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STATIONARY KIRCHHOFF EQUATIONS INVOLVING CRITICAL

GROWTH AND VANISHING POTENTIAL∗

João Marcos do Ó1,∗∗, Marco Souto2 and Pedro Ubilla3

Abstract. We establish the existence of positive solutions for a class of stationary Kirchhoff-type
equations defined in the whole R3 involving critical growth in the sense of the Sobolev embedding
and potentials, which may decay to zero at infinity. We use minimax techniques combined with an
appropriate truncated argument and a priori estimate. These results are new even for the local case,
which corresponds to nonlinear Schrödinger equations.
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1. Introduction

In the present paper, we prove the existence of positive solutions for stationary Kirchhoff-type equations of
the form {

−M
(
‖∇u‖22

)
∆u+ V (x)u = f(u) in RN ,

u > 0 in RN and u ∈ D1,2(RN ).
(1.1)

Here, ‖ · ‖p denotes the Lp−norm with respect to the Lebesgue measure. This class of problems has been studied
extensively under various assumptions on the function M, the potential V , and the nonlinearity f = f(s). A
typical example of M considered in some recent papers is M(t) = a+ bt. In this case, (1.1) becomes the standard
Kirchhoff equation. We note that problem (1.1) with M ≡ 1 corresponds to the nonlinear Schrödinger equation{

−∆u+ V (x)u = f(u) in RN ,
u > 0 in RN and u ∈ D1,2(RN ).

(1.2)

This class of nonlinear elliptic equations in RN has been intensively studied in recent years motivated by a
wide variety of problems in mathematics and physics in particular for the search of standing wave solutions by
considering different approaches (see [1, 3, 5, 6, 8, 9, 32]).
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Nonlocal elliptic equations as (1.1) were introduced by G. Kirchhoff [23] to describe the transversal oscillations
of a stretched string. See also the works of Bernstein [10], Pohozaev [30] and Lions [27] for classical studies on this
class of problems. These equations may be considered as the simplest example of quasilinear evolution equations
of hyperbolic-type. Considering the intrinsic physical meaning, and also the fact that it can be expanded to
more complex equations, Kirchhoff-type equations are a relevant topic for studies. For mathematical and physical
background on these problems, we refer the readers to [4, 10, 11].

Problems like (1.1) have been extensively studied by many researchers after the abstract functional analysis
framework proposed by Lions [27]. For instance, we refer to [13, 15, 18, 21, 24–26, 29, 31, 33]. We also refer to
[19–21], where the authors have discussed about existence of solutions, compactness, uniqueness and stability
properties for Kirchhoff-type equations in closed manifolds. There are a few papers in which the existence of
solutions is considered for Kirchhoff-type problems in whole RN when the potential may decay to zero at infinity.
In [16], using a minimization argument and a quantitative deformation lemma, the authors proved the existence
of a least energy nodal (or sign-changing) solution for a class of Schrödinger–Kirchhoff problems. Moreover,
when the problem presents symmetry, they obtained infinitely many nontrivial solutions.

The main contribution of this article corresponds to the study of the critical case of the Kirchhoff equation
of type (1.1) with potentials vanishing at infinity, which is new even for the relevant case of the nonlinear
Schrödinger equation (1.2). Thus the present paper can be seen as a natural completion of recent works [1,
3], where it was studied the subcritical case for a certain class of vanishing potentials. We want to mention
that V. Benci and G. Cerami in [7] studied standing wave solutions of the critical problem −∆u + a(x)u =
u(N+2)/(N−2) in RN involving vanishing potential requiring also that a ∈ LN/2(RN ). They proved that this
problem has at least one solution if ‖a‖LN/2 is sufficiently small. We point out that if a(x) ≈ |x|−θ with
0 < θ < p− 1 is in the class of potentials satisfying our assumptions, but a 6∈ LN/2(RN ) if θ ≤ 2, that is, a(x)
does not belongs to Benci-Cerami class (see Example 1.2).

As already mentioned, we will focus our study on the stationary Kirchhoff problem involving critical growth
defined on the whole 3-dimensional Euclidean space of the form{

−M
(
‖∇u‖22

)
∆u+ Vλ(x)u = u5 + γ|u|p−1u in R3,

u > 0 in R3, u ∈ D1,2(R3),
(Pλ,γ)

depending on p ∈ (3, 5), the potential Vλ(x) = Z(x) + λV (x) and the positive real paramenter λ. We are
motivated to study our problem in dimension three because it is where the most interesting physical phenomena
occur. We recall that for N = 3, we have 2∗ − 1 = (N + 2)/(N − 2) = 5, where 2∗ = 2N/(N − 2) is the critical
Sobolev exponent. This kind of potential Vλ = Z+λV appears in some recent works to study a class of nonlinear
Schrödinger equations. See for instance [2, 5, 6] and references therein, for the case where the potential is bounded
away from zero. In the present paper M is a continuous positive function satisfying some general conditions
and the potential Vλ = Z + λV may decay to zero at infinity in some direction (Z with compact support, for
instance). We mention that because of the first term in the left hand side of (Pλ,γ) this is a nonlocal problem
in essence and this leads to some very interesting features.

1.1. Assumptions

To state our main results, let us describe in a more precise way the assumptions on the potential V and the
Kirchhoff-type function M .

Z(x) and V (x) are continuous and nonnegative functions; (V1)

V (x) ≡ 0 in some ball Br1(x1) ⊂ R3; (V2)

lim inf
|x|→∞

|x|p−1V (x) > 0; (V3)

The Kirchhoff function M : [0,+∞)→ [0,+∞) is continuous; (M1)
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M is increasing on the interval [0,+∞) and M(0) =: Mo >
1

p+ 1
; (M2)

The function M(t)/t is nonincreasing on the interval (0,+∞). (M3)

1.2. Statement of the main results

Our first result for equation (Pλ,γ) is the following.

Theorem 1.1. Suppose that (V1)–(V3), (M1)–(M3) are satisfied and 3 < p < 5. Then, there exist γ∗ > 0 such
that for any γ ≥ γ∗ there exists λ∗ = λ∗(γ) > 0 such that (Pλ,γ) possesses a positive solution for all λ ≥ λ∗.

Let us give some examples which illustrates the above result.

Example 1.2. Given C > 0, 0 < θ < p − 1 and Ro > 0, we can check that any continuous and nonnegative
function V : R3 → R such that V (x) = C/|x|θ for all |x| ≥ Ro verifies (V3).

Example 1.3. Examples of a Kirchhoff function M verifying (M1)–(M3) are given below

1. M(t) = a+ bt with a > 0 and b ≥ 0 .

2. We can also consider M(t) = a+ btq (ln(1 + t))
`

with 0 ≤ q, ` and 0 < q + ` ≤ 1.

3. M(t) = a+
∑k
j=1 bjt

pj with 0 < pj ≤ 1.

Remark 1.4. One can see that under our assumptions, the natural functional of (Pλ,γ) is not well defined. To
face this difficulty we propose a suitable modification on the nonlinearity fγ(s) := s5 + γ|s|p−1s such that the
energy functional associated to the modified problem has compactness and allow us to prove the existence of a
ground state solution by using the minimax techniques. Next, by choosing a sufficiently large γ, we verify that
the solution of the auxiliary problem is indeed a solution to our original problem (Pλ,γ).

Using a similar approach as in Theorem 1.1, with some minor modifications, a more general result for the
following Kirchhoff problem can be proved.{

−M
(
‖∇u‖22

)
∆u+ Wλ(x)u = u5 + γ|u|p−1u in R3,

u > 0 in R3, u ∈ D1,2(R3),
(Qλ,γ)

where the family of pontentials Wλ verifies the following hypotheses:

inf
z∈R3

∫
B1(z)

Wλ(x) dx < 1; (V4)

There exists Ro > 0 and C > 0 such that inf
|x|≥Ro

Wλ(x)|x|p−1 > Cλ. (V5)

Theorem 1.5. Suppose that (V4)–(V5), (M1)–(M3) are satisfied and 3 < p < 5. Then, there exist γ∗ > 0 such
that for all γ ≥ γ∗ there is a λ∗ = λ∗(γ) > 0 such that (Qλ,γ) possesses a positive solution for all λ ≥ λ∗.

Example 1.6. As an example of a class of potentials which satisfies conditions (V4)–(V5) is given by Wλ(x) =
λ2/(λ|x|θ + 1) where 0 < θ < p− 1 for |x− z| ≥ r1 and Wλ bounded in |x− z| ≤ ro uniformly in λ > 0. Notice
that Wλ does not verifies (V1)–(V3).

Remark 1.7. According to some technical difficulties that appear in our argument due to the coefficient
of Kirchhoff, we must impose the hypothesis p > 3. This assumption implies the following crucial estimate
(p+ 1)M̂(t)− 2tM(t) ≥Mo(p− 3)t for all t > 0. This fact is important to prove that the Palais-Smale sequences
are bounded and converge in the Lebesgue space L6(R3) up to a subsequence. Moreover, we can obtain an upper
bound estimate for a mountain pass level associated with an auxiliary functional (see Prop. 2.2).
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1.3. Notation

Let us introduce the following notations:

– C, C̃, C1, C2,... denote positive constants (possibly different).
– BR(x0) denotes the open ball centered at x0 and radius R > 0.
– The norms in Lp(RN ) and L∞(RN ) will be denoted respectively by ‖ · ‖p and ‖ · ‖∞.
– on(1) denotes a sequence which converges to 0 as n→∞.

1.4. Outline

Our paper is organized as follows. In the Section 2, we consider some auxiliary functionals and we obtain
estimates for their mountain pass levels. Section 3 is devoted to a study of a L6-estimate on the solutions of
some auxiliary problem and its L∞-estimate is done in the Section 4. We conclude the proof of Theorem 1.1 in
the Section 5.

2. Preliminaries

In this section we show some properties for the Kirchhoff function M and its primitive M̂ with M̂(0) = 0,

that is, M̂(t) =
∫ t

0
M(τ) dτ . We also obtain upper bound estimates for mountain pass levels for certain energy

functional associated to an auxiliar problem.

Lemma 2.1. The following properties involving M and its primitive M̂ hold:

(a) M̂(t) ≥Mot, for all t > 0;
(b) Conditions (M2)–(M3) imply that the map t 7→ 2M̂(t)− tM(t) is non-decreasing for t > 0;
(c) If p > 3, conditions (M2)–(M3) imply that

(p+ 1)M̂(t)− 2tM(t) ≥Mo(p− 3)t, for all t > 0.

Proof. It is easy to check that (M1) implies that M̂(t) ≥Mot, for all t > 0, thus (a) holds.
Let us define A(t) = 2M̂(t)− tM(t) . For 0 ≤ s ≤ t, it is not difficult to verify that

1

2
(A(t)−A(s)) =

∫ t

s

(
M(τ)

τ
− M(t)

t

)
τ dτ +

∫ s

0

(
M(s)

s
− M(t)

t

)
τ dτ .

Hence A(t) is non-decreasing function provided that M(t)/t is non-increasing.
Still about M , condition (M3) holds if, and only if, 2M̂(t)− tM(t) is non-decreasing for t > 0. When p > 3,

we have for all t > 0,

(p+ 1)M̂(t)− 2tM(t) = (p− 3)M̂(t) + 2[2M̂(t)− tM(t)]

≥ (p− 3)M̂(t)

≥Mo(p− 3)t,

which implies that (c) holds.

We start observing that from (V1), we can introduce the natural Hilbert space

E =

{
v ∈ D1,2(R3) :

∫
R3

Vλ(x)v2 dx <∞
}
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endowed with the scalar product and norm given, respectively, by

〈u, v〉 =

∫
R3

(∇u · ∇v + Vλ(x)uv) dx, ‖u‖2 =

∫
R3

(
|∇u|2 + Vλ(x)u2

)
dx.

An initial difficulty that appears to attach variational problems like (Pλ,γ) in the case that the potential
converges to zero at infinity is that, in general, we do not have the embedding “E ↪→ Lp+1(R3)” for 2 ≤ p < 5
and the Euler-Lagrange functional associated to (Pλ,γ) is not well defined in E. For this reason, we will consider
an auxiliary problem defined in bounded domains as we will see later.

From (V2), without loss of generality, we suppose that V (x) = 0 for all x ∈ B1(0). Now let us consider the
energy functional I0 : H1

o (B1(0))→ R defined by

I0(u) =
1

2
M̂(||∇u||2L2(B1(0))) +

1

2

∫
B1(0)

Z(x)u2 dx− γ

p+ 1

∫
B1(0)

|u|p+1 dx.

It is clear that I0 is well defined, belongs to class C1 and does not depend on λ. Moreover, under our assumptions
one can verify that I0 has the mountain pass geometry and thus it is well defined the mountain pass level:

dγ = inf
v∈H1

o(B1(0))
max
t>0

I0(tv).

The next proposition is a crucial upper bound estimate on this minimax level.

Proposition 2.2. There exist constants Cp > 0 and γo > 0 such that for all γ ≥ γo it holds

0 < dγ ≤
Cp

γ
2

p−1

.

In particular dγ → 0 as γ → +∞.

Proof. Let vo ∈ C∞0 (R3) such that 0 ≤ vo ≤ 1 and define

a := ||∇vo||2L2(B1(0)), b :=

∫
B1(0)

Z(x)v2
o dx, c := ||vo||p+1

Lp+1(B1(0)).

Let us estimate maxt>0 I0(tvo). It is clear that the function h(t) := I0(tvo) has a unique critical point which is
a global maximum point. Indeed, h′(t) = 0 is equivalent to

aM(at2)t+ bt− γctp = 0.

Thus,

M(at2)

at2
+

b

a2t2
=
γctp−3

a2
.

Since the left side in the last equality is decreasing and the right side is increasing, we have only one t > 0 such
that h′(t) = 0.

We also have for γ > 0 sufficiently large,

2h(1) = M̂(a) + b− 2γc

p+ 1
< 0.
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If to is the critical point of h(t), it is easy to check that h(t) is increasing in (0, to) and it is decreasing in (to,∞).
Then, since h(1) < 0, we must have to < 1 such that

max
t>0

h(t) = h(to).

From condition (M1)–(M2), for any a > 0, we have

M̂(at) =

∫ at

0

M(s) ds ≤M(a)at, for all 0 < t ≤ 1,

which implies

h(to) ≤
[M(a)a+ b] t2o

2
− γctp+1

o

p+ 1
≤ max

t>0
H(t) = H(tM )

where

H(t) =
At2

2
− γctp+1

p+ 1
and A = M(a)a+ b.

It is easy to see that

max
t>0

H(t) = H(tM ) =
A

p+1
p−1

c
2

p−1

(
1

2
− 1

p+ 1

)
1

γ
2

p−1

where tM =

(
A

c

) 1
p−1 1

γ
1

p−1

.

Thus, setting

Cp :=
A

p+1
p−1

c
2

p−1

(
1

2
− 1

p+ 1

)
,

we obtain the following estimate

dγ = inf
v∈H1

o(B)
max
t>0

I0(tv) ≤ max
t>0

I0(tvo) ≤ H(tM ) =
Cp

γ
2

p−1

(2.1)

which completes our proof.

From Proposition 2.2, we can choose γ∗ > 0 such that for all γ ≥ γ∗ it holds

2(p+ 1)

Mo(p− 3)
dγ < min

{
1,

(MoS)
3
2

M(1)
,
M

1
2
o S

3
2

2
√

2

}
, (2.2)

where S is the best constant for the Sobolev embedding D1,2(R3) ↪→ L6(R3), that is,

S = inf
{
||∇v||22 : v ∈ D1,2(R3), ||v||6 = 1

}
.

3. Auxiliary problem

We begin this section by recalling that since we deal with a class of potentials that may decay to zero
at infinity, the variational method cannot be applied directly, because the natural Euler-Lagrange functional
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associated with Problem (Pλ,γ) is not well defined on the space E. To overcome this difficulty, we are going to
modify the critical nonlinearity fγ(s) := s5 + γ|s|p−1s as follows: choose R ≥ 1 and define

g(x, s) =


fγ(s), if x ∈ BR or fγ(s) ≤ Vλ(x)

p+ 1
s,

Vλ(x)

p+ 1
s, if x /∈ BR and fγ(s) >

Vλ(x)

p+ 1
s.

Let us consider the auxiliar problem

−M(‖∇u‖2)∆u+ Vλ(x)u = g(x, u), in R3. (AP)

It is easy to check that g(x, s) is a Carathéodory function and its primitive

G(x, s) =

∫ s

0

g(x, τ) dτ

is such that

G(x, s) = Fγ(s) if x ∈ BR or fγ(s) ≤ Vλ(x)

p+ 1
s,

where

Fγ(s) =

∫ s

0

fγ(τ) dτ =
s6

6
+
γ|s|p+1

p+ 1
.

Moreover, since f(s)/s is increasing for s > 0 and decreasing if s < 0, one can see that

sg(x, s) ≤ s6 + γ|s|p+1, for all s ∈ R; (g1)

sg(x, s)− (p+ 1)G(x, s) ≥
[

1

p+ 1
− 1

2

]
Vλ(x)s2, for all s ∈ R; (g2)

sg(x, s) ≤ Vλ(x)

p+ 1
s2, for all s ∈ R and x ∈ BcR; (g3)

Using standard arguments, from condition (g3), the corresponding energy functional J : E → R given by

J(u) =
M̂(||∇u||22)

2
+

1

2

∫
R3

Vλ(x)u2 dx−
∫
R3

G(x, u) dx,

is well defined and of class C1 with

J ′(u)v = M(||∇u||22)

∫
R3

∇u∇v dx+

∫
R3

Vλ(x)uv dx−
∫
R3

g(x, u)v dx for all u, v ∈ E.

From our assumptions, one can see that J fulfills the mountain pass geometry, and then the minimax level

cλ,γ = inf
v∈E

max
t>0

J(tv)
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is well defined, and satisfies 0 < cλ,γ ≤ dγ due to J(v) ≤ I0(v) for all v ∈ H1
0 (B1(0)). We can use the Ekeland

Variational Principle [14] to produces a Palais-Smale sequence (un) ⊂ E at the minimax level cλ,γ , that is,

J(un)→ cλ,γ and J ′(un)→ 0. (3.1)

Lemma 3.1. The sequence (un) is bounded in E and ||∇un||2 ≤ 1, for large n.

Proof. Indeed, using (3.1) for n big enough, we have

cλ,γ + 1 + ‖un‖ ≥ J(un)− (p+ 1)−1J ′(un)un.

Thus, by Lemma 2.1 item (c) and (g2), we obtain

dγ + 1 + ‖un‖ ≥

[
M̂(||∇un||22)

2
− ||∇un||

2
2M(||∇un||22)

p+ 1

]

+

(
1

2
− 1

p+ 1

)∫
R3

Vλ(x)u2
n dx+

∫
R3

[
1

p+ 1
g(x, un)un −G(x, un)

]
dx

≥
(

1

2
− 1

p+ 1

)(
1− 1

p+ 1

)∫
R3

Vλ(x)u2
n dx+

Mo(p− 3)

2(p+ 1)
||∇un||22.

This last inequality shows that (un) is bounded in E. Besides, using (2.2), for all n large enough, we have

||∇un||22 ≤ (dγ + on(1))
2(p+ 1)

Mo(p− 3)
≤ 1, (3.2)

which completes the proof.

Lemma 3.2. Up to a subsequence, we have that (un) converges in L6(R3).

Proof. We may suppose that un ⇀ u weakly in D1,2(R3), |∇un|2 and |un|6 converge tightly to µ and ν, where
µ and ν are bounded nonnegative measures on R3. Moreover, un → u in Lrloc(R3), for all 2 ≤ r < 6. Then, in
view of Lions concentration compactnes principle (see [28], Lem. I.1, p. 158), we have

1. there exists a sequence (νj)j∈N in R+, (xj)j∈N in R3 such that

ν = u6 +

∞∑
j=1

νjδxj ;

2. besides, we have

µ ≥ |∇u|2 + S

∞∑
j=1

ν
1
3
j δxj .

Let φ ∈ C∞o (R3, [0, 1]) such that φ(x) = 1, if |x| ≤ 1/2 and φ(x) = 0 if |x| ≥ 1. For each ε ∈ (0, 1) let us
consider

φε(x) = φ

(
x− xj
ε

)
.

Notice that if 2 ≤ r < 6,

lim
n

∫
R3

φε|un|r dx =

∫
R3

φε|u|r dx := Bε,u,r
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and for each fixed u ∈ E, we have supp(φε) ⊂ B(0, 1) and |φε|u|r| ≤ |u|r. Thus by Lebesgue’s dominated
convergence theorem,

lim
ε→0

Bε,u,r = 0.

From (g1) we get ∣∣∣∣∫
R3

(unφε)g(x, un) dx

∣∣∣∣ ≤ γ ∫
R3

φε|un|q+1 dx+

∫
R3

φεu
6
n dx

and consequently

lim sup
n

∣∣∣∣∫
R3

(unφε)g(x, un) dx

∣∣∣∣ ≤ C (Bε,u,q+1 +

∫
R3

ϕε dν

)
.

By using a Hölder inequality we obtain

∣∣∣∣∫
R3

un∇φε∇un dx

∣∣∣∣ ≤ ε−1

(∫
|x−xj |≤2ε

u2
n dx

) 1
2
(∫
|x−xj |≤2ε

|∇un|2 dx

) 1
2

.

As (un) is bounded in E we have

∣∣∣∣∫
R3

un∇φε∇un dx

∣∣∣∣ ≤ C
(∫
|x−xj |≤2ε

u2
n dx

) 1
2

, for all n, ε

and

lim sup
n

∣∣∣∣∫
R3

un∇φε∇un dx

∣∣∣∣ ≤ C
(∫
|x−xj |≤2ε

u2 dx

) 1
2

, for all ε,

which shows that

lim
ε→0

(
lim sup

n

∣∣∣∣∫
R3

un∇φε∇undx

∣∣∣∣) = 0.

Now, we can see that

on(1) = J ′(un)(unφε) = M(||∇un||22)

∫
R3

∇un∇(unφε) dx

+

∫
R3

V (x)un(unφε)) dx−
∫
R3

g(x, un)(unφε) dx

= M(||∇un||22)

∫
R3

|∇un|2φε dx+

∫
R3

Vλ(x)u2
nϕε dx

+M(||∇un||22)

∫
R3

un∇φε∇un dx−
∫
R3

g(x, un)(unφε)) dx,
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or,

M(||∇un||22)

∫
R3

|∇un|2φε dx+

∫
R3

Vλ(x)u2
nφε dx

= −M(||∇un||22)

∫
R3

un∇φε∇un dx+

∫
R3

g(x, un)(unφε)) dx+ on(1).

As a consequence of (3.2) and (M.1), M(||∇un||22) is a bounded sequence between Mo and M(1). We can suppose
that M(||∇un||22) converges to some mo ∈ [Mo,M(1)]. Passing to the limit as n→∞ we have:

∣∣∣∣mo

∫
φεdµ+Bε,u,2 −

∫
φε dν

∣∣∣∣ ≤ C
Bε,u,q+1 +

(∫
|x−xj |≤ε

u2 dx

)1/2
 ,

for all ε. Passing to the limit as ε→ 0,

moµ({xj}) = ν({xj}) = νj .

Combining with part (2) of Lions Lemma

µ({xj}) ≥ Sν1/3
j

we have

νj ≥ moSν
1/3
j ≥MoSν

1/3
j

and thus, if νj > 0 we obtain

ν
2/3
j ≥MoS,

which implies that

moµ({xj}) = νj ≥ (MoS)3/2. (3.3)

We know that,

cλ,γ + on(1) = J(un)− 1

p+ 1
J ′(un)un,

which together Lemma 2.1 gives

cλ,γ =

[
1

2
M̂(||∇un||22)− 1

p+ 1
M(||∇un||22)||∇un||22

]
+

[
1

2
− 1

p+ 1

] ∫
R3

Vλ(x)u2
nφε dx

+

∫
R3

(
1

p+ 1
ung(x, un)−G(x, un)

)
dx+ on(1)

≥ Mo(p− 3)

2(p+ 1)

∫
R3

|∇un|2φε dx+ on(1) + oε(1).
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Passing to the limit as n→ +∞, we obtain

cλ,γ ≥
Mo(p− 3)

2(p+ 1)

∫
R3

φε dµ+ oε(1).

Taking to the limit as ε→ 0, we have

cλ,γ ≥
Mo(p− 3)

2(p+ 1)
µ({xj}).

We also note that assumption (3.3) implies

cλ,γ ≥
Mo(p− 3)

2mo(p+ 1)
(MoS)3/2 ≥ Mo(p− 3)

2M(1)(p+ 1)
(MoS)3/2.

Now, if νj > 0 we can deduce

cλ,γ ≥
Mo(p− 3)

2M(1)(p+ 1)
(MoS)3/2, (3.4)

which is a contradiction with the inequality cλ,γ ≤ dγ and (2.2). Then νi = 0 for all i and, un converges to u in
L6(R3).

Lemma 3.3. The following limits hold for the sequence (un):

lim
n

∫
R3

Vλ(x)u2
n dx =

∫
R3

Vλ(x)u2 dx, (3.5)

lim
n

∫
R3

g(x, un)un dx =

∫
R3

g(x, u)u dx, (3.6)

lim
n

∫
R3

g(x, un)v dx =

∫
R3

g(x, u)v dx, ∀v ∈ E (3.7)

lim
n

∫
R3

G(x, un) dx =

∫
R3

G(x, u) dx. (3.8)

Proof. We start with the following claim:

lim
r→∞

∫
|x|≥r

[
|∇un|2 + Vλ(x)u2

n

]
dx = 0, uniformly in n. (3.9)

In fact, let us consider a cut-off function η ∈ C∞0 (Bcr , [0, 1]) such that η(x) = 1 for all |x| ≥ 2r and |∇η(x)| ≤ 2/r
for all x ∈ R3. Since (un) is bounded in E, the sequence (ηun) is also bounded in E, and then J ′(un)(ηun) =
on(1), that is,

M(||∇un||22)

∫
R3

∇un∇(ηun) dx+

∫
R3

Vλ(x)un(ηun) dx =

∫
R3

g(x, un)(ηun) dx+ on(1).

Since η(x) = 0 for all |x| ≤ r, using (g3) we obtain

M(||∇un||22)

∫
|x|≥r

η
[
|∇un|2 + Vλ(x)u2

n

]
dx ≤

1

p+ 1

∫
|x|≥r

ηVλ(x)u2
n dx−M(||∇un||22)

∫
|x|≥r

un∇un∇η dx+ on(1),
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which together with hypothesis (M2) implies

(
Mo −

1

p+ 1

)∫
|x|≥r

η
[
|∇un|2 + Vλ(x)u2

n

]
dx ≤ 2

M1

r

∫
r≤|x|≤2r

|un||∇un| dx + on(1), (3.10)

where M1 = M(1). Using Hölder inequality, we can estimate

∫
r≤|x|≤2r

|un||∇un| dx ≤ ‖∇un‖L2(R3)

(∫
r≤|x|≤2r

|un|2 dx

)1/2

Since un → u strongly in L2(B2r \Br) and ‖∇un‖L2(R3) ≤ 1, it follows that

lim sup
n

∫
r≤|x|≤2r

|un||∇un| dx ≤

(∫
r≤|x|≤2r

|u|2 dx

)1/2

(3.11)

On the other hand, Hölder inequality implies

(∫
r≤|x|≤2r

|u|2 dx

)1/2

≤ r

(∫
r≤|x|≤2r

|u|6 dx

)1/6(
28

3
π

)1/3

which together with (3.11) implies

lim sup
n

∫
r≤|x|≤2r

|un||∇un| dx ≤ r
(

28

3
π

)1/3
(∫

r≤|x|≤2r

|u|6 dx

)1/6

(3.12)

(3.10) and (3.12) show the claim.
Since un → u strongly in L2

loc(R3), (3.5) follows from (3.9). To prove (3.6)–(3.7), we can use (3.5) together
with condition (g3).

Using Lemmas 3.2 and 3.3 we can show that u is a weak solution for the problem

−mo∆u+ Vλ(x)u = u5 + g(x, u),R3

and

mo||∇u||22 +

∫
R3

Vλ(x)u2 dx =

∫
R3

u6 dx+

∫
R3

g(x, u)u dx.

Now passing to the limit in

M(||∇un||22)||∇un||22 +

∫
R3

Vλ(x)u2
n dx =

∫
R3

|un|6 dx+

∫
R3

g(x, un)un dx+ on(1),

and recalling that limnM(||∇un||22) = mo, we conclude that

lim
n
||∇un||22 = ||∇u||22.
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Then un converges to u in E and J(u) = cλ,γ . Therefore u is a ground state solution of auxiliary problem (AP)
which depends on R and satisfies

||∇u||22 ≤ dγ
2(p+ 1)

Mo(p− 3)
, for all R > 1,

further,

||u||26 ≤ S−1||∇u||22 ≤ dγ
2(p+ 1)

MoS(p− 3)
(3.13)

independent on the choice of R > 1. Combining (2.1) and (3.13) we have that

||u||6 ≤ Cγ−
1

p−1 . (3.14)

4. A PRIORI estimates in the L∞(R3) norm

We derive some a priori L∞ − estimates for the solutions of Auxiliary Problem (AP). For that we follow
some extraordinary ideas due to E. De Giorgi, J. Nash and J. Moser, to obtain regularity results that were
discovered in the mid 1950’s and early 1960’s. For more details see for example [12, 17, 22].

Theorem 4.1. Let u be a solution of (AP) then

‖u‖∞ ≤ Cγ
7p−19
6(p−1) ,

where C is a positive constant.

Before we prove the above estimate we will need to provide some crucial results. First let us state a version
of ([17], Thm. 8.17) which is suitable to our purpose.

Lemma 4.2. Let b : RN 7→ R be a nonnegative measurable function and let h ∈ Lqloc(RN ) such that

[h]q = sup
z∈RN

(∫
B2(z)

|h|q dx

)1/q

<∞,

where 3 ≤ N < 2q. Suppose that v ∈ E is a weak solution of the problem

−∆v + b(x)v = h(x) in RN . (4.1)

Then we have

sup
x∈B1(z)

|v(x)| ≤ C [h]q

(∫
B2(z)

|v|2
∗

dx

)1/2∗

for all z ∈ RN ,

where C depends only on q (it does not depend on b or v).

Proposition 4.3. Let the potential Vo : R3 7→ R be a nonnegative measurable function and the nonlinear term
g(x, s) be a Caratheodory function such that some αo, βo > 0,

|g(x, s)| ≤ αo|s|5 + βo|s| for all (x, s) ∈ R3 × R.

Suppose that u ∈ E is a weak solution of the problem

−∆u+ Vo(x)u = g(x, u) in R3 (4.2)



14 J. MARCOS DO Ó ET AL.

satisfying

(C) 4αo||u||46 ≤ S.

Then there is Λ such that

||u||∞ ≤ Λ||u||26,

where Λ does not depend on V or u, indeed Λ depends only on βo. In addition we have Λ = O(β
7/6
o ) as βo →∞.

Proof. For each n ∈ N let us consider the sets

An = {x ∈ R3 : u4 ≤ n2} and Bn = R3 \An.

and define the function vn ∈ E by

vn = u5 in An and vn = n2u in Bn.

Observe that vn ∈ E, vnu ≤ u6 in R3,

∇vn = 5u4∇u in An and ∇vn = n2∇u in Bn. (4.3)

Then, using vn as a test function in (4.2),∫
R3

[∇u∇vn + Vo(x)uvn] dx =

∫
R3

g(x, u)vn dx.

From (4.3) we have ∫
R3

∇u∇vn dx = 5

∫
An

u4|∇u|2 dx+ n2

∫
Bn

|∇u|2 dx. (4.4)

Now consider

ωn = u3 in An and ωn = nu in Bn.

Note that ω2
n = uvn ≤ |u|6, 0 ≤ Vo(x)ω2

n = Vo(x)uvn in R3. Moreover,

∇ωn = 3u2∇u in An and ∇ωn = n∇u in Bn.

Thus, ∫
R3

|∇ωn|2 dx = 9

∫
An

u4|∇u|2 dx+ n2

∫
Bn

|∇u|2 dx. (4.5)

Combining (4.4) and (4.5), we obtain∫
R3

[
(|∇ωn|2 + Vo(x)ω2

n

]
dx−

∫
R3

[∇u∇vn + Vo(x)uvn] dx = 4

∫
An

u4|∇u|2 dx.

From (4.4) we have the inequality

5

∫
An

u4|∇u|2 dx ≤
∫
R3

[∇u∇vn + Vo(x)uvn] dx,
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and then ∫
R3

[
|∇ωn|2 + Vo(x)ω2

n

]
dx ≤ 9

5

∫
R3

[∇u∇vn + Vo(x)uvn] dx.

Since u a weak solution of (4.2), we have∫
R3

[
|∇ωn|2 + Vo(x)ω2

n

]
dx ≤ 9

5

∫
R3

g(x, u)vn dx ≤ 2

∫
R3

g(x, u)vn dx. (4.6)

Observe that g(x, u)vn ≤ αo|u|5|vn|+ βo|u||vn| = αou
4w2

n + βow
2
n in R3. From the Hölder inequality, we get∫

R3

[
|∇ωn|2 + Vo(x)ω2

n

]
dx ≤ 2αo

∫
R3

|u|4w2
n dx+ 2βo

∫
R3

w2
n dx

≤ 2αo||u||46||wn||26 + 2βo

∫
R3

ω2
n dx.

Combining this last inequality with the Sobolev inequality bellow

S||wn||26 ≤
∫
R3

|∇ωn|2 dx ≤
∫
R3

[
|∇ωn|2 + Vo(x)ω2

n

]
dx,

under hypothesis (C), we have

[∫
An

|ωn|6 dx

] 2
6

≤
[∫

R3

|ωn|6 dx

] 2
6

≤ 4βoS
−1

∫
R3

ω2
n dx,

which together with the fact that |ωn| ≤ |u|3 in R3 and |ωn| = |v|3 in An implies

[∫
An

|u|18 dx

] 1
18

≤ (4βoS
−1)

1
6

[∫
R3

|u|6 dx

] 1
6

. (4.7)

Passing to the liminf in (4.7) and using Fatou’s lemma we obtain

||u||18 ≤ (4βoS
−1)

1
6 ||u||6. (4.8)

Thus u ∈ L18(R3)∩L6(R3), which implies that h = αo|u|5 +βo|u| ∈ L
18
5

loc(R3). Moreover, from (4.8) and condition
(C), we obtain

[h] 18
5
≤ αo||u||518 + Cβo||u||18 ≤ αo(4βoS−1)

5
6 ||u||56 + Cβo(4βoS

−1)
1
6 ||u||6

≤
(
αo(4βoS

−1)
5
6 ||u||46 + Cβo(4βoS

−1)
1
6

)
||u||6

≤ C
(
β

5
6
o + β

7
6
o

)
||u||6.

From Lemma 4.2 there exists a positive constant Λ which depends only on βo such that

||u||∞ ≤ Λ||u||26

and the proof is completed.
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4.1. Proof of Theorem 4.1 completed

The choice of dγ in (2.2) together (3.13) show that a solution u = uR above satisfies

−∆u+
Vλ(x)

M(||∇u||22)
u =

1

M(||∇u||22)
u5 +

γ

M(||∇u||22)
|u|p−1u

and

8

M(||∇u||22)
||u||46S

−1 ≤ 8

Mo
||u||46S−1 ≤ 1.

We will use Proposition 4.3 with αo = 2M−1
o . Since

|g(x, s)| ≤M−1
o (|s|5 + γ|s|p) ≤ 2M−1

o |s|5 +M−1
o γ

4
5−p |s|,

from Proposition 4.3 with βo = M−1
o γ

4
5−p we have:

||u||∞ ≤ CΛ||u||26 ≤ Cγ
7
6 γ

−2
p−1 .

Now we have a family of solutions u = uR of the auxiliary problems (AP) in L∞ and

||u||∞ ≤ Cγ
7p−19
6(p−1) . (4.9)

where C is a positive constant.

5. Proof of Theorem 1.1

We need to show that a solution u ∈ E of the auxiliary problem satisfies

f(u) ≤ Vλ(x)

p+ 1
u in |x| ≥ R. (5.1)

Lemma 5.1. For any ground state solution of Problem (AP) it holds

u(x) ≤ R||u||∞
|x|

, for all |x| ≥ R. (5.2)

Proof. We notice that the function

v(x) :=
R||u||∞
|x|

for x ∈ R3 \ {0}

is harmonic and u(x) ≤ v(x) if |x| = R. Let us consider the following test function

ω(x) :=

{
max{u− v, 0}, if |x| ≥ R;

0, if |x| ≤ R.
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It is easy to see that ω ≥ 0 and ω ∈ D1,2(R3). Since u is ground state solution of Problem (AP) we can see
that ∫

R3

|∇ω|2 dx =

∫
R3

∇(u− v)∇ω dx

=
1

M(‖u‖22)

∫
|x|≥R

(g(x, u)ω − Vλ(x)uω) dx

Thus, using (g3), we obtain∫
R3

|∇ω|2 dx ≤
(

1

p+ 1
− 1

)
1

M(‖u‖22)

∫
R3

V (x)uω dx ≤ 0,

which implies that ω ≡ 0, and consequently we have

ω(x) ≤ v(x) =
R||u||∞
|x|

for all |x| ≥ R

which is the desired conclusion.

Lemma 5.2. There exists Co > 0 such that for any ground state solution of Problem (AP) it holds

f(u)

u
≤ Co

(
R

|x|

)p−1

γ
7p−13

6 , for all |x| ≥ R. (5.3)

Proof. From Lemma 5.1 we have

f(u)

u
= u4 + γ|u|p−1 ≤ R4||u||4∞

|x|4
+ γ

Rp−1||u||p−1
∞

|x|p−1

which together with (4.9) gives

f(u)

u
≤ R4C4γ

2(7p−19)
3(p−1)

|x|4
+ γ

Rp−1Cp−1γ
(p−1)(7p−19)

6(p−1)

|x|p−1

≤ R4C4γ
2(7p−19)
3(p−1)

|x|4
+
Rp−1Cp−1γ

7p−13
6

|x|p−1

≤
[
R4C4

|x|4
+
Rp−1Cp−1

|x|p−1

]
γ

7p−13
6

=
Rp−1

|x|p−1

[
Cp−1 + C4 R

5−p

|x|5−p

]
γ

7p−13
6

≤ Co
(
R

|x|

)p−1

γ
7p−13

6 ,

where Co = (Cp−1 + C4) and we have used |x| ≥ R and γ ≥ 1.

5.1. Proof of Theorem 1.1 completed

From condition (V3) there exists R1 > 0 and c1 > 0 such that

|x|p−1V (x) ≥ c1 for all |x| ≥ R1. (5.4)
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On the other hand, since Vλ(x) ≥ λV (x), using (5.3) and taking R > R1 we can see that

f(u)

u
≤ Vλ(x)

p+ 1
for all |x| ≥ R,

provided that

λ ≥ co
c1

(p+ 1)γ
7p−13

6

and consequently u solution of auxiliary Problem (AP) is indeed solution of original Problem (Pλ,γ).
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