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NUMERICAL RECONSTRUCTION OF THE FIRST BAND(S)
IN AN INVERSE HILL’S PROBLEM

ATHMANE BAKHTA!, VIRGINIE EHRLACHER?"* AND DAVID GONTIER?

Abstract. This paper concerns an inverse band structure problem for one dimensional periodic
Schrodinger operators (Hill’s operators). Our goal is to find a potential for the Hill’s operator in order
to reproduce as best as possible some given target bands, which may not be realisable. We recast
the problem as an optimisation problem, and prove that this problem is well-posed when considering
singular potentials (Borel measures).
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1. INTRODUCTION

The aim of this article is to present new considerations on an inverse band structure problem for periodic
one-dimensional Schrodinger operators, also called Hill’s operators. A Hill operator is a self-adjoint, bounded
from below operator of the form AY := —% + V, acting on L?(R), and where V is a periodic real-valued
potential. Its spectrum is composed of a reunion of intervals, which can be characterised using Bloch—Floquet
theory as the reunion of the spectra of a family of self-adjoint compact resolvent operators A};, indexed by
an element ¢ € R called the quasi-momentum or k-point (see [21], Chap. XIII and Sect. 2.1). For each ¢ € R,
the spectrum of A(‘I/ is a non-decreasing sequence of eigenvalues (E(‘Ifn)neN* going to infinity as n — 4o0. For
any m € N*, the function R 5 ¢ — 5‘qu is called the mth band function associated to the periodic potential
V. The properties of these band functions are well-known, especially in the one-dimensional case (see e.g. [21],
Chap. XIII).

The optimisation of the band structure of such Hill’s operators is an interesting mathematical question of
practical interest, which can be roughly formulated as follows: is it possible to find a potential V' so that its M
first bands (Exm)lngM are close to some target functions (by,(q))1<m<n ?

A wide mathematical literature answers the question when the target functions are indeed the bands of
some Hill’s operator, corresponding to some Vier (i.e. when by, () = e¥%f). In this case, we need to recover a
potential V' that reproduces the bands of Vi.. This problem is called an inverse spectral problem. We refer
to [3-5, 7, 20, 23] for the case when Vie is a regular potential, and to [11-15] when Vi is singular (see also

the review [17]). The main ideas of the previous references are as follows. First, the band structure of a Hill’s
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operator can be seen as the transformation of an analytic function. In particular, the knowledge of any band on
an open set is enough to recover theoretically the whole band structure. A potential is then reconstructed from
the high energy asymptotics of the bands.

The previous methods use the knowledge of the behaviour of the high energy bands, and therefore are
unsuitable for practical purpose (material design) since we usually have no accurate and numerically stable
information about these high energy bands. Moreover, in practice, only the low energy bands are usually of
interest, and are generally computed only on a finite set of quasi-momenta. An additional difficulty is the
following: there exists no explicit characterisation of the set of functions {Ez‘z/ﬂnh <M for a reasonable class
of potentials V. For applications, it is interesting to know how to construct a potential such that only its first
bands are close to some given target functions, which may not be realisable (for instance not analytic). Such an
issue arises for instance for the design of photovoltaic materials. Indeed, the efficiency of a crystalline solar cell
depends on the band structures of the semiconducting materials entering its composition. The proposed work
can be seen as a simplified version of this question. Identifying a periodic potential is a first (yet not sufficient)
hint to the identification of an optimal material (which should ideally be described by its chemical composition).

In this work, we recast the inverse problem as an optimisation problem. More precisely, for a given set of
target functions (b, (¢))1<m<nm, we look for a potential V' that minimises the error Zf\le fq b (q) — €Y, dg.
Our main result (Thm. 2.3) states that there exists at least one minimiser, in the case M = 1, in some class of
singular potentials. Of course, this minimiser cannot be unique, due to the well-known isospectrality properties
of one-dimensional Schrodinger operators (see for instance [21], Thm. XII1.93). The second part of this work
is devoted to the numerical resolution of this minimisation problem. Two main issues arise when it comes to
practice: handling non-uniqueness of minimising potentials, and the fact that they might be singular. A natural
choice (which we make) consists in discretising periodic potentials in Fourier series. In this work, we investigate
how the choice of the Fourier cut-off affects the approximation of the bands. To the best of our knowledge, this
is the first time that such a least-square problem is considered from a theoretical or numerical point of view.
Let us mention here that other approaches, based on genetic algorithms, have been considered in the physics
and chemistry literature [24]. The latter are mainly data-driven and require the use of a large amount of true
experimental measures.

The outline of the paper is as follows. In Section 2, we recall basic properties about Hill’'s operators with
singular potentials and we state our main result (Thm. 2.3). Its proof is given in Section 3. Finally, we present
in Section 4 some numerical tests which illustrate some of our theoretical results.

2. SPECTRAL DECOMPOSITION OF PERIODIC SCHRODINGER OPERATORS,
AND MAIN RESULTS

In this section, we recall some properties of Hill’'s operators with singular potentials. Elementary notions on
the Bloch-Floquet transform [21] are gathered in Section 2.1. The spectral decomposition of one-dimensional
periodic Schrédinger operators with singular potentials is detailed in Section 2.2, building on the results of
[2, 9, 10, 16, 19]. We state our main results in Section 2.3.

2.1. Bloch-Floquet transform

We need some notation. Let D’ denotes the Schwartz space of complex-valued distributions, and let D{Der cD

be the space of distributions that are 27-periodic. In the sequel, the unit cell is T := [, 7), and the reciprocal
unit cell (or Brillouin zone) is T'* := [~1/2,1/2]. For u € Dy, and k € Z, the kth normalised Fourier coefficient

of u is denoted by u(k). For s € R, we denote by

Hpe = {u € Dpers ullirs,, =Y (1+ [k[*)*[a(k)|* < +oo}
k€EZ
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the complex-valued periodic Sobolev space, which is a Hilbert space when endowed with its natural inner

product. We write Hp, , for the real-valued periodic Sobolev space, i.e.

H,., = {u € Hiy, VkEZ, a(—k) = a(k)} .
We also let L2, := H32. From our normalisation, it holds that
dv d
Yo, w € L2, (v,w)rz,, = /Fﬁw and Vo,w € Hy,,, (v, wym,, = g éﬁ + /Fﬁw.

Lastly, we denote by C’ger the space of 2m-periodic continuous functions, and by C2° the space of C* functions
over R, with compact support.
To introduce the Bloch-Floquet transform, we let H := L?(T'*, Lger). For any element f € H, we denote by

fq(zx) its value at the point (¢,z) € I'* x I'. The space H is an Hilbert space when endowed with its inner
product

vioeH, (Law= [ [ T da
The Bloch-Floquet transform is the map B : L?(R) — H defined, for smooth functions ¢ € C°(R), by

bq(x) == (Byp), (z) :== Z o(a + R)ei1E+),

ReZ

It is an isometry from L?(R) to H, whose inverse is given by
(B7'¢) () = . Pg(w)e'™” dq = ().

The Bloch theorem states that if A is a self-adjoint operator on L?(R) with domain D(A) that commutes
with Z-translations, then BAB~! is diagonal in the g-variable. More precisely, there exists a unique family of

self-adjoint operators (Aq) . on L2, such that for all ¢ € L*(R) N D(A),

(4e)(e) = [ (Agdy)(a)da.

In this case, we write

D
A= Agdg.
F*

2.2. Hill’s operators with singular potentials

Giving a rigorous mathematical sense to a Hill’s operator of the form f% +V on L?(R), when the potential
V' is singular is not an obvious task. In the present paper, we consider V' & H;;;lr,rv which is a case that was first
tackled in [16] (see also [2, 9, 10, 19] for recent results).

The results which are gathered in this section are direct corollaries of results which were proved in these
earlier works, particularly in [10].
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Proposition 2.1. [[10], Thm. 2.1 and Lem. 3.2] For all V € H_. ., there exists oy € L2,

per,r’ and ky € R such
that

T

V =0y + Ky in D, (2.1)

Moreover, if a” : HY(R) x HY(R) — C is the sesquilinear form defined by

dv dw dv dw
v HY(R v = [ — — / v —/ — v— 2.2
v,we€ H*(R), a (v,w) e = T | mviw = | ov T ) (2.2)
then a" is a symmetric, continuous sesquilinear form on H'(R) x H(R), which is closed and bounded from

4

below. Besides, a" is independent of the choice of oy € L]2)c and ky € R satisfying (2.1).

T

Remark 2.2. The expression (2.2) makes sense whenever v,w € H!(R). This can be easily seen with the
Cauchy-Schwarz inequality, and the embedding H'(R) <+ L*°(R). It is not obvious how to extend this result to
higher dimension.

A direct consequence of Proposition 2.1 is that one can consider the Friedrichs operator on L?(R) associated
to a", which is denoted by AV in the sequel. The operator AV is thus a densely defined, self-adjoint, bounded
from below operator on L?(R), with form domain H'(R) and whose domain is dense in L?(R). Formally, it
holds that

vV _
AV =5 4V

The spectral properties of the operator A" can be studied (like in the case of regular potentials) using Bloch-
Floquet theory.
The previous result, together with Bloch-Floquet theory, allows to study the operator AV wvia its Bloch fibers

(Af‘z/)qer*' For q € I'*, it holds that Ac‘z/ is the self-adjoint extension of the operator
d 2
el V.
1 a1z +4q| +

2

It holds that A(‘I/ is a bounded from below self-adjoint operator acting on L; ., whose form domain is H}%er, and

with associated quadratic form a}’, defined by (recall that H],, is an algebra)

d d
1 v — - ; =
Yo,w € Hyop,  ay (v,w) = /F [(de + q) v (de + q> w| +(V, vw)ngthéer. (2.3)
In other words, we have
% C v
AV = / ) A, dg.
The fact that L2, is compactly embedded in H], implies that A} is compact-resolvent. As a conse-

\%4

qm)meN* going to +o00 and a corresponding

quence, there exists a non-decreasing sequence of real eigenvalues (5

orthonormal basis (u)

q,m)meN* of Lger such that

Vm € N¥, A}J/uv =V uy . (2.4)

q,m q,m7q,m
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The map ' sgq .—> eq m 1s called the mth band. Since the potential V is real-valued, it holds that AYq = Tg,
so that €V, =¢eV  for all ¢ € T* and m € N*. This implies that it is enough to study the bands on [0,1/2].
Actually, we have

oA = | U fegmt

q€[0,1/2] mEN*

In the sequel, we mainly focus on the first band. We write 5}; = &:(‘]/,1 for the sake of clarity. Thanks to the
knowledge of the form domain of A}I/, we know that

e/ = min a;/(u,v). (2.5)

This characterisation will be the key to our proof. When the potential V' is smooth (say V € Lper) then the

map I'* 3 ¢ — ¢, is analytic on (—1/2,1/2). Besides, it is increasing on [0,1/2] if m is odd, and decreasing if
m is even (see e.g. [21], Chap. XIII).

2.3. Main results

The goal of this article is to find a potential V' so that the bands of the corresponding Hill’s operator are
close to some given target functions. In order to do so, we recast the problem as a minimisation one, of the form

V* € argmin J (V).
Vevy

Unfortunately, we were not able to consider the full setting where the minimisation set V is the whole set H. pC}r .
The problem was that we were unable to control the negative part of V. To bypass this difficulty, we chose to
work with potentials that are bounded from below. Such a distribution is necessary a measure (see e.g. [18]).
Hence measure-valued potentials provide a natural setting for band reconstruction. We recall here some basic
properties about measures.

We denote by ./\/lger the space of non-negative 2m-periodic regular Borel measures on R, in the sense that for

all v € M., and all Borel set S € B(R), it holds that v/(S) = v(S +27) > 0, and v(I') < co. For all € > 0, from

the Sobolev embedding Hal2™ < €0, we deduce that M+, < Hpe/ > < H=L, where the last embedding
is compact. For v € M,

per? per per>’
we denote by V,, € H. the unique corresponding potential, which is defined by
duality through the relation:

per T

Vo € H,, /F odv = (Vo @)yt

porsHler
For B € R, we define the set of B-bounded from below potentials
={Ve Hp’ciﬂ,| Jve M;,rcr, V=V,-B}CH pcrr

This will be our minimisation space for our optimisation problem. Note that Vg, C Vg, for B; > Bs.
We now introduce the functional 7 to minimise. First, we introduce the set 7 of allowed target functions:

T :={be C°(T*), biseven and b is increasing on [0,1/2]} . (2.6)
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Of course, for all V € H! , it holds that I'* > ¢ s(‘; € 7. Finally, in order to quantify the quality of

per,r>
reconstruction of a band b € T, we introduce the error functional Jj, : H;ir — R defined by
Wl JV)=g [ b Pag= [ o) —< g (2.7)

The main result of the present paper is the following.

Theorem 2.3. Let b € T, and denote by b* := fF* b(q)dg € R. Then, for all B > 1/4 — b*, there exists a
solution Vi, g € Vg to the minimisation problem

Vo5 € argmin J, (V). (2.8)
Veve

Remark 2.4. Uniqueness cannot be expected due to the isospectrality properties of one-dimensional periodic
Schrodinger operators ([21], Chap. XIII). For instance, the potentials V(- + 7) and V(-) have the same band
structure for any 7 € R. In addition, for all ¢ > 0, the potential V' (¢,-) also has the same band structure, where
V (¢, ) is the solution of the Korteweg-de Vries equation [8]

1
0,V =3Va,V — iamié V(t=0,-)=Vo.

The proof of Theorem 2.3 relies on the following proposition, which is central to our analysis. Both the proofs
of Theorem 2.3 and Proposition 2.5 are provided in the next section.

Proposition 2.5. Let B € R and let (Vy,)pen< C V. For alln € N*| let v, € M,

per

such that'V,, :=V,, —B. Let

us assume that the sequence (58/") is bounded and such that v, (T") —+> +o00. Then, up to a subsequence
n—-+oo

neN*
(still denoted n), the functions q — et‘{" converge uniformly to a constant function € € R, with € > % —B. In

other words, there is € > i — B such that

max ‘5;/" — €| — 0. (2.9)
q€[0,1/2] n—00

— B, there is a sequence (Vy,), cn- C VB such that (2.9) holds.

Conversely, for all € > %

This result implies that the first band of the sequence of operators (AV")
assumptions of Proposition 2.5, becomes flat.

REN*? where (V},)nen- satisfies the

Remark 2.6. Here we have a sequence of first bands (Eé/“)neN* that converges uniformly to a constant function.
However, as the first band of any Hill’s operator must be increasing and analytic, the limit is not the first band
of a Hill’s operator.

3. PROOF OF THEOREM 2.3 AND PROPOSITION 2.5

3.1. Preliminary lemmas

We first prove some intermediate useful lemmas before giving the proof of Proposition 2.5 and Theorem 2.3.
We start by recording a spectral convergence result.

Proposition 3.1. [[10], Thm. 4.1] Let (V;,)nen- C Hpor o be a sequence such that (Vi,)nen- converges strongly
in H-L to some V € HZ\ . Then,

per per,r*

* Vi 14
Vm e N, max |e.n —€g | —— 0.
n—oo

q€[0,1/2]
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In our case, since we are working with potentials that are measures, we deduce the following result.

Proposition 3.2. Let B € R and (V,,)nen+ C VB be a bounded sequence, in the sense

sup (Voo, Ir) =1 ga < 00.
nEN P per

For alln € N*, let v, € M, such that V, =V, — B. Then, there exists v € M}, such that, up to a subse-
quence (still denoted n), (Vn)nen converges weakly-* to v in Mper, and (Vp)nen+ converges strongly in Hp_elr to

V .=V, — B € Vg. Moreover, we have

Ym € N*,  max ‘5};”;” — 6(‘I/m| — 0.
a€f0,1/2] " © T n—oo

Proof. The fact that we can extract from the bounded sequence (v,)nen+ a weakly-* convergent sequence in
./\/l;)"er is the Prokhorov’s theorem applied in the torus I'*. The second part comes from the compact embedding
Mper — H L. The final part is the direct application of Proposition 3.1. O

per*

Remark 3.3. This proposition explains our choice to consider measure-valued potentials. Note that a similar
result does not hold in the Lll)er setting for instance.

We now give a lemma which is standard in the case of regular potentials V' (see [6]).

Lemma 3.4. Let V € Vg for some B € R. The first eigenvector U,‘szo € le)er of A};/:O s unique up to a global
phase. It can be chosen real-valued and positive.

Proof. We use the min-max principle (2.5), and the fact that, for u € H}

per’

the following holds
i|u| < iu ae
dz ~ |dz .

We see that if u is an eigenvector corresponding to the first eigenvalue, then so is |u|. We now consider a non-
negative eigenvector v > 0, and prove that it is positive. The usual argument is Harnack’s inequality. However,
it is @ priori unclear that it works in our singular setting. To prove it, we write V =V, — B for v € Mger,
and consider the repartition function F, of v: F,(x) := v((0, z]). This function is not periodic, but the function

fu(z) = F,(z) — I/(F)% is. Since F, is an non decreasing, right-continuous function, we deduce that f, € L3;,.
Moreover, it holds, in the H.! sense, that f, =V, — [U|7'v(T') =V + B — |T|'»(T). As a result, we see that

() ()

u is solution to the minimisation problem
dv
There exists A € R so that the corresponding Euler-Lagrange equations can be written in the weak-form:

% € argmin / —
veH! r dx

per,r

oz, =

div F(z,u,u’") + G(z,u,u') = 0,
with
F(z,u,p) =p— fou and G(x,u,p) = fup+ Au.

We are now in the settings of ([22], Thm. 1.1), and we deduce that u > 0. The rest of the proof is standard. [
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3.2. Proof of Proposition 2.5

We now prove Proposition 2.5. Let B € R and let V,, =V, — B € Vp with v, € M;er, be a sequence such
‘/;L

that the sequence (5}{;0) is bounded and v, (T") goes to +oco. Since (50 ) is bounded, then up to a
neN* neN*

subsequence (still denoted by n), there exists e € R such that 5(‘)/" converges to €. Our goal is to prove that the
convergence also holds uniformly in ¢ € T*.
Let uy" € H}. be the L2 -normalised positive eigenvector of A" associated to the eigenvalue "

(see Lem. 3.4). We denote by «,, := minger u(‘)/" () > 0. Let us first prove that the following convergences
hold:

an/ uy* dv, ——— 0 and a2, (I') —— 0. (3.1)
r

n—-+o0o n—-+o0o

From the equality

d 2
[ @)+ [ b pan, =< + 5,

we get

ail/n(I‘) < an/

uy"d, < / lug™|?dv, < ey + B. (3.2)
r r

As the right-hand side is bounded, and v, (T") — +o0 by hypothesis, this implies «,, — 0. Moreover, we have
0= / ug” dvy = ay” (ug”, Ir) + B / ug" = (5" + B) / ug" < (e + B)[T|/2,
r r r

where we used the Cauchy-Schwarz inequality for the last part. As a result, we deduce that the sequence

( fF u(‘)/” dz/n> is bounded. The first convergence of (3.1) follows. The second convergence is a consequence
neN*
of the first inequality in (3.2).
Let x, € T' = [0,27) be such that a, = u(‘)/" (zn,). The fact that «,, — 0 implies that I, := Hu(‘)/ (xn + ) —
anll?2  — 1 and we can thus define for n large enough
per

“(‘)/n (Tn + ) — ay

||u2)/n (ajn + ) — a”||L123er )

n -

It holds that v, € H},,, [vnllrz,, = 1. Besides, we have v,(0) = 0. For g € I'*, we introduce the function vgn
defined by:

Ve € R, wgn(z) = v,(x)e " where we set [z] := x mod 2.

Thanks to the equality v, (0) = 0, it holds that v,, € H.,,, and that [vg,nllzz,, = 1. This function is therefore

per>
a valid test function for our min-max principle.'

% . . . . . . . . . . .
This construction only works in one dimension. We do not know how to construct similar test functions in higher dimension.
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From the min—max principle (2.5) and the expression (2.3), we obtain

Va Va
B+e," < B+a, (Vg,nsVg,n)

. d
= - —25 + q 'Uq’n

dvn
dz

2 2
+/|Uq’n|2dyn:/ +/|Un|2d’/n
r r r
_1 / i(uv”(x + ))2+/uv"(x +) — P dv,
_ln . dz 0 n - 0 n n n
1 d (vl Vi |2 v, 2
= — — " ™% dy, — 2ay, ™ dyy, (T
ln(/de(uo)\+/Fluo|v [ ulf v, + Zn(0)

1
=T (B + e(‘)/" — 2a, / u(‘)/" dv, + ozfll/n(r)> .
r

We infer from these inequalities, and from (3.1) that

1 1
vl < (B + 5(‘)/") <l - 1) +o (—Qan/ uy™ dv,, + aiun(F)) — 0.
n n r

n—-+o0o

This already proves the convergence (2.9).
To see that € > % — B, we write, for V =V, — B with v € MZ__ that

per

2 2

Vgel-1/2,1/2), AY = ]—id+q B>¢-B

4 dz

d
dx

2
is ¢% for ¢ € [~1/2,1/2] (this can be seen

d
where we used the fact that the lowest eigenvalue of ‘id +q
x

with the Fourier representation of the operator). As a consequence, for ¢ = %, we obtain that for all V € Vp,

5(‘1/:1/2 > 1 — B. The result follows.
To prove the converse, we exhibit an explicit sequence of measures (v, )nens C Mger such that E(‘;V” — i.

The general result will follow by taking sequences of the form V,, =V, + (6 - %) — B. We denote by d, the
Dirac mass at x € R, and consider, for A > 0, the measure

V) = /\Z(SQWJC S ./\/l:)rer. (3.3)
kEZ

From the first part of the Proposition, it is enough to check the convergence for ¢ = 0. We are looking for a
solution to (we denote by w3 := EX, > > 0 for simplicity)

—u” + Mou(0) = wiu, u>0, u2r)=wu(0). (3.4)
On (0,27), u satisfies the elliptic equation —u" = w?u, hence is of the form

’LL(CC) — Ceiw)\z 4 Defiwkz’
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for some C, D € R. The continuity of u at 27 implies Ce*™* + De~2i"“x = C' + D. Moreover, integrating (3.4)
between 0~ and 0% leads to the jump of the derivative —u’(0) + «/(27) + Au(0) = 0, or

iwy (D — C) +iwy (Ce*™* — De™?") + X\(C' + D) = 0.

We deduce that (C, D) is solution to the 2 x 2 matrix equation

1— 822'71'0.))\ 1— e—2i7rw>\ C 0
<—7;OJ)\ (1 _ 62““0)‘) + A iw,\ (1 _ e—2i7rw>\) =+ )\) (D) = (O> .

The determinant of the matrix must therefore vanish, which leads to

A sin(2
| = cos(2mwy) + 2 SmETA) (3.5)
2 wH

As A — o0, one must have wy — 1/2, or equivalently EX"* — 1/4. The result follows.

3.3. Proof of Theorem 2.3

We are now in position to give the proof of Theorem 2.3. Let b € T and B > 1/4 — b* where b* := fr* b(q) dg.
Let V,, =V,, — B C Vp be a minimising sequence associated to problem (2.8).

Let us first assume by contradiction that v, (I') — co. Then, according to Proposition 2.5, up to a subsequence
(still denoted by n), there exists £ > % — B such that 5}1/"' converges uniformly in ¢ € I'* to the constant function

€. Also, from the second part of Proposition 2.5, the fact that B > i — b* and the fact that b* is the unique
minimiser to

where Kp(c) := f[o 1/2] |b(g) — c|? dgq for all ¢ € R, it must hold that e = b*.
We now prove that

VienéB jb(V) 75 égﬂf{ ICb(C) = Kb(b*)

To this aim, we exhibit a potential W € Vg such that J,(W) < Kp(b*). Since b is continuous and increasing
on [0,1/2], there exists a unique ¢* € (0,1/2) such that b(¢*) = b*. We choose ¢ > 0 small enough such that
0<g*—d<q"+0<1/2, and set

=6 1/2 ) g +6
next — / |b(q) _ b*|2 dg +/ ‘b(q) — b*|2 dg and nlnt = / ‘b(q) — b*|2 dg,
0 7*+6 @=9

so that Kp(b*) = n°** + n'"t. Since b is increasing and continuous, we have n'™* > 0 and 7°** > 0, and b(¢* — ) <
b* < b(g* +d).

We now choose a constant o > 0 such that
int

85’

1
0<a<min{ B+b*—4,b*—b(q*—é),b(q*—i—é)—b*}.
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Let v, be the measure defined in (3.3) for A = n € N, and let

~ 1
W, =V, b* — —.
n + 4

Since EZV" converges to b* uniformly in I'*, there exists ng € N* large enough such that

Vg eI'", 53”0 —-b*| < o/2.

We then define

—~ 7 1 7 7a
Woi= Wy +b" —eri™ =V, + [(B—H)* - 4) - (EZY"O —b*)} - B.

Since 0 < B + b* — 1/4, it holds that W € Vg. Moreover, b* — o < :SZV < b* + o for all ¢ € T'*. Finally, for
q = q*, we have s(‘;‘f =b".
Let us evaluate J,(W). We get

q +6 1/2

1b(g) — e[ dg + / Ibq) — < 2dg.
q*+d

q =9
To(W) = / Ibg) — e [2 dg + /

*

For the first part, we notice that for 0 < ¢ < ¢* — J, we have
b(g) <blq* —08) <b* —o <eg <el =b".
This yields that
VO<qg<q =6, |b(g)—e)|=¢e) —blg) <b*—blq) = [b(q) — b".

Integrating this inequality leads to

q" =4 q" =9
|- [ o) - v P e
0 0

Similarly, we obtain that

1/2 1/2
/ bg) — ¥ P dg < / 1b(q) — b2 dg.
q q

Lastly, for the middle part, we have

q +é Wi W W 77int g +6 )
/ ) b(q) — e, |7 dg < 26 [e30 5 — g8 5] < 4d0 < 5 < / ) |b(q) — b*|* dg.
. -

Combining all these inequalities yields that J,(W) < Kp(b*). This contradicts the minimising character of the
sequence (V;,)nen=-

Hence the sequence (v,(T")) is bounded. The proof of Theorem 2.3 then follows from Proposition 3.2.

neN*
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4. NUMERICAL TESTS

In this section, we present some numerical results obtained on different toy inverse band structure problems,
which illustrates the theoretical results presented in Section 2.3.

In Section 4.1, we present the discretised version of the inverse band problem for multiple target bands.
Numerical results on different test cases are given in Section 4.2. The reader should keep in mind that although
the proof given in the previous section only works for the optimisation of the first band, it is possible to
investigate cases where several bands are targeted from a numerical perspective.

4.1. Discretised inverse band structure problem

For k € Z, we let eg(x) := \/%e”” be the kth Fourier mode. For s € N*| we define by

X, := Span{ey, k€ Z, |k| <s} (4.1)

the finite dimensional space of Lper consisting of the N := 2s + 1 lowest Fourier modes. We denote by Ilx, :
L2, — X, the L2 . orthogonal projector onto X,. In practice, the solutions of the eigenvalue problem (2.4)

per per

are approximated using a Galerkin method in X;. We denote by 5(‘;’18 <. o<V N the eigenvalues (ranked in

increasing order, counting multiplicity) of the operator A(‘;*S = 1Ix, A(‘J/H* . We albo denote by ( U, CRRE ,u;/:’;,s)
an orthonormal basis of X, composed of eigenvectors associated to these elgenvalues so that
. Vs Vis _ Vs Vs
VI<j<N,, Ap Uy =€, U (4.2)

An equivalent variational formulation of (4.2) is the following:

. v V,s _ Vs Vs
VI<j <N, VYvelX, g (uqd’v) =g <uq,j ’U>L2

per

V,s
q,m

\%4

As s goes to +o00, we have ¢ am-

— €
s——+oo

In order to perform the integration in (2.7), we discretise the Brillouin zone. We use a regular grid of size
@ € N*, and set

Ty = {—;+é, je{O,---7Q—1}}.

Since the maps g — €4, are analytic and periodic, the discretisation error coming from the integration will be
exponentially small with respect to Q. In practice, we fix Q € N*,

Let M € N* be a desired number of targeted bands and by,...,by € Cgcr be real-valued even functions,
and such that b, is increasing when m is odd and decreasing when m is even. Our cost functional is therefore

Jq : Hy.h . — R, defined by

M

1
YWeHy ., JoV):= ) S bmla) — ),

qGI‘*Q m=1

Its discretised version, when the eigenvalues problems are solved with a Galerkin approximation, is

Vs e N*, VW eH!

per,r’ Q . Q Z Z ‘b q,7n|2

qEF* m=1
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Our goal is to find a potential V' € H . |
is approximated with a finite set of Fourier modes. For p € N*| we denote by

which minimise the functional 7. In practice, an element V' € H, pelr R

Yo i=Spand 3" Vhew Ve Z K <p, Vo= TVig. (43)
kez, [k|><p

Altogether, we want to solve

VP = argmin J5(V). (4.4)
Vey,
For all p € N*, Y, C Cgﬁr( ), whereas the theoretical results presented in Section 2 suggest that the

minimising potentlal should be sought in H per .- Actually, we expect that the choice of the parameter p in (4.4)
might have a strong impact on solutions to (4.4), especially when the target bands b, are not realisable bands.
We illustrate this point in the second test case presented in Section 4.2.

To solve the minimisation problem (4.4), in all the numerical tests presented in Section 4.2, we use a quasi
Newton with the Broyden-Fletcher-Goldfarb-Shanno formula (BFGS) algorithm [ ]

The computation of the gradient of J7 is done as follows. For all V' € H

and (d,C )keN* such that

perrs there exists real-valued

coefficients (c,~c )keN

V(z) =cy + Z ¢y cos(kx) + dy sin(kz), and Z (L+1E2) 7 (Jef 2+ 1d) ) < +oo.
ke keN*

For all k € N (respectively k € N*), we can express the derivative d,v J5(V) (respectively 04v J5(V)) exactly
in terms of the Bloch eigenvectors u . Indeed, it holds that

V) =5 3 Z ~bn(0)) Dy (eqm) -
gery, m=1

On the other hand, from the Hellman-Feynman theorem, we have

q,m Ug,m> Ug,ms q,m

Ouy (elyn) = (s Doy Al ) = (ul's cos(kJul') 2,
Similarly, for all £ € N*,

Ay (egm) = < qm’advAv v > = (uV3 sin(k-)u)>s V2.,

q,m? q,m

4.2. Numerical results

In this section, we present some numerical results on the resolution of (4.4) obtained with the numerical
procedure presented in Section 4.1.

4.2.1. Test case 1

We first present a numerical test case illustrating the difficulty of solving (4.4) due to the existence of multiple
local minima in general.
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Potentials (M=1) Potentials (M=3)
8 - o~ — Vtarget 8 A w— Vtarget
1
-—— ‘|‘ -—=-W
== 1 —V
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B
-2 4
—4 4
-3 2 -1 0 1 2 3 -3 22 -1 0 1 2 3
X X
FIGURE 1. Potentials obtained at the end of the optimisation procedure, with different starting
values. Left: Test case with M = 1; Right: Test case with M = 3.
Bands (M=1) Bands (M=3)
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0.5
-0.255 -
0.0 01 02 03 0.4 05 0.0 01 02 03 0.4 05
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FIGURE 2. Bands obtained at the end of the optimisation procedure, with different starting
values. Left: Test case with M = 1; Right: Test case with M = 3.

We set p =5, s =20 and @ = 100. A target potential Viarget is chosen by sampling randomly the coeffi-

cients <ckv°“ge°) and (dzmg“) . The target bands by, (q) are defined as b,,,(q) := S&S{ge“s. We present
0<k<p 1<k<p

numerical results in a first test case where M = 1, and in a second test case where M = 3.

In Figure 1, the potentials V7, Vo and V3 obtained at the end of the optimisation procedure from three
different starting values of the potential V' (also chosen randomly) are plotted in dashed lines, and are to be
compared with Viarger, which is plotted in a full red line. The corresponding bands are plotted in Figure 2. Lastly,

the evolution of the quantity , /TG as a function of the number of iterations of the optimisation procedure is

illustrated in Figure 3. From these plots, we can observe that Vi, V5 and V3 are quite different from Viarger and
from each other. Actually, these results numerically illustrate the fact that uniqueness of solutions to problem 4.4
cannot be expected due the isospectrality properties of one-dimensional Schrédinger operators (see Rem. 2.4).
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FIGURE 3. Evolution of the (square root of) cost as a function of the number of iterations in

the optimisation procedure, with different starting values. Left: Test case with M = 1; Right:
Test case with M = 3.

4.2.2. Test case 2 (Dirac band)

We give here an example which illustrates the need of considering singular potentials for the resolution of
(4.4) in general. For A > 0 and q € I'*, we define b1(q) := E(‘;,Vf where

V)\:)\ Z 5k7

Following similar calculations as for (3.5), we have 5;"1* = |ua(q)|?, where px(q) € R is solution to

Asin(2mpa(g))
AN IN()

+ cos(2mua(q)) = cos(2mq).

For all p € N*, we introduce a regularised potential VY’ € Y), defined by

so that V¥ — V,, in H !
p—+oo

per,r*

Vo € (—m,m), VP(z):=X) e

[k|<p

procedure when optimising J over the set Y, from the initial guess V7.

In the numerical tests presented above, A = 10, Q = 100 and s = 60. Two curves are plotted in Figure 4.
The first curve (in dashed line) represents the value of

We also denote by Vf € YP the potential obtained by a BFGS optimisation

jé(VAp ) for different values of p. The second curve (in

full line) represents the value VIS (‘7{’ ). Figure 5 shown the potentials obtained by this procedure for different
values of p along with their associated first band.

From these plots, we clearly see that the quality of approximation of the target band b (¢) strongly depends
on the choice of the parameter p, and, naturally, the larger p, the better the accuracy of the approximation.
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FIGURE 4. Evolution of /75 (VYY) and of 1/ J5(VY) as a function of p.
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FIGURE 5. Potentials and bands obtained at the end of the optimisation procedure, for different
values of p.

4.2.3. Test case 3 (flat band)

We give here numerical results on a test case where M = 1 and where the target band b;(q) cannot be the
first band of a potential. We choose by to be a flat band, i.e. b1(q) = 0. We set here p = 10 and s = 20. We
start from an initial potential which is a small random perturbation of the zero potential. In Figure 6, are
plotted the obtained potentials after n;; = 10, 20 and 30 iterations of the optimisation procedure, along with
their corresponding bands. The evolutions of the (square root of the) cost and of the L' norm of the obtained
potential as a function of the number of iterations of the optimisation procedure are plotted in Figure 7. We
observe that, in agreement with Proposition 2.5, the L' norm of the potential steadily increases as the number
of iterations of the optimisation algorithm grows.
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FIGURE 6. Flat target band: potentials (left) and bands (right) obtained after n; = 20,40, 60
iterations of the optimisation procedure.
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FIGURE 7. Flat target band: evolution of the cost (left) and of the L' norm of the potential
(right) as a function of the number of iterations in the optimisation procedure.

5. CONCLUSION

This work focuses on the theoretical analysis of a least-square minimisation problem for the optimisation of
the first band(s) in an inverse Hill’s problem. The theoretical and numerical results indicate that it is necessary
to consider a class of singular potentials for the considered optimisation problem to have at least one solution.
An interesting perspective of research is the development of new numerical approaches in order to allow the
manipulation of singular potentials also on the discrete level. For instance, the number of Fourier modes used to
discretise the potential could be adapted in an appropriate way along the iteration of the optimisation procedure.
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