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REGULARITY AND STABILITY OF COUPLED PLATE EQUATIONS

WITH INDIRECT STRUCTURAL OR KELVIN-VOIGT DAMPING

Zhong-Jie Han1,a,* and Zhuangyi Liu2

Abstract. In this paper, the regularity and stability of the semigroup associated with a system of
coupled plate equations is considered. Indirect structural or Kelvin-Voigt damping is imposed, i.e.,
only one equation is directly damped by one of these two damping. By the frequency domain method,
we show that the associated semigroup of the system with indirect structural damping is analytic
and exponentially stable. However, with the much stronger indirect Kelvin-Voigt damping, we prove
that, by the asymptotic spectral analysis, the semigroup is even not differentiable. The exponential
stability is still maintained. Finally, some numerical simulations of eigenvalues of the corresponding
one-dimensional systems are also given.
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1. Introduction

It is known that the semigroup associated with the following thermoelastic plate equations of type I or type
III thermoelasticity are exponentially stable and analytic (see [6, 15–17]).{

utt(x, t) = −∆2u(x, t)− γ∆θ(x, t),
θt(x, t) = γ∆ut(x, t) + k(∆− I)θ(x, t);

(1.1)

and {
utt(x, t) = −∆2u(x, t)− γ∆ηt(x, t),
ηtt(x, t) = k1(∆− I)η(x, t) + γ∆ut(x, t) + k2(∆− I)ηt(x, t).

(1.2)

These two models can be regarded as a conservative plate equation indirectly damped by the heat dissipation
from the heat equations through the coupling term [22]. Note that when γ = 0, the semigroup associated with
the decoupled heat equations is analytic and exponentially stable. In this paper, we are interested in whether
the regularity and stability properties can be kept for a conservative plate equation indirectly damped by
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another dissipative plate equation through the coupling term. The damping mechanism considered here are the
structural or the Kelvin-Voigt damping.

More precisely, we shall consider the following system of linear coupled plate equations,


utt(x, t) = −∆2u− γ∆wt, x ∈ Ω, t > 0,
wtt(x, t) = −∆2w + dst∆wt − dkv∆2wt + γ∆ut, x ∈ Ω, t > 0,
u|∂Ω = ∂u

∂ν |∂Ω = 0, t > 0,
w|∂Ω = ∂w

∂ν |∂Ω = 0, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ Ω, t > 0,

(1.3)

where u(x, t) and w(x, t) are the displacement of the system at time t in the domain Ω ∈ RN with smooth
boundary ∂Ω, γ 6= 0 is the coupling coefficient. Only one of the damping coefficients dst ≥ 0 and dkv ≥ 0 is
positive.

Systems of coupled elastic equations with indirect damping have been investigated extensively in the litera-
ture. It is impossible to give a complete review. We just refer to [1–4, 7, 9, 11, 18, 23] and the references therein.
Most of the works are on the stability of the system with various coupling, damping locations, and damping
types.

Note that when γ = 0, the system decouples into a conservative plate equation and a damped plate equation.
It is known that the semigroup associated with the damped plate equation with either the structural damping or
the Kelvin-Voigt damping is analytic and exponentially stable (see [5, 13, 14]). This is similar to the thermoelastic
plate equation. When γ 6= 0, we would like to know how strongly the conservative plate is indirectly damped,
and what are the regularity and stability properties of the coupled system.

The natural energy of this system is defined by

E(t) =
1

2

∫
Ω

|∆u|2 + |ut|2 + |∆w|2 + |wt|2)dx. (1.4)

By a straight forward calculation, we obtain

E′(t) = −
∫

Ω

dst|∇wt|2dx−
∫

Ω

dkv|∆wt|2dx ≤ 0, (1.5)

which implies that this system is dissipative.
We first show that the semigroup associated with the system with indirect structural damping is analytic

and exponentially stable by the frequency domain method. Thus, it is reasonable to expect that under Kelvin-
Voigt damping, the semigroup should be still analytic, since the Kelvin-Voigt damping is much stronger than
the structural one (see [5]). However, by a detailed spectral analysis, we find that a branch of eigenvalues of

the system with indirect Kelvin-Voigt damping has a vertical asymptote Reλ = − γ2

2dkv
. This implies that the

associated semigroup can’t be analytic. In fact, it even lacks differentiability because of the distribution of the
spectrum. On the other hand, we are able to show that the exponential stability is maintained. Similar results
are obtained for the system with both indirect structural and Kelvin-Voigt damping.

We would like to point out that the regularity and stability results obtained in this paper still hold for the
system with some other type of boundary conditions, such as the simply supported boundary condition.

This paper is organized as follows. In Section 2, the system is set up as a first order evolution equation in an
appropriate Hilbert space, and its well-posedness is proved. Section 3 is devoted to proving the analyticity and
exponential stability for the system with indirect structural damping. In Section 4, we show that the system with
indirect Kelvin-Voigt damping lacks differentiability but it is still exponentially stable. Numerical simulations
of eigenvalues of the corresponding one-dimensional systems are presented in Section 5.
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2. Semigroup setting

This section is devoted to giving the well-posedness of system (1.3) in the frame of semigroup. Let us first
reformulate system (1.3) in an appropriate Hilbert state space setting.

The state space is chosen to be the following Hilbert space

H = H2
0 (Ω)× L2(Ω)×H2

0 (Ω)× L2(Ω),

equipped with an inner product

〈Z1, Z2〉H =

∫
Ω

(v1v2 + ∆u1∆u2 + z1z2 + ∆w1∆w2)dx,

for Zj = (uj , vj , wj , zj) ∈ H, j = 1, 2. We define the system operator A in H as follows:

A


u
v
w
z

 =


v

−∆2u− γ∆z
z

−∆2w + dst∆z − dkv∆2z + γ∆v


with domain

D(A) =

(u, v, w, z) ∈ H

∣∣∣∣∣∣∣∣∣
v ∈ H2

0 (Ω), z ∈ H2
0 (Ω)

∆u ∈ H2(Ω)
(∆w + dkv∆z) ∈ H2(Ω)
∂u

∂ν
|∂Ω =

∂w

∂ν
|∂Ω = 0

 .

Then, system (1.3) can be rewritten as an evolution equation in H:{
dU(t)

dt
= AU(t), t > 0,

U(0) = U0

(2.1)

where U(t) = (u(·, t), v(·, t), w(·, t), z(·, t))T and U0 = (u0, u1, w0, w1)T ∈ H.
Using the classic semigroup theory (see [20]), we get the following result on the well-posedness of system

(2.1).

Theorem 2.1. Let A and H be defined as before. Then

(1) A is dissipative in H and satisfies

〈AU,U〉H = −dst‖∇z‖2 − dkv‖∆z‖2 ≤ 0. (2.2)

(2) A generates a C0 semigroup S(t) of contractions on H.

Moreover, it is easy to verify the following result.

Lemma 2.2. Let A and H be defined as before. Then iR ∈ ρ(A).

3. System with indirect structural damping

In this section, we consider the case when dst > 0, dkv = 0 in system (1.3), that is, the system with indirect
structural damping. We need the following well known result (see [8, 19, 20]).
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Lemma 3.1. Let A : D(A) ⊆ H → H generates a C0-semigroup eAt on H such that

‖eAt‖ ≤M, ∀t ≥ 0,

for some M ≥ 1 and

iβ ∈ ρ(A), ∀β ∈ R.

Then the semigroup eAt is analytic if and only if for some a ∈ R and b, C > 0 such that

ρ(A) ⊇
∑

(a, b) := {λ ∈ C|Reλ > a− b|Imλ|}, (3.1)

and

‖(iλ−A)−1‖ ≤ C

1 + |λ|
, λ ∈

∑
(a, b).

This is equivalent to

lim sup
β∈R,|β|→∞

|β|‖(iβI −A)−1‖ <∞.

Our main result in this section is

Theorem 3.2. When dst > 0, dkv = 0, the semigroup eAt associated with system (1.3) is analytic on H. As a
consequence, it is exponentially stable.

Proof. By Lemma 3.1, it is sufficient to check the following estimate for the resolvent operator along the
imaginary axis.

lim sup
βn→∞

βn‖(iβnI −A)−1‖ <∞. (3.2)

If (3.2) is not true, by the Banach-Steinhaus theorem, there exist a sequence βn ∈ R with |βn| → ∞ and a
sequence Wn = (un, vn, wn, zn)T ∈ D(A) with ‖Wn‖H = 1 such that

lim
n→∞

β−1
n ‖(iβnI −A)Wn‖H = 0,

i.e.,

iun − β−1
n vn = f1n → 0, in H2(Ω), (3.3)

ivn + β−1
n ∆2un + β−1

n γ∆zn = f2n → 0, in L2(Ω), (3.4)

iwn − β−1
n zn = f3n → 0, in H2(Ω), (3.5)

izn + β−1
n ∆2wn − β−1

n dst∆zn − β−1
n γ∆vn = f4n → 0, in L2(Ω). (3.6)

Since A is dissipative, we obtain that

Re〈β−1
n (iβn −A)Wn,Wn〉H = dst‖β

− 1
2

n ∇zn‖2 → 0. (3.7)
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We are going to derive that ‖Wn‖H → 0 which is a contradiction to ‖Wn‖H = 1. By (3.3) and (3.5), it
is obvious that ‖β−1

n ∆vn‖, ‖β−1
n ∆zn‖ are bounded. Thus, in reference of (3.4) and (3.6), we obtain that

‖β−1
n ∆2un‖, β−1

n ‖∆2wn‖ are also bounded. Moreover, by interpolation,

‖β−
1
2

n ∇vn‖ ≤ ‖vn‖
1
2 ‖β−1

n ∆vn‖
1
2 , (3.8)

which implies that ‖β−
1
2

n ∇vn‖ is also bounded.
Taking the inner product of (3.6) with zn yields

〈izn, zn〉+ 〈β−1
n ∆2wn, zn〉 − dst〈β−1

n ∆zn, zn〉 − γ〈β−1
n ∆vn, zn〉 → 0. (3.9)

Note that by Gagliardo-Nirenberg interpolation inequality,

‖β−
1
2

n ∇(∆wn)‖ ≤ ‖∆wn‖
1
2 ‖β−1

n ∆2wn‖
1
2 + β−1/2

n ‖∆wn‖, (3.10)

which together with the boundedness of ‖∆wn‖, implies that ‖β−
1
2

n ∇(∆wn)‖ is bounded. Thus, by (3.7), the
second term in (3.9) satisfies

|〈β−1
n ∆2wn, zn〉| = |〈β

− 1
2

n ∇(∆wn), β
− 1

2
n ∇zn〉| ≤ ‖β

− 1
2

n ∇(∆wn)‖ ‖β−
1
2

n ∇zn‖ → 0. (3.11)

On the other hand,

〈β−1
n ∆2wn, zn〉 = 〈∆wn, β−1

n ∆zn〉
= −i‖∆wn‖2 − 〈∆wn,∆f3n〉. (3.12)

Since ‖∆f3n‖ → 0, combining (3.11) and (3.12), we get

‖∆wn‖ → 0. (3.13)

Hence, due to (3.10), we also get

‖β−
1
2

n ∇(∆wn)‖ → 0. (3.14)

It is easy to see that the third term and fourth term in (3.9) all converge to 0. In fact, by (3.7) and (3.8),

〈β−1
n ∆zn, zn〉 = −‖β−

1
2

n ∇zn‖2 → 0, (3.15)

and

|〈β−1
n ∆vn, zn〉| = |〈β

− 1
2

n ∇vn, β
− 1

2
n ∇zn〉| ≤ ‖β

− 1
2

n ∇vn‖ ‖β
− 1

2
n ∇zn‖ → 0. (3.16)

Therefore, the first term in (3.9) converges to 0, i.e.,

‖zn‖ → 0. (3.17)

Next, we take the inner product of (3.6) with vn to get

〈izn, vn〉+ 〈β−1
n ∆2wn, vn〉 − dst〈β−1

n ∆zn, vn〉 − γ〈β−1
n ∆vn, vn〉 → 0. (3.18)
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It is easy to see that the first term 〈izn, vn〉 converges to 0 due to (3.17). By (3.14) and the boundedness of

‖β−
1
2

n ∇vn‖, we get

〈β−1
n ∆2wn, vn〉 = −〈β−

1
2

n ∇(∆wn), β
− 1

2
n ∇vn〉 → 0,

and

〈β−1
n ∆zn, vn〉 = −〈β−

1
2

n ∇zn, β
− 1

2
n ∇vn〉 → 0.

Hence, by (3.18), we get

〈β−1
n ∆vn, vn〉 = −‖β−

1
2

n ∇vn‖2 → 0. (3.19)

On the other hand, the inner product of (3.4) with vn leads to

i‖vn‖2 + 〈β−1
n ∆2un, vn〉+ γ〈β−1

n ∆zn, vn〉 → 0. (3.20)

Similar to the discussion in (3.10)–(3.13), by (3.19), we have

〈β−1
n ∆2un, vn〉 = −〈β−

1
2

n ∇(∆un), β
− 1

2
n ∇vn〉 → 0, (3.21)

and

〈β−1
n ∆2un, vn〉 = 〈β−1

n ∆un,∆vn〉
= 〈∆un, i∆un −∆f1n〉. (3.22)

Since ‖∆f1n‖ → 0, (3.21) and (3.22) imply that

‖∆un‖ → 0. (3.23)

It is easy to see that the third term in (3.20) also converges to 0. In fact,

〈β−1
n ∆zn, vn〉 = −〈β−

1
2

n ∇zn, β
− 1

2
n ∇vn〉 → 0 (3.24)

because of (3.7) and (3.19). Applying (3.21) and (3.24) to (3.20) yields

‖vn‖ → 0. (3.25)

Therefore, by (3.13), (3.17), (3.23) and (3.25), we arrive at the promised contradiction ‖Wn‖H → 0. The
analyticity of this system follows.

It follows from Lemma 2.2 and the analyticity of eAt that the semigroup is exponentially stable. The proof
is complete.

4. System with indirect Kelvin-Voigt damping

This section is devoted to discussing the stability and regularity of system (1.3) with dst = 0, dkv > 0, i.e.,
the system with indirect Kelvin-Voigt damping. We will show that the system lacks analyticity, and in fact is
not even differentiable. However, it still maintains the exponential stability. We have the following result.
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Theorem 4.1. Let A and H be defined as before. When dst = 0, dkv > 0, the semigroup eAt associated with
system (1.3) is not differentiable.

Proof. We will prove the conclusion by carrying out a detailed spectral analysis for the system operator A.
Let us consider the eigenvalue problem

(λI −A)(u, λu,w, λw)T = 0, (4.1)

i.e., 
λ2u = −∆2u− λγ∆w,
λ2w = −∆2w − λdkv∆2w + λγ∆u,
u|∂Ω = ∂u

∂ν |∂Ω = 0,
w|∂Ω = ∂w

∂ν |∂Ω = 0.

(4.2)

Let µk and Φk(x) be the eigenvalue and its eigenfunction of the Laplace operator −∆ with Dirichlet boundary
condition. µk goes to +∞ as k → +∞. Set{

uk = CΦk(x), x ∈ Ω,
wk = DΦk(x), x ∈ Ω.

(4.3)

Substituting the above into the first two equations in (4.2), we get(
λ2
k + µ2

k −λkγµk
λkγµk λ2

k + µ2
k + λkdkvµ

2
k

)(
C
D

)
Φk(x) = 0. (4.4)

Thus, λk is an eigenvalue of A, if

ζ(λk) = det

(
λ2
k + µ2

k −λkγµk
λkγµk λ2

k + µ2
k + λkdkvµ

2
k

)
= 0. (4.5)

A direct calculation yields

ζ(λk) = (λ2
k + µ2

k)(λ2
k + µ2

k + λkdkvµ
2
k) + λ2

kγ
2µ2
k

= (λ2
k + µ2

k)2 + λkdkvµ
2
k(λ2

k + µ2
k) + λ2

kγ
2µ2
k

= (λ2
k + µ2

k +
λkdkvµ

2
k

2
)2 − (

λkdkvµ
2
k

2
)2 + λ2

kγ
2µ2
k

= (λ2
k + µ2

k +
λkdkvµ

2
k

2
)2 − λ2

kd
2
kvµ

4
k

4
[1− 4γ2

d2
kvµ

2
k

]

=

(
λ2
k + µ2

k +
λkdkvµ

2
k

2
+
λkdkvµ

2
k

2

√
1− 4γ2

d2
kvµ

2
k

)

×

(
λ2
k + µ2

k +
λkdkvµ

2
k

2
− λkdkvµ

2
k

2

√
1− 4γ2

d2
kvµ

2
k

)
= 0. (4.6)

Hence, at least one of the following two equations hold.

λ2
k + µ2

k +
λkdkvµ

2
k

2
+
λkdkvµ

2
k

2

√
1− 4γ2

d2
kvµ

2
k

= 0, (4.7)
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λ2
k + µ2

k +
λkdkvµ

2
k

2
− λkdkvµ

2
k

2

√
1− 4γ2

d2
kvµ

2
k

= 0. (4.8)

Let us calculate λk by (4.7) and (4.8), respectively.

(1) Calculate λk from (4.7).
Note that 1

µk
→ 0 as k → +∞. Thus,

√
1− 4γ2

d2
kvµ

2
k

= 1− 1

2

4γ2

d2
kvµ

2
k

− 1

8

16γ4

d4
kvµ

4
k

+O(
1

µ6
k

).

Hence, we have

λ2
k + µ2

k +
λkdkvµ

2
k

2
+
λkdkvµ

2
k

2
(1− 1

2

4γ2

d2
kvµ

2
k

− 1

8

16γ4

d4
kvµ

4
k

+O(
1

µ6
k

)) = 0,

which is further simplified into

λ2
k + λk(dkvµ

2
k −

γ2

dkv
− γ4

d3
kvµ

2
k

+O(
1

µ4
k

)) + µ2
k = 0.

A direct calculation yields

λk =
−(dkvµ

2
k −

γ2

dkv
− γ4

d3kvµ
2
k

+O( 1
µ4
k

))±
√

(dkvµ2
k −

γ2

dkv
− γ4

d3kvµ
2
k

+O( 1
µ4
k

))2 − 4µ2
k

2

=
−dkvµ2

k + γ2

dkv
+ γ4

d3kvµ
2
k

+O( 1
µ4
k

)± µ2
k

√
(dkv − γ2

dkvµ2
k

+O( 1
µ4
k

))2 − 4/µ2
k

2

=
−dkvµ2

k + γ2

dkv
+ γ4

d3kvµ
2
k

+O( 1
µ4
k

)± µ2
k

√
d2
kv −

4+2γ2

µ2
k

+O( 1
µ4
k

)

2

=
−dkvµ2

k + γ2

dkv
+ γ4

d3kvµ
2
k

+O( 1
µ4
k

)± µ2
kdkv(1− 1

2 ( 4+2γ2

d2kvµ
2
k

) +O( 1
µ4
k

))

2

=

{
− 1
dkv

+O( 1
µ2
k

),

−dkvµ2
k + γ2+1

dkv
+O( 1

µ2
k

).
(4.9)

Thus, as k → +∞, − 1
dkv

is the cluster point of the eigenvalues of A. The negative real axis is also one of
the asymptotes of the eigenvalues.

(2) Calculate λk from (4.8).
Similar to the above discussion, by (4.8), we have

λ2
k + µ2

k +
λkdkvµ

2
k

2
− λkdkvµ

2
k

2
(1− 1

2

4γ2

d2
kvµ

2
k

− 1

8

16γ4

d4
kvµ

4
k

+O(
1

µ6
k

)) = 0.

Hence,

λ2
k + λk(

γ2

dkv
+

γ4

d3
kvµ

2
k

+O(
1

µ4
k

)) + µ2
k = 0.



REGULARITY AND STABILITY OF COUPLED PLATE WITH INDIRECT DAMPING 9

A direct calculation yields

λk =
−( γ

2

dkv
+ γ4

d3kvµ
2
k

+O( 1
µ4
k

))±
√

( γ
2

dkv
+ γ4

d3kvµ
2
k

+O( 1
µ4
k

))2 − 4µ2
k

2

= −
γ2

dkv
+ γ4

d3kvµ
2
k

+O( 1
µ4
k

)

2
± iµk

√
1− 1

4µ2
k

(
γ2

dkv
+

γ4

d3
kvµ

2
k

+O(
1

µ4
k

))2

= − γ2

2dkv
+O(

1

µ2
k

)± i(µk +O(
1

µk
)). (4.10)

Thus, we have found a vertical asymptote Reλ = − γ2

2dkv
of the spectrum σ(A). By the characteristic properties

on the spectrum for differentiability (see [20]), we conclude that the system lacks differentiability. The proof is
complete.

Now, let us further consider the stability of system (1.3) for this case. We have the following result on the
stability of the system.

Theorem 4.2. When dst = 0, dkv > 0, the semigroup eAt associated with the system (1.3) is exponentially
stable.

Proof. By the necessary and sufficient condition for exponential stability of semigroup. It is sufficient to check
the following two conditions (see [10, 12, 21]).

1) iσ ∈ ρ(A), ∀σ ∈ R;
2) lim sup

βn→∞
‖(iβn −A)−1‖ <∞.

The condition 1) has been obtained in Lemma 2.2. Thus we only need to check the condition 2). Similar
to the proof of Theorem 3.2, if condition 2) is not true, there exist a sequence βn ∈ R with |βn| → ∞ and a
sequence Wn = (un, vn, wn, zn)T ∈ D(A) with ‖Wn‖H = 1 such that

lim
n→∞

‖(iβnI −A)Wn‖H = 0,

i.e.,

iβnun − vn = f1n → 0, in H2(Ω), (4.11)

iβnvn + ∆2un + γ∆zn = f2n → 0, in L2(Ω), (4.12)

βnwn − zn = f3n → 0, in H2(Ω), (4.13)

iβnzn + ∆2wn + dkv∆
2zn − γ∆vn = f4n → 0, in L2(Ω). (4.14)

We obtain the following estimate since A is dissipative.

Re〈(iβn −A)Wn,Wn〉H = dkv‖∆zn‖2 → 0. (4.15)

Thus, by the Poincaré inequality,

‖zn‖ → 0. (4.16)
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By (4.13), we also have

‖βn∆wn‖ → 0⇒ ‖∆wn‖ → 0. (4.17)

Dividing (4.14) by βn and taking the inner product with vn leads to

〈izn, vn〉+ 〈β−1
n ∆2wn, vn〉+dkv〈β−1

n ∆2zn, vn〉 − r〈β−1
n ∆vn, vn〉 → 0. (4.18)

Since ‖β−1
n ∆vn‖ is bounded which can be seen from (4.11) and the boundedness of ‖∆un‖, we obtain that the

second and third term in (4.18) converge to 0. Moreover, it is clear that the first term in (4.18) also converges
to 0. Hence,

〈β−1
n ∆vn, vn〉 = ‖β−

1
2

n ∇vn‖2 → 0. (4.19)

Next, dividing (4.12) by βn and taking the inner product with vn yields

i‖vn‖2 + 〈β−1
n ∆2un, vn〉+ r〈β−1

n ∆zn, vn〉 → 0. (4.20)

Note that ‖β−1
n ∆2un‖ is bounded due to (4.12). Therefore, ‖β−

1
2

n ∇(∆un)‖ is also bounded by interpolation

‖β−
1
2

n ∇(∆un)‖ ≤ ‖∆un‖
1
2 ‖β−1

n ∆2un‖
1
2 .

This, together with (4.19), further leads to

〈β−1
n ∆2un, vn〉 = −〈β−

1
2

n ∇(∆un), β
− 1

2
n ∇vn〉 → 0, (4.21)

and

〈β−1
n ∆2un, vn〉 = 〈β−1

n ∆un,∆vn〉
= 〈∆un, i∆un −∆f1n〉. (4.22)

Since ‖∆f1n‖ → 0, it follows from (4.21) and (4.22) that

‖∆un‖ → 0. (4.23)

Finally, from (4.20) we obtain

‖vn‖ → 0. (4.24)

Therefore, by (4.16), (4.17), (4.23) and (4.24), we arrive at the promised contradiction ‖Wn‖H → 0.

Remark 4.3. We further discuss the regularity and stability of the system, when the parameters dst and dkv
are all positive, that is, both of indirect structural and Kelvin-Voigt damping exist in the system. Similar to
the calculation of the spectrum in the proof of Theorem 4.1, we obtain that there is a branch of the spectrum
given as follows.

λk = − γ2

2dkv
− γ2dst

2d2
kvµk

+O

(
1

µ2
k

)
± i
(
µk +O

(
1

µk

))
.
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Thus, there exists a vertical asymptote Reλ = − γ2

2dkv
of the spectrum of this system, which is the same as the

one for the system with only indirect Kelvin-Voigt damping. This implies that the system with dst > 0, dkv > 0
is still not differentiable.

However, by the similar method as in the proof of Theorem 4.2, we can further get the exponential stability
of the system with dst > 0, dkv > 0.

Remark 4.4. It is plausible to consider the damping in the form of ∆αwt, 0 ≤ α ≤ 2 so that the structural
and Kelvin-Voigt damping considered in this paper are two special cases. In fact, a much more general system
is under investigation which also considers the order of the coupling terms, damping terms, and the elastic
operators of the two equations.

5. Numerical simulation on the spectrum

In this section, we give some numerical simulation on the distribution of the spectrum of the system
operator A.

For simplicity, we consider the one dimensional case. Set Ω = (0, 1) and γ = 3. Thus, the eigenvalue problem
of system (1.3) is as follows


λ2u = −uxxxx − 3λwxx, x ∈ (0, 1),
λ2w = −wxxxx + dstλwxx − dkvλwxxxx + 3λuxx, x ∈ (0, 1),
u(0) = ux(0) = w(0) = wx(0) = 0,
u(1) = ux(1) = w(1) = wx(1) = 0.

(5.1)
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Figure 1. Spectrum: dst = 1, dkv = 0.
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Figure 2. Spectrum: dst = 0, dkv = 1.

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5

10
4

-3

-2

-1

0

1

2

3

Figure 3. Spectrum: dst = 1, dkv = 1.
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We employed the Chebyshev spectral method in space (spatial grid size: N = 600) in a Matlab environment
(see [24]) so as to discretize PDEs (5.1) into ODEs, and based on which we calculate its eigenvalues by the
following three cases, respectively (Figs. 1–3).

Case 1. dst = 1, dkv = 0.
Case 2. dst = 0, dkv = 1.
Case 3. dst = 1, dkv = 1.

From Figure 1, we see that the distribution of the spectrum for case 1 is consistent with the one for the
analyticity (see Lem. 3.1). Moreover, the spectra are all located on the left hand side of the complex plane,
which implies the exponential stability of the system for this case.

From Figures 2 and 3, it is easy to see that there is a vertical asymptote of the spectrum for Case 2 and 3,
that is, Reλ = −4.5. It implies the non-differentiability of the system for these two cases. However, all spectra
are also located on the left hand side of the complex plane and the asymptote is away from the imaginary axis.
Hence, the exponential stability holds for these two cases, respectively.

Acknowledgements. The authors would like to thank the Editor in-Chief, the Associate Editors and the anonymous
referees for their useful and helpful comments and suggestions.
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