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PIECEWISE CONSTANT RECONSTRUCTION OF DAMAGED
COLOR IMAGES

RiccARDO CRISTOFERI® AND IRENE FONSECA

Abstract. A variational model for reconstruction of damaged color images is studied, in particular
in the case where only finitely many colors are admissible for the reconstructed image. An existence
result and regularity properties of minimizers are presented.
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1. INTRODUCTION

The aim of this paper is to study a variational model for the reconstruction of color images when information
on the color is available everywhere except in a damaged region, where only a grey level function is known.

The variational approach we consider here has been introduced by Fornasier [14], as part of a project aimed
at restoring the Mantegna’s fresco in the Ovetari Chapel of Italian Eremitani’s Church in Padua. The model
is inspired by the famous ROF model for denoising, introduced by Rudin, Osher and Fatemi in the context of
grey level functions (see [22]): to minimize

where 2 C R? denotes the image domain, vy € L?({2) is the given image, and A > 0 is a tunning parameter. In
order to be able to reconstruct edges in the image, the space of functions of bounded variations BV is typically
used for representing an image.

When dealing with color images, there are two preferred ways to represent them mathematically. The first
one is the RGB (red, green, blue) model, where an image is represented wvia its three channels ug,uc and up,
with u € BV (£2;R3) defined as u = (ug,ug,up). The other way to represent an image is called Chromatic-
ity /Brightness, where a RGB image u € BV (£2; R?) is decomposed into two components: its chromaticity u/|u|
and its brightness |u|. The main idea of this model is to reconstruct the two parts independently (see, for
instance, [11, 17]).

The total variation model introduced by Fornasier [14] is a variant of (1.1), and it appeals to the RGB model
to represent the image. The grey level information in the damage region D C {2 is modeled as a nonlinear
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2 R. CRISTOFERI AND I. FONSECA
distortion of the colors, £ : R* — R. Often £ is taken to be of the form
L(v):=L(v-e),

where e € R? is a unit vector and L : R — [0, 00) is an increasing function (usually neither concave nor convex).
Usually, both e and L are chosen based on the given image in order to best fit (i.e., with minimal total variance)
the distribution of data from the real color (see [15]). The functional to be minimized is

Flu) = |Du|<m+A/Q\D|u—fpdx+u/D|L<u~e>—L(f-e>\pdx,

where p > 1, f € LP(£2; RM) is the given image, and A, u > 0 are tuning parameters. Since the restored image
will be colored everywhere, the problem we consider can be seen as a generalization of inpainting (see [2, 4-8]).
Note that here, for the sake of mathematical abstraction, we consider the target space to be RM, for M € N, in
place of R? as in the description of the RGB model.

We note that in the literature there are other approaches to the reconstruction of an image when information
of the colors is not everywhere available (see, for instance, [16, 19, 23-25]).

Numerical experiments, as well as a first study of the model, are present in the work of Fornasier and
March (see [15]). Subsequently, a rigorous analytical study in the case of perfect reconstruction (i.e., when
A = 1t = 00) has been carried out by Fonseca, Leoni, Maggi and Morini [13]. In particular, the authors provide
a characterization of the piecewise constant functions f that can be obtained as minimizers of F, whose jump
set is the union of finitely many Lipschitz curves. Furthermore, in [13] the authors study the minimizers in the
case in which the damaged region is uniformly distributed in (2.

In this paper, we pursue the study initiated in [13], working in the general case where u € BV (§2; RM),
with 2 C RN a bounded connected open set with Lipschitz boundary, and where we fix apriori the number
of colors that we are allowed to use, say k € N, but the color spectrum is not restricted, i.e., we consider the
minimization problem

min { F(u) : u€ BV(22; A), ACRM with H°(A) =k } . (1.2)

Notice that if A = {ay,...,ar} CRM it is possible to write a function u € BV (£2; A) as

k
u=> axo, (1.3)
1=1

where £2; ;= {x € 2 : u(z) = a;}, and the functional F becomes

k k
F(u) ZZMaj|’HN1(8*Q¢ﬂa*ﬁjﬂ9)+)\2/[2‘\[)|aif|p da
=1 Y%

i=2 j<i

+MZ/ |L(a; - e) — L(f - e)|P dx, (1.4)

where 0*(2; denotes the reduced boundary of the set (2; (see Def. 2.6), that coincides with the topological
boundary 92; in the case it is Lipschitz, and HV~! is the (N — 1)-dimensional Hausdorff measure (see Def. 2.7).
The minimization problem (1.2) can be thought both as a combination of an inpainting and a segmentation
problem, or as a partition problem with weighted perimeter and volume terms.
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A popular way to segment an image is by using the Mumford-Shah functional, introduced in [21]. The
functional is defined over couples (v, I"), where I' C {2 is a closed set, and v € C1(2\ I'), and reads as

MS(w, T) = /

|Vv|2dx+a/ o — fP de + BHN1(D), (1.5)
oI Q

where «, 8 > 0 are tuning parameters. The set I' represents the set of edges of the objects in the image, and
this is assumed to be closed. Existence for the minimization problem

min{ MS(v,I") : I' C 2 is a closed set, v € C*(2\ )}, (1.6)

has been proved by De Giorgi, Carriero e Leaci in [10] via the following relaxed version of the functional (1.5),

MS(w) = [

|Vwl|? dx—i—a/ lw — fI* doe + BHN "1 (J), (1.7)
2\ Q

where w € SBV(£2) (the space of special functions with bounded variation, see [3] Chap. 4) and J,, denotes the
jump set of w (see Def. 2.3). Existence of a solution to the minimization problem

min{ MS(w) : w e SBV(£2)} (1.8)

can be obtained via the Direct Method of the Calculus of Variations. In order to get a solution to the minimization
problem (1.6), a solution w to the minimization problem (1.8) is a solution of the original problem (1.6) provided
the jump set J,, of w is essentially closed, namely that HN 1 ((E\ Jw) N (2) = 0, in which case we set I" := J,,
and v := w. The proof of the fact that the jump set is essentially closed relies on delicate density estimates
for the jump set of a solution w to the minimization problem (1.8). Once that property is establish, regularity
theory allows to conclude that w € C1(£2\.J,,).

Subsequently, Congedo and Tamanini proved existence and regularity properties of minimizers to the
minimization problem (1.5) in the case where Vo = 0 in 2\ I" (see [9, 27]):

min{ MS(v,I') : I' C £21is a closed set, Vo =01in 2\ K }. (1.9)

Inspired by [10], the main idea in [27] is to rephrase the problem in the space of Caccioppoli partitions (see
Def. 6.4), namely to consider the functional

GOW,w) = ZZ’HN_l(a*Wi NO*W; NN+ aZ/ |w; — fIP d, (1.10)
i=2 j<i i=1 Wi
where W := {W, }icn is a partition of {2 (see Def. 6.4), and w € SBV(2) is given by w := . .y wixw,, for some

w; € R. Notice that here countably many partitions are allowed. If (W, w) is a solution to the minimization
problem

min{G(W, w) : W partition of 2, w € SBV(2),Vw =0 on §2;, for all i € N}, (1.11)
and if

HY T ((Ju \ Jw) N 2) =0 (1.12)
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then w is also a solution to the minimization problem (1.9). In order to obtain (1.12), the argument is anchored
to an elimination lemma proved by Congedo and Tamanini (see [27], Lem. 5.3).

Lemma 1.1. Let p > 1 and let (W,w) be a solution to the minimization problem (1.11), and assume that
fe Lﬁf(ﬁ) Then for all m € N, there exists n > 0 such that for all x € {2 there exists ro > 0 with the

following property: if

<nr™

B\ Uw
i=1

for some 0 <1 <o, then |B,)o(x) \ Ui~ W;i| = 0.

The importance of Lemma 1.1 relies on the fact that it allows to locally reduce the complexity of the
partition W. Indeed, using Lemma 1.1 one can prove that for H¥~!-a.e. x € J,,, there exists a ball B,(z) such
that B,(z) = W; N W; N J, for some ¢, j € N. Thus, in B,(z) the partition problem becomes a problem of least
area with a volume term, leading to (1.12), as well as to regularity properties of the interfaces 9*W;. In the case
where the measure of the interfaces is weighted (as in the first term of (1.4)), a similar result as Lemma 1.1
holds under the additional assumption that |a; — a;| < |a; — ag| + |ax — a;|, whenever the indexes 4, j, k are
different (see [18]).

The main result of the paper is the following existence and regularity result for a solution to the minimization
problem (1.2).

Theorem 1.2. Let 2 C RYN be an open connected set with Lipschitz boundary. Let p > 1 and f € LP(£2;RM)
be such that L(f - e) € LP(§2). Then the minimization problem (1.2) admits a solution u € BV (£2;A), where
A:={ay,...,ax} CRM e,

k
u = § AiX02; 5
1=1

with £2; = £2;(1) (the points of density 1 for §2;, see Def. 2.5), for everyi=1,...,k.

Assume, in addition, that
(H1) f € LI($2;RM),
(H2) L(f -¢) € Li(%RM),
for some ¢ > N(p — 1). If a solution u is such that |a; — a;| < |a; — ax| + |ax — a;j| whenever the indexes i, j, k
are different, then the following hold:

(i) $2; is open, for everyi=1,...,k, and thus J, = J, N £2,

(ii) each 0*$2; is the union of relatively open sets of class CY“, where a := % (1 — W) and a closed

singular set of HN 1 measure zero,
(iii) there exists 8 > 0, depending on 2, D, N, A, p, || fllze, |L(f - €)||La, such that

L HNTY(J, N By(x
llirgglf (le p( ) > B,

for every x € J, N £2.

Remark 1.3. The additional regularity assumptions on f and on L(f - e) that we require in Theorem 1.2,
(H1) and (H2) respectively, are similar in spirit to the ones required by Congedo and Tamanini [27] for partial
regularity of the interfaces for the minimization problem (1.11). In their case they have to require f € LVP(£2),
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and they provide a counterexample to the regularity of interfaces if f is less integrable. Here we need lower
integrability of f and of L(f - e) due to the fact that our functional has a weighted perimeter term rather than
just the perimeter itself.

In order to get the regularity properties claimed in Theorem 1.2, we first consider the case in which the set
A={ay,...,ax} C RM is fixed apriori. By rephrasing the problem in the space of Caccioppoli partitions of (2,
we obtain in Theorem 6.2 the existence of solutions for the minimization problem

min{ F(u) : ue€ BV(2; A) },

by using the lower semi-continuity result for functionals defined on partitions due to Ambrosio and Braides (see
[1]). This framing of the problem allows us to prove regularity properties of a minimizer (see Thm. 6.2). The
main technical result of this paper is Theorem 6.10, that extends to (1.4) the elimination lemma proved by
Leonardi in the case A =t = 0 (see [18], Thm. 3.1).

We also present two results of independent interest: in Theorem 4.2 we prove the existence of a solution to
the minimization problem

min { F(u) : u € BV(2; RM)} |

thus extending the one of Fornasier and March (see Thm. 4.2) since we don’t assume any apriori bound on the
given image f. Finally, in Proposition 5.1 we characterize the functions L : R — [0, c0) for which the functional
F is non trivial.

Further regularity properties of minimizers for the functional (1.4) in the case where no restrictions on the
class of minimizers, as well as in the particular case of finitely many admissible colors for the reconstruction, are
currently under investigation. Also a characterization of the piecewise constant functions f that can be obtained
as minimizers of F, whose jump set is the union of finitely many Lipschitz curves in the spirit of the result of
[13], is being undertaken. Finally, a study of the model where the total variation is replaced by an anisotropic
functional of the total variation of u will be carried out in a future work.

The paper is organized as follows. After recalling basic notions and background in Section 2, an existence
result for the minimization problem is presented in Section 4, while non triviality is studied in Section 5. Finally,
Section 6 is devoted to the study of the existence and regularity properties of minimizers in the case in which
only finitely many colors are allowed for the reconstructed image.

2. PRELIMINARIES

In this section, we recall some basic notions on BV functions and sets of finite perimeter. For a reference see,
for instance, [3].

Definition 2.1. Let A C RY be an open set. A function u € L'(A; RM) is said to be of bounded variation if
. o'e) N M
|Dul|(A) := sup u-divpdr:p e [CP(A; RM)] T [ lplpe <1 <.
A
We write u € BV (A; RM).

Remark 2.2. For a Borel set B C A, the function B — |Du|(B) is a finite Radon measure that is lower
semi-continuous with respect to the L' convergence of sets.
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Definition 2.3. Let u € BV (£2;RM) and = € 2. We say that x is an approzimate jump point of u if there
exists a,b € RM, with a # b, and v € SV~! such that

1
lim ———— —aldy =0,
7_1_1;1%) IBj(Z'71/)| B:r(w,y) ‘u(y) a‘ y

1

1

im — lu(y) — bl dy =0,
r—0 |Br (I, V)| B, (z,v)

where BF(z,v) := {y € RN : (y — z,4v) > 0}. We denote by J,, the jump set of u, the set of points of (2
where this property does not hold.

A special case of functions of bounded variation are those that are characteristic functions of sets of finite
perimeter.

Definition 2.4. Let A C RY be a Borel set. A measurable set E C RV, with [EN A| < oo, is said to have finite
perimeter in A if yg € BV(A). In this case, we denote by P(E; A) the total variation of xg in A, |[Dxg|(A).

In order to state the structure theorem for sets of finite perimeter, we first need some definitions.
Definition 2.5. Let E C RY be a Borel set, and let ¢ € [0,1]. We say that z € RY is a point of density t for
Eif

ENB
i [ENB(2)]

=t.
r—0 wN’r‘N

The set of points of density ¢ of E will be denoted by E(t).

Definition 2.6. Let £ C RY be a set of finite perimeter in some open set A C RY. We define the reduced
boundary O*E of E as the set of points « € supp|Dxg| N A such that the limit

ve(z) := lim 7DXE(BT(I))
- =0 |Dxg|(B (7))

exists and |vg(z)| = 1. Here supp|Dx | denotes the support of the measure |Dxg|. We call vg(z) the generalized
inner normal to E at x.

Definition 2.7. Let & € N. With H*(E) we denote the k'"-Hausdorff measure of a set £ C RV,

Definition 2.8. Let £ C RY be an H*-measurable set. We say that E is countably H*-rectifiable, if H*(E) < oo
and there exist {f, }nen, with f,, : R¥ — R¥ a Lipschitz function for all n € N, such that

H* (E\ U fn(IR{k)> =0.

neN

The following structure theorem for sets of finite perimeter is due to De Giorgi (see, for instance, [3],
Thm. 3.59)

Theorem 2.9. Let E C RY be a set of finite perimeter in an open set A C RN . Then 0* EN A is HN ~-rectifiable
and |Dxpna| = HNY~1L (0*E N A).
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3. SETTING OF THE PROBLEM

Let 2 C RN be a bounded connected open set with Lipschitz boundary, and let D C {2 be a Borel set with
non empty interior and such that [£2\D| > 0. For M € N fixed, define the functional F : BV (£2;RM) — [0, +00]
by

F(u) = |Du|(())+)\/Q\D u— fIP dstru/D|L(u«e)—L(f~e) ” dz, (3.1)

where A\, > 0, p € [1,4+00) and e € RM | with |e| = 1, are the parameters of the model. The function
f € LP(2;RM) is the given image, and L : R — [0,+00) is a continuous function. Here u +— L(u - e) plays
the role of a nonlinear distortion. We consider the minimization problem

in_ F(u). 3.2
A (3-2)

When relevant, we will stress the dependence of F and of the above minimization problem on the initial data
f, by referring to it as the functional and minimization problem relative to f.

4. EXISTENCE OF A SOLUTION FOR THE MINIMIZATION PROBLEM

This section is devoted to showing that the minimization problem (3.2) admits a solution. The proof relies
on the following Poincaré type of inequality.

Lemma 4.1. There ezists C = C(£2, D) > 0 such that for all v € BV (£2;RM) it holds
HUHBV(Q;RM) <C [|DU|(Q) + HUHLI(Q\D;RM)] .
Proof. By arguing component by component, it suffices to prove the result in the case M = 1.

Assume that the statement of the lemma does not hold. Then, there would exists a sequence {v,}nen C
BV (£2;RM) such that

lvnllBv(@iray > n [ [Dvnl(£2) + llvallzr 2\ ] - (4.1)
In particular, |[v, | L1(py > 0. Set

Un

Up 1= ——— .
" HUn”Ll(D)

Then (4.1) becomes
1DTa|(£2) + 1+ a2 2\ D) > 0 [1DT](2) + 1Ball L2210y |

and so

1
[ Do |(£2) + |on 21 (2\p) < — (4.2)

n—1’

and since ||0,[|z1(p) = 1, we obtain

_ _ 1
|Dvn[(£2) + ||Unllpr0) <1+ o1
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Hence, up to a (not relabeled) subsequence, it holds that v, — v in L'(£2) for some v € BV (£2;RM). By (4.2),
we have

|Do|(£2) =0, 19l (2\p) =0,
thus o = 0. But this is in contradiction with the fact that ||, |z1(py =1 for all n € N implies ||9[|z1(py = 1. O

Theorem 4.2. The minimization problem (3.2) admits a solution.

Proof. Let {u,}nen be a minimizing sequence. Without loss of generality, we can assume that

A= lim F(up) < +00.

n——+o0o

In particular, there exists i € N such that for all n > 7 it holds F(u,) < A+ 1. Then

sup | Du,|(£2) < 400, (4.3)
neN

and, for n > n,

/Q\D|un|dm§/9\D|fdx+/Q\D|unfldx
< |Q\D£fl(/ﬂ\lel”dx);+(/Q\D|u"_f|p>;]

1 A gz
< |2\ D|¥ [||f||m(rz)+ (j\—l> ] : (4.4)

Applying Lemma 4.1 and using (4.3) and (4.4), we get

sup HunHBV(Q;RJW) < 400,
neN

and so there exists u € BV (£2;RM) such that, up to a (not relabeled) subsequence, u, — u in L*(£2;RM). The
lower semicontinuity of the total variation, together with (4.3), yields

|Du|(2) < liminf |Du,|(2) < o0, (4.5)
n—-+o0o

so that u € BV (£2;RM). Up to extracting a further (not relabeled) subsequence, we can also assume that
Uy — u pointwise a.e. in {2. Using Fatou’s lemma, we get

/ |u — f|P dz < lim inf lun, — fIP da, (4.6)
2\D n—=+% Jo\D

and, recalling that the continuity of L yields that L(u, - e€) — L(u - ) pointwise a.e. in D,

n—-+o0o

/|L(u'e)—L(f~e)|pdx§liminf/|L(un~e)fL(f~6)|pd9:. (4.7
D D
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Hence, by (4.5)—(4.7), we obtain

F(u) < liminf F(u,) = inf F,
n—+00 BV (£;RM)

so that u is a solution of the minimization problem (3.2). O
Remark 4.3. The above existence theorem extends the one obtained in [15], since we do not assume apriori
bounds on ||u, ||~ nor any particular behavior of the function L at infinity.

5. NON TRIVIALITY OF THE FUNCTIONAL

In this section we seek to characterize when the functional F is trivial, i.e. F = 400, in terms of properties
of the nonlinear distortion L.

Theorem 5.1. The following two conditions are equivalent:

(i) for every f € LP(;RM) there exists u € BV (£2;RM) such that F(u) < 400, where F is the functional
relative to f,
(i) it holds

L(t)

limsup —+ < +o00. (5.1)
[t|—=-+o0 H

Proof.
Step 1. We start by proving the implication (i7) = (4). Let

Lt
Lo :=limsup Q .
ltl—+oo It
Fix € > 0 and let ¢ > 0 be such that
L(t) < (Low + )] (52)

for every ¢t € R with |¢| > |¢|. Let K := max{L(t) : [t| < [t|}. We have
[eora= [ L epdo [ Lo do
D DAl el<t) Dl el2)
< IDIK? + (Loo + )|l f 1170 » (5.3)

where in the last step we used (5.2). Taking v = 0 and using (5.3) we conclude that
Flu) = /\/Q\D /1P dac+u/D\ L(f - ¢)[" dz < A|fI[}» + n(IDIE? + (Los + )| f1170 ),

and so F(u) < 00.
Step 2. We now prove that (i) = (ii). Assume that (i7) fails, i.e., there exists {¢, fneny with |t,| > 1, [t,] — oo,
such that

LP(t
lim a, =+, where a,, := M .
n——+oo |ﬁn|p

(5.4)
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Choose ny, 0o such that a,, > 4F for every k € N, and define

b — 27k n=ny,
"1 0 otherwise .

Then it holds that

i by =1, (5.5)
n=1

and
(o] o0 o0
D anby =Y an,bp, > > 2" =00, (5.6)
n=1 k=1 k=1
Without loss of generality, we can assume that e = e;, where (e, ..., ex) is the canonical basis of R, and

that, in view of the fact that int(D) # 0, Q := (0,1)V c D. By (5.5), and because |t,| > 1, it is possible
to choose non-overlapping intervals I,, C (0,1) such that

bn
|| = TP (5.7)

Define the function f : 2 — RM as

f(@) = (f(21),0,...,0)xq(x),
where z = (z1,...,2y), and f: R — R is given by
F(s) =" tuxr, (s)-
n=1

Using (5.7) and (5.5) in this order, we get

1 o0 oo
J e = [1Fras = Sl = Yo 1.
0 n=1 n=1

Let u be an arbitrary function in BV (£2; RM). We claim that

/ |L(u-e)— L(f -e)|P de = o0.
D
Write
Q=(0.1) x (0, )"~".
It is well known that for £V !-a.e. 2’ € (0,1)V~1, the function v, : (0,1) — R given by

up, (x) == u(z,z’)
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is of bounded variation (see [3], Sect 3.11), thus bounded, and hence
1
/ |L(e-up )P do < +oco. (5.8)
0

On the other hand, using (5.4), (5.7) and (5.6) in this order, we have that

1 o [e%s}
[ LGP ds = 3 anltal? 1] = 3 anb = . (5.9)
0 n=1 n=1

Invoking Tonelli’s theorem and the inequality
la +bP <227 1(|a|? + [0P)), (5.10)

we get that
/ |L(f L(u- e\pdx>/|L — L(u-e)|P dx

/01>N 1 U IL(f) = Lu,, - )|pd8]dx’
2/ N {2117/0 29l dl”/o1 | L(uy,, -e)” dx]dx’

+

where in the last step we used (5.8) and (5.9). This proves that the functional F relative to f is such that

for any u € BV (§2;RM), therefore (i) fails. O

In the case N =1 it is possible to obtain a sharper result (see Rem. 5.3). Notice that, for N = 1, we have
e € {£1}. For simplicity, we will assume e = 1, so that f - e reduces to f.

Proposition 5.2. Assume that N =1, and let f € LP(£2). Then, the following are equivalent:

(i) there exists u € BV (£2;RM) such that F(u) < +oo, where F is the functional relative to f,
(i) it holds

/ |L(f)P dx < 4o0.
D

Proof. The validity of the implication (i7) = (i) can be seen by taking u = 0. To show () = (i%), we recall that
a function of bounded variation in one dimension is bounded. Since {2 C R is bounded, we have that

/ IL(w)|P dz < +oo (5.11)
D
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for every u € BV (£2;RM). Assume that

1P dz = +o0.
D
In view of (i) choose u € BV (£2;RM) such that F(u) < +oo, and note that, by (5.11),

F) A [ L) - L) de
D
> 9 *”/D|L(f)|p dx—/D\L(u)V’ dz = +00,

and we reached a contradiction. O

Remark 5.3. In the case N > 1, while the implication (ii) = (¢) is clearly valid, it turns out that (i) = (i%) is
false. Indeed, consider the function

|z <1,

fa) =4 1

0 otherwise,

for a € (0, N — 1), so that f € BV (£2;RM). Now take L(s) := sop, 2= B(0,2) and D := B(0,1). Then

[ 1t ds =co,
D
while we clearly have F(f) < oc.

6. PIECEWISE CONSTANT ADMISSIBLE FUNCTIONS

In this section, we study the minimization problem for the functional F in two particular cases restricting
the admissible class of minimizers: when we fix apriori a finite number of admissible colors, and when we fix
apriori the number of colors that we are allowed to use but the color spectrum is not restricted. We start with
the former case.

Definition 6.1. Fix k € N and let A := {ay,...,ar} C RM. We define
Ag={ueBV(2;RM) : u(z) € A forae.z€ 2} .

A function u € A4 will be written as

k
u= ZaiXQi , (6.1)
i=1

where £2; = £2;(1) (the points of density 1 for (2;, see Def. 2.5), for every i =1,..., k.

Consider the minimization problem

JQ}& F(u). (6.2)
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Theorem 6.2. Let 2 C RN be an open connected set with Lipschitz boundary. Let p > 1 and f € LP(£2;RM)
be such that L(f - €) € LP(£2). Then, the minimization problem (6.2) admits a solution. Assume, in addition,
that, for some ¢ > N(p — 1),

(H1) f € LI(£2;RM),
(H2) L(f -e) € L1(25RM),
(H3) la; — a;| < |a; — ax| + |ar — a;| whenever the indezes i,j, k are different,

Let u € Ay be a solution of (6.2). Then,

(i) $2; is open, for everyi=1,...,k, and thus J, N 2 = J, N §2,
(ii) each 9*(2; is the union of relatively open sets of class C1, where o := % (1 — @) and a closed

singular set of HN 1 measure zero,
(iii) there exists 8 > 0, depending on 2, D, N, X\, u, || fllze, |L(f - €)|lLa and A, such that

lim inf HN_l(Ju N5,() > B
P—>0 prl - ’

for every x € J, N 1.

Remark 6.3. Notice that condition (H2) is automatically satisfied if (H1) and (5.1) hold.

The hypothesis (H3) requires triples of a;’s to not be aligned, and is believed to be necessary for having
regularity (see [18]). From the technical point of view, it is needed in order to prove Lemma 6.13.

Notice that hypotheses (H1),(H2) and (H3) are not needed for obtaining existence of a solution to the
minimization problem (6.2) (see Prop. 6.9).

The general strategy we adopt to prove Theorem 6.2 is similar to the one used by Tamanini and Congedo [27].
The idea is to recast the minimization problem (6.2) in the setting of Caccioppoli partitions.

Definition 6.4. A k-finite Caccioppoli partition of (2 is a finite collection U = (Uy,...,Us) of measurable
subsets of {2 satisfying the following properties:

(i
(ii
( iii

) each U; has finite perimeter in (2,
) Ui =Ui(1),

)| ﬂU\—Olfl;«féj7

(iv) y(z\u Ui | =0.

Define the perimeter of the partition U in {2 as

k
Per(U; 2) := HN 1 ( Youin Q) .

i=1
Denote by Ci(£2) the family of all k-finite Caccioppoli partitions of (2.

Remark 6.5. Notice that condition (i7) of Definition 6.4 is imposed to guarantee a well defined representative
of each measurable set in the partition. Indeed, it holds that A(1) = B(1) for every sets A, B C RY with
|[AAB| = 0, where AAB := (A\ B) U (B \ A). Moreover, conditions (i#) and (iv) assert that the U,’s are
pairwise disjoint and cover {2, in a measure theoretical sense.

We recall the following structure theorem for k-finite Caccioppoli partitions (for a proof, see [9]).
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Theorem 6.6. Let U = (Uy,...,Us) be a k-finite Caccioppoli partition of £2. Then

k

HNE 2\ UUU U wia/2)nu;a/2) ] | =o,

1<j=1

where we recall that U;(1/2) denotes the sets of points of density 1/2 of U; (see Def. 2.5). In particular, the
perimeter of the interfaces is given by

k k
Per(U; 2) = %ZP(UM ) =1 SO S W@ ine U N ). (6.3)

i=1 i=1 j#i

In order to recast our minimization problem in terms of Caccioppoli partitions, observe that for u € A, it
holds

ZZ|az—a7|HN Ho* 2N 0" ;N 0) +/\Z/ — fIP dz

”Z/ |L(a;-€) — L(f - e)|P dz.

We are led to the following definition.

Definition 6.7. Let A, > 0, f € LP(£2; R™) and L : R — R be a continuous function. We define the functional
G:Cr — [0,00] as

ZZ%HN HO'U;NoU; N 0) HZ/ fl”dx+u2 L(a;-¢) = L(f - ¢)| dz,

=1 i1 U nD
where a;; = |a; —a;| >0, for i € {1,...,k} and j > ¢, and U = (Uy,...,Uy). Moreover, for U € C(£2) and a
Borel set A C {2 we define the weighted perimeter of the partition I/ in A as

k
WPer(U; A) :=> > ay HN "1 (0*U; N o*U; N A). (6.4)

=1 j>1i

We then consider the minimization problem

min G(U) . (6.5)

UEC

The equivalence between the minimization problems (6.2) and (6.5) now follows.

Lemma 6.8. Let u € Ay be a solution to the minimization problem (6.2). Then O := ({21,...,82;) € Cy, is a
solution to the minimization problem (6.5), where (21,..., 2 are given by (6.1).
Conversely, if U := (U, ...,Uyg) € Cx is a solution to the minimization problem (6.5), then the function

k
wi=Y"axu,
i=1
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belongs to Aa and is a solution to the minimization problem (6.2).
We now focus on the study of the minimization problem (6.5).

Proposition 6.9. Assume (H3) of Theorem 6.2 holds true. Then the minimization problem (6.5) admits a
solution.

Proof. Let {U,}nen C Cr, be a minimizing sequence, where U, := (U7,...,U}’). Without loss of generality, we
can assume that sup, cn G(U,) < oo. Since, for every i =1,...,k and every n € N it holds that

PU Q) =HN U n02) =Y HNTHOUF NoTUM N ),
J#i

using the fact that o;; > C for some C' > 0, and that

k k
SOSHY NG U N o U N 2) = HY (Ua*Ufﬂf?) : (6:6)

i=1 j>i i=1
we get sup,, P(U"; 2) < oo foralli=1,..., k. A diagonalization argument yields a subsequence (not relabeled),
verifying

Xur — Xu, in L', P(Ui; 2) < liminf P(U}; 2), (6.7)

for some sets Uy, ..., Uy of finite perimeter in (2. By replacing, if needed, each U; with U;(1), it is easy to see
that U = (Uy, ..., Uy) € Ci. Using the lower semi-continuity result by Ambrosio and Braides (see [1], Thm. 2.1),
we obtain

WPer (U ; 2) < liminf WPer(U, ; 2).

n—oQ

Finally, by Lebesgue’s dominated convergence theorem, we deduce that

/ |az-—f\PdH/ lai — fI7 de,
Ur\D UAD

as n — 0o, and, by Fatou’s lemma, that

/ |L(a;-e) — L(f-e)l? dajgliminf/ |L(a;-€e) — L(f -e)|? dx,
U.nD UrnD

n—roo

for every i =1,... k. [

The following elimination theorem is the fundamental tool we will use to establish regularity properties
of solutions to the minimization problem (6.5). Our result extends the one proved by Leonardi [18] for the
functional G with A = = 0.

Theorem 6.10. Let U = (Uy,...,Ux) € C be a solution to the minimization problem (6.5), and assume that
hypotheses (H1), (H2) and (H3) of Theorem 6.2 hold. Set V := Us U ---UUy. Then there exist n,r9 > 0 such
that if x € 2, B, (x) CC 2, and if

VN By (a)] < e (6.8)
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for some 0 <1 <rg, then |V N B, 5(x)| = 0.

Remark 6.11. Theorem 6.10 holds also in the case where U/ is a local minimizer of G, i.e., if there exists a ball
Br(z) CC 12

GU) <Gv)
for every V € Cy with U;AV; C Br(Z), for i = 1,..., k. Moreover, the result continues to be satisfied when
Vi=U,yU---UUs—2),

where o : {1,...,k} = {1,...,k} is a permutation.

Our strategy to prove Theorem 6.10 is similar to the one used by Leonardi [18]. The idea is the following:
let U = (Uy,...,Us) be as in the statement of the theorem. For a.e. r € (0,7¢) we seek for a variation U of U
such that the difference of the energy of the two configurations is controlled by the perimeter of V. The family
of perturbations we consider is the one where we locally divide the partition ¢/ in two classes, i.e., we consider
Uy = {U;}ier and Uy := {Ui}ieqa,... ky\1, for some set of indexes I C {1,...,k} with 1 € I, 2 ¢ I, and we glue
together all the sets in the first class with U; and all the others with Us. To be more precise, following [18], we
introduce the following notation.

Definition 6.12. Let k € Nand let I; C {1,...,k} withl €l and2 ¢ I,. Set Iy :={1,...,k}\ [;. Forz € 2
let 7 > 0 be such that B,(z) C 2. IfU = (Uy,...,Ux) € Cx(£2), define U], = (Uy, ..., Uy) € C($2) as

B U; \ B, (2) ifi>2,
Ui=9 U;u ) U;nB.(z)) ifi=1,2. (6.9)
JEL;

Moreover, define
A WPer(U) := WPer(Uj ; B.(x)) — WPer(U; B,()) .
In order to prove the elimination Theorem 6.10, we need to invoke a result proved by Leonardi [18]. This is

the technical point where condition (H3) of Theorem 6.10 is needed.

Lemma 6.13. LetU = (Uy,...,Ux) € Cr(£2) be a solution to the minimization problem (6.5), and assume that
hypothesis (H3) of Theorem 6.2 holds. Let x € {2 and R > 0 be such that Br(x) CC {2. Then, for almost all
r € (0, R) there exists IT C {1,...,k} with 1 € I, and 2 & I}, such that

A WPer(d) < —C, P(V; B.(z)), (6.10)

where V :=Us U ---UUy and C1 > 0 is a constant depending only on U.

Lemma 6.13 allows us to prove the elimination property for a solution of the minimization problem (6.5).

Proof of Theorem 6.10. Let ro > 0 be such that B, (x) CC £2. For r € (0,7¢) define a(r) := |V N B,(z)|. Then
a is a non-decreasing function. Using the coarea formula (see [3], Thm. 2.93) and the differentiability a.e. of
monotone functions we obtain that for a.e. r € (0,7¢) it holds

o (r) = / xv dHN . (6.11)
9B, (z)
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Since for every i € {1,...,k} the set U; has finite perimeter in 2, for a.e. r € (0,79) we have that

P(U;; 0B-(z)) =0. (6.12)
For a.e. r € (0,7¢) we have that (6.11) and (6.12) hold and that Lemma 6.13 provides a set of indexes I relative
to U for which (6.10) is satisfied. Fix one of these r € (0,79).

Our goal is to get an estimate of G(U},) — G(U) in terms of a(r) and o/(r).
Step 1. Estimate of the weighted perimeter. We have

Ary WPer(U) = WPer (U ; By, (z)) — WPer(U; By, (z))
= WPer(Ufr ; By, (z) \ By(x)) + WPer(Uf; ; 0B, (x)) + WPer (U, ; Br(z))

\ B
~WPer(U ; By, (z) \ By(z)) — WPer(U ; B,.(x)) — WPer(U ; B,()). (6.13)

The fact that U7, and U coincide in By, () \ B, (x) yields
WPer(U, 5 Byy(2) \ By(x)) — WPer(U; By, (2)\ By()) = 0. (6.14)
Moreover, by (6.12) we have that (see [3], Rem. 3.57)
WPer(Ujy ; 0B, (x)) < Ma/(r), (6.15)
where M := max; ; ;;. In view of (6.13)-(6.15), we get
A,y WPer(U) < A, WPer(U) + Md'(r) . (6.16)
Step 2. Estimate of the volume terms. Using the inequality (see [12], Prop. 4.64)
|lal” — bI”| < 2"~ 'pla = bl(jaP~" + [pIP7H), (6.17)

and the definition of U; (see (6.9)), for i = 1,2 we have that

/ |ai—f\pdx—Z/ la; — fIP dz
U;NB,(z)\D U;NB,.(2)\D

jEI;
-3/ (los = 1P = lay = 1) da
U;NB(z)\D

JEIT

§2p’1pz la; — ajl (la; = fIP"" +la; — fP7') da
jetr U;NB,(z)\D

< diam(A)QZ”_lp Z ( ||Cli — f||LN(p—1)(UijTU(m)\D;RJW)
JeIr

N-1
+||CL] - f||LN(p—1)(UijTO(a:)\D;R]\/I) )|U] n BT(I) \ D| N y (618)

where in the last step we used Holder inequality together with the fact that f € L(£2;RM) with ¢ > N(p — 1)
(see hypothesis (H1)). Here diam(A) := max{|a, — as| : r,s € {1,...,k}} denotes the diameter of the set A.
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Similarly, we deduce that

/ L(a;-e) — L(f - )P da —
U;NB,(z)ND

< diam(L(4- )2 'p > (1L (ai - €) = LU - )l oyt w,05, oz
jery

N-1
+H|L(a; - €) = L(f - )l v (0,m5, sz ) 1Us 1 Be(@) N DI (6.19)

S L

jerr

where we have used the fact that L(f-e) € LI(£2;RM) with ¢ > N(p—1) (see hypothesis (H2)). Here diam(L(A -
e)) := max{|L(a, -€) — L(as - €)| : r,s € {1,...,k}}. Thus, we obtain that there exists a constant Cy(rg), with
Ca(rp) — 0 as 9 — 0 such that, for i = 1,2, it hold

[ la; — P de — Z/ la; — FI7 dz < Ca(ro) S U3 N Bo(0) \ DI, (620)
U;NB,(z)\D jelr JUiNBr(@)\D jetr
and
/ |L(a; - e)— e)P dxz / L(a; -e)—L(f-e)|’ dx
U;NB,(z)ND ]GIT U;NB, (z)ﬂD
<Cs(ro) Y |U; N By(x) N D| N (6.21)
JEIr
Using (6.9) and (6.20) we get
k
)\z:l/~ |aj—f|pdx—/ |aj—f|pdx1
=1 [/TinB@)\D U,;NB,(z)\D
Y /~ las — fI7 da — / la; — P da
1:21;2 U;NB,(z)\D ]; U;NB.(
< ACa(ro) D > |U; N By 2)\D|"~
=1,2j€l’
< ACs(ro)k ™|V N B, (z)\D|"~ (6.22)

where in the last step we used the definition of V and the inequality

N—-1

lez P <k (sz ) : (6.23)

that results from the concavity of the function |p| — |p|% With a similar argument, and by (6.21) and (6.23),
we obtain

k
Ce) — )P de — o) — )P da
uZ[ /@QBTWDw(aJ &)~ L(f- ) d /U BRI R BRI

j=1
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N-—1

< uCa(ro)k¥ |V N Bu(z) N D|" %

Thus, (6.22) and (6.24) yield

Lﬁ [Llay+e) = Lf o) do

U;NB,(x)ND

—/’ |M%-@—Lu-@me
U;NB(x)ND

N—1

< C5(ro)|V N B, (2)| '~
= Cs(ro)a(r) ™,

where we used again inequality (6.23). Here C3(rg) — 0 as ro — 0.
Step 3. Conclusion. The minimality of U, together with (6.10), (6.16) and (6.25), yields

0< g(u}}) —GU)
< A, WPer(U) + Mo/ (r) + C3(ro)a(r) v
< —CP(V; Bo(z)) + M/ (r) + C3(ro)a(r) v

< —Cleﬁa(r) o4 Mo/ (r) + C3(ro)a(r) E

N

)

19

(6.24)

(6.25)

where the last inequality follows from the isoperimetric inequality and the definition of a.. Here C is the constant

given by Lemma 6.13. We then deduce that

1 1-N > ClNUJJé —03(’)"0)
- MN )

Choosing rq sufficiently small in such a way that C3(rg) < %, from (6.26) we get

where we set

(6.26)
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In view of (6.8) we now take 0 < 7 < rg such that a(r) < nr™, by (6.26) we get

o(5) <0

Since a(r/2) > 0, we conclude that «(r/2) = 0. O
The proof of Theorem 6.2 hinged on two results. The first is a general isoperimetric inequality (see [27], Lem. 4.2).
Lemma 6.14. There exist two constants v1,7v2 > 0, depending only on N, with the following property: consider
a ball B, C RN a finite set A C RM | and let uw € BV (B,; A) satisfy

HN YT, NB,) <y rV L.
Then there exists i € {1,...,k} such that

1B\ 2,77 <7 HNN(J, N B,),

where we write u as in (6.1).

The second result is a well-known regularity property of almost-minimal sets, due to Tamanini (see [26],
Thm. 1).

Theorem 6.15. Let U C RN be an open set, and let E C RY be a set of finite perimeter with the following
property: there exist constants C > 0, R > 0, and a € (0,1), such that for every x € U and every r € (0, R), it
holds

HN YO EN B, (x)NU) < HNH0*F N B, (x) NU) + Cr¥ 112
for every set F C RN of finite perimeter with FAE CC B,(x). Then 0*ENU is a CY*-hypersurface up to a
closed HN~1-negligible set.
We are now in position to prove Theorem 6.2.

Proof of Theorem 6.2. The existence of a solution u € A4 to the minimization problem (6.2) follows from
Lemma 6.8 and Proposition 6.9.

Let U = (£21,...,2) € Crx(£2) be the corresponding solution of the minimization problem (6.5) given by
Lemma 6.8, where we write

k
u = § aiX 2, -
=1

Step 1: Proof of (i). Assume that (H1), (H2) and (H3) hold. By definition of Caccioppoli partition, for every
i=1,...,k, we have that {2; coincides with its set of points of density 1. Let n be the constant given by Theorem
6.10. Then, for every x € {2; it is possible to find r > 0 such that

|Br () \ 2] <™.

Applying Theorem 6.10 and using Remark 6.11, we get that [V N B, j3(x)| = 0 for every

V.= U -Qo(j) 5
Je{1,...,k}\{}
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where o : {1,...,k}\ {i} = {1,...,k}\ {i} is a permutation. Thus, we obtain that
|By2(z) N 825 =0 (6.27)

for all j € {1,...,k}\ {i}. Assume there exists y € B, s(z) such that y ¢ £2;. Since £2; = §2;(1), there exists
je{l,...,k}\{i} and a sequence {p, tnen with p, — 0 as n — oo such that

i 1220 B (@)
n—00 WN Py

>0.
This contradicts (6.27). Thus B, /o(x) C £2;, and in turn §2; is open. In particular, we conclude that J, is a
closed set.

Step 2: Proof of (ii). Since u is of bounded variation, by a standard result (see [3], Thm. 3.78) we have that
HN-Lae. z € J, belongs to 2;(1/2) N 2;(1/2), for just one pair of indexes 4, j. Fix

z e J,N2(1/2)N2(1/2)\ | 2(1/2).
1#4,5

Using Definition 2.5 we have that

N 27

AL AAT: o B T aT TR

p—0 WN P p—0 WN P

Thus, there exists p > 0 such that
|Qs N Bp(i'” < 77/0N )

for all s € {1,...,k}\{4,j}, where n > 0 is the constant given by Theorem 6.10. Setting r := p/2, and arguing
as we did in Step 1, we get that B,(z) C £2; U £2; U J,,. We claim that there exists a constant C' > 0 such that

WYY 2 ; Bo(2)) < HY YO E; By (z)) + OrN -1 (=752 (6.28)

for any set E C B,(Z) of finite perimeter, with EA(£2; N B.(Z)) CC B,-(Z). If (6.28) holds, then using the
regularity results by Tamanini (see Thm. 6.15) we obtain that 9*(2; is, up to a closed H¥ ~!-negligible set, a

relatively open hypersurface of class C Lag.
We now prove (6.28). Let E C B,.(T) be a set of finite perimeter with EA(§2; N B,(Z)) CC B,(Z). Define the
function

a; ifzeV;,
v(r) =14 aj ifexeV;, (6.29)

u(z) otherwise,

where V; := E N B,(z) and V; := B,.(z) \ E, and we recall that u € BV (£2; A), where A := {a1,...,a;} C RM.
The minimality of u yields

Flu) < F(v),
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from which we get
o N=1r9x) . CyyN—-1/9%1.
oy H (0"92;; Br(x)) < oy H (0*E; B.(2))+ R, (6.30)

where
RimA [ (uefpefo= ) dob [ (Lo - L 0P < [Lw-€) - L(F - P) da. (63)
Bo(z)\ D B, (z)ND

We want to estimate R. For the sake of simplicity, in what follows C' > 0 will denote a constant that might
change from line to line. Using the definition of v (see (6.29)) and arguing as in (6.18), we get

[ u-ap-to-g) do [l 7Pt fo = £ do
B (z)\ D

SC/
[(R2: AV)U(2; AV;)\D

p—1

< orNO=1), (6.32)

where in the last step we used the fact that 2,AV; CC B,(z) and £2;AV; CC B,(Z). A similar argument yields
’ / (IL(u-€) — L(f - )P = |L(v-e) = L(f - e)l7) da| < CrN(=5T) (6.33)
(Z)ND

Using (6.30), (6.32), (6.33), and the fact that min; ; ;; > 0, we deduce that

p—1

HN N0 25 Br(a) < HNTHOB; By (x) + CrN U,
and this proves (6.28).

Step 3: Proof of (iii). Let

) T]NJ\71
B :=min<{ 71, , (6.34)
Y2

where 71,72 > 0 are the constants given by Lemma 6.14 and 7 > 0 is the one given by Theorem 6.10. Let
x € J, N {2, and assume that

.. HYNTYJ, N By(x))
hgn_)l(r)lf N—1 < B. (6.35)
Find r € (0,7¢), where 7o > 0 is given by Theorem 6.10, such that

HN=1(J, N B, (x
B

By Lemma 6.14 there exists an index j € {1,...,k} such that

|B(2) \ 25| % < 3HN (I, 0 By(x)). (6.36)



PIECEWISE CONSTANT RECONSTRUCTION OF DAMAGED COLOR IMAGES

Using (6.34)—(6.36), we get

N

N—1 § (”yQﬂ)NJXITN < nrN.

1Br(@)\ 23] <5 (M1, 0 Bo(a))

Applying Theorem 6.10 and using Remark 6.11, we get that [V N B, /5(x)| = 0 for every

vi= U %),
JE(L RN (T)

where o : {1,...,k}\ {j} = {1,...,k}\ {j} is a permutation. Thus, we obtain that

|Br/2($) N .QJ‘ =0

23

for all j € {1,...,k}\ {j}. Arguing as we did in Step 1, we obtain that B, s(x) C 2;. Thus, z € J, N 2. This

contradicts our initial assumption. In particular, we conclude (iv). O
We are now in position to prove the main result of this paper.
Proof of Theorem 1.2. Notice that the minimization problem (1.2) can be written as
inf inf (u) .
ai,...,ap€ERM weBV (2;{a1,...,ar})
Let {(a?,...,a})}nen and {u"},en be minimizing sequences for the minimization problem (1.2), i.e., u™ €
BV (£2;{a?,...,a}}) and
lim F(u") = inf inf F(u).
n—00 ai,...,ap€RM uweBV (2;{a1,...,ar})
Without loss of generality, we can assume that
lim F(u") < co. (6.37)

n—oo

Step 1. We claim that there exists j € {1,...,k} such that

sup |af| < oco.
neN

Indeed, write

k

n __ n

u- = E a; xXor -
i=1

Since for every n € N it holds that |2\ U¥_, 27| = 0, it is possible to find j € {1,...,k} and § > 0 such that

(up to a not relabeled subsequence),

25\ D[ =3,

(6.38)
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for all n € N. We have

1

1
22\ D|»

0

n n 1 n
|af| llaf = flle(ar\Dmany + Hf”LI’(QE’."\D;]RM)} < [A]:(u )+ 1 fllzre;rony | -

S

We conclude using (6.37) and the fact that f € LP(£2; RM).
Step 2. We claim that, up to a (not relabeled) subsequence, for every i € {1,...,k} the following holds: either
{a?}nen is bounded or |£27"| — 0 as n — oco.

Indeed, consider the sequence of sets {£27},en, where j €{1,...,k} is an index found in Step 1. We have
two cases: either there exists a (not relabeled) subsequence for which

HY N0 2PN 2) 24, (6.39)

for every n € N and for some d > 0, or ’HN*I(C')*.Q? N{2) — 0 as n — oo. In the latter case, from (6.38) and the
isoperimetric inequality in 2 (see [20], Rem. 12.38), we get that yon — x in L!(§2), and the claim is proved.
Assume that (6.39) holds. Since '

HN N o n ) =Y HN TN 0" nor 2 N a),
i#j

we can find, up to a (not relabeled) subsequence, an index i € {1,...,k}\ {j} such that

inf HYN 10" 2 no* 2N N2) > 0.
neN J

Using (6.37) and the fact that {a?}neN is bounded (see Step 1), we deduce that also {al},en is bounded.

We then proceed by induction as follows: assume that we found indexes ji,...,Jjs € {1,...,k}, for some s €
{1,...,k}, such that, for all i = 1,..., s, {a}, }nen is bounded. Consider the sequence of sets {V}, },en, where

Vo= J 2.
i=1
Then, either there exists a (not relabeled) subsequence for which
HN O VN R2) >0
for every n € N and for some & > 0, or HN=L(0*V,, N §2) — 0 as n — 0o. Reasoning as above, in the former case
we get that |27 — 0 asn — oo for all ¢ € {1,...,k} \ {41,...,Js}, while in the latter case we find an index
te€{l,...,k}\ {j1,...,Js} such that {a'},en is bounded. Since k € N is finite, this proves the claim.
Step 3. We now conclude as follows. Denote by I C {1,...,k} the set of indexes i € {1,...,k} for which the
sequence {al},en is bounded. Using a diagonalizing argument, and up to a subsequence (not relabeled), we
have that

al = a;, (6.40)

asn — oo, for all i € I. Set a; :=0for all i € {1,...,k}\ I.
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Case 1. Assume that a; # a; if 4, j € I with ¢ # j. In this case, we have that inf, ey |al’ — a;-l| >0, foralli,jel
with ¢ # j. Using (6.37) we obtain

sup HN (9 QP NN < 0.
neN

Hence, for all i € I, due to the compactness for sets of finite perimeter (see [3], Thm. 3.23) up to a subsequence
(not relabeled),

Xor = X in Ll(Q)

for some set of finite perimeter 2; C (2. On the other hand, we know that [£27"| — 0 as n — oo for all ¢ €
{1,...,k} \ I. Define the function v € BV ({2; {a1,...,ax}) as

k
U = § aiX0;
=1

where we set £2; := (0 for all s € {1,...,k}\ I. We claim that u is a solution to the minimization problem (1.2).
Indeed, setting a7} = [af — a}| for i,j € [ and n € N, we get

n—oo n—oo

lim inf (") > lim inf [ S apHN TN o2 n o2y N )
i<jel

iel ier Y 2ND
> > aHN TN 0T 2N N 2) + A la; — f|P dz
i<jel iel 7 \D
oY [ e - L P da
icl 2;ND
= ]:(u) )

where in the last inequality we used the lower semicontinuity result by Ambrosio and Braides (see [1], Thm. 2.1),
together with the facts that

/ la; — f|P dx%/ la; — f|P da,
Qm\D Q2\D

and

/ L(a? )~ L(f P de— [ |L(ai-¢) — L(f - )P de,
.Q;"ﬂD 2;,ND
as n — oo, for every ¢ € I. This proves the existence of a solution to the minimization problem (1.2) in this case.

Case 2. Assume that a; = a; for some 7,j € I with 7 # j. We reason as follows. Without loss of generality, we
can suppose that there exist s € {1,...,k} and by,...,bs € {1,...,k} with

1=b1<by<bz<---<bs=k
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such that a; = a; for all ¢ € {b;,...,b;_1 — 1}. Consider the sequence {(V}*, ..., V") }nen of k-finite Caccioppoli
partitions defined as

V= P U U

it1—1)

ifie{l,...,s},and V" ;=0 for i € {s,...,k}, and the sequence of functions {v"},en given by

k
n .__ 7
"= g b xvy s
i=1

where b :=a?, foralln € Nand alli =1,..., s, while we set b := 0 foralli = s,..., k. Applying the reasoning
of Case 1 to the sequences {b7,...,b}} and {v"},en, we get the existence of a solution of the minimization
problem (1.2).

Step 4. Let u € BV (£2;{a1,...,ar}) be a solution to the minimization problem (1.2). In particular, u is a
solution to the minimization problem

min
veEBV (2;{a1,...,ar})

Thus, under the additional hypotheses (H1), (H2) and (H3), Theorem 6.2 yields the regularity result. O

Remark 6.16. We remark that, as it is well known in the literature, if in the minimization problem (1.2) we
allow countably many colors, then, in general, the problem does not admit a solution. Indeed, let f € L>(2; RM)
be an initial datum for which any solution of the minimization problem (3.2) is not piecewise constant. Let u
denote one of these solutions. If there was a solution v to the minimization problem (1.2) when countably many
colors are allowed, we would have F(u) < F(v). Since the class of piecewise constant functions is dense in the set
of bounded functions with bounded variation with respect to the LP topology, for any p > 1, it is possible to find
a sequence {u, }nen of bounded piecewise constant functions converging in L' to u, with |Du,|(£2) — |Du|(£2)
as n — oo. In particular, F(u,) — F(u). Thus, for n large we would have F(u,) < F(v), contradicting the
minimality of v.
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