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THE MINIMAL RESISTANCE PROBLEM IN A CLASS OF NON
CONVEX BODIES
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Abstract. We characterize the solution to the Newton minimal resistance problem in a class of
radial g-concave profiles. We also give the corresponding result for one-dimensional profiles. Moreover,
we provide a numerical optimization algorithm for the general nonradial case.
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1. INTRODUCTION

A classical problem in the calculus of variations is the minimization of the Newton functional

dx
Do) = [, e

Here, 2 C R? is a convex set representing the prescribed cross section at the rear end of a body, which moves
with constant velocity through a rarefied fluid in the orthogonal direction to (2. The graph of u : 2 — R
represents the shape of the body front. According to Newton’s law the aerodynamic resistance is expressed
(up to a dimensional constant) by Dy, owing to the physical assumption of a fluid constituted by independent
small particles, each elastically hitting against the front of the body at most once (the so called single shock
property). As Newton’s resistance law is no longer valid when such property does not hold, a relevant design
class of profiles for the problem is

SM(2) = {u: 2 — [0, M]: almost every fluid particle hits the body at most once}.

This condition can be rigorously stated as follows: for {2 an open bounded convex subset of R?, we say that
u: 2 — R is a single shock function on (2 if u is a.e. differentiable in 2 and

u(z —7Vu(z)) < ul(z)+ % (1= |Vu(2)]?)
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holds for a.e. € {2 and for every 7 > 0 such that x — 7Vu(z) € (2, see [6, 8, 14]. SM(2) is then defined as the
class of single shock functions on (2 that take values in [0, M]. The specified maximal cross section {2 and the
restriction on the body length (not exceeding M > 0) represent given design constraints.

Actually, SM(£2) lacks of the necessary compactness properties in order to gain the existence of a global
minimizer. It is shown in [15] that a minimizer in the class of functions S™(£2) does not exist and that the
infimum in this class is

[/ (U
22\ VAT Em)

where d(z) = dist(x,02). This result seem to show that optimal shapes for Newton’s aerodynamics can be
approximated only by very jagged profiles, practically not to be configured in an engineering project.
Among the different choices in the literature, the most classical set of competing profiles is

CM(2):={u:02—[0,M]: uis concave},

which automatically implies the single shock property, ensures existence of global minimizers (see [3, 4, 6, 13]),
and is more easily configurable. By further assuming radiality, the solution in CM (£2) (£2 being a ball in R?)
was described by Newton and it is classically known, see for instance [3, 5, 9]. If we reduce the minimization
problem in CM(§2) to the one-dimensional case (i.e., {2 is an interval in R) the solution is also explicit and easy
to determine, see [5]. On the other hand, one of the most interesting features of the Newton resistance functional
is the symmetry breaking property, as detected in [2]: the solution among concave functions on a ball in R? is
not radially symmetric (and not explicitly known).

The design class CM(§2) is still quite restrictive, and there is a huge gap with the natural class SM(2).
Indeed, solutions can also be obtained in intermediate classes. In [7, 8], existence of global minimizers is
shown among radial profiles in the VVllofo(Q) N C°(£2)-closure of polyhedral functions u : £ — [0, M] (£2 being
a ball in R?) satisfying the single shock condition. In this paper, we are interested in minimizing the Newton
functional in another class of possibly hollow profiles, without giving up a complete characterization of one-
dimensional and and radial two-dimensional minimizers. We choose the class of g-concave functions u on 2
(i.e., 25z — u(z) — $|z|* is concave), with height not exceeding the fixed value M. That is, given M > 0 and
q >0, we let

M — . o
C, (£2) :=={u: 2 — [0, M]| uis g-concave on 2},

and we wish to find the minimal resistance among profiles in Céw (£2). We refer to Appendix A at the end of
the paper for a discussion about the relation between the two classes C;7(£2) and SM(£2): among g-concave
functions, the single shock condition is indeed reduced to gdiam(f2) < 2. Of course, for ¢ = 0 we are reduced
to the classical problem in CM (£2). If ¢ > 0, the existence of minimizers is obtained in the same way. However,
the characterization of the solution is more involved, even in one dimension ({2 being an interval in R), and it
represents our focus. As a main result we explicitly determine the unique optimal g-concave profile, both in the
one-dimensional case and in the radial two-dimensional case, see Section 2 for the statements, under a further
high profile design constraint that we shall introduce therein.

In the one-dimensional case, the symmetry of the solution is not a priori obvious and it is a consequence of
our analysis. On the other hand, if {2 is a ball in R? the symmetry breaking phenomenon appears of course also
in the g-concave case. When leaving the radial framework, another relevant class is that of developable profiles
as introduced in [11], playing a role in the numerical approximations [10] of the optimal resistance. In Section 6,
we will show how to extend the numerical solution of [10] to the g-concave case.
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As a last remark, we notice that large values of ¢ are of course energetically favorable. However, Newton’s law
is based on the single shock property which requires ¢ diam({2) < 2, as previously mentioned. If this restriction
is not satisfied, multiple shock models should be considered as discussed in [15].

1.1. Plan of the paper

In Section 2 we state our two main results. The first about the one-dimensional case, {2 being a line segment.
The second deals with the radial two-dimensional case, {2 being a ball in R2. These results were announced in
[12], and they both provide uniqueness of the solution along with an explicit expression. The proofs are postponed
to Sections 4 and 5, whereas Section 3 contains some preliminary results. Section 6 provides numerical results
for the general g-concave two-dimensional problem, i.e., without radiality assumption. Appendix A contains a
discussion about single shock and g-concave classes.

2. MAIN RESULTS

2.1. One-dimensional case

For a locally absolutely continuous function v : (a,b) — R, the one-dimensional resistance functional is given
by

b
dx
D S —
(a,t) (1) /1+wuﬁ

Without loss of generality we consider the interval (—1,1). We introduce the variational problem

1

dx

i —_— 2.1

i | e .
-1

for M > 0 and ¢ € [0, 1], where

ICéV[ = {w: [-1,1] = [0, M]| u is g-concave on [—1, 1]}.
Admissible functions u are here g-concave on the closed interval [—1, 1], meaning that [—1,1] 3 > u(z) — $2?
is concave, and it is not restrictive to assume they are continuous up to the boundary. We will work under the
further high profile assumption 2M > ¢. The restriction ¢ < 1 corresponds to the single shock condition in this
case, see Lemma A.3 in Appendix A. We also refer to Appendix A for the standard compactness arguments
yielding existence of solutions. Our first main result is the following.

Theorem 2.1. Let M >0 and q € [0,1] be such that 2M > q. Then problem (2.1) has a unique solution given
by

q .
5(532_'712\4;(1)"‘]\4 if z] <y
M ‘ if M e (0,1)
Uprg(T) = 1_7%(1 —lz) if e < z[ <1

M1 —|z|) if M €l,+o0),
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FIGURE 1. Numerical solution of problem (2.1) for M = 0.5 and ¢ = 1.

where Yarq € (0,1) is the unique minimizer of the function Rar.q ¢ [0,1] — R defined by

2 2(1 — )3 .
aarctan(qv) + ]\M ifg>0
Rapq(7) = o s 2(1 — )3 ; 0 (2.2)
_— if g = 0.
TR (A !

Theorem 2.1 shows that a solution of problem (2.1) is given by a piecewise linear and parabolic function (see
also the result of a numerical simulation in Fig. 1). Notice that the high profile assumption 2M > ¢ ensures that
Un;q fits the interval [0, M] and is therefore admissible for problem (2.1). The parabolic profile in the center has
second derivative equal to ¢. A first understanding of this fact comes from the following straightforward first
variation argument.

Proposition 2.2. Let u be a solution to problem (2.1) and suppose that u € C%(I) for some open interval
I C [-1,1]. Moreover, suppose that 0 < u < M in I. Then either u” =0 oru” =qin I.

Indeed, by g-concavity we have v” < ¢ in I. Suppose that u” is not identically equal to ¢ in I, so that there
exists an open interval J C I such that u” < ¢ in J. Then, if ¢ € C2°(J) and |¢| is small enough, u + t¢p is still
g-concave with 0 < u + t¢ < M (it is an admissible competitor). We have by dominated convergence

a [ A@W@) @)
G Euttp) = 2/, 0+ (W) + g @)PP

By minimality of u we obtain that for any ¢ € C2°(J) there holds

(plu/ B u”(l _ (u1)2) B
‘Q/J 0+ ()22 ‘Z/J @+ @ee £

so that we obtain the standard Euler-Lagrange equation for the Newton functional in one dimension

ul

m = COl’lSt7
yielding that u” = 0 in J and then in I.

2.2. Radial two-dimensional case

In this case we let £2 = Bg(0) be the open ball in R?, with center 0 and radius R > 0, and we consider the
class of g-concave radial functions. If we set M > 0, ¢ > 0 and

RE:Miq i= {u: [0,R] — [0, M]|r — u(r) — %7‘2 is nonincreasing and concave} ,
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then for every u € Rpg.am;q (which is the radial profile of a radial function that we still denote by u) the resistance
functional is

Therefore, given M > 0, R > 0 and ¢ > 0, we have to solve the problem
min{Zg(u): v € Rr;miq}, (2.3)

still with the high profile assumption 2M > ¢R? and the single shock assumption 0 < ¢R < 1. Existence of
minimizers is again standard, see Appendix A. Our second main result is the characterization of the solution
to problem (2.3). It is given by a parabolic profile in [0, a], and a strictly decreasing profile satisfying the radial
two-dimensional Euler-Lagrange equation

—ru'(r)
W = const

in (a, R]. The optimal value of a is uniquely determined in (0, R). In order to write down the solution, which is
a little less explicit, we need to introduce some notation.

We let (—00, 1] 3 ¢~ h(t) := —t(1 + t2)=2. For a € (0, R), let ¢(a) := — [T h~' () dr and

R —vq(a
ola) = \/; (3a2¢% + 1+ /9aq" + 10a2¢® + 1), (yla) = 7/ bt (ah( Dal ))> dr.

a r

Theorem 2.3. Let R > 0, M > 0. Assume that 0 < qR <1 and 2M > qRQ. Then there exists a unique
ay € (0, R) such that p(ar) = M, and there exists a unique a. € [ap, R) such that (,(a.) = M. Moreover,
there exists a unique solution to problem (2.3), given by

%(’I‘Q—ai)-i-M if rel0,a.]

_/TRh—l (W) ds if 7€ (as R).

It is worth noticing that vp(a) = 1, hence when ¢ = 0 we get a,. = aps, and we recover the classical concave
radial minimizer.

Numerical solutions to problem (2.3), in agreement with Theorem 2.3, are shown in Figure 2. We refer to
Section 6 for numerical solutions obtained without radiality assumption.

u(r) :=

3. SOME PRELIMINARY RESULTS

This section gathers some elementary results that will be useful in the sequel. We recall that, for a < b and
q >0, u:[a,b] = R is g-concave if the map [a,b] > z — u(x) — %xQ is concave.

Definition 3.1 (Piecewise parabolic approximation). Let @ < b and ¢ > 0. Let u be a g-concave continuous
function on [a, b]. Let w: [a, b] — R be defined by

w(y) = uly) = 5y~ @)y~ b).
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FIGURE 2. Numerical solutions of problem (2.3) for M = 0.5 and M =1, both for R =¢ = 1.

For every h € N and for every j € {0,...,h — 1} we consider intervals defined by I; 5, := o », Bj,n) and a; p, 1=
a+ 7252, Bin=a+ (j+1)52. Welet wy: [a,b] — R be given by

S et + e ) —w s - )| 1) 1y e lab)
wh(y) = =0 b—a
w(b) it y=b.

We define now the sequence of piecewise parabolic approximations uy,: [a,b] — R as

q
un(y) = wnly) + 5y —a)ly—b), heN
Proposition 3.2. Let a <b and ¢ > 0. Let u be a g-concave continuous function on [a,b]. Let (up)nen be the
sequence of piecewise parabolic approzimations of u given by Definition 3.1. Then D(qp)(un) — D(ap)(u) as
h — 0.

Proof. We have uj, — u uniformly on [a,b] as h — co. For any differentiability point x of « which for every
h € Nis not a grid node (that is, for a.e. z € (a,b)), there holds u}, () — u/(z). The result follows by dominated
convergence. O

Remark 3.3. It is clear that the approximation procedure of Definition 3.1 can be generalized to non uniform
grids, still with u;, equal to u at grid nodes. Then, uniform convergence, a.e. convergence of derivatives and the
result of Proposition 3.2 still hold as soon as the maximal size of the grid steps vanishes. In such case, it is
possible to let an arbitrarily chosen point in (a,b) be a grid node for any h. It is also possible to fix the value
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of the (right or left) derivative of the approximating sequence at some point. For instance, one may require
(uh,)+(wo) =/, (x0) for any h at some xq¢ € (a,b). Indeed, by the monotonicity of w’,, it is possible to find a
sequence of intervals [z, 2") > xg, h € N, such that x5, T zo and 2" | 2o monotonically as h — oo, and such
that (w(z") —w(xy))/(z" — 21,) = W', (x¢) for any h. Then, by choosing xy, 2" to be subsequent grid nodes for
the piecewise linear approximation wy, of w, the requirement is fulfilled.

Proposition 3.4 (Parallelogram rule). Let v < § and ¢ > 0. Then

§ 1)
/1+cw— /1+c
¥ ¥

Proof. The thesis follows by the change of variable  +— v+ § — x. O

Proposition 3.5. Let a < b and g > 0. Let u be a g-concave function on [a,b] such that u(a) = u(b) > u(z) for
every x € [a,b]. Then

(z —a)

%(x —b) <y (z) <ul(z) <

NSRS

for every x € (a,b).

Proof. Let « € (a,b) be fixed. Then, by g-concavity of u on [a, b], we have that both v/, (x) and v’_(x) exist and
the following hold

u(y) < u(z) + o (z)(y — z) + %(y — )2 for every y € [z, 1], (3.1)
u(z) <u(z) +u' (z)(z — ) + g(z —x)? for every z € [a,2]. (3.2)

Writing (3.1) for y = b and (3.2) for z = a, taking into account that u(a) = u(b) > u(x), we get

(x—b) and ' (z)<

N[
N[

u (z) > (x —a).

Moreover, since @ — u(z) — 227 is a concave function on [a,b], then v/ (x) > v/ () for every x € (a,b) thus

concluding the proof. O

We conclude this preliminary section with the following computation.

Proposition 3.6. Let A > 0, Fy: R? = R be the function defined by
Fy(z,y, z) := arctanx + arctan y + arctan z — arctan A + arctan(A — x) — arctan(y + z) (3.3)
and let
Ay = {(a:,y,z) eER?: —y<a<), f)\§2y§0,xf)\§z§0} C R3. (3.4)
Then

min F = 0.
Ax
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The minimal value is attained if and only if one of the following three cases occurs:
i) r=XN2=0,y € [*%,0] , ) x=-y,z=-y—\yE [7%70} , dit) x=y=0,z€[-\0].
Proof. If A = 0 the result is trivial. Let us assume that A > 0.
We first claim that if (Z,7, Z) minimizes F on Ay, then T = —g or T = Z+ \. Indeed, if (Z, 7, Z) is a minimum
point for F\ on Ay satisfying
—P<T<ZH+A\ (3.5)
then it is seen from (3.4) that there exists ¢ > 0 such that [T — 6,7 + 0] x {7} x {Z} C A, and

A\ = 27)

0=0RET) = Ty ar o)

that is T = 4. Then, from (3.4) and(3.5) we have

| >

and

DO >

<z <0.

Ifz = %, f% <7y <0 and f% < Z < 0, then we see from (3.4) and (3.5) that the point (Z, ¥, Z) is in the interior
of Ay and therefore

82F)\ (§7 Y, E) = 83F>\ (EJ 575) = 07

Z = 0. Then we are left to consider the

but this is an absurd because the latter equalities hold true only if ¥ =
Z = 0. However, in both cases we obtain

cascizg,y:(), —%<E§Oandthecascf:%, —%<y§0,

A
F\(Z,7y,Z) = 2arctan 5 arctan A > 0 = F)(0,0,0)
and this contradicts the minimality of (Z, 7, Z), since (0,0,0) € Ay. The proof of the claim is done, that is, there
holdsZ=Z+ X or 7 = —7.

In order to conclude it suffices to minimize the functions @y, 1y : R? — R, defined by

ox(y,z) := F(z + \,y,z) = arctan(z + A) + arctan y — arctan A — arctan(y + z),

¥a(y, z) == F(—y,y, 2) = arctan z — arctan A + arctan(\ + y) — arctan(y + 2),
on the set
2yi={(y,2) ER*:y e [-3,0] ,z€ [-A—y,0]}.

It is easily seen than both ¢y and v, have no critical points in the interior of X'y. Let us check their behavior
on the boundary of Xy.
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There holds
oA(y,0) =0=pr(y,—y — A\) for every y € [—%, 0]. (3.6)
The restrictions of ¢y on the other two edges of the boundary of X'\ are

@a(2) == ¢ (—%,2) = arctan(z + \) — arctan § — arctan A — arctan (2 — 3), 2z € [—3,0]

and
?x(2) := @a(0,z) = arctan(z + A) — arctan A — arctan z, z € [—A,0].

; —%] and strictly decreasing in [—%, O] while 5, is strictly

increasing in [—A\, f%] and strictly decreasing in [ %, O]. This yields ¢y > 0 on [f%, 0] with equality only at
—2 and 0, and @, > 0 on [, 0] with equality only at —\ and 0. Therefore, 5 > 0 on Xy, the only equality

cases being described by (3.6).
Similarly, (0, z) = 0 for every z € [=\, 0] and ¢ (y, —y — A) = 0 for every y € [—%, 0], and moreover ¢ > 0
on the rest of the boundary of X'y. Indeed, after setting

Then we can see that ¢, is strictly increasing in [—%

Ua(z) == Py (=3,%) = arctan z — arctan A + arctan § — arctan (z — 3), 2z € [—%,0]

and

¥y (y) := ¥a(y,0) = —arctan A + arctan(\ + y) — arctany, y € [—%, 0]
it is easily seen that 1; » is strictly increasing in [—%, 0] and 1, is strictly decreasing on the same interval. The
proof is concluded. O

4. THE ONE-DIMENSIONAL CASE

In the following we will make use of the notation
q
Pap(¥) =W —a)y—b) + K, y€ab].
The proof of Theorem 2.1 is essentially based on the following Lemmas 4.1 and 4.7. The first identifies the

parabolic profile as optimal in the center. The latter identifies a linear profile on the side.

Lemma 4.1 (The center). Let a < b, ¢ > 0, and let u be a g-concave function on [a,b] such that u(a) = u(b) >
u(z) for every z € [a,b]. Then

Diaiy(®) > Doy (1)

and equality holds if and only if u = pz_(;).

Proof. 1If ¢ = 0 the result is trivial. Assume therefore that ¢ > 0. Since vj,(z) := u(x — h) satisfies D, ) (u) =
D (a4h,p+n)(vp) for any h € R (translation invariance property), we may also assume without loss of generality
that the reference interval is of the form [—a,a], a > 0.
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Notice that u is absolutely continuous in [—a,a] and that u(a) = u(—a) entails [* u'(z)dz = 0, hence the
set {x € (—a,a) : v/ (x) < qx} is nonempty and we may define

¢ :=inf{z € (—a,a): v, (z) < gz}. (4.1)

Then we have ¢ € [—a,a), and moreover we may assume without loss of generality that ¢ < 0 (indeed, if this
is not the case we may consider v(x) := u(—z), which still satisfies the assumptions, since it is clear that the
corresponding value of ¢ is in [—a,0], and since D* ,(v) = D* ,(u) obviously holds). Notice also that ¢ < 0
implies «/, (0) < 0, since  +— u/, (x) — gz is nonincreasing.

The proof will be achieved in some steps. We first prove that

D(—a,a)(u) > D(—a,a) (p’li(j)a) (42)

holds true for g-concave functions w, satisfying u(a) = u(—a) > u(z) for any = € [—a, a], such that [—a,a] >
x> u(z) — (2 — a?) is piecewise linear. In such case @ — u/(x) — gz is a nonincreasing piecewise constant
function on (—a, a). We will consider a general u only in the last step.

Step 1. As previously observed, it is not restrictive to assume ¢ < 0. Let A; the (possibly empty) set defined
by A1 == {x € (—a,(): v/, (x) > 0}, and let Ay = (—a,() \ A;. Since v’ is piecewise linear, A; is a finite disjoint
union of open intervals (¢;,d;), i =1,...,k, and

/1—|—u

Ay

d;

M;r

7 1+ 2z —¢)?

.
I

d; d;

k k
Z/ Z/ :/dix, (4.3)
— 1+q x—d P 1—|—qal:2 1+ ¢%a?

1

Here, the first inequality holds true since x — v/, (x) —qx (equal to u'(x) — gz a.e. on (—a, a)) is not increasing and
since v/, (¢;) = 0, so that on (¢;,d;) we have 0 < v/, (x) < g(x — ¢;). The first equality follows by Proposition 3.4
and the last inequality is satisfied since we have d; < 0 and then 0 < ¢(d; — ) < —qz on (¢;,d;), for every
i =1,...,k. On the other hand, it is clear that we have 0 > u/ (x) > gz on Ay and together with (4.3) this
gives

dx ¢ dx
D, = > 4.4
-e0ls) /AA ur 2 | oy

In a similar way, since u is g-concave on [—a, a] and ¢ € [—a,0], we have that 0 > gz > v/, (z) > u/_(0) + gz
for every x € (¢,0). As u' = v/, a.e. on (—a,a), we get

0
1 1
Di¢.0)(u / T Ep ; arctan(u’ (0)) — . arctan(u/ (0) + ¢¢)
¢

dx 1 1 1
/m + garctan(uﬁr(O)) - garctan(uﬁr(O) +q¢) + ;arctan(q(). (4.5)
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Step 2. Let us now define

o :=min{z € [0,a): u/ (z) =0},
S:={z€(0,a): v (z) =/ (z) =0} U{z € (0,a): v/, () <0 <u_(2)}. (4.6)

By Proposition 3.5, we have Z(z —a) < u'(x) < Z(z + a) at each point where u’ exists. Since u'(x) — gz is

piecewise constant, it follows that —gz > «/(x) — gz > 0 on a right neighbor of —a and —gz < v/(z) — gz < 0 on
a left neighbor of a. Moreover u’Jr (0) < 0 follows from ¢ < 0. Therefore, o is well defined. We have 0 < 0 < a if
v/, (0) < 0 (then v/, < 0on (0,0))and o = 0 otherwise. In any case u/, (¢) = 0. On the other hand, ' is piecewise
linear, therefore S is a (possibly empty) finite set, and sign change of v/, on (0, a) occurs exactly at o if o > 0,
and on S\ {0}, if nonempty. In case S\ {o} is nonempty, we denote its elements by 0 < & < & < ... < &,
and h is even (this comes from the fact that «’ > 0 in a left neighborhood of a). We also let 41 = a. In each
of the intervals (&;,&+1), @ = 1,..., h, there holds either u/, > 0 or u/, < 0. Moreover we have that

Eit1
dzx

D ¢ > —_ 4.
(fzvg'b+1)(u) — 1 + q2($ _ El)Q ( 7)

for every i = 1,..., h. Indeed, (4.7) is obvious if u/, > 0 on (§;,&i+1), i.e., v’ > 0 a.e. on (&,&41). Else if v’ <0
a.e. on (&, &+1), the g-concavity inequality 0 > v/, (x) > q(x — §;41) and Proposition 3.4 yield

Eit1 d Sit1 q
X i
D¢ ¢ > = .
(et (W) 2 / 1+ ¢*(x—&i41)? 1+ ¢?(x—§&)?

If instead S\ {o} is empty we just have h = 0 and & = a. Similarly, g-concavity implies 0 < v/, () < q(z — o)
on (0,&1), and in case o > 0 it gives g(x — o) < u/ (x) < 0 on (0,0). Then the usual change of variables of
Proposition 3.4 entails

o &1
dz dz

D > | — D > | ——— . 4.8
(O,a)(u) = / 1+q2x2’ (U,§1)(u) = / 1+q2(1’70')2 ( )
0 o

In general, from (4.7) and (4.8) we have

h
D9.0)(1) = D0, () + Do) (1) + D Die, 1) (1)
=1

o & no Gt

> / _de / LN < / _ de
— ) 14 ¢%22 1+ ¢*(x—0)? — 14 q?(x —&)?
0 g L
/ dz 1 hq
= [ +—/—5 5 + —arctan —qo) + —arctan(q&i+1 — q¢&:)-
/ 1+ 222 ' ¢ (g&1 — qo) ; p (q€iv1 — q&i)
0 =
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The sub-additivity of arctan in R then implies

g

dz 1
Do,a)(u) > /m + gaTCtan(qa—qO’)
0

dz 1 1 1
= | Ty T g Arctanlga = qo) = - arct — arct : 4.9
/ 1+ a2 + . arctan(ga — qo) . arctan(qga) + . arctan(qo) (4.9)

Step 3. Adding together (4.4), (4.5) and (4.9) we get

a

dz 1
D(—a,a) (U) 2 / TC]QCUQ + ana(qU, ’U,/JF(O), QC) (410)

—a

where Fy, is the function defined in (3.3) with A = ga > 0, so that in order to conclude it is enough to show
that

(0,4 (0), ¢C) € Aga, (4.11)

being A,, the set defined in (3.4) with A = ga, and then apply Proposition 3.6.

We already observed that go < ga, v/, (0) < 0 and ¢¢ < 0. Moreover, g-concavity and v/, (¢/) = 0 yield v/, (0) >
u/, (0) —qo = —qo. Since u(—a) = u(a) > u(x) for every x € [—a, a, by applying Proposition 3.5 we obtain that
2u’ (0) > —qa. At last we claim that go — ga < ¢¢. Indeed we have [7 /' (z)dz < 0 and v/ (2) < g(z — o) a.c. on
(0,a), whereas u(a) = u(—a) > u(¢) by assumption, thus

a Za ¢
:Zd(t)dt—i—ju’(t)dt—}—/ dt</qtdt—|—/ t—o) (a—0—¢)(ga — qo + qQ)

but ¢ — ¢ > 0 and ¢ < 0 then the claim is proved, and (4.11) is shown, so that (4.10) and Proposition 3.6 allow
to conclude that

a

dz w(a)
D)2 | 15z = Pleaer (9752).

—a

in case x — u'(x) — gz is piecewise constant.

Step 4. In order to treat a general g-concave function u, satisfying u(—a) = u(a) > u(z) for any x € [—a, a], we
approximate it by means of the sequence wy, from Definition 3.1. Then, (4.2) applies to uy, for each h, as just
shown. Invoking Proposition 3.2, we find (4.2) for u.

We are left to prove that the only equality case in (4.2) is u = pli(;;)a, i.e., u/(x) = qx in (—a,a). This is
done by revisiting the previous steps and by taking some care in the choice of the approximating sequence
up. Assume that u satisfies (4.2) with equality. As usual, we may assume that the number ¢ defined by (4.1)
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is nonpositive, then v/, (0) < 0. If { = —a, then ffa u’ = 0 readily implies v’ = gz on (—a,a). Therefore, we
assume that ( > —a as well, and we aim at reaching a contradiction.

We first claim that «/, < 0 in the whole (0,a) yields contradiction: indeed, it would give, by taking into
account that u(z) < u(—a) in [—a,a] and that ' < 0 a.e. on (¢,0),

a a 0 a 0
0= /u’(m)dx < /u’(a:)dx:/u’(x)dac—l—/u’(m)dx < /qxdx < —g(g,
—a ¢ ¢ 0 ¢

that is, ¢ = 0. But ¢ = 0 implies D(_g,0)(u) > D(_q,0) (pffl) this follows from Step 1, see (4.3) and (4.4),
where in this case the set A; is a possibly infinite but countable union of disjoint open intervals (because A;

is open, since v/, is lower semicontinous). On the other hand, Proposition 3.5 implies u/(z) > 4(z — a) a.e. on
(0,a), then u' < 0 gives u'(z)? < %(m — a)? and Proposition 3.4 yields

@ dz @ dx Y wla
Dio.a) (1) :/ 1+ (x)? 2/ 7 2 :/ .2 > Dio.a) (p*(“;)a)’
0 0 1+ 4 (r—a) 0 1+ %z

that is, summing up, D(_q q)(u) > D(_q,q)(%), a contradiction. The claim is proved and thus we assume from
now that «/, > 0 at some point in (0, a), which implies, by g-concavity of u and right continuity of v/, , that o
from (4.6) is well defined for u, with v/, (¢) =0 and —a < (<0< 0 < a.

We approximate u with a sequence of g-concave piecewise parabolic functions wuj, constructed by means of
Remark 3.3, such that up(+a) = u(£a), (up) — « a.e. on (—a,a) and

(un)’ (o) =l (o), (un)y(Q) =u/(C), (un)}(0) =/ (0), VheEN. (4.12)

We let ¢ := inf{z € (—a,a): (up)’ (z) < qx}. By definition of ¢, and ¢ and by (4.12), we see that ¢ < ¢
and that ¢, — ¢ as h — oo. We let 0y, := min{z € [0,a): (us)’, (x) = 0}, then (4.12) implies o}, < 0. Notice
that if «/, (0) = 0, then ¢ = 0 so that o, = 0 for any h. Else if (up)’, (0) = v/ (0) < 0 we have by g-concavity
(un)y (z) < gz + /. (0) on [0,a), implying goj, > —(up)’,(0) = —u/,(0). Therefore o), € [—u/,(0)/q,0], and we
may assume, up to passing on a not relabeled subsequence, that o, - 7 € [—uﬁr (0)/q, U] as h — oo.

We apply the previous steps obtaining (4.10) for us, and passing to the limit with the a.e. convergence of uj,
to u’' and with the continuity of function F,, we get

’ dz 1 B
D(—a,a)(u) > /er&an(qu;(O)aQQ

—a

If Fya(qo,u!, (0),q¢) > 0 we contradict the fact that u satisfies (4.2) with equality. By taking into account that
o < o < a, Proposition 3.6 shows that F,(qa, v/, (0),¢¢) = 0 if and only if one of the following two cases occurs

)0 </ (0)=—¢5, (=0—a, ii) 6 = 0 = v/, (0).
If i) were true then v/, (x) < gz + 4/, (0) = q(x — { —a) for every = € (0, a), hence by taking into account that

u(¢) < u(—a) we would get

—a

o=/ u’(x)dxs/coqxdw/oaq(x—c—a)dx:—3(¢+a>2
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that is ( = —a, a contradiction.
Eventually if ii) occurs then we are in the case 0, = 0 = 0. In this case it is clear that v/, (x) — gz, which is
monotone, is identically 0 on (¢, 0), and moreover we immediately get

D(,a’o) (pli(a )a> < D(*G,,O) (u)7 (413)

since equality holds on ({,0) where u'(z) = gz, and since we apply Step 1 on (—a, (), recalling as before that
in general the set A; therein is a countable union of disjoint open intervals.

If 0 < !y (z) < gx in (0,a), either v’ = gz a.e. in (0,a), thus in (¢, a), and then we easily see from the null
mean property of v’ that { = —a (a contradiction), or v’ = gz does not hold a.e. in (0, a) and we readily conclude
that D(g,q) (pz(j)a) < D(0,q)(u), which, combined with (4.13), yields that (4.2) does not hold with equality, a
contradiction. Else if !, < 0 at some point ¢ € (0, a), since we are also excluding v/, < 0 on the whole (0, a), we
also fix a point d € (0,a) such that v/, (d) > 0. In this case, we assume that the above approximating sequence
uy, satisfies a further restriction, still by means of Remark 3.3: we let (u)’, (¢) = v/, (c) and (up)’, (d) = v/, (d)
for any h € N. Therefore, after defining

Spi={z € (0,a): (up)"(x) = (up) (x) =0} U{z € (0,a): (un)’ (z) <0< (un)" ()},

it is clear that for any h € N there is an element Zj, in the set S, N [c A d, ¢V d]. Indeed, u}, has to change sign
at least once on [c Ad,cV d]. Now we can reason as in Step 2. Fix h e N. Let 0 =&, < & < ... <&, =T
and Ty, = €41 - - < &ntm—1 denote the finitely many points of Sy, and let &, 4., = a (S}, contains at least zp,).
Since (4.7) holds for uy, in any of the intervals (&, &i+1), where uj, does not change sign, we get

n+m—1 Eit1 n+m—1

Do,a)(un) = Z / m = Z s arctan (¢(&1 — &)

i=0
1 i 1 _
> —arctan(qZy) + — arctan(g(a — Zy))
q q
where we have split the sum and used the sub-additivity of arctan. By passing to the limit with Proposition 3.2

and Remark 3.3 as h — oo (possibly on a subsequence, such that Z converge to some Z € [c A d,cV d]), and
also using (4.13), we get

0 0
d 1 1 d 1
D(_a,a) (U) Z [a ﬁ —+ aarctan(qf) —+ garctan(q(a — i’)) > [a T;;l& —+ garctan(qa),
since 0 < T < a. The right hand side is exactly D(_, q) (p“(;‘zl) this is a contradiction. O

Proposition 4.2 (Concave rearrangement). Let a < b and let u be a nonincreasing absolutely continu-
ous function on [a,b]. Then there exists a monincreasing concave function u*: [a,b] — [u(b),u(a)] such that

D q,p)(u) = Dqp)(u").

Proof. Let (up) nen denote a sequence of continuos, piecewise affine, nonincreasing approximating functions,
constructed on a equispaced grid of step (b — a)/h on the interval [a,b], and coinciding with « at the nodes of
the grid. At any differentiability point = of u in (a,b) which for any h is not a grid node (that is, for a.e. z in
(a,b)), there holds uj, (z) — v/(z) as h — oo.

For every h € N let us exchange the position of each segment of the graph of u; in such a way that the
slopes get ordered in a nonincreasing way. If s;; denotes the slope of the piecewise affine function u; on the
interval [a + (b —a)(j — 1)/h,a+ (b—a)j/hl, j =1,...,h, we denote by s ,,...,s},, a permutation of the
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slopes such that s7, > s5, > ... > s} ,. We define uj as the unique continuous, piecewise affine function such
that the slope of uj is s%, on the interval [a+ (b—a)(j — 1)/h,a + (b—a)j/h], j = 1,...,h, and such that
uy(a) = up(a) = u(a), up(b) = up(b) = u(b). It is clear that D, p(u};) = D(qp)(un) for every h € N.

Notice that (uj)nen is a family of concave, uniformly bounded functions on [a,b]. By Lemma A.5 in
Appendix A, the family (u})nen has a concave decreasing limit point u* : [a,b] — [u(b),u(a)] in the strong
V[/l{)c1 ((a,b)) topology (it is extended by continuity to the closed interval). This entails uniform convergence on
compact subsets of (a,b) and a.e. convergence of derivatives (up to extracting a subsequence), allowing to pass
to the limit with dominated convergence and to get

Diapy(u”) = lm Dgp)(up) = Um Dgp)(un) = Diap)(u)-
Hence, u* is the desired concave rearrangement. O

Remark 4.3. In the same assumptions of Proposition 4.2 and with the same notation, if ¢ < 0 exists such
that the set of differentiability points of u with u’ > ¢ has positive measure, the same property holds for u*
as well. Indeed, in such case there exists € > 0 such that the set B where v’ > ¢ + ¢ has positive measure as
well. Since uj, converge to v’ a.e. on B, by Egorov theorem there is a positive measure subset B* of B such
that wj, — v/ uniformly on B*. Then there exists hy > 0 such that, for any h > hy and any z € B*, there
holds uj, (x) > ¢+ ¢/2. For any h > hyg, after rearranging, since u} are concave, we have (u})’ > c+¢/2 a.e. on
an interval (a,§) with length equal to the measure of B*. Since (u})" — (u*)" a.e. on (a,b), we conclude that
(u*) > c+¢e/2 > cae. on (a,f).

For the proof of Lemma 4.7 below, we will need a general result about the resistance functional, holding also
in higher dimension. It is the property |Vu| ¢ (0,1), a proof of which is given in [6], Theorem 2.3. In dimension
one we provide a simpler proof with the following

Proposition 4.4. Let a < b and let u be a concave, nonincreasing, continuous function on [a,b], such that
u(a) > u(b). Then there exists ¢ € [a,b) such that u(a) — u(b) > b—c and

Diapy(u) > Dap)(ug.p)s

where ugy,: [a,b] — R is defined by

u(a) if y€lad

uap (W) =9y (4.14)

c—b

(u(a) —u(®)) +u) if ye(cb].
Proof. Since u is concave, then the set A, := {z € (a,0): v/, (z) > —1} is connected, and we define

« . | supA, if A, #0O
R B if A, =9

and ues: [a,b] = R as follows:
u(a) it x€la,c*+ulc*)—ula

e () = —x+c*+u(ct) if xelc* +ulc*) —ula),c
u(z) if zelc,b).
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Since ﬁ > 1+ & for every t <0, we have

W)

Do) 2 / (1457 ) do ="~ 0t ule) = @) = Digor )

a

where the last equality follows by a simple calculation. Then D, 3y (u) > D4 p)(tc+ ).

Let now c := ¢* +u(c*) —u(a). We claim that D, p)(uc) > Dap)(ug,,)- To see this, it is enough to prove that
Diepy(ter) = Diep(ug,p). This immediately follows by Jensen inequality, since the function f: (—oo, —1] — R
defined by f(t) = ﬁ is convex and ul. < —1 a.e. in (¢, b). O
Corollary 4.5. Let a < b and let u be a nonincreasing absolutely continuous function on [a,b], such that
u(a) > u(b). Then there exists ¢ € [a,b) such that u(a) —u(b) > b —c and

Dap)(u) = Dap)(ugs),

where ugy,: [a,b] — R is the function defined in (4.14).

Proof. We apply Proposition 4.2 to u, obtaining a nonincreasing concave function u*: [a,b] — [u(b),u(a)] such
that D, ) (u) = D(q)(u*). Since u(a) > u(b), then u* is non constant. We apply Proposition 4.4 to u*, obtaining
c € [a,b) and (u*); ,, defined by means of (4.14), such that u(a) —u(b) > u*(a) —u*(b) > b—cand D, p)(u*) >
Diapy((u*)g.;). But then we easily see that D, ) ((u*)5.;,) > Dap)(ug,,) and we conclude. O
Remark 4.6. Notice that the condition u(a) — u(b) > b — ¢ on ¢ indicates that the straight line corresponding
to the restriction of ug., on [c, b] has slope smaller than or equal to —1.

Lemma 4.7 (The side). Let a < b and ¢ > 0. Let u be a q-concave continuous function on [a,b] such that
u(y) < u(a) for every y € [a,b] and u(b) < u(a). Then there exists v € [a,b) such that u(a) —u(b) > b—~ and

D(a,b) (U) 2 D(a,b) (wa,'y,b)a

where wq 5 [a,b] — R is defined by

0al (y) if yelay)

wa,’y,b(y) = y— b (415)

y—b

(u(a) —u(®)) +u®) if yelybl

The result holds with v € (a,b) if u is not strictly decreasing on [a,b].

Proof. It ¢ = 0 we just apply Proposition 4.4, obtaining the concave function ug,, defined in (4.14), with
¢ € [a,b), such that D, p)(u) > Dap)(ug,). Then we just let v = ¢ and observe that in case ¢ = 0 we have
“Z;b = Wq ~,b- If u is not strictly decreasing and it is concave, then it has a flat part in a neighborhood of a and
we can take ¢ > a. This is done by fixing @ > a such that u(a) = u(a) and by applying Proposition 4.4 on [a, b].
From here on, we let ¢ > 0.

As did in the proof of Lemma 4.1, we prove the result first for g-concave functions u that satisfy the assump-
tions (i.e. u(x) < wu(a) on [a,b], u(a) > u(b)) and are moreover such that [a,b] > x — u(z) — Z(z — a)(z — b) is
piecewise linear. This means that u is piecewise parabolic on [a, b, the second derivative of u being equal to ¢
on each of the finitely many pieces. Moreover, it is clear that u has a finite number of local maximum points on
[a, b].

The main part of the proof is the following claim: there is another piecewise parabolic function % with the

same resistance as u, such that @(a) = u(a), @(b) = u(b), u(x) < a(a) for any = € [a,b], and moreover there
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exists d € [a,b) such that @(d) = @(a) and @ is nonincreasing on [d, b]. Notice that the claim is directly proved
if u(a) = u(z) for each local maximum point = of u on [a,b]. Just let & = w in this case.

In general, let us consider the subset of local maxima = such that = b or u(z) > u(y) for any y € («,b).
More precisely, if M is the set of local maximum points of u on [a, b], we define

M= (MnN{b})U{z € M: u(x) > u(y) for every y € (z,b]}.
Notice that b could be a local maximum point itself, in such case it belongs to M. We also let g := min M and

x* := max M (possibly zg = a, * = b). If M is reduced to g, the claim is proved by letting @ = u. Otherwise,
for every x € M\ {z*} we let

& i=min{y e M:y >z}, z,:=min{y € [z,&]: u(y) =u(é)}.
We let moreover

Yo 1= Z (zs — s), for any x € M (notice that v,, = 0),
sEM, s<z

Oy i= Z (o — 22) = % — v — 0.

zeM\{z*}

We define 4 : [a,b] — R by a(y) = u(y) if y € [a, o) U [z*,b] and, for every x € M\ {z*},
iy) = u(y + Vo + 20 — @) + ulzo) — u(és) fy€r—7e,o =7 +& — 2)
U(y*JEO*(S**%:Jrﬂf) lfye [$0+5*+717x0+5*+7z+2z*x)

Notice that @ is absolutely continuous on [a,b] and that @(a + d.) = @(a), moreover @ is nonincreasing on
[a + &4,b]. 4 is obtained from u by translating restrictions of u on a finite number of subintervals which cover
[a,b]. Then it is piecewise parabolic and by the translation invariance property of the resistance functional in
dimension one, we have, for every x € M\ {z*},

De£) (W) = Dia—ryp s t€a—20) (@) Dia,z) () = Diwo 6. 4va w048 470 +20—2) (D)
Therefore D4 4)(%) = D(q,)(u) and the claim is proved, with d = a + ..
We apply now Corollary 4.5 to @ on [d, b], obtaining v € [d,b) such that v > b — @(d) + @(b) and Dqp) () >

U
D(d,b)(ﬂ};b), where ﬁg;b is defined as (4.14), starting from @. Then, applying Lemma 4.1 on [a,~], since (d)
t(a) = u(a) and a(b) = u(b), we get

Dap)(w) = Diap)(@) > D(q,a)(@) + D(ap)(%7 ) > Diap)(Wary.b),
with v > b — u(a) + u(b) and v > d = a + §, > a. In particular we deduce
Dgpy(u) = inf {Dgp)(waqp): v € [aV (u(b) —u(a) +b),b)} . (4.16)
In order to conclude, we need to prove (4.16) for a generic u satisfying the assumptions of this lemma. If

up, is a sequence of piecewise parabolic approximations of u constructed by means of Proposition 3.1, we have
up(a) = u(a), un(b) = u(d) and up(x) < u(x) < ula) if © € [a,b], for any h € N. Therefore we may apply (4.16)
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to up, and pass it to the limit, since we can use Proposition 3.2, and since the right hand side of (4.16) is
independent of A. The map

(b—7)?
(b =%+ (u(a) — u(b))?

is however smooth and strictly increasing in a left neighborhood of b, so that its infimum is realized and
belongs to [a V (u(b) — u(a) + b),b). In other words, there is v € [a,b) such that v > w(b) — u(a) + b and
Dap)(w) > Dqp)(Wa,n,p), as desired.

Eventually, we prove the last statement, which is in fact obvious if u(a) = u(a) for some @ > a. We assume
therefore that w is not strictly decreasing on [a, b] and also that u(y) < u(a) for any y € (a,b]. Then there exists
a local maximum point for u in (a,b] that we denote by a1, and we let &g € (0,a; — a) be small enough, such
that u(y) < u(ay) for any y € (a1 — do,a1). We take advantage of Remark 3.3 for approximating u, by taking
a sequence uy, of piecewise parabolic approximations such that up(a;) = u(a;) for any h € N. Notice that by
construction uy < u, thus we have uy(y) < u(a) for any y € (a,bl, a; is a local maximum point for u;, and in
particular

2
[a,b) v+ D p)(Wayp) = + garctan (2(y —a))

up(y) < uplar) forany y € (a1 —do,a1), (4.17)

for any h € N. Now we fix h and for the function u, we define M, z*, xg, d, §. as above, omitting for
simplicity the dependence on h. Since up < u(a) on (a,b] we readily have a = zyp € M. We take the largest
element & of M which is strictly smaller than a;, and since a; is a local maximum point for u, (and the
rightmost local maximum of wj, necessarily belongs to M), we see that © < z*, i.e. © € M\ {z*}. Then,
by definition of &, above, we get & > a1 > x and up (&) > un(ar). Moreover, by the definition of z, above,
thanks to (4.17) and to the intermediate value theorem, we get &, — z, > do, implying . > do, i.e., d > a + do.
Since dy does not depend on h, when applying the previous part of this proof we get the improved estimate
D (q,p)(u) > inf{ D4 p)(wWa,yp): 7 € [(a+do) V (u(b) — u(a) + b),b)}, where the infimum is realized, yielding the
result. O

4.1. Conclusion of the one-dimensional case
We first combine Lemmas 4.1 and 4.7 to obtain the following

Proposition 4.8. Let M >0, ¢ >0, u € IC(IIVI and M > m = max{u(z): © € [-1,1]}. Then there exist o €
[0,m], B €[0,m] and a,b € R, with

—1<a<min{l,-1+m}, max{-1,1-m}<b<1, a<hb,

such that the q-concave function on [—1,1] defined by

”;;f(xﬂ)w if z€[-1,a)

i(r) =4 S@—a)a—b)+m if welab (4.18)
B—m .
1_b(x7b)+m if xe€(b1]

satisfies D(_q,1y(u) > D(_1,1)(@).

Proof. We can assume wlog that « is continuous up to the boundary of [—1,1], and we let « := u(—1) and
B :=u(1). We take a maximum point z* € [—1, 1] for u. We apply Lemma 4.7 on [z*, 1] and its reflected version
on [—1,z*], finding two points a,b € [~1,1], with —1 < a < z* < b < 1, such that D, p)(u) > D(q) (), where
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@, by this application of Lemma 4.7, is made of two straight lines on [—1,a) and (b, 1], with slope in modulus
greater than or equal to 1, and moreover @(a) = @(b) = m. We change @ with x +— m + 4(z — a)(z — b) on
[a, b], and the result follows by means of Lemma 4.1. All the degenerate cases a =b,a=—-1,b=1,a=5b=1,
a =b= —1 are possible (for instance if u = m on [—1, 1], we are just applying Lem. 4.1). O

For M >0, ¢ > 0, the resistance of @ in (4.18) is given explicitly by D1 1)(@) = I'(a,b,m, a, 8), where, if
q>0,

(a+1)3

I'(a,b,m,a, ) = (a+1)2+ (m—a)

2
5 + aarctan (g(b - a)) +

and where the parameters (a, b, m, «, 3) vary in the set

T :={(a,bym,a,8): —1<a<min{l,—1+m}, max{—-1,1—m} <b<1,
a<b,0<m<M0<a<m,0<8<m}.

If ¢ = 0 the arctan term simply becomes b — a.
With the next three propositions we solve the problem miny I, for ¢ € [0,1] and 2M > q.

Proposition 4.9. If (a,b,m,«, ) is a minimizer of I' on T, then a« = =0, m =M, —a =b=:v and
max{0,1 - M} <~ <1

Proof. We first notice that if (a,b,m, «, 5) € T is a point of minimum for I", then both a # —1 and b # 1. Since
the proofs are similar, let’s see, for example, that a # —1, which is equivalent to show that every (—1,b,m,a, 8) €
T is not a point of minimum for I" on 7. Let max{—1,1—-m} <b<1,0<m <M, 0<a<m,0< 8 <mbe
fixed. Then

lim Q(a’b7m’a’6) = 4

-5 <0
a——1+ Oa 44 q%2(b+1)2 <

and the thesis is proved for b € (—1,1]. On the other hand it is easily seen that (—1,—1,m,«, ) is a local
maximum for the function a — I'(a, a, m, «, 3), then the proof is done. So, from now on, we will assume both
a# —1and b#1.

Since the function m +— I'(a,b,m, «, B) is decreasing on [0, M], we have that

F(aab>m7avﬁ) ZF(CLJ),M,OZ,ﬂ)

for every (a,b,m,a,B) € T, with strict inequality if m < M. Moreover since both the functions « +—
I'(a,b,M,a, ) and 8 — I'(a,b, M,0, 3) are non-decreasing on [0, M] we have

I'(a,b,M, e, 8) = I'(a,b, M,0,0),

with strict inequality if & > 0 or 8 > 0. Finally, since the function [0, M] 3 ¢ + 03(M? + ¢2)~2 is convex, and
taking into account that both a + 1,1 — b € [0, M], the following holds:

_b b_
I'(a,b, M,0,0) zr(“Q 72a7M,O,0),

with strict inequality if @ # —b. In conclusion, in order to minimize I" on 7 we can restrict tom = M, o« = 8 = 0,
b=—-a=:7>0, max{0,1 — M} <~ <1. 0
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Proposition 4.10. Let M > 0 and q € [0, 1] such that 2M > q. Let o4 [0,1] — R be the function defined by
Parg(n) = M = M2(1=7)? = ¢**(1 = 9)* = 3M2¢**(1 - 7)%. (4.19)
Then par,q is strictly increasing on [0, 1].
Proof. If ¢ = 0 the result is obvious. Assume ¢ > 0. We first consider the function ¢ps,4: [0,1] — R defined by
Uarg(7) = M? = *7(1 = 7)° +2¢°72(1 — %)% = BM2¢*y(1 — ) + 3M>¢*?,

and we observe that

Pirg(7) = 2(1 = 7)¢nrg(y)  for every y € [0, 1]. (4.20)

Let now «, 8: [0,1] — R be the functions defined by

a(y):=—y(1-%)°> and B(y):=29"—1~.

It is easy to check that

mina = a(3) = -3, mind=5(3) = -5

Then, taking into account that ¢ € (0,1] and 2M > ¢, we have

Uarg(v) = M? + ¢*a(y) + 2¢°7*(1 = 7)* + 3M?¢*B(v)
227 2 33722~ 572 _ 27 2~ 13 2
2 M™ = 555q" — M " 2 §M™ — 5550° 2 3564” > 0
for every v € [0,1]. Therefore, from (4.20) we conclude. O

Proposition 4.11. Let M > 0 and q € [0,1] such that 2M > q. Let Rpr.q: [0,1] — R be the function defined
by (2.2).

(i) If M € (0,1) then there exists a unique vy, , € (0,1) such that

in Raro(Y) = Raga(Vig ).
Jmin Miq(7) Miqa(Virg)

(i1) If M > 1, then m[in]RM;q('y) = Ruryg(0) = 1572, and 0 is the unique minimizer.
v€[0,1

Proof. We first notice that

Parq(7)
L4 g2y?) [M2 + (1 —7)%)

R, (v) = (

for every v € [0, 1], ¢ar,4(7) being the function defined in (4.19). Then the sign of R}, coincides with the sign
of PM;q-

(i) If M € (0,1) then @pr,4(0) = M?(M? —1) < 0 and par4(1) = M* > 0. Then, by Proposition 4.10, there
exists a unique vj,,, € (0,1) such that

Rh;q(ﬁw;q) = oMq(Var,q) =0
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and R, is negative on [0,7v3,.,), while it is positive on (vj,.,, 1]. Therefore v}, is the unique point of
minimum of Rz, on [0,1].

(ii) If M > 1 then ¢prq(0) = M?3(M? — 1) > 0 and ¢ar,4(1) = M* > 0. By Proposition 4.10, both ¢, and
Ryr.q are strictly increasing on [0, 1], then

1
in Rpyr.g = Rarg(0) = ———
min Rarg = Rarg(0) = 77737
and 0 is the unique minimizer of Ry, on [0, 1]. O

Proof of Theorem 2.1. Let M > 0, g € [0,1] and M > 2q. Assume that u is a solution to (2.1). We may assume
that it is not constant and continuous up to the boundary. Let m € (0, M] be the maximal value of u on [—1, 1],
and let

& =max{z € [-1,1] : u(x) =m}, n=min{zr € [-1,1]:u(z) =m}.

We claim that m = M, —1 < n < ¢ < 1 and u(£1) = 0. If for instance n = —1 we apply Lemma 4.7 on [—1, 1]
(reduced to Lem. 4.1 if £ = 1), yielding a competitor of the form of (4.18). It is not optimal, as a consequence
of Proposition 4.9. This is a contradiction. Similarly, there holds £ < 1. If m < M, u(—1) > 0 or u(1) > 0, still
we easily have a contradiction by constructing @ of the form of (4.18) with 4(£1) = u(£1), max;_; )@ = m,
and Dy 1)(u) > D(_y,1)() (see Prop. 4.8). But then Proposition 4.9 shows that @ is non optimal. The claim
is proved.

By Lemma 4.1, u coincides with pﬁl\/lg on [n,¢], and the second claim is that u is strictly decreasing on [¢, 1].

Indeed, if it is not the case we may define u, € K} by

o u(y) it yel[-1,¢
U (y) = { wecaly) if ye[El],

where w. . . is defined in (4.15). Lemma 4.7 shows that D(_q 1y(u) > D(_1 1)(u.) for a suitable ¢ € (£, 1). However
we have a contradiction as u, is not a minimizer, since we can decrease its resistance, in an admissible way, by
applying Lemma 4.1 on [n, {]. The second claim is proved.

The third claim is that a.e. on (£, 1) the slope of u is not greater than —1. Indeed, suppose by contradiction
that there is a positive measure subset of (£,1) where u’ > —1. We apply Proposition 4.2 and Remark 4.3 to
u on [£,1], obtaining a concave function on such interval, with u’ > —1 a.e. on a subinterval (£,¢’), & > &,
and leaving the resistance unchanged. Then we apply Proposition 4.4, obtaining an admissible competitor (up
to a vertical translation) with not larger resistance and a flat part on a suitable interval (£,£"), £ > £. This
is a contradiction, because the latter competitor does not have minimal resistance, again its resistance can be
improved by applying Lemma 4.1 on [, £”]. This proves the third claim.

The same reasoning applies on [—1,7)], i.e. u is strictly increasing on [—1,7n] with slope a.e. greater than or
equal to 1. The slope of u is in fact constant on [—1, 7], and on [¢, 1] as well, otherwise Jensen inequality, owing
to the strict convexity of the map ¢ — 14-% for |¢t| > 1 would yield a contradiction. For the same reason, as seen
in the proof of Proposition 4.9, the two slopes are opposite.

Summing up, if u is a solution than it has the form of @ from (4.18), witha =8=0, m=M, a=1n, £ =
b, £ = —n =: v, and v € [max{0,1 — M}, 1). However, minimization among profiles of this particular form
reduces to minimize the function R4, defined in (2.2), on the interval [max{0,1 — M}, 1). But Proposition 4.11
shows that there is a unique minimizer v* of Rz, on [0, 1], satisfying in particular v* € [max{0,1 — M}, 1),
v*=0if M >1 and v* € (0,1) if M € (0,1). Notice that up.,q € IC(JZW, thanks to the assumption M > 2q. [
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5. THE RADIAL TWO-DIMENSIONAL CASE

For 0 < a < b and locally absolutely continuous functions w on (a,b), we will use the notation

rdr

b
Zun® = | TR

and in case a = 0 we shall also write Z,(u) := Z o p)(u).
As for the one-dimensional case, the proof of Theorem 2.3 requires several preliminary results, the first of
which takes the place of Proposition 3.4.

Proposition 5.1 (Radial parallelogram rule). Let ¢ > 0. Let o, 8 be such that 0 < a < 8. Then

B B
/ rdr / rdr
1+ ¢%( 1+ ¢%(r — a)?

and if ¢ > 0 equality holds if and only if a = 5.

Proof. Let q > 0. Let ¢(t) := tarctant — log(1 + #?), t € [0, +00). Since p(0) = 0 = ¢'(0) and ¢ (t) = 2t>(*> +
1)72 > 0 for every t € (0,+00) then ¢(t) > 0 for every t € (0, 4+00). Since

B q 8 | 1
rdr rdr
/ 1+ q2(r — )2 - / 1+q2(r—a)32 ?SD(Q(ﬁ —a)),
the result follows. If ¢ = 0 the result is obvious. -

By using Proposition 5.1 in place of Proposition 3.4, we reason as done in Lemma 4.1, and we may prove the
corresponding characterization of optimal radial profiles in the center. The proof is actually simplified, thanks
to the symmetry assumption.

Lemma 5.2. Let ¢ >0, a >0, H € R. The minimization problem
min { Z(g,q)(w) : 7 — u(r) — 4r? is concave nonincreasing on [0,al, u(r) < u(a) = H on [0,a]}

admits the unique solution u,(r) := %(r* —a®) + H.

Proof. If ¢ = 0 the result is trivial. Let ¢ > 0. Since r — u(r) — 4r? is concave nonincreasing we get u'(r) < gr
a.e in (0,a). If v’ > 0 a.e. in (0, a), then either v/(r) = ¢r a.e. in (0,a) or by pointwise estimating the integrand
we get Z(o,a) (1) > Z(0,a) (Usx)-

Suppose that that there are negativity points of the left derivative v’ on (0,a). Since u is g-concave, u’_ is
upper semicontinuous on (0, a), therefore the set I := {r € (0,a) : u’_(r) < 0} is open, thus a (at most) countable
union of (nonempty) disjoint open intervals (a;, 8;). Moreover, if 5; < a there holds u’_(3;) = 0 (left continuity
of u”). A direct consequence of g-concavity and of the constraint u(r) < u(a) on [0,a] is that v’ (r) > Z(r —a)

n (0,a), see Proposition 3.5, therefore if instead 3; = a we still have lim, ,,- v’ (r) = 0. On the other hand,

g-concavity yields 0 > u’ (r) > g(r — 8;) on any interval (a;, 5;). Since v’ < 0 at some point in (0, a), there is
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at least one of these intervals (a;, 3;). If there exists an index j such that «; > 0, Proposition 5.1 entails

/1+u

Z/&Hu 2—2/ T

rdr
> _ = .
Z/ 1—|—q r— Z/1+qr2 /11+q2r2

By taking into account that

/ rdr >/ rdr
aps L+ ()2 7 Joapr 1+ 2%
we get Do (u) > Po(us). The remaining case is I = (0, 5) for some § € (
Proposition 5.1 yield

|. If 8 < a, g-concavity and
9 (u)>/5rdr +/a rdr >/“7rdr = Da(uy)
¢ o L+g%r? Jé] L+ ¢*(r — B)? o 1+¢*? e

If 3 =a, weuse0>u(r)>4(r—a)a.e. on (0,a) and we get

¢ rdr ¢ rdr

9a > —s > T o o5 — @a * )y

(u)_/o 1_'_% /0 1+ g2r2 (us)

concluding the proof.

Lemma 5.3. Let ¢ > 0. Let 0 < a < v < 8 and q(f — ) < 2. Let moreover u: |
continuous function such that

(i) u(7)
(i) '

Then

,0] = R be an absolutely
u(B) = u(r) for any r € [y, 5] and the restriction of u on [y, 8] is q-concave
—1 a.e. on (a,7).

") < -

| V

B B
/ rdr / rdr

1+d/(r 14w,/ (r
where wy, : |

B] — R is the absolutely continuous function defined by

if refa,a+ -7
Zf 7'6[04+5*%5]~
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Proof. Let g > 0. It is easily seen, by taking (ii) into account, that

/ rdr B 5(r+a—7)dr T(r+p—7)dr
/1+wu/(r)2_/7 1+ (r)2 +/a T+ u/(r)2

[e%

B
dr B rdr 1
<o) [ e | T 3 a)

Since (i) holds, Lemma 4.1 entails D, g)(u) > D(%ﬁ)(p:;(g)) = %arctan (4(8—1)), so that

B B B
rdr rdr dr 1
Jiraier | T @ [ Tragp taB -0 -

[ [e3

5
<(v-a) {2 - garctan (ZB-7)| = . ¥ (2(8—7))
where 1(z) := 2arctan z — z. Since ¥(0) =0, ¢¥'(z) = (1 — 22)(1 + 22)71 > 0 for every z € [0, 1] and %(ﬂ )€
[0, 1], the result follows. If ¢ = 0 the term %arctan(%(ﬁ — 7)) becomes 3 — v and the result follows as well. []

In the one dimensional case, Proposition 4.4 is necessary to show that the slope is greater than or equal to 1
(in modulus) on the profile side. This property holds true in the radial two-dimensional case as well, even if we
look to the class of nondecreasing radial profiles. It is in fact a consequence of [13], Theorem 5.4 (see also [6]).
We give a proof with the following lemma.

Lemma 5.4. Let 0 < Ry < Rg, m1 > my. Let

W= {u € Wh'(Ry, Ra): u/ <0 ace. in (Ry, Ra), u(Ry) =my >my = U(RQ)},

where the boundary values are understood as limits. Then P, r,) admits a minimizer on W which is concave
in (Ry, Ro). If u. € argminyy (g, r,), then |ul(r)| € (0,1) for a.e. r € (Ry, Ra).

Proof. For u € W we define

] % ifo<t<1 ] R
jn={ % and G y(a) = [ () ar

a—— ift>1. R,
14+ ¢? -

It is readily seen that f is convex and that lim;_, M = 0 for any z € R, hence @( Ri,Rs) 18 sequentially
Ls.c. with respect to the w* — BVj,.(R1, R2) convergence. Moreover if (u,) C W is a minimizing sequence for
@(Rl,R2)7 then

Ro
A|%mw:mﬁm%
1

which entails existence of minimizers of -@(R,l) on W. Let now Ri <a <y << Ry and let w € W be a
piecewise affine function with slopes &5 < 0 in (,7) and & < 0 in (v, 3), such that & < &. Then, by setting



THE MINIMAL RESISTANCE PROBLEM IN A CLASS OF NON CONVEX BODIES 25

A= (y—a)(B—a)"!, we have

B 1 . -
| e b ar =3 (602 = @i + (5 = ) f€D)

and convexity of f(|-|) on (—oo, 0] entails

(82 = a?) (A& + (1 = N f(l&D) -

N —

B
/ FFME + (1= Vo) dr <

By taking into account that f is decreasing we get

B B
/ FFA + (1 — Nea]) dr — / rf(lwl) dr <

e

(B =1 = a)(f(&]) = f(&l) < 0. (5.1)

N | =

Hence, if w, denotes the concave envelope of w, (5.1) entails @(Rl Ry (W) — @(Rth) (wyx ) > 0 for every piecewise

affine w € W and therefore for every w € W, and we may conclude that Z(g, gr,) admits a minimizer on Wi,
and that

mv\i}n @(Rth) = %113 Q(Rth), (52)

where W, := {u € W wu is concave}.
Next, we let u € Wi, and we argue as in [6], Theorem 2.3. We let 7 := inf A,, where A4, :=
{r € (Ry, Ry) s ul (1) < —1} U{Rz}, and

o(r) = { min{u(r) +u/, (F)(r — 7), m1} ifr € (Rq,7)
u(r) if r € [F, Ry).

We have v € Wi, v > u on (Ry, Rg) and |v'| € (0,1) a.e. on (Ry, Ra). Moreover, |v'| € {0,1} and || € (0,1)
a.e. on the set I := {r € (R1, R2) : u(r) # v(r)}, while ' = v’ a.e. on the set £ := {r € (R1, R2) : u(r) = v(r)}.
These information on u’,v’, together with the definition of Z(g, r,), directly entail D, g,)(u) > Z(r, r,)(u),

Q(Rl,Rz)(U) = ‘@(RI;RZ)(U) and

Doy (0) > Dy (1) = /E rF (! (7)) dr + / r (' () dr

= Ty )+ [ (Ful ) = FQw' ) v

~ Bz 1/ (1) = |/ (r
G+ [ OO,
Ry
~ T (A I T 7
= @(Rl,Rz)(U) +/ %dt
my ,U—l t _u—l t
= Ao+ [ IO 5.9

where we changed variables in the last but one equality, taking into account that u, v are concave nonincreasing
on (Ry, Ry). Since v > u, we conclude that P, g,)(u) > (g, r,)(v) with equality if and only if u = v, and
that the same holds for Z(g, g,). In particular, if u € argminy,, Y(g, r,), then u = v implying Z (g, r,)(u) =
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DR, ,R,)(u), and this entails that v minimizes also Z(g, r,) on Wi.. Summing up, Z(g, r,) admits a minimizer
on Wi, and moreover u is a minimizer of 92<R17R2) on W, if and only if it is a minimizer of 2, r,) on Wi,
with same minimal values. In such case |u'| ¢ (0,1) a.e. in (R1, R2).

Let us assume from now on that « is in fact a minimizer of @( R1,Rz) 00 Wik If we also take (5.2) into account,
for every w € W we have

DR, ko) (W) = DR, Ry (u) = %in -@(Rl,Rg) = Hlyi}l -@(Rl,Rz) < -@(Rl,Rz)(w) < DR, ,ry) (W), (5.4)

so that u is also a minimizer of _@( R1,Ry) and of D g, g,y on W. It is the desired concave minimizer. Eventually,
let u, € argminyy Z(g, ,r,)- By definition of Q(Rth) we have I (g, Rr,)(ux) > @(Rl,p&)(u*). We prove that the
latter is in fact an equality. Indeed, if this was not the case we would be lead, since we have just proved
that Z(r, r.)(us) = Y(r,,r,)(u), and also using the first equality in (5.4), to @(Rh&)(u) = DR, ,ry)(u) =

DRy ko) (Usx) > DR, ko) (Ux), against the minimimality of u for @(31732) on W. We conclude that Z(g, g,)(u«)

D(Rr,,Ro)(ux), which directly entails |ul| ¢ (0,1) a.e. in (Ry, Ry). O
The next lemma shows some important properties of solutions of (2.3).

Lemma 5.5. Let R >0, M > 0,0 < qR <1 and 2M > qR?. Let u € C°([0, R]) be a solution to problem (2.3).
Let m = max{u(z) : z= €[0,R]} and a := max{x € [0,R] : w(x) =m}. Then a < R, u is strictly decreasing in
[a, R] where v’ < —1 a.e., w(R) =0 and m = M.

Proof. If a = R, by Lemma 5.2 we get that the resistance of 7 — (r? — R?) 4+ m is less than or equal to Zg(u),
but then it is readily seen that by taking

w(r) = 12— (R-6)*)+m if rel0,R-0
| FR-7) it re(R-6 R

we get Ir(w+ M —m) = Ir(w) < ZDr(u) for § small enough. This contradicts the minimality of w, since
r = w(r) + M —m belongs to Rg;n,q, as a direct consequence of the high profile assumption 2M > qR?. We
have obtained a < R and u(R) < m.

Next we prove that u is strictly decreasing on [a, R]. Notice that the restriction of u to [a, R] satisfies the
assumptions of Lemma 4.7 (here we have R in place of b). If u is not strictly decreasing in [a, R], as done
in the proof of Lemma 4.7 we fix a local maximum point a; € (a, R] of u and we fix §o > 0 small enough
such that u(r) < u(ay) for any r € (a1 — do,a1). By means of Remark 3.3, we let (up)nen be an approximating
sequence of uniformly converging, piecewise parabolic functions on [0, R], such that up(0) = u(0), up(R) = u(R),
up(a) = u(a) and up(ar) = u(ay) for every h € N. Of course Proposition 3.2 applies to functional Zg as well,
so that

Dr(u) > Drlun) — % Wh € N. (5.5)
The argument is similar to the one of Lemma 4.7, so we shall skip some details. Following the the proof of
Lemma 4.7 , we define the quantities M, M, zq, z*, &sy Za, 04 for up, so that they all depend on h, even if
for simplicity we omit this dependence in the notation. Here we also define z,« := R (and it is possible that
x* = 2y« = R). But since up(r) < u(r) < wu(ay) for any r € (a; — do, a1), the argument at the end of the proof
of Lemma 4.7 shows that d, > do for any h € N. On each interval [z, z,], x € M, we have that wuy, is a strictly
decreasing function, as seen in the proof of Lemma 4.7. We define iy, : [0, R] — R by modifying wu;, on each of
these intervals. Indeed, by Lemma 5.4 we change up on (z, z,), for any @ € M, with a resistance minimizer
(among nonincreasing functions with fixed boundary values) having a flat part on a subinterval (z,Z) and a
concave part with slope not greater than —1 a.e. on (Z, 2z, ), for a suitable & € [z, 2,). In this way, we find
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ap(x) = up(x), an(zs) = un(zs) and Pr(up) > Pr(ap). Notice that by its definition, the restriction of @y on
[a, R] is absolutely continuous. Notice moreover that [a, R] is now partitioned in a finite number of intervals: we
have the intervals of the form [Z, z,|, € M, where @y, is concave nonincreasing with slope a.e. not in (—1,0),
while in each of the remaining intervals @, is g-concave with same value at the two endpoints (and by definition
of 4., if the sum of the lengths of these remaining intervals is 0., then d,, > d,). Starting from @y, by repeatedly
applying Lemma 5.3 (notice that this is possible because of the assumption ¢R < 1) we construct u} : [0, R] — R
with the following properties: u} < m, u}; = uy on [0, al, u}, is g-concave on [0, a + d.+], uj (a) = uj(a+6.) = m,
u} is strictly decreasing on [a + 0.+, R], uj(R) = up(R) = u(R), the range of u} is contained in that of u; and

Drlup) > Dr(ul). (5.6)

A last application of Lemma 5.4 on [a + 6., R] entails @, given by u} on [0, a + 0] and by a concave resistance
minimizer among nonincreasing functions on the interval [a + 0., R] with fixed values m and u(R) at the two
endpoints. @, is g-concave on the whole [0, R] with @y(a) = @p(a + dii) = m, @p(R) = u(R) and, from (5.5),
(5.6) and Lemma 5.4, it satisfies

Qg(u) > @R(ﬁh) — %, Vh € N. (57)

As already observed, J, and ., might depend on h, but d,, > d, > dy and the quantity §y > 0 is fixed and does
not depend on h. (@p)nen is a sequence of uniformly bounded g-concave functions on [0, R] (in particular, the
range of 4y, is contained in that of uy, which goes to that of u as h — oo by uniform convergence). Therefore, we
may invoke Lemma A.5 in Appendix A: up to extraction of a subsequence, @, converge uniformly on compact
subsets of (0, R) (even of [0, R) in this case since (@)’ (0) < 0) to some g-concave function @ : [0, R] — [0,m)]
(continuous up to redefinition at R), which is moreover satisfying @(a) = @(a + §) = m, for a suitable § €
[00, R — a]. Indeed, we may pass to the limit in the relations u(a) = x(a + d4x) = m, where d,, depends in
general on h and here J is a corresponding limit point. From Lemma A.5 we also have a.e. convergence of
derivatives, implying Zg(un) — Zr(@) as h — oo. Together with (5.7), this implies Zr(u) > Zr(u). But now
we define w : [0, R] — R as

w(r) =

m+4(r? — (a+0)?) if re0,a+0

a(r) if re(a+9,R],
and since § > 0 by Lemma 5.2 we find that Zg (@ + M —m) = Pr(0) < Dr(@), and r — @(r) + M — m belongs
to RR.aq, since 2M > qR?, thus contradicting minimality of u.

Now we show that ' < —1 a.e. in (a, R). Being the restriction of u to [a, R] nonincreasing, it necessarily
minimizes the resistance functional among all nonincreasing v in [a, R] such that v(a) = m and v(R) = u(R),
otherwise the concave minimizer provided by Lemma 5.4 would give a contradiction. As u < u(a) on (a, R], still
by Lemma 5.4 we get that v’ < —1 a.e. in (a, R).

If m < M or u(R) > 0, we let

wy(r) = M ___(u(r) —u(R)) if € (a,R).

{g(r2a2)+Mm if rel0,qa)
m—u(R)

Since u(a) =m and v’ < —1 on (a, R), it is clear that w, € Rp;nmq and that

/R rdr </R rdr
o LHwi(r)? "), 1+u/(r)?
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and then Lemma 5.2 implies P (w,) < Pr(u), again contradicting minimality of w. O

All the necessary elements for the proof of Theorem 2.3 are now settled. Before proceeding with the proof,
we give a couple of useful result for the analytic characterization of the side of the optimal profile.

Proposition 5.6. Let M >0, R >0, and h: (—oo — 1] — R be defined by h(t) = —t(1 +t?)~2. Then

R a
apy :=minq a € (0,R) : —/ hil(ﬂ> dr <M

is well defined and it uniquely realizes equality in the above inequality among values in (0, R). Besides, there
exists a unique strictly decreasing C* function n : [apr, R) — R such that 0 < n(a) < % and

[ (o

for every a € [ap, R). Moreover, there holds

R , e
70 [ ety ' () 5:9)

Proof. Notice that the inverse function A~! is defined on (0, %], it is smooth, increasing and there hold

lim, o h~!(r) = —oc and h=1(3) = —1. Let

R
pla) = 7/ ht (%) dr, a€(0,R). (5.10)
It is readily seen, from the definition of &, that lim, g ¢(a) = 0, lim,_ ¢(a) = 400 and ¢’ < 0 on (0, R). Then
there exists a unique aps such that ¢(ap) = M and [ap, R) = {a € (0, R) : ¢(a) < M}. For every a € [ap, R)
let ¢, : (0, %] — [0, +00) be defined by

’ 4

vatn = [0 (1)

Similarly as above we may check that for any a € [ayr, R) there is

R dr
0= J, s <

on (0, ), and moreover lim, o 94 (1) = +00, lim,_,,/4 = ¢(a) < M. Hence for every a € [an, R) there exists
a unique 1 € (0,a/4] such that ¢,(n) = M is satisfied, and we denote it by n(a). Notice that 1),(n) strictly
decreases with a for each n € (0, ] so that the function [ars, R) 5 a +— n(a) is strictly decreasing, and it
satisfies (5.8). Moreover, we have n(ay) = %, limg—, g n(a) = 0. n(a) is C* and satisfies (5.9) by the implicit
function theorem. O

Proposition 5.7. Let ¢ >0, R >0, M >0 and let v, : (0, R) — R be defined by

1
Yqla) = \/2 (3a2¢2 + 1 + \/9a%q* + 10a2¢2 + 1).
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Let h, ap be defined as in Proposition 5.6. Let the function ; : (0, R) — R be defined by

¢(a) == /aR b <ah(7"(a))> dr.

r

Then there exists a unique a. € [ar, R) such that (4(a.) = M.

Proof. Notice that (, is well defined on (0, R), since h < i and v, > 1. If ¢ = 0, then vy = 1, and since h(—1) = i
we obtain (g(a) = ¢(a), where ¢ is defined by (5.10). Therefore, we are reduced to Proposition 5.6 in this case,

and we find a, = ayy.
Let ¢ > 0. Then h(—v4(a)) < 1 on (0, R), so that —h_l(w) > —h~1(%2) on (an, R), hence, by
Proposition 5.6, (;(arr) > M. On the other hand, lim,_, g (,(a) = 0, and by taking into account that

/ R dr
Gla) = —v4(0) - / T (ah( (@)

the result follows. O

Proof of Theorem 2.5. Let u € C°([0, R]) be solution to (2.3). Since the assumptions of Lemma 5.5 are satisfied,
we have u(R) = 0, maxu = M, a := max{z € [0, R]: u(z) = M} < R, and moreover v’ < —1 on (a, R). We
concentrate on the interval (a, R), where first variation of the resistance functional yields

/R ru'o'dr 0
o (14+u?)2
for every p € Cf(a, R), that is there exists a constant n > 0 such that

—ru’

(1+ u?)? =1

a.e. in (a, R). We get therefore h(u/(r)) = n/r, h being defined in Proposition 5.6. Hence, 4n/r € (0, 1] for every
r € (a, R), that is 0 < n < a/4. Since u(R) =0, u(a) = M, then n has to satisfy

—/Rh—l (2) dr = M,

a

which implies

/Rh1 (4%) dr < M,

that is a € [apr, R), where ayps is defined in Proposition 5.6.
Summing up if u € C°([0, R]) solves (2.3), there exist a € [ap, R) and, by Proposition 5.6, a unique 7 =
n(a) € (0,a/4] such that also using Lemma 5.2,

u(r) = g(r2 —a®)+ M in[0,a],
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and the latter profile has resistance is given by

£(a) /a rdr +/R rdr
a) = _ )
o 1+ Jo 1+ t(n(a)/r)?

We are now left to minimize over a € [aps, R). That is, we have Zr(u) = min,e(q,,,r) €(a). Proposition 5.6
shows that the map [axr, R) 3 a + n(a) is C! and strictly decreasing. By using the definition of function A, and
by taking into account formula (5.9) of Proposition 5.6, we have

oo ’ o [ 1 (p(a)/r) dr
£ = T T @ T | T P @
a a , R dr
- e T aE O [ e

:1+q2a2_1—|—|h I(n(a)/a )|2+277() (()/a)

A computation then shows that £'(a) > 0 if and only if

(L +[h~ (n(a)/a)*)? = BIh~ (n(a) /a)* + 1)(1 + ¢*a®)

that is if and only if h=!(n(a)/a) < —v,(a), where 7, is the function defined in Proposition 5.7, or equivalently
n(a) < ah(—v4(a)). But n(anr) = 4t > aph(—v4(anr)) while Rh(—v,(R)) > 0 = lim, . g n(a), hence the equa-
tion n(a) = ah(—v4(a)) (equivalent to £'(a) = 0) has at least a solution a, € [aps, R) which is necessarily unique
by Proposition 5.7 since

[ [ (25382

Therefore, under the assumptions 0 < ¢R < 1 and 2M > ¢gR?, problem (2.3) has a unique solution, characterized
by the number a* coming from Proposition 5.7, with «/(r) = hfl(@) in (a., R) and u(as) = M. The proof
is completed. O

Remark 5.8. We note that vo(a) = 1, hence when ¢ = 0 we get a. = ay and 7(a.) = “%, thus obtaining the
classical concave radial minimizer.

6. APPROXIMATION OF OPTIMAL PROFILES IN THE GENERAL
TWO-DIMENSIONAL CASE

To conclude our study, we discuss the approximation of optimal g-concave graphs with no radiality assump-
tion. For M > 0 and ¢ > 0, we provide in this section a numerical optimization algorithm to approximate
g-concave profiles of Cé” (£2) which minimize Dy, where {2 is the unit disk of the plane. Following [10], we
know that the main difficulty of this constrained shape optimization problem comes from its great number of
local minima. In order to tackle this difficulty, we introduce a discretization of the problem with few parameters
which makes it possible to perform a stochastic optimization.

As in [10], we parametrize optimal graphs as the convex hull of a set of points. Consider a sampling C1, ..., Cy,
of the unit circle 92 made of n points and let (2,, C {2 be the convex hull of this sampling. We introduce the
cylindrical parametrization @y q, defined for (r,0,z) € [0, 1] x [0, 27] x [0,1], by

Dorq(r,0,2) = (reos(9),rsin(0), zM — q(r® —1)/2).
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If {P,..., Py} are m points of [0,1] x [0, 27] x [0, 1], we consider
gp17 P, - CO(*QTu@M,q(Pl)w-~,¢M,q(Pm))\Qn;

which is the convex-hull of the union of the points ®pr 4(P1), ..., Prq(Pm), C1,...,Cyp, minus 2,. Gp, . p, is
the polygonal graph of a concave function on {2,,. Moreover, if we denote by vp, . p, this associated function,
we have that

up,.,..p, () :==vp, ..p, () +q(z]* —1)/2, xR,

is g-concave and has values in [0, M]. Conversely, every g-concave function on {2 with values in [0, M] can be
approximated by this procedure.
Let us focus now on the cost function evaluation, that is, on the approximation of

dz
Dq, (up, .. .p, :/ .
2 rnp) = | T Vup o @)F

First, we observe that the situation is more complicated than the classical case ¢ = 0 studied in [10]. As a matter
of fact, the computation of D, (up, ... p, ) does not reduce to a purely geometrical integral since up, . p, is
not piecewise linear anymore. To provide a precise estimate of the previous integral, we notice that up, .. p, is
quadratic on every triangle 7 obtained as the projection on {2 of one triangular face of Gp, .. p, . Moreover the
integral

/ dx
» 14+ |Vup, ... p, (2)?

can be approximated by a Gauss quadrature formula of order d if we provide the evaluation of up,, . p, atevery
control points of the quadrature. We summarize the different steps required for one cost function evaluation in
Algorithm 6.1, choosing a Gauss quadrature with n. control points.

Algorithm 6.1. Cost evaluation.

Input: M > 0, ¢ > 0, a sampling of 92 with points {C4,...C,}, and parameters
(7’1, 01, Zl)? s (va O, Zm)
Convex Hull: Compute the convex hull of {C1,...CL} U{Pp 4(P1),...,Pr,q(Pr)} (complexity of
order (m + n)log(m + n))
Triangulation: Project every triangular face on {2 to obtain a triangulation 7 of the convex hull
of {Cy,...Cy}.
Gauss control points: For every 7 € T, compute the associated n. control points {Q7,...Q7, }.
Evaluation: For every 7 € T, for every control point Q7, compute Vup, . p, (Q7). This step is reduced
to a linear interpolation and a quadratic evaluation.

Output: return the Gauss quadrature approximation based on the control points (Q] )1<i<n,,reT-

Based on this discretization involving only a few parameters m = 50 (that is 150 parameters), d = 10,
n. = 100 and n = 100 it has been possible to perform in five hours 107 evaluations of the discretized cost function
on a standard recent laptop. We used the algorithm adaptive_de_rand_ 1 bin radiuslimited provided by the
BlackBoxOptim library (see [1]). We represent in Figure 3, several ¢g-concave optimal profiles for the same value
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-

FicUrEe 3. Optimal computed profiles for ¢ = 0.4 and M = 0.3, 0.5,0.7, 1.

g = 0.4. The observed qualitative behavior is analogous to the one of the solutions computed in [10] in the case
q=0:

e Optimal graphs touch the constrained height hyperplane on a curvilinear polygon which seems to be
regular. By the way, notice that for ¢ > 0, there is no flat upper contact anymore. This flat part is
replaced by a parabola when ¢ > 0,

e singular arcs, raising from the vertices of the upper polygon, can be observed in the graph,

e non strictly concave parts of the graph for ¢ = 0 are substituted by parabolic patches.

APPENDIX A. SINGLE SHOCK AND g-CONCAVE PROFILES

The single shock condition reflects the physical fact that every fluid particle hits the body at most once. We
shall deduce a corresponding geometric constraint on the body profile. See also [2, 8, 14].

Let 2 C R™ a bounded convex open set and let u : {2 — R an a.e. differentiable function. We consider a single
point particle, moving in epi u and approaching the graph of u vertically downwards (i.e., along the direction
of the coordinate vector e,1) with constant nonnull velocity v = —ve, 1, v > 0. We suppose that the particle
hits the graph of u elastically at the point (xg,u(z¢)) € R"*1, such that Vu(zg) exists. Furthermore we assume
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that the particle is reflected according to the usual laws of reflection. Denoting by 1y the outward normal unit
vector at (xg,u(xo)), i.e.,

Vo = ( —Vu(zg) 1 >
VI+ Vuzo)?' 1+ [Vu(zo)? )|

we let 79 be a vector lying in the subspace of R"*! generated by v and vg, such that vy - 79 = 0. We denote by
z(t) = (x(t),y(t)) € R"1, ¢t > 0, the position of the particle after the shock, occurring at ¢ = 0. If we consider
the components of the velocity vector z'(t) along vy and 79, according to the laws of reflection we have to impose

[#/(t) - To] 0 = (V - T0) T0,

{[z/(t) “vlvg = — (V- 10)

that is,

{[z’(t) “volvo = — (V1) g

2'(t) = [2/(t) - wo]vo = v — (V- 1) 1.

So we obtain that

n 2v n 2v
- o =viy—
V14 |[Vu(zo)|? 1+ |Vu(x0)|2

_ <2 Vu(zo) ; 1 — |Vu(z)|? v)
1+ |Vu(zo)? 7 14 |Vu(z)? )~

Zt)y=v—2(v-v)v = (—Vu(z), 1)

The trajectory of the particle after the collision is therefore described for ¢ > 0 by
Vu(xg)

——

1+ |Vu(zo)|

ey 4 L Vu)[*
y(t) = u(zo) + 1+ Vo)

The single shock condition at (g, u(zo)), which is u(z(t)) < y(t) for any ¢ > 0, is then given by

2
u xO—QMUt gu(xo)_klwiu(xo)g@t.

If we rescale the time by letting fmo = Etzo)IQ , the above inequality rewrites as follows

JER el
(o~ Vo) < )+ 22 (1~ Dtz

The above discussion motivates the following

Definition A.1. Let {2 be an open bounded convex subset of R". We say that u: 2 — R is a single shock
function on §2 if u is a.e. differentiable in {2 and

T

u(x —7Vu(z)) <ul(z)+ 5

(1 - |Vu(x)|2)
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for a.e. x € 2 and for every 7 > 0 such that x — 7Vu(x) € £2.

Next we discuss the relation between single shock and g-concave profiles. We start by recalling the definition
of g-concavity.

Definition A.2. (g-concave function) Let {2 be a convex subset of R™ and ¢ > 0. A function u: 2 — R is said
to be g-concave on 2 if the map x — u(x) — 4 |x|2 is concave on 2. Equivalently, u is g-concave on {2 if and
only if

e+ (1= A)y) > M) + (1 - Nu(y) - gm Nz -y

for every z,y € 2 and for every A € [0,1].

Lemma A.3. Let ¢ > 0 and 2 C R" be a bounded convexr open set. If u: 2 — R is a g-concave function on

2, and q diam(§2) < 2, than u has the single shock property on §2. In particular, if u is concave then it is single
shock in 2.

Proof. Let z € {2 be such that Vu(x) exists, and let 7 > 0 be such that  — 7Vu(x) € £2. Using the g-concavity
of u, the fact that if z — 7Vu(x) € £2 then 7|Vu(x)| < diam(§2), we have

u(z — 7Vu(z)) < ulz) + 7 (—|Vu(9c)|2 + qg\vu(x)ﬁ)

<wu(z)+T7 (—|Vu(gc)|2 + g|Vu(:1c)| diam(Q))
< u(z) + 7 (—|Vu(@)]® + [Vu(z)|)
= u(@) + 2 (1= [Vu(@)P) - 5 (Vu(@)| - 1)’
< (@) + 5 (1= [Vu(@)P),
where we made use of the assumption ¢ diam(£2) < 2. O

Remark A.4. The inequality gdiam({2) < 2 is sharp. Indeed, if 2 is a ball, centered at the origin, and
gdiam(£2) > 2, then the function pg: 2 — R defined by pq(z) := £|z|? is not a single-shock function on 2.

Existence of minimizers of the resistance functional on Cé” (£2) follows the standard arguments.

Lemma A.5. Let 2 be an open bounded convex subset of R™. Let M > 0 and q > 0. Then for every p € [1,00)
the class CéV[(Q) is compact with respect to the strong topology of Wlicp(())

Proof. First of all, a concave function v on {2 taking values in [0, M| satisfies, for every K CC (2,

2M

[v(21) — v (22)] < dist (K, 09)

|z1 — 22|  for every 21,2 € K.

Then, if R > 0 is such that 2 C By(R), a g-concave function is Lipschitz continuous on any open subset K,

compactly contained in {2, with Lipschitz constant not exceeding WN{BQ) + qR.
Let (un),cy be a sequence of elements of C2(£2). We shall prove that there exists a strictly increasing

sequence of natural numbers (ny), oy and u € Sar 4(£2) such that
U, — win LP (2) e Vu,, — Vu in LP(K) for every K CC (2.

The sequence (uy),, oy is equi-bounded and equi-Lipschitz on every K CC §2. By Ascoli-Arzela theorem, (uy,), ¢y
admits a convergent subsequence in C(K), for every K CC 2. By a diagonal argument we may obtain the
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existence of a strictly increasing sequence of natural numbers (n4), .y and of a function u € C(f2), such that
Uy, — w uniformly on each K CC f2. Since

uAz+(1-XN)y) = kEToou”’“ Az+(1-XN)y)

> lim [)\unk(x) + (1 =X up, (y) — g)\ 1=X)|z— y|2}

T ko4

= xu(z) + (1 — N uly) gA 1-N|z—y?

for every x,y € 2 and for every A € [0,1], u is g-concave on {2. Moreover, since uy, (x) € [0, M] for every x € 2
and for every k € N, we have u(z) € [0, M] for every z € £2. Thus u € C;*(£2). Now, since §2 is bounded and
(Uny,)pey 18 an equi-bounded subsequence, by dominated convergence we infer that u,, — w in LP(§2). In order
to conclude we have to show that Vu,, — Vu in LP(K) for every K CC 2. Since (up, ),y is equi-Lipschitz
continuous on each K CC {2, we have that (Vu,, ),y is equi-bounded on each K CC 2. So, it suffices to prove
that

ke

Vi, () = Vu(z) for a.e. z € (2.

Let i € {1,...,n} and let = € §2 be a fixed point where all u,, (k € N) and v are differentiable (almost every

point of 2 meets this requirement). Denoting by e; the ith vector of the standard basis in R™ and letting

©n,, () := up, (z) — %22, since the functions ¢ — ¢, (x + te;) are concave, there exists g9 = £o(i, ) > 0 such

that, for every € € (0,¢q)

P (2 + 66;) —om(2) Drpm () < En (z — 62 — #n(2)

from which, adding gz; and taking into account that 9;¢u,,, (z) = diun, (¥) — qz;, we have

Un (m + Eei) — Uny, (.13) _ge < O (.’1?) < Uy, (l‘ - Eei) — Uny, (‘T) qc
5 = i Unyy, >

€ — 2"

Passing to the limit as k — 400, for every e € (0,g() we obtain

u(z +ee;) —u(z) qe

6 -y < limkinf Oitin,, () < limksup it (z) < — + =
Passing now to the limit as € — 0 we have
diu(r) < limkinf Oitin, () < limsup Qjun, (z) < d;u(x),
/ k
that is, lim O;un, (z) = O;u(x). O

k——+o00

Corollary A.6. Let {2 be an open bounded convex subset of R™. Let M > 0 and q > 0. The resistance functional
Dgq admits a minimizer on CM ().

Proof. Notice that, by dominated convergence, functional Dy, is continuous with respect to the a.e. convergence
of gradients. O
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