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SOLUTION UNIQUENESS OF CONVEX PIECEWISE AFFINE

FUNCTIONS BASED OPTIMIZATION WITH APPLICATIONS TO

CONSTRAINED `1 MINIMIZATION

Seyedahmad Mousavi and Jinglai Shen*

Abstract. In this paper, we study the solution uniqueness of an individual feasible vector of a class
of convex optimization problems involving convex piecewise affine functions and subject to general
polyhedral constraints. This class of problems incorporates many important polyhedral constrained `1
recovery problems arising from sparse optimization, such as basis pursuit, LASSO, and basis pursuit
denoising, as well as polyhedral gauge recovery. By leveraging the max-formulation of convex piecewise
affine functions and convex analysis tools, we develop dual variables based necessary and sufficient
uniqueness conditions via simple and yet unifying approaches; these conditions are applied to a wide
range of `1 minimization problems under possible polyhedral constraints. An effective linear program
based scheme is proposed to verify solution uniqueness conditions. The results obtained in this paper
not only recover the known solution uniqueness conditions in the literature by removing restrictive
assumptions but also yield new uniqueness conditions for much broader constrained `1-minimization
problems.
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1. Introduction

The `1-norm minimization, or simply `1 minimization, is a convex relaxation of `0-(pseudo)norm based
sparse optimization, and it has received surging interest in diverse areas, such as compressed sensing, signal
and image processing, machine learning, and high dimensional statistics and data analytics. Unlike the `p-norm
with p > 1, the `1-norm is not strictly convex [20], and this yields many interesting issues in solution uniqueness
which are critical to algorithm development and analysis. In addition to various important sufficient conditions
for global and uniform solution uniqueness (or the so-called uniform recovery conditions) [8, 9, 23], necessary
and sufficient conditions for solution uniqueness of an (arbitrary) individual vector are also established, e.g.,
([8], Sect. 4.3) and [10, 28, 29, 31], which are closely related to non-uniform recovery conditions in the sparse
signal recovery literature [4, 8, 29].

It is worth mentioning that there are many different, nonetheless equivalent, solution uniqueness conditions
for an individual vector. We are particularly interested in those conditions expressed in terms of dual variables
or the so-called dual certificate conditions [9]. This is because dual variables usually have a smaller size in sparse

Keywords and phrases: Solution existence and uniqueness, convex polyhedral function, `1 minimization, basis pursuit, LASSO.

Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD 21250, USA.

* Corresponding author: shenj@umbc.edu

Article published by EDP Sciences c© EDP Sciences, SMAI 2019

https://doi.org/10.1051/cocv/2018061
https://www.esaim-cocv.org
mailto:shenj@umbc.edu
http://www.edpsciences.org


2 S. MOUSAVI AND J. SHEN

optimization. For example, the size of dual variables associated with a measurement matrix is the number of
rows of this matrix, which is much smaller than the size of primal variables, i.e., the number of columns of such
a matrix. Therefore, solution uniqueness conditions in dual variables are numerically favorable. From an opti-
mization point of view, such conditions are nontrivial and often require convex analysis tools to develop them.
Moreover, it is desired that uniqueness conditions are explicitly dependent on problem parameters, e.g., the mea-
surement matrix and the measurement vector. Recent solution uniqueness results of this kind include [10, 28–31].
In particular, the paper ([30], Thm. 2.10) establishes solution uniqueness conditions for the standard `1 mini-
mization, and the papers [28, 29] develop solution uniqueness conditions for several important `1 minimization
problems and their variations, e.g., basis pursuit (BP), the least absolute shrinkage and selection operator
(LASSO), and basis pursuit denoising (BPDN). The recent paper [10] gives another proof of the uniqueness
conditions of basis pursuit established in [28] and clarifies geometric meanings of these conditions with extensions
to polyhedral gauge recovery. Motivated by constrained sparse signal recovery [7, 11, 27], solution uniqueness of
basis pursuit under the nonnegative constraint is studied in [31]. Moreover, solution uniqueness conditions are
recently developed for the standard `1 minimization over a general polyhedral set using the concept of restricted
range space property [32, 33]. They can also be established via the uniqueness conditions of linear programs [13];
see Remark 4.12 for details. However, solution uniqueness of many other `1 minimization problems under gen-
eral polyhedral constraints has not been fully addressed, despite various polyhedral constraints in applications,
e.g., the monotone cone constraint in order statistics, and the polyhedral constraint in the Dantzig selector [5]
(cf. Sect. 3.5).

Inspired by the lack of solution uniqueness conditions under general polyhedral constraints and the fact that
the `1-norm is a special convex piecewise affine (PA) function, we study a broad class of convex optimization
problems involving convex PA functions and subject to general linear inequality constraints, and we develop
necessary and sufficient solution uniqueness conditions for an individual feasible vector. This general framework
incorporates many important `1 minimization problems under possible inequality constraints, such as BP,
LASSO, BPDN, and polyhedral gauge recovery. Different from the techniques developed in a similar framework
in [10], we exploit the max-formulation of a convex PA function (cf. Sect. 2). The max-formulation leads to
much simpler, yet unifying and systematic, approaches to establish solution uniqueness conditions for a wide
range of problems; see Remark 3.5 for comparison. These approaches not only recover all the known solution
uniqueness conditions in the literature by removing restrictive assumptions but also shed light on new solution
uniqueness conditions of much broader constrained `1 minimization problems, e.g., the basis pursuit and sparse
fused LASSO under general linear inequality constraints, and the Dantzig selector; see Section 5 for examples
and details.

The rest of the paper is organized as follows. In Section 2, we introduce convex PA functions and dis-
cuss their properties. Section 3 develops solution uniqueness conditions for four convex optimization problems
involving convex PA functions and subject to general linear inequality constrains, i.e., basis pursuit-like prob-
lem, LASSO-like problem, and two basis pursuit denoising-like problems. By applying these results, Section 4
addresses solution existence and uniqueness of general `1 minimization problems. In Section 5, concrete unique-
ness conditions are established for `1 minimization and compared with related results in the literature. Section 6
provides a simple and effective linear program-based scheme for verifying solution uniqueness conditions. Finally,
conclusions are made in Section 7.

Notation. Let A be an m×N real matrix. For any index set S ⊆ {1, . . . , N}, let |S| denote the cardinality of
S, Sc denote the complement of S, and A•S be the matrix formed by the columns of A indexed by elements
of S. Similarly, for an index set α ⊆ {1, . . . ,m}, Aα• is the matrix formed by the rows of A indexed by elements
of α. For a given matrix A, R(A) and N(A) denote the range and null space of A, respectively. Denote by
NC(x) the normal cone of a closed convex set C at x ∈ C, and by int and ri the interior and the relative interior
of a set, respectively. Besides, denote by 1 the column vectors of ones. In addition, RN+ and RN++ denote the
nonnegative and positive orthants of RN , respectively. For a vector z = (z1, . . . , zn)T whose each zi 6= 0, we
define sgn(z) := (z1/|z1|, . . . , zn/|zn|)T .
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2. Preliminary: Convex Piecewise Affine Functions

A real-valued continuous function g : RN → R is piecewise affine (PA) if there exists a finite family of real-
valued affine functions {gi}`i=1 such that g(x) ∈ {gi(x)}`i=1 for each x ∈ RN [17]. A special class of continuous
PA functions is continuous piecewise linear (PL) functions, for which each gi is a linear function. A continuous
PA function is globally Lipschitz, and we call it a Lipschitz PA function without loss of generality; see [18, 21, 22]
for more geometric properties of these functions. A real-valued Lipischitz PA function can be described by the
min-max formulation [17]. Furthermore, a convex (Lipischitz) PA function g : RN → R (whose effective domain
is RN ) attains the max-formulation ([15], Sect. 19) or ([3], Prop. 2.3.5). Specifically, there exists a finite family
of (pi, γi) ∈ RN × R, i = 1, . . . , ` such that

g(x) = max
i=1,...,`

(
pTi x+ γi

)
. (2.1)

Similarly, a convex PL function attains the above max-formulation with all γi = 0. For a given x ∈ RN , define the
index set I := {i ∈ {1, . . . , `} | pTi x+ γi = g(x)}. Letting conv denote the convex hull of a set, the subdifferential
of g(x) at this x is then given by ([2], Prop. B.25)

∂g(x) = conv

(⋃
i∈I

∂(pTi x+ γi)

)
= conv

(
{pi | i ∈ I}

)
. (2.2)

The normal cone of {x | g(x) ≤ 0} at x∗ is cone(∂g(x∗)) [16], where cone denotes the conic hull of a set. The
following lemma presents additional properties of convex PA functions.

Lemma 2.1. The following hold:

(i) The (real-valued) function g : RN → R is a convex PA function if and only if its epigraph is a convex
polyhedron in RN × R;

(ii) Let f : Rm → R be a convex PA function, and h : RN → Rm be an affine function. Then f ◦ h is a convex
PA function on RN ;

(iii) Let {g1, . . . , gr} be a finite family of convex PA functions on RN . Then
∑r
i=1 λi · gi(x) with λi ≥ 0 is a

convex PA function.

Proof. Statement (i) follows from a similar proof for ([3], Prop. 2.3.5) by restricting the effective domain of g
to RN , and statements (ii) and (iii) are trivial.

Remark 2.2. A slightly more general class of convex PA functions is considered in ([15], Sect. 19) and [3]. Such
a function, which is called the polyhedral convex function coined by R. T. Rockafellar, is defined as an extended
real-valued function whose epigraph is a polyhedron in RN ×R. It can be described by the sum of a real-valued
convex PA function and the indicator function of a polyhedron, namely,

ĝ(x) = max
i=1,...,`

(
hTi x+ βi

)
︸ ︷︷ ︸

:=g(x)

+ δP(x),

where g is a real-valued convex PA function, P = {x |Cx ≥ d} is a polyhedron in RN , and δP is the indicator
function of P, i.e., δP(x) = 0 if x ∈ P, and δP(x) = +∞ otherwise. See [3, 10, 15] for more discussions.
However, in all the optimization problems to be considered in this paper, the polyhedron P corresponding to
the indicator function in the function ĝ can be formulated as an additional linear inequality constraint, and
thus be removed from ĝ(x). For example, the optimization problem: min ĝ(x) subject to Ax = y is equivalent
to: min g(x) subject to x ∈ P and Ax = y. For this reason, we consider real-valued convex PA functions, or
simply convex PA functions, throughout this paper.
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Convex PA functions represent a broad class of nonsmooth convex functions in numerous applications, and we
give several examples as follows. A (real-valued) polyhedral gauge is a convex PA function satisfying the following
conditions: it is nonnegative, positively homogeneous of degree one, and vanishes at the origin [10, 15]. Since a
(real-valued) convex function is continuous on RN , it must vanish at the origin if it is positively homogeneous of
degree one, since for some z ∈ RN , g(0) = limλ↓0 g(λ · z) =

(
limλ↓0 λ

)
· g(z) = 0. Hence, a convex PA function

is a polyhedral gauge if it is nonnegative and positively homogeneous of degree one. The following lemma shows
that a polyhedral gauge is a convex PL function.

Lemma 2.3. The function g : RN → R is a polyhedral gauge if and only if there are finitely many p1, . . . , p` ∈
RN such that g(x) = max( pT1 x, . . . , p

T
` x, 0), ∀x ∈ RN .

Proof. The “if” part is trivial since the convex PA function g(x) = max( pT1 x, . . . , p
T
` x, 0) is nonnegative and

positively homogeneous of degree one. We show the “only if” part as follows. Suppose g : RN → R is a polyhedral
gauge. Since g is a convex PA function, it attains the max-formulation and its domain attains a polyhedral
subdivision of RN [17]. Specifically, there are finitely many (pi, γi) ∈ RN × R and polyhedra Xi, where i =
1, . . . , `, such that g(x) = maxi=1,...,`(p

T
i x+ γi), and for each i, g(x) = pTi x+ γi for all x ∈ Xi ([6], Prop. 4.2.1).

Here, Ξ := {Xi}i=1,...,` is a polyhedral subdivision of RN , i.e., ∪`i=1Xi = RN , each Xi has nonempty interior,
and the intersection of any two polyhedra in Ξ is either empty or a common proper face of both polyhedra; see
[6, 17–19] for more details. For any fixed i ∈ {1, . . . , `}, let z be in the interior of Xi. Therefore, g(z) = pTi z+ γi,
and for all λ ∈ R sufficiently close to 1, we have λ · z ∈ Xi so that g(λ · z) = pTi (λ · z) + γi. Furthermore, since
g is positively homogeneous of degree one, g(λ · z) = λ · g(z) such that λ · pTi z + γi = λ · pTi z + λ · γi for all λ
sufficiently close to 1. This shows that γi = 0 for each i. Therefore, g(x) = max(pT1 x, . . . , p

T
` x). Finally, since

g is nonnegative, we have g(x) = max(g(x), 0) for all x. This shows that g(x) = max(pT1 x, . . . , p
T
` x, 0) for all

x ∈ RN .

We mention a particular class of polyhedral gauges arising from applications as follows. Such a polyhedral
gauge g(x) = max( pT1 x, . . . , p

T
` x, 0) with pi 6= 0,∀ i = 1, . . . , ` satisfies the following condition: for each nonzero

pi, there exists pj such that pj = βj,i · pi for some constant βj,i < 0, where βj,i depends on pi and pj . We call
such the polyhedral gauge sign-symmetric. Note that for each x ∈ RN ,

g(x) = max
{

max
{

max(pTi x, p
T
j x) | i = 1, . . . , `, pj = βj,i · pi, βj,i < 0

}
, 0
}
.

Since max(pTi x, p
T
j x) = max(pTi x, βj,ip

T
i x) ≥ 0 for any x, we have g(x) = max

{
max(pTi x, p

T
j x) | i =

1, . . . , `, pi = βi,jpj , βi,j < 0
}

= max( pT1 x, . . . , p
T
` x). In other words, the zero term can be dropped in the

max-formulation of a sign-symmetric polyhedral gauge. Examples of sign-symmetric polyhedral gauges include
‖Ex‖1 and ‖Ex‖∞ for a matrix E ∈ Rq×N ; see Section 4.2 for the max-formulation of ‖Ex‖1. Obviously, not
every polyhedral gauge is sign-symmetric, e.g., max(pTx, 0) for some vector p 6= 0.

3. Unique optimal solution to a class of convex optimization
problems involving convex pa functions

In this section, we develop dual variables based explicit conditions for unique optimal solutions to four convex
optimization problems involving convex PA functions, which are motivated by basis pursuit (BP), LASSO,
and basis pursuit denoising (BPDN) problems subject to possible polyhedral constraints. For each of these
optimization problems, we assume that an optimal solution exists. A detailed study of solution existence requires
different techniques and argument other than those for convex PA functions and uniqueness analysis. To avoid
being off track from the main theme of the paper, we postpone the discussions of the solution existence issue
to Section 4.1.

Among the four convex optimization problems treated in this section, three of them are involved with two
functions: the first function, denoted by f , pertains to the cost due to measurement or approximation errors,
while the second function corresponds to sparsity related penalty or objective value, which is usually a convex
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PA function denoted by g. In the literature of statistics and decision theory, the first function is called a loss
function. We consider the class of smooth (i.e., C1) and strictly convex loss functions through Sections 3.1–3.4,
and study the class of convex PA loss functions in Section 3.5. A typical example of loss functions in the first
class is the `2-loss f(·) = ‖ · ‖22, whereas examples of the second class are the `1-loss ‖ · ‖1, the max-loss ‖ · ‖∞,
and the hinge loss.

Throughout this section, let g : RN → R be a convex PA function whose max-formulation is given in (2.1),
A ∈ Rm×N , y ∈ Rm, and P := {x ∈ RN |Cx ≥ d} be a nonempty polyhedron, where C ∈ Rm̄×N and d ∈ Rm̄.
For a given x∗ ∈ RN satisfying Cx∗ ≥ d, define the index sets

α :=
{
i ∈ {1, . . . , m̄} | (Cx∗ − d)i = 0

}
, I :=

{
j ∈ {1, . . . , `} | pTj x∗ + γj = g(x∗)

}
, (3.1)

and define the following matrix:

W :=

 p
T
i1
...

pTi|I|


ik∈I

∈ R|I|×N , (3.2)

where without loss of generality, we assume that for each ik ∈ I, pik is not a convex combination of the other pij ’s
with ij ∈ I. In light of (2.2), the columns of WT are generators of the convex hull that forms the subdifferential
∂g(x∗). Hence, finding the matrix W is equivalent to finding convex hull generators of ∂g(x∗). This observation
will be exploited to establish the matrix W ; see Lemma 4.5 and Section 4.

3.1. Unique optimal solution to the basis pursuit-like problem

Consider the following convex optimization problem motivated by the basis pursuit (BP) subject to a linear
inequality constraint:

min
x∈RN

g(x) subject to Ax = y, Cx ≥ d. (3.3)

We assume that this problem has an optimal solution. For a given feasible point x∗ ∈ RN of (3.3), i.e., Ax∗ = y
and Cx∗ ≥ d, recall the definitions of α, I, and W in (3.1) and (3.2).

Lemma 3.1. Let A ∈ Rm×N and H ∈ Rr×N be given. Then {u ∈ RN |Au = 0, Hu ≥ 0} = {0} if and only if
the following two conditions hold:

(i) {u ∈ RN |Au = 0, Hu = 0} = {0} and
(ii) there exist z ∈ Rm and z′ ∈ Rr++ such that AT z = HT z′.

Proof. Consider the following linear program:

(LP ) : max
u∈RN

1THu, subject to Au = 0, Hu ≥ 0. (3.4)

We claim that {u ∈ RN |Au = 0, Hu ≥ 0} = {0} if and only if the following hold:

(i’) condition (i) holds, i.e., {u ∈ RN |Au = 0, Hu = 0} = {0} and
(ii’) the linear program (LP ) attains the zero optimal value (and the unique optimal solution u∗ = 0).

To show the “if” part of this claim, suppose (i’) and (ii’) hold but there exists u′ 6= 0 such that Au′ = 0 and
Hu′ ≥ 0. It follows from (i’) that Hu′ 6= 0. Therefore, 1THu′ > 0, a contradiction to (ii’). Conversely, suppose
{u ∈ RN |Au = 0, Hu ≥ 0} = {0} holds. Clearly, it implies condition (i’). Furthermore, the feasible set of the
(LP ) is the singleton set {0} such that (ii’) holds. Consequently, the claim holds.
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The dual problem of (LP ) is given by:

min
(v,w)∈Rm×Rr

0, subject to AT v −HTw = HT1, w ≥ 0.

In view of the strong duality theorem of linear program, the dual problem attains an optimal solution (v∗, w∗)
such that AT v∗ = HT (1 +w∗) and w∗ ≥ 0. By suitable positive scaling, we deduce that there exist z and z′ > 0
such that AT z = HT z′, which yields condition (ii). Since condition (ii) is also sufficient for the feasibility, and
thus solvability, of the dual problem, it follows from the weak duality of linear program that 1THu ≤ 0 for any
feasible u of (LP ). Since Hu ≥ 0 for any feasible u of (LP ), we must have 1THu = 0, which leads to condition
(ii’). Therefore, conditions (ii) and (ii’) are equivalent. In view of the claim proven above, the lemma holds.

Theorem 3.2. Let x∗ ∈ RN be a feasible point of the optimization problem (3.3). Then x∗ is the unique
minimizer of the problem (3.3) if and only if the following two conditions hold:

(i) {v ∈ RN |Av = 0, Cα•v = 0, Wv = 0} = {0} and

(ii) there exist z ∈ Rm, z′ ∈ R|α|++, and z′′ ∈ R|I|++ such that AT z − CTα•z′ +WT z′′ = 0.

Moreover, condition (ii) is equivalent to the following condition:

(iii) there exist w ∈ Rm, w′ ∈ R|α|++, and w′′ ∈ R|I| with 0 < w′′ < 1 and 1Tw′′ = 1 such that ATw − CTα•w′ +
WTw′′ = 0.

Proof. Clearly, x∗ is a unique (global) minimizer of the convex optimization problem (3.3) if and only if x∗

is a local unique minimizer of (3.3). It is easy to see that for all x sufficiently close to x∗, g(x) = g(x∗) +
maxi∈I

(
pTi (x−x∗)

)
. In other words, g(x)−g(x∗) is piecewise linear (and convex) in (x−x∗) for all x sufficiently

close to x∗. By this observation, we deduce that x∗ is the unique minimizer of (3.3) if and only if v∗ = 0 is the
unique minimizer of the following convex optimization problem:

min
v∈RN

(
max
i∈I

pTi v
)
, subject to Av = 0, Cα•v ≥ 0. (3.5)

Furthermore, it is easy to verify that v∗ = 0 is the unique minimizer of (3.5) if and only if

{
v ∈ RN

∣∣Av = 0, Cα•v ≥ 0, max
i∈I

pTi v ≤ 0
}

=
{

0
}
.

In light of the definition of the matrix W given in (3.2), we see that maxi∈I p
T
i v ≤ 0 is equivalent to Wv ≤ 0.

Hence, v∗ = 0 is the unique minimizer of (3.5) if and only if {v ∈ RN |Av = 0, Cα•v ≥ 0, W v ≤ 0} = {0}. By

setting H =

[
Cα•
−W

]
, we deduce via Lemma 3.1 that {v ∈ RN |Av = 0, Cα•v ≥ 0, W v ≤ 0} = {0} if and only

if conditions (i) and (ii) hold. This leads to the desired result.
We finally show the equivalence of conditions (ii) and (iii). Clearly, condition (iii) implies condition (ii).

Conversely, suppose there exist z ∈ Rm, z′ ∈ R|α|++, and z′′ ∈ R|I|++ such that AT z − CTα•z′ + WT z′′ = 0. Note
that 1T z′′ > 0. Therefore, letting

w =
z

1T z′′
, w′ =

z′

1T z′′
, w′′ =

z′′

1T z′′
,

we obtain condition (iii) with the above w,w′ and w′′. Hence, conditions (ii) and (iii) are equivalent.
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3.1.1. Comparison with related results in the literature

The paper [10] studies a problem similar to (3.3) but without the linear inequality constraint. For comparison,
we apply these tools to the problem (3.3). Define S := {x |Ax = y} and P := {x |Cx ≥ d}. Note that the problem
(3.3) is equivalent to the unconstrained problem: minx∈RN J(x), where J(x) := g(x) + δS(x) + δP(x), and δ is
the indicator function defined in Remark 2.2. Since S and P are polyhedral, x∗ is the unique minimizer of (3.3) if
and only if 0 ∈ int

(
∂J(x∗)

)
([10], Lem. 3.2), where ∂J(x∗) = ∂g(x∗) +NS(x∗) +NP(x∗). Since NS(x∗) = R(AT )

and NP(x∗) = {CTα•z | z ≤ 0}, the condition 0 ∈ int
(
∂J(x∗)

)
is further equivalent to the following two conditions

([10], Prop. 4.2):

(a) 0 ∈ ri(∂g(x∗)) +R(AT ) + ri({CTα•z | z ≤ 0}) and
(b) aff(∂g(x∗) +R(AT ) + {CTα•z | z ≤ 0}) = RN , where aff(·) denotes the affine hull of a set.

In what follows, we show that conditions (a) and (b) are equivalent to conditions (i) and (iii) of Theorem 3.2.
To achieve this goal, we first present a lemma which gives an explicit characterization of relative interiors of a
polytope and a polyhedral cone.

Lemma 3.3. Let C = conv(a1, . . . , ak) and K = cone(b1, . . . , b`), where a1, . . . , ak ∈ Rn and b1, . . . , b` ∈ Rn.
Then the relative interiors of C and K are

ri C =
{ k∑
i=1

λiai

∣∣∣ k∑
i=1

λi = 1, 0 < λi < 1, ∀ i = 1, . . . , k
}
, riK =

{∑̀
j=1

µjbj

∣∣∣µj > 0, ∀ j = 1, . . . , `
}
.

Proof. To establish the relative interior of C, we note that C = conv(C1 ∪ C2 ∪ · · · ∪ Ck), where each Ci := {ai}
is a convex singleton set. Hence, ri Ci = {ai} for each i. It follows from ([15], Thm. 6.9) that ri C =

{∑k
i=1 λi ·

ri Ci |
∑k
i=1 λi = 1, 0 < λi < 1, ∀ i = 1, . . . , k

}
, which leads to the desired result for ri C. The relative interior of

K also follows by positive scaling.

Proposition 3.4. Conditions (a) and (b) for the optimization problem (3.3) are equivalent to conditions (i)
and (iii) of Theorem 3.2.

Proof. By Lemma 3.3 and the subdifferential of g at x∗ given in (2.2), we have

ri
(
∂g(x∗)

)
=
{∑
i∈I

λi · pi
∣∣∣ ∑
i∈I

λi = 1, 0 < λi < 1, ∀ i ∈ I
}
, ri

(
{CTα•z | z ≤ 0}

)
= {CTα•z | z < 0}.

Therefore, condition (a) holds if and only if there exist z, z′ > 0, and z′′ with 0 < z′′ < 1 with 1T z′′ = 1 such
that AT z − CTα•z′ +WT z′′ = 0, which is exactly condition (iii) of Theorem 3.2.

Moreover, aff(∂g(x∗) + R(AT ) + {CTα•z | z ≤ 0}) = aff(∂g(x∗)) + aff(R(AT )) + aff({CTα•z | z ≤ 0}), where, in
view of ∂g(x∗) = conv(pi1 , pi2 , . . . , pi|I|), we have

aff(∂g(x∗)) = pi1 + span
(
pi2 − pi1 , . . . , pi|I| − pi1

)
, aff(R(AT )) = R(AT ), aff({CTα•z | z ≤ 0}) = R(CTα•).

Therefore, condition (b) is equivalent to

span
(
pi2 − pi1 , . . . , pi|I| − pi1

)︸ ︷︷ ︸
:=V

+R(AT ) +R(CTα•) = RN ,

which is further equivalent to condition (b’): V⊥ ∩ N(A) ∩ N(Cα•) = {0}, where V⊥ = {v ∈ RN | pTi1v =

pTi2v = · · · = pTi|I|v}. Obviously, condition (b’) implies condition (i) of Theorem 3.2. We show next that if
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conditions (i) and (iii) holds, then condition (b’) holds. It follows from condition (iii) that for any v ∈ RN ,
vTAz − vTCTα•z′ + vTWT z′′ = 0 for some z, z′ > 0, and z′′ with 0 < z′′ < 1 with 1T z′′ = 1. Therefore, for any
v ∈ V⊥ ∩N(A) ∩N(Cα•), i.e., Av = 0, Cα•v = 0, and pTi1v = pTi2v = · · · = pTi|I|v, we obtain (Wv)T z′′ = 0. By

virtue of the expression of the matrix W in (3.2), we further have 0 = (Wv)T z′′ = (pTi1v ·1)T z′′ = (pTi1v) ·1T z′′ =

pTi1v. This shows that Wv = 0. Along with Av = 0 and Cα•v = 0, we see via condition (i) of Theorem 3.2 that
v = 0 such that condition (b’) holds. Consequently, conditions (a) and (b) hold if and only if conditions (i) and
(iii) of Theorem 3.2 hold.

Remark 3.5. Proposition 3.4 shows that the techniques developed in [10] can be used to derive the exactly same
solution uniqueness conditions given in Theorem 3.2. However, when establishing explicit uniqueness conditions
in terms of problem parameters, the paper [10] considers a particular class of convex PA functions, i.e., polyhe-
dral gauges, and employs the inner representation of the unit sublevel set of a polyhedral gauge to obtain (equiva-
lent) uniqueness conditions in a different form. Instead, the present paper gives a much simpler approach to derive
the explicit uniqueness conditions in Theorem 3.2 for a general convex PA function via its max-formulation,
which can be easily applied to any specific convex PA function. For example, by leveraging Lemma 2.3 and
Theorem 3.2, explicit uniqueness conditions can be readily obtained for a polyhedral gauge. Furthermore,
the proposed approach can be exploited for other relevant problems as shown in the subsequent subsections,
and thus provides a simple, albeit unifying, framework for a broad class of problems. Nevertheless, conditions
(a) and (b) derived in [10] give better geometric interpretation of the conditions obtained in Theorem 3.2.

3.2. Unique optimal solution to the LASSO-like problem

Letting f : Rm → R be a C1 strictly convex function, we consider the following convex optimization problem
motivated by the constrained LASSO:

min
x∈RN

f(Ax− y) + g(x) subject to Cx ≥ d. (3.6)

We assume that this optimization problem has an optimal solution. To characterize a unique optimal solution
to (3.6), we first present some preliminary results as follows.

Being an extension of ([28], Lem. 4.1), the following lemma can be shown via an elementary argument in
convex analysis; its proof is thus omitted.

Lemma 3.6. Let f : Rm → R be a strictly convex function, and h : RN → R be a convex function. If f(Ax−
y) + h(x) is constant on a convex set S ⊆ RN , then Ax = Az and h(x) = h(z) for all x, z ∈ S.

In light of Lemma 3.6, we obtain the following proposition which generalizes ([28], Thm. 2.1) using a similar
argument. To be self-contained, we present its proof as follows.

Proposition 3.7. Let f : Rm → R be a strictly convex function, h : RN → R be a convex function, and C be a
convex set in RN such that the following optimization problem has a minimizer x∗ ∈ RN :

(P0) : min
x∈RN

f(Ax− y) + h(x) subject to x ∈ C.

Then x∗ is the unique minimizer of (P0) if and only if x∗ is the unique minimizer of the following problem:

(P1) : min
x∈RN

h(x) subject to Ax = Ax∗, and x ∈ C.

Proof. Let S0 be the solution set of (P0). It is easy to see that S0 is convex on which f(Ax−y)+h(x) is constant.
By Lemma 3.6, we have Ax = Ax∗ and h(x) = h(x∗) for any x ∈ S0 ⊆ C. To show the “if” part, suppose that
x∗ is the unique minimizer of (P1) but there exists z ∈ S0 with z 6= x∗. It follows from the previous result that
h(z) = h(x∗), Ax = Ax∗, and z ∈ C, contradicting the solution uniqueness of (P1). Conversely, for the “only if”
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part, we first show that x∗ is a minimizer of (P1). Suppose not, i.e., there exists z ∈ C with Az = Ax∗ such that
h(z) < h(x∗). Then we have f(Az − y) + h(z) < f(Ax∗ − y) + h(x∗). This implies that x∗ is not a minimizer of
(P0), contradiction. The solution uniqueness of (P1) follows directly from that of (P0) and the result given at
the beginning of the proof.

Theorem 3.8. Let x∗ ∈ RN be a feasible point of the problem (3.6), where f : Rm → R is a C1 strictly convex
function. Then x∗ is the unique minimizer of (3.6) if and only if all the following conditions hold:

(i) {v ∈ RN |Av = 0, Cα•v = 0, Wv = 0} = {0};
(ii) there exist z ∈ Rm, z′ ∈ R|α|++, and z′′ ∈ R|I| with 0 < z′′ < 1 and 1T z′′ = 1 such that AT z − CTα•z′ +

WT z′′ = 0;

(iii) there exist w ∈ R|α|+ and w′ ∈ R|I| with 0 ≤ w′ ≤ 1 and 1Tw′ = 1 such that AT∇f(Ax∗ − y) − CTα• w +
WTw′ = 0.

Proof. We first show that x∗ is a minimizer of (3.6) if and only if condition (iii) holds. Recall that P := {x |Cx ≥
d}. Since f(Ax− y) + g(x) is a real-valued convex function on RN and P is a closed convex set, it follows from
([16], Thm. 3.33) that x∗ is a minimizer of (3.6) if and only if 0 ∈ ∂f(Ax∗ − y) + ∂g(x∗) +NP(x∗). In light of

∂f(Ax∗ − y) = {AT∇f(Ax∗ − y)}, ∂g(x∗) = conv(pi1 , pi2 , . . . , pi|I|), NP(x∗) = {CTα•u |u ≤ 0},

we see that x∗ is a minimizer of (3.6) if and only if condition (iii) holds.
Applying Proposition 3.7 with C := {x ∈ RN |Cx ≥ d} and h(x) = g(x), we deduce that a minimizer x∗ is

the unique minimizer of (3.6) if and only if it is the unique minimizer of the following problem in the form of
(3.3):

(P2) : min
x∈RN

g(x) subject to Ax = Ax∗, and Cx ≥ d.

Clearly, x∗ is a feasible point of (P2). Hence, by Theorem 3.2, x∗ is the unique minimizer of (P2) if and only if
conditions (i) and (ii) hold. This completes the proof.

3.3. Unique optimal solution to the basis pursuit denoising I-like problem

Letting f : Rm → R be a C1 strictly convex function and ε ∈ R, we consider the following convex optimization
problem motivated by the BPDN-I problem with an additional linear inequality constraint:

min
x∈RN

g(x) subject to f(Ax− y) ≤ ε, and Cx ≥ d. (3.7)

We assume that this problem has an optimal solution. Note that this problem is different from that treated in
[10], since the constraints are no longer polyhedral in general. Moreover, the papers [28, 29] consider a problem
similar to (3.7) with g(x) = ‖Ex‖1 or g(x) = ‖x‖1 but without the linear inequality constraint Cx ≥ d, and
they show that its solution uniqueness can be reduced to that of a relevant basis pursuit problem. However, this
reduction does not hold for (3.7) due to the presence of the general linear inequality constraint; see Section 5.1
for a counterexample. This calls for new techniques to handle (3.7).

Theorem 3.9. Let x∗ ∈ RN be a feasible point of the problem (3.7).

C.1 Suppose f(Ax∗−y) < ε. Then x∗ is the unique minimizer of (3.7) if and only if {v ∈ RN |Cα•v = 0, Wv =

0} = {0} and there exist z ∈ R|α|++ and z′ ∈ R|I| with 0 < z′ < 1 and 1T z′ = 1 such that CTα•z = WT z′.
C.2 Suppose f(Ax∗ − y) = ε. Then x∗ is the unique minimizer of (3.7) if and only if the following hold:

(2.i) {v ∈ RN |Av = 0, Cα•v = 0, Wv = 0} = {0};
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(2.ii) there exist z ∈ Rm, z′ ∈ R|α|++, and z′′ ∈ R|I| with 0 < z′′ < 1 and 1T z′′ = 1 such that AT z − CTα•z′ +
WT z′′ = 0;

(2.iii) if K := {v ∈ RN |
(
∇f(Ax∗ − y)

)T
Av < 0, Cα•v ≥ 0} is nonempty, then there exist w ∈ R|α|+ and

w′ ∈ R|I|+ such that AT∇f(Ax∗ − y)− CTα•w +WTw′ = 0.

Remark 3.10. We give several remarks on the conditions in Theorem 3.9 before presenting its proof.

(a) Note that in C.2, if the cone K defined in condition (2.iii) is empty, then x∗ is the unique minimizer if and
only if conditions (2.i) and (2.ii) hold.

(b) The cone K is nonempty if and only if there is no u ≥ 0 such that AT∇f(Ax∗− y) = CTα•u. Geometrically,
it means that AT∇f(Ax∗−y) is not in the dual cone of {v |Cα•v ≥ 0}, which equals the normal cone of the
polyhedron P := {x |Cx ≥ d} at x∗. This condition provides a constraint qualification for the optimality
condition shown in (2.iii).

(c) In view of remark (b), we see that if K is nonempty, then a nonnegative w′ given in condition (2.iii) must
be nonzero. Hence, condition (2.iii) can be equivalently written as: if K is nonempty, then there exist a

positive real number θ, w̃ ∈ R|α|+ , and w̃′ ∈ R|I| with 0 ≤ w̃′ ≤ 1 and 1T w̃′ = 1 such that θ ·AT∇f(Ax∗ −
y)− CTα•w̃ +WT w̃′ = 0.

Proof. The proof is divided into the following two parts:
Case C.1: f(Ax∗ − y) < ε. Due to the continuity of f , it is clear that x∗ is a unique minimizer of (3.7) if and

only if it is a unique (local) minimizer of the following problem on a small neighborhood of x∗:

min
x∈RN

g(x), subject to Cx ≥ d.

By applying Theorem 3.2 with A = 0 and y = 0 to the above problem, we obtain the desired result.

Case C.2: f(Ax∗− y) = ε. Define the function r(Av) := f(Ax∗− y+Av)− f(Ax∗− y)−
(
∇f(Ax∗− y)

)T
Av

for v ∈ RN . Since f is strictly convex, we see that r(Av) ≥ 0 for all v, and r(Av) = 0 if and only if Av = 0.
Furthermore, since f is C1, we have

lim
0 6=Av→0

r(Av)

‖Av‖
= 0. (3.8)

For notational simplicity, we define q := AT∇f(Ax∗ − y) ∈ RN . Note that if Av = 0, so is qT v.
Define the positively homogeneous function g̃(v) := maxi∈I p

T
i v. By virtue of the piecewise linear structure

of g(x) − g(x∗) for all x sufficiently close to x∗, x∗ is the unique minimizer of (3.7) if and only if v∗ = 0 is a
unique local minimizer of the following problem:

min
v∈RN

g̃(v) subject to qT v + r(Av) ≤ 0, Cα•v ≥ 0. (3.9)

We claim that v∗ = 0 is the unique local minimizer of (3.9) if and only if the following hold:

(i’) u∗ = 0 is the unique minimizer of the problem

min
u∈RN

g̃(u) subject to Au = 0, Cα•u ≥ 0 and

(ii’) if the cone K := {u | qTu < 0, Cα•u ≥ 0} is nonempty, then g̃(u) > 0 for all u ∈ K.

To show this claim, we first prove the “if” part. Let U be a neighborhood of v∗ = 0 such that g̃(v) = g(x∗ +
v) − g(x∗) and Cαc•(x

∗ + v) > dαc for all v ∈ U . For any 0 6= v ∈ U with qT v + r(Av) ≤ 0 and Cα•v ≥ 0, we
consider two cases: Av = 0, and Av 6= 0. For the former case, we have qT v + r(Av) = 0. By condition (i’), we
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have g̃(v) > g̃(0) = 0. For the latter case, since Av 6= 0, we have r(Av) > 0 so that qT v < 0. By condition (ii’),
we also have g̃(v) > 0. Therefore, v∗ = 0 is the unique local minimizer of (3.9). We next prove the “only if”
part. Suppose v∗ = 0 is the unique local minimizer of (3.9). For any u 6= 0 with Au = 0 and Cα•u ≥ 0, we have
that for all sufficiently small β > 0, qTβu+ r(βAu) = 0 such that βu is a nonzero local feasible point of (3.9).
This implies that g̃(βu) > 0. By the positive homogeneity of g̃, we see that g̃(u) > 0 for all u 6= 0 with Au = 0
and Cα•u ≥ 0. This leads to condition (i’). Furthermore, for any u ∈ K, we deduce via qTu < 0 that u 6= 0 and
Au 6= 0 (recalling that [Au = 0]⇒ [qTu = 0]). It follows from (3.8) that for all sufficiently small β > 0,

qTβu+ r(Aβu)

‖βu‖
=
qTu

‖u‖
+
r(βAu)

‖βAu‖
· ‖Au‖
‖u‖

< 0.

Therefore, qTβu + r(Aβu) < 0 for all small β > 0. Hence, βu is a nonzero local feasible point of (3.9) so that
g̃(βu) > 0. We thus obtain condition (ii’) via the positive homogeneity of g̃ again. This completes the proof of
the claim.

We finally show that conditions (i’) and (ii’) are equivalent to conditions (2.i), (2.ii), and (2.iii) stated in the
theorem. Clearly, in light of Theorem 3.2, condition (i’) is equivalent to conditions (2.i) and (2.ii). Moreover,
when K is nonempty, condition (ii’) is equivalent to the inconsistency of the following inequality system in u:

qTu < 0, Cα•u ≥ 0, max
i∈I

pTi u ≤ 0.

In view of the expression of the matrix W in (3.2), the above inequality system is equivalent to the following
linear inequality system:

(I) : qTu < 0, Cα•u ≥ 0, Wu ≤ 0.

By the Motzkin’s Transposition Theorem, system (I) has no solution if and only if there exists z = (z1, z2, z3)
with 0 < z1 ∈ R and (z2, z3) ≥ 0 such that −z1 · q + CTα•z2 −WT z3 = 0. The latter condition is equivalent to
the existence of (w,w′) ≥ 0 such that q−CTα•w+WTw′ = 0. This shows the equivalence of conditions (ii’) and
(2.iii).

3.4. Unique optimal solution to the basis pursuit denoising II-like problem

Let f : Rm → R be a C1 strictly convex function. For each i = 1, . . . , r, gi : RN → R is a convex PA
function whose max-formulation is gi(x) = maxs=1,...,`i(p

T
i,sx+ γi,s), where each (pi,s, γi,s) ∈ RN ×R. Consider

the following convex optimization problem motivated by the constrained BPDN-II problem:

min
x∈RN

f(Ax− y) subject to g1(x) ≤ η1, . . . , gr(x) ≤ ηr, and Cx ≥ d, (3.10)

where η1, . . . , ηr are real numbers. We assume that this problem has an optimal solution. This optimization
problem allows multiple convex PA function defined constraints, which appear in applications, e.g., the sparse
fused LASSO [26]; see Section 5.3 for details.

A problem similar to (3.10) is treated in [28] with one inequality constraint ‖x‖1 ≤ η1 but without the poly-
hedral constraint Cx ≥ d. Under a restrictive assumption on η1, it is shown in [28] that its solution uniqueness
is reduced to that of a related basis pursuit problem. However, this reduction fails for (3.10) due to the presence
of the general polyhedral constraint; see Section 5.2 for more elaboration.

We introduce more notation first. For a given feasible point x∗ ∈ RN , define the index set J := {i ∈
{1, . . . , r} | gi(x∗) = ηi}, which corresponds to the active constraints defined by gi’s at x∗. For each i ∈ J ,
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define the index set Ii := {s ∈ {1, . . . , `i} | pTi,sx∗ + γi,s = gi(x
∗)}, and the matrix

Wi :=

 pTi,s1
...

pTi,s|Ii|


sk∈Ii

∈ R|Ii|×N . (3.11)

Theorem 3.11. Let x∗ ∈ RN be a feasible point of the problem (3.10). Then x∗ is the unique minimizer of
(3.10) if and only if the following hold:

(i) {v ∈ RN |Av = 0, Cα•v = 0, Wiv = 0, ∀ i ∈ J } = {0};
(ii) there exist w ∈ Rm, w′ ∈ R|α|++, and w′′i ∈ R|Ii| with 0 < w′′i < 1 and 1Tw′′i = 1 for each i ∈ J such that

ATw − CTα•w′ +
∑
i∈J W

T
i w
′′
i = 0;

(iii) there exist z̃ ∈ R|α|+ and z̃′i ∈ R|Ii|+ for each i ∈ J such that AT∇f(Ax∗ − y)− CTα•z̃ +
∑
i∈J W

T
i z̃
′
i = 0.

Moreover, condition (iii) is equivalent to the following condition:

(iv) there exist z ∈ R|α|+ , θi ∈ R+, z′i ∈ R|Ii| with 0 ≤ z′i ≤ 1 and 1T z′i = 1 for each i ∈ J such that

AT∇f(Ax∗ − y)− CTα•z +
∑
i∈J

θi ·WT
i z
′
i = 0.

Proof. We first show that x∗ is a minimizer of the problem (3.10) if and only if condition (iii) holds. Note
that for each gi(x) = maxs=1,...,`i(p

T
i,sx + γi,s), the constraint gi(x) ≤ ηi is equivalent to the linear inequal-

ity constraint pTi,sx ≤ ηi − γi,s for all s. Hence, the problem (3.10) has a polyhedral constraint. In view of
the definitions of Cα• and Wi for each i ∈ J , it is easy to see, e.g., via ([16], Thm. 3.33), that x∗ is a

minimizer if and only if there exist z̃ ∈ R|α|+ and z̃′i ∈ R|Ii|+ for each i ∈ J such that AT∇f(Ax∗ − y) −
CTα•z̃ +

∑
i∈J W

T
i z̃
′
i = 0, which is condition (iii). To show the equivalence of conditions (iii) and (iv), we

first observe that (iv) implies (iii). Conversely, suppose (iii) holds. It suffices to show that for each z̃′i ∈ R|Ii|+ ,

there exist θi ∈ R+ and z′i ∈ R|Ii| with 0 ≤ z′i ≤ 1 and 1T z′i = 1 such that z̃′i = θi · z′i. This result is triv-
ial when z̃′i = 0. When 0 6= z̃′i ≥ 0, we choose θi := 1T z̃i > 0 and z′i := z̃′i/θi, which leads to the desired
result.

Suppose x∗ is a minimizer of the problem (3.10) or equivalently x∗ satisfies condition (iii). For each i ∈ J , let
g̃i(v) := maxs∈Ii p

T
i,sv. Let U be a convex neighborhood of x∗ such that for all x ∈ U , gi(x)− gi(x∗) = g̃i(x−x∗)

for each i ∈ J , gi(x) < ηi for each i ∈ J c, and Cαc•x > dαc . Then x∗ is the unique minimizer of (3.10) if and
only if it is a unique local minimizer of the following problem on U :

min
x∈RN

f(Ax− y) + h(x), subject to x ∈ U , g̃i(x− x∗) ≤ 0,∀ i ∈ J , and Cα•(x− x∗) ≥ 0,

where h is the zero function, and g̃i(x − x∗) is convex in x for each i ∈ J . Applying Proposition 3.7 to the
above problem with the convex set C := U ∩ {x |Cα•(x − x∗) ≥ 0, g̃i(x − x∗) ≤ 0, ∀ i ∈ J }, we see that x∗ is
the unique minimizer of (3.10) if and only if it is the unique minimizer of the following problem:

min
x∈RN

h(x), subject to Ax = Ax∗, x ∈ U , g̃i(x− x∗) ≤ 0,∀ i ∈ J , and Cα•(x− x∗) ≥ 0,

It is equivalent to the equation {v |Av = 0, Cα•v ≥ 0, g̃i(v) ≤ 0, ∀ i ∈ J } = {0} in view of the positive
homogeneity of g̃i. Since g̃i(v) ≤ 0 is equivalent to Wiv ≤ 0 where Wi is defined in (3.11), this equation holds
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if and only if {v |Av = 0, Cα•v ≥ 0, Wiv ≤ 0, ∀ i ∈ J } = {0}. Using Lemma 3.1 with

H =


Cα•
−Wi1

...
−Wi|J |


ik∈J

and a similar argument for Theorem 3.2, we deduce that {v |Av = 0, Cα•v ≥ 0, Wiv ≤ 0, ∀ i ∈ J } = {0} holds
if and only if conditions (i) and (ii) hold. This completes the proof.

3.5. Extensions to convex PA loss functions

In this subsection, we extend the results in Sections 3.2–3.4 to a convex PA loss function f : Rm → R. It
follows from (ii) of Lemma 2.1 that f(Ax−y) is a convex PA function on RN . By virtue of this property, we show
below that under this f and a convex PA function g, each of the LASSO-like problem (3.6), the BPDN-I-like
problem (3.7), and the BPDN-II-like problem (3.10) can be formulated as the BP-like problem (3.3) with a new
convex PA objective function or suitable polyhedral constraints.

(a) The LASSO-like problem (3.6). Define g?(x) := f(Ax − y) + g(x). Since both f(Ax − y) and g(x) are
convex PA functions on RN , so is g? in view of (iii) of Lemma 2.1. This leads to the BP-like problem (3.3) with
the objective function g? and without the equality constraint.

(b) The BPDN-I-like problem (3.7). Since f(Ax − y) is a convex PA function on RN , the constraint set
{x | f(Ax − y) ≤ ε} is polyhedral as shown in the proof of Theorem 3.11. Hence, the problem (3.7) can be
formulated as the BP-like problem (3.3) with a new polyhedral constraint.

(c) The BPDN-II-like problem (3.10). Based on the argument for the above two cases, the problem (3.10) is
also transferred to the BP-like problem (3.3).

Consequently, when f is a convex PA function, the solution uniqueness of the above three problems can be
determined via Theorem 3.2 for a given x∗.

As an example, we consider the Dantzig selector which has gained tremendous interest in high-dimensional
statistics [5]: minx∈RN ‖x‖1 subject to ‖AT (Ax − y)‖∞ ≤ ε. Let g(x) := ‖x‖1,∀x ∈ RN , and f(z) :=
‖AT z‖∞,∀ z ∈ Rm, which are both convex PA functions. Hence, the Dantzig selector can be treated as the
BPDN-I-like problem (3.7) with the convex PA loss function f and the objective function g.

4. Solution existence and uniqueness of `1-norm based
constrained optimization problems

Since the `1-norm is a sign-symmetric polyhedral gauge and thus a convex PL function, we apply the general
results developed in Section 3 to establish solution uniqueness conditions for several important and representative
`1 minimization problems, possibly subject to linear inequality constraints.

4.1. Solution existence of `1-norm based constrained optimization problems

Solution existence is a fundamental issue for `1-norm based optimization problems. For the BP-like problem,
it depends on the convex PA function g, whereas for the LASSO-like and two BPDN-like problems, it depends
on the function f additionally. In this subsection, we first establish some general solution existence results,
and then apply them to several problems of interest with g(x) = ‖Ex‖1 and f(·) = ‖ · ‖s, which find various
applications in `1 minimization. We start from certain preliminary results.

Lemma 4.1. Let J : R` → R be a coercive and lower semi-continuous function that is bounded below, i.e.,
infu∈R` J(u) > −∞. Let a matrix H ∈ R`×N and a set C ⊆ RN be such that HC is a closed set in R`. Then for
any u′ ∈ R`, the minimization problem infx∈C J(Hx+ u′) attains an optimal solution.
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Proof. Define the set W := HC + {u′} in R` for an arbitrary u′. Since HC is closed, so is W. Consider the
optimization problem (P ) : infu∈W J(u). Since J is coercive, lower semi-continuous, and bounded below and W
is closed, it follows from a standard argument that (P ) has a minimizer u∗ ∈ W. Therefore, there exists x∗ ∈ C
such that Hx∗ + u′ = u∗. Clearly, x∗ is an optimal solution to the original problem.

Corollary 4.2. Let A ∈ Rm×N , F ∈ Rp×N , and H :=

[
A
F

]
∈ R(m+p)×N . Let J1 : Rm → R and J2 : Rp → R be

two coercive and lower semi-continuous functions that are bounded below. Suppose C ⊆ RN is such that HC is
a closed set in Rm+p. Then for any given y ∈ Rm, the following problem attains a minimizer:

inf
x∈C

J1(Ax− y) + J2(Fx). (4.1)

Proof. For any z = (zα, zβ) ∈ Rm+p with zα ∈ Rm and zβ ∈ Rp, define the function J(z) := J1(zα) + J2(zβ).
Clearly, J is coercive, lower semi-continuous, and bounded below on Rm+p. For any given y, define z′ := (−y, 0) ∈
Rm+p. Hence, J1(Ax− y) + J2(Fx) = J(Hx+ z′) for any x ∈ RN . Consequently, the minimization problem in
(4.1) can be equivalently written as infx∈C J(Hx+ z′). Since HC is closed, it follows from Lemma 4.1 that the
minimization problem in (4.1) attains an optimal solution.

By exploiting the above results, we obtain the following solution existence results for some general
minimization problems motivated by the basis pursuit, LASSO, and basis pursuit denoising problems.

Theorem 4.3. Let A ∈ Rm×N , C ∈ Rp×N , y ∈ Rm, d ∈ Rp, and E ∈ Rk×N be given, and suppose the functions
J1 : Rm → R and J2 : Rk → R are coercive, bounded below, and lower semi-continuous. Then each of the
following minimization problems attains an optimal solution as long as it is feasible:

(P1) : min
x∈RN

J2(Ex) subject to Ax = y, and Cx ≥ d;

(P2) : min
x∈RN

J1(Ax− y) + J2(Ex) subject to Cx ≥ d;

(P3) : min
x∈RN

J1(Ax− y) subject to ‖E1x‖1 ≤ η1, . . . , ‖Erx‖1 ≤ ηr, and Cx ≥ d,

where Ei ∈ Rki×N and ηi ≥ 0 for each i = 1, . . . , r in (P3). Moreover, if J1 : Rm → R is coercive and lower
semi-continuous, and J2 : Rk → R satisfies the conditions specified above, then the following problem attains an
optimal solution as long as it is feasible:

(P4) : min
x∈RN

J2(Ex) subject to J1(Ax− y) ≤ ε, and Cx ≥ d, where ε ∈ R.

Proof. (i) Consider the problem (P1) first. Define the (nonempty) feasible set C1 := {x |Ax = y, Cx ≥ d}. Since
C1 is a convex polyhedron, we deduce via Minkowski-Wyel Decomposition Theorem that EC1 is also a convex
polyhedron and thus closed. Applying Lemma 4.1 to J(·) = J2(·), H = E, u′ = 0, and C = C1, we conclude that
this problem attains a minimizer.

(ii) We then consider the problem (P2). Clearly, the (nonempty) feasible set C2 := {x | Cx ≥ d} is a convex

polyhedron. Let H :=

[
A
E

]
∈ R(m+k)×N . Hence, HC2 is closed. It follows from Corollary 4.2 directly that a

minimizer exists.
(iii) We next consider the problem (P3). As indicated in the proof of Theorem 3.11, since each gi(x) = ‖Eix‖1

is a convex PL function, the (nonempty) feasible set C3 := {x | g1(x) ≤ η1, . . . , gr(x) ≤ ηr, and Cx ≥ d} is a
polyhedron. Therefore, AC3 is closed. By letting J(·) = J1(·), H = A, and u′ = −y, and C = C3, the desired
result follows readily from Lemma 4.1.
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(iv) Lastly, we consider the problem (P4). Let the (nonempty) set D := {x ∈ RN | J1(Ax− y) ≤ ε}, and define
W := R(AT ) ∩ D. We claim that D = W +N(A). It is straightforward to show that D ⊇ W +N(A). For the
converse, consider an arbitrary x ∈ D. Note that there exist unique vectors u ∈ R(AT ) and v ∈ N(A) such that
x = u+ v. Since Ax = Au, we have u ∈ D. Therefore, u ∈ W so that x ∈ W +N(A). This completes the proof
of the claim.

We next show that W is a compact set. Toward this end, we note that since J1(·) is lower semi-continuous,
J1(Ax− y) is also lower semi-continuous in x. By observing that D is the sub-level set of a lower semi-continuous
function, we deduce that D is closed. Sine R(AT ) is also closed, so isW. We show next thatW is bounded. Since
J1(·) is coercive, we see via the definition of the set D that AD is bounded. Suppose, by contradiction, that W
is unbounded. Then there exists a sequence (xn) in W := R(AT ) ∩ D such that (‖xn‖)→∞. Without loss of
generality, we assume that (xn/‖xn‖) converges to z∗ with ‖z∗‖ = 1. Since (Axn) is in AD, it is thus bounded
so that (Axn/‖xn‖)→ 0. This implies that Az∗ = 0 or equivalently z∗ ∈ N(A). Furthermore, since (xn/‖xn‖)
is a convergent sequence in the closed set R(AT ), we have z∗ ∈ R(AT ). In view of N(A) ∩ R(AT ) = {0}, we
have z∗ = 0, a contradiction. Hence, W is bounded and thus compact.

Since D = W + N(A), we have ED = EW + EN(A). Note that EW is compact, and that EN(A) is a
subspace and thus closed. Consequently, ED is closed. Since the (nonempty) feasible set C4 = D ∩ P, where
P := {x | Cx ≥ d}, we have EC4 = ED ∩ EP. As both ED and EP are closed, so is EC4. It follows from the
similar argument as before that (P4) attains an optimal solution.

We apply the above theorem to several representative `1 minimization problems.

Corollary 4.4. Let A ∈ Rm×N , C ∈ Rp×N , y ∈ Rm, and d ∈ Rp be given, g(x) = ‖Ex‖1 for some E ∈ Rk×N ,
and f(u) = ‖u‖s,∀u ∈ Rm where ‖ · ‖ is a norm on Rm and s > 0. Then each of the following minimization
problems attains an optimal solution as long as it is feasible:

BP-like problem : min
x∈RN

g(x) subject to Ax = y, and Cx ≥ d;

LASSO-like problem : min
x∈RN

f(Ax− y) + g(x) subject to Cx ≥ d;

BPDN-I like problem : min
x∈RN

g(x) subject to f(Ax− y) ≤ ε, and Cx ≥ d, where ε > 0;

BPDN-II-like problem : min
x∈RN

f(Ax− y) subject to ‖E1x‖1 ≤ η1, . . . , ‖Erx‖1 ≤ ηr, and Cx ≥ d,

where Ei ∈ Rki×N and ηi ≥ 0 for each i = 1, . . . , r in the last problem.

Proof. It is a direct consequence of Theorem 4.3 by noting that J1(·) = ‖ · ‖s with s > 0 in f and J2(·) = ‖ · ‖1
in g are coercive, continuous (thus lower semi-continuous), and bounded below by zero.

4.2. Properties of `1-norm based convex PA functions

In order to apply the general results developed in Section 3 to an `1-norm based convex PA function, it is
crucial to find the matrix W defined in (3.2) associated with this function for a given vector. Toward this end,
we first establish this matrix for the `1-norm. Note that the max-formulation of the `1-norm on Rk is given by
g(z) := ‖z‖1 = max1,...,2k pTi z,∀ z ∈ Rk, where each

pi ∈
{(
± 1,±1, . . . ,±1

)T} ⊂ Rk. (4.2)

For a given z∗ ∈ Rk, let S be the support of z∗ and Sc be its complement. Further, define the index
set I := {i ∈ {1, . . . , 2k} | pTi z∗ = ‖z∗‖1}, and b := sgn(z∗S) ∈ R|S|. Here |I| = 2|S

c|. Using the definitions
of S and Sc, we can decompose g(z) as the sum of two `1-norms on R|S| and R|Sc| respectively, i.e.,
g(z) = ‖z‖1 = ‖zS‖1 + ‖zSc‖1,∀ z ∈ Rk. For notational purpose, define gS(zS) := ‖zS‖1 and gSc(zSc) := ‖zSc‖1.
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Hence the subdifferentials ∂gS(z∗S) = {b}, and ∂gSc(z∗Sc) = ∂gSc(0) = {u ∈ R|Sc| | ‖u‖∞ ≤ 1}. By the comment
after equation (3.2), it is easy to verify that the matrix defined in (3.2) associated with ‖z‖1 at z∗ is given by

Ŵ =
[
Ŵ•S Ŵ•Sc

]
∈ R|I|×k, where Ŵ•S = 1 · bT , and each row of Ŵ•Sc is of the form (±1, . . . ,±1) ∈ R|Sc|.

For example, if |Sc| = 2, Ŵ•Sc =


1 1
1 −1
−1 1
−1 −1

 . We collect several properties of Ŵ•Sc in the following lemma.

These properties will be used for the latter development; see the proofs of Lemma 4.6 and Propositions 4.7 and
4.8.

Lemma 4.5. For the given z∗ ∈ Rk, the matrix Ŵ•Sc ∈ R|I|×|Sc| defined above satisfies:

(i) the columns of Ŵ•Sc are linearly independent;

(ii) for any row ŴiSc , there is another row ŴjSc with i 6= j such that ŴjSc = −ŴiSc ;

(iii) conv{ŴT
iSc | i = 1, . . . , |I|} = ∂gSc(0) = {u ∈ R|Sc| | ‖u‖∞ ≤ 1}, and

|I|∑
i=1

λi · ŴT
iSc

∣∣∣ |I|∑
i=1

λi = 1, λi > 0, ∀ i = 1, . . . , |I|

 =
{
u ∈ R|S

c| ∣∣ ‖u‖∞ < 1
}
.

Proof. Statements (i) and (ii) are trivial. To show the first part of statement (iii), it follows from the comment

after equation (3.2) that the columns of ŴT
•Sc are convex hull generators (or vertices/extreme points) of ∂gSc(0),

which is the closed unit ball with respect to the infinity-norm ‖ · ‖∞. Lastly, we deduce from Lemma 3.3 and
the first part of (iii) that

|I|∑
i=1

λi · ŴT
iSc

∣∣∣ |I|∑
i=1

λi = 1, λi > 0, ∀ i = 1, . . . , |I|


= ri

(
conv{ŴT

iSc | i = 1, . . . , |I|}
)

= ri
(
{u ∈ R|S

c| | ‖u‖∞ ≤ 1}
)

= int
(
{u ∈ R|S

c| | ‖u‖∞ ≤ 1}
)

=
{
u ∈ R|S

c| | ‖u‖∞ < 1
}
,

where the second-to-last equation follows from the fact that the unit closed ball with respect to the infinity-norm
‖ · ‖∞ has nonempty interior.

Motivated by generalized `1 minimization, we consider a sign-symmetric polyhedral gauge of the form g(x) =
‖Ex‖1 for a (nonzero) matrix E ∈ Rk×N . Many `1-norm based convex PL functions arising from applications
can be represented by this form, e.g., `1-trend filtering [12], sparse fused LASSO [26], and generalized LASSO
[24]; see Sections 4.3.1 and 5.3 for more discussions and examples. For a given x∗ ∈ RN , let S denote the support

of Ex∗, i.e., S = {i ∈ {1, . . . , k} | (Ex∗)i 6= 0}, and Sc be its complement. Further, define b̂ := sgn((Ex∗)S) and
the index set I := {i ∈ {1, . . . , 2k} | pTi Ex∗ = ‖Ex∗‖1}, where pi’s are defined in (4.2) for the max-formulation

of the `1-norm. Here |I| = 2|S
c|. In light of the comment after equation (3.2), we obtain the matrix Ŵ defined in

(3.2) associated with ‖ · ‖1 at Ex∗ as Ŵ =
[
Ŵ•S Ŵ•Sc

]
∈ R|I|×k, where Ŵ•S = 1 · b̂T and Ŵ•Sc ∈ R|I|×|Sc| is

the matrix whose columns of its transpose form the vertices of the closed unit ball in R|Sc| with respect to ‖ · ‖∞.

Note that the matrix Ŵ•Sc satisfies the conditions given in Lemma 4.5. In view of ∂g(x∗) = ET∂‖ · ‖1(Ex∗),
we see that the matrix W associated with the function g at x∗ is

W = Ŵ · E =
[
Ŵ•S Ŵ•Sc

] [ES•
ESc•

]
= 1 · bT + Ŵ•ScESc• ∈ R|I|×N , b := ETS•b̂ ∈ RN . (4.3)
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By virtue of these results, we obtain the following lemma which characterizes the null space of W .

Lemma 4.6. Let the matrix W be defined in (4.3) for the function g(x) = ‖Ex‖1 at x∗. For a given v ∈ RN ,
Wv = 0 if and only if bT v = 0 and ESc• v = 0.

Proof. The “if” part is trivial, and we show the “only if” part only. Suppose Wv = 0. Let α := bT v ∈ R and
u := ESc• v ∈ R|Sc|. Hence, we have Wv = α · 1 + Ŵ•Sc u = 0. It follows from (ii) of Lemma 4.5 that the vector
W•Scu has two elements of the same absolute value (which is possibly zero) but opposite signs. This shows
that α is zero, i.e., bT v = 0. This further implies that W•Sc u = 0. Since the columns of W•Sc are linearly
independent (cf. (i) of Lem. 4.5), we obtain u = 0 or equivalently ESc• v = 0.

4.3. Solution uniqueness of convex optimization problems involving ‖Ex‖1
Through this subsection, we let g(x) = ‖Ex‖1,∀x ∈ RN for a (nonzero) matrix E ∈ Rk×N , and let P :=

{x ∈ RN |Cx ≥ d} be a nonempty polyhedron where C ∈ Rp×N and d ∈ Rp. Furthermore, for a given x∗, recall
the definitions of the index sets α and S in Section 4.2, and the definitions of the matrix W and the vector b in
(4.3). We first consider the BP-like problem (3.3) involving the function g.

Proposition 4.7. Let g(x) = ‖Ex‖1, and x∗ be a feasible point of the optimization problem (3.3). Then x∗ is
the unique minimizer if and only if the following conditions hold:

(a) the matrix

 A
Cα•
ESc•

 has full column rank and

(b) there exist u ∈ Rm, u′ ∈ R|α|++, and u′′ ∈ R|Sc| with ‖u′′‖∞ < 1 such that ATu+ CTα•u
′ − ETSc•u

′′ = b.

Proof. By Theorem 3.2, it suffices to show that conditions (i) and (iii) of Theorem 3.2 hold if and only if
conditions (a) and (b) hold, where we recall that (i) {v |Av = 0, Cα•v = 0, Wv = 0} = {0}, and (iii) there

exist w ∈ Rm, w′ ∈ R|α|++, and w′′ ∈ R|I| with 0 < w′′ < 1 and 1Tw′′ = 1 such that ATw−CTα•w′+WTw′′ = 0.
“Only if”. Suppose conditions (i) and (iii) of Theorem 3.2 hold with suitable w,w′, and w′′ satisfying the

specified conditions. In view of the expression of W given in (4.3), we have WTw′′ = b · 1Tw′′ +ETSc•Ŵ
T
•Scw′′ =

b+ ETSc•u
′′, where u′′ := ŴT

•Scw′′ and we use 1Tw′′ = 1. By the second part of statement (iii) Lemma 4.5, we
obtain ‖u′′‖∞ < 1. Hence, letting u = −w and u′ = w′ > 0, we have ATu + CTα•u

′ − ETSc•u
′′ = b. This yields

condition (b). Moreover, it follows from condition (i) and Lemma 4.6 that{
v |Av = 0, Cα•v = 0, bT v = 0, ESc• v = 0

}
= {0}. (4.4)

We claim that equation (4.4) implies condition (a). Suppose, in contrast, that (a) fails under (4.4), i.e., there
exists v 6= 0 such that Av = 0, Cα•v = 0, and ESc•v = 0. In view of condition (b), we have

vT b = vT
(
ATu+ CTα•u

′ − ETSc•u
′′) = 0.

This gives rise to a contradiction to (4.4). Hence, condition (a) holds.
“If”. Suppose conditions (a) and (b) hold. Note that condition (a) implies that {v |Av = 0, Cα•v = 0, bT v =

0, ESc• v = 0} = {0}. By Lemma 4.6, we have {v |Av = 0, Cα•v = 0, Wv = 0} = {0}, which is condition (i)

of Theorem 3.2. Furthermore, we deduce from condition (b) that there exist u ∈ Rm, u′ ∈ R|α|++, and u′′ ∈ R|Sc|

with ‖u′′‖∞ < 1 such that ATu+CTα•u
′−ETSc•u

′′ = b. By letting w = −u and w′ = u′, we have ATw−CTα•w′+
b+ETSc•u

′′ = 0. Since ‖u′′‖∞ < 1, we deduce via the second part of (iii) of Lemma 4.5 that there exists w′′ ∈ R|I|
with 0 < w′′ < 1 and 1Tw′′ = 1 such that u′′ = WT

•Scw′′. Therefore, b + ETSc•u
′′ =

(
b · 1T + ETSc•W

T
•Sc)w′′ =

WTw′′, where the second equation follows from (4.3). This gives rise to condition (ii) of Theorem 3.2.
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The necessary and sufficient conditions for unique optimal solutions to the LASSO-like problem (3.6) are
given in the following proposition.

Proposition 4.8. Let g(x) = ‖Ex‖1, f : Rm → R be a C1 strictly convex function, and x∗ ∈ RN be a feasible
point of the problem (3.6). Then x∗ is the unique minimizer of (3.6) if and only if conditions (a) and (b) of
Proposition 4.7 and the following condition hold:

(c) there exist ũ ∈ R|α|+ and ũ′ ∈ R|Sc| with ‖ũ′‖∞ ≤ 1 such that AT∇f(Ax∗ − y)− CTα• ũ+ b+ ETSc•ũ
′ = 0.

Proof. In light of Theorem 3.8 and Proposition 4.7, we only need to show that condition (iii) of Theorem 3.8
is equivalent to condition (c) of this proposition. Using (iii) of Lemma 4.5, we deduce that ‖ũ′‖∞ ≤ 1 for

some ũ′ ∈ R|Sc| if and only if there exists w′ ∈ R|I| with 0 ≤ w′ ≤ 1 and 1Tw′ = 1 such that ũ′ = ŴT
•Scw′.

Applying this result and the similar argument in the proof of Proposition 4.7, we conclude that condition (iii)
of Theorem 3.8 is equivalent to condition (c) of the proposition.

The following proposition pertains to the BPDN-I-like problem (3.7); condition (2.c) given below follows from
statement (c) of Remark 3.10. Its proof is rather straightforward and thus omitted.

Proposition 4.9. Let g(x) = ‖Ex‖1, f : Rm → R be a C1 strictly convex function, and x∗ ∈ RN be a feasible
point of the problem (3.7).

C.1 Suppose f(Ax∗ − y) < ε. Then x∗ is the unique minimizer of (3.7) if and only if

[
Cα•
ESc•

]
has full column

rank, and there exist u ∈ R|α|++ and u′ ∈ R|Sc| with ‖u′‖∞ < 1 such that CTα•u = b+ ETSc•u
′.

C.2 Suppose f(Ax∗ − y) = ε. Then x∗ is the unique minimizer of (3.7) if and only if conditions (a) and (b)
of Proposition 4.7 and the following condition hold:

(2.c) If K := {v ∈ RN |
(
∇f(Ax∗ − y)

)T
Av < 0, Cα•v ≥ 0} is nonempty, then there exist a positive real

number θ, ũ ∈ R|α|+ , and ũ′ ∈ R|Sc| with ‖ũ′‖∞ ≤ 1 such that θ ·AT∇f(Ax∗−y)−CTα•ũ+b+ETSc•ũ
′ = 0.

The next result characterizes solution uniqueness of the following BPDN-II-like problem:

min
x∈RN

f(Ax− y) subject to g(x) ≤ η, and Cx ≥ d. (4.5)

This problem is a special case of the problem (3.10) with r = 1, g(x) = ‖Ex‖1, and a constant η > 0.

Proposition 4.10. Let g(x) = ‖Ex‖1, f : Rm → R be a C1 strictly convex function, and x∗ ∈ RN be a feasible
point of the problem (4.5).

C.1 Suppose g(x∗) < η. Then x∗ is the unique minimizer of (4.5) if and only if the matrix

[
A
Cα•

]
has full column

rank, and there exist w ∈ Rm, w′ ∈ R|α|++ and u ∈ R|α|+ such that ATw = CTα•w
′ and AT∇f(Ax∗ − y) =

CTα•u;
C.2 Suppose g(x∗) = η. Then x∗ is the unique minimizer of (4.5) if and only if conditions (a) and (b) of

Proposition 4.7 and the following condition hold:

(2.c) there exist ũ ∈ R|α|+ , µ ∈ R+, and ũ′ ∈ R|Sc| with ‖ũ′‖∞ ≤ 1 such that AT∇f(Ax∗ − y) − CTα•ũ + µ ·(
b+ ETSc•ũ

′
)

= 0.

Proof. The proof for the case C.1 follows directly from Theorem 3.11 by setting the index J = ∅. For the case
C.2, it suffices to show that condition (iv) of Theorem 3.11 is equivalent to condition (2.c) of this proposition.
For this purpose, it follows from the expression of the matrix W in (4.3), (iii) of Lemma 4.5, and a similar
argument for Proposition 4.7 that (a) for any z′ ≥ 0 with 1T z′ = 1, there exists ũ′ ∈ R|Sc| with ‖ũ′‖∞ ≤ 1 such
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that WT z′ = b+ETSc•ũ
′; and (b) for any ũ′ ∈ R|Sc| with ‖ũ′‖∞ ≤ 1, there exists z′ ≥ 0 with 1T z′ = 1 such that

WT z′ = b+ ETSc•ũ
′. Therefore, condition (iv) of Theorem 3.11 is equivalent to (2.c) of this proposition.

4.3.1. Extension to a sum of `1-norm based convex PA functions

The results developed for ‖Ex‖1 can be extended to a wide range of `1-norm based convex PA functions; see
Section 4.4 for the `1-norm. In this subsection, we consider a convex PL function of the following form which
appears in such applications as the sparse fused LASSO [14, 26] (cf. Sect. 5.3):

g(x) =

q∑
i=1

‖Fix‖1, ∀ x ∈ RN , (4.6)

where each matrix Fi ∈ Rki×N , i = 1, . . . q. Letting k := k1 + · · · + kq, define the augmented matrix F :=F1

...
Fq

 ∈ Rk×N . Then g(x) = ‖Fx‖1,∀x ∈ RN . Consequently, all the results developed for ‖Ex‖1 hold for

g(x) = ‖Fx‖1. Particularly, for a given x∗ ∈ RN , let Si be the support of Fix
∗ for each i, and S be the support

of Fx∗. Then FS• =

FS1•...
FSq•

. Similarly, FSc• =

FSc
1•
...

FSc
q•

. Further, let b̂ := sgn((Fx∗)S), and b := FTS•b̂. Therefore,

Propositions 4.7–4.10 are readily extended to the function g in (4.6) using these matrices and vectors.

4.4. Solution uniqueness of convex optimization problems involving the `1-norm

Through this subsection, we consider the case where g is the `1-norm, i.e., g(x) = ‖x‖1,∀x ∈ RN . By setting
E as the N ×N identity matrix and applying the results in Section 4.3 to the `1-norm, we see that for a given
x∗ ∈ RN , the index set S is the support of x∗, the vector b̂ = sgn(x∗S) ∈ R|S|, the vector b = ETS•b̂ = (bS , bSc) =

(̂b, 0) ∈ RN , ESc• = [0 IScSc ], and ESc•v = vSc .

Corollary 4.11. Let g(x) = ‖x‖1, and x∗ be a feasible point of the optimization problem (3.3). Then x∗ is the
unique minimizer if and only if the following conditions hold:

(i) the matrix

[
A•S
CαS

]
has full column rank and

(ii) there exist u ∈ Rm and u′ ∈ R|α|++ such that AT•Su+ CTαSu
′ = b̂ and

∥∥AT•Scu+ CTαScu′
∥∥
∞ < 1.

Proof. We apply Proposition 4.7 to this case with E = IN . Since ESc• = [0 IScSc ], we see that A
Cα•
ESc•

 =

A•S A•Sc

CαS CαSc

0 IScSc

 .
Since IScSc is invertible, condition (a) of Proposition 4.7 holds if and only if condition (i) holds, i.e.,

[
A•S
CαS

]
has

full column rank. Using ESc• = [0 IScSc ] and b = (bS , bSc) with bS = b̂ and bSc = 0, we deduce that condition

(b) of Proposition 4.7 holds if and only if there exist u ∈ Rm, u′ ∈ R|α|++, and u′′ ∈ R|Sc| with ‖u′′‖∞ < 1 such
that

AT•Su+ CTαSu
′ = b̂, and AT•Scu+ CTαScu′ = u′′.
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The latter equation given above is equivalent to
∥∥AT•Scu+ CTαScu′

∥∥
∞ < 1. This completes the proof.

Remark 4.12. The polyhedron constrained `1 minimization problem considered in Corollary 4.11 can be
formulated as the following equivalent linear program:

min
(x,v)∈RN×RN

1T v subject to v ≥ 0, −v ≤ x ≤ v, Ax = y, Cx ≥ d,

where x ∈ RN is the original decision variable, and v ∈ RN is the slack variable used for transforming the `1-
norm into linear inequalities. Hence, the solution uniqueness conditions for linear programs, e.g., ([13], Thm. 2),
can be employed to obtain uniqueness conditions which are equivalent to those in Corollary 4.11. However, the
linear program based conditions are described by large-size linear inequality systems due to the presence of the
slack variable v, and they often require the knowledge of optimizers of the associated dual problem. Therefore,
they are more expensive to verify numerically than those in Corollary 4.11. Furthermore, the conditions in
Corollary 4.11 demonstrate better geometric meanings and yield simpler conditions for specific polyhedral
constraints, in comparison with the linear program based uniqueness conditions.

The necessary and sufficient conditions for unique optimal solutions to the LASSO-like and the BPDN-I/
II-like problems are presented below. Their proofs are omitted since they follow directly from Propositions 4.8–
4.10 and particular structure associated with the `1-norm shown in Corollary 4.11.

Corollary 4.13. Let g(x) = ‖x‖1, f : Rm → R be a C1 strictly convex function, and x∗ ∈ RN be a feasible
point of the problem (3.6). Then x∗ is the unique minimizer of (3.6) if and only if conditions (i)–(ii) of Corol-

lary 4.11 and the following condition hold: there exists ũ ∈ R|α|+ such that AT•S∇f(Ax∗ − y) − CTαS ũ + b̂ = 0,
and

∥∥AT•Sc∇f(Ax∗ − y)− CTαSc ũ
∥∥
∞ ≤ 1.

The next result characterizes a unique optimal solution to the BPDN-I-like problem (3.7).

Corollary 4.14. Let g(x) = ‖x‖1, f : Rm → R be a C1 strictly convex function, and x∗ ∈ RN be a feasible
point of the problem (3.7).

C.1 Suppose f(Ax∗− y) < ε. Then x∗ is the unique minimizer of (3.7) if and only if CαS has full column rank

and there exists u ∈ R|α|++ such that CTαSu = b̂ and ‖CTαScu‖∞ < 1.
C.2 Suppose f(Ax∗ − y) = ε. Then x∗ is the unique minimizer of (3.7) if and only if conditions (i)-(ii) of

Corollary 4.11 and the following condition hold:

(2.iii) if K := {v ∈ RN |
(
∇f(Ax∗ − y)

)T
Av < 0, Cα•v ≥ 0} is nonempty, then there exist a positive real

number θ and ũ ∈ R|α|+ such that θ · AT•S∇f(Ax∗ − y) − CTαS ũ + b̂ = 0, and ‖θ · AT•Sc∇f(Ax∗ − y) −
CTαSc ũ‖∞ ≤ 1.

The last result of this subsection pertains to the BPDN-II-like problem defined below, which is a special case
of the problem (3.10) with r = 1, g(x) = ‖x‖1, and a positive real number η > 0:

min
x∈RN

f(Ax− y) subject to g(x) ≤ η, and Cx ≥ d. (4.7)

Corollary 4.15. Let g(x) = ‖x‖1, f : Rm → R be a C1 strictly convex function, and x∗ ∈ RN be a feasible
point of the problem (4.7).

C.1 Suppose g(x∗) < η. Then x∗ is the unique minimizer of (4.7) if and only if the associated conditions given
in C.1 of Proposition 4.10 hold.

C.2 Suppose g(x∗) = η. Then x∗ is the unique minimizer of (4.7) if and only if conditions (i)–(ii) of
Corollary 4.11 and the following condition hold:
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(2.iii) there exist ũ ∈ R|α|+ and µ ∈ R+ such that AT•S∇f(Ax∗ − y) − CTαS ũ + µ · b̂ = 0, and ‖AT•Sc∇f(Ax∗ −
y)− CTαS ũ‖∞ ≤ µ.

5. Applications to `1-norm recovery problems: examples and
comparison with related results

In this section, we apply the results developed in the previous section to specific `1-norm recovery problems.
We show that the general framework established in this paper not only recovers all the known results without
imposing restrictive assumptions but also leads to many new results, e.g., the sparse fused LASSO subject to
polyhedral constraints (cf. Cor. 5.4), basis pursuit subject to the monotone cone constraint and the Dantzig
selector (cf. Sect. 5.4). Besides, we compare our results with the existing work and demonstrate the broad
applicability and efficiency of the general results of this paper.

By setting C = 0 and d = 0 in Propositions 4.7–4.10 and Corollaries 4.11–4.15, we obtain solution uniqueness
conditions for `1-norm optimization problems without a linear inequality constraint for either g(x) = ‖Ex‖1 or
g(x) = ‖x‖1. These results give rise to the same uniqueness conditions recently developed for g(x) = ‖Ex‖1 in
[29] and g(x) = ‖x‖1 in [28] respectively. Also see Section 3.1.1 for a detailed comparison with the results on
basis-pursuit-like problems in [10].

5.1. Applications to basis pursuit denoising I and comparison with related results

Let f : Rm → R be a C1 strictly convex function, and g(x) = ‖Ex‖1 or g(x) = ‖x‖1. For the BPDN-I-like
problem (3.7) without a linear inequality constraint Cx ≥ d, it is shown in the two papers [28, 29] that Ax− y
is constant on the solution set X and that f(Ax − y) = ε for all x ∈ X if 0 /∈ X . By a similar argument for
([28], Lem. 4.2(3)), one can show that if a linear inequality constraint is involved but 0 ∈ P := {x |Cx ≥ d}
(or equivalently d ≤ 0), then the same results hold; particularly, Ax − y is also constant on the solution set.
This case is especially interesting since P is often a polyhedral cone in applications. Therefore, the case C.1
in Proposition 4.9 and Corollary 4.14 can be ignored in these scenarios. Nonetheless, when a general linear
inequality constraint is considered, the case C.1 is needed, since Ax− y is not always constant on the solution
set as demonstrated by the following example.

Example 5.1. Consider the following problem on R2:

min
x=(x1,x2)∈R2

‖x‖1 subject to
x2

1

9
+
x2

2

16
≤ 1 and x1 + x2 ≥ 2.

This problem is a special case of the BPDN-I-like problem in (3.7), where g(x) = ‖x‖1, ε = 1, f(Ax−y) = ‖Ax‖22
with A = diag(1/3, 1/4) and y = 0, C = [1 1], and d = 2. It is easy to show via a geometric argument that the
solution set is {x = (x1, x2) |x1 + x2 = 2 and x ≥ 0} on which Ax− y is varying.

5.2. Applications to basis pursuit denoising II and comparison with related results

We discuss the results on the BPDN-II-like problem subject to one `1-norm based constraint given in (4.5)
or (4.7) and compare them with the previous results. The paper [28] studies this problem of the following form
without the linear inequality constraint Cx ≥ d:

min
x∈RN

f(Ax− y) subject to ‖x‖1 ≤ τ, (5.1)

where f is a strictly convex function, and the constant τ is assumed to satisfy 0 < τ ≤ inf{‖x‖1 |x ∈
argminz∈RN f(Az − y)} ([28], Ass. 2.3). It is claimed in ([28], Lem. 4.2(4)) that under this assumption on
τ , ‖x‖1 = τ on the (nonempty) solution set of (5.1), which is a key step to derive the solution uniqueness
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conditions in [28]. However, the proof for this claim given in ([28], Lem. 4.2(4)) is invalid. In what follows, we
provide a remedy proof in a general setting.

Lemma 5.2. Let h : RN → R be a convex function and g : RN → R be a continuous function such that
minx∈RN h(x) has a nonempty solution set H, and γ := inf{g(x) |x ∈ H} > −∞. For a given τ ∈ R with τ ≤ γ,
suppose the following optimization problem attains a nonempty solution set HP :

(P ) : min
x∈RN

h(x) subject to g(x) ≤ τ.

Then g(x) = τ for any x ∈ HP . In particular, if h(x) = f(Ax− y) and g(x) = ‖x‖1, where f is strictly convex,
then ‖x‖1 = τ on HP .

Proof. We prove this lemma by contradiction. Suppose there exists an optimal solution x̂ ∈ HP such that
g(x̂) < τ . Then g(x̂) < γ := inf{g(x) |x ∈ H}, which implies that x̂ 6∈ H. For a fixed x′ ∈ H, we thus have
h(x̂) > h(x′). It follows from the continuity of g at x̂ and g(x̂) < τ that there exists a sufficiently small λ̄ ∈ (0, 1)
such that g

(
(1− λ̄)x̂+ λ̄x′

)
= g

(
x̂+ λ̄(x′ − x̂)

)
< τ. Hence, z := (1− λ̄)x̂+ λ̄x′ is feasible to the optimization

problem (P ). In view of h(x̂) > h(x′), λ̄ > 0, and the convexity of h, we further have

h(z) = h
(
(1− λ̄)x̂+ λ̄x′

)
≤ (1− λ̄)h(x̂) + λ̄h(x′) < h(x̂).

This shows that x̂ is not an optimal solution to (P ), contradiction. Therefore, g(x) = τ,∀x ∈ HP .

Compared with the results for the problem (5.1) developed in [28], the present paper establishes the solution
uniqueness conditions not only without imposing a restriction on the parameter τ but also taking a general linear
inequality constraint as well as multiple convex PA functions based constraints into account; see Theorem 3.11,
Proposition 4.10, and Corollary 4.15. This generalization is especially important because, as shown in the
following example, the claim that ‖x‖1 is constant on the solution set fails when a linear inequality constraint
is imposed.

Example 5.3. Consider the problem in R2:

min
x=(x1,x2)∈R2

(x1 + x2 − 2)2 subject to ‖x‖1 ≤ 1 and − x1 − x2 ≥ 0.

This problem is a special case of (4.7), where f(·) = | · |2, A = [1 1], y = 2, η = 1, C = [−1 − 1], and d = 0.
It is noticed that the solution set of minx∈R2 (x1 + x2 − 2)2 is the line in R2 defined by x1 + x2 = 2, and
inf{‖x‖1 | x1 +x2 = 2} = 2. Therefore, the bound η = 1 satisfies the specified assumption. However, by a simple
geometric argument, we deduce that the solution set is {x = (x1, x2) |x1 + x2 = 0, −1/2 ≤ x1 ≤ 1/2}. Clearly,
‖x‖1 is not constant on this set.

5.3. Applications to multiple `1-norm based convex PA functions

Multiple `1-norm based functions are involved in several sparse optimization problems arising from statistics,
image processing, and machine learning. One notable example is the so-called sparse fused LASSO [14, 26] which
takes the following form with the positive penalty parameters λ1 and λ2:

min
x∈RN

‖Ax− y‖22 + λ1 · ‖x‖1 + λ2 · ‖D1x‖1, (5.2)
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where A ∈ Rm×N and y ∈ Rm are given, and D1 is the first-order difference matrix given by

D1 :=


−1 1

−1 1
. . .

. . .

−1 1

 ∈ R(N−1)×N . (5.3)

Here ‖D1x‖1 characterizes the total variation of x. Another version of the sparse fused LASSO is

min
x∈RN

‖Ax− y‖22 subject to ‖x‖1 ≤ η1, and ‖D1x‖1 ≤ η2, (5.4)

where η1, η2 > 0. These two problems are closely related to the generalized LASSO [24, 25].
It is observed via the discussions in Section 4.3.1 that the sparse fused LASSO in (5.2) can be formulated as:

minx∈RN f(Ax− y) + g(x), where f(·) = ‖ · ‖22, and g(x) = ‖Ex‖1 with E =

[
λ1 · IN
λ2 ·D1

]
∈ R(2N−1)×N . Therefore,

its solution uniqueness is determined by Theorem 3.8 or Proposition 4.8. Furthermore, we observe that the
problem (5.4) can be treated as the BPDN-II-like problem (3.10) subject to two `1-norm based constraints, and
its solution uniqueness conditions follow from Theorem 3.11. These observations allow us to easily incorporate
linear inequality constraints into the two sparse fused LASSO models. For illustration, we show the solution
uniqueness conditions below for the sparse fused LASSO in (5.2) subject to the nonnegative constraint, i.e.,
x ∈ RN+ = {x |Cx ≥ d} with C = IN and d = 0.

Corollary 5.4. Consider the sparse fused LASSO in (5.2) subject to the nonnegative constraint. For a feasible

point x∗ and the matrix E defined above, let S be the support of Ex∗, and b := ETS•b̂ with b̂ := sgn((Ex∗)S).
Then x∗ is the unique minimizer if and only if the following conditions hold:

(i)

[
A•SI

(D1)Sc
DSI

]
has full column rank, where SI is the support of x∗, and SD is the support of D1x

∗;

(ii) there exist u ∈ Rm, u′ ∈ R|S
c
I |

++ , and u′′ ∈ R|Sc| with ‖u′′‖∞ < 1 such that

(
AT•SIu

AT•Sc
I
u+ u′

)
− ETSc•u

′′ = b;

(iii) there exist ũ ∈ R|S
c
I |

+ and ũ′ ∈ R|Sc| with ‖ũ′‖∞ ≤ 1 such that 2AT (Ax∗ − y)− ITSc
I•
ũ+ b+ ETSc•ũ

′ = 0.

Proof. Based on the definitions of E, S, SI , and SD as well as C = IN , we have ESc• =

[
λ1 · ISc

I•
λ2 · (D1)Sc

D•

]
,

α = ScI , and Cα• = ISc
I•. Hence, we have

 A
Cα•
ESc•

 =


A•SI A•Sc

I

0 ISc
ISc

I

0 λ1ISc
ISc

I

λ2(D1)Sc
DSI λ2(D1)Sc

DSc
I

 . In view of this result,

Proposition 4.8, and condition (a) of Proposition 4.7, it can be verified via a straightforward calculation that
the corollary holds.

5.4. Applications to `1-norm recovery subject to linear inequality constraints and
comparison with related results

The general framework developed in Sections 3 and 4 provides considerable flexibility to incorporate various
linear inequality constraints into recovery problems. We shows this advantage via several examples below.

An important linear inequality constraint that has received considerable attention in applications is the
nonnegative constraint [7, 11, 27, 31], i.e., x ∈ RN+ . As shown in Section 5.3, we have C = IN and d = 0 so that
P = {x ∈ RN |Cx ≥ d} = RN+ . We first consider the basis pursuit with g(x) = ‖x‖1, and recover the solution
uniqueness conditions established in ([31], Thm. 2.7).
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Corollary 5.5. Let C = IN and d = 0 so that P = RN+ . Then a feasible point x∗ is the unique minimizer of
(3.3) with S being the support of x∗ if and only if the following conditions hold:

(i) the columns of A•S are linearly independent and
(ii) there exists u ∈ Rm such that AT•Su = 1 and AT•Scu < 1.

Proof. Note that for a given x∗ ∈ RN+ , we have b̂ = (sgn(x∗S)) = 1 ∈ R|S|, α = Sc, CαS = 0 and CαSc = IScSc . It
thus follows from Corollary 4.11 that x∗ is the unique minimizer if and only if (i) A•S has full column rank, and

(ii) there exist u ∈ Rm and u′ ∈ R|S
c|

++ such that AT•Su = b̂ = 1 and ‖AT•Scu+u′‖∞ < 1. Hence, it suffices to show
that (ATu)Sc < 1 if and only if ‖AT•Scu+ u′‖∞ < 1 for some u′ > 0. The “if” part is trivial. To show the “only
if” part, suppose for each i ∈ Sc, vi := (ATu)i < 1. Hence, either −1 < vi < 1 or vi ≤ −1. For the former case,

choose u′i > 0 sufficiently small so that |vi +u′i| < 1. For the latter case, choose s satisfying 0 ≤ −(1+vi)
1−vi < s < 1.

Then u′i := s · (1− vi) > 0 is such that |vi + u′i| < 1. This thus completes the proof.

The solution uniqueness conditions for the LASSO-like and the BPDN-I/II-like problems under the nonnega-
tive constraint are given below. Their proofs follow directly from Corollaries 4.13–4.15 and the fact that h ≥ −1
if and only if there exists u ≥ 0 such that ‖h− u‖∞ ≤ 1.

Corollary 5.6. Let g(x) = ‖x‖1, and f : Rm → R be a C1 strictly convex function, and x∗ be a feasible point of
the problem (3.6). Then x∗ is the unique minimizer of (3.6) if and only if conditions (i) and (ii) of Corollary 5.5
and the following condition hold: AT•S∇f(Ax∗ − y) = −1, and AT•Sc∇f(Ax∗ − y) ≥ −1.

The next result characterizes a nonzero unique optimal solution to the BPDN-I-like problem (3.7). The case
f(Ax∗ − y) < ε is ignored due to the fact that 0 ∈ RN+ and the discussions in Section 5.1.

Corollary 5.7. Let g(x) = ‖x‖1, f : Rm → R be a C1 strictly convex function, and x∗ be a nonzero feasible
point of the problem (3.7). Then x∗ is the unique minimizer of (3.7) if and only if conditions (i) and (ii) of

Corollary 5.5 and the following condition hold: if K := {v ∈ RN |
(
∇f(Ax∗−y)

)T
Av < 0, vSc ≥ 0} is nonempty,

then there exists a positive real number θ such that θ ·AT•S∇f(Ax∗ − y) = −1, and θ ·AT•Sc∇f(Ax∗ − y) ≥ −1.

We then consider the BPDN-II-like problem (4.7) subject to the nonnegative constraint.

Corollary 5.8. Let g(x) = ‖x‖1, f : Rm → R be a C1 strictly convex function, and x∗ be a feasible point of
the problem (4.7).

C.1 Suppose g(x∗) < η. Then x∗ is the unique minimizer of (4.7) if and only if the associated conditions given
in C.1 of Proposition 4.10 hold.

C.2 Suppose g(x∗) = η. Then x∗ is the unique minimizer of (4.7) if and only if conditions (i) and (ii) of
Corollary 5.5 and the following condition hold: there exists µ ∈ R+ such that AT•S∇f(Ax∗ − y) = −µ · 1,
and AT•Sc∇f(Ax∗ − y) ≥ −µ · 1.

We next consider the linear inequality constraint with C = D1 and d = 0, where D1 is the first-order difference
matrix defined in (5.3). In other words, the variable x is subject to the monotone increasing constraint which
appears in such applications as order statistics. For the purpose of illustration, we consider the BP-like problem
(3.3) with g(·) = ‖ · ‖1 for a feasible x∗. Since the elements of x∗ are monotonically increasing, we can write it
as

x∗ =
(
x∗1, . . . , x

∗
k−︸ ︷︷ ︸

<0

, 0, . . . , 0, x∗k+ , . . . , x
∗
N︸ ︷︷ ︸

>0

)T
∈ RN ,

where x∗k− is the last negative element and x∗k+ is the first positive element, both from the left. Define the index

sets S− := {1, . . . , k−}, and S+ := {k+, . . . , N}. Then the support of x∗ is S = S− ∪ S+, and b̂S− = −1 and

b̂S+ = 1. Further, the index set of active constraints is α = α− ∪ α0 ∪ α+, where α− and α+ are the index sets
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of active constraints associated with (x∗1, . . . , x
∗
k− , 0)T ∈ Rk−+1 and (0, x∗k+ , . . . , x

∗
N )T ∈ RN−k++2 respectively,

and α0 = {k− + 1, k− + 2, . . . , k+ − 2}. Note that Sc = {k− + 1, k− + 2, . . . , k+ − 1}, α− ⊂ S−, α+ ⊂ S+, and
(D1)α0S− = 0, (D1)α+S− = 0, (D1)α0S+ = 0, (D1)α−S+ = 0. Furthermore, defining α− + 1 := {i + 1 | i ∈ α−}
and α+ + 1 := {j+ 1 | j ∈ α+}, we let α− := α− ∪ (α−+ 1) ⊂ S−, and α+ := α+ ∪ (α+ + 1) ⊂ S+. Since the null
spaces of (D1)α−α− and (D1)α+α+ are spanned by 1 respectively, and (D1)α−(S−\α−) = 0, (D1)α+(S+\α+) = 0,
we have

[
A•S

(D1)αS

]
=


A•S− A•S+

(D1)α−S− 0
0 0
0 (D1)α+S+

 =


A•α− A•(S−\α−) A•α+

A•(S+\α+)

(D1)α−α (D1)α−(S−\α−) 0 0
0 0 0 0
0 0 (D1)α+α+

(D1)α+(S+\α+)

 .

Therefore, condition (i) of Corollary 4.11 holds, i.e.,

[
A•S

(D1)αS

]
has full column rank, if and only if

[
A•(S−\α−) A•(S+\α+) (A•α−1 +A•α+

1)
]

has full column rank. Moreover, in light of the above development, we see that condition (ii) of Corollary 4.11 is
equivalent to the existence of u ∈ Rm and (u′−, u

′
0, u
′
+) > 0 such that AT•S−u+ [(D1)α−S− ]Tu′− = −1, AT•S+u+

[(D1)α+S+ ]Tu′+ = 1, and ‖AT•Scu + [(D1)α0Sc ]Tu′0‖∞ < 1, where the last inequality follows from the fact that
(D1)α−Sc = 0 and (D1)α+Sc = 0.

Lastly, we consider the Dantzig selector [5] (cf. Sect. 3.5). As shown in Section 3.5, this problem can be
formulated as the basis pursuit subject to a polyhedral constraint, i.e., minx∈RN ‖x‖1 subject to −ε · 1 ≤
ATAx − AT y ≤ ε · 1, where ε > 0 is given. For a feasible vector x∗, let S be its support, and α+ and α− be
the active index sets of the constraints ATAx ≥ AT y − ε · 1 and −ATAx ≥ −(AT y + ε · 1) at x∗, respectively.
Clearly, α+ ∩ α− = ∅. It thus follows from Corollary 4.11 that x∗ is the unique optimizer of the Dantzig

selector if and only if (i)

[
AT•α+

−AT•α−

]
A•S has full column rank, and (ii) there exists u′ ∈ R|α+|+|α−|

++ such that

AT•S
[
A•α+

−A•α−
]
u′ = sgn(x∗S) and ‖AT•Sc

[
A•α+

−A•α−
]
u′‖∞ < 1. Note that condition (i) holds if and

only if A•S has full column rank and N(

[
AT•α+

AT•α−

]
) ∩R(A•S) = {0}.

6. Numerical verification of the solution uniqueness conditions

In this section, we discuss numerical verification of the solution uniqueness conditions developed in the
previous sections. It is observed that each set of solution uniqueness criteria involving a convex PA function
and a C1 strictly convex loss function established in Sections 3 and 4 consists of the following conditions: (a)
the full column rank condition for a matrix; (b) the consistency of a linear inequality system with at least one
strict inequality; and/or (c) the consistency of another linear inequality system with non-strict inequalities. The
first two conditions characterize solution uniqueness, while the last condition pertains to solution optimality.
Numerically, the first condition can be determined via standard linear algebraic tools, and the last condition
can be checked via the feasibility test of a suitable linear program. To effectively verify the conditions involving
strict inequalities, we show in the following lemma that the verification of such conditions can be formulated as
a linear program.

Lemma 6.1. Let ẑ ∈ Rn, F ∈ Rn×m, G ∈ Rn×r, and H ∈ Rn×s be given. Then the linear inequality system
(I) : ẑ + Fw+Gw′ +Hw′′ = 0, w ∈ Rm, w′ ∈ Rr+, w′′ ∈ Rs++ has a solution if and only if the following linear
program is solvable and attains a positive optimal value:

max
(w,w′,w′′, ε)∈Rm×Rr×Rs×R

ε subject to ẑ + Fw +Gw′ +Hw′′ = 0, w′ ≥ 0, w′′ ≥ ε · 1, ε ≤ 1. (6.1)
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Proof. To show the “if” part, let (w∗, w
′
∗, w

′′
∗ , ε∗) ∈ Rm × Rr+ × Rs × R be an optimal solution to the linear

program (6.1) with ε∗ > 0. Hence, we have w′′∗ ≥ ε∗ · 1 > 0. This shows that the system (I) has a solution. For
the “only if” part, suppose there exists a triple (w̃, w̃′, w̃′′) ∈ Rm×Rr+×Rs++ such that ẑ+Fw̃+Gw̃′+Hw̃′′ = 0.
Since w̃′′ > 0, there exists a real number θ ∈ (0, 1] such that w̃′′ ≥ θ · 1. Therefore, the linear program (6.1)
is feasible. Furthermore, since its objective function is bounded above by 1 (and bounded below by θ) on the
feasible set, the linear program (6.1) attains an optimal solution and its optimal value ε∗ ≥ θ > 0. This yields
the desired result.

In what follows, we apply Lemma 6.1 to check various uniqueness conditions involving strict inequalities.
Particularly, we show how to formulate these conditions in the requested form in Lemma 6.1.

1) Condition (ii) of Theorem 3.2, i.e., there exist z ∈ Rm, z′ ∈ R|α|++, and z′′ ∈ R|I|++ such thatAT z −CTα•z′ +
WT z′′ = 0. Letting ẑ = 0, F = AT , G = 0, and H =

[
−CTα• WT

]
, Lemma 6.1 can be applied.

2) Conditions for (C.1) of Theorem 3.9, which is equivalent to the existence of z ∈ R|α|++ and z′ ∈ R|I|++ such
that CTα•z = WT z′. Letting ẑ = 0, F = 0, G = 0, and H =

[
−CTα• WT

]
, we use Lemma 6.1.

3) Condition (b) of Proposition 4.7, i.e., there exist u ∈ Rm, u′ ∈ R|α|++, and u′′ ∈ R|Sc| with ‖u′′‖∞ < 1 such
that ATu+CTα•u

′−ETSc•u
′′ = b. This condition is equivalent to the consistency of the following linear inequality

system in (u, u′, u′′, v, w):

ATu+ CTα•u
′ − ETSc•u

′′ = b, u′′ + v = 1, u′′ − w = −1, (u′, v, w) > 0.

Suitable ẑ, F,G, and H can be easily found from the above system in order to make use of Lemma 6.1.

4) Condition (ii) of Corollary 4.11, i.e., there exist u ∈ Rm and u′ ∈ R|α|++ such that AT•Su + CTαSu
′ = b̂

and ‖AT•Scu+ CTαScu′‖∞ < 1. It is equivalent to the consistency of the linear inequality system in (u, u′, v, w):

AT•Su+ CTαSu
′ = b̂, AT•Scu+ CTαScu′ + v = 1, AT•Scu+ CTαScu′ − w = −1, and (u′, v, w) > 0.

5) Condition (ii) of Corollary 5.5, i.e., there exists u ∈ Rm such that (ATu)S = 1 and (ATu)Sc < 1. This
condition is equivalent to the consistency of the linear inequality system in (u, v): AT•Su = 1, AT•Scu + v = 1,
and v > 0. This paves the way to exploit Lemma 6.1.

Remark 6.2. We briefly discuss the complexity of the linear program based verification for `1 minimization.
To facilitate the discussion, we focus on the case without linear inequality constraints, i.e., C = 0 and d = 0. In
the most general scenario given in case (1) above, the complexity of the associated linear program depends on
the size of I defined in (3.1), which corresponds to the active index set of the max-formulation of a convex PA
function g. Indeed, the number of variables for case 1) is m+ |I|. Note that in `1 minimization problems such as
basis pursuit, we usually have m� N and |S| � N for a sparse vector x∗, where S is the support of x∗. Hence,
|Sc| ≈ N and |I| = 2|S

c| ≈ 2N , leading to a high computational cost. Instead, using the specialized conditions
given in cases 3)–5) and Lemma 6.1, we obtain linear programs whose numbers of variables are small multiples
of N . This yields the complexity of O(N3/ lnN) based on state-of-art linear programming techniques [1]. In
comparison with the verification schemes developed in [28, 29] for basis pursuit without polyhedral constraints,
we provide a simple, systematic, and yet effective verification scheme applicable to broader uniqueness conditions.

7. Conclusions

This paper studies the solution uniqueness of a class of convex optimization problems involving convex
PA functions and subject to general polyhedral constraints. By exploiting the max-formulation of convex PA
functions and convex analysis techniques, we develop simpler and unifying approaches to derive dual variable
based solution uniqueness conditions for an individual vector. These results are applied to a variety of `1
minimization problems subject to possible polyhedral constraints. An effective scheme is also proposed to verify
the obtained uniqueness conditions. The uniqueness conditions developed in the current paper assume the exact
knowledge of a minimizer. As a future research topic, we will consider various robustness issues and their
implications when a minimizer is unknown.
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