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A GRADIENT SYSTEM WITH A WIGGLY ENERGY AND

RELAXED EDP-CONVERGENCE∗

Patrick Dondl1, Thomas Frenzel2, and Alexander Mielke3,∗∗

Abstract. For gradient systems depending on a microstructure, it is desirable to derive a macroscopic
gradient structure describing the effective behavior of the microscopic scale on the macroscopic evolu-
tion. We introduce a notion of evolutionary Gamma-convergence that relates the microscopic energy
and the microscopic dissipation potential with their macroscopic limits via Gamma-convergence. This
new notion generalizes the concept of EDP-convergence, which was introduced in [26], and is now called
relaxed EDP-convergence. Both notions are based on De Giorgi’s energy-dissipation principle (EDP),
however the special structure of the dissipation functional in terms of the primal and dual dissipation
potential is, in general, not preserved under Gamma-convergence. By using suitable tiltings we study
the kinetic relation directly and, thus, are able to derive a unique macroscopic dissipation potential.
The wiggly-energy model of Abeyaratne-Chu-James (1996) serves as a prototypical example where this
nontrivial limit passage can be fully analyzed.
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1. Introduction

This paper is devoted to the general question of convergence of a family of gradient systems (Q, Eε,Rε)
towards an effective gradient system (Q, E0,Reff) when the small parameter ε → 0. Here Q is the state space
(e.g. a convex subset of a Banach space), Eε : [0, T ]×Q→ R are the possibly time-dependent energy functionals,
and Rε are the dissipation potentials such that the gradient-flow equation reads

0 = Dq̇Rε(qε, q̇ε) + DqEε(t, qε).

The objective is to show that limits q0 of solutions qε are solutions of the limiting gradient system (Q, E0,Reff),
where typically E0 is the Γ-limit of the energies Eε, but in some interesting cases the effective dissipation potential
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Reff in the limiting equation

0 = Dq̇Reff(q0, q̇0) + DqE0(t, q0), (1.1)

differs from the Γ-limit R0 of the dissipation potentials Rε. However, we are not so much interested in the
effective equation, but in the limiting gradient structure (Q, E0,Reff) that contains additional information to
the limiting equation (1.1). Indeed, in (2.3) we give four different gradient structures for the simple ODE
q̇ = 1− q.

A general study of Γ-convergence for gradient systems was initiated in [48], which led to a rich body of
research, see [12, 31, 49, 51, 54] and the references therein. Several convergence notions are covered by the gen-
eral name evolutionary Γ-convergence, which emphasizes that evolutionary problems are treated by variational
methods involving Γ-convergence for the associated functionals. In this work, we want to generalize the notion
of evolutionary Γ-convergence in the sense of the energy-dissipation principle (in short EDP-convergence) intro-
duced in [26], which is the first notion that provides a method to calculate the effective dissipation potential
Reff in a unique way.

Our new notion of relaxed EDP-convergence for gradient systems is explained by studying in detail the
following wiggly-energy model

νu̇ = −DEε(t, u), u(0) = u0 ∈ R, (1.2)

with the energy

Eε(t, u) = Φ(u)− `(t)u+ εκ
(
u, 1
εu
)
,

where κ(u, ·) is a 1-periodic function, and the dissipation potential is simply R(u̇) = ν
2 u̇

2. This model was
introduced in [4, 24] as a very simple model for explaining slip-stick motions in martensitic phase transformations
by starting from a linear viscosity law as in (1.2). See also [28, 52] for vector-valued versions (i.e. u(t) ∈ Rn)
of such gradient systems. Earlier models for explaining dry friction go back to Prandtl [42] and Tomlinson [53],
see also [41] for historical remarks. The more recent work [3] is concerned with the interaction of the wiggly
energy and time stepping in the sense of minimizing movements. The general feature of such models is that a
viscous evolution law in a temporally constant, but spatially rapidly varying energetic environment may lead to
stick-slip motion, where the limit evolution cannot be described by the homogenized energy alone. In particular,
we find that the effective dissipation potential Reff is much bigger than R0 = R, where the difference depends
on the wiggly part κ of the energy landscape.

Further applications of such models occur in the evolution of phase boundaries in a heterogeneous environment
as modeled in [9], based on [1], or in the evolution of dislocations in a slip plane with heterogeneities like forest
dislocations [15, 21, 22, 35] (when neglecting lattice friction). Applications to crawling are studied in [23], and
an extension to creep is given in [50].

A different approach to modeling phase transforming materials by considering connected bistable springs also
leads to a complex energy landscape and an evolution in effective wiggly potential [44, 46]. A rigorous derivation
of rate-independent one-dimensional pseudo-elasticity is given in [32]. The latter papers as well as [30, 45] are
especially devoted to the mathematical justification of the rate-independent case, where νε → 0 as ε→ 0, such
that the limit dynamics doesn’t have any internal time-scale any more.

Here we revisit the general class of scalar wiggly-energy models in the form

∂u̇R(u, u̇) = −DuEε(t, u), u(0) = u0 ∈ R, (1.3)

where R : R2 → [0,∞[ is a fixed dissipation potential, i.e. R(u, 0) = 0 and R(u, ·) is convex, while the energy Eε
is as above. Thus, (1.3) is the flow induced by the gradient system (R, Eε,R). Under suitable assumptions it is
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well known from the above works (see e.g. [4, 28, 45, 52]) that the solutions uε of (1.3) converge for ε→ 0 to limits
u0 that are solutions of the limiting gradient system (R, E0,Reff). We emphasize that Eε converges uniformly
to the limit energy E0 : (t, u) 7→ Φ(u)− `(t)u, however, the restoring forces DEε do not converge because of the

wiggly part involving the non-decaying, oscillatory term ∂yκ(u, 1
εu), where y is used as a placeholder for the

second argument 1
εu ∈ S

1 := R/Z of κ. The major task is then to find the effective dissipation potential Reff ,
which, as we will see, is larger than R and depends on ∂yκ.

The purpose of this work is to show how the gradient structure of the underlying problem can be exploited
in a natural way using the method for evolutionary Γ-convergence for gradient systems. Thus, we (i) obtain
the effective dissipation potential Reff (and as a by-product the limit evolution) by purely energetic principles,
(ii) identify a new mechanical function (u̇, ξ) 7→ M(u, u̇, ξ), which we call contact potential, that encodes the
effective dissipation law, but which is not a dual pairing in the form Reff(u, u̇)+R∗eff(u, ξ), and finally (iii) discuss
the convexity properties of M(u, ·, ·) in the sense of bipotentials, see [7, 8].

To be more specific, we use the formulation of gradient flows via the following energy-dissipation principle,
which originates in the work of De Giorgi [16] and states that (1.3) is equivalent to the energy dissipation balance
(EDB) stated below. The EDB asks simply that the final energy plus the dissipated energy equals the initial
energy plus the work of the external forces, where the dissipated energy has to be expressed in a particular way
in terms of R and its Legendre-Fenchel dual R∗, namely

Eε(T, u(T )) + Dε(u) = Eε(0, u(0)) +

∫ T

0

∂tEε(t, u(t))dt, (1.4)

where the dissipation functional Dε is given by

Dε(u) =

∫ T

0

(
R(u(t), u̇(t)) +R∗

(
u(t),−DEε(t, u(t))

))
dt. (1.5)

Several notions of evolutionary Γ-convergence rely on passing to the limit ε→ 0 in (1.4) (cf. [31]) and identifying
the limits of the four terms accordingly, see Section 2.

In our case the convergence of uε(t) → u(t) immediately implies, for all t ∈ [0, T ], the convergence
Eε(t, uε(t)) → E0(t, u(t)) as well as ∂tEε(t, uε(t)) → ∂tE0(t, u(t)). Thus, it remains to understand the limit of
Dε(uε), and the notion of EDP-convergence asks for the identification of the Γ-limit of Dε on a suitable subset
of functions u ∈W1,p(0, T ) with p ∈ ]1,∞[. Our main technical results are in Section 3 and imply the desired
statement

Dε
Γ
⇀ D0 with D0(u) =

∫ T

0

M(u, u̇,−DE0(t, u))dt.

The novelty of the notion of EDP-convergence is that we study Dε not only along the exact solutions uε of (1.3)
(or equivalently (1.4)), but rather along general functions. This reflects the fact that a given evolution equation
u̇ = F (t, u) may have different gradient structures, and this difference is only seen by looking at fluctuations
around the deterministic solutions, cf. [26, 36, 43]. These fluctuations explore Dε also away from the exact
solutions of the gradient flow.

Theorem 2.4 provides the explicit form of the effective contact potential M, viz.

M(u, v, ξ) := inf
{ ∫ 1

0

(
R(u, |v|ż(s)) +R∗

(
u, ξ − ∂yκ(u, z(s))

))
ds
∣∣∣ z ∈Wp

v(0, 1)
}
, (1.6)

where W1,p
v := { z ∈ W1,p(0, 1) | z(1) − z(0) = sign(v) }. The proof is a generalization of the homogenization

results in [11] for functionals of the form u 7→
∫ T

0
f(t, u, 1

εu)dt:
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Figure 1. The dissipation potentialReff and the kinetic relation v = ∂R∗eff(ξ) for the quadratic
case, see (1.7).

In Section 4, we discuss the basic properties of M, which allows us to recover the limiting evolution and to
identify the effective dissipation potential Reff . In fact, we show

(i) M(u, v, ξ) ≥ ξv,
(ii) M(u, v, ξ) = ξv ⇐⇒ ξ ∈ ∂vReff(u, v)

for a unique effective dissipation potential Reff . Thus, all ingredients of relaxed EDP-convergence (cf. Def. 2.3)
are established. The main observation here is that the contact sets

CM(u) :=
{

(v, ξ) ∈ R2
∣∣M(u, v, ξ) = ξv

}
can be identified directly giving a formula for Reff in terms of a harmonic mean of y 7→ ∂ξR∗(u, ξ−∂yκ(u, y)),
see Lemma 4.1. Of course, we recover the classical result of [4, 24] for the case R(u, v) = 1

2µv
2 and κ(u, y) =

â sin(2πy)/(2π), namely

Reff(v) =

∫ |v|
0

(
â2+

v̂2

µ2

)1/2
dv̂ ⇐⇒ ∂R∗eff(ξ) = µ sign(ξ)

(
max{ξ2−â2, 0}

)1/2
. (1.7)

See also Figure 1 for Reff and the kinetic relation v = ∂R∗eff(ξ). We note that for a non-degenerate wiggly
potential this leads to a motion of the interface that is large compared to the excess driving force ξ− â near the
depinning transition. This is in agreement with experiments, where it is seen that a phase boundary propagates
nearly freely when subjected to a driving force above the critical value [2, 19].

Hence, CM(u) is the graph of a subdifferential of Reff(u, ·) which determines Reff uniquely, which in the sense
of [54] can be understood asM(u, ·, ·) representing the monotone operator v 7→ ∂vReff(u, ·). However, there the
function M(u, ·, ·) is assumed to be jointly convex, which is not the case in our model.

Of course, M contains more information than Reff , and it is worth to study M as such, as we expect it to
be relevant as rate function for suitable large deviation limits in the sense of [10]. In Section 4.5, we discuss the
question whether M is a bipotential in the sense of [7, 8], which means that

(i) M(v, ·, ξ) and M(u, v, ·) are convex, (1.8a)

(ii)v ∈ ∂ξM(u, v, ξ) ⇐⇒ M(u, v, ξ) = ξv ⇐⇒ ξ ∈ ∂vM(u, v, ξ). (1.8b)

While M(u, ·, ξ) is always convex, our Example 4.15 shows that in general M(u, v, ·) is non-convex. For
the special p-homogeneous case R(u, v) = r(u)|v|p we are able to show that M is indeed a bipotential, see
Theorem 4.14.

In Section 5, we discuss the results and highlight specific properties of this limit procedure and com-
pare it with recent results in [54–56] concerning related evolutionary Γ-convergence results based on an
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extended version of the Brezis-Ekeland-Nayroles principle, see Section 5.2. We explicitly show thatM(u, v, ξ) 6=
Reff(u, v)+R∗eff(u, ξ), which implies that there is no EDP-convergence in the sense of [26].

Moreover, for converging solutions uε(t) → u0(t) of (1.4) we easily obtain Dε(uε) → D0(u0), i.e. solutions
are recovery sequences for the dissipation functional. However, if we separate the dissipation into its primal and
its dual part, the corresponding convergences

Dprim
ε (uε) :=

∫ T

0

R(uε, u̇ε)dt → Dprim
eff (u0) :=

∫ T

0

Reff(u0, u̇0)dt and

Ddual
ε (uε) :=

∫ T

0

R∗(uε,−DEε(t, uε))dt → Ddual
eff (u0) :=

∫ T

0

R∗eff(u,−DE0(t, u))dt

do not hold. Indeed, for quadratic R : v 7→ ν
2v

2 we always have

Dprim
ε (uε) = Ddual

ε (uε) =
1

2
Dε(uε) →

1

2
D0(u0),

but Reff is such that Dprim
eff (u0) 	 Ddual

eff (u0) if u̇0 6≡ 0. This shows that the classical approach of [48] is not
applicable because of an exchange of dissipation between the dual part Ddual and the primal part Dprim in the
limit ε→ 0. This is again reflected in the fact that Reff is larger that R and depends on ∂yκ.

2. Evolutionary Γ-convergence and main results

2.1. The energy-dissipation principle (EDP) for gradient system

We consider a gradient system (Q, E ,R) with a state space Q (a convex subset of a Banach space), energy E
and dissipation potential R and recall that the evolution law associated with a gradient system can be written
in two equivalent ways, namely

0 ∈ ∂q̇R(q, q̇) + DqE(t, q) ⇐⇒ q̇ ∈ ∂ξR∗(q,−DqE(t, q)). (2.1)

The energy-dissipation principle states that under reasonable technical assumptions these relations are equiv-
alent to a scalar energy-dissipation balance. To motivate this we consider a lower semi-continuous convex
function Ψ : X → R∞ on a reflexive Banach space X. Denoted by Ψ∗ : X∗ → R∞ the Legendre-Fenchel dual,
i.e. Ψ∗(ξ) = sup{ 〈ξ, v〉 − Ψ(v) | v ∈ X }. Then, the Fenchel equivalences (see [18, 20] or [47], Thm. 23.5) state
that

(i) ξ ∈ ∂Ψ(v) ⇐⇒ (ii) v ∈ ∂Ψ∗(ξ) ⇐⇒ (iii) Ψ(v) + Ψ∗(ξ) = 〈ξ, v〉,

where ∂ denotes the convex subdifferential. Indeed, by the definition of Ψ∗ we have the Fenchel-Young inequality
Ψ(v) + Ψ∗(ξ) ≥ 〈ξ, v〉 for all v ∈ X and ξ ∈ X∗. Thus, in (iii) it would suffice to ask for the inequality Ψ(v) +
Ψ∗(ξ) ≤ 〈ξ, v〉.

Applying this with Ψ = R(q, ·), integration over time and using the chain rule we see that q solves (2.1) if
and only if q satisfies the energy-dissipation balance

E(T, q(T )) + D(q) = E(0, q(0))−
∫ T

0

DtE(t, q(t))dt,

where D(q) :=

∫ T

0

(
R(q, q̇) +R∗

(
q,−DqE(t, q)

))
dt.

(2.2)
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Indeed, using the chain rule d
dtE(t, q(t)) = DtE(t, q(t)) + 〈DqE(t, q(t)), q̇(t)〉 (the validity of which is the main

technical assumption in the general infinite-dimensional case) it is easy to go back from (2.2) to (2.1), as we
deduce ∫ T

0

(
R(q, q̇) +R∗

(
q,−DqE(t, q)

)
−
〈
DqE(t, q(t)), q̇(t)

〉)
dt = 0.

As the integrand is non-negative by the Fenchel-Young inequality and the integral is 0, we conclude that the
integrand is 0 almost everywhere, which means (iii) in the Fenchel equivalences. Thus (i) and (ii) also hold
almost everywhere, i.e. (2.1) holds. We refer to [5, 31] for more details and exact statements.

To explain the general structure of our special model (1.3), we use the example of an ordinary differential
equation (ODE) q̇ = F (t, q) ∈ R and gradient systems (GS) (Q, E ,R), where Q = R is the state space, E :
[0, T ]×Q→ R is a sufficiently smooth, time-dependent energy functional, andR : Q×Q→ [0,∞[ is a sufficiently
smooth dissipation potential. By R∗ we denote the (Legendre-Fenchel) dual dissipation potential defined via
R∗(q, ξ) = sup{ 〈ξ, v〉 − R(q, v) | v ∈ Q }.

We say that the ODE q̇ = F (t, q) has a gradient structure or is a gradient flow if there exists a GS (Q, E ,R)
such that F (t, q) = ∂ξR∗(q,−DqE(t, q)). In that case, we also say that the ODE is generated by the GS (Q, E ,R).
We emphasize that one ODE can have several distinct gradient structures, e.g. q̇ = 1− q ∈ R is generated by
the gradient systems ([0,∞[, Ej ,Rj) for j = 1, . . . , 4 with

E1(q) = E2(q) =
1

2
(1−q)2, R∗1(ξ) =

1

2
ξ2, R∗2(q, ξ) =

1
2ξ

2 + 1
4ξ

4

1 + (1−q)2
, (2.3)

E3(q) = E4(q) = q log q − q + 1, R∗3(q, ξ) =
q−1

2 log q
ξ2, R∗4(q, v) = 2

√
q
(
cosh( 1

2ξ)− 1
)
.

We also refer to [36, 43] for discussion of different gradient structures for the heat equation or for finite-state
Markov processes. Thus, we emphasize that the gradient structure of a given ODE has additional physical
information, e.g. about the microscopic origin of the ODE, see [26]. This is seen in the above case, since we may
choose different energies Ej and even for one chosen Ej we may choose different dissipation functionals Rk.

2.2. Evolutionary Γ-convergence for gradient systems

We now consider families (Q, Eε,Rε) of gradient systems depending on a small parameter ε > 0. We are
interested in the limits u0 of solutions as well as in suitable limiting gradient systems (Q, E0,R0). Hence, for
ε ∈ [0, ε0] we consider the gradient-flow equations

0 = ∂q̇Rε(qε, q̇ε) + DqEε(t, qε), qε(0) = q0
ε , (2.4)

and, following [31], we recall the following definition.

Definition 2.1. We say that the family (Q, Eε,Rε) of gradient systems E-converges the gradient system

(Q, E0,R0), and write (Q, Eε,Rε)
E→ (Q, E0,R0), if the following holds: If q0

ε → q0
0 and qε : [0, T ] → Q are

solutions of (2.4) for ε ∈ ]0, ε0[, then there exist a subsequence 0 < εk → 0 and a solution q0 : [0, T ] → Q for
(2.4) with ε = 0 such that

∀ t ∈ ]0, T ] : qεk(t)→ q0(t) in Q and Eεk(t, qεk(t))→ E0(t, q0(t)). (2.5)

We remark that a similar notion
E
⇀ can be defined by replacing strong with weak convergence in the state

space Q. Note that the selection of subsequences is only needed if the limiting underlying gradient systems
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does not have uniqueness of solutions. In that case different subsequences may converge to different solutions
of (2.4)ε=0 with the same initial condition q0

0 .
A major drawback of the notion of E-convergence is that R0 is not intrinsically connected to the original

gradient systems (Q, Eε,Rε). Indeed, if (Q, E0,R0) and (Q, E0, R̂0) generate the same gradient-flow equation

(i.e. ∂ξR∗0(q,−DqE0(t, q)) = ∂ξR̂∗0(q,−DqE0(t, q)), see (2.3) for examples) and if (Q, Eε,Rε)
E→ (Q, E0,R0), then

we also have (Q, Eε,Rε)
E→ (Q, E0, R̂0). The notion of EDP convergence is stricter and involves the effective

dissipation potential Rε for ε ∈ [0, ε0[ directly through the dissipation functionals Dε defined via

Dε(q(·)) :=

∫ T

0

(
Rε(q, q̇) +R∗ε

(
q,−DqEε(t, q)

))
dt. (2.6)

The following definition now asks Γ-convergence of Dε to D0, and thus Rε are intrinsically involved. The new
feature is that we ask for much more than convergence of these functionals along solutions qε converging to
q0. In light of [26] this seems to be essential, since the gradient structures contain more information than the
equations determining the solutions. We refer to the discussion in Section 5.

Definition 2.2 (EDP-convergence, cf. [26]). The gradient systems (Q, Eε,Rε)]0,ε0] are said to converge to
the gradient system (Q, E0,R0) in the sense of the energy-dissipation principle, shortly “EDP-converge” or

(Q, Eε,Rε)]0,ε0[
EDP−→ (Q, E0,R0), if the following conditions hold:

(Q, Eε,Rε)
E→ (Q, E0,R0), (2.7a)

Eε
Γ→ E0, and Dε

Γ
⇀ D0, (2.7b)

where the specific choice of the Γ-convergence
Γ
⇀ in (2.7b) needs to be specified in each particular case.

Here following ([31], Def. 3.2.2), the rather weak notion of E-convergence, denoted by
E→, is defined by asking

Eε
Γ→ E0 as well as convergence of (subsequences of) solutions qε for (Q, Eε,Rε) to solutions q0 of (Q, E0,R0).

The deficiency of this notion is that it does not fix the dissipation potential R0, and EDP convergence is a way
to remedy this deficiency.

Two remarks are in order. First, as we highlight in Section 5, EDP-convergence does in general not imply that
the two contributions of the dissipation function (generated by Rε and R∗ε, respectively) converge individually.
Indeed, this may even be wrong when restricting to solutions.

Second, it is one of the main results of this paper that the structure of Dε may not be preserved by taking
the Γ-limit in general. Under suitable technical assumptions the techniques in [14] show that a Γ-limit D0 has

the integral form D0(q) =
∫ T

0
N0(t, q, q̇)dt, but N0 may not have the form

N0(t, q, q̇) = R0(q, q̇) +R∗0(q,−DqE0(t, q))

for any R0.
In our wiggly-energy model as well as in many other applications we have a time-dependent external loading

` : [0, T ]→ Q∗, and we want to have a result that works uniformly with respect to `. Thus, we look at driven
gradient systems with

Eε(t, q) = Fε(q)− 〈`(t), q〉 and Fε
Γ→ F0.
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Because of DqEε(t, q) = DFε(q)−`(t) and the arbitrariness of `, we introduce the variable ξ ∈ Q∗ as a placeholder
of variants for the restoring force −DqEε. Indeed, we use the decomposition

−DqEε(t, q) = Ξε(q) + `(t)−Ωε(q), (2.8)

where Ξε is supposed to converge nicely to the desired limit DF0(q), while Ωε(q) somehow converges to 0. Thus,
we can write Dε in the form

Dε(q) = Jε
(
q,−DqEε(t, q)+Ωε(q)

)
, where

Jε(q, ξ) =

∫ T

0

(
Rε(q, q̇) +R∗ε

(
q, ξ−Ωε(q)

))
dt. (2.9)

As is observed in [54] it is important that q̇ and ξ are in duality and that the convergences of q̇ε to q̇0 and of ξε
to ξ0 are such that the duality pairing (q̇, ξ) 7→

∫ T
0
〈ξ(t), q̇(t)〉dt is continuous. In most applications one uses

qε ⇀ q0 in W1,p(0, T ;Q) (weakly) and ξε → ξ0 in Lp
′
(0, T ;Q∗) (strongly). (2.10)

This explains why the decomposition (2.8) is useful: we obtain the strong convergence Ξε(qε(·)) → Ξ0(q0(·))
and want to use Ωε(q(·)) ⇀ 0 in a suitable sense.

Now, we may consider Γ-convergence for the functionals Jε with respect to the convergence in (2.10), denoted
by “−→

w×s
”. Again, under suitable assumptions the theory in [14] predicts that a possible Γ-limit takes the following

form

Jε
Γ−→

w×s
J0 : (q, ξ) 7→

∫ T

0

M(q, q̇, ξ)dt, (2.11)

where now M(q, ·, ·) : Q×Q∗ → [0,∞] contains the effective information on the dissipation for a given macro-
scopic speed v = q̇ ∈ Q and an effective macroscopic force ξ ∈ Q∗. Even in the case Ωε ≡ 0 we see that the
convergence −→

w×s
from (2.10) is the natural one for studying the Γ-limit of Jε, since under suitable coercivity

assumptions one has

Rε(q, ·)
Γ
⇀ R0(q, ·) in Q ⇐⇒ R∗ε(q, ·)

Γ→ R∗0(q, ·) in Q∗,

see ([6], p. 271) and the survey ([31], Sect. 3.2).
As a remainder of the Young-Fenchel inequality Rε(q, v) +R∗ε(q, ξ) ≥ 〈ξ, v〉 one can hope for the estimate

∀ q, v ∈ Q, ξ ∈ Q∗ : M(q, v, ξ) ≥ 〈ξ, v〉, (2.12)

however, this has to be proved in each case using properties of Ωε, see our Lemma 4.1(b) for the wiggly-energy
model. Then, as in the energy-dissipation principle of the previous subsection the limit evolution is given by

M(q, q̇,−DqE0(t, q)) = −〈DqE0(t, q), q̇〉 or equivalently

E0(T, q(t)) +

∫ T

0

M(q, q̇,−DqE0(t, q))dt = E0(0, q(0))−
∫ T

0

〈 ˙̀(t), q〉dt,

where we assumed that E0(t, q) = F0(q)− 〈`(t), q〉 still satisfies a chain rule. While M encodes information on
the combined limit of (Eε,Rε), we can now go back looking at solutions, which necessarily stay in the so-called
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contact set CM(·), namely

(q̇(t),−DqE0(t, q(t)) ∈ CM(q(t)) with CM(q) :=
{

(v, ξ) ∈ Q×Q∗
∣∣M(q, v, ξ) = 〈ξ, v〉

}
.

This subset gives the admissible pairs (v, ξ) of rates and forces at a given state q, i.e. it defines a kinetic relation.
Our definition of relaxed EDP-convergence now asks that this kinetic relation is given in terms of a dissipation

potential Reff . We emphasize that using this approach the dissipation Reff is uniquely defined through the steps
above, i.e. as in EDP-convergence we find “the” effective dissipation potential, however in contrast to EDP-
convergence we are more flexible in term of the Γ-limit D0 of Dε, which may not have (R0,R∗0) form. That is
also the reason why we use the notation Reff , as there is no direct convergence of Rε to Reff , see the discussion
in Section 5.

Definition 2.3 (Relaxed EDP-convergence). We say that the family (Q, Eε,Rε)]0,ε0[ of gradient systems con-

verges to the gradient system (Q, E0,Reff) in the relaxed EDP sense, and shortly write (Q, Eε,Rε)]0,ε0[
relEDP−−−−→

(Q, E0,Reff), if the following holds:

(Q, Eε,Rε)]0,ε0[
E→ (Q, E0,Reff), (2.13a)

Eε(t, q) = Fε(q)− 〈`(t), q〉, Fε
Γ→ F0, (2.13b)

∃Ωε : q̃ε ⇀ q̃0 in W1,p(0, T ;Q) =⇒ DqFε(·, q̃ε)−Ωε(q̃ε)→ DqF0(q̃0), (2.13c)

Jε defined in (2.9) satisfies (2.11) with M satisfying (2.12), (2.13d)

∃diss. pot.Reff ∀ q ∈ Q : CM(q) =
{

(v, ξ) ∈ Q×Q∗
∣∣ ξ ∈ ∂vReff(q, v)

}
. (2.13e)

We emphasize that the definition of relaxed EDP-convergence is such that it fixed the limiting dissipation
potential Reff uniquely. This was possible by splitting DqFε in a part that converges strongly to DqF including
` (which is called “tilt” in [33]) and a part that weakly converges to 0 but contributes nontrivially to Reff .

The aim of this paper is to show that the theory sketched above can be made rigorous for the wiggly-
energy model. Thus, we have a first nontrivial example that shows that relaxed EDP-convergence provides
a mechanically relevant concept for deriving effective gradient structures where neither the Sandier-Serfaty
theory [48] nor the EDP-convergence from [26] applies. We refer to [33] for further examples and discussion of
relaxed EDP convergence, which is defined there more general, and the stronger convergence notion called EDP
convergence with tilting.

2.3. Our model as gradient system and relaxed EDP-convergence

For our wiggly-energy model, the gradient system is given by the state space R, the energy Ewig
ε : R× [0, T ]→

R and a general convex dissipation potential R : R× R→ R. We choose the following assumptions to keep the
technicalities to a limit; however, it is easily possible to generalize most assumptions except for the additive
structure of Eε concerning the wiggly part κ.

Ewig
ε (t, u) = Φ(u)− `(t)u+ εκ(u, 1

εu) with Φ ∈ C1(R), ` ∈ C1([0, T ]) (2.14a)

and κ ∈ C1(R2) with κ(u, y+1) = κ(u, y) for all u, y ∈ R; (2.14b)

R ∈ C1(R2), R(u, v) ≥ 0, R(u, 0) = 0; (2.14c)

∀u ∈ R : R(u, ·) is strictly convex; (2.14d)

∃ p ∈ ]1,∞[ ∃ c1, c2 > 0 ∃ modulus of continuity ω ∀u, û, v ∈ R :

c1(|v|p−1) ≤ R(u, v) ≤ c2(1+|v|p) and (2.14e)

|R(u, v)−R(û, v)| ≤ ω(|u−û|)(1+|v|p). (2.14f)
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Assumption (2.14e) implies that the dual dissipation potential R∗ satisfies the estimate

∀u, ξ ∈ R : c3(|ξ|p
′
−1) ≤ R∗(u, ξ) ≤ c4(1+|ξ|p

′
), (2.15)

where p′ = p/(p−1). Moreover, R∗(u, ·) is continuously differentiable and strictly convex. The last
assumption (2.14f) is a uniform continuity statement that should be avoidable; however, it helps us settle
some technical issues which would otherwise destroy the chosen and hopefully clear Γ-convergence proof. Again,
by using the Legendre-Fenchel transform we find the corresponding uniform continuity statement forR∗, namely

∀u, û, ξ ∈ R : |R∗(u, ξ)−R∗(û, ξ)| ≤ Cpω(|u−û|)(1+|ξ|p
′
), (2.16)

where Cp > 1 is a constant depending only on p > 1.

As a special case we consider power-law potentials R(u, v) = ν(u)
p |v|

p giving R∗(u, ξ) = µ(u)
p′ |ξ|

p′ , where

µ(u) = ν(u)1/(1−p). So, the assumptions (2.14c)–(2.14f) are satisfied if ν and 1/ν are positive, bounded and
continuous.

The gradient-flow equation has the usual form

∂u̇R(u, u̇) = −DuEwig
ε (t, u) = −Φ′(u) + `(t)− ε∂uκ(u, 1

εu)− ∂yκ(u, 1
εu), (2.17)

where the wiggly part κ : R×S1 → R inserts the small inherent length scale ε into the system via the periodicity
variable y = u/ε.

Following the abstract approach of Sections 2.1 and 2.2, equation (2.17) is equivalent to the energy-dissipation
balance

Ewig
ε (T, u(T )) + Jwig

ε

(
u,−DqEwig

ε (·, u)+Ωε(u)
)

= Ewig
ε (0, u(0))−

∫ T

0

˙̀udt, (2.18a)

with Ωε(u) := ∂yκ(u, 1
εu) and (2.18b)

Jwig
ε (u, ξ) :=

∫ T

0

(
R(u(t), u̇(t)) +R∗

(
u(t), ξ(t)−Ωε(u(t))

))
dt. (2.18c)

The proof of relaxed EDP-convergence relies on the following technical result for the Γ-convergence of Jwig
ε .

For this we define the limit dissipation functional

Jwig
0 : W1,p(0, T )× Lp

′
(0, T )→ [0,∞] via

Jwig
0 (u, ξ) :=

∫ T

0

Mwig(u, u̇, ξ)dt with (2.19)

Mwig(u, v, ξ) := inf
z∈W1,p

v

(∫ 1

0

[
R(u, |v|ż(s)) +R∗

(
u, ξ − ∂yκ(u, z(s))

)]
ds
)
, (2.20)

where W1,p
v =

{
v ∈W1,p(0, 1)

∣∣ z(1) = z(0)+ sign(v)
}
.

We note that W 1,p
v depends on v only through its sign, namely sign(v) ∈ {−1, 0, 1}. In particular for ±v >

0 we have W 1,p
v = { v ∈ W1,p(0, 1) | z(1) = z(0)±1 }, while for v = 0 we have W 1,p

0 = W 1,p
per(0, 1) := { z ∈

W1,p(0, 1) | z(0) = z(1) }.
Recalling the definition of weak-strong convergence (2.10) in W1,p(0, T )×Lp

′
(0, T ), which is denoted by −→

w×s
,

the following result holds. The proof will be the content of Section 3.
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Theorem 2.4 (Γ-convergence of Jwig
ε ). If the gradient systems (R, Ewig

ε ,Rε) satisfy assumptions (2.14), then

Jwig
ε

Γ−→
w×s

Jwig
0 .

As a first consequence we obtain a Γ-convergence result for the dissipation function Dwig
ε taking the form

Dwig
ε (u) = Jwig

ε (u,−DuEε(·, u)−Ωε(u)) for ε ∈ [0, ε0[,

where we set Ω0(u) = 0.

Corollary 2.5 (Γ-convergence of Dwig
ε ). Taking the weak convergence ⇀ in W1,p(0, T ) we have Dwig

ε
Γ
⇀ Dwig

0 .

Proof. The liminf estimate for Dwig
ε (uε) with uε ⇀ u0 in W1,p(0, T ) follows easily from the liminf estimate for

Jwig
ε (uε, ξε) if we use

ξε = −DuEwig
ε (·, uε)+Ωε(uε) = −Φ′(uε) + `− ε∂uκ(uε,

1
εuε)→ ξ0 = −Φ′(u0) + ` = −DuE0(·, u0),

where we used the compact embedding of W1,p(0, T ) into C0([0, T ]) ⊂ Lp
′
(0, T ).

For the limsup estimate we have to construct for each û0 a recovery sequence ûε ⇀ û0 in W1,p(0, T ) such

that Dwig
ε (uε)→ Dwig

0 (u0). For this we set ξ̂0 = −DuE0(·, û0) and use the recovery sequence (ûε, ξ̂ε) −→
w×s

(û0, ξ̂0)

such that Jwig
ε (ûε, ξ̂ε)→ Jwig

0 (û0, ξ̂0), whose existence is guaranteed by the Γ-convergence of Jwig
ε . Setting

ηε := −DuEε(·, ûε) +Ωε(ûε) = −Φ′(ûε) + `− ε∂uκ
(
ûε,

1
ε ûε

)
we find ηε → ξ̂0 in Lp

′
(0, T ), and Lemma 2.6 yields Jwig

ε (ûε, ξ̂ε)− Jwig
ε (ûε, ηε)→ 0. Thus, we have

Dwig
ε (ûε)−Dwig

0 (û0) = Jε(ûε, ηε)− Jwig
0 (û0, ξ0)

=
(
Jε(ûε, ηε)−Jε(ûε, ξ̂ε)

)
+
(
Jε(ûε, ξ̂ε)−Jwig

0 (û0, ξ0)
)
→ 0 + 0.

This is the desired limsup estimate.

It remains to prove the equi-Lipschitz continuity of Jwig
ε (u, ·) used in the above proof.

Lemma 2.6. If (R, Eε,R) satisfies (2.14), then there exists C∗ such that

∀ ε ∈ [0, ε0[, ξ, η ∈ Lp
′
(0, T ), u ∈W1,p(0, T ) :∣∣Jwig

ε (u, ξ)−Jwig
ε (u, η)

∣∣ ≤ C∗(1+‖ξ‖Lp′+‖η‖Lp′
)p′−1‖ξ−η‖Lp′ .

Proof. Because R∗ is convex and has p′ growth (see (2.15)) there exists C∗ > 0 such that

∀u, ξ, η ∈ R :
∣∣R∗(u, ξ)−R∗(u, η)

∣∣ ≤ C∗(1+|ξ|+|η|)p
′−1|ξ−η|.

Integration over t ∈ [0, T ] and applying Hölder’s estimate gives the desired result.

Our main result is now the relaxed EDP-convergence which follows from the fact that the representation (2.20)
ofM can be used to prove thatM(u, ·, ·) : R×R→ [0,∞[ represents a subdifferential operator v 7→ ∂ξReff(u, v)
for a uniquely defined effective dissipation potential Reff .
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Theorem 2.7 (Relaxed EDP-convergence). If the gradient systems (R, Ewig
ε ,R) satisfy assumptions (2.14) and

if Mwig is defined as in (2.20), then there exists an effective dissipation potential Reff such that (2.13e) holds.

Moreover, we have (R, Ewig
ε ,R)

relEDP−−−−→ (R, E0,Reff).

Proof. The main parts for this proof are done in the following Sections 3 and 4, and we refer to the corresponding
results there. Nevertheless, we have the prerequisites to see the structure of the arguments already at this stage.

As our energy Ewig
ε has the form Ewig

ε (t, u) = Φ(u) − `(t) + εκ(u, 1
εu), we set Ωε(u) = ∂yκ(u, 1

εu). Then,
conditions (2.14) easily give conditions (2.13b) and (2.13c), where for the second condition we use the compact
embedding W1,p(0, T ) b C0([0, T ]) ⊂ Lp

′
(0, T ).

Of course, the convergence Jεε
Γ
⇀ Jwig

0 in (2.13d) is exactly what is stated in Theorem 2.4 and proved in
Section 3, whereas the generalized Young-Fenchel estimate (2.12) is established in Lemma 4.1(b).

Proposition 4.2 exactly provides the construction of Reff such that condition (2.13e) holds.

Thus, it remains to establish the E-convergence (R, Eε,R)
E→ (R, E0,Reff) (see (2.5) for the definition) of

condition (2.13e). For this we start with solutions uε of (2.17) satisfying uε(0)→ u0
0 and exploit the standard

arguments on evolutionary Γ-convergence from [31, 48]. As uε also satisfies the energy-dissipation balance (2.18a)
we have the a priori estimate ‖uε‖W1,p(0,T ) ≤ C and we find a subsequence with uεk ⇀ u0 in W1,p(0, T ) which
implies uεk → u0 and hence Eεk(t, uεk(t))→ E0(t, u0(t)) uniformly in [0, T ].

Now we pass to the limit εk → 0 in (2.18a) and find

E0(T, u0(T )) + Jwig
0 (u0,−DuE0(·, u0)) ≤ E0(0, u0

0)−
∫ T

0

˙̀u0 dt,

where we only used the liminf estimate from Jwig
ε

Γ
⇀ Jwig

0 and employed (2.13c). Now we argue as in the
energy-dissipation principle (cf. the end of Sect. 2.1) by using the chain rule for t 7→ E0(t, u0(t)) and find
Mwig

(
u0, u̇0,−DuE0(t, u0)

)
= −DuE0(t, u0)u̇0. By the definition of Reff from (2.13e) we conclude that 0 =

∂u̇Reff(u0, u̇0) + DuE0(t, u0) holds a.e. in [0, T ], i.e. u0 is a solution of the gradient system (R, E0,Reff).

3. The main homogenization result

This section contains the proof of Theorem 2.4 which states Jε
Γ−→

w×s
J0, where from now on we drop the

superscript “wig” and always assume that the assumptions (2.14) hold, as in the rest of the paper we only
consider the special case of our wiggly-energy model. The proof of the technical homogenization result is obtained
by extending the result of ([11], Thm. 3.1), see Theorem 3.2.

As our problem is scalar the latter homogenization result can be reduced to a single-cell problem by a com-
parison argument, see Proposition 3.3. The liminf estimate is obtained by a standard approximation procedure
generalizing ([11], Thm. 3.1) slightly to allow for ξ depending on t, see Proposition 3.6. The limsup estimate in
Proposition 3.7 relies on a construction of suitable recovery sequences on three different scales.

Before we start with the proof of the homogenization result, we show that the role of the variable ξ ∈ Lp
′
(0, T )

is simply that of a parameter, thus we are dealing with a parameterized Γ-convergence as discussed in [29]. This
comes from the fact that for ξ we have strong convergence and the functionals Jε are equi-Lipschitz continuous
in ξ, as established in Lemma 2.6. As indicated in ([29], Ex. 3.1) we see in our Example 4.15 that the functional
ξ 7→ J0(u, ·) is not convex in general, despite the convexity of Jε(u, ·). The following result shows that the
Lipschitz continuity in ξ is preserved. We refer to Section 5.1 for the case where the Γ-limit of Jε in the
weak×weak topology gives a strictly lower limit that is indeed convex in ξ.

Lemma 3.1 (Freezing ξ). (a) The weak×strong Γ-limit J0 of Jε exists if and only if for all ξ ∈ Lp
′
(0, T ) we

have the weak Γ-convergence Jε(·, ξ)
Γ
⇀ J0(·, ξ) in W1,p(0, T ).



RELAXED EDP-CONVERGENCE FOR A WIGGLY ENERGY 13

(b) If the Γ-limit J0(·, ξj) exists for ξ1, ξ2 ∈ Lp
′
(0, T ), then for all u ∈W1,p(0, T ) we have

∣∣J0(u, ξ1)− J0(u, ξ2)
∣∣ ≤ C∗(1+‖ξ1‖Lp′+‖ξ2‖Lp′

)p′−1‖ξ1−ξ2‖Lp′ , (3.1)

where C∗ is from Lemma 2.6.
(c) If the weak Γ-limits J0(·, ξ) exist for a dense set in Lp

′
(0, T ), then they exist for all ξ ∈ Lp

′
(0, T ).

Proof.

Part (a). We proceed as in the proof of Corollary 2.5. As ξε → ξ0 strongly, Lemma 2.6 leads to

∣∣Jε(uε, ξε)− Jε(uε, ξ0)
∣∣ ≤ C̃‖ξε−ξ0‖Lp′ → 0,

for ε → 0. Thus, it is easy to transfer the liminf estimate and the construction of recovery sequences from
Jε : W1,p(0, T )× Lp

′
(0, T )→ R to Jε(·, ξ0) : W1,p(0, T )→ R and vice versa.

Part (b). For the Lipschitz continuity we argue as follows. For given (u, ξj) we have a recovery sequence

(u
(j)
ε , ξj) ⇀ (u, ξj) as ε→ 0, thus we have

J0(u, ξ1)− J0(u, ξ2) = lim
ε→0

(
Jε(u

(1)
ε , ξ1)−Jε(u(2)

ε , ξ2)
)

∗
≤ lim inf

ε→0

(
Jε(u

(2)
ε , ξ1)−Jε(u(2)

ε , ξ2)
)

Lem. 2.6
≤ lim inf

ε→0
C∗
(
1 + ‖ξ1‖Lp′ + ‖ξ2‖Lp′

)p′−1‖ξ1−ξ2‖Lp′ .

In
∗
≤ we used the liminf estimate lim infε→0 Jε(u

(2)
ε , ξ1) ≥ J0(u, ξ1) = limε→0 Jε(u

(1)
ε , ξ1), which follows from

u
(2)
ε ⇀ u and the assumed Γ-convergence of Jε(·, ξ1) to J0(·, ξ1).

Interchanging ξ1 and ξ2 we obtain the opposite result, whence (3.1) is established.

Part (c). Let D ⊂ Lp
′
(0, T ) be the dense set of ξ, for which J0(·, ξ) exists. By part (b) this function has

a unique continuous extension J : W1,p(0, T ) × Lp
′
(0, T ) → R that is still Lipschitz continuous in the second

variable. We have to show that this J(·, ξ) is indeed the desired Γ-limit.
Given η ∈ Lp

′
(0, T ) \D and δ > 0 we choose ξ ∈ D with ‖ξ − η‖Lp′ ≤ δ. For a given limit u ∈W1,p(0, T ) we

first derive an approximate liminf estimate for arbitrary uε ⇀ u via

lim inf
ε→0

Jε(uε, η) ≥ lim inf
ε→0

(
Jε(uε, ξ)− C̃δ

)
≥ J0(u, ξ)− C̃δ,

where C̃ = C∗(1+‖ξ‖Lp′+‖η‖Lp′ ). Taking δ → 0 we obtain the desired liminf estimate lim infε→0 Jε(uε, η) ≥
J0(u, η).

For the limsup estimate for (û, η) we have to construct a recovery sequence ûε ⇀ û. For this we choose ξδ ∈ D
with ‖ξδ − η‖Lp′ < δ and then ũδε ⇀ û such that Jε(ũ

δ
ε, ξ

δ)→ J0(û, ξδ) as ε→ 0. By the equi-coercivity of Jε in
u (cf. (2.14e)) all ξδε lie in a bounded and closed ball of W1,p(0, T ) where the weak topology is metrizable. Hence

we can extract a diagonal sequence ûε = ũ
δ(ε)
ε ⇀ û such that, using Lemma 2.6 once again, Jε(ûε, η)→ J0(û, η),

which is the desired limsup estimate.

Thus, we have shown that Jε(·, η)
Γ
⇀ J0(·, η).
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Our Γ-convergence result now concerns functionals of the form

Jε(u, ξ) =

∫ T

0

N(ξ(t), u(t), 1
εu(t), u̇)dt with

N(ξ, u, y, v) := R(u, v) +R∗(u, ξ−∂yκ(u, y)). (3.2)

Combining the uniform continuity estimates (2.14f), (2.16), the convexity and the upper bounds for R and R∗
we easily obtain the following uniform continuity for N :

∃CN > 0 ∀ ξ1, ξ2, u1, u2, y, v1, v2 ∈ R :
∣∣N(ξ1, u1, y, v1)−N(ξ2, u2, y, v2)

∣∣
≤ CN

(
ω(|u1−u2|)

(
1+|v1|p+|v2|p+|ξ1|p

′
+|ξ2|p

′)
+ (1+|v1|p−1+|v2|p−1)|v1−v2|+ (1+|ξ1|p

′−1+|ξ2|p
′−1)|ξ1−ξ2|

)
,

(3.3)

where ω is as in (2.14f).
We follow the techniques in ([11], Thm. 3.1), where the case is treated that N does not depend on ξ and

u. The generalization to the dependence on t 7→ ξ(t) with fixed ξ in a dense subset C0([0, T ]) of Lp
′
(0, T ) and

on u = uε ⇀ u0 is handled by the uniform continuity assumption (2.14f). Let us recall the statement of ([11],
Thm. 3.1) in the notation and variant adapted to our paper.

Theorem 3.2 ([11], Thm. 3.1). Let 1 < p < ∞ and g : Rd × Rd → [0,∞[ be a Borel function satisfying the
growth condition

∃ p > 1 ∃ c1, c2, c3 > 0 ∀ y, v ∈ Rd : c1|v|p − c2 ≤ g(y, v) ≤ c3
(
1 + |v|p

)
.

as well as the periodicity condition

∀ y, v ∈ Rd ∀ k ∈ Zd : g(y+k, v) = g(y, v).

Then the functional Jε : W1,p(0, T )d 3 u 7→
∫ T

0
g(1
εu, u̇) dt Γ-converges to the homogenized functional J0 :

W1,p(0, T )d 3 u 7→
∫ T

0
Geff(u̇)dt, where Geff : Rd → [0,∞[ is defined by

Geff(V ) := lim
L→∞

inf
{ 1

L

∫ L

0

g
(
w(s)+V s, ẇ(s)+V

)
ds
∣∣∣ w ∈W1,p

0 (0, L)d
}
. (3.4)

For proving our homogenization result (see Propositions 3.6 and 3.7 for the liminf and limsup estimates,
respectively) we will apply a variant of this theorem, where g is replaced by gU,Ξ(y, v) = N(Ξ, U, y, v). However,
before doing so, we show that the multi-cell minimization over intervals ]0, L[ with the subsequent limit L →
∞ is not needed in the scalar case, i.e. when d = 1. (See Sect. 3.3 of [11] for cases with d > 1 where the
limit is indeed needed.) The reason for this simplification is that scalar minimization problems involving only
first order derivatives satisfy a comparison principle: if w1 and w2 are minimizer in (3.4), then also w(s) =
min{w1(s), w2(s)} is a minimizer. Moreover, we are able to show monotonicity of s 7→ w(s) + V s ∈ R by simple
cut-and-paste rearrangements.

Proposition 3.3 (Multi-cell versus single-cell problem). Consider a function g ∈ C(R2; [0,∞[) with

∀ v ∈ R : g(·, v) is 1-periodic, ∀ y ∈ R : g(y, ·) is convex, (3.5a)

∃ p > 1 ∃ c1, c2 > 0 ∀ y, v ∈ R : c1
(
|v|p − 1

)
≤ g(y, v) ≤ c2

(
1 + |v|p

)
, (3.5b)

∀ y ∈ R ∀ v ∈ R \ {0} : g(y, v) > g(y, 0) ≥ 0. (3.5c)
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(A) For all V ∈ R we have the identity

Geff(V ) : = lim
L→∞

inf
{ 1

L

∫ L

0

g
(
w(s)+V s, ẇ(s)+V

)
ds
∣∣ w ∈W1,p

per(0, T )
}

(3.6a)

= min
{ ∫ 1

0

g
(
z(s), |V |ż(s)

)
ds
∣∣ z ∈W1,p(0, 1), z(1) = z(0)+ sign(V )

}
. (3.6b)

(B) Moreover, minimizers z ∈W1,p
v (0, 1) in (3.6b) exist and are strictly monotone functions.

(C) For V 6= 0 we have the alternative characterization

Geff(V ) = inf
{ ∫ 1

0

g
(
y,

V

a(y)

)
a(y)dy

∣∣ a(y) > 0,

∫ 1

0

a(y)dy = 1
}
, (3.6c)

and V 7→ Geff(V ) is continuous and convex.

(D) If g1 and g2 are functions satisfying (3.5) such that

∃ δ1, δ2 > 0 ∀ y, v ∈ R :
∣∣g1(y, v)− g2(y, v)

∣∣ ≤ δ1 + δ2|v|p, (3.7)

then the corresponding effective potentials G
(1)
eff and G

(2)
eff satisfy the estimate

∀ v1, v2 ∈ R :
∣∣G(1)

eff (v1)−G(2)
eff (v2)

∣∣ ≤ δ1 +
δ2
c1

(
c1 + c2 + c2|v1|p

)
+ ĉ
(
1+|v1|p−1+|v2|p−1

)
|v1−v2|,

(3.8)

where ĉ only depends on c1, c2, and p from (3.5b).

Proof. We define G(L, V ) to be the infimum in the right-hand side of (3.6a) and have to show G(L, V )→ Geff(V )
as L → ∞. For this we use the 1-periodicity of g(·, v). Moreover, we use the coercivity of g which guarantees
the existence of minimizers such that the infimum G(L, V ) is attained.

We first treat the trivial case V = 0 and then V > 0. The case V < 0 is completely analogous to the case
V > 0. The main method for analyzing the minimizers z is a simple cut-and-paste rearrangement technique for
the graph Gz := { (s, z(s)) ∈ R2 | s ∈ [0, L] }. If we cut this graph into finitely many pieces, we may translate
these pieces horizontally by arbitrary real numbers (using the fact that g does not depend on s) and may
translate the pieces vertically by integer values (using the 1-periodicity of g(·, v)). If the result z is again a graph

of a continuous function, then z lies in W1,p(0, T ) again and satisfies
∫ L

0
g(z, ż)ds =

∫ L
0
g(z, ż)ds.

Step 1. The case V = 0.
We first observe that G(L, 0) = gmin := min{ g(y, 0) | y ∈ R }, since g(y, v) ≥ gmin and we can choose w ≡ y∗
with g(y∗, 0) = gmin. The minimizer z for (3.6) is given by z ≡ y∗.

Step 2. Monotonicity of z : s 7→ w(s)+sV . Here we consider general minimizers w for G(L, V ) with V > 0
and LV ≥ 1. To show that z is increasing, we assume that there exist s1 and s2 with 0 ≤ s1 < s2 ≤ L and
z(s1) = z(s2) such that z|[s1,s2] is not constant. From this we produce a contradiction by constructing a better
competitor z.

With y∗ from Step 1 and using LV ≥ 1 the intermediate-value theorem provides s∗ ∈ [0, L] \ ]s1, s2[ such
that z(s∗) = y∗. We then have∫ s2

s1

g(z(s), ż(s))ds 	
∫ s2

s1

g(z(s), 0)ds ≥
∫ s2

s1

g(y∗, 0)ds, (3.9)
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Figure 2. The new function z (right side) is constructed from the non-increasing function z
(left side) by removing non-monotone part on [s1, s2] and by inserting a flat part of the same
length s2−s1 with value z(s) = y∗ ∈ argmin g(·, 0).

where the strict estimate “	” holds since z is not constant on this interval and g satisfies (3.5c). We now define
the competitor z ∈W1,p(0, L) by cutting out the non-monotone interval ]s1, s2[ and inserting a flat part where z
takes the value y∗, see Figure 2. Note that pieces of the graph of z can be moved horizontally without changing
the value of the functional, since g does not depend on s explicitly. Example for the case s∗ ≥ s2 we obtain

z(s) =

 z(s) for s ∈ [0, L] \ ]s1, s∗[,
z(s+s2−s1) for s ∈ [s1, ŝ],

y∗ for [ŝ, s∗],
where ŝ := s1+s∗−s2 ∈ ]s1, s∗[.

By construction we have z ∈ W1,p(0, L) and z(L) = z(0)+LV . Hence, z is a competitor for the minimization
problem G(L, V ), and with (3.9) we obtain

∫ L

0

g(z, ż)ds =

∫ s1

0

g(z, ż)ds+

∫ s2

s1

g(z, ż)ds+

∫ s∗

s2

g(z, ż)ds+

∫ L

s∗

g(z, ż)ds

	
∫ s1

0

g(z, ż)ds+

∫ s∗

ŝ

g(y∗, 0)ds+

∫ ŝ

s1

g(z, ż)ds+

∫ L

s∗

g(z, ż)ds =

∫ L

0

g(z, ż)ds

implies
∫ L

0
g(z, ż)ds >

∫ L
0
g(z, ż)ds we see that z cannot be a minimizer, which is the desired contradiction.

The case s∗ ≤ s1 is similar. Thus, statement (B) is shown.

Step 3. Claim: ∀V > 0 ∀k ∈ N with k/V ≥ 1 we have G(k/V,V ) = G(1/V,V ).
We start from a minimizer wV for G(1/V, V ) and use the 1-periodicity of g(·, v). Extending wV periodically to
wkV ∈W1,p

per(0, k/V ) we can insert it as competitor for G(k/V, V ) and conclude G(k/V, V ) ≤ G(1/V, V ).
For the opposite estimate consider a fixed k ≥ 2 and take a minimizer w ∈W1,p

per(0, k/V ) for G(k/V, V ). We
extend w periodically to all of R, define z : R 3 s 7→ w(s) + sV and set

T := { s2−s1 | s1, s2 ∈ R, z(s2) = z(s1) + 1 } and τ∗ := inf T.

The set T is non-empty as z(k/V ) = z(0) + k. By Step 2 the function z is monotone, hence τ∗ ≥ 0. By continuity
and periodicity of w : s 7→ z(s)−V s we see that the infimum is attained and that τ∗ > 0. Choosing sj with
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z(sj) = z(0) + j for j = 1, ..., k−1 and setting s0 = 0 and sk = k/V , we have k/V =
∑k
j=1(sj−sj−1). Thus, at

least one sj−sj−1 is less or equal 1/V , which implies τ∗ ≤ 1/V .
By shifting z horizontally, we may assume z(τ∗) = z(0)+1. If τ∗ = 1/V we have z(1/V ) = z(0) + 1 so that

w : s 7→ z(s) − V s satisfies w(0) = w(1/V ) = w(k/V ). Hence, w|[0,1/V ] is a competitor for G(1/V, V ), and
w[1/V,k/V ] is a competitor for G((k−1)/V, V ) (after shifting s to s− 1/V ). Hence, we obtain

k

V
G(k/V, V ) =

∫ 1/V

0

g(w+V s, ẇ+V )ds+

∫ k/V

1/V

g(w+V s, ẇ+V )ds

≥ 1

V
G(1/V, V ) +

k−1

V
G((k−1)/V, V ).

(3.10)

We want to show the same lower bound for the case τ∗ < 1/V . This is done by a cut-and-paste rearrangement.
We decompose [0, k/V ] into at most 5 parts via 0 < t1 < t2 < t3 < t4 ≤ k/V . We set t2 := τ∗ < t3 := 1/V and
choose t4 > 1/V such that z(t4) = z(0) + j∗ with j∗ ≥ 2 and z(t4−t3) ≥ z(0) + j∗ − 1. Now the intermediate-
value theorem applied to the difference of z|0,τ∗ and z : [0, τ∗] 3 s 7→ z(t4−t3+s)− j∗ + 1 gives at least one zero
t1 ∈ [0, τ∗] as z(0) ≤ z(0) = z(t4−t3)− j∗ + 1 and z(t3) = z(τ∗) ≤ z(t3) by monotonicity.

We define the rearrangement ẑ as a concatenation of vertically shifted versions of z on the intervals [0, t1],
[t3, t4], [t2, t3], [t1, t2], and [t4, k/V ], namely

ẑ(s) =


z(s) for s ∈ [0, t1] ∪ [t4, k/V ],

z(s+t4−t3)− j∗ + 1 for s ∈ [t1, t
′
2],

z(s+t2−t3) for s ∈ [t′2, t
′
3],

z(s+t2−t4) + j∗ − 1 for s ∈ [t′3, t4],

where t′2 = t3 and t′3 = t4 − t2 + t1. See Figure 3 for an illustration.
By construction z and ẑ are minimizers for G(k/V ), but ẑ additionally satisfies ẑ(1/V ) = ẑ(0) + 1, as in the

case τ∗ = 1/V . By induction we find G(k/V, V ) ≥ G(1/V, V ). Since the opposite estimate was shown above, we
conclude G(k/V, V ) = G(1/V, V ).

Step 4. Limit G(L,V )→ G(1/V,V ) for L→∞.
We already know the values at G(k/V, V ) = G(1/V, V ), and now estimate the function for L ∈ ]k/V, (k+1)/V [.
Using g∗V = max{ g(u, V ) | u ∈ R } and taking the minimizer zL for G(L, V ) we extend zL ∈ W1,p(0, L) to
z̃ ∈W1,p(0, (k+1)/V ) via z̃(s) = z(0) + sV for s > L, then

LG(L, V ) =

∫ L

0

g(zL, żL)ds ≥
∫ (k+1)/V

0

g(z̃, ˙̃z)ds− g∗V
(k+1

V
− L

)
≥ k+1

V
G((k+1)/V, V )− g∗V /V ≥ LG(1/V, V )− g∗V /V.

This implies lim infL→∞G(L, V ) ≥ G(1/V, V ). The opposite inequality follows by taking the minimizer zk/V and

extending it affinely to a competitor forG(L, V ). This results in k
V G(1/V, V ) = k

V G(k/V, V ) ≥ LG(L, V )−g∗V /V
and lim supL→∞G(L, V ) ≤ G(1/V, V ) follows, and G(L, V )→ G(1/V, V ) is established.

To establish identity (3.6b) we simply observe that the minimizers z of (3.6b) and the minimizers w of
G(1/V, V ) are related by z(s) = w(|V |s) + sign(V ) s. Thus, part (A) is established.

Step 5. Convexity of Geff .
Obviously monotone functions s 7→ z(s) as competitors in (3.6b) can be approximated by strictly monotone
functions in W1,p. For these functions we can invert y = z(s) to obtain s = σ(y). Thus, for a(y) = sign(V )σ′(y)

we have a(y) > 0 and
∫ 1

0
a(y)dy = 1. Thus, transforming the integral in (3.6b) gives the desired formula (3.6c).
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Figure 3. Rearrangement of z leads to ẑ, which intersect the diagonal s 7→ z(0) + V s at

s = 1/V (filled circle). With t̂3 = t4− t3 + t1, the parts of the graph associated with [t1, t2] and

[t̂3, t4] are interchanged by vertical integer-valued shifting and horizontal adjustment to make
the function continuous.

The convexity of g(y, ·) implies the convexity of (v, a) 7→ g(y, v/a)a =: h(y, a, v). With this we set H(a, v) =∫ 1

0
h(y, a(y), v)dy, which is still convex in (a, v). Thus, for θ ∈ ]0, 1[ and v0, v1 ∈ R we choose for ε > 0 functions

a0 and a1 such that H(aj , vj) ≤ Geff(vj) + ε for j = 0 and 1. For vθ = (1−θ)v0 + θv1 we obtain

Geff(vθ) = inf
{
H(a, vθ)

∣∣ ∫ 1

0

a(y)dy = 1
}
≤ H

(
(1−θ)a0+θa1, vθ

)
H cvx
≤ (1−θ)H(a0, v0) + θH(a1, v1) ≤ (1−θ)Geff(v0) + θGeff(v1) + ε.

As ε > 0 was arbitrary the desired convexity is established.

Step 6. Continuous dependence of Geff from g.
To obtain (3.8) we first consider the case v1 = v2 = V and denote by zj any minimizers for Gj(1/V, V ). By
comparing with ẑ(s) = sign(V )s we first obtain the upper bound

G
(j)
eff (V ) = Gj(1/V, V ) =

∫ 1

0

gj(zj , |V |żj)ds ≤
∫ 1

0

gj(s, |V |)ds ≤ c2(1+|V |p).

Second, using the lower bound for gj we find

G
(j)
eff (V ) =

∫ 1

0

gj(zj , |V |żj)ds ≥ c1|V |p
∫ 1

0

|żj |pds− c1,
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which gives the a priori estimate c1|V |p
∫ 1

0
|żj |pds ≤ c1 +c2 +c2|V |p. Now we compare the two effective potentials

as follows

G
(2)
eff (V )−G(1)

eff (V ) =

∫ 1

0

(
g2(z2, |V |ż2)− g1(z1, |V |ż1)

)
ds

≤
∫ 1

0

(
g2(z1, |V |ż1)− g1(z1, |V |ż1)

)
ds ≤

∫ 1

0

(
δ1 + δ2|V |p|ż1|p

)
ds

= δ1 + δ2|V |p
∫ 1

0

|ż1|pds ≤ δ1 +
δ2
c1

(
c1 + c2 + c2|V |p

)
.

By interchanging 1 and 2, we obtain the same bound for G
(1)
eff (V ) − G(2)

eff (V ) and (3.8) is established for v1 =
v2 = V .

By the triangle inequality it suffices to estimate G
(1)
eff (v1)−G(1)

eff (v2). For this we can use that G
(1)
eff is convex

according to part (C) and satisfies the bounds 0 ≤ G(1)
eff (V ) ≤ c2(1+|V |p). Thus,

|G(1)
eff (v1)−G(1)

eff (v2)| ≤ ĉ(1+|v1|p−1+|v2|p−1)|v1−v2|

follows by standard convexity theory. Hence, part (D) is established as well.

Remark 3.4 (Non-uniqueness without monotonicity). In general, minimizers in (3.6b) are neither unique nor
strictly monotone. We consider g(y, v) = max{|v|, v2}. For V = 1/2 we have the minimizers z(s) = s/2 as well
as z(s) = min{s, 1/2}. So, our assumption on strict convexity is indeed important.

As a consequence of Proposition (3.3)(C) we obtain a very useful uniform continuity for the effective contact
potential M. For this, we recall that M(U, V,Ξ) (cf. (2.20)) is obtained by replacing g in Proposition 3.3 by

gU,Ξ(y, v) = N(Ξ, U, y, v), then M(U, V,Ξ) = GU,Ξeff (V ). Exploiting the continuity of N (see (3.3)), we obtain
the following result.

Corollary 3.5 (Continuity ofM). If N (see (3.2)) satisfies (3.3), then there exists CM > 0 such that M (see
(1.6)) satisfies

∀ vj , ξj ∈ R :
∣∣M(u1, v1, ξ1)−M(u2, v2, ξ2)

∣∣
≤ CM

(
ω(|u1−u2|)

(
1+|v1|p+|v2|p+|ξ1|p

′
+|ξ2|p

′)
+
(
1+|v1|p−1+|v2|p−1

)
|v1−v2|+

(
1+|ξ1|p

′−1+|ξ2|p
′−1
)
|ξ1−ξ2|

)
,

(3.11)

where ω is from (2.14f).

Proof. We simply apply part (D) of Proposition 3.3 with gj(y, v) = N(ξj , uj , y, v). Then, inserting (3.3) into (3.7)

allows us to conclude (3.8), which is indeed the desired estimate (3.11), becauseM(uj , vj , ξj) = G
uj ,ξj
eff (vj).

We have now prepared all the tools for first showing the desired liminf estimate and then the limsup estimate
by constructing suitable recovery sequences. Both results are suitable generalizations of ([11], Thm. 3.1). (Recall
that we dropped the superscript wig which was used in Sect. 2.)

Proposition 3.6 (The liminf estimate). Let Jε, J0 : W1,p(0, T )2 → R be defined as in (2.18c) and (2.19),
respectively. Then,

(uε, ξε) −→
w×s

(u0, ξ0) in W1,p(0, T )× Lp
′
(0, T ) =⇒ J0(u0, ξ0) ≤ lim inf

ε↘0
Jε(uε, ξε).
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Proof. By Lemma 3.1 we know that it suffices to consider ξε = ξ with ξ ∈ C0([0, T )). We keep this choice fixed
for the rest of the proof. Moreover, we keep u0 ∈W1,p(0, T ) ⊂ C0([0, T ]) fixed.

The main idea is to use continuity in time of ξ and u0 as well as the uniform convergence ‖uε−u0‖L∞ → 0
to approximate

N(ξ(t), uε(t),
1
εuε(t), u̇ε(t)) by N(ξ(tj), u0(tj),

1
εuε(t), u̇ε(t))

on suitable subintervals [tj−1, tj ] ⊂ [0, T ]. By (3.3) for every δ > 0 we find η > 0 with

|ξ−ξ̂|+ |u−û| < η =⇒
∣∣N(ξ, u, y, v)−N(ξ̂, û, y, v)

∣∣ ≤ δ(1 + |ξ|p
′
+ |v|p

)
. (3.12a)

We now fix an arbitrary δ > 0, which finally can be made as small as we like.
We define a partition 0 = t0 < t1 < · · · < tn−1 < tn = T such that

|ξ(t)−ξ(tj)| < η/3 and |u0(t)−u0(tj)| < η/3 for t ∈ [tj−1, tj ] and j = 1, ..., n. (3.12b)

Moreover, we choose ε1 > 0 such that ‖uε−u0‖L∞ < η/3 for ε ∈ ]0, ε1[.
Then, we can estimate Jε(uε, ξ) from below as follows

Jε(uε, ξ) =

n∑
j=1

∫ tj

tj−1

N(ξ(t), uε(t),
1
εuε(t), u̇ε(t))dt

≥
n∑
j=1

∫ tj

tj−1

(
N(ξ(tj), u0(tj),

1
εuε(t), u̇ε(t))− δ(1 + ‖ξ‖p

′

∞ + |u̇ε(t)|p
)

dt.

Because uε ⇀ u0 we have ‖u̇ε‖pLp ≤ CU̇ <∞, and hence can pass to the liminf for ε↘ 0 by using ([11], Thm. 3.1)
for each of the summands j = 1, ..., n separately:

lim inf
ε→0

Jε(uε, ξ) ≥
n∑
j=1

∫ tj

tj−1

M(u0(tj), u̇0(t), ξ(tj))dt− δT
(
1+‖ξ‖p

′

∞+CU̇
)

Here we used that gu,ξ(y, v) = N(ξ, u, y, v) in Proposition 3.3 giving Gu,ξeff (V ) = M(u, V, ξ). Employing the
uniform continuity of M established in (3.11) yields∣∣M(u0(t), V, ξ(t))−M(u0(tj), V, ξ(tj))

∣∣ ≤ Cδ (1 + |V |p).

Thus, we can further estimate from below as follows

lim inf
ε→0

Jε(uε, ξ) ≥
n∑
j=1

∫ tj

tj−1

(
M(u0(t), u̇0(t), ξ(t))−Cδ(1+|u̇0(t)|p)

)
dt− δT

(
1+‖ξ‖p

′

∞+CU̇
)

= J0(u0, ξ)− δĈ.

As δ > 0 can be chosen arbitrarily small, the desired liminf estimate is established.

The final limsup estimate is obtained by providing recovery sequences for piecewise affine functions û and
piecewise constant functions ξ̂ and exploiting a standard density argument. So we can use that V = ˙̂u(t) and

Ξ = ξ̂(t) are constant in a macroscopic subinterval, but the construction of recovery sequences is still complicated

as t 7→ û(t) is not constant. So locally on the scale O(ε) we approximate via ûε(t) ≈ û(t∗) + εZ(t∗,
1
ε (t−t∗)),
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where Z(t∗, ·) is obtained from the minimizers z ∈ W1,p(0, 1) for M(û(t∗), û
′(t∗), ξ̂(t∗)) (cf. (2.20)). We keep

such an approximation on intervals of length ε1/2 and adjust û(t∗) then on the neighboring intervals.
Indeed, for given (U, V,Ξ) ∈ R3 we take a minimizer zU,V,Ξ ∈ W1,p(0, 1), where for V 6= 0 we may assume

z(0) = 0 without loss of generality. For V 6= 0 we define the shape functions ZU,V,Ξ : R→ R via

ZU,V,Ξ(t) := zU,V,Ξ(|V |t) for t ∈ [0, 1
|V | ], ZU,V,Ξ(t+ k

V ) = ZU,V,Ξ(t)+k. (3.13)

Note that the definition of ZU,V,Ξ is such that R 3 t 7→ ZU,V,Ξ(t)− V t is periodic with period 1/|V |.

Proposition 3.7 (The limsup estimate, recovery sequences). For all pairs (û, ξ̂) ∈W1,p(0, T )× Lp
′
(0, T ) there

exists a recovery sequence ûε ⇀ û in W1,p(0, T ) such that for all ξ̂ε → ξ̂ in Lp
′
(0, T ) we have Jε(ûε, ξ̂ε) →

J0(û, ξ̂).

Proof.
Step 1. Continuity of J0.
Using the uniform continuity of M established in (3.11), we easily obtain that J0 : W1,p(0, T )× Lp

′
(0, T )→ R

is continuous in the norm topology. Thus, by standard arguments of Γ-convergence it suffices to provide the
construction of a recovery sequences for (û, ξ̂) in a subset of W1,p(0, T ) × Lp

′
(0, T ) that is dense in the norm

topology. Then, the same diagonal argument as in the proof of Lemma 3.1(c) can be applied.

Step 2. Restriction to a dense subset D ⊂W1,p(0, T )× Lp′
(0, T ).

We define D as follows. We consider dyadic partitions { tj,N := kT/2N | k = 0, ..., 2N } of [0, T ] and assume

that pairs (û, ξ̂) in D are such that ˙̂u and ξ̂ are constant on the intervals ]tj−1,N , tj,N [. Moreover, we assume

that the slopes Vj,N = ˙̂u(t) for t ∈ ]tj−1,N , tj,N [ are non-zero. By standard arguments we see that D is dense in

W1,p(0, T )× Lp
′
(0, T ).

As all Jε and J0 are integral functionals it is now sufficient to give the recovery construction of a (û, ξ̂) ∈ D
on one subinterval [tj−1,N , tj,N ]. For û we take care that the values at both ends remain unchanged, so that
joining the different constructions stays in W1,p(0, T ).

Step 3. Recovery construction.
To simplify the notation we write [a, b] = [tj−1,N , tj,N ], V := 1

b−a (û(b)−û(a)), and Ξ := ξ̂(t). We use the shape
functions ZU,V,Ξ introduced in (3.13) for the fixed values V and Ξ, but still need to adjust U accordingly. This
is done on the intermediate scale ε1/2, i.e. we divide [a, b] in

nε :=
⌊b−a
ε1/2

⌋
(floor function),

subintervals of equal length via aεk := a + k(b−a)/nε. Letting Uεk = û(aεk) for k = 0, 1, ..., nε we assume for
simplicity Uεk ∈ εZ and we define the approximation ûε : [aεk−1, a

ε
k]→ R via

ûε(t) =

{
Uεk−1 + εZUk,V,Ξ

(1
ε (t− aεk−1)

)
for aεk−1 ≤ t ≤ xεk,

Uεk + V (t−aεk) = û(t) for xεk ≤ t ≤ aεk,

where xεk := aεk−1 + ε
|V |
⌊ |V |(aεk−aεk−1)

ε

⌋
. The number of used periods of the shape function ZU,V,ξ behaves like

1/(ε1/2|V |)→∞ and covers [aεk−1, x
ε
k], which is most of the interval [aεk−1, a

ε
k], while the remaining part [xεk, a

ε
k]

with ûε = û has at most length ε|V |. Using Zu,V,Ξ(m/V ) = m for all m ∈ Z we see that ûε lies in W1,p(aεk−1, a
ε
k).

Moreover, it coincides with û at the points aεk and thus we also have ûε ∈W1,p(a, b).
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Because of the monotonicity of ZU,V,Ξ and Zu,V,Ξ(m/V ) = m we have the obvious estimate |ZU,V,Ξ(t)−V t| ≤
1 which implies ‖ûε − û‖L∞ ≤ ε. As we show below we have Jε(ûε, ξ̂) ≤ C for all ε ∈ ]0, 1[. Hence the equi-

coercivity of Jε (cf. (2.14e)) yields ‖ ˙̂uε‖ ≤ C. Together with the uniform convergence, this implies ûε ⇀ û in
W1,p(0, T ).

Step 4. Limsup estimate.
We need to estimate the limsup of Jε(ûε, ξ̂) from above by Ĵ0(û, ξ̂). Of course it suffices to do this in the finitely
many subintervals [a, b] = [tj−1,N , tj,N ]. We first observe that û is bounded and hence takes values in [−R,R]
for a suitable R. Defining the piecewise constant approximation uε(t) = û(aεk) for t ∈ [aεk, a

ε
k+1[ our construction

gives

‖ûε − û‖L∞ ≤ ε and ‖uε − û‖L∞ ≤ 2ε1/2.

Thus, using that Jε is defined in terms of N we have

Jε(ûε, ξ̂) =

∫ b

a

N(Ξ, ûε(t),
1
ε ûε(t),

˙̂uε(t))dt

=

nε∑
k=1

(∫ xε
k

aεk−1

N(Ξ, ûε(t),
1
ε ûε(t),

˙̂uε(t))dt+

∫ aεk

xε
k

N(Ξ, û(t), 1
ε û(t), V )dt

)
.

We can now estimate Jε(ûε, ξ̂) from above by replacing ûε by the interpolant uε and can then use that ûε
restricted to [aεk−1, x

ε
k] is exactly given by the optimal shape functions ZUε

k−1,V,Ξ
. Using the uniform continuity

(3.3) and Uεk−1 ∈ εZ, we obtain the upper bounds

Jε(ûε, ξ̂) ≤
nε∑
k=1

( xε
k∫

aεk−1

(
N(Ξ, uε(t),

1
ε ûε(t),

˙̂uε(t)) + Cω(‖ûε−uε‖∞)(1+| ˙̂uε|p)
)

dt+ C(|aεk−xεk|)
)

=

nε∑
k=1

(
(xεk−aεk−1)

(
M(Uεk−1, V,Ξ) + CV ω(3ε1/2)

)
+ Cε/V

)
,

where we used that ˙̂uε(t) = ŻUε,V,Ξ is bounded uniformly in Lp via CV = C(1+|V |p), see Step 5 in the proof of
Proposition 3.3.

Now, replacing the factor (xεk−aεk−1) by (aεk−aεk−1), which is an error of O(ε) we find

lim sup
ε→0

Jε(ûε, ξ̂) ≤ lim sup
ε→0

∫ b

a

M(uε(t), V, ξ) =

∫ b

a

M
(
û(t), ˙̂u(t), ξ̂(t)

)
= J0(û, ξ̂),

where we again used the continuity (3.11) for M and uε → û in L∞(a, b).

In summary, Propositions 3.6 and 3.7 provide the proof of the main homogenization result in Theorem 2.4

stating Jε
Γ−→

w×s
J0 in W1,p(0, T )× Lp

′
(0, T ).

4. Properties of the effective contact potential M
In this section, we discuss the properties of M that can be derived directly from its definition in terms of

the value function of a minimization problem, see (2.20). In the rest of this section, we drop the dependence on
the variable u, because it is simply playing the role of a fixed parameter.
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Moreover, we shortly write p(y) = ∂yκ(u, y), such that p : R→ R is an arbitrary continuous and 1-periodic

function with average 0, viz.
∫ 1

0
p(y)dy = 0. We use the abbreviations

p := max{ p(y) | y ∈ R } and p := min{ p(y) | y ∈ R }.

With these conventions the effective contact potential M is defined as

M(v, ξ) = inf
{ ∫ 1

0

(
R(|v|ż(s)) +R∗

(
ξ−p(z(s))

))
ds
∣∣∣ z ∈W 1,p

v

}
. (4.1)

4.1.M and the effective dissipation potential Reff

The first result concerns elementary properties that follow directly from the fact that M is defined in terms
of the dual sum R+R∗.

Lemma 4.1 (Basic properties of M).
(a) For all v, ξ we have M(v, ξ) ≥ vξ.

(b) For all ξ ∈ R we have

M(0, ξ) = min
π∈[p,p]

R∗(ξ−π) and M(v, ξ) ≥M(0, ξ) for all v.

(c) If R(−v) = R(v) for all v, then also M(−v, ξ) =M(v, ξ) for all v, ξ ∈ R. If additionally, p(y) = −p(y∗−y)
for some y∗ and all y, then also M(v,−ξ) =M(v, ξ).

Proof.
Part a.
For any competitor z for M(v, ξ), we simply apply the Young-Fenchel inequality under the integration in the
infimum defining M and use that p has average 0:

∫ 1

0

(
R(|v|ż)+R∗(ξ−p(z))

)
ds ≥

∫ 1

0

|v|ż(s)(ξ−p(z(s)))
)

ds = |v|(z(1)−z(0))ξ = vξ,

where used z(1) = z(0) + sign(v) in the last identity. As M(v, ξ) can be approximated arbitrarily close, we
obtain the desired result.

Part b.
The result for v = 0 is trivial, as sign(0) = 0 and W 1,p

0 = W 1,p
per(0, 1). Hence, we can choose a constant minimizer

z(s) = z∗. When comparing v = 0 and v 6= 0 we take a minimizer for zv,ξ and estimate

M(v, ξ) =

∫ 1

0

(
R(|v|żv,ξ)+R∗(ξ−p(zv,ξ))

)
ds ≥

∫ 1

0

min
π∈[p,p]

R∗(ξ−π)ds =M(0, ξ).

Part c.
The first symmetry follows since minimizers zv,ξ give minimizers z−v,ξ : s 7→ zv,ξ(1−s) and vice versa. For the
second symmetry we consider zv,−ξ : s 7→ y∗ − zv,ξ(s).
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The next result concerns the most important point for our effective contact potentialM, namely the analysis
of the contact set

CM :=
{

(v, ξ)
∣∣M(v, ξ) = vξ

}
.

We show that this set is the graph of the subdifferential of a unique effective dissipation potential Reff .

Proposition 4.2 (Effective dissipation potential). There is a unique dissipation potential Reff : R → R such
that

CM = graph(∂Reff) =
{

(v, ξ)
∣∣ ξ ∈ ∂Reff(v)

}
=
{

(v, ξ)
∣∣Reff(v) +R∗eff(ξ) = vξ

}
. (4.2)

If R is strictly convex (and hence R∗ differentiable), then the potential Reff is characterized by the fact that
∂R∗eff(ξ) is the harmonic mean of the functions [0, 1] ∈ y 7→ ∂R∗(ξ−p(y)), viz.

∂R∗eff(ξ) =

{
0 for ξ ∈ [p, p],

K(ξ) for ξ < p or ξ > p,
where K(ξ) =

(∫ 1

0

dy

∂R∗(ξ−p(y))

)−1

.

Proof.
Step 1: M(v, ξ) = vξ = 0.
We characterize the contact set in the trivial case.

If (0, ξ) ∈ CM then we must have M(0, ξ) = 0. By Lemma 4.1(b) and R∗(η) > 0 for η 6= 0 (which follows
from R ∈ C1 in (2.14c)) this means ξ ∈ range(p) = [p, p].

If (v, 0) ∈ CM then we must have M(0, ξ) = 0. From (4.1), R∗ ≥ 0, and convexity of R we find M(v, ξ) ≥
R(|v|). By (2.14d) we conclude v = 0.

Step 2: M(v, ξ) = vξ 6= 0.
Since now v 6= 0, the infimum in (4.1) is a minimum. In the proof of Lemma 4.1(a) we have seen thatM(v, ξ) = vξ
can only hold if the minimizer zv,ξ satisfies

R(|v|żv,ξ(s)) +R∗(ξ − p(zv,ξ(s))) = |v|żv,ξ(s)
(
ξ−p(zv,ξ(s))

)
for a.a. s ∈ [0, 1].

By the Fenchel equivalences z = zv,ξ has to satisfy the differential equation

(i) |v|ż(s) = ∂R∗
(
ξ − p(z(s))

)
, (ii) z(1) = z(0) + sign v, (4.3)

because due to (2.14d) ∂R∗ is single-valued and continuous. Hence, for ξ 6∈ [p, p] we can solve (4.3)(i) via
separation of the variables z and s, and the boundary condition (ii) gives

1 =

∫ 1

0

ds =

∫ 1

0

|v|ż(s)ds

∂R∗
(
ξ−p(z(s))

) = |v| sign(v)

∫ 1

0

dy

∂R∗
(
ξ−p(y)

) =
v

K(ξ)
.

Thus, the formula for K is established. Using the monotonicity of ∂R∗, we observe that ξ 7→ K(ξ) is monotone
and ξK(ξ) ≥ 0.

Step 3: Construction of CM.
Steps 1 and 2 show that the contact set CM contains

{ (0, ξ) | ξ ∈ [p, p] } ∪
{

(K(ξ), ξ)
∣∣ ξ 6∈ [p, p]

}
.
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It remains to check whether CM contains points (v, ξ) with v 6= 0 and ξ ∈ [p, p]. Because of Step 1 andM(v, ξ) ≥
0 it suffices to consider the case v > 0 and ξ ∈ ]0, p], since the case v < 0 and ξ ∈ [p, 0[ is analogous.

For v > 0 the minimizer zv,ξ is monotone increasing (not necessarily strictly) and still satisfies (4.3). Hence,
ξ ∈ ]0, p[ is impossible since otherwise |v|ż(s) = ∂R∗(ξ−p(z(s))) < 0 in some open interval for s, because
s 7→ z(s) moves continuously through z = argmax p(z).

To handle the case v > 0 and ξ = p we consider (4.3)(i) for ξ > p and denote the unique solution with z(0) = z
by z(s) = Zv,ξ(s). By construction we have Zv,ξ(s) = Z1,ξ(s/v) and Z1,ξ(s+1/K(ξ)) = Z1,ξ(s)+1 for all s, v > 0
and ξ > p. Keeping v = 1 fixed and taking the limit ξ ↘ p we obtain a function ẑ via Z1,ξ(s)↘ ẑ(s) for s ≥ 0,
where we use the ordering property of our scalar problem. Of course, ẑ solves (4.3)(i) for ξ = p, and it is the
maximal solution with z(0) = z (i.e. it is the pointwise supremum of all possible solutions). If p = ∂yκ(u, ·) is
Lipschitz continuous, then the right-hand side in (4.3)(i) is locally Lipschitz and the only solution is the constant
solution ẑ ≡ z, which is of course the minimal solution. However, we want to allow general continuous p and
need to consider two distinct cases.

Case 1. K(ξ) → 0 for ξ ↘ p (cf. Lem. 4.5). By the monotone convergence of Z1,ξ(s) ↘ ẑ(s), this implies
ẑ(s) < z+1 for all s > 0. Hence, (4.3) with ξ = p doesn’t have a solution for any v > 0, i.e. (v, p) 6∈ CM.
Case 2. K(p) := limξ↘pK(ξ) 	 0 (cf. Rem. 4.7). Now the limit function ẑ satisfies the periodicity relation
ẑ(s+1/K(p)) = ẑ(s) + 1 for all s ≥ 0. Using ẑ we can construct solutions zv,p for (4.3) with ξ = p and v ∈
]0,K(p)] via

zv,p(s) =

{
ẑ(s/v) for s ∈ [0 , v/K(p)],
z+1 for s ∈ [v/K(p) , 1].

Inserting this function as competitor into the definition ofM we indeed findM(v, p) = vp for all v ∈ [0,K(p)].
Hence, CM is completely characterized in the form

CM = { (0, ξ) | ξ ∈ [p, p] } ∪
{

(K(ξ), ξ)
∣∣ ξ 6∈ [p, p]

}
∪ { (v, p) | v ∈ [0,K(p)] } ∪ { (v, p) | v ∈ [K(p), 0] }.

Step 4: Construction of Reff .
Clearly, CM is the graph of the maximally monotone, multi-valued function

R 3 ξ 7→ K̃(ξ) =


{K(ξ)} for ξ 6∈ [p, p],
{0} for ξ ∈ ]p, p[,

[0,K(p)] for ξ = p,
[K(p), 0] for ξ = p.

Hence, R∗eff(ξ) =
∫ ξ

0
K(η) dη gives the desired dual effective dissipation potential. Defining Reff by Legendre

transform, the Fenchel equivalences provide the desired relation between CM and the graph of Reff .

The explicit formula for ∂R∗eff clearly shows how the effective dissipation potential depends on the wiggly
part p(y) = ∂yκ(u, y). In particular, we obtain the sticking region ξ ∈ [p, p], where one has v = 0. The special

case R(v) = 1
2µv

2 and p(y) = â sin(2πy) from [4, 24] can be calculated explicitly, and we obtain

∂R∗eff(ξ) = µ sign(ξ)
√
ξ2−â2 for ξ2 ≥ â2 and ∂R∗eff(ξ) = 0 for ξ2 ≤ â2.

4.2. Expansions for M
We now want to study the behavior of M(v, ξ) for small v, which emphasizes the sticking phenomenon

induced by the wiggly energy landscape. To simplify the argument we assume that R behaves like a power near



26 P. DONDL ET AL.

v = 0. In fact, we restrict to the case v > 0 by assuming

R(v) =
r

α
vα +O(vα+δ) for v ↘ 0, (4.4)

where α > 1 and r, δ > 0. The proof involves an argument of Modica-Mortola type (cf. [34] and Chap. 6 of
[11]) as for small velocities the minimizers z for M are mostly near minimizers for y 7→ R∗(ξ − p(y)) but have
a transition layer of width |v| to make a jump of size 1.

Lemma 4.3 (Expansion of M for v ≈ 0). Assume that in addition to all previous assumptions we also have
(4.4), then for v > 0 we have

M(v, ξ) = M0(ξ) + vM1(ξ) + o(v) for v ↘ 0, (4.5)

with M0(ξ) := M(0, ξ) = minπ∈[p,p]R∗(ξ−π) and M1(ξ) =
∫ 1

0
Ψ
(
R∗(ξ−p(y))−M0(ξ)

)
dy, where Ψ : [0,∞[ →

[0,∞[ is the inverse function of R∗ : [0,∞[→ [0,∞[.
In particular, for ξ ∈ [p, p] we have M0(ξ) = 0 and if additionally R is symmetric, then M1(ξ) =∫ 1

0
|ξ−p(y)|dy.

Proof. We fix ξ and choose y∗ ∈ argminR∗(ξ−p(·)). We rewrite M(v, ξ) in the form

M(v, ξ) =M(0, ξ) + vM1(v, ξ) with M1(ξ, v) = min
z(1)=z(0)+1

∫ 1

0

1

v

(
R(vż) +Gξ(z(y))

)
ds,

where Gξ(z) = R∗(ξ−p(z))−R∗(ξ−p(y∗)) ≥ 0.

Setting s = vτ and w(τ) = z(vτ) we see that w has to minimize
∫ 1/v

0

(
R(w′(τ) + Gξ(w(τ)

)
dτ under the

constraint w(1/v) = w(0) + 1. Indeed, by periodicity of p in y we may assume w(0) = y∗, so we are in the
classical Modica-Mortola setting of phase transitions.

Our assumption (4.4) guarantees that R∗ is strictly increasing for ξ > 0, hence we can write Gξ(z) =
R∗(Hξ(z)) with Hξ(z) = Ψ(Gξ(z)). Now, the methods in ([11], Chap. 6) give the convergence M1(v, ξ) →
M1(0, ξ) with

M1(0, ξ) = min
w(−∞)=y∗
w(∞)=y∗+1

∫
τ∈R

[
R(w′(τ))+R∗

(
Hξ(w(τ))

)]
dτ =

∫ y∗+1

y∗

Hξ(z)dz =

∫ 1

0

Hξ(y)dy,

where we used the 1-periodicity of z 7→ Hξ(z). This shows the desired formula for M1.
The last statement follows if we use R∗(−ξ) = R∗(ξ) which gives Ψ(R∗(η)) = |η|.

The formula for M1(ξ) can be made more explicit in the case of a homogeneous potential R(v) = ν
p |v|

p. We

have R∗(η) = 1
p′ ν
−1/(p−1)|ξ|p′ and Ψ(σ) = ν1/p(p′σ)1/p′ .

We finally look at the rate-independent limit that was already studied in [30]. The relevant time rescaling is
obtained by

replacing R by Rδ : v 7→ 1

δ
R(δv),

where δ is positive parameter that tends to 0 in the rate-independent limit, cf. [17, 37].
This scaling obviously gives R∗δ(ξ) = 1

δR
∗(ξ), so that the associated rescaled effective contact potential is

Mδ(v, ξ) = 1
δM(δv, ξ). We obtain indeed the same result as in Proposition 3.1 from [30], where a joint limit

was taken (i.e. δε ↘ 0 with ε↘ 0) while our result is a double limit, where first ε→ 0 and then δ → 0.
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Corollary 4.4 (Rate-independent limit). Under the above assumptions including (4.4) and R(−v) = R(v) we
have

Mδ(v, ξ)
δ→0−−−→MRI(v, ξ) =

{
|v|M1(ξ) for ξ ∈ [p, p],
∞ for ξ 6∈ [p, p],

with M1(ξ) =

∫ 1

0

|ξ−p(y)|dy.

Proof.

Case ξ 6∈ [p,p]. We haveMδ(v, ξ) ≥Mδ(0, ξ) = 1
δM0(ξ). Because of M0(ξ) > 0 in the present case, the desired

result follows.
Case ξ ∈ [p,p]. We now have M0(ξ) = 0, and Lemma 4.3 gives the result.

Finally we discuss the kinetic relation v = ∂R∗eff(ξ) for ξ slightly outside the sticking region [p, p] and for
very large ξ. For simplicity we restrict to the quadratic case.

Lemma 4.5 (Expansion of kinetic relation). Assume R(v) = 1
2v

2 and let p have a unique maximizer y∗ such
that p(y) = p− c∗|y−y∗|α + o(|y−y∗|α) for y → y∗, where c∗ > 0 and α > 1. Then, we have the expansion

K(ξ) = c
1/α
∗ S−1

α (ξ−p)1−1/α + o
(
(ξ−p)1−1/α

)
for ξ ↘ p where Sα =

∫
R

dw

1+|w|α
.

For α = 2 we have S2 = π and K(ξ) =
√
c∗π
−1(ξ−p)1/2 + o((ξ−p)1/2).

Moreover, for general p we obtain K(ξ) = ξ +O(1/|ξ|) for |ξ| → ∞.

Proof. Setting ε := ξ − p > 0 the first assertion is equivalent to showing

Iε :=
ε(α−1)/α

K(p+ε)
→ Sα

c
1/α
∗

for ε↘ 0. (4.6)

Using the definition K(ξ) = (
∫ 1

0
dy

ξ−p(y) )−1 we can rewrite Iε in the form

Iε =

∫
R
gε(w)dw with gε(w) =


1

1 + 1
ε (p−p(y∗+ε1/αw))

for ε1/α|w| ≤ 1/2,

0 for ε1/α|w| > 1/2,

where we used the periodicity of p to shift the integration from [0, 1] to [y∗−1/2, y∗+1/2] before doing the
substitution y = y∗ + ε1/αw.

The expansion of p near y∗ implies that for all w ∈ R we have the pointwise convergence gε(w) →
g0(w) := 1/(1+c∗|w|α). Since y∗ is the only maximizer we find c > 0 such that p(y) ≤ p − c|y−y∗|α for
y ∈ [y∗−1/2, y∗+1/2]. As a consequence all gε are dominated by an integrable majorant via 0 ≤ gε(w) ≤
1/(1+c|w|α). Hence, Lebesgue’s dominated convergence theorem yields the desired result (4.6) as

∫
R g0(w)dw =

c
−1/α
∗ Sα.

For general p the asymptotics for |ξ| → ∞ is obtained using the elementary estimate

∣∣ 1

ξ−p(y)
− 1

ξ
− p(y)

ξ2

∣∣ =
p(y)2

ξ2
∣∣ξ−p(y)

∣∣ ≤ ‖p‖2∞
|ξ|2
(
|ξ|−‖p‖∞

) for |ξ| > ‖p‖∞.
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Using this estimate and
∫ 1

0
p(y)dy = 0 we obtain

∣∣∣ 1

K(ξ)
− 1

ξ

∣∣∣ =
∣∣∣ ∫ 1

0

( 1

ξ−p(y)
− 1

ξ
− p(y)

ξ2

)
dy
∣∣∣ ≤ ‖p‖2∞

ξ2
(
|ξ|−‖p‖∞

) = O(1/|ξ|3),

which gives the desired final assertion.

Finally, we look at the case that the maximum of p is attained by a linear approach, i.e. the limiting case
α = 1 that is excluded in the previous lemma.

Lemma 4.6. Assume R(v) = 1
2v

2 and that p has a unique maximizer y∗ such that p(y) = p − c∗|y−y∗| +
O(|y−y∗|γ) holds with γ > 1. Then, we have the expansion

K(ξ) =
c∗
2

(
log

c∗
2(ξ − p)

)−1

+ o
((

log
1

ξ − p

)−1)
as ξ ↘ p.

Proof. We again use ε = ξ−p > 0 and calculate 1/K(ξ) by rescaling the integrand:

1

K(p+ε)
=

∫ y∗+1/2

y∗−1/2

dy

ε+p−p(y)

y=y∗+εw
=

∫ 1/(2ε)

−1/(2ε)

dw

1 + 1
ε (p−p(y∗−εw))

. (4.7)

We subtract the pointwise limit h0 : w 7→ 1/(1+c∗|w|) which satisfies

Iε =

∫ 1/(2ε)

−1/(2ε)

h0(w)dy = 2

∫ 1/(2ε)

0

dw

1+c∗w
=

2

c∗
log
(
1 +

c∗
2ε

)
=

2

c∗
log
( c∗

2ε

)
+O(ε).

To estimate the difference between h0 and the last integrand in (4.7), we use that y∗ is the only maximizer of
p, which implies that there is a c > 0 such that p(y) ≤ p−c|y−y∗| for all y ∈ [y∗−1/2, y∗+1/2]. Thus, using the
expansion of p around y∗ we obtain

∣∣∣ 1

1 + 1
ε (p−p(y∗−εw))

− h0(w)
∣∣∣ ≤ Cεγ−1|w|γ

(1+c |w|)2
.

However, the integral of the right-hand side of the last estimate over w ∈ [−1/(2ε), 1/(2ε)] is bounded by a
constant Cγ independently of ε. Together we found

∣∣1/K(p+ε)− Iε
∣∣ ≤ Cγ for all ε ∈ ]0, 1[, which is the desired

result.

The following remark shows that ∂R∗eff need not be continuous.

Remark 4.7. For p(z) = p− c∗|z−z∗|α +O(|z−z∗|γ) with c∗ > 0 and 0 < α < 1 the integrand z 7→ (ξ−p(z))−1

remains integrable for ξ ↘ p, so that K(ξ) = ∂R∗eff(ξ)→ σ∗ > 0. Hence, R∗eff is Lipschitz continuous, but not
differentiable, and ∂R∗eff is multi-valued, namely ∂R∗eff(p) = [0, σ∗].

4.3. Lower and upper bounds on Reff

Here we provide a few bounds on Reff and its Legendre dual R∗eff in terms of R, R∗, p, and p. Throughout
we restrict to the case v ≥ 0 (and hence ξ ≥ 0, but similar results hold for v ≤ 0.

The first result simply uses the fact that the harmonic mean can be estimated from above and below by the
maximum and the minimum, respectively.
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Proposition 4.8 (Bounds for Reff). We always have the estimates

∀ v ≥ 0 : Blow
R,p(v) ≤ Reff(v) ≤ pv +R(v), (4.8a)

∀ ξ ≥ p : R∗(ξ−p) ≤ R∗eff(ξ) ≤ R∗(ξ−p)−R∗(p−p), (4.8b)

where Blow
R,p(v) = pv for v ∈ [0, ∂R∗(p−p)] and Blow

R,p(v) = pv+R(v)+R∗(p−p) otherwise.

Proof. From p ≤ p(y) ≤ p the monotonicity of the harmonic means gives ∂R∗(ξ−p) ≤ ∂R∗eff(ξ) ≤ ∂R∗(ξ−p) for
all ξ ≥ p. Using R∗eff(ξ) = 0 for ξ ∈ [p, p] integration of these inequalities gives (4.8b), viz.

R∗(ξ−p) =

∫ ξ

p

∂R∗(η−p)dη ≤
∫ ξ

p

∂R∗eff(η)dη =

∫ ξ

0

∂R∗eff(η)dη = R∗eff(ξ),

R∗eff(ξ) =

∫ ξ

p

∂R∗eff(η)dη ≤
∫ ξ

p

∂R∗(η−p)dη = R∗(ξ−p)−R∗(p−p).

For taking the Legendre transform, which is anti-monotone, in (4.8b) we have to extend the lower and upper
bounds for R∗eff by 0 on the interval [0, p]; then we obtain (4.8a).

Under additional assumptions these simple bounds can be improved. The following result applies in particular
to the case R∗(ξ) = r

p |ξ|
p with p > 1, because ]0,∞[ 3 ξ 7→ 1/∂R∗(ξ) = 1

r ξ
1−p is again convex.

Proposition 4.9 (Improved bound for Reff). Assume that the mapping ]0,∞[ 3 ξ 7→ 1/∂R∗(ξ) is convex, then
we have ∀ ξ ≥ 0 : R∗eff(ξ) ≤ max{0,R∗(ξ)−R∗(p)} or equivalently

Reff(v) ≥
{

pv for v ∈ [0, ∂R∗(p)],
R∗(p) +R(v) for v ≥ ∂R∗(p).

Proof. Using the convexity of 1/∂R∗ we can apply Jensen’s inequality in the definition K = ∂R∗eff and use∫ 1

0
p(y)dy = 0. For ξ > p we have

1

∂R∗eff(ξ)
=

∫ 1

0

dy

∂R∗(ξ−p(y))

Jensen
≥ 1

∂R∗
( ∫ 1

0
(ξ−p(y))dy

) =
1

∂R∗(ξ)
.

Thus, ∂R∗eff(ξ) ≤ ∂R∗(ξ) for all ξ ≥ p, and integration gives the upper bound for R∗eff .
Legendre transforms leads to the lower bound for Reff .

In the case of the last result we obtain the simple bounds R∗eff ≤ R∗ and Reff ≥ R. We expect that these
simple estimates hold in more general cases.

In the case of a p-homogeneous potential R(v) = r
p |v|

p the dissipation ∂R(v)v equals p times the dissipation
potential, which is Euler’s formula for homogeneous functions. For the effective dissipationReff this homogeneity
is destroyed, but we still have a one-sided bound.

Because ∂R∗eff is defined as the harmonic mean of ∂R∗(ξ−p(·)) we know that ∂R∗eff : ]p,∞[ → [0,∞[ is as
smooth as ∂R∗ and that ∂R∗eff(ξ) = 0 for ξ ∈ [0, p[. In general, there might be a kink at ξ = p, see Remark 4.7.
For simplicity of the presentation we restrict the following result to the case that R∗eff is differentiable.

Proposition 4.10 (p-homogeneous case). Assume that R(v) = r
p |v|

p with p > 1 and r > 0 and that R∗eff is
differentiable. Then we have
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∂Reff(v)v = α(v)Reff(v), (4.9)

with a continuous function α : R→ [1, p] satisfying α(0) = 1 and α(v)→ p for |v| → ∞.

Proof. Our proof uses the corresponding dual statement ∂R∗eff(ξ)ξ = β(ξ)R∗eff(ξ) for ξ 6∈ [p, p]. It is enough to
consider the case ξ > p as ξ < p works analogously. We relate α(v) and β(ξ) for ξ = ∂Reff(v) via

α(v)Reff(v) = ∂Reff(v)v = Reff(v)+R∗eff(ξ) = ∂R∗eff(ξ)ξ = β(ξ)R∗eff(ξ).

Hence, we have (α(v)−1) (β(ξ)−1) = 1, and (4.9) is established if we show that β : ]p,∞[→ ]p′,∞[ is continuous
with β(ξ)→∞ for ξ ↘ p and β(ξ)→ p′ for ξ →∞.

From the convexity and differentiability of R∗eff we conclude that ξ 7→ ∂R∗eff(ξ) is even continuous. Thus, for
ξ > p the monotonicity of ∂R∗eff gives

R∗eff(ξ) =

∫ ξ

p

∂R∗eff(η)dη ≤ (ξ−p)∂R∗eff(ξ).

Hence, for ξ > p we have β(ξ) = ξ∂R∗eff(ξ)/R∗eff(ξ).
On the one hand, this formula and the last estimate yield β(ξ) ≥ ξ/(ξ−p) → ∞ as ξ ↘ p. On the other

hand for the limit ξ → ∞ we first observe ∂R∗eff(ξ) − ∂R∗(ξ) → 0, which follows as in Lemma 4.5. Using

R∗(ξ) = r′

p′ |ξ|
p′ we find ∂R∗eff(ξ) = r′ξp

′−1 + o(ξp
′−1) and R∗eff(ξ) = r′

p′ ξ
p′ + o(ξp

′
). Hence, the formula for β

implies β(ξ)→ p′ for ξ →∞.
Thus, it remains to show β(ξ) > p′. For this it is sufficient to show H(ξ) := p′R∗eff(ξ)− ∂R∗eff(ξ)ξ < 0. The

continuity of ∂R∗eff yields H(p) = 0, and thus the result follows from H′(ξ) < 0 for ξ > p. Using the explicit

form of ∂R∗(η) = r∗η
p′−1 for η > 0 and the definition of ∂R∗eff in terms of the harmonic mean we find

H′(ξ) = (p′−1)∂R∗eff(ξ)−
ξ
∫ 1

0
(p′−1)(ξ−p)−p

′
dy( ∫ 1

0
(ξ−p)1−p′ dy

)2

= (p′−1)∂R∗eff(ξ)

(
1−

∫ 1

0
hdy

∫ 1

0
h−p

′
dy∫ 1

0
1dy

∫ 1

0
h1−p′ dy

)
,

where we set h(y) = ξ − p(y) > 0 (because of ξ > p) and used ξ =
∫ 1

0
h(y)dy (because p has average 0).

We now estimate the denominator of the fraction in the right-hand side by the numerator using suitable
version of Hölder’s inequality:

∫ 1

0

1dy =

∫ 1

0

hp
′/(p′+1)h−p

′/(p′+1) dy < ‖hp
′/(p′+1)‖L(p′+1)/p′‖h−p

′/(p′+1)‖Lp′

=

(∫ 1

0

hdy

)p′/(p′+1)(∫ 1

0

h−p
′
dy

)1/(p′+1)

,

∫ 1

0

h1−p′ dy =

∫ 1

0

h1/(p′+1)h−p
′2(p′+1) dy <

(∫ 1

0

hdy

)1/(p′+1)(∫ 1

0

h−p
′
dy

)p′/(p′+1)

.

Here, we have strict inequality as y 7→ h(y) = ξ−p(y) is non-constant. Multiplying these two estimates we have
established H′(ξ) < 0, and the proof is complete.
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4.4. Convexity properties of M
In the light of the Fitzpatrick functions considered in [54–56] (see also Sect. 5.2) and for the question about

bipotentials in the sense of [7, 8] (see also Sect. 4.5) it is natural to ask what type of convexity properties the
function (v, ξ) 7→ M(v, ξ) has.

We first observe thatM cannot be convex in both variables, if κ is non-constant, i.e. p < 0 < p. This follows
easily from the expansion M(v, ξ) = M0(ξ) + vM1(ξ) + o(v)v↘0 obtained in Lemma 4.3. As M0(ξ) = 0 for
ξ ∈ [p, p] we see that for those ξ we have

D2M(v, ξ) =

(
0 M ′1(ξ)

M ′1(ξ) vM ′′1 (ξ)

)
+ o(1) for v ↘ 0.

This contradicts convexity because det D2M(v, ξ) = −M ′1(ξ)2 + o(1)v↘0 < 0.
The next result states that M(·, ξ) is always convex.

Proposition 4.11 (Convexity of M(·, ξ)). For all ξ ∈ R the function M(·, ξ) : R→ R is convex.

Proof. This convexity was already established in Proposition 3.3(C). For completeness we give a second and
independent proof.

To show convexity of M(u, ·, ξ) we recall that Theorem 2.4 states that J0 : (u, ξ) 7→
∫ T

0
M(u, u̇, ξ)dt is the

Γ-limit of Jε in the weak×strong topology of W1,p(0, T ) × Lp
′
(0, T ). The standard theory of Γ-convergence

[11, 14] now implies that J0 is lower semicontinuous. In particular v 7→
∫ T

0
M(u, v, ξ)dt must be weakly lower

semicontinuous in Lp(0, T ), which implies that M(u, ·, ξ) must be convex.

We now turn to the question of convexity of ξ 7→ M(v, ξ) for fixed v ∈ R. For this, we start from the definition

M(v, ξ) = inf{Nv,ξ(z(·)) | z ∈W1,p
v } with Nv,ξ(z) :=

∫ 1

0

(
R(|v|ż(s)) +R∗(ξ−p(z(s)))

)
ds,

and derive a second characterization, which was already shortly introduced in Proposition 3.3, see (3.6c). For
the readers’ convenience we repeat the argument in the more general case. This definition leads to a third,
implicit representation of M in the form

M(v, ξ) =
(
h− vW(ξ, h)

)∣∣
h=H(v,ξ)

with 1 = v∂hW(ξ,H(v, ξ)),

where (ξ, h) 7→ W(ξ, h) is explicitly given as an integral over an integrand depending on R, R∗ and p(y). Hence
the second derivative of ∂2

ξM(v, ξ) can be expressed in terms of first and second derivatives on W, see Lemma
4.13. Exploiting suitable cancellations for the caseR(v) = r

p |v|
p we then obtain a positive result in Theorem 4.14.

A counterexample to convexity is provided in Example 4.15.
The main idea for the new representation is to invert for the minimizer zv,ξ of Nv,ξ the relation y = zv,ξ(s)

into s = Sv,ξ(y), which transforms the nonlinear function y 7→ p(y) into a non-constant coefficient. The new
functional will then be convex in the unknown functions S : y 7→ S(y). However, as the integrand does not
depend explicitly on s ∈ [0, 1], the new functional does only depend on the derivative

a(y) = S′(y), where a ∈ A :=
{
a ∈ L1(0, 1)

∣∣ a > 0 a.e. and

∫ 1

0

a(y)dy
}
.

The condition a > 0 reflects the monotonicity of S while
∫ 1

0
ady = 1 reflects the periodicity condition S(1) =

S(0) + 1.
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To do the change of variables we define the convex functions ψ+, ψ− : R→ [0,∞] via

ψ± : ρ 7→
{
|ρ|R(1/ρ) for ± ρ > 0,
∞ for ± ρ < 0,

where the value at ρ = 0 is fixed by lower semicontinuity. For simplicity, we consider subsequently the case
v > 0 only and write ψ = ψ+. The case v < 0 can be done similarly by using ψ−. By (2.14) we have ψ(ρ)→ 0
for ρ→∞ and ψ(ρ) ≥ cρ1−p for ρ ≈ 0, i.e. ψ blows up at ρ = 0. Using s = S(y) we obtain ds = a(y)dy and
z′(S(y)) = 1/a(y) such that Nv,ξ(z) = Tv,ξ(a) with

Tv,ξ(a) :=

∫ 1

0

(
R
( v

a(y)

)
+R∗(ξ−p(y))

)
a(y)dy =

∫ 1

0

(
v ψ
(a(y)

v

)
+ a(y)R∗(ξ−p(y))

)
dy,

and observe that Tv,ξ is convex. By construction we arrive at the second representation of M(v, ξ) for v > 0 in
the form

M(v, ξ) = inf
{
Tv,ξ(a)

∣∣ a ∈ A
}
. (4.10)

It is not difficult to show that Tv,ξ with ξ > p admits a minimizer a = Av,ξ, which is unique by the strict convexity
of Tv,ξ. Moreover (2.14e) implies ψ(ρ) ≥ cρ1−p for small ρ, so Av,ξ is bounded from below by a positive constant.
The point now is that the minimizer Av,ξ can be obtained almost explicitly, since the Euler–Lagrange equations
are given by

ψ′(a(z)/v) +R∗(ξ−p(z)) = h, (4.11)

where the constant Lagrange multiplier h associated with the constraint
∫ 1

0
a dz = 1 has to be chosen as a

function of (v, ξ) such that a satisfies the constraint, namely h = H(v, ξ).
For this we use the Legendre transform ψ∗ : ]−∞, 0]→ [0,∞] of ψ = ψ+ given by

ψ∗(σ) =∞ for σ > 0 and ψ∗(σ) = ψ∗(σ) := sup{σs− ψ(s) | s > 0 } for σ < 0.

With this we have

a = Av,ξ(z) = v ψ′∗
(
H(v, ξ)−R∗(ξ−p(z))

)
. (4.12)

Thus, the value h = H(v, ξ) is determined by solving

1 = v

∫ 1

0

ψ′∗
(
h−G(ξ, z)

)
dz with G(ξ, z) := R∗(ξ−p(z)). (4.13)

Note that ψ∗(σ) is only defined for σ = h−G(ξ, z) ≤ 0. Thus, we always assume

h < inf{G(ξ, z) | z ∈ [0, 1] }.

Because of G(ξ, z) ≥ 0 the case h < 0 is always admissible, while h ≥ 0 can only be allowed when ξ lies outside
[p, p].

To derive the third representation of M we introduce the functional

W(ξ, h) :=

∫ 1

0

w(ξ, h, z)dz with w(ξ, h, z) := ψ∗
(
h−G(ξ, z)

)
.
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Figure 4. Left : the function (ξ, h) 7→ W(ξ, h) compared with −|ξ|. Right : the function Wξ

compared with −1. In both cases the intersection occurs for h = 0 and ξ ≥ p = 1.

The following formulas for the partial derivatives of W are immediate when interchanging integration with
respect to z ∈ [0, 1] and differentiations.

Wh(ξ, h) =

∫ 1

0

ψ′∗(h−G)dz > 0, Wξ(ξ, h) = −
∫ 1

0

ψ′∗(h−G)Gξ dz,

Whh(ξ, h) =

∫ 1

0

ψ′′∗ (h−G)dz > 0, Wξh(ξ, h) = −
∫ 1

0

ψ′′∗ (h−G)Gξ dz > 0,

Wξξ(ξ, h) =

∫ 1

0

(
ψ′′∗ (h−G)G2

ξ − ψ′∗(h−G)Gξξ

)
dz. (4.14)

According to (4.13) h = H(v, ξ) is obtained by solving the equation 1 = vWh(ξ, h).

Remark 4.12 (Involution property). In fact, we may evaluate W for h = 0 explicitly, since

w(ξ, 0, y) = −|ξ−p(y))| for (ξ, y) ∈ R× [0, 1].

For this we use the relation ψ∗(−R∗(η)) = −η for all η ∈ R, which holds under the additional evenness assump-

tion R∗(−η) = R∗(η) (see Sect. 4.2, Eq. (4.9) of [27] for a proof). Hence, we obtain W(ξ, 0) = −
∫ 1

0
|ξ−p(y)|dy,

which immediately implies that W(·, 0) is concave. Moreover, for ξ 6∈ range(p) = [p, p] we obtain W(ξ, 0) = −|ξ|
because of

∫ 1

0
p(z)dz = 0. We refer to Figure 4 for an example where the latter properity is visualized.

Note that h = 0 corresponds via (4.11) and the definition of ψ and a = S′v,ξ = 1/Z ′v,ξ to the equation
R(vz′)− vz′R′(vz′) +R∗(ξ−p(z)) = 0. Using Fenchel’s equivalence this implies the pointwise contact relation

R(vz′(s)) +R∗(ξ−p(z(s))) = vz′(s)
(
ξ−p(z(s))

)
as established for (v, ξ) ∈ CM, see (4.3).

The following identities are useful in the sequel.

Lemma 4.13 (Identities connecting W and M).
(A) M(v, ξ) =

(
h− vW(ξ, h)

)
|h=H(v,ξ);

(B) Hv(v, ξ) = −W2
h/Whh

∣∣
h=H(v,ξ)

and Hξ(v, ξ) = −Wξh/Whh

∣∣
h=H(v,ξ)

;

(C) Mv(v, ξ) = −W(ξ,H(v, ξ)), Mξ(v, ξ) = −vWξ(ξ,H(v, ξ));
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(D) Mvv(v, ξ) =W3
h/Whh

∣∣
h=H(v,ξ)

> 0, Mvξ(v, ξ) = −Wξ +WhWξh/Whh

∣∣
h=H(v,ξ)

,

Mξξ(v, ξ) = v
Whh

(
W2
ξh −WhhWξξ

)∣∣
h=H(v,ξ)

.

Proof. ad (A): Fenchel-equivalence means that s = ψ′∗(σ) holds if and only if ψ(s) +ψ∗(σ) = sσ. Thus, we have

ψ
(
ψ′∗(σ)

)
= σψ′∗(σ)− ψ∗(σ),

We use this for σ = h−G when inserting the minimizer a = Av,ξ from (4.12) into T to obtain

M(v, ξ) = T (v, ξ;Av,ξ) =

∫ 1

0

(
vψ(ψ′∗(σ(z))) + vψ′∗(σ(z))G(ξ, z)

)
dz

= v

∫ 1

0

(
(h−G)ψ′∗(h−G)− ψ∗(h−G) +Gψ′∗(h−G)

)
dz =

(
h− vW(ξ, h)

)∣∣
h=H(v,ξ)

.

For the first derivatives ofM we use the implicit function theorem on 1 = vWh(ξ,H(v, ξ)) and obtain (B). Now
using the relations (B) and (C) the chain rule provides the relations (D).

AsWhh is positive, the convexity of v 7→ M(v, ξ) follows for arbitrary ξ ∈ R. For the convexity of ξ 7→ M(v, ξ)
we need to show that

Wξh(ξ, h)2 ≥ Whh(ξ, h)Wξξ(ξ, h), (4.15)

for all relevant ξ and h. We see that this is not always the case. However, we have a positive result if R is
p-homogeneous, because in this case also ψ∗ is of power-law type and a nontrivial cancellation takes place.

Theorem 4.14 (Convexity of M(v, ·)). Assume R(v) = r|v|p for p > 1 and r > 0. Then for all v ∈ R the
function M(v, ·) : R→ R is convex.

Proof. It is sufficient to show (4.15). To this end we note that the assumptions imply

R∗(η) = r∗η
1/a and ψ∗(σ) = −f∗(−σ)a

where a = 1− 1/p ∈ ]0, 1[. By the homogeneity of (4.15) we may assume r∗ = f∗ = 1 for simplicity. We establish
the desired inequality in two steps, one for h ≤ 0 and one for 0 < h ≤ minG(ξ, ·) with quite different arguments.

Step 1. Wξξ(ξ, h) ≤ 0 for h ≤ 0.

We use Wξξ(ξ, h) =
∫ 1

0
wξξ(ξ, h, z)dz with wξξ(ξ, h, z) = ψ′′∗ (h−G)G2

ξ − ψ′∗(h−G)Gξξ. The power-law structure
of R∗ easily gives the identity

(1−a)G2
ξ = GGξξ = hGξξ − (h−G)Gξξ.

Similarly, the power-law structure of ψ∗ gives

(1−a)ψ′∗(h−G) = (G−h)ψ′′∗ (h−G).

Using these two relations we can simplify wξξ, and after some cancellation we find

wξξ(ξ, h, z) = ψ′′∗ (h−G)
Gξξ
1−a

(
G−

(
G−h

))
= ψ′′∗ (h−G)

Gξξ
1−a

h. (4.16)
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With a < 1, ψ′′∗ , Gξξ ≥ 0 we conclude wξξ ≤ 0, and by integration of a non-positive function we obtainWξξ ≤ 0,
and (4.15) trivially holds because of Whh ≥ 0.

Step 2. For h > 0 we establish the estimate by showing

(a) |Wξh| ≥
h1−a

a
Whh and (b) |Wξh| ≥

a

h1−aWξξ. (4.17)

The major observation for h > 0 is that G(ξ, z) = R∗(ξ−p(z)) = |ξ−p(z)|1/a ≥ h > 0 implies

|Gξ(ξ, z)| =
1

a
|ξ − p(z)|(1−a)/a ≥ h1−a/a.

In particular, the continuous function z 7→ Gξ(ξ, z) cannot change the sign. Thus, we conclude

|Wξh| =
∣∣∣ ∫ 1

0

Gξψ
′′
∗ (h−G)dz

∣∣∣ =

∫ 1

0

∣∣Gξ∣∣ψ′′∗ (h−G)dz (4.18)

≥
∫ 1

0

h1−a

a
ψ′′∗ (h−G)dz =

h1−a

a
Whh > 0.

Thus, (4.17)(a) is established.
For part (b) we can use relation (4.16), which obviously also holds for 0 < h ≤ minG(ξ, ·). With

|Gξ(ξ, z)| =
1

a
|ξ−p(z)|(1−a)/a =

a

1−a
|ξ−p(z)|Gξξ(ξ, z) ≥

aha

1−a
Gξξ(ξ, z),

we find |wξh| = |Gξ|ψ′′∗ (h−G) ≥ aha

1−a ψ
′′
∗ (h−G)Gξξ(ξ, z) = aha−1wξξ. Again using (4.18) we can integrate this

estimate, which yields (4.17)(b).
Multiplying the two estimates in (4.17) finishes the proof of (4.15) in the case h > 0. Exploiting the last

relation in assertion (D) of Lemma 4.13 provides the desired convexity of ξ 7→ M(v, ξ).

We conclude this subsection by showing that for general dissipation potentials R∗ we cannot expect to have
convexity for M(v, ·). A counterexample can be constructed by exploiting part (D) in Lemma 4.13 for an even
function W(·, h), then in addition to the obvious relation Whh > 0 we have Wξh(0, h) = 0 and hence it suffices
to show Wξξ(0, h) > 0 for some h. Based on (4.14) it suffices to choose G(ξ, z) = R∗(ξ−p(z)) having a small
second derivative Gξξ while Gξ is large.

Example 4.15 (M(v, ·) may be nonconvex). For a simple counterexample we consider the case that p(z) = ±2
for z ∈ [0, 1/2] and z ∈ ]1/2, 1[ respectively. Continuity can be restored in very small layers that do not destroy
the non-convexity generated below.

Moreover, we only consider |ξ| ≤ 1, since non-convexity occurs near ξ = 0. Thus, the relevant values of
η = ξ − p(z) satisfy |η| = |ξ−p(z)| ∈ [1, 3].

The dual dissipation potential is chosen as

R∗(η) =


η2 for |η| ≤ 1,

2|η|−1 for |η| ∈ [1, 3],

21− 8
√

7−|η| for |η| ∈ [3, 6],
convex extension for |η| ≥ 6.
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We find the potential ψ∗ in the form

ψ∗(σ) =


∞ for σ > 0,
−
√
−σ for σ ∈ [−1, 0],

(σ−1)/2 for σ ∈ [−5,−1],
(σ2+42σ−7)/64 for σ ∈ [−13,−5],
convex extension for σ ≤ −13.

Thus, we can express the function w(ξ, h, z) explicitly in a certain range of (ξ, h), because integration over
z ∈ [0, 1] only leads to two different values p(z) = ±2:

W(ξ, h) =
1

2

(
ψ∗
(
h− 2|ξ+2|+ 1

)
+ ψ∗

(
h− 2|ξ−2|+ 1

))
=

1

2

(
ψ∗
(
h− 3− 2ξ

)
+ ψ∗

(
h− 3 + 2ξ

))
=

h2 + 36h− 124

64
+
ξ2

16
,

where we used |ξ| ≤ 1 for the first identity and h ∈ [−8,−4]. Thus, we have Wξh ≡ 0, Whh = 1/32 > 0 and
Wξξ = 1/8 > 0, which implies W2

ξh −WhhWξξ ≡ −1/256 for |ξ| ≤ 1 and h ∈ [−8,−4].
We can even solve vWh(ξ, h) = 1 and calculateM(v, ξ) explicitly according to Lemma 4.13(A). First we find

h = H(v, ξ) = 32/v − 18 and obtain

M(v, ξ) =
16

v
− 18 + v

(
7− ξ2

16

)
for (v, ξ) ∈

[
32

14
,

32

10

]
× [−1, 1].

Thus, the concavity of M(v, ·) on [−1, 1] is seen explicitly because of v ≥ 32/14.

4.5. Bipotential-property of the limiting dissipation

In this section we consider the question whether the functional

(v, ξ) 7→ M(v, ξ)

defined in (2.20) is a bipotential in the sense of [7, 8], see also ([38], Sect. 3.1) and ([40], Sect. 3.1), where they are
also called contact potentials. For a reflexive Banach space X with dual space X∗ a function B : X ×X∗ → R∞
is called bipotential if it satisfies the following three conditions:

∀ v ∈ X ∀ ξ ∈ X∗ : B(v, ·) : X∗ → R∞ and B(·, ξ) : X → R∞ are convex, (4.19a)

∀ v ∈ X ∀ ξ ∈ X∗ : B(v, ξ) ≥ 〈ξ, v〉, (4.19b)

∀ v̂ ∈ X ∀ ξ̂ ∈ X∗ : ξ̂ ∈ ∂vB(v̂, ξ̂) ⇐⇒ v̂ ∈ ∂ξB(v̂, ξ̂) ⇐⇒ B(v̂, ξ̂) = 〈ξ̂, v̂〉. (4.19c)

Under quite general assumptions one can show that effective contact potentialsM(q, ·, ·) : Q×Q∗ → R satisfy
the convexity of M(q, ·, ξ) and the estimate M(q, v, ξ) ≥ 〈ξ, v〉. Hence, we can expect the weaker property

M(q, v, ξ) = 〈ξ, v〉 ⇐⇒ ξ ∈ ∂vM(v, ξ).

(See Step 2 of the proof of Thm. 4.16 for a rigorous derivation.) In that case we can use the energy-dissipation
principle starting from the derived energy-dissipation balance

E0(T, q(T )) +

∫ T

0

M
(
q, q̇,−DE0(t, q)

)
dt ≤ E(0, q(0)) +

∫ T

0

∂tE0(t, q)dt
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(by involving a suitable chain-rule inequality) to obtain the subdifferential inclusion

0 ∈ ∂vM(q, q̇,−DE0(t, q)) + DE0(t, q).

The disadvantage of such a formulation is that DE0 appears twice and the dependence of ∂vM(v, ξ) on ξ is
difficult to control in general cases. If M is even a bipotential, one also has the inverted equation

q̇ ∈ ∂ξM(q, q̇,−DE0(t, q)),

where now q̇ shows up twice. These forms are not easy to handle, but they allow for new applications, e.g. in
the mechanics of friction or soil mechanics, see [7, 8, 13].

It is exactly the key ingredient of our notion of relaxed EDP-convergence, that we asked that our effective
contact potential M is such that the conditions in (4.19c) are in fact equivalent to the corresponding relation
for Meff : (v, ξ) = Reff(v) +R∗eff(ξ). Nevertheless it is interesting to check whether M is indeed a bipotential.

In the previous subsection we have analyzed the question of separate convexity for M, i.e. convexity of
v 7→ M(v, ξ) and ξ 7→ M(v, ξ). We have seen that the first convexity always holds, while the second is false in
general. So we cannot expect M to be a bipotential without assuming further properties. The following result
shows that in the case R(v) = r

p |v|
p we have indeed a bipotential.

Theorem 4.16 (Bipotential property). Assume that R(v) = r
p |v|

p with r > 0 and p > 1, then for all 1-periodic

p ∈ C0(R) with average 0, the effective contact potential M is a bipotential, i.e. (4.19) holds.

Proof.
Step 1. First two conditions
Obviously, the conditions (4.19a) and (4.19b) are satisfied for B =M, see Proposition 4.11, Theorem 4.14, and
Lemma 4.1(a).

Step 2. Condition 3.
It remains to establish third condition (4.19c), which reads here

ξ ∈ ∂vM(v, ξ) ⇐⇒ M(v, ξ) = ξv ⇐⇒ v ∈ ∂ξM(v, ξ), (4.20)

i.e. we have to show that the solution set of all three relations are the same.
To show, that the middle relation implies the outer ones, let (v, ξ) ∈ CM. We start with the lower bound

(4.19b) for the pair (v + h, ξ) with h ∈ R arbitrary

M(v + h, ξ) ≥ 〈ξ, v + h〉 ⇐⇒M(v + h, ξ)− 〈ξ, v〉 ≥ 〈ξ, h〉
⇐⇒M(v + h, ξ)−M(v, ξ) ≥ 〈ξ, h〉.

Hence ξ ∈ ∂vM(v, ξ). Similarly we obtain v ∈ ∂ξM(v, ξ)
To show that each of the outer relations in (4.20) implies the inner relation, we use the fact the contact set

CM is given by a maximal monotone graph, see Proposition 4.2. Hence, on the one hand, for all ξ ∈ R, there
exists v with M(v, ξ) = 〈ξ, v〉, and on the other hand, for all v̂ ∈ R there exists ξ̂ with M(v̂, ξ̂) = 〈ξ̂, v̂〉.

Let (i) ξ ∈ ∂vM(v, ξ) and choose vξ such that (ii) (vξ, ξ) ∈ CM, then we obtain

〈ξ, vξ−v〉
(i)

≤ M(vξ, ξ)−M(v, ξ)
(ii)
= 〈ξ, vξ〉 −M(v, ξ)

(iii)

≤ 〈ξ, vξ〉 − 〈ξ, v〉 = 〈ξ, vξ−v〉,

where (iii) uses the lower bound (4.19b). Thus, all inequalities must have been equalities, and we conclude
M(v, ξ) = 〈ξ, v〉. Using the analogous argument with the roles of v and ξ interchanged we have established
(4.19c).
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We emphasize that the restriction to the power-law potentials R is a sufficient condition for the property
that M is a bipotential. However, this is certainly not necessary. We essentially need the nontrivial condition
that ξ 7→ M(v, ξ) is convex for all v.

5. Discussion

Here we provide some discussion points concerning the notions of evolutionary Γ-convergence. But first in
Section 5.1 we highlight that it is important to study the Γ-convergence of Jε in the weak×strong topology,
since using the weak×weak topology results in a smaller dissipation function Mw that is obviously useless, as
it does not longer satisfies the estimate Mw(u, v, ξ) ≥ vξ. In Section 5.2, we recall the notion of evolutionary
Γ-convergence of weak-type introduced in [55]. Also there, it is strongly highlighted that the topology for Γ-

convergence needs to be strong enough to make the bilinear mapping (v, ξ) 7→
∫ T

0
〈ξ(t), v(t)〉dt continuous. The

last subsections highlight the difference between EDP-convergence and relaxed EDP-convergence.

5.1. Γ-limit in weak×weak topology

We now consider Jε on W1,p(0, T )× Lp
′
(0, T ) equipped with the weak×weak topology, which is the natural

topology for the family Jε in the sense that is exactly the coarsest topology in which we have equi-coercivity
(i.e. Jε(uε, ξε) ≤ C1 implies ‖uε‖W1,p + ‖ξε‖Lp′ ≤ C2). Fortunately, in our wiggly-energy model we have a better
convergence for ξε because of the relation ξε = −DuEε(·, uε) +Ωε(uε), which gave strong convergence.

Here we want to highlight that taking the Γ-limit in the weak×weak topology leads to a functional

Jw : (u, ξ) 7→
∫ T

0

Mw(u, u̇, ξ)dt

that is too small. Indeed, using the same techniques as in Section 3 it can be shown that the Γ-limit with respect
to this weaker topology is given by

Mw(u, v, ξ) = min
z∈W1,p

v (0,1)

{∫ 1

0

R
(
u, |v|ż(s)

)
ds+R∗

(
u, ξ −

∫ 1

0

∂yκ(u, z(s))ds
) }

.

We clearly obtainMw ≤M withM from (1.6). Note thatMw(u, v, ξ) is jointly convex in (v, ξ), so it must be
smaller than M(u, v, ξ) in cases where the latter is not convex in ξ.

While convexity may be considered as a nice add-on, the lower bound Mw(u, v, ξ) ≥ vξ is essential for
the energy-dissipation principle to go back from the energy-dissipation estimate to the subdifferential inclusion.
However,Mw does no longer satisfy this important lower bound. To see this, we consider the example R(u, u̇) =
1
2 u̇

2 and κ(u, y) = a|y| for |y| ≤ 1
2 and then periodically extended. Assuming a, v > 0 and inserting the piecewise

interpolant of the points z(0) = 0, z( 3
4 ) = 1

2 , and z(1) = 1 into the minimization problem definingMw, a simple
calculation yields the upper bound Mw(v, ξ) ≤ 2

3v
2 + 1

2 (ξ − a
2 )2. Hence, we obtain Mw(a2 ,

a
2 ) ≤ 1

6a
2 which is

strictly smaller than vξ = 1
4a

2.

5.2. Evolutionary Γ-convergence of weak-type

The definition of EDP-convergence and in particular that of relaxed EDP-convergence is relatively close to
the notion of evolutionary Γ-convergence of the weak-type introduced in [54–56]. There the class of monotone
flows in the form

q̇ +A(q) 3 `(t) (5.1)
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are studied, where A is a maximal monotone operator on an evolution triple Q ⊂H ∼H∗ ⊂ Q∗. The operator
A can be represented in the sense of Fitzpatrick by a function G : Q×Q∗ → R as follows:

G is convex and G(q, ξ) ≥ 〈ξ, q〉 for all (q, ξ) ∈ Q×Q∗,
ξ ∈ A(q) ⇐⇒ (q, ξ) ∈ CG =

{
(η, v)

∣∣ G(v, η) = 〈η, v〉
}
.

The energy-dissipation principle is replaced by an extended Brezis-Ekeland-Nayroles principle, namely

1

2
‖q(T )‖2H + G(q, `) =

1

2
‖q(0)‖2H , where G(q, `) :=

∫ T

0

(
G(q, `−q̇)− 〈`, q〉

)
dt.

For families of monotone flows and associated representation functions Gε one can then study “static Γ-
convergence” for the functionals Gε. The applicability of this theory to monotone operators certainly generalizes
aspects of our general EDP-convergence in Section 2.2, however it is also more restrictive as these monotone
flows are only singly nonlinear, which means for gradient systems (Q, E ,R) that R(q, v) cannot depend on q ∈ Q
and that either E or R are quadratic.

More general classes of pseudo-monotone operators are considered with a further extension of the Brezis–
Ekeland–Nayroles principle in [57].

5.3. Mosco convergence implies EDP-convergence

A simple abstract framework for EDP-convergence can be developed in cases where we have

Eε
Γ
⇀ E0 and Rε

Γ
⇀ R0.

However, these two convergences are certainly not sufficient for EDP-convergence, as they are satisfied in our
wiggly-energy model with R0 = R, but (R, E0,R) is certainly not the correct limit.

A general abstract theory was developed in ([39], Thm. 4.8), see also ([31], Sect. 3.3.2) for a simplified case

and discussion. It relies on the more restrictive notion of Mosco convergence Fε
Mo−→ F0 on a Banach space Q,

which means Fε
Γ→ F0 and Fε

Γ
⇀ F0.

The setup starts from a reflexive Banach space Q and a densely and compactly embedded energy space

Z b Q. The energies Eε : Q→ R∞ := R ∪ {∞} are assumed to be equi-coercive in Z and satisfy Eε
Γ
⇀ E0 in Z,

which is equivalent to E Mo−→ E0 in Q.
The dissipation potentials Rε : Z ×Q→ [0,∞] satisfy p-equicoercivity with p > 1:

∃ c1, C2, C3 > 0 ∀ ε ∈ [0, 1] ∀ q ∈ Z ∀ v ∈ Q : c1‖v‖pQ − C3 ≤ Rε(q, v) ≤ C2‖v‖pQ + C3.

The convergence of Rε to R0 is the following Mosco convergence:

If qε ⇀ q0 in Z, then Rε(qε, ·)
Mo−→ R0(q0, ·) in Q. (5.2)

Still these conditions are not enough for EDP-convergence (as they hold in our wiggly-energy model), so the
crucial additional condition in ([39], Thm. 4.8) is the closedness of the subdifferentials of the family (Eε)ε∈[0,1],
i.e. {

qε → q0, ξε ⇀ ξ∗ in Q∗,
ξε ∈ ∂Eε(qε), Eε(qε)→ E0

}
=⇒ ξ∗ ∈ ∂E0(q0) and E0 = E0(q0).
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This can be achieved if one has equi-λ-convexity, i.e. there exists λ∗ ∈ R, such that all functions q 7→ Eε(q) +
λ∗‖q‖2Q are convex.

If all these conditions (together with some other standard conditions) hold, then one obtains (Q, Eε,Rε)
EDP−→

(Q, E0,R0). Indeed, in ([39], Thm. 4.8) EDP-convergence is not mentioned, however, the proof of evolutionary
Γ-convergence is done in a way which exactly shows all ingredients of EDP-convergence.

This is in contrast to the typical Sandier-Serfaty approach [48, 49], where only estimates along the precise
solutions of the gradient flows are needed.

5.4. EDP-convergence versus relaxed EDP-convergence

More advanced cases of EDP-convergence are discussed in [26]. We recall that EDP-convergence distinguishes
from relaxed EDP-convergence in that the limiting dissipation functional D0 is given in terms ofM having the
form

M(q, v, ξ) =Meff(q, v, ξ) := Reff(q, v) +R∗eff(q, ξ).

In the general case this identity is not true, and it is interesting to ask whether we have an estimate of the form
M ≥Meff , since only this estimate is needed to show evolutionary Γ-convergence. Yet, for our wiggly-energy
model Proposition 4.8 yields the opposite estimate, namely

Meff(0, ξ) = R∗eff(ξ) > R∗(ξ−p) = M0(ξ) =M(0, ξ) for all ξ > p.

Moreover, for 0 < v � 1 and ξ ∈ [p, p] we have M(v, ξ) = vM1(ξ) + o(v)v→0 with M1(ξ) =
∫ 1

0
|ξ−p(y)|dy, see

Lemma 4.3. For ξ ∈ [0, p[ we have M1(ξ) < M1(p) = p, so we again have Meff(v, ξ) = vp + o(v) >M(v, ξ) =
vM1(ξ) + o(v).

We feel that this is the typical feature of relaxed EDP-convergence, and conjecture thatM(v, ξ) ≤Meff(v, ξ)
and that equality holds only in the case of true EDP-convergence. Of course, the difference ofMeff −M always
vanishes on the contact set CM, which highlights that the representation of the operator v 7→ ∂Reff(v) can well
be given in terms of a function M that is smaller that Meff . We illustrate this by looking at the following
special case.

Example 5.1. We want to justify our conjecture by an example calculation for the case R(v) = 1
2v

2 and p
taking the two values ±1 with weight 1/2.

For ξ > 1 we find ∂R∗eff(ξ) = ξ − 1/ξ and hence Reff and R∗eff have the form

Reff(v) =
1

4

(
v2 + |v|

√
v2+4

)
+ Arsinh(|v|/2) and R∗eff : ξ 7→ 1

2
max{0, ξ2−1} −max{0, log ξ}.

We can also evaluate W explicitly and find W(ξ, h) = − 1
2

(√
(ξ−1)2 − 2h +

√
(ξ−1)2 − 2h

)
, and Lemma 4.13

gives M(ξ, h) = h− V (ξ, h)W(ξ, h) = h+
√

(ξ−1)2 − 2h
√

(ξ−1)2 − 2h, where v = V (ξ, h) := 1/Wh(ξ, h) > 0.
Thus, we may check our conjecture for positive v, because v = V (ξ, h) tends to 0 for h → −∞ and to ∞ for
h ↗ 1

2 min{(ξ+1)2, (ξ−1)2}. We can now compare M and Meff by plotting them over the (ξ, h)-plane, and
indeed Figure 5 shows that the conjecture holds for this simple case.

We refer to [33] for further discussion of different notions of EDP-convergence which all have the common
property that they lead to a unique effective dissipation potential Reff . In particular, the notion of EDP-
convergence with tilting asks, written in the notations of Section 2.2, that J0 has the form

J0(u, ξ) =

∫ T

0

(
Reff(u(t), u̇(t)) +R∗eff(u(t), ξ(t))

)
dt,
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Figure 5. Confirmation of the conjecture M≤Meff for a special case: The left figure shows
that the graph of (ξ, h) 7→ M(V (ξ, h), h) − ξV (ξ, h) lies above 0. The left figure shows that
(ξ, h) 7→ Meff(V (ξ, h), h) −M(V (ξ, h) lies above 0. In both cases the functions equal 0 the
bold line { (ξ, h) | h = 0, ξ ≥ 1 }. The values for |ξ| < 1 and h > 0 are not relevant, because
they do not correspond to any v.

which is certainly not the case in the wiggly-energy model considered in this work.

5.5. Non-convergence of primal and dual dissipation parts

The main observation is that EDP-convergence, and even more relaxed EDP-convergence, are able to work
in cases where the nature of the dissipation potential can change its structure. In our wiggly-energy model we
found that even though Rε = R we have Reff 6= R. Moreover, for quadratic R we obtain an Reff that behaves
like v 7→ p|v| for small v.

Such nontrivial changes in the dissipation structure were already observed in [26]. For instance it is shown
that the diffusion through a layer of thickness ε with a mobility aε has a EDP-limit that describes the jump
conditions at a membrane with transmission coefficient a > 0. The natural gradient structure for diffusion is
(L1(Ω), E ,Rε) with the relative entropy E(u) =

∫
Ω

(u log u− u+ 1)dx and the quadratic dissipation potentials
of Wasserstein-Kantorovich type, namely

R∗ε(u, ξ) =

∫
Ω

Aε(x)
2 |∇ξ(x)|2 u(x)dx.

The mobility Aε equals 1 except for the small layer. It is shown in ([26], Thm. 4.1) that we have EDP-convergence
to (L1(Ω), E ,Reff), and the surprising fact is that Reff is non-quadratic in ξ, because it involves an exponential
function of the jump of ξ over the limiting membrane, namely, a∗ cosh

(
ξ(0+)−ξ(0−)

)
.

This change in the structure of the dissipation potentials highlights a general point in EDP-convergence, even
when we restrict to exact solutions qε of the gradient systems (Q, Eε,Rε). Clearly, we have

Eε(qε(T )) + Dε(qε) = Eε(qε(0)).

Assume qε(0) ⇀ q0(0) and Eε(qε(0))→ E0(q0(0)) (i.e. well-prepared initial conditions), the convergence qε ⇀ q0

in W1,p(0, T ;Q) implies

Eε(qε(t))→ E0(q0(t)) for all t ∈ [0, T ] and Dε(qε)→ D0(q0).
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This means that qε(t) is a recovery sequence for the energies Eε and qε(·) is a recovery sequence for the dissipation
functionals.

However, the dissipation potential Dε can be understood as the sum of a primal part Dprim
ε given via Rε and

of a dual part Ddual
ε given via R∗ε:

Dprim
ε (q) =

∫ T

0

Rε(q(t), q̇(t))dt and Ddual
ε (q) =

∫ T

0

R∗ε
(
q(t),−DEε(q(t))

)
dt.

To understand how the effective dissipation potential Reff differs from the limits of Rε we may consider the
separate limits

Dprim(q0) := lim
ε→0

Dprim
ε (qε) and Ddual(q0) := lim

ε→0
Ddual
ε (qε)

along solutions qε of (Q, Eε,Rε) converging to a solution q0 of (Q, E0,Reff). Setting

Dprim
eff (u0) :=

∫ T

0

Reff(q0, q̇0)dt and Ddual
eff (u0) :=

∫ T

0

R∗eff(q0,−DE0(q0))dt,

we emphasize that, in general, (relaxed) EDP-convergence does not imply the identities

Dprim(q0) = Dprim
eff (u0) and Ddual(q0) = Ddual

eff (u0). (5.3)

However, for the case considered in Section 5.3 these identities are established in Eq. (4.29c) [39] based on the

Mosco convergences Rε
Mo−→ R0 = Reff , cf. (5.2).

The problems in more general cases are most easily understood when considering p-homogenous dissipation
potentials R with p > 1. Then, Euler’s formula gives 〈∂R(v), v〉 = pR(v) and 〈ξ, ∂R∗(ξ)〉 = p′R∗(ξ). Moreover,
we have

ξ ∈ ∂R(v) =⇒ pR(v) = R(v)+R∗(ξ) = 〈ξ, v〉 = p′R∗(ξ).

Thus, if all dissipation potentials Rε are p-homogeneous, we have Dprim
ε (qε) = 1

pDε(qε) and Ddual
ε (qε) =

1
p′Dε(qε), and the convergence of Dε(qε)→ D0(q0) yields

Dprim(q0) =
1

p
D0(q0) and Ddual(q0) =

1

p′
D0(q0).

Of course, by (relaxed) EDP-convergence we have the representation

D0(q0) =

∫ T

0

M(q0, q̇0,−DE(q0))dt = Dprim
eff (q0) + Ddual

eff (q0).

Here, the second identity follows since q0 is a solution such that (q̇0,−DE0(q0)) lies in CM, where M equals
Meff , as both functional equal 〈ξ, v〉 on CM.

The question as to whether the two identities in (5.3) hold is now reduced to the question whether Reff(q, ·)
is still p-homogeneous. Thus, in the Sandier-Serfaty approach, where p = 2 for ε > 0 as well as for ε = 0, we
have the desired identity.

However, in our wiggly-energy model we can start with arbitrary p > 1 for ε > 0 but end up with Reff

satisfying 〈∂Reff(u, v), v〉 = α(u, v)Reff(v) with α(u, v) ∈ [1, p[, see Proposition 4.10. Hence, we obtain a strict
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inequality, namely

Dprim(u0) =
1

p
D0(u0) =

1

p

∫ T

0

(
Reff(u0, u̇0) +R∗eff(u0,−DE0(u0))

)
dt

=
1

p

∫ T

0

∂vReff(u0, u̇0)u̇0 dt =

∫ T

0

α(u0, u̇0)

p
Reff(u0, u̇0)dt �

∫ T

0

Reff(u0, u̇0)dt.

Because α(u, 0) = 1 the effect is stronger if u̇0 is small, i.e. when we are close to the rate-independent case.
In the membrane limit of thin layers discussed in [25, 26] we have quadratic dissipation potentials for ε >

0, i.e. p = 2. However, for ε = 0 one obtains Reff with a growth like |v| log |v| for |v| � 1. Again we have
〈∂Reff(q̇), q̇〉 = b(q̇)Reff(q̇), where b(q̇) ≤ 2 and b(q̇) < 2 for certain q̇. However, there the effect is stronger for
large q̇ and disappears for q̇ → 0.

For both cases we see that the limiting primal part of the dissipation functional
∫ T

0
Reff(q0, q̇0) dt is larger

than the limit Dprim(q0) = limε→0 D
prim
ε (qε). This is also seen in the inequality Rε

Γ
⇀ R0 ≤ Reff . We interpret

this as the effect of microscopic dissipative processes that need to be modeled on the macroscale for the limit
system (Q, E0,Reff).

It is an interesting question to understand whether relaxed EDP-convergence always leads to an increase for

the primal part of the dissipation functional; more precisely, do we always have Dprim(q0) ≤
∫ T

0
Reff(q0, q̇0)dt?
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[6] H. Attouch, Variational Convergence of Functions and Operators. Pitman Advanced Publishing Program, Pitman (1984).
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