see
that

|Vw|? do z/ V(u—v)Vw dx
R3 R3

mals
= (9(z,w)w — Vy(2)uw) dz
M(HUH%) |z|>R
Thus, using (g3), we obtain

1 1
Vdex§< —1) V(z)uw dz <0,
o pr1 ) M) Je

which implies that w = 0, and consequently we have

_ Rlfulls
2

which is the desired conclusion. O

w(x) < ov(x) for all |z| >R

Lemma 5.2. There exists C, > 0 such that for any ground state solution of Problem (AP) it holds

p71 Tp—13
f(“)<co<R> N5, fordl |z| > R. (5.3)

u Jz]

Proof. From Lemma 5.1 we have

A4 -1 -1
FO) _ oy et < Rl Rl
u |z[* |zt
which together with (4.9) gives
fu) _ RACHTTT Reiorly
wo " |z[* [Pt
RO S RplOply
|[* [Pt
RAC*  RPICPI] 2pois
6
R
_ BT et o ] e
[Pt |z[>=P
p—1 )
ca(BY
|z
where C, = (CP~1 + C*) and we have used || > R and v > 1. O

5.1. Proof of Theorem 1.1 completed
From condition (V3) there exists Ry > 0 and ¢; > 0 such that

|z|P~ 'V (2) > ¢ forall |z| > Ry. (5.4)
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On the other hand, since Vy(x) > AV (z), using (5.3) and taking R > R; we can see that

) _

V()
+1

for all |z| > R,

i

provided that

7p—13

Co
A>—=(p+1)y" s
&]

and consequently v solution of auxiliary Problem (AP) is indeed solution of original Problem (P ).
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