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NUMERICAL RECONSTRUCTION OF THE FIRST BAND(S)

IN AN INVERSE HILL’S PROBLEM

Athmane Bakhta1, Virginie Ehrlacher2,* and David Gontier3

Abstract. This paper concerns an inverse band structure problem for one dimensional periodic
Schrödinger operators (Hill’s operators). Our goal is to find a potential for the Hill’s operator in order
to reproduce as best as possible some given target bands, which may not be realisable. We recast
the problem as an optimisation problem, and prove that this problem is well-posed when considering
singular potentials (Borel measures).
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1. Introduction

The aim of this article is to present new considerations on an inverse band structure problem for periodic
one-dimensional Schrödinger operators, also called Hill’s operators. A Hill operator is a self-adjoint, bounded

from below operator of the form AV := − d2

dx2 + V , acting on L2(R), and where V is a periodic real-valued
potential. Its spectrum is composed of a reunion of intervals, which can be characterised using Bloch–Floquet
theory as the reunion of the spectra of a family of self-adjoint compact resolvent operators AVq , indexed by
an element q ∈ R called the quasi-momentum or k-point (see [21], Chap. XIII and Sect. 2.1). For each q ∈ R,
the spectrum of AVq is a non-decreasing sequence of eigenvalues (εVq,n)n∈N∗ going to infinity as n → +∞. For

any m ∈ N∗, the function R 3 q 7→ εVq,m is called the mth band function associated to the periodic potential
V . The properties of these band functions are well-known, especially in the one-dimensional case (see e.g. [21],
Chap. XIII).

The optimisation of the band structure of such Hill’s operators is an interesting mathematical question of
practical interest, which can be roughly formulated as follows: is it possible to find a potential V so that its M
first bands (εVq,m)1≤m≤M are close to some target functions (bm(q))1≤m≤M?

A wide mathematical literature answers the question when the target functions are indeed the bands of
some Hill’s operator, corresponding to some Vref (i.e. when bm(q) = εVref

q,m). In this case, we need to recover a
potential V that reproduces the bands of Vref . This problem is called an inverse spectral problem. We refer
to [3–5, 7, 20, 23] for the case when Vref is a regular potential, and to [11–15] when Vref is singular (see also
the review [17]). The main ideas of the previous references are as follows. First, the band structure of a Hill’s
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operator can be seen as the transformation of an analytic function. In particular, the knowledge of any band on
an open set is enough to recover theoretically the whole band structure. A potential is then reconstructed from
the high energy asymptotics of the bands.

The previous methods use the knowledge of the behaviour of the high energy bands, and therefore are
unsuitable for practical purpose (material design) since we usually have no accurate and numerically stable
information about these high energy bands. Moreover, in practice, only the low energy bands are usually of
interest, and are generally computed only on a finite set of quasi-momenta. An additional difficulty is the
following: there exists no explicit characterisation of the set of functions

{
εVq,m

}
1≤m≤M for a reasonable class

of potentials V . For applications, it is interesting to know how to construct a potential such that only its first
bands are close to some given target functions, which may not be realisable (for instance not analytic). Such an
issue arises for instance for the design of photovoltaic materials. Indeed, the efficiency of a crystalline solar cell
depends on the band structures of the semiconducting materials entering its composition. The proposed work
can be seen as a simplified version of this question. Identifying a periodic potential is a first (yet not sufficient)
hint to the identification of an optimal material (which should ideally be described by its chemical composition).

In this work, we recast the inverse problem as an optimisation problem. More precisely, for a given set of
target functions (bm(q))1≤m≤M , we look for a potential V that minimises the error

∑M
m=1

´
q
|bm(q)− εVq,m|2 dq.

Our main result (Thm. 2.3) states that there exists at least one minimiser, in the case M = 1, in some class of
singular potentials. Of course, this minimiser cannot be unique, due to the well-known isospectrality properties
of one-dimensional Schrödinger operators (see for instance [21], Thm. XIII.93). The second part of this work
is devoted to the numerical resolution of this minimisation problem. Two main issues arise when it comes to
practice: handling non-uniqueness of minimising potentials, and the fact that they might be singular. A natural
choice (which we make) consists in discretising periodic potentials in Fourier series. In this work, we investigate
how the choice of the Fourier cut-off affects the approximation of the bands. To the best of our knowledge, this
is the first time that such a least-square problem is considered from a theoretical or numerical point of view.
Let us mention here that other approaches, based on genetic algorithms, have been considered in the physics
and chemistry literature [24]. The latter are mainly data-driven and require the use of a large amount of true
experimental measures.

The outline of the paper is as follows. In Section 2, we recall basic properties about Hill’s operators with
singular potentials and we state our main result (Thm. 2.3). Its proof is given in Section 3. Finally, we present
in Section 4 some numerical tests which illustrate some of our theoretical results.

2. Spectral decomposition of periodic Schrödinger operators,
and main results

In this section, we recall some properties of Hill’s operators with singular potentials. Elementary notions on
the Bloch-Floquet transform [21] are gathered in Section 2.1. The spectral decomposition of one-dimensional
periodic Schrödinger operators with singular potentials is detailed in Section 2.2, building on the results of
[2, 9, 10, 16, 19]. We state our main results in Section 2.3.

2.1. Bloch-Floquet transform

We need some notation. Let D′ denotes the Schwartz space of complex-valued distributions, and let D′per ⊂ D′
be the space of distributions that are 2π-periodic. In the sequel, the unit cell is Γ := [−π, π), and the reciprocal
unit cell (or Brillouin zone) is Γ∗ := [−1/2, 1/2]. For u ∈ D′per and k ∈ Z, the kth normalised Fourier coefficient
of u is denoted by û(k). For s ∈ R, we denote by

Hs
per :=

{
u ∈ D′per, ‖u‖2Hsper

:=
∑
k∈Z

(1 + |k|2)s|û(k)|2 < +∞

}
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the complex-valued periodic Sobolev space, which is a Hilbert space when endowed with its natural inner
product. We write Hs

per,r for the real-valued periodic Sobolev space, i.e.

Hs
per,r :=

{
u ∈ Hs

per, ∀k ∈ Z, û(−k) = û(k)
}
.

We also let L2
per := Hs=0

per . From our normalisation, it holds that

∀v, w ∈ L2
per, 〈v, w〉L2

per
=

ˆ
Γ

vw and ∀v, w ∈ H1
per, 〈v, w〉H1

per
=

ˆ
Γ

dv

dx

dw

dx
+

ˆ
Γ

vw.

Lastly, we denote by C0
per the space of 2π-periodic continuous functions, and by C∞c the space of C∞ functions

over R, with compact support.
To introduce the Bloch-Floquet transform, we let H := L2(Γ∗, L2

per). For any element f ∈ H, we denote by
fq(x) its value at the point (q, x) ∈ Γ∗ × Γ. The space H is an Hilbert space when endowed with its inner
product

∀f, g ∈ H, 〈f, g〉H :=

ˆ
Γ∗

ˆ
Γ

fq(x)gq(x)dx dq.

The Bloch-Floquet transform is the map B : L2(R)→ H defined, for smooth functions ϕ ∈ C∞c (R), by

φq(x) := (Bϕ)q (x) :=
∑
R∈Z

ϕ(x+R)e−iq(R+x).

It is an isometry from L2(R) to H, whose inverse is given by

(
B−1φ

)
(x) :=

ˆ
Γ∗
φq(x)eiqx dq = ϕ(x).

The Bloch theorem states that if A is a self-adjoint operator on L2(R) with domain D(A) that commutes
with Z-translations, then BAB−1 is diagonal in the q-variable. More precisely, there exists a unique family of
self-adjoint operators (Aq)q∈Γ∗ on L2

per such that for all ϕ ∈ L2(R) ∩D(A),

(Aϕ)(x) =

ˆ
Γ∗

(Aqφq)(x) dq.

In this case, we write

A =

ˆ ⊕
Γ∗
Aqdq.

2.2. Hill’s operators with singular potentials

Giving a rigorous mathematical sense to a Hill’s operator of the form − d2

dx2 +V on L2(R), when the potential
V is singular is not an obvious task. In the present paper, we consider V ∈ H−1

per,r, which is a case that was first
tackled in [16] (see also [2, 9, 10, 19] for recent results).

The results which are gathered in this section are direct corollaries of results which were proved in these
earlier works, particularly in [10].
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Proposition 2.1. [[10], Thm. 2.1 and Lem. 3.2] For all V ∈ H−1
per,r, there exists σV ∈ L2

per and κV ∈ R such
that

V = σ′V + κV in D′per. (2.1)

Moreover, if aV : H1(R)×H1(R)→ C is the sesquilinear form defined by

∀v, w ∈ H1(R), aV (v, w) =

ˆ
R

dv

dx

dw

dx
+

ˆ
R
κV vw −

ˆ
R
σV

(
dv

dx
w + v

dw

dx

)
, (2.2)

then aV is a symmetric, continuous sesquilinear form on H1(R) ×H1(R), which is closed and bounded from
below. Besides, aV is independent of the choice of σV ∈ L2

per and κV ∈ R satisfying (2.1).

Remark 2.2. The expression (2.2) makes sense whenever v, w ∈ H1(R). This can be easily seen with the
Cauchy-Schwarz inequality, and the embedding H1(R) ↪→ L∞(R). It is not obvious how to extend this result to
higher dimension.

A direct consequence of Proposition 2.1 is that one can consider the Friedrichs operator on L2(R) associated
to aV , which is denoted by AV in the sequel. The operator AV is thus a densely defined, self-adjoint, bounded
from below operator on L2(R), with form domain H1(R) and whose domain is dense in L2(R). Formally, it
holds that

AV = − d2

dx2
+ V.

The spectral properties of the operator AV can be studied (like in the case of regular potentials) using Bloch-
Floquet theory.

The previous result, together with Bloch-Floquet theory, allows to study the operator AV via its Bloch fibers(
AVq
)
q∈Γ∗ . For q ∈ Γ∗, it holds that AVq is the self-adjoint extension of the operator

∣∣∣∣−i d

dx
+ q

∣∣∣∣2 + V.

It holds that AVq is a bounded from below self-adjoint operator acting on L2
per, whose form domain is H1

per, and

with associated quadratic form aVq , defined by (recall that H1
per is an algebra)

∀v, w ∈ H1
per, aVq (v, w) :=

ˆ
Γ

[(
−i d

dx
+ q

)
v

(
−i d

dx
+ q

)
w

]
+ 〈V, vw〉H−1

per,H1
per
. (2.3)

In other words, we have

AV =

ˆ ⊕
Γ∗
AVq dq.

The fact that L2
per is compactly embedded in H1

per implies that AVq is compact-resolvent. As a conse-

quence, there exists a non-decreasing sequence of real eigenvalues
(
εVq,m

)
m∈N∗ going to +∞ and a corresponding

orthonormal basis (uVq,m)m∈N∗ of L2
per such that

∀m ∈ N∗, AVq u
V
q,m = εVq,mu

V
q,m. (2.4)
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The map Γ∗ 3 q 7→ εVq,m is called the mth band. Since the potential V is real-valued, it holds that AV−q = AVq ,

so that εV−q,m = εVq,m for all q ∈ Γ∗ and m ∈ N∗. This implies that it is enough to study the bands on [0, 1/2].
Actually, we have

σ(AV ) =
⋃

q∈[0,1/2]

⋃
m∈N∗

{εVq,m}.

In the sequel, we mainly focus on the first band. We write εVq := εVq,1 for the sake of clarity. Thanks to the

knowledge of the form domain of AVq , we know that

εVq := min
v∈H1

per

‖v‖L2
per

=1

aVq (v, v). (2.5)

This characterisation will be the key to our proof. When the potential V is smooth (say V ∈ L2
per), then the

map Γ∗ 3 q 7→ εVq,m is analytic on (−1/2, 1/2). Besides, it is increasing on [0, 1/2] if m is odd, and decreasing if
m is even (see e.g. [21], Chap. XIII).

2.3. Main results

The goal of this article is to find a potential V so that the bands of the corresponding Hill’s operator are
close to some given target functions. In order to do so, we recast the problem as a minimisation one, of the form

V ∗ ∈ arg min
V ∈V

J (V ).

Unfortunately, we were not able to consider the full setting where the minimisation set V is the whole set H−1
per,r.

The problem was that we were unable to control the negative part of V . To bypass this difficulty, we chose to
work with potentials that are bounded from below. Such a distribution is necessary a measure (see e.g. [18]).
Hence measure-valued potentials provide a natural setting for band reconstruction. We recall here some basic
properties about measures.

We denote byM+
per the space of non-negative 2π-periodic regular Borel measures on R, in the sense that for

all ν ∈M+
per, and all Borel set S ∈ B(R), it holds that ν(S) = ν(S + 2π) ≥ 0, and ν(Γ) <∞. For all ε > 0, from

the Sobolev embedding H
1/2+ε
per ↪→ C0

per, we deduce that M+
per ↪→ H

−1/2−ε
per ↪→ H−1

per, where the last embedding
is compact. For ν ∈ M+

per, we denote by Vν ∈ H−1
per,r the unique corresponding potential, which is defined by

duality through the relation:

∀φ ∈ H1
per,

ˆ
Γ

φdν = 〈Vν , φ〉H−1
per,H1

per
.

For B ∈ R, we define the set of B-bounded from below potentials

VB :=
{
V ∈ H−1

per,r| ∃ν ∈M+
per, V = Vν −B

}
⊂ H−1

per,r.

This will be our minimisation space for our optimisation problem. Note that VB1 ⊂ VB2 for B1 ≥ B2.
We now introduce the functional J to minimise. First, we introduce the set T of allowed target functions:

T :=
{
b ∈ C0(Γ∗), b is even and b is increasing on [0, 1/2]

}
. (2.6)
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Of course, for all V ∈ H−1
per,r, it holds that Γ∗ 3 q 7→ εVq ∈ T . Finally, in order to quantify the quality of

reconstruction of a band b ∈ T , we introduce the error functional Jb : H−1
per,r → R defined by

∀V ∈ H−1
per,r, Jb(V ) :=

1

2

ˆ
Γ∗
|b(q)− εVq |2 dq =

ˆ 1/2

0

|b(q)− εVq |2 dq. (2.7)

The main result of the present paper is the following.

Theorem 2.3. Let b ∈ T , and denote by b∗ :=
ffl

Γ∗ b(q) dq ∈ R. Then, for all B > 1/4 − b∗, there exists a
solution Vb,B ∈ VB to the minimisation problem

Vb,B ∈ arg min
V ∈VB

Jb(V ). (2.8)

Remark 2.4. Uniqueness cannot be expected due to the isospectrality properties of one-dimensional periodic
Schrödinger operators ([21], Chap. XIII). For instance, the potentials V (· + τ) and V (·) have the same band
structure for any τ ∈ R. In addition, for all t ≥ 0, the potential V (t, ·) also has the same band structure, where
V (t, x) is the solution of the Korteweg-de Vries equation [8]

∂tV = 3V ∂xV −
1

2
∂xxxV, V (t = 0, ·) = V0.

The proof of Theorem 2.3 relies on the following proposition, which is central to our analysis. Both the proofs
of Theorem 2.3 and Proposition 2.5 are provided in the next section.

Proposition 2.5. Let B ∈ R and let (Vn)n∈N∗ ⊂ VB. For all n ∈ N∗, let νn ∈M+
per such that Vn := Vνn−B. Let

us assume that the sequence
(
εVn0

)
n∈N∗

is bounded and such that νn(Γ) −→
n→+∞

+∞. Then, up to a subsequence

(still denoted n), the functions q 7→ εVnq converge uniformly to a constant function ε ∈ R, with ε ≥ 1
4 − B. In

other words, there is ε ≥ 1
4 −B such that

max
q∈[0,1/2]

∣∣εVnq − ε∣∣ −−−−→
n→∞

0. (2.9)

Conversely, for all ε ≥ 1
4 −B, there is a sequence (Vn)n∈N∗ ⊂ VB such that (2.9) holds.

This result implies that the first band of the sequence of operators
(
AVn

)
n∈N∗ , where (Vn)n∈N∗ satisfies the

assumptions of Proposition 2.5, becomes flat.

Remark 2.6. Here we have a sequence of first bands
(
εVnq
)
n∈N∗ that converges uniformly to a constant function.

However, as the first band of any Hill’s operator must be increasing and analytic, the limit is not the first band
of a Hill’s operator.

3. Proof of Theorem 2.3 and Proposition 2.5

3.1. Preliminary lemmas

We first prove some intermediate useful lemmas before giving the proof of Proposition 2.5 and Theorem 2.3.
We start by recording a spectral convergence result.

Proposition 3.1. [[10], Thm. 4.1] Let (Vn)n∈N∗ ⊂ H−1
per,r be a sequence such that (Vn)n∈N∗ converges strongly

in H−1
per to some V ∈ H−1

per,r. Then,

∀m ∈ N∗, max
q∈[0,1/2]

∣∣εVnq,m − εVq,m∣∣ −−−−→
n→∞

0.
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In our case, since we are working with potentials that are measures, we deduce the following result.

Proposition 3.2. Let B ∈ R and (Vn)n∈N∗ ⊂ VB be a bounded sequence, in the sense

sup
n∈N
〈Vn,1Γ〉H−1

per,H1
per

<∞.

For all n ∈ N∗, let νn ∈ M+
per such that Vn = Vνn − B. Then, there exists ν ∈ M+

per such that, up to a subse-
quence (still denoted n), (νn)n∈N converges weakly-* to ν in Mper, and (Vn)n∈N∗ converges strongly in H−1

per to
V := Vν −B ∈ VB. Moreover, we have

∀m ∈ N∗, max
q∈[0,1/2]

∣∣εVnq,m − εVq,m∣∣ −−−−→
n→∞

0.

Proof. The fact that we can extract from the bounded sequence (νn)n∈N∗ a weakly-* convergent sequence in
M+

per is the Prokhorov’s theorem applied in the torus Γ∗. The second part comes from the compact embedding
Mper ↪→ H−1

per. The final part is the direct application of Proposition 3.1.

Remark 3.3. This proposition explains our choice to consider measure-valued potentials. Note that a similar
result does not hold in the L1

per setting for instance.

We now give a lemma which is standard in the case of regular potentials V (see [6]).

Lemma 3.4. Let V ∈ VB for some B ∈ R. The first eigenvector uVq=0 ∈ H1
per of AVq=0 is unique up to a global

phase. It can be chosen real-valued and positive.

Proof. We use the min-max principle (2.5), and the fact that, for u ∈ H1
per, the following holds∣∣∣∣ d

dx
|u|
∣∣∣∣ ≤ ∣∣∣∣ d

dx
u

∣∣∣∣ a.e.

We see that if u is an eigenvector corresponding to the first eigenvalue, then so is |u|. We now consider a non-
negative eigenvector u ≥ 0, and prove that it is positive. The usual argument is Harnack’s inequality. However,
it is a priori unclear that it works in our singular setting. To prove it, we write V = Vν − B for ν ∈ M+

per,
and consider the repartition function Fν of ν: Fν(x) := ν((0, x]). This function is not periodic, but the function
fν(x) := Fν(x)− ν(Γ) x

|Γ| is. Since Fν is an non decreasing, right-continuous function, we deduce that fν ∈ L∞per.

Moreover, it holds, in the H−1
per sense, that f ′ν = Vν − |Γ|−1ν(Γ) = V +B − |Γ|−1ν(Γ). As a result, we see that

u is solution to the minimisation problem

u ∈ arg min
v∈H1

per,r

‖v‖L2
per

=1

{ˆ
Γ

∣∣∣∣dvdx

∣∣∣∣2 +

(
ν(Γ)

|Γ|
−B

)
− 2

ˆ
Γ

fν

(
v

dv

dx

)}
.

There exists λ ∈ R so that the corresponding Euler-Lagrange equations can be written in the weak-form:

divF (x, u, u′) +G(x, u, u′) = 0,

with

F (x, u, p) = p− fνu and G(x, u, p) = fνp+ λu.

We are now in the settings of ([22], Thm. 1.1), and we deduce that u > 0. The rest of the proof is standard.
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3.2. Proof of Proposition 2.5

We now prove Proposition 2.5. Let B ∈ R and let Vn = Vνn − B ∈ VB with νn ∈ M+
per, be a sequence such

that the sequence
(
εVnq=0

)
n∈N∗

is bounded and νn(Γ) goes to +∞. Since
(
εVn0

)
n∈N∗

is bounded, then up to a

subsequence (still denoted by n), there exists ε ∈ R such that εVn0 converges to ε. Our goal is to prove that the
convergence also holds uniformly in q ∈ Γ∗.

Let uVn0 ∈ H1
per be the L2

per-normalised positive eigenvector of AVn0 associated to the eigenvalue εVn0

(see Lem. 3.4). We denote by αn := minx∈Γ u
Vn
0 (x) > 0. Let us first prove that the following convergences

hold:

αn

ˆ
Γ

uVn0 dνn −−−−−→
n→+∞

0 and α2
nνn(Γ) −−−−−→

n→+∞
0. (3.1)

From the equality

ˆ
Γ

∣∣∣∣ d

dx

(
uVn0

)∣∣∣∣2 +

ˆ
Γ

|uVn0 |2dνn = εVn0 +B,

we get

α2
nνn(Γ) ≤ αn

ˆ
Γ

uVn0 dνn ≤
ˆ

Γ

|uVn0 |2dνn ≤ εVn0 +B. (3.2)

As the right-hand side is bounded, and νn(Γ)→ +∞ by hypothesis, this implies αn → 0. Moreover, we have

0 ≤
ˆ

Γ

uVn0 dνn = aVn0 (uVn0 ,1Γ) +B

ˆ
Γ

uVn0 = (εVn0 +B)

ˆ
Γ

uVn0 ≤ (εVn0 +B)|Γ|1/2,

where we used the Cauchy-Schwarz inequality for the last part. As a result, we deduce that the sequence(´
Γ
uVn0 dνn

)
n∈N∗

is bounded. The first convergence of (3.1) follows. The second convergence is a consequence

of the first inequality in (3.2).
Let xn ∈ Γ = [0, 2π) be such that αn = uVn0 (xn). The fact that αn → 0 implies that ln := ‖uVn0 (xn + ·) −

αn‖2L2
per
→ 1 and we can thus define for n large enough

vn :=
uVn0 (xn + ·)− αn

‖uVn0 (xn + ·)− αn‖L2
per

.

It holds that vn ∈ H1
per, ‖vn‖L2

per
= 1. Besides, we have vn(0) = 0. For q ∈ Γ∗, we introduce the function vq,n

defined by:

∀x ∈ R, vq,n(x) := vn(x)e−iq[x], where we set [x] := x mod 2π.

Thanks to the equality vn(0) = 0, it holds that vq,n ∈ H1
per, and that ‖vq,n‖L2

per
= 1. This function is therefore

a valid test function for our min–max principle.1

1This construction only works in one dimension. We do not know how to construct similar test functions in higher dimension.
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From the min–max principle (2.5) and the expression (2.3), we obtain

B + εVnq ≤ B + aVnq (vq,n, vq,n)

=

ˆ
Γ

∣∣∣∣(−i d

dx
+ q

)
vq,n

∣∣∣∣2 +

ˆ
Γ

|vq,n|2 dνn =

ˆ
Γ

∣∣∣∣dvndx

∣∣∣∣2 +

ˆ
Γ

|vn|2 dνn

=
1

ln

(ˆ
Γ

∣∣∣∣ d

dx

(
uVn0 (xn + ·)

)∣∣∣∣2 +

ˆ
Γ

|uVn0 (xn + ·)− αn|2 dνn

)

=
1

ln

(ˆ
Γ

∣∣∣∣ d

dx

(
uVn0

)∣∣∣∣2 +

ˆ
Γ

|uVn0 |2 dνn − 2αn

ˆ
Γ

uVn0 dνn + α2
nνn(Γ)

)

=
1

ln

(
B + εVn0 − 2αn

ˆ
Γ

uVn0 dνn + α2
nνn(Γ)

)
.

We infer from these inequalities, and from (3.1) that

0 ≤ max
q∈Γ∗

∣∣∣εVnq − εVn0

∣∣∣ ≤ (B + εVn0

)( 1

ln
− 1

)
+

1

ln

(
−2αn

ˆ
Γ

uVn0 dνn + α2
nνn(Γ)

)
−−−−−→
n→+∞

0.

This already proves the convergence (2.9).
To see that ε ≥ 1

4 −B, we write, for V = Vν −B with ν ∈M+
per that

∀q ∈ [−1/2, 1/2], AVq =

∣∣∣∣−i d

dx
+ q

∣∣∣∣2 + Vν −B ≥
∣∣∣∣−i d

dx
+ q

∣∣∣∣2 −B ≥ q2 −B,

where we used the fact that the lowest eigenvalue of

∣∣∣∣−i d

dx
+ q

∣∣∣∣2 is q2 for q ∈ [−1/2, 1/2] (this can be seen

with the Fourier representation of the operator). As a consequence, for q = 1
2 , we obtain that for all V ∈ VB ,

εVq=1/2 ≥
1
4 −B. The result follows.

To prove the converse, we exhibit an explicit sequence of measures (νn)n∈N∗ ⊂ M+
per such that ε

Vνn
q → 1

4 .

The general result will follow by taking sequences of the form Vn = Vνn +
(
ε− 1

4

)
− B. We denote by δx the

Dirac mass at x ∈ R, and consider, for λ > 0, the measure

νλ := λ
∑
k∈Z

δ2πk ∈M+
per. (3.3)

From the first part of the Proposition, it is enough to check the convergence for q = 0. We are looking for a

solution to (we denote by ω2
λ := ε

Vνλ
0 ≥ 0 for simplicity)

− u′′ + λδ0u(0) = ω2
λu, u ≥ 0, u(2π) = u(0). (3.4)

On (0, 2π), u satisfies the elliptic equation −u′′ = ω2
λu, hence is of the form

u(x) = Ceiωλx +De−iωλx,
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for some C,D ∈ R. The continuity of u at 2π implies Ce2iπωλ +De−2iπωλ = C +D. Moreover, integrating (3.4)
between 0− and 0+ leads to the jump of the derivative −u′(0) + u′(2π) + λu(0) = 0, or

iωλ (D − C) + iωλ
(
Ce2iπωλ −De−2iπωλ

)
+ λ(C +D) = 0.

We deduce that (C,D) is solution to the 2× 2 matrix equation(
1− e2iπωλ 1− e−2iπωλ

−iωλ
(
1− e2iπωλ

)
+ λ iωλ

(
1− e−2iπωλ

)
+ λ

)(
C
D

)
=

(
0
0

)
.

The determinant of the matrix must therefore vanish, which leads to

1 = cos(2πωλ) +
λ

2

sin(2πωλ)

ωλ
. (3.5)

As λ→∞, one must have ωλ → 1/2, or equivalently ε
Vνλ
0 → 1/4. The result follows.

3.3. Proof of Theorem 2.3

We are now in position to give the proof of Theorem 2.3. Let b ∈ T and B > 1/4− b∗ where b∗ :=
ffl

Γ∗ b(q) dq.
Let Vn = Vνn −B ⊂ VB be a minimising sequence associated to problem (2.8).

Let us first assume by contradiction that νn(Γ)→∞. Then, according to Proposition 2.5, up to a subsequence
(still denoted by n), there exists ε ≥ 1

4 −B such that εVnq converges uniformly in q ∈ Γ∗ to the constant function

ε. Also, from the second part of Proposition 2.5, the fact that B > 1
4 − b

∗ and the fact that b∗ is the unique
minimiser to

inf
c∈R
Kb(c), (3.6)

where Kb(c) :=
´

[0,1/2]
|b(q)− c|2 dq for all c ∈ R, it must hold that ε = b∗.

We now prove that

inf
V ∈VB

Jb(V ) 6= inf
c∈R
Kb(c) = Kb(b∗).

To this aim, we exhibit a potential W ∈ VB such that Jb(W ) < Kb(b∗). Since b is continuous and increasing
on [0, 1/2], there exists a unique q∗ ∈ (0, 1/2) such that b(q∗) = b∗. We choose δ > 0 small enough such that
0 < q∗ − δ < q∗ + δ < 1/2, and set

ηext :=

ˆ q∗−δ

0

|b(q)− b∗|2 dq +

ˆ 1/2

q∗+δ

|b(q)− b∗|2 dq and ηint :=

ˆ q∗+δ

q∗−δ
|b(q)− b∗|2 dq,

so that Kb(b∗) = ηext + ηint. Since b is increasing and continuous, we have ηint > 0 and ηext > 0, and b(q∗− δ) <
b∗ < b(q∗ + δ).

We now choose a constant σ > 0 such that

0 < σ < min

{
ηint

8δ
,B + b∗ − 1

4
, b∗ − b(q∗ − δ), b(q∗ + δ)− b∗

}
.
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Let νn be the measure defined in (3.3) for λ = n ∈ N, and let

W̃n := Vνn + b∗ − 1

4
.

Since εW̃n
q converges to b∗ uniformly in Γ∗, there exists n0 ∈ N∗ large enough such that

∀q ∈ Γ∗,

∣∣∣∣εW̃n0
q − b∗

∣∣∣∣ < σ/2.

We then define

W := W̃n0
+ b∗ − εW̃n0

q∗ = Vνn +

[(
B + b∗ − 1

4

)
−
(
ε
W̃n0
q∗ − b∗

)]
−B.

Since σ < B + b∗ − 1/4, it holds that W ∈ VB . Moreover, b∗ − σ < εWq < b∗ + σ for all q ∈ Γ∗. Finally, for

q = q∗, we have εWq∗ = b∗.
Let us evaluate Jb(W ). We get

Jb(W ) =

ˆ q∗−δ

0

|b(q)− εWq |2 dq +

ˆ q∗+δ

q∗−δ
|b(q)− εWq |2 dq +

ˆ 1/2

q∗+δ

|b(q)− εWq |2 dq.

For the first part, we notice that for 0 ≤ q < q∗ − δ, we have

b(q) < b(q∗ − δ) < b∗ − σ < εWq < εWq∗ = b∗.

This yields that

∀ 0 ≤ q < q∗ − δ, |b(q)− εWq | = εWq − b(q) < b∗ − b(q) = |b(q)− b∗|.

Integrating this inequality leads to

ˆ q∗−δ

0

|b(q)− εWq |2 dq <

ˆ q∗−δ

0

|b(q)− b∗|2 dq.

Similarly, we obtain that

ˆ 1/2

q∗+δ

|b(q)− εWq |2 dq <

ˆ 1/2

q∗+δ

|b(q)− b∗|2 dq.

Lastly, for the middle part, we have

ˆ q∗+δ

q∗−δ
|b(q)− εWq |2 dq < 2δ

[
εWq∗+δ − εWq∗−δ

]
≤ 4δσ ≤ ηint

2
<

ˆ q∗+δ

q∗−δ
|b(q)− b∗|2 dq.

Combining all these inequalities yields that Jb(W ) < Kb(b∗). This contradicts the minimising character of the
sequence (Vn)n∈N∗ .

Hence the sequence (νn(Γ))n∈N∗ is bounded. The proof of Theorem 2.3 then follows from Proposition 3.2.
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4. Numerical tests

In this section, we present some numerical results obtained on different toy inverse band structure problems,
which illustrates the theoretical results presented in Section 2.3.

In Section 4.1, we present the discretised version of the inverse band problem for multiple target bands.
Numerical results on different test cases are given in Section 4.2. The reader should keep in mind that although
the proof given in the previous section only works for the optimisation of the first band, it is possible to
investigate cases where several bands are targeted from a numerical perspective.

4.1. Discretised inverse band structure problem

For k ∈ Z, we let ek(x) := 1√
2π
eikx be the kth Fourier mode. For s ∈ N∗, we define by

Xs := Span {ek, k ∈ Z, |k| ≤ s} (4.1)

the finite dimensional space of L2
per consisting of the Ns := 2s + 1 lowest Fourier modes. We denote by ΠXs :

L2
per → Xs the L2

per orthogonal projector onto Xs. In practice, the solutions of the eigenvalue problem (2.4)

are approximated using a Galerkin method in Xs. We denote by εV,sq,1 ≤ · · · ≤ εV,sq,Ns the eigenvalues (ranked in

increasing order, counting multiplicity) of the operator AV,sq := ΠXsA
V
q Π∗Xs . We also denote by (uV,sq,1 , · · · , u

V,s
q,Ns

)
an orthonormal basis of Xs composed of eigenvectors associated to these eigenvalues so that

∀1 ≤ j ≤ Ns, AV,sq uV,sq,j = εV,sq,j u
V,s
q,j . (4.2)

An equivalent variational formulation of (4.2) is the following:

∀1 ≤ j ≤ Ns, ∀v ∈ Xs, aVq

(
uV,sq,j , v

)
= εV,sq,j

〈
uV,sq,j , v

〉
L2

per

.

As s goes to +∞, we have εV,sq,m −→
s→+∞

εVq,m.

In order to perform the integration in (2.7), we discretise the Brillouin zone. We use a regular grid of size
Q ∈ N∗, and set

Γ∗Q :=

{
−1

2
+
j

Q
, j ∈ {0, · · · , Q− 1}

}
.

Since the maps q 7→ εq,m are analytic and periodic, the discretisation error coming from the integration will be
exponentially small with respect to Q. In practice, we fix Q ∈ N∗.

Let M ∈ N∗ be a desired number of targeted bands and b1, . . . , bM ∈ C0
per be real-valued even functions,

and such that bm is increasing when m is odd and decreasing when m is even. Our cost functional is therefore
JQ : H−1

per,r → R, defined by

∀V ∈ H−1
per,r, JQ(V ) :=

1

Q

∑
q∈Γ∗

Q

M∑
m=1

|bm(q)− εVq,m|2.

Its discretised version, when the eigenvalues problems are solved with a Galerkin approximation, is

∀s ∈ N∗, ∀V ∈ H−1
per,r, J sQ(V ) :=

1

Q

∑
q∈Γ∗

Q

M∑
m=1

|bm(q)− εV,sq,m|2.
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Our goal is to find a potential V ∈ H−1
per,r which minimise the functional J sQ. In practice, an element V ∈ H−1

per,r

is approximated with a finite set of Fourier modes. For p ∈ N∗, we denote by

Yp := Span

 ∑
k∈Z, |k|2≤p

V̂kek, ∀k ∈ Z, |k| ≤ p, V̂−k = V̂k

 . (4.3)

Altogether, we want to solve

V s,p := arg min
V ∈Yp

J sQ(V ). (4.4)

For all p ∈ N∗, Yp ⊂ C∞per(−π, π), whereas the theoretical results presented in Section 2 suggest that the
minimising potential should be sought in H−1

per,r. Actually, we expect that the choice of the parameter p in (4.4)
might have a strong impact on solutions to (4.4), especially when the target bands bm are not realisable bands.
We illustrate this point in the second test case presented in Section 4.2.

To solve the minimisation problem (4.4), in all the numerical tests presented in Section 4.2, we use a quasi
Newton with the Broyden-Fletcher-Goldfarb-Shanno formula (BFGS) algorithm [1].

The computation of the gradient of J sQ is done as follows. For all V ∈ H−1
per,r, there exists real-valued

coefficients
(
cVk
)
k∈N and

(
dVk
)
k∈N∗ such that

V (x) = cV0 +
∑
k∈N∗

cVk cos(kx) + dVk sin(kx), and
∑
k∈N∗

(1 + |k|2)−1
(
|cVk |2 + |dVk |2

)
< +∞.

For all k ∈ N (respectively k ∈ N∗), we can express the derivative ∂cVk J
s
Q(V ) (respectively ∂dVk J

s
Q(V )) exactly

in terms of the Bloch eigenvectors uV,sq,m. Indeed, it holds that

∂cVk J
s
Q(V ) =

1

Q

∑
q∈Γ∗

Q

M∑
m=1

2
(
εV,sq,m − bm(q)

)
∂cVk

(
εV,sq,m

)
.

On the other hand, from the Hellman-Feynman theorem, we have

∂cVk

(
εV,sq,m

)
=
〈
uV,sq,m, ∂cVk A

V
q , u

V,s
q,m

〉
= 〈uV,sq,m, cos(k·)uV,sq,m〉L2

per
.

Similarly, for all k ∈ N∗,

∂dVk

(
εV,sq,m

)
=
〈
uV,sq,m, ∂dVk A

V
q , u

V,s
q,m

〉
= 〈uV,sq,m, sin(k·)uV,sq,m〉L2

per
.

4.2. Numerical results

In this section, we present some numerical results on the resolution of (4.4) obtained with the numerical
procedure presented in Section 4.1.

4.2.1. Test case 1

We first present a numerical test case illustrating the difficulty of solving (4.4) due to the existence of multiple
local minima in general.
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Figure 1. Potentials obtained at the end of the optimisation procedure, with different starting
values. Left: Test case with M = 1; Right: Test case with M = 3.

Figure 2. Bands obtained at the end of the optimisation procedure, with different starting
values. Left: Test case with M = 1; Right: Test case with M = 3.

We set p = 5, s = 20 and Q = 100. A target potential Vtarget is chosen by sampling randomly the coeffi-

cients
(
c
Vtarget

k

)
0≤k≤p

and
(
d
Vtarget

k

)
1≤k≤p

. The target bands bm(q) are defined as bm(q) := ε
Vtarget,s
q,m . We present

numerical results in a first test case where M = 1, and in a second test case where M = 3.
In Figure 1, the potentials V1, V2 and V3 obtained at the end of the optimisation procedure from three

different starting values of the potential V (also chosen randomly) are plotted in dashed lines, and are to be
compared with Vtarget, which is plotted in a full red line. The corresponding bands are plotted in Figure 2. Lastly,

the evolution of the quantity
√
J sQ as a function of the number of iterations of the optimisation procedure is

illustrated in Figure 3. From these plots, we can observe that V1, V2 and V3 are quite different from Vtarget and
from each other. Actually, these results numerically illustrate the fact that uniqueness of solutions to problem 4.4
cannot be expected due the isospectrality properties of one-dimensional Schrödinger operators (see Rem. 2.4).
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Figure 3. Evolution of the (square root of) cost as a function of the number of iterations in
the optimisation procedure, with different starting values. Left: Test case with M = 1; Right:
Test case with M = 3.

4.2.2. Test case 2 (Dirac band)

We give here an example which illustrates the need of considering singular potentials for the resolution of

(4.4) in general. For λ > 0 and q ∈ Γ∗, we define b1(q) := ε
Vνλ
q,1 where

νλ = λ
∑
k∈2πZ

δk,

Following similar calculations as for (3.5), we have ε
Vνλ
q,1 = |µλ(q)|2, where µλ(q) ∈ R is solution to

λ

2

sin(2πµλ(q))

µλ(q)
+ cos(2πµλ(q)) = cos(2πq).

For all p ∈ N∗, we introduce a regularised potential V pλ ∈ Yp defined by

∀x ∈ (−π, π), V pλ (x) := λ
∑
|k|≤p

ei2πkx,

so that V pλ −→p→+∞
Vνλ in H−1

per,r. We also denote by Ṽ pλ ∈ Y p the potential obtained by a BFGS optimisation

procedure when optimising J sQ over the set Yp from the initial guess V pλ .
In the numerical tests presented above, λ = 10, Q = 100 and s = 60. Two curves are plotted in Figure 4.

The first curve (in dashed line) represents the value of
√
J sQ(V pλ ) for different values of p. The second curve (in

full line) represents the value
√
J sQ(Ṽ pλ ). Figure 5 shown the potentials obtained by this procedure for different

values of p along with their associated first band.
From these plots, we clearly see that the quality of approximation of the target band b1(q) strongly depends

on the choice of the parameter p, and, naturally, the larger p, the better the accuracy of the approximation.
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Figure 4. Evolution of
√
J sQ (V pλ ) and of

√
J sQ(Ṽ pλ ) as a function of p.

Figure 5. Potentials and bands obtained at the end of the optimisation procedure, for different
values of p.

4.2.3. Test case 3 (flat band)

We give here numerical results on a test case where M = 1 and where the target band b1(q) cannot be the
first band of a potential. We choose b1 to be a flat band, i.e. b1(q) = 0. We set here p = 10 and s = 20. We
start from an initial potential which is a small random perturbation of the zero potential. In Figure 6, are
plotted the obtained potentials after nit = 10, 20 and 30 iterations of the optimisation procedure, along with
their corresponding bands. The evolutions of the (square root of the) cost and of the L1 norm of the obtained
potential as a function of the number of iterations of the optimisation procedure are plotted in Figure 7. We
observe that, in agreement with Proposition 2.5, the L1 norm of the potential steadily increases as the number
of iterations of the optimisation algorithm grows.
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Figure 6. Flat target band: potentials (left) and bands (right) obtained after nit = 20, 40, 60
iterations of the optimisation procedure.

Figure 7. Flat target band: evolution of the cost (left) and of the L1 norm of the potential
(right) as a function of the number of iterations in the optimisation procedure.

5. Conclusion

This work focuses on the theoretical analysis of a least-square minimisation problem for the optimisation of
the first band(s) in an inverse Hill’s problem. The theoretical and numerical results indicate that it is necessary
to consider a class of singular potentials for the considered optimisation problem to have at least one solution.
An interesting perspective of research is the development of new numerical approaches in order to allow the
manipulation of singular potentials also on the discrete level. For instance, the number of Fourier modes used to
discretise the potential could be adapted in an appropriate way along the iteration of the optimisation procedure.

Acknowledgements. The authors heartily thank Éric Cancès, Julien Vidal, Damiano Lombardi and Antoine Levitt for
their great help in this work and for inspiring discussions. The IRDEP institute is acknowledged for funding the PhD
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