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1. Introduction

A classical problem in the calculus of variations is the minimization of the Newton functional

DΩ(u) =

∫
Ω

dx

1 + |∇u(x)|2
.

Here, Ω ⊂ R2 is a convex set representing the prescribed cross section at the rear end of a body, which moves
with constant velocity through a rarefied fluid in the orthogonal direction to Ω. The graph of u : Ω → R
represents the shape of the body front. According to Newton’s law the aerodynamic resistance is expressed
(up to a dimensional constant) by DΩ , owing to the physical assumption of a fluid constituted by independent
small particles, each elastically hitting against the front of the body at most once (the so called single shock
property). As Newton’s resistance law is no longer valid when such property does not hold, a relevant design
class of profiles for the problem is

SM (Ω) = {u : Ω → [0,M ] : almost every fluid particle hits the body at most once}.

This condition can be rigorously stated as follows: for Ω an open bounded convex subset of R2, we say that
u : Ω → R is a single shock function on Ω if u is a.e. differentiable in Ω and

u (x− τ∇u(x)) ≤ u(x) +
τ

2

(
1− |∇u(x)|2

)
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holds for a.e. x ∈ Ω and for every τ > 0 such that x− τ∇u(x) ∈ Ω, see [6, 8, 14]. SM (Ω) is then defined as the
class of single shock functions on Ω that take values in [0,M ]. The specified maximal cross section Ω and the
restriction on the body length (not exceeding M > 0) represent given design constraints.

Actually, SM (Ω) lacks of the necessary compactness properties in order to gain the existence of a global
minimizer. It is shown in [15] that a minimizer in the class of functions SM (Ω) does not exist and that the
infimum in this class is

∫
Ω

1

2

(
1− M√

M2 + d2(x)

)
dx,

where d(x) = dist(x, ∂Ω). This result seem to show that optimal shapes for Newton’s aerodynamics can be
approximated only by very jagged profiles, practically not to be configured in an engineering project.

Among the different choices in the literature, the most classical set of competing profiles is

CM (Ω) := {u : Ω → [0,M ] : u is concave} ,

which automatically implies the single shock property, ensures existence of global minimizers (see [3, 4, 6, 13]),
and is more easily configurable. By further assuming radiality, the solution in CM (Ω) (Ω being a ball in R2)
was described by Newton and it is classically known, see for instance [3, 5, 9]. If we reduce the minimization
problem in CM (Ω) to the one-dimensional case (i.e., Ω is an interval in R) the solution is also explicit and easy
to determine, see [5]. On the other hand, one of the most interesting features of the Newton resistance functional
is the symmetry breaking property, as detected in [2]: the solution among concave functions on a ball in R2 is
not radially symmetric (and not explicitly known).

The design class CM (Ω) is still quite restrictive, and there is a huge gap with the natural class SM (Ω).
Indeed, solutions can also be obtained in intermediate classes. In [7, 8], existence of global minimizers is
shown among radial profiles in the W 1,∞

loc (Ω) ∩ C0(Ω̄)-closure of polyhedral functions u : Ω → [0,M ] (Ω being
a ball in R2) satisfying the single shock condition. In this paper, we are interested in minimizing the Newton
functional in another class of possibly hollow profiles, without giving up a complete characterization of one-
dimensional and and radial two-dimensional minimizers. We choose the class of q-concave functions u on Ω
(i.e., Ω 3 x 7→ u(x)− q

2 |x|
2 is concave), with height not exceeding the fixed value M . That is, given M > 0 and

q ≥ 0, we let

CMq (Ω) := {u : Ω → [0,M ]| u is q-concave on Ω},

and we wish to find the minimal resistance among profiles in CMq (Ω). We refer to Appendix A at the end of

the paper for a discussion about the relation between the two classes CMq (Ω) and SM (Ω): among q-concave
functions, the single shock condition is indeed reduced to q diam(Ω) ≤ 2. Of course, for q = 0 we are reduced
to the classical problem in CM (Ω). If q > 0, the existence of minimizers is obtained in the same way. However,
the characterization of the solution is more involved, even in one dimension (Ω being an interval in R), and it
represents our focus. As a main result we explicitly determine the unique optimal q-concave profile, both in the
one-dimensional case and in the radial two-dimensional case, see Section 2 for the statements, under a further
high profile design constraint that we shall introduce therein.

In the one-dimensional case, the symmetry of the solution is not a priori obvious and it is a consequence of
our analysis. On the other hand, if Ω is a ball in R2 the symmetry breaking phenomenon appears of course also
in the q-concave case. When leaving the radial framework, another relevant class is that of developable profiles
as introduced in [11], playing a role in the numerical approximations [10] of the optimal resistance. In Section 6,
we will show how to extend the numerical solution of [10] to the q-concave case.
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As a last remark, we notice that large values of q are of course energetically favorable. However, Newton’s law
is based on the single shock property which requires q diam(Ω) ≤ 2, as previously mentioned. If this restriction
is not satisfied, multiple shock models should be considered as discussed in [15].

1.1. Plan of the paper

In Section 2 we state our two main results. The first about the one-dimensional case, Ω being a line segment.
The second deals with the radial two-dimensional case, Ω being a ball in R2. These results were announced in
[12], and they both provide uniqueness of the solution along with an explicit expression. The proofs are postponed
to Sections 4 and 5, whereas Section 3 contains some preliminary results. Section 6 provides numerical results
for the general q-concave two-dimensional problem, i.e., without radiality assumption. Appendix A contains a
discussion about single shock and q-concave classes.

2. Main results

2.1. One-dimensional case

For a locally absolutely continuous function u : (a, b)→ R, the one-dimensional resistance functional is given
by

D(a,b)(u) =

b∫
a

dx

1 + u′(x)2
.

Without loss of generality we consider the interval (−1, 1). We introduce the variational problem

min
u∈KMq

1∫
−1

dx

1 + u′(x)2
(2.1)

for M > 0 and q ∈ [0, 1], where

KMq := {u : [−1, 1]→ [0,M ]| u is q-concave on [−1, 1]}.

Admissible functions u are here q-concave on the closed interval [−1, 1], meaning that [−1, 1] 3 x 7→ u(x)− q
2x

2

is concave, and it is not restrictive to assume they are continuous up to the boundary. We will work under the
further high profile assumption 2M ≥ q. The restriction q ≤ 1 corresponds to the single shock condition in this
case, see Lemma A.3 in Appendix A. We also refer to Appendix A for the standard compactness arguments
yielding existence of solutions. Our first main result is the following.

Theorem 2.1. Let M > 0 and q ∈ [0, 1] be such that 2M ≥ q. Then problem (2.1) has a unique solution given
by

uM ;q(x) :=




q

2
(x2 − γ2M ;q) +M if |x| ≤ γM ;q

M

1− γM ;q
(1− |x|) if γM ;q ≤ |x| ≤ 1

if M ∈ (0, 1)

M(1− |x|) if M ∈ [1,+∞),
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Figure 1. Numerical solution of problem (2.1) for M = 0.5 and q = 1.

where γM ;q ∈ (0, 1) is the unique minimizer of the function RM ;q : [0, 1]→ R defined by

RM ;q(γ) =:


2

q
arctan(qγ) +

2(1− γ)3

M2 + (1− γ)2
if q > 0

2γ +
2(1− γ)3

M2 + (1− γ)2
if q = 0.

(2.2)

Theorem 2.1 shows that a solution of problem (2.1) is given by a piecewise linear and parabolic function (see
also the result of a numerical simulation in Fig. 1). Notice that the high profile assumption 2M ≥ q ensures that
uM ;q fits the interval [0,M ] and is therefore admissible for problem (2.1). The parabolic profile in the center has
second derivative equal to q. A first understanding of this fact comes from the following straightforward first
variation argument.

Proposition 2.2. Let u be a solution to problem (2.1) and suppose that u ∈ C2(I) for some open interval
I ⊂ [−1, 1]. Moreover, suppose that 0 < u < M in I. Then either u′′ ≡ 0 or u′′ ≡ q in I.

Indeed, by q-concavity we have u′′ ≤ q in I. Suppose that u′′ is not identically equal to q in I, so that there
exists an open interval J ⊂ I such that u′′ < q in J . Then, if ϕ ∈ C∞c (J) and |t| is small enough, u+ tϕ is still
q-concave with 0 < u+ tϕ < M (it is an admissible competitor). We have by dominated convergence

d

dt
E(u+ tϕ) = −2

∫
J

ϕ′(x)(u′(x) + tϕ′(x))

(1 + (u′(x) + tϕ′(x))2)2
dx.

By minimality of u we obtain that for any ϕ ∈ C∞c (J) there holds

−2

∫
J

ϕ′u′

(1 + (u′)2)2
= 2

∫
J

u′′(1− (u′)2)

(1 + (u′)2)2
ϕ = 0,

so that we obtain the standard Euler-Lagrange equation for the Newton functional in one dimension

u′

(1 + u′2)2
= const,

yielding that u′′ ≡ 0 in J and then in I.

2.2. Radial two-dimensional case

In this case we let Ω = BR(0) be the open ball in R2, with center 0 and radius R > 0, and we consider the
class of q-concave radial functions. If we set M > 0, q ≥ 0 and

RR;M ;q :=
{
u : [0, R]→ [0,M ]

∣∣∣r 7→ u(r)− q

2
r2 is nonincreasing and concave

}
,



THE MINIMAL RESISTANCE PROBLEM IN A CLASS OF NON CONVEX BODIES 5

then for every u ∈ RR;M ;q (which is the radial profile of a radial function that we still denote by u) the resistance
functional is

DBR(0)(u) = DR(u) :=

R∫
0

r dr

1 + u′(r)2
.

Therefore, given M > 0, R > 0 and q ≥ 0, we have to solve the problem

min {DR(u) : u ∈ RR;M ;q} , (2.3)

still with the high profile assumption 2M ≥ qR2 and the single shock assumption 0 ≤ qR ≤ 1. Existence of
minimizers is again standard, see Appendix A. Our second main result is the characterization of the solution
to problem (2.3). It is given by a parabolic profile in [0, a], and a strictly decreasing profile satisfying the radial
two-dimensional Euler-Lagrange equation

−ru′(r)
(1 + u′(r)2)2

= const

in (a,R]. The optimal value of a is uniquely determined in (0, R). In order to write down the solution, which is
a little less explicit, we need to introduce some notation.

We let (−∞,−1] 3 t 7→ h(t) := −t(1 + t2)−2. For a ∈ (0, R), let ϕ(a) := −
∫ R
a
h−1( a4r ) dr and

γq(a) :=

√
1

2

(
3a2q2 + 1 +

√
9a4q4 + 10a2q2 + 1

)
, ζq(a) := −

∫ R

a

h−1
(
ah(−γq(a))

r

)
dr.

Theorem 2.3. Let R > 0, M > 0. Assume that 0 ≤ qR ≤ 1 and 2M ≥ qR2. Then there exists a unique
aM ∈ (0, R) such that ϕ(aM ) = M , and there exists a unique a∗ ∈ [aM , R) such that ζq(a∗) = M . Moreover,
there exists a unique solution to problem (2.3), given by

u(r) :=


q

2
(r2 − a2∗) +M if r ∈ [0, a∗]

−
∫ R

r

h−1
(
a∗h(−γq(a∗))

s

)
ds if r ∈ (a∗, R].

It is worth noticing that γ0(a) ≡ 1, hence when q = 0 we get a∗ = aM , and we recover the classical concave
radial minimizer.

Numerical solutions to problem (2.3), in agreement with Theorem 2.3, are shown in Figure 2. We refer to
Section 6 for numerical solutions obtained without radiality assumption.

3. Some preliminary results

This section gathers some elementary results that will be useful in the sequel. We recall that, for a < b and
q ≥ 0, u : [a, b]→ R is q-concave if the map [a, b] 3 x 7→ u(x)− q

2x
2 is concave.

Definition 3.1 (Piecewise parabolic approximation). Let a < b and q ≥ 0. Let u be a q-concave continuous
function on [a, b]. Let w : [a, b]→ R be defined by

w(y) := u(y)− q

2
(y − a)(y − b).
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Figure 2. Numerical solutions of problem (2.3) for M = 0.5 and M = 1, both for R = q = 1.

For every h ∈ N and for every j ∈ {0, . . . , h− 1} we consider intervals defined by Ij,h := [αj,h, βj,h) and αj,h :=
a+ j b−ah , βj,h := a+ (j + 1) b−ah . We let wh : [a, b]→ R be given by

wh(y) :=


h−1∑
j=0

[
w (αj,h) +

h

b− a
(w (βj,h)− w (αj,h)) (y − αj,h)

]
1Ij (y) if y ∈ [a, b)

w(b) if y = b.

We define now the sequence of piecewise parabolic approximations uh : [a, b]→ R as

uh(y) := wh(y) +
q

2
(y − a)(y − b), h ∈ N.

Proposition 3.2. Let a < b and q ≥ 0. Let u be a q-concave continuous function on [a, b]. Let (uh)h∈N be the
sequence of piecewise parabolic approximations of u given by Definition 3.1. Then D(a,b)(uh) → D(a,b)(u) as
h→∞.

Proof. We have uh → u uniformly on [a, b] as h → ∞. For any differentiability point x of u which for every
h ∈ N is not a grid node (that is, for a.e. x ∈ (a, b)), there holds u′h(x)→ u′(x). The result follows by dominated
convergence.

Remark 3.3. It is clear that the approximation procedure of Definition 3.1 can be generalized to non uniform
grids, still with uh equal to u at grid nodes. Then, uniform convergence, a.e. convergence of derivatives and the
result of Proposition 3.2 still hold as soon as the maximal size of the grid steps vanishes. In such case, it is
possible to let an arbitrarily chosen point in (a, b) be a grid node for any h. It is also possible to fix the value
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of the (right or left) derivative of the approximating sequence at some point. For instance, one may require
(u′h)+(x0) = u′+(x0) for any h at some x0 ∈ (a, b). Indeed, by the monotonicity of w′+, it is possible to find a
sequence of intervals [xh, x

h) 3 x0, h ∈ N, such that xh ↑ x0 and xh ↓ x0 monotonically as h → ∞, and such
that (w(xh)−w(xh))/(xh − xh) = w′+(x0) for any h. Then, by choosing xh, x

h to be subsequent grid nodes for
the piecewise linear approximation wh of w, the requirement is fulfilled.

Proposition 3.4 (Parallelogram rule). Let γ ≤ δ and c ≥ 0. Then

δ∫
γ

dx

1 + c(x− γ)2
=

δ∫
γ

dx

1 + c(x− δ)2
.

Proof. The thesis follows by the change of variable x 7→ γ + δ − x.

Proposition 3.5. Let a < b and q ≥ 0. Let u be a q-concave function on [a, b] such that u(a) = u(b) ≥ u(x) for
every x ∈ [a, b]. Then

q

2
(x− b) ≤ u′+(x) ≤ u′−(x) ≤ q

2
(x− a)

for every x ∈ (a, b).

Proof. Let x ∈ (a, b) be fixed. Then, by q-concavity of u on [a, b], we have that both u′+(x) and u′−(x) exist and
the following hold

u(y) ≤ u(x) + u′+(x)(y − x) +
q

2
(y − x)2 for every y ∈ [x, b], (3.1)

u(z) ≤ u(x) + u′−(x)(z − x) +
q

2
(z − x)2 for every z ∈ [a, x]. (3.2)

Writing (3.1) for y = b and (3.2) for z = a, taking into account that u(a) = u(b) ≥ u(x), we get

u′+(x) ≥ q

2
(x− b) and u′−(x) ≤ q

2
(x− a).

Moreover, since x 7→ u(x) − q
2x

2 is a concave function on [a, b], then u′−(x) ≥ u′+(x) for every x ∈ (a, b) thus
concluding the proof.

We conclude this preliminary section with the following computation.

Proposition 3.6. Let λ ≥ 0, Fλ : R3 → R be the function defined by

Fλ(x, y, z) := arctanx+ arctan y + arctan z − arctanλ+ arctan(λ− x)− arctan(y + z) (3.3)

and let

∆λ :=
{

(x, y, z) ∈ R3 : − y ≤ x ≤ λ, −λ ≤ 2y ≤ 0, x− λ ≤ z ≤ 0
}
⊆ R3. (3.4)

Then

min
∆λ

Fλ = 0.
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The minimal value is attained if and only if one of the following three cases occurs:

i) x = λ, z = 0, y ∈
[
−λ2 , 0

]
, ii) x = −y, z = −y − λ, y ∈

[
−λ2 , 0

]
, iii) x = y = 0, z ∈ [−λ, 0].

Proof. If λ = 0 the result is trivial. Let us assume that λ > 0.
We first claim that if (x, y, z) minimizes Fλ on ∆λ, then x = −y or x = z+λ. Indeed, if (x, y, z) is a minimum

point for Fλ on ∆λ satisfying

− y < x < z + λ, (3.5)

then it is seen from (3.4) that there exists δ > 0 such that [x− δ, x+ δ]× {y} × {z} ⊆ ∆λ and

0 = ∂1Fλ(x, y, z) =
λ(λ− 2x)(

1 + x2
)

(1 + (λ− x)2)
,

that is x = λ
2 . Then, from (3.4) and(3.5) we have

−λ
2
< y ≤ 0

and

−λ
2
< z ≤ 0.

If x = λ
2 , −λ2 < y < 0 and −λ2 < z < 0, then we see from (3.4) and (3.5) that the point (x, y, z) is in the interior

of ∆λ and therefore

∂2Fλ (x, y, z) = ∂3Fλ (x, y, z) = 0,

but this is an absurd because the latter equalities hold true only if y = z = 0. Then we are left to consider the
case x = λ

2 , y = 0, −λ2 < z ≤ 0 and the case x = λ
2 , −λ2 < y ≤ 0, z = 0. However, in both cases we obtain

Fλ(x, y, z) = 2 arctan
λ

2
− arctanλ > 0 = Fλ(0, 0, 0)

and this contradicts the minimality of (x, y, z), since (0, 0, 0) ∈ ∆λ. The proof of the claim is done, that is, there
holds x = z + λ or x = −y.

In order to conclude it suffices to minimize the functions ϕλ, ψλ : R2 → R, defined by

ϕλ(y, z) := F (z + λ, y, z) = arctan(z + λ) + arctan y − arctanλ− arctan(y + z),

ψλ(y, z) := F (−y, y, z) = arctan z − arctanλ+ arctan(λ+ y)− arctan(y + z),

on the set

Σλ :=
{

(y, z) ∈ R2 : y ∈
[
−λ2 , 0

]
, z ∈ [−λ− y, 0]

}
.

It is easily seen than both ϕλ and ψλ have no critical points in the interior of Σλ. Let us check their behavior
on the boundary of Σλ.
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There holds

ϕλ(y, 0) = 0 = ϕλ(y,−y − λ) for every y ∈
[
−λ2 , 0

]
. (3.6)

The restrictions of ϕλ on the other two edges of the boundary of Σλ are

ϕ̃λ(z) := ϕλ
(
−λ2 , z

)
= arctan(z + λ)− arctan λ

2 − arctanλ− arctan
(
z − λ

2

)
, z ∈

[
−λ2 , 0

]
and

ϕλ(z) := ϕλ(0, z) = arctan(z + λ)− arctanλ− arctan z, z ∈ [−λ, 0].

Then we can see that ϕ̃λ is strictly increasing in
[
−λ2 ,−

λ
4

]
and strictly decreasing in

[
−λ4 , 0

]
while ϕλ is strictly

increasing in [−λ,−λ2 ] and strictly decreasing in
[
−λ2 , 0

]
. This yields ϕ̃λ ≥ 0 on [−λ2 , 0] with equality only at

−λ2 and 0, and ϕλ > 0 on [−λ, 0] with equality only at −λ and 0. Therefore, ϕλ ≥ 0 on Σλ, the only equality
cases being described by (3.6).

Similarly, ψλ(0, z) = 0 for every z ∈ [−λ, 0] and ψλ(y,−y−λ) = 0 for every y ∈
[
−λ2 , 0

]
, and moreover ψλ > 0

on the rest of the boundary of Σλ. Indeed, after setting

ψ̃λ(z) := ψλ
(
−λ2 , z

)
= arctan z − arctanλ+ arctan λ

2 − arctan
(
z − λ

2

)
, z ∈

[
−λ2 , 0

]
and

ψλ(y) := ψλ(y, 0) = − arctanλ+ arctan(λ+ y)− arctan y, y ∈
[
−λ2 , 0

]
it is easily seen that ψ̃λ is strictly increasing in

[
−λ2 , 0

]
and ψλ is strictly decreasing on the same interval. The

proof is concluded.

4. The one-dimensional case

In the following we will make use of the notation

℘Ka;b(y) :=
q

2
(y − a)(y − b) +K, y ∈ [a, b].

The proof of Theorem 2.1 is essentially based on the following Lemmas 4.1 and 4.7. The first identifies the
parabolic profile as optimal in the center. The latter identifies a linear profile on the side.

Lemma 4.1 (The center). Let a < b, q ≥ 0, and let u be a q-concave function on [a, b] such that u(a) = u(b) ≥
u(x) for every x ∈ [a, b]. Then

D(a,b)(u) ≥ D(a,b)

(
℘
u(a)
a;b

)
and equality holds if and only if u ≡ ℘u(a)a;b .

Proof. If q = 0 the result is trivial. Assume therefore that q > 0. Since vh(x) := u(x− h) satisfies D(a,b)(u) =
D(a+h,b+h)(vh) for any h ∈ R (translation invariance property), we may also assume without loss of generality
that the reference interval is of the form [−a, a], a > 0.
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Notice that u is absolutely continuous in [−a, a] and that u(a) = u(−a) entails
∫ a
−a u

′(x) dx = 0, hence the
set {x ∈ (−a, a) : u′+(x) ≤ qx} is nonempty and we may define

ζ := inf{x ∈ (−a, a) : u′+(x) ≤ qx}. (4.1)

Then we have ζ ∈ [−a, a), and moreover we may assume without loss of generality that ζ ≤ 0 (indeed, if this
is not the case we may consider v(x) := u(−x), which still satisfies the assumptions, since it is clear that the
corresponding value of ζ is in [−a, 0], and since Da

−a(v) = Da
−a(u) obviously holds). Notice also that ζ ≤ 0

implies u′+(0) ≤ 0, since x 7→ u′+(x)− qx is nonincreasing.
The proof will be achieved in some steps. We first prove that

D(−a,a)(u) ≥ D(−a,a)

(
℘
u(a)
−a;a

)
(4.2)

holds true for q-concave functions u, satisfying u(a) = u(−a) ≥ u(x) for any x ∈ [−a, a], such that [−a, a] 3
x 7→ u(x) − q

2 (x2 − a2) is piecewise linear. In such case x 7→ u′(x) − qx is a nonincreasing piecewise constant
function on (−a, a). We will consider a general u only in the last step.

Step 1. As previously observed, it is not restrictive to assume ζ ≤ 0. Let A1 the (possibly empty) set defined
by A1 := {x ∈ (−a, ζ) : u′+(x) > 0}, and let A2 = (−a, ζ) \A1. Since u′ is piecewise linear, A1 is a finite disjoint
union of open intervals (ci, di), i = 1, . . . , k, and

∫
A1

dx

1 + u′(x)2
≥

k∑
i=1

di∫
ci

dx

1 + q2(x− ci)2

=

k∑
i=1

di∫
ci

dx

1 + q2(x− di)2
≥

k∑
i=1

di∫
ci

dx

1 + q2x2
=

∫
A1

dx

1 + q2x2
. (4.3)

Here, the first inequality holds true since x 7→ u′+(x)−qx (equal to u′(x)−qx a.e. on (−a, a)) is not increasing and
since u′+(ci) = 0, so that on (ci, di) we have 0 < u′+(x) ≤ q(x− ci). The first equality follows by Proposition 3.4
and the last inequality is satisfied since we have di ≤ 0 and then 0 < q(di − x) ≤ −qx on (ci, di), for every
i = 1, . . . , k. On the other hand, it is clear that we have 0 ≥ u′+(x) ≥ qx on A2 and together with (4.3) this
gives

D(−a,ζ)(u) =

∫
A1∪A2

dx

1 + u′(x)2
≥
∫ ζ

−a

dx

1 + q2x2
. (4.4)

In a similar way, since u is q-concave on [−a, a] and ζ ∈ [−a, 0], we have that 0 ≥ qx ≥ u′+(x) ≥ u′+(0) + qx
for every x ∈ (ζ, 0). As u′ = u′+ a.e. on (−a, a), we get

D(ζ,0)(u) ≥
0∫
ζ

dx

1 + (u′+(0) + qx)2
=

1

q
arctan(u′+(0))− 1

q
arctan(u′+(0) + qζ)

=

0∫
ζ

dx

1 + q2x2
+

1

q
arctan(u′+(0))− 1

q
arctan(u′+(0) + qζ) +

1

q
arctan(qζ). (4.5)
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Step 2. Let us now define

σ := min{x ∈ [0, a) : u′+(x) = 0},
S := {x ∈ (0, a) : u′−(x) = u′+(x) = 0} ∪ {x ∈ (0, a) : u′+(x) < 0 < u′−(x)}. (4.6)

By Proposition 3.5, we have q
2 (x − a) ≤ u′(x) ≤ q

2 (x + a) at each point where u′ exists. Since u′(x) − qx is
piecewise constant, it follows that −qx > u′(x)− qx ≥ 0 on a right neighbor of −a and −qx < u′(x)− qx ≤ 0 on
a left neighbor of a. Moreover u′+(0) ≤ 0 follows from ζ ≤ 0. Therefore, σ is well defined. We have 0 < σ < a if
u′+(0) < 0 (then u′+ < 0 on (0, σ)) and σ = 0 otherwise. In any case u′+(σ) = 0. On the other hand, u′ is piecewise
linear, therefore S is a (possibly empty) finite set, and sign change of u′+ on (0, a) occurs exactly at σ if σ > 0,
and on S \ {σ}, if nonempty. In case S \ {σ} is nonempty, we denote its elements by 0 < ξ1 < ξ2 < . . . < ξh,
and h is even (this comes from the fact that u′ > 0 in a left neighborhood of a). We also let ξh+1 = a. In each
of the intervals (ξi, ξi+1), i = 1, . . . , h, there holds either u′+ ≥ 0 or u′+ ≤ 0. Moreover we have that

D(ξi,ξi+1)(u) ≥
ξi+1∫
ξi

dx

1 + q2(x− ξi)2
(4.7)

for every i = 1, . . . , h. Indeed, (4.7) is obvious if u′+ ≥ 0 on (ξi, ξi+1), i.e., u′ ≥ 0 a.e. on (ξi, ξi+1). Else if u′ ≤ 0
a.e. on (ξi, ξi+1), the q-concavity inequality 0 ≥ u′+(x) ≥ q(x− ξi+1) and Proposition 3.4 yield

D(ξi,ξi+1)(u) ≥
ξi+1∫
ξi

dx

1 + q2(x− ξi+1)2
=

ξi+1∫
ξi

dx

1 + q2(x− ξi)2
.

If instead S \ {σ} is empty we just have h = 0 and ξ1 = a. Similarly, q-concavity implies 0 ≤ u′+(x) ≤ q(x− σ)
on (σ, ξ1), and in case σ > 0 it gives q(x − σ) ≤ u′+(x) ≤ 0 on (0, σ). Then the usual change of variables of
Proposition 3.4 entails

D(0,σ)(u) ≥
σ∫

0

dx

1 + q2x2
, D(σ,ξ1)(u) ≥

ξ1∫
σ

dx

1 + q2(x− σ)2
. (4.8)

In general, from (4.7) and (4.8) we have

D(0,a)(u) = D(0,σ)(u) +D(σ,ξ1)(u) +

h∑
i=1

D(ξi,ξi+1)(u)

≥
σ∫

0

dx

1 + q2x2
+

ξ1∫
σ

dx

1 + q2(x− σ)2
+

h∑
i=1

ξi+1∫
ξi

dx

1 + q2(x− ξi)2

=

σ∫
0

dx

1 + q2x2
+

1

q
arctan(qξ1 − qσ) +

h∑
i=1

1

q
arctan(qξi+1 − qξi).
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The sub-additivity of arctan in R+ then implies

D(0,a)(u) ≥
σ∫

0

dx

1 + q2x2
+

1

q
arctan(qa− qσ)

=

a∫
0

dx

1 + q2x2
+

1

q
arctan(qa− qσ)− 1

q
arctan(qa) +

1

q
arctan(qσ). (4.9)

Step 3. Adding together (4.4), (4.5) and (4.9) we get

D(−a,a)(u) ≥
a∫
−a

dx

1 + q2x2
+

1

q
Fqa(qσ, u′+(0), qζ) (4.10)

where Fqa is the function defined in (3.3) with λ = qa > 0, so that in order to conclude it is enough to show
that

(qσ, u′+(0), qζ) ∈ ∆qa, (4.11)

being ∆qa the set defined in (3.4) with λ = qa, and then apply Proposition 3.6.
We already observed that qσ ≤ qa, u′+(0) ≤ 0 and qζ ≤ 0. Moreover, q-concavity and u′+(σ) = 0 yield u′+(0) ≥

u′+(σ)− qσ = −qσ. Since u(−a) = u(a) ≥ u(x) for every x ∈ [−a, a], by applying Proposition 3.5 we obtain that
2u′+(0) ≥ −qa. At last we claim that qσ− qa ≤ qζ. Indeed we have

∫ σ
o
u′(x)dx ≤ 0 and u′(x) ≤ q(x− σ) a.e. on

(σ, a), whereas u(a) = u(−a) ≥ u(ζ) by assumption, thus

0 =

a∫
−a

u′(t) dt =

ζ∫
−a

u′(t) dt+

a∫
ζ

u′(t) dt = u(ζ)− u(a) +

a∫
ζ

u′(t) dt ≤
a∫
ζ

u′(t) dt

=

0∫
ζ

u′(t) dt+

σ∫
0

u′(t) dt+

a∫
σ

u′(t) dt ≤
0∫
ζ

qtdt+

a∫
σ

q(t− σ) dt =
1

2
(a− σ − ζ)(qa− qσ + qζ),

but a− σ ≥ 0 and ζ ≤ 0 then the claim is proved, and (4.11) is shown, so that (4.10) and Proposition 3.6 allow
to conclude that

D(−a,a)(u) ≥
a∫
−a

dx

1 + q2x2
= D(−a,a)

(
℘
u(a)
−a;a

)
,

in case x 7→ u′(x)− qx is piecewise constant.

Step 4. In order to treat a general q-concave function u, satisfying u(−a) = u(a) ≥ u(x) for any x ∈ [−a, a], we
approximate it by means of the sequence uh from Definition 3.1. Then, (4.2) applies to uh for each h, as just
shown. Invoking Proposition 3.2, we find (4.2) for u.

We are left to prove that the only equality case in (4.2) is u = ℘
u(a)
−a;a, i.e., u′(x) = qx in (−a, a). This is

done by revisiting the previous steps and by taking some care in the choice of the approximating sequence
uh. Assume that u satisfies (4.2) with equality. As usual, we may assume that the number ζ defined by (4.1)
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is nonpositive, then u′+(0) ≤ 0. If ζ = −a, then
∫ a
−a u

′ = 0 readily implies u′ = qx on (−a, a). Therefore, we
assume that ζ > −a as well, and we aim at reaching a contradiction.

We first claim that u′+ ≤ 0 in the whole (0, a) yields contradiction: indeed, it would give, by taking into
account that u(x) ≤ u(−a) in [−a, a] and that u′ ≤ 0 a.e. on (ζ, 0),

0 =

a∫
−a

u′(x) dx ≤
a∫
ζ

u′(x) dx =

0∫
ζ

u′(x) dx+

a∫
0

u′(x) dx ≤
0∫
ζ

qxdx ≤ −q
2
ζ2,

that is, ζ = 0. But ζ = 0 implies D(−a,0)(u) ≥ D(−a,0)

(
℘
u(a)
−a;a

)
: this follows from Step 1, see (4.3) and (4.4),

where in this case the set A1 is a possibly infinite but countable union of disjoint open intervals (because A1

is open, since u′+ is lower semicontinous). On the other hand, Proposition 3.5 implies u′(x) ≥ q
2 (x− a) a.e. on

(0, a), then u′ ≤ 0 gives u′(x)2 ≤ q2

4 (x− a)2 and Proposition 3.4 yields

D(0,a)(u) =

∫ a

0

dx

1 + u′(x)2
≥
∫ a

0

dx

1 + q2

4 (x− a)2
=

∫ a

0

dx

1 + q2

4 x
2
> D(0,a)

(
℘
u(a)
−a;a

)
,

that is, summing up, D(−a,a)(u) > D(−a,a)(ũ), a contradiction. The claim is proved and thus we assume from
now that u′+ > 0 at some point in (0, a), which implies, by q-concavity of u and right continuity of u′+, that σ
from (4.6) is well defined for u, with u′+(σ) = 0 and −a < ζ ≤ 0 ≤ σ < a.

We approximate u with a sequence of q-concave piecewise parabolic functions uh, constructed by means of
Remark 3.3, such that uh(±a) = u(±a), (uh)′ → u′ a.e. on (−a, a) and

(uh)′+(σ) = u′+(σ), (uh)′+(ζ) = u′+(ζ), (uh)′+(0) = u′+(0), ∀h ∈ N. (4.12)

We let ζh := inf{x ∈ (−a, a) : (uh)′+(x) ≤ qx}. By definition of ζh and ζ and by (4.12), we see that ζh ≤ ζ
and that ζh → ζ as h → ∞. We let σh := min{x ∈ [0, a) : (uh)′+(x) = 0}, then (4.12) implies σh ≤ σ. Notice
that if u′+(0) = 0, then σ = 0 so that σh = 0 for any h. Else if (uh)′+(0) = u′+(0) < 0 we have by q-concavity
(uh)′+(x) ≤ qx+ u′+(0) on [0, a), implying qσh ≥ −(uh)′+(0) = −u′+(0). Therefore σh ∈

[
−u′+(0)/q, σ

]
, and we

may assume, up to passing on a not relabeled subsequence, that σh → σ̄ ∈
[
−u′+(0)/q, σ

]
as h→∞.

We apply the previous steps obtaining (4.10) for uh, and passing to the limit with the a.e. convergence of u′h
to u′ and with the continuity of function Fqa we get

D(−a,a)(u) ≥
a∫
−a

dx

1 + q2x2
+

1

q
Fqa(qσ̄, u′+(0), qζ).

If Fqa(qσ̄, u′+(0), qζ) > 0 we contradict the fact that u satisfies (4.2) with equality. By taking into account that
σ̄ ≤ σ < a, Proposition 3.6 shows that Fqa(qσ̄, u′+(0), qζ) = 0 if and only if one of the following two cases occurs

i) 0 < u′+(0) = −qσ̄, ζ = σ̄ − a, ii) σ̄ = 0 = u′+(0).

If i) were true then u′+(x) ≤ qx+ u′+(0) = q(x− ζ − a) for every x ∈ (0, a), hence by taking into account that
u(ζ) ≤ u(−a) we would get

0 =

∫ a

−a
u′(x) dx ≤

∫ 0

ζ

qxdx+

∫ a

0

q(x− ζ − a) dx = −q
2

(ζ + a)2
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that is ζ = −a, a contradiction.
Eventually if ii) occurs then we are in the case σh = σ = 0. In this case it is clear that u′+(x)− qx, which is

monotone, is identically 0 on (ζ, 0), and moreover we immediately get

D(−a,0)

(
℘
u(a)
−a;a

)
≤ D(−a,0)(u), (4.13)

since equality holds on (ζ, 0) where u′(x) ≡ qx, and since we apply Step 1 on (−a, ζ), recalling as before that
in general the set A1 therein is a countable union of disjoint open intervals.

If 0 ≤ u′+(x) ≤ qx in (0, a), either u′ = qx a.e. in (0, a), thus in (ζ, a), and then we easily see from the null
mean property of u′ that ζ = −a (a contradiction), or u′ = qx does not hold a.e. in (0, a) and we readily conclude

that D(0,a)

(
℘
u(a)
−a;a

)
< D(0,a)(u), which, combined with (4.13), yields that (4.2) does not hold with equality, a

contradiction. Else if u′+ < 0 at some point c ∈ (0, a), since we are also excluding u′+ ≤ 0 on the whole (0, a), we
also fix a point d ∈ (0, a) such that u′+(d) > 0. In this case, we assume that the above approximating sequence
uh satisfies a further restriction, still by means of Remark 3.3: we let (uh)′+(c) = u′+(c) and (uh)′+(d) = u′+(d)
for any h ∈ N. Therefore, after defining

Sh := {x ∈ (0, a) : (uh)′−(x) = (uh)′+(x) = 0} ∪ {x ∈ (0, a) : (uh)′+(x) < 0 < (uh)′−(x)},

it is clear that for any h ∈ N there is an element x̄h in the set Sh ∩ [c ∧ d, c ∨ d]. Indeed, u′h has to change sign
at least once on [c ∧ d, c ∨ d]. Now we can reason as in Step 2. Fix h ∈ N. Let 0 = ξ0 < ξ1 < . . . < ξn = x̄h
and x̄h = ξn+1 . . . < ξn+m−1 denote the finitely many points of Sh, and let ξn+m = a (Sh contains at least x̄h).
Since (4.7) holds for uh in any of the intervals (ξi, ξi+1), where u′h does not change sign, we get

D(0,a)(uh) ≥
n+m−1∑
i=0

∫ ξi+1

ξi

dx

1 + q2(x− ξi)2
=

n+m−1∑
i=0

1
q arctan (q(ξi+1 − ξi))

≥ 1

q
arctan(qx̄h) +

1

q
arctan(q(a− x̄h))

where we have split the sum and used the sub-additivity of arctan. By passing to the limit with Proposition 3.2
and Remark 3.3 as h → ∞ (possibly on a subsequence, such that x̄h converge to some x̄ ∈ [c ∧ d, c ∨ d]), and
also using (4.13), we get

D(−a,a)(u) ≥
∫ 0

−a

dx

1 + q2x2
+

1

q
arctan(qx̄) +

1

q
arctan(q(a− x̄)) >

∫ 0

−a

dx

1 + q2x2
+

1

q
arctan(qa),

since 0 < x̄ < a. The right hand side is exactly D(−a,a)

(
℘
u(a)
−a;a

)
, this is a contradiction.

Proposition 4.2 (Concave rearrangement). Let a < b and let u be a nonincreasing absolutely continu-
ous function on [a, b]. Then there exists a nonincreasing concave function u∗ : [a, b] → [u(b), u(a)] such that
D(a,b)(u) = D(a,b)(u

∗).

Proof. Let (uh)h∈N denote a sequence of continuos, piecewise affine, nonincreasing approximating functions,
constructed on a equispaced grid of step (b− a)/h on the interval [a, b], and coinciding with u at the nodes of
the grid. At any differentiability point x of u in (a, b) which for any h is not a grid node (that is, for a.e. x in
(a, b)), there holds u′h(x)→ u′(x) as h→∞.

For every h ∈ N let us exchange the position of each segment of the graph of uh in such a way that the
slopes get ordered in a nonincreasing way. If sj,h denotes the slope of the piecewise affine function uh on the
interval [a + (b − a)(j − 1)/h, a + (b − a)j/h], j = 1, . . . , h, we denote by s∗1,h, . . . , s

∗
h,h a permutation of the
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slopes such that s∗1,h ≥ s∗2,h ≥ . . . ≥ s∗h,h. We define u∗h as the unique continuous, piecewise affine function such
that the slope of u∗h is s∗j,h on the interval [a + (b − a)(j − 1)/h, a + (b − a)j/h], j = 1, . . . , h, and such that
u∗h(a) = uh(a) = u(a), u∗h(b) = uh(b) = u(b). It is clear that D(a,b)(u

∗
h) = D(a,b)(uh) for every h ∈ N.

Notice that (u∗h)h∈N is a family of concave, uniformly bounded functions on [a, b]. By Lemma A.5 in
Appendix A, the family (u∗h)h∈N has a concave decreasing limit point u∗ : [a, b] → [u(b), u(a)] in the strong

W 1,1
loc ((a, b)) topology (it is extended by continuity to the closed interval). This entails uniform convergence on

compact subsets of (a, b) and a.e. convergence of derivatives (up to extracting a subsequence), allowing to pass
to the limit with dominated convergence and to get

D(a,b)(u
∗) = lim

h→∞
D(a,b)(u

∗
h) = lim

h→∞
D(a,b)(uh) = D(a,b)(u).

Hence, u∗ is the desired concave rearrangement.

Remark 4.3. In the same assumptions of Proposition 4.2 and with the same notation, if c < 0 exists such
that the set of differentiability points of u with u′ > c has positive measure, the same property holds for u∗

as well. Indeed, in such case there exists ε > 0 such that the set B where u′ > c + ε has positive measure as
well. Since u′h converge to u′ a.e. on B, by Egorov theorem there is a positive measure subset B∗ of B such
that u′h → u′ uniformly on B∗. Then there exists h0 > 0 such that, for any h > h0 and any x ∈ B∗, there
holds u′h(x) > c+ ε/2. For any h > h0, after rearranging, since u∗h are concave, we have (u∗h)′ > c+ ε/2 a.e. on
an interval (a, ξ) with length equal to the measure of B∗. Since (u∗h)′ → (u∗)′ a.e. on (a, b), we conclude that
(u∗)′ ≥ c+ ε/2 > c a.e. on (a, ξ).

For the proof of Lemma 4.7 below, we will need a general result about the resistance functional, holding also
in higher dimension. It is the property |∇u| /∈ (0, 1), a proof of which is given in [6], Theorem 2.3. In dimension
one we provide a simpler proof with the following

Proposition 4.4. Let a < b and let u be a concave, nonincreasing, continuous function on [a, b], such that
u(a) > u(b). Then there exists c ∈ [a, b) such that u(a)− u(b) ≥ b− c and

D(a,b)(u) ≥ D(a,b)(u
c
a;b),

where uca;b : [a, b]→ R is defined by

uca;b(y) :=


u(a) if y ∈ [a, c]

y − b
c− b

(u(a)− u(b)) + u(b) if y ∈ (c, b].

(4.14)

Proof. Since u is concave, then the set Au := {x ∈ (a, b) : u′+(x) ≥ −1} is connected, and we define

c∗ :=

{
supAu if Au 6= ∅
a if Au = ∅

and uc∗ : [a, b]→ R as follows:

uc∗(x) :=

 u(a) if x ∈ [a, c∗ + u(c∗)− u(a)]
−x+ c∗ + u(c∗) if x ∈ [c∗ + u(c∗)− u(a), c∗]
u(x) if x ∈ [c∗, b].
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Since 1
1+t2 ≥ 1 + t

2 for every t ≤ 0, we have

D(a,c∗)(u) ≥
c∗∫
a

(
1 +

u′(x)

2

)
dx = c∗ − a+

1

2
(u(c∗)− u(a)) = D(a,c∗)(uc∗)

where the last equality follows by a simple calculation. Then D(a,b)(u) ≥ D(a,b)(uc∗).
Let now c := c∗+u(c∗)−u(a). We claim that D(a,b)(uc∗) ≥ D(a,b)(u

c
a;b). To see this, it is enough to prove that

D(c,b)(uc∗) ≥ D(c,b)(u
c
a;b). This immediately follows by Jensen inequality, since the function f : (−∞,−1]→ R

defined by f(t) = 1
1+t2 is convex and u′c∗ ≤ −1 a.e. in (c, b).

Corollary 4.5. Let a < b and let u be a nonincreasing absolutely continuous function on [a, b], such that
u(a) > u(b). Then there exists c ∈ [a, b) such that u(a)− u(b) ≥ b− c and

D(a,b)(u) ≥ D(a,b)(u
c
a;b),

where uca;b : [a, b]→ R is the function defined in (4.14).

Proof. We apply Proposition 4.2 to u, obtaining a nonincreasing concave function u∗ : [a, b]→ [u(b), u(a)] such
thatD(a,b)(u) = D(a,b)(u

∗). Since u(a) > u(b), then u∗ is non constant. We apply Proposition 4.4 to u∗, obtaining
c ∈ [a, b) and (u∗)ca;b, defined by means of (4.14), such that u(a)−u(b) ≥ u∗(a)−u∗(b) ≥ b− c and D(a,b)(u

∗) ≥
D(a,b)((u

∗)ca;b). But then we easily see that D(a,b)((u
∗)ca;b) ≥ D(a,b)(u

c
a;b) and we conclude.

Remark 4.6. Notice that the condition u(a)− u(b) ≥ b− c on c indicates that the straight line corresponding
to the restriction of uca;b on [c, b] has slope smaller than or equal to −1.

Lemma 4.7 (The side). Let a < b and q ≥ 0. Let u be a q-concave continuous function on [a, b] such that
u(y) ≤ u(a) for every y ∈ [a, b] and u(b) < u(a). Then there exists γ ∈ [a, b) such that u(a)− u(b) ≥ b− γ and

D(a,b)(u) ≥ D(a,b)(wa,γ,b),

where wa,γ,b : [a, b]→ R is defined by

wa,γ,b(y) :=


℘
u(a)
a;γ (y) if y ∈ [a, γ)

y − b
γ − b

(u(a)− u(b)) + u(b) if y ∈ [γ, b].

(4.15)

The result holds with γ ∈ (a, b) if u is not strictly decreasing on [a, b].

Proof. If q = 0 we just apply Proposition 4.4, obtaining the concave function uca;b, defined in (4.14), with
c ∈ [a, b), such that D(a,b)(u) ≥ D(a,b)(u

c
a;b). Then we just let γ = c and observe that in case q = 0 we have

uγa;b = wa,γ,b. If u is not strictly decreasing and it is concave, then it has a flat part in a neighborhood of a and
we can take c > a. This is done by fixing ã > a such that u(ã) = u(a) and by applying Proposition 4.4 on [ã, b].
From here on, we let q > 0.

As did in the proof of Lemma 4.1, we prove the result first for q-concave functions u that satisfy the assump-
tions (i.e. u(x) ≤ u(a) on [a, b], u(a) > u(b)) and are moreover such that [a, b] 3 x 7→ u(x)− q

2 (x− a)(x− b) is
piecewise linear. This means that u is piecewise parabolic on [a, b], the second derivative of u being equal to q
on each of the finitely many pieces. Moreover, it is clear that u has a finite number of local maximum points on
[a, b].

The main part of the proof is the following claim: there is another piecewise parabolic function ũ with the
same resistance as u, such that ũ(a) = u(a), ũ(b) = u(b), ũ(x) ≤ ũ(a) for any x ∈ [a, b], and moreover there
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exists d ∈ [a, b) such that ũ(d) = ũ(a) and ũ is nonincreasing on [d, b]. Notice that the claim is directly proved
if u(a) = u(x) for each local maximum point x of u on [a, b]. Just let ũ = u in this case.

In general, let us consider the subset of local maxima x such that x = b or u(x) > u(y) for any y ∈ (x, b].
More precisely, if M̃ is the set of local maximum points of u on [a, b], we define

M := (M̃ ∩ {b}) ∪ {x ∈ M̃ : u(x) > u(y) for every y ∈ (x, b]}.

Notice that b could be a local maximum point itself, in such case it belongs toM. We also let x0 := minM and
x∗ := maxM (possibly x0 = a, x∗ = b). IfM is reduced to x0, the claim is proved by letting ũ = u. Otherwise,
for every x ∈M \ {x∗} we let

ξx := min {y ∈M : y > x} , zx := min {y ∈ [x, ξx] : u(y) = u(ξx)} .

We let moreover

γx :=
∑

s∈M, s<x

(zs − s), for any x ∈M (notice that γx0
= 0),

δ∗ :=
∑

x∈M\{x∗}

(ξx − zx) = x∗ − γx∗ − x0.

We define ũ : [a, b]→ R by ũ(y) = u(y) if y ∈ [a, x0) ∪ [x∗, b] and, for every x ∈M \ {x∗},

ũ(y) =

{
u(y + γx + zx − x) + u(x0)− u(ξx) if y ∈ [x− γx, x− γx + ξx − zx)
u(y − x0 − δ∗ − γx + x) if y ∈ [x0 + δ∗ + γx, x0 + δ∗ + γx + zx − x).

Notice that ũ is absolutely continuous on [a, b] and that ũ(a + δ∗) = ũ(a), moreover ũ is nonincreasing on
[a+ δ∗, b]. ũ is obtained from u by translating restrictions of u on a finite number of subintervals which cover
[a, b]. Then it is piecewise parabolic and by the translation invariance property of the resistance functional in
dimension one, we have, for every x ∈M \ {x∗},

D(zx,ξx)(u) = D(x−γx,x−γx+ξx−zx)(ũ), D(x,zx)(u) = D(x0+δ∗+γx,x0+δ∗+γx+zx−x)(ũ).

Therefore D(a,b)(ũ) = D(a,b)(u) and the claim is proved, with d = a+ δ∗.
We apply now Corollary 4.5 to ũ on [d, b], obtaining γ ∈ [d, b) such that γ ≥ b− ũ(d) + ũ(b) and D(d,b)(ũ) ≥

D(d,b)(ũ
γ
d;b), where ũγd;b is defined as (4.14), starting from ũ. Then, applying Lemma 4.1 on [a, γ], since ũ(d) =

ũ(a) = u(a) and ũ(b) = u(b), we get

D(a,b)(u) = D(a,b)(ũ) ≥ D(a,d)(ũ) +D(d,b)(ũ
γ
d,b) ≥ D(a,b)(wa,γ,b),

with γ ≥ b− u(a) + u(b) and γ ≥ d = a+ δ∗ ≥ a. In particular we deduce

D(a,b)(u) ≥ inf
{
D(a,b)(wa,γ,b) : γ ∈ [a ∨ (u(b)− u(a) + b), b)

}
. (4.16)

In order to conclude, we need to prove (4.16) for a generic u satisfying the assumptions of this lemma. If
uh is a sequence of piecewise parabolic approximations of u constructed by means of Proposition 3.1, we have
uh(a) = u(a), uh(b) = u(b) and uh(x) ≤ u(x) ≤ u(a) if x ∈ [a, b], for any h ∈ N. Therefore we may apply (4.16)
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to uh and pass it to the limit, since we can use Proposition 3.2, and since the right hand side of (4.16) is
independent of h. The map

[a, b) 3 γ 7→ D(a,b)(wa,γ,b) =
(b− γ)3

(b− γ)2 + (u(a)− u(b))2
+

2

q
arctan ( q2 (γ − a))

is however smooth and strictly increasing in a left neighborhood of b, so that its infimum is realized and
belongs to [a ∨ (u(b) − u(a) + b), b). In other words, there is γ ∈ [a, b) such that γ ≥ u(b) − u(a) + b and
D(a,b)(u) ≥ D(a,b)(wa,γ,b), as desired.

Eventually, we prove the last statement, which is in fact obvious if u(ã) = u(a) for some ã > a. We assume
therefore that u is not strictly decreasing on [a, b] and also that u(y) < u(a) for any y ∈ (a, b]. Then there exists
a local maximum point for u in (a, b] that we denote by a1, and we let δ0 ∈ (0, a1 − a) be small enough, such
that u(y) ≤ u(a1) for any y ∈ (a1 − δ0, a1). We take advantage of Remark 3.3 for approximating u, by taking
a sequence uh of piecewise parabolic approximations such that uh(a1) = u(a1) for any h ∈ N. Notice that by
construction uh ≤ u, thus we have uh(y) < u(a) for any y ∈ (a, b], a1 is a local maximum point for uh and in
particular

uh(y) ≤ uh(a1) for any y ∈ (a1 − δ0, a1), (4.17)

for any h ∈ N. Now we fix h and for the function uh we define M, x∗, x0, d, δ∗ as above, omitting for
simplicity the dependence on h. Since uh < u(a) on (a, b] we readily have a = x0 ∈ M. We take the largest
element x of M which is strictly smaller than a1, and since a1 is a local maximum point for uh (and the
rightmost local maximum of uh necessarily belongs to M), we see that x < x∗, i.e. x ∈ M \ {x∗}. Then,
by definition of ξx above, we get ξx ≥ a1 > x and uh(ξx) ≥ uh(a1). Moreover, by the definition of zx above,
thanks to (4.17) and to the intermediate value theorem, we get ξx − zx ≥ δ0, implying δ∗ ≥ δ0, i.e., d ≥ a+ δ0.
Since δ0 does not depend on h, when applying the previous part of this proof we get the improved estimate
D(a,b)(u) ≥ inf{D(a,b)(wa,γ,b) : γ ∈ [(a+ δ0) ∨ (u(b)− u(a) + b), b)}, where the infimum is realized, yielding the
result.

4.1. Conclusion of the one-dimensional case

We first combine Lemmas 4.1 and 4.7 to obtain the following

Proposition 4.8. Let M > 0, q ≥ 0, u ∈ KMq and M ≥ m := max{u(x) : x ∈ [−1, 1]}. Then there exist α ∈
[0,m], β ∈ [0,m] and a, b ∈ R, with

−1 ≤ a ≤ min{1,−1 +m}, max{−1, 1−m} ≤ b ≤ 1, a ≤ b,

such that the q-concave function on [−1, 1] defined by

û(x) :=



m− α
a+ 1

(x+ 1) + α if x ∈ [−1, a)

q

2
(x− a)(x− b) +m if x ∈ [a, b]

β −m
1− b

(x− b) +m if x ∈ (b, 1]

(4.18)

satisfies D(−1,1)(u) ≥ D(−1,1)(û).

Proof. We can assume wlog that u is continuous up to the boundary of [−1, 1], and we let α := u(−1) and
β := u(1). We take a maximum point x∗ ∈ [−1, 1] for u. We apply Lemma 4.7 on [x∗, 1] and its reflected version
on [−1, x∗], finding two points a, b ∈ [−1, 1], with −1 ≤ a ≤ x∗ ≤ b ≤ 1, such that D(a,b)(u) ≥ D(a,b)(ũ), where
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ũ, by this application of Lemma 4.7, is made of two straight lines on [−1, a) and (b, 1], with slope in modulus
greater than or equal to 1, and moreover ũ(a) = ũ(b) = m. We change ũ with x 7→ m + q

2 (x − a)(x − b) on
[a, b], and the result follows by means of Lemma 4.1. All the degenerate cases a = b, a = −1, b = 1, a = b = 1,
a = b = −1 are possible (for instance if u ≡ m on [−1, 1], we are just applying Lem. 4.1).

For M > 0, q ≥ 0, the resistance of û in (4.18) is given explicitly by D(−1,1)(û) = Γ (a, b,m, α, β), where, if
q > 0,

Γ (a, b,m, α, β) :=
(a+ 1)3

(a+ 1)2 + (m− α)2
+

2

q
arctan

(q
2

(b− a)
)

+
(1− b)3

(1− b)2 + (β −m)2

and where the parameters (a, b,m, α, β) vary in the set

T := {(a, b,m, α, β) : − 1 ≤ a ≤ min{1,−1 +m}, max{−1, 1−m} ≤ b ≤ 1,

a ≤ b, 0 ≤ m ≤M, 0 ≤ α ≤ m, 0 ≤ β ≤ m}.

If q = 0 the arctan term simply becomes b− a.
With the next three propositions we solve the problem minT Γ , for q ∈ [0, 1] and 2M ≥ q.

Proposition 4.9. If (a, b,m, α, β) is a minimizer of Γ on T , then α = β = 0, m = M , −a = b =: γ and
max{0, 1−M} ≤ γ < 1.

Proof. We first notice that if (a, b,m, α, β) ∈ T is a point of minimum for Γ , then both a 6= −1 and b 6= 1. Since
the proofs are similar, let’s see, for example, that a 6= −1, which is equivalent to show that every (−1, b,m, α, β) ∈
T is not a point of minimum for Γ on T . Let max{−1, 1−m} ≤ b ≤ 1, 0 ≤ m ≤M, 0 ≤ α ≤ m, 0 ≤ β ≤ m be
fixed. Then

lim
a→−1+

∂Γ

∂a
(a, b,m, α, β) = − 4

4 + q2(b+ 1)2
< 0

and the thesis is proved for b ∈ (−1, 1]. On the other hand it is easily seen that (−1,−1,m, α, β) is a local
maximum for the function a 7→ Γ (a, a,m, α, β), then the proof is done. So, from now on, we will assume both
a 6= −1 and b 6= 1.

Since the function m 7→ Γ (a, b,m, α, β) is decreasing on [0,M ], we have that

Γ (a, b,m, α, β) ≥ Γ (a, b,M,α, β)

for every (a, b,m, α, β) ∈ T , with strict inequality if m < M . Moreover since both the functions α 7→
Γ (a, b,M,α, β) and β 7→ Γ (a, b,M, 0, β) are non-decreasing on [0,M ] we have

Γ (a, b,M,α, β) ≥ Γ (a, b,M, 0, 0),

with strict inequality if α > 0 or β > 0. Finally, since the function [0,M ] 3 σ 7→ σ3(M2 + σ2)−2 is convex, and
taking into account that both a+ 1, 1− b ∈ [0,M ], the following holds:

Γ (a, b,M, 0, 0) ≥ Γ
(
a− b

2
,
b− a

2
,M, 0, 0

)
,

with strict inequality if a 6= −b. In conclusion, in order to minimize Γ on T we can restrict to m = M , α = β = 0,
b = −a =: γ ≥ 0, max{0, 1−M} ≤ γ < 1.
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Proposition 4.10. Let M > 0 and q ∈ [0, 1] such that 2M ≥ q. Let ϕM ;q : [0, 1]→ R be the function defined by

ϕM ;q(γ) := M4 −M2(1− γ)2 − q2γ2(1− γ)4 − 3M2q2γ2(1− γ)2. (4.19)

Then ϕM ;q is strictly increasing on [0, 1].

Proof. If q = 0 the result is obvious. Assume q > 0. We first consider the function ψM ;q : [0, 1]→ R defined by

ψM ;q(γ) := M2 − q2γ(1− γ)3 + 2q2γ2(1− γ)2 − 3M2q2γ(1− γ) + 3M2q2γ2,

and we observe that

ϕ′M ;q(γ) = 2(1− γ)ψM ;q(γ) for every γ ∈ [0, 1]. (4.20)

Let now α, β : [0, 1]→ R be the functions defined by

α(γ) := −γ(1− γ)3 and β(γ) := 2γ2 − γ.

It is easy to check that

min
[0,1]

α = α
(
1
4

)
= − 27

256 , min
[0,1]

β = β
(
1
4

)
= − 1

8 .

Then, taking into account that q ∈ (0, 1] and 2M ≥ q, we have

ψM ;q(γ) = M2 + q2α(γ) + 2q2γ2(1− γ)2 + 3M2q2β(γ)

≥M2 − 27
256q

2 − 3
8M

2q2 ≥ 5
8M

2 − 27
256q

2 ≥ 13
256q

2 > 0

for every γ ∈ [0, 1]. Therefore, from (4.20) we conclude.

Proposition 4.11. Let M > 0 and q ∈ [0, 1] such that 2M ≥ q. Let RM ;q : [0, 1] → R be the function defined
by (2.2).

(i) If M ∈ (0, 1) then there exists a unique γ∗M,q ∈ (0, 1) such that

min
γ∈[0,1]

RM ;q(γ) = RM ;q(γ
∗
M,q).

(ii) If M ≥ 1, then min
γ∈[0,1]

RM ;q(γ) = RM ;q(0) = 1
1+M2 , and 0 is the unique minimizer.

Proof. We first notice that

R′M ;q(γ) =
ϕM ;q(γ)

(1 + q2γ2) [M2 + (1− γ)2]2

for every γ ∈ [0, 1], ϕM ;q(γ) being the function defined in (4.19). Then the sign of R′M ;q coincides with the sign
of ϕM ;q.

(i) If M ∈ (0, 1) then ϕM ;q(0) = M2(M2 − 1) < 0 and ϕM ;q(1) = M4 > 0. Then, by Proposition 4.10, there
exists a unique γ∗M ;q ∈ (0, 1) such that

R′M ;q(γ
∗
M ;q) = ϕM ;q(γ

∗
M ;q) = 0
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and R′M ;q is negative on [0, γ∗M ;q), while it is positive on (γ∗M ;q, 1]. Therefore γ∗M ;q is the unique point of
minimum of RM ;q on [0,1].

(ii) If M ≥ 1 then ϕM ;q(0) = M2(M2 − 1) ≥ 0 and ϕM ;q(1) = M4 > 0. By Proposition 4.10, both ϕM ;q and
RM ;q are strictly increasing on [0, 1], then

min
[0,1]

RM ;q = RM ;q(0) =
1

1 +M2

and 0 is the unique minimizer of RM ;q on [0, 1].

Proof of Theorem 2.1. Let M > 0, q ∈ [0, 1] and M ≥ 2q. Assume that u is a solution to (2.1). We may assume
that it is not constant and continuous up to the boundary. Let m ∈ (0,M ] be the maximal value of u on [−1, 1],
and let

ξ = max{x ∈ [−1, 1] : u(x) = m}, η = min{x ∈ [−1, 1] : u(x) = m}.

We claim that m = M , −1 < η ≤ ξ < 1 and u(±1) = 0. If for instance η = −1 we apply Lemma 4.7 on [−1, 1]
(reduced to Lem. 4.1 if ξ = 1), yielding a competitor of the form of (4.18). It is not optimal, as a consequence
of Proposition 4.9. This is a contradiction. Similarly, there holds ξ < 1. If m < M , u(−1) > 0 or u(1) > 0, still
we easily have a contradiction by constructing û of the form of (4.18) with û(±1) = u(±1), max[−1,1] û = m,
and D(−1,1)(u) ≥ D(−1,1)(û) (see Prop. 4.8). But then Proposition 4.9 shows that û is non optimal. The claim
is proved.

By Lemma 4.1, u coincides with ℘Mη;ξ on [η, ξ], and the second claim is that u is strictly decreasing on [ξ, 1].

Indeed, if it is not the case we may define u∗ ∈ KMq by

u∗(y) :=

{
u(y) if y ∈ [−1, ξ)
wξ,ζ,1(y) if y ∈ [ξ, 1],

where w·,·,· is defined in (4.15). Lemma 4.7 shows that D(−1,1)(u) ≥ D(−1,1)(u∗) for a suitable ζ ∈ (ξ, 1). However
we have a contradiction as u∗ is not a minimizer, since we can decrease its resistance, in an admissible way, by
applying Lemma 4.1 on [η, ζ]. The second claim is proved.

The third claim is that a.e. on (ξ, 1) the slope of u is not greater than −1. Indeed, suppose by contradiction
that there is a positive measure subset of (ξ, 1) where u′ > −1. We apply Proposition 4.2 and Remark 4.3 to
u on [ξ, 1], obtaining a concave function on such interval, with u′ > −1 a.e. on a subinterval (ξ, ξ′), ξ′ > ξ,
and leaving the resistance unchanged. Then we apply Proposition 4.4, obtaining an admissible competitor (up
to a vertical translation) with not larger resistance and a flat part on a suitable interval (ξ, ξ′′), ξ′′ > ξ. This
is a contradiction, because the latter competitor does not have minimal resistance, again its resistance can be
improved by applying Lemma 4.1 on [η, ξ′′]. This proves the third claim.

The same reasoning applies on [−1, η], i.e. u is strictly increasing on [−1, η] with slope a.e. greater than or
equal to 1. The slope of u is in fact constant on [−1, η], and on [ξ, 1] as well, otherwise Jensen inequality, owing
to the strict convexity of the map t 7→ 1

1+t2 for |t| ≥ 1 would yield a contradiction. For the same reason, as seen
in the proof of Proposition 4.9, the two slopes are opposite.

Summing up, if u is a solution than it has the form of û from (4.18), with α = β = 0, m = M, a = η, ξ =
b, ξ = −η =: γ, and γ ∈ [max{0, 1 −M}, 1). However, minimization among profiles of this particular form
reduces to minimize the function RM ;q, defined in (2.2), on the interval [max{0, 1−M}, 1). But Proposition 4.11
shows that there is a unique minimizer γ∗ of RM ;q on [0, 1], satisfying in particular γ∗ ∈ [max{0, 1 −M}, 1),
γ∗ = 0 if M ≥ 1 and γ∗ ∈ (0, 1) if M ∈ (0, 1). Notice that uM ;q ∈ KMq , thanks to the assumption M ≥ 2q.
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5. The radial two-dimensional case

For 0 ≤ a ≤ b and locally absolutely continuous functions u on (a, b), we will use the notation

D(a,b)(u) :=

∫ b

a

r dr

1 + (u′(r))2

and in case a = 0 we shall also write Db(u) := D(0,b)(u).
As for the one-dimensional case, the proof of Theorem 2.3 requires several preliminary results, the first of

which takes the place of Proposition 3.4.

Proposition 5.1 (Radial parallelogram rule). Let q ≥ 0. Let α, β be such that 0 ≤ α ≤ β. Then

β∫
α

r dr

1 + q2(r − β)2
≥

β∫
α

r dr

1 + q2(r − α)2

and if q > 0 equality holds if and only if α = β.

Proof. Let q > 0. Let ϕ(t) := t arctan t− log(1 + t2), t ∈ [0,+∞). Since ϕ(0) = 0 = ϕ′(0) and ϕ′′(t) = 2t2(t2 +
1)−2 > 0 for every t ∈ (0,+∞) then ϕ(t) > 0 for every t ∈ (0,+∞). Since

β∫
α

r dr

1 + q2(r − β)2
−

β∫
α

r dr

1 + q2(r − α)2
=

1

q2
ϕ(q(β − α)),

the result follows. If q = 0 the result is obvious.

By using Proposition 5.1 in place of Proposition 3.4, we reason as done in Lemma 4.1, and we may prove the
corresponding characterization of optimal radial profiles in the center. The proof is actually simplified, thanks
to the symmetry assumption.

Lemma 5.2. Let q ≥ 0, a > 0, H ∈ R. The minimization problem

min
{
D(0,a)(u) : r 7→ u(r)− q

2r
2 is concave nonincreasing on [0, a], u(r) ≤ u(a) = H on [0, a]

}
admits the unique solution u∗(r) := q

2 (r2 − a2) +H.

Proof. If q = 0 the result is trivial. Let q > 0. Since r 7→ u(r)− q
2r

2 is concave nonincreasing we get u′(r) ≤ qr
a.e in (0, a). If u′ ≥ 0 a.e. in (0, a), then either u′(r) = qr a.e. in (0, a) or by pointwise estimating the integrand
we get D(0,a)(u) > D(0,a)(u∗).

Suppose that that there are negativity points of the left derivative u′− on (0, a). Since u is q-concave, u′− is
upper semicontinuous on (0, a), therefore the set I := {r ∈ (0, a) : u′−(r) < 0} is open, thus a (at most) countable
union of (nonempty) disjoint open intervals (αj , βj). Moreover, if βj < a there holds u′−(βj) = 0 (left continuity
of u′−). A direct consequence of q-concavity and of the constraint u(r) ≤ u(a) on [0, a] is that u′−(r) ≥ q

2 (r − a)
on (0, a), see Proposition 3.5, therefore if instead βj = a we still have limr→a− u

′
−(r) = 0. On the other hand,

q-concavity yields 0 ≥ u′−(r) ≥ q(r − βj) on any interval (αj , βj). Since u′− < 0 at some point in (0, a), there is
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at least one of these intervals (αj , βj). If there exists an index j such that αj > 0, Proposition 5.1 entails

∫
I

rdr

1 + u′(r)2
=
∑
j

∫ βj

αj

rdr

1 + u′(r)2
≥
∑
j

∫ βj

αj

rdr

1 + q2(r − βj)2

≥
∑
j

∫ βj

αj

rdr

1 + q2(r − αj)2
>
∑
j

∫
I

rdr

1 + q2r2
=

∫
I

rdr

1 + q2r2
.

By taking into account that

∫
[0,a]\I

rdr

1 + u′(r)2
≥
∫
[0,a]\I

rdr

1 + q2r2
,

we get Da(u) > Da(u∗). The remaining case is I = (0, β) for some β ∈ (0, a]. If β < a, q-concavity and
Proposition 5.1 yield

Da(u) ≥
∫ β

0

r dr

1 + q2r2
+

∫ a

β

r dr

1 + q2(r − β)2
>

∫ a

0

r dr

1 + q2r2
= Da(u∗).

If β = a, we use 0 ≥ u′(r) ≥ q
2 (r − a) a.e. on (0, a) and we get

Da(u) ≥
∫ a

0

r dr

1 + q2r2

4

>

∫ a

0

r dr

1 + q2r2
= Da(u∗),

concluding the proof.

Lemma 5.3. Let q ≥ 0. Let 0 ≤ α ≤ γ ≤ β and q(β − γ) ≤ 2. Let moreover u : [α, β] → R be an absolutely
continuous function such that

(i) u(γ) = u(β) ≥ u(r) for any r ∈ [γ, β] and the restriction of u on [γ, β] is q-concave;
(ii) u′(r) ≤ −1 a.e. on (α, γ).

Then

β∫
α

r dr

1 + u′(r)2
≥

β∫
α

r dr

1 + wu′(r)2
,

where wu : [α, β]→ R is the absolutely continuous function defined by

wu(r) :=

{
u(r + γ − α) + u(α)− u(β) if r ∈ [α, α+ β − γ]
u(r − β + γ) if r ∈ [α+ β − γ, β].
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Proof. Let q > 0. It is easily seen, by taking (ii) into account, that

β∫
α

r dr

1 + wu′(r)2
=

∫ β

γ

(r + α− γ) dr

1 + u′(r)2
+

∫ γ

α

(r + β − γ) dr

1 + u′(r)2

≤ (α− γ)

β∫
γ

dr

1 + u′(r)2
+

∫ β

α

r dr

1 + u′(r)2
+

1

2
(β − γ)(γ − α).

Since (i) holds, Lemma 4.1 entails D(γ,β)(u) ≥ D(γ,β)(℘
u(γ)
γ;β ) = 2

q arctan
(
q
2 (β − γ)

)
, so that

β∫
α

r dr

1 + wu′(r)2
−

β∫
α

r dr

1 + u′(r)2
≤ (α− γ)

β∫
γ

dr

1 + u′(r)2
+

1

2
(β − γ)(γ − α)

≤ (γ − α)

[
β − γ

2
− 2

q
arctan

(
q
2 (β − γ)

)]
=
α− γ
q

ψ
(
q
2 (β − γ)

)
where ψ(z) := 2 arctan z − z. Since ψ(0) = 0, ψ′(z) = (1− z2)(1 + z2)−1 ≥ 0 for every z ∈ [0, 1] and q

2 (β − γ) ∈
[0, 1], the result follows. If q = 0 the term 2

q arctan( q2 (β − γ)) becomes β − γ and the result follows as well.

In the one dimensional case, Proposition 4.4 is necessary to show that the slope is greater than or equal to 1
(in modulus) on the profile side. This property holds true in the radial two-dimensional case as well, even if we
look to the class of nondecreasing radial profiles. It is in fact a consequence of [13], Theorem 5.4 (see also [6]).
We give a proof with the following lemma.

Lemma 5.4. Let 0 ≤ R1 < R2, m1 > m2. Let

W :=
{
u ∈W 1,1

loc (R1, R2) : u′ ≤ 0 a.e. in (R1, R2), u(R1) = m1 > m2 = u(R2)
}
,

where the boundary values are understood as limits. Then D(R1,R2) admits a minimizer on W which is concave
in (R1, R2). If u∗ ∈ arg minW D(R1,R2), then |u′∗(r)| 6∈ (0, 1) for a.e. r ∈ (R1, R2).

Proof. For u ∈ W we define

f̃(t) :=


2− t

2
if 0 ≤ t ≤ 1

1

1 + |t|2
if t ≥ 1.

and D̃(R1,R2)(u) :=

∫ R2

R1

rf̃(|u′(r)|)dr.

It is readily seen that f̃ is convex and that limt→+∞
f̃(t|z|)
t = 0 for any z ∈ R, hence D̃(R1,R2) is sequentially

l.s.c. with respect to the w∗ − BVloc(R1, R2) convergence. Moreover if (un) ⊂ W is a minimizing sequence for
D̃(R1,R2), then

∫ R2

R1

|u′n(r)|dr = m1 −m2,

which entails existence of minimizers of D̃(R,1) on W. Let now R1 ≤ α < γ ≤ β ≤ R2 and let w ∈ W be a
piecewise affine function with slopes ξ1 ≤ 0 in (α, γ) and ξ2 ≤ 0 in (γ, β), such that ξ1 ≤ ξ2. Then, by setting
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λ := (γ − α)(β − α)−1, we have∫ β

α

rf̃(|w′(r)|) dr =
1

2

(
(γ2 − α2)f̃(|ξ1|) + (β2 − γ2)f̃(|ξ2|)

)
and convexity of f̃(| · |) on (−∞, 0] entails∫ β

α

rf̃(|λξ1 + (1− λ)ξ2|) dr ≤ 1

2
(β2 − α2)

(
λf̃(|ξ1|) + (1− λ)f̃(|ξ2|)

)
.

By taking into account that f̃ is decreasing we get∫ β

α

rf̃(|λξ1 + (1− λ)ξ2|) dr −
∫ β

α

rf̃(|w′|) dr ≤ 1

2
(β − γ)(γ − α)(f̃(|ξ1|)− f̃(|ξ2|)) ≤ 0. (5.1)

Hence, if w∗∗ denotes the concave envelope of w, (5.1) entails D̃(R1,R2)(w)− D̃(R1,R2)(w∗∗) ≥ 0 for every piecewise

affine w ∈ W and therefore for every w ∈ W, and we may conclude that D̃(R1,R2) admits a minimizer on W∗∗
and that

min
W

D̃(R1,R2) = min
W∗∗

D̃(R1,R2), (5.2)

where W∗∗ := {u ∈ W : u is concave}.
Next, we let u ∈ W∗∗ and we argue as in [6], Theorem 2.3. We let r̄ := inf Au, where Au :={
r ∈ (R1, R2) : u′+(r) ≤ −1

}
∪ {R2}, and

v(r) =

{
min{u(r̄) + u′+(r̄)(r − r̄), m1} if r ∈ (R1, r̄)
u(r) if r ∈ [r̄, R2).

We have v ∈ W∗∗, v ≥ u on (R1, R2) and |v′| /∈ (0, 1) a.e. on (R1, R2). Moreover, |v′| ∈ {0, 1} and |u′| ∈ (0, 1)
a.e. on the set I := {r ∈ (R1, R2) : u(r) 6= v(r)}, while u′ = v′ a.e. on the set E := {r ∈ (R1, R2) : u(r) = v(r)}.
These information on u′, v′, together with the definition of D̃(R1,R2), directly entail D(R1,R2)(u) ≥ D̃(R1,R2)(u),

D(R1,R2)(v) = D̃(R1,R2)(v) and

D(R1,R2)(u) ≥ D̃(R1,R2)(u) =

∫
E

rf̃(|u′(r)|) dr +

∫
I

rf̃(|u′(r)|) dr

= D̃(R1,R2)(v) +

∫
I

(
f̃(|u′(r)|)− f̃(|v′(r)|)

)
r dr

= D̃(R1,R2)(v) +

∫ R2

R1

|v′(r)| − |u′(r)|
2

r dr

= D̃(R1,R2)(v) +

∫ m1

m2

v−1(t)− u−1(t)

2
dt

= D(R1,R2)(v) +

∫ m1

m2

v−1(t)− u−1(t)

2
dt, (5.3)

where we changed variables in the last but one equality, taking into account that u, v are concave nonincreasing
on (R1, R2). Since v ≥ u, we conclude that D(R1,R2)(u) ≥ D(R1,R2)(v) with equality if and only if u = v, and

that the same holds for D̃(R1,R2). In particular, if u ∈ arg minW∗∗ D̃(R1,R2), then u = v implying D(R1,R2)(u) =
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D̃(R1,R2)(u), and this entails that u minimizes also D(R1,R2) on W∗∗. Summing up, D(R1,R2) admits a minimizer

on W∗∗, and moreover u is a minimizer of D̃(R1,R2) on W∗∗ if and only if it is a minimizer of D(R1,R2) on W∗∗,
with same minimal values. In such case |u′| /∈ (0, 1) a.e. in (R1, R2).

Let us assume from now on that u is in fact a minimizer of D(R1,R2) onW∗∗. If we also take (5.2) into account,
for every w ∈ W we have

D(R1,R2)(u) = D̃(R1,R2)(u) = min
W∗∗

D̃(R1,R2) = min
W

D̃(R1,R2) ≤ D̃(R1,R2)(w) ≤ D(R1,R2)(w), (5.4)

so that u is also a minimizer of D̃(R1,R2) and of D(R1,R2) on W. It is the desired concave minimizer. Eventually,

let u∗ ∈ arg minW D(R1,R2). By definition of D̃(R1,R2) we have D(R1,R2)(u∗) ≥ D̃(R1,R2)(u∗). We prove that the
latter is in fact an equality. Indeed, if this was not the case we would be lead, since we have just proved
that D(R1,R2)(u∗) = D(R1,R2)(u), and also using the first equality in (5.4), to D̃(R1,R2)(u) = D(R1,R2)(u) =

D(R1,R2)(u∗) > D̃(R1,R2)(u∗), against the minimimality of u for D̃(R1,R2) onW. We conclude that D(R1,R2)(u∗) =

D̃(R1,R2)(u∗), which directly entails |u′∗| /∈ (0, 1) a.e. in (R1, R2).

The next lemma shows some important properties of solutions of (2.3).

Lemma 5.5. Let R > 0, M > 0, 0 ≤ qR ≤ 1 and 2M ≥ qR2. Let u ∈ C0([0, R]) be a solution to problem (2.3).
Let m = max{u(x) : x ∈ [0, R]} and a := max{x ∈ [0, R] : u(x) = m}. Then a < R, u is strictly decreasing in
[a,R] where u′ ≤ −1 a.e., u(R) = 0 and m = M .

Proof. If a = R, by Lemma 5.2 we get that the resistance of r 7→ q
2 (r2−R2) +m is less than or equal to DR(u),

but then it is readily seen that by taking

w(r) =

{
q
2 (r2 − (R− δ)2) +m if r ∈ [0, R− δ]
m
δ (R− r) if r ∈ (R− δ,R]

we get DR(w + M −m) = DR(w) < DR(u) for δ small enough. This contradicts the minimality of u, since
r 7→ w(r) +M −m belongs to RR;M ;q, as a direct consequence of the high profile assumption 2M ≥ qR2. We
have obtained a < R and u(R) < m.

Next we prove that u is strictly decreasing on [a,R]. Notice that the restriction of u to [a,R] satisfies the
assumptions of Lemma 4.7 (here we have R in place of b). If u is not strictly decreasing in [a,R], as done
in the proof of Lemma 4.7 we fix a local maximum point a1 ∈ (a,R] of u and we fix δ0 > 0 small enough
such that u(r) ≤ u(a1) for any r ∈ (a1 − δ0, a1). By means of Remark 3.3, we let (uh)h∈N be an approximating
sequence of uniformly converging, piecewise parabolic functions on [0, R], such that uh(0) = u(0), uh(R) = u(R),
uh(a) = u(a) and uh(a1) = u(a1) for every h ∈ N. Of course Proposition 3.2 applies to functional DR as well,
so that

DR(u) ≥ DR(uh)− 1

h
, ∀h ∈ N. (5.5)

The argument is similar to the one of Lemma 4.7, so we shall skip some details. Following the the proof of
Lemma 4.7 , we define the quantities M̃, M, x0, x∗, ξx, zx, δ∗ for uh, so that they all depend on h, even if
for simplicity we omit this dependence in the notation. Here we also define zx∗ := R (and it is possible that
x∗ = zx∗ = R). But since uh(r) ≤ u(r) ≤ u(a1) for any r ∈ (a1 − δ0, a1), the argument at the end of the proof
of Lemma 4.7 shows that δ∗ ≥ δ0 for any h ∈ N. On each interval [x, zx], x ∈ M, we have that uh is a strictly
decreasing function, as seen in the proof of Lemma 4.7. We define ũh : [0, R]→ R by modifying uh on each of
these intervals. Indeed, by Lemma 5.4 we change uh on (x, zx), for any x ∈ M, with a resistance minimizer
(among nonincreasing functions with fixed boundary values) having a flat part on a subinterval (x, x̃) and a
concave part with slope not greater than −1 a.e. on (x̃, zx), for a suitable x̃ ∈ [x, zx). In this way, we find
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ũh(x) = uh(x), ũh(zx) = uh(zx) and DR(uh) ≥ DR(ũh). Notice that by its definition, the restriction of ũh on
[a,R] is absolutely continuous. Notice moreover that [a,R] is now partitioned in a finite number of intervals: we
have the intervals of the form [x̃, zx], x ∈ M, where ũh is concave nonincreasing with slope a.e. not in (−1, 0),
while in each of the remaining intervals ũh is q-concave with same value at the two endpoints (and by definition
of δ∗, if the sum of the lengths of these remaining intervals is δ∗∗, then δ∗∗ ≥ δ∗). Starting from ũh, by repeatedly
applying Lemma 5.3 (notice that this is possible because of the assumption qR ≤ 1) we construct u∗h : [0, R]→ R
with the following properties: u∗h ≤ m, u∗h ≡ uh on [0, a], u∗h is q-concave on [0, a+ δ∗∗], u

∗
h(a) = u∗h(a+ δ∗∗) = m,

u∗h is strictly decreasing on [a+ δ∗∗, R], u∗h(R) = uh(R) = u(R), the range of u∗h is contained in that of uh and

DR(uh) ≥ DR(u∗h). (5.6)

A last application of Lemma 5.4 on [a+ δ∗∗, R] entails ūh, given by u∗h on [0, a+ δ∗∗] and by a concave resistance
minimizer among nonincreasing functions on the interval [a+ δ∗∗, R] with fixed values m and u(R) at the two
endpoints. ūh is q-concave on the whole [0, R] with ūh(a) = ūh(a + δ∗∗) = m, ūh(R) = u(R) and, from (5.5),
(5.6) and Lemma 5.4, it satisfies

DR(u) ≥ DR(ūh)− 1

h
, ∀h ∈ N. (5.7)

As already observed, δ∗ and δ∗∗ might depend on h, but δ∗∗ ≥ δ∗ ≥ δ0 and the quantity δ0 > 0 is fixed and does
not depend on h. (ūh)h∈N is a sequence of uniformly bounded q-concave functions on [0, R] (in particular, the
range of ūh is contained in that of uh, which goes to that of u as h→∞ by uniform convergence). Therefore, we
may invoke Lemma A.5 in Appendix A: up to extraction of a subsequence, ūh converge uniformly on compact
subsets of (0, R) (even of [0, R) in this case since (ūh)′+(0) ≤ 0) to some q-concave function ū : [0, R]→ [0,m]

(continuous up to redefinition at R), which is moreover satisfying ū(a) = ū(a + δ̃) = m, for a suitable δ̃ ∈
[δ0, R − a]. Indeed, we may pass to the limit in the relations ūh(a) = ūh(a + δ∗∗) = m, where δ∗∗ depends in
general on h and here δ̃ is a corresponding limit point. From Lemma A.5 we also have a.e. convergence of
derivatives, implying DR(ūh)→ DR(ū) as h→∞. Together with (5.7), this implies DR(u) ≥ DR(ū). But now
we define w̄ : [0, R]→ R as

w̄(r) =

{
m+ q

2 (r2 − (a+ δ̃)2) if r ∈ [0, a+ δ̃]

ū(r) if r ∈ (a+ δ̃, R],

and since δ̃ > 0 by Lemma 5.2 we find that DR(w̄+M −m) = DR(w̄) < DR(ū), and r 7→ w̄(r) +M −m belongs
to RR;M ;q, since 2M ≥ qR2, thus contradicting minimality of u.

Now we show that u′ ≤ −1 a.e. in (a,R). Being the restriction of u to [a,R] nonincreasing, it necessarily
minimizes the resistance functional among all nonincreasing v in [a,R] such that v(a) = m and v(R) = u(R),
otherwise the concave minimizer provided by Lemma 5.4 would give a contradiction. As u < u(a) on (a,R], still
by Lemma 5.4 we get that u′ ≤ −1 a.e. in (a,R).

If m < M or u(R) > 0, we let

w∗(r) =

{
q
2 (r2 − a2) +M −m if r ∈ [0, a]

M
m−u(R) (u(r)− u(R)) if r ∈ (a,R].

Since u(a) = m and u′ ≤ −1 on (a,R), it is clear that w∗ ∈ RR;M ;q and that

∫ R

a

r dr

1 + w′∗(r)
2
<

∫ R

a

r dr

1 + u′(r)2
,
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and then Lemma 5.2 implies DR(w∗) < DR(u), again contradicting minimality of u.

All the necessary elements for the proof of Theorem 2.3 are now settled. Before proceeding with the proof,
we give a couple of useful result for the analytic characterization of the side of the optimal profile.

Proposition 5.6. Let M > 0, R > 0, and h : (−∞− 1]→ R be defined by h(t) = −t(1 + t2)−2. Then

aM := min

{
a ∈ (0, R) : −

∫ R

a

h−1
( a

4r

)
dr ≤M

}

is well defined and it uniquely realizes equality in the above inequality among values in (0, R). Besides, there
exists a unique strictly decreasing C1 function η : [aM , R)→ R such that 0 < η(a) ≤ a

4 and

−
∫ R

a

h−1
(
η(a)
r

)
dr = M (5.8)

for every a ∈ [aM , R). Moreover, there holds

η′(a)

∫ R

a

dr

rh′ (h−1 (η(a)/r))
= h−1

(
η(a)
a

)
. (5.9)

Proof. Notice that the inverse function h−1 is defined on (0, 14 ], it is smooth, increasing and there hold
limr→0 h

−1(r) = −∞ and h−1( 1
4 ) = −1. Let

ϕ(a) := −
∫ R

a

h−1
( a

4r

)
dr, a ∈ (0, R). (5.10)

It is readily seen, from the definition of h, that lima→R ϕ(a) = 0, lima→0 ϕ(a) = +∞ and ϕ′ < 0 on (0, R). Then
there exists a unique aM such that ϕ(aM ) = M and [aM , R) = {a ∈ (0, R) : ϕ(a) ≤M}. For every a ∈ [aM , R)
let ψa : (0, a4 ]→ [0,+∞) be defined by

ψa(η) := −
∫ R

a

h−1
(η
r

)
dr.

Similarly as above we may check that for any a ∈ [aM , R) there is

ψ′a(η) =

∫ a

R

dr

rh′(h−1(η/r))
< 0

on (0, a4 ), and moreover limη→0 ψa(η) = +∞, limη→a/4 = ϕ(a) ≤M . Hence for every a ∈ [aM , R) there exists
a unique η ∈ (0, a/4] such that ψa(η) = M is satisfied, and we denote it by η(a). Notice that ψa(η) strictly
decreases with a for each η ∈ (0, a4 ] so that the function [aM , R) 3 a 7→ η(a) is strictly decreasing, and it
satisfies (5.8). Moreover, we have η(aM ) = a

4 , lima→R η(a) = 0. η(a) is C1 and satisfies (5.9) by the implicit
function theorem.

Proposition 5.7. Let q ≥ 0, R > 0, M > 0 and let γq : (0, R)→ R be defined by

γq(a) :=

√
1

2

(
3a2q2 + 1 +

√
9a4q4 + 10a2q2 + 1

)
.
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Let h, aM be defined as in Proposition 5.6. Let the function ζq : (0, R)→ R be defined by

ζq(a) := −
∫ R

a

h−1
(
ah(−γq(a))

r

)
dr.

Then there exists a unique a∗ ∈ [aM , R) such that ζq(a∗) = M .

Proof. Notice that ζq is well defined on (0, R), since h ≤ 1
4 and γq ≥ 1. If q = 0, then γ0 ≡ 1, and since h(−1) = 1

4
we obtain ζ0(a) = ϕ(a), where ϕ is defined by (5.10). Therefore, we are reduced to Proposition 5.6 in this case,
and we find a∗ = aM .

Let q > 0. Then h(−γq(a)) < 1
4 on (0, R), so that −h−1(

aMh(−γq(aM ))
r ) > −h−1(aM4r ) on (aM , R), hence, by

Proposition 5.6, ζq(aM ) > M . On the other hand, lima→R ζq(a) = 0, and by taking into account that

ζ ′q(a) = −γq(a)−
∫ R

a

dr

rh′(h−1(ah(−γq(a))/r))
< 0,

the result follows.

Proof of Theorem 2.3. Let u ∈ C0([0, R]) be solution to (2.3). Since the assumptions of Lemma 5.5 are satisfied,
we have u(R) = 0, maxu = M , a := max{x ∈ [0, R] : u(x) = M} < R, and moreover u′ ≤ −1 on (a,R). We
concentrate on the interval (a,R), where first variation of the resistance functional yields∫ R

a

ru′ϕ′dr

(1 + u′2)2
= 0

for every ϕ ∈ C1
0 (a,R), that is there exists a constant η > 0 such that

−ru′

(1 + u′2)2
= η

a.e. in (a,R). We get therefore h(u′(r)) = η/r, h being defined in Proposition 5.6. Hence, 4η/r ∈ (0, 1] for every
r ∈ (a,R), that is 0 < η ≤ a/4. Since u(R) = 0, u(a) = M , then η has to satisfy

−
∫ R

a

h−1
(η
r

)
dr = M,

which implies

−
∫ R

a

h−1
( a

4r

)
dr ≤M,

that is a ∈ [aM , R), where aM is defined in Proposition 5.6.
Summing up if u ∈ C0([0, R]) solves (2.3), there exist a ∈ [aM , R) and, by Proposition 5.6, a unique η =

η(a) ∈ (0, a/4] such that also using Lemma 5.2,

u(r) =
q

2
(r2 − a2) +M in [0, a],

u(r) = −
∫ R

r

h−1
(
η(a)

s

)
ds in (a,R]
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and the latter profile has resistance is given by

E(a) :=

∫ a

0

r dr

1 + q2r2
+

∫ R

a

r dr

1 + |h−1(η(a)/r)|2
.

We are now left to minimize over a ∈ [aM , R). That is, we have DR(u) = mina∈[aM ,R) E(a). Proposition 5.6
shows that the map [aM , R) 3 a 7→ η(a) is C1 and strictly decreasing. By using the definition of function h, and
by taking into account formula (5.9) of Proposition 5.6, we have

E ′(a) =
a

1 + q2a2
− a

1 + |h−1(η(a)/a)|2
+ 2η′(a)

∫ R

a

−h−1(η(a)/r) dr

(1 + |h−1(η(a)/r)|2)2h′(h−1(η(a)/r))

=
a

1 + q2a2
− a

1 + |h−1(η(a)/a)|2
+ 2η′(a)η(a)

∫ R

a

dr

rh′(h−1(η(a)/r))

=
a

1 + q2a2
− a

1 + |h−1(η(a)/a)|2
+ 2η(a)h−1(η(a)/a).

A computation then shows that E ′(a) ≥ 0 if and only if

(1 + |h−1(η(a)/a)|2)2 ≥ (3|h−1(η(a)/a)|2 + 1)(1 + q2a2)

that is if and only if h−1(η(a)/a) ≤ −γq(a), where γq is the function defined in Proposition 5.7, or equivalently
η(a) ≤ ah(−γq(a)). But η(aM ) = aM

4 > aMh(−γq(aM )) while Rh(−γq(R)) > 0 = lima→R η(a), hence the equa-
tion η(a) = ah(−γq(a)) (equivalent to E ′(a) = 0) has at least a solution a∗ ∈ [aM , R) which is necessarily unique
by Proposition 5.7 since

−
∫ R

a∗

h−1
(
η(a∗)

r

)
dr = M = −

∫ R

a∗

h−1
(
a∗h(−γq(a∗))

r

)
dr.

Therefore, under the assumptions 0 ≤ qR ≤ 1 and 2M ≥ qR2, problem (2.3) has a unique solution, characterized

by the number a∗ coming from Proposition 5.7, with u′(r) = h−1(η(a∗)r ) in (a∗, R) and u(a∗) = M . The proof
is completed.

Remark 5.8. We note that γ0(a) ≡ 1, hence when q = 0 we get a∗ = aM and η(a∗) = aM
4 , thus obtaining the

classical concave radial minimizer.

6. Approximation of optimal profiles in the general
two-dimensional case

To conclude our study, we discuss the approximation of optimal q-concave graphs with no radiality assump-
tion. For M > 0 and q > 0, we provide in this section a numerical optimization algorithm to approximate
q-concave profiles of CMq (Ω) which minimize DΩ , where Ω is the unit disk of the plane. Following [10], we
know that the main difficulty of this constrained shape optimization problem comes from its great number of
local minima. In order to tackle this difficulty, we introduce a discretization of the problem with few parameters
which makes it possible to perform a stochastic optimization.

As in [10], we parametrize optimal graphs as the convex hull of a set of points. Consider a sampling C1, . . . , Cn
of the unit circle ∂Ω made of n points and let Ωn ⊂ Ω be the convex hull of this sampling. We introduce the
cylindrical parametrization ΦM,q, defined for (r, θ, z) ∈ [0, 1]× [0, 2π]× [0, 1], by

ΦM,q(r, θ, z) := (r cos(θ), r sin(θ), zM − q(r2 − 1)/2).
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If {P1, . . . , Pm} are m points of [0, 1]× [0, 2π]× [0, 1], we consider

GP1,...,Pm := Co(Ωn, ΦM,q(P1), . . . , ΦM,q(Pm)) \Ωn,

which is the convex-hull of the union of the points ΦM,q(P1), . . . , ΦM,q(Pm), C1, . . . , Cn, minus Ωn. GP1,...,Pm is
the polygonal graph of a concave function on Ωn. Moreover, if we denote by vP1,...,Pm this associated function,
we have that

uP1,...,Pm(x) := vP1,...,Pm(x) + q(|x|2 − 1)/2, x ∈ Ωn

is q-concave and has values in [0,M ]. Conversely, every q-concave function on Ω with values in [0,M ] can be
approximated by this procedure.

Let us focus now on the cost function evaluation, that is, on the approximation of

DΩn(uP1,...,Pm) =

∫
Ωn

dx

1 + |∇uP1,...,Pm(x)|2
.

First, we observe that the situation is more complicated than the classical case q = 0 studied in [10]. As a matter
of fact, the computation of DΩn(uP1,...,Pm) does not reduce to a purely geometrical integral since uP1,...,Pm is
not piecewise linear anymore. To provide a precise estimate of the previous integral, we notice that uP1,...,Pm is
quadratic on every triangle τ obtained as the projection on Ω of one triangular face of GP1,...,Pm . Moreover the
integral

∫
τ

dx

1 + |∇uP1,...,Pm(x)|2

can be approximated by a Gauss quadrature formula of order d if we provide the evaluation of uP1,...,Pm at every
control points of the quadrature. We summarize the different steps required for one cost function evaluation in
Algorithm 6.1, choosing a Gauss quadrature with nc control points.

Algorithm 6.1. Cost evaluation.

Input: M > 0, q > 0, a sampling of ∂Ω with points {C1, . . . Cn}, and parameters
(r1, θ1, z1), . . . , (rm, θm, zm)

Convex Hull: Compute the convex hull of {C1, . . . Cn} ∪ {ΦM,q(P1), . . . , ΦM,q(Pm)} (complexity of
order (m+ n) log(m+ n))

Triangulation: Project every triangular face on Ω to obtain a triangulation T of the convex hull
of {C1, . . . Cn}.

Gauss control points: For every τ ∈ T , compute the associated nc control points {Qτ1 , . . . Qτnc}.
Evaluation: For every τ ∈ T , for every control point Qτ , compute ∇uP1,...,Pm(Qτ ). This step is reduced

to a linear interpolation and a quadratic evaluation.
Output: return the Gauss quadrature approximation based on the control points (Qτl )1≤l≤nc, τ∈T .

Based on this discretization involving only a few parameters m = 50 (that is 150 parameters), d = 10,
nc = 100 and n = 100 it has been possible to perform in five hours 107 evaluations of the discretized cost function
on a standard recent laptop. We used the algorithm adaptive de rand 1 bin radiuslimited provided by the
BlackBoxOptim library (see [1]). We represent in Figure 3, several q-concave optimal profiles for the same value
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Figure 3. Optimal computed profiles for q = 0.4 and M = 0.3, 0.5, 0.7, 1.

q = 0.4. The observed qualitative behavior is analogous to the one of the solutions computed in [10] in the case
q = 0:

• Optimal graphs touch the constrained height hyperplane on a curvilinear polygon which seems to be
regular. By the way, notice that for q > 0, there is no flat upper contact anymore. This flat part is
replaced by a parabola when q > 0,

• singular arcs, raising from the vertices of the upper polygon, can be observed in the graph,
• non strictly concave parts of the graph for q = 0 are substituted by parabolic patches.

Appendix A. Single shock and q-concave profiles

The single shock condition reflects the physical fact that every fluid particle hits the body at most once. We
shall deduce a corresponding geometric constraint on the body profile. See also [2, 8, 14].

Let Ω ⊂ Rn a bounded convex open set and let u : Ω → R an a.e. differentiable function. We consider a single
point particle, moving in epi u and approaching the graph of u vertically downwards (i.e., along the direction
of the coordinate vector en+1) with constant nonnull velocity v = −ven+1, v > 0. We suppose that the particle
hits the graph of u elastically at the point (x0, u(x0)) ∈ Rn+1, such that ∇u(x0) exists. Furthermore we assume
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that the particle is reflected according to the usual laws of reflection. Denoting by ν0 the outward normal unit
vector at (x0, u(x0)), i.e.,

ν0 :=

(
−∇u(x0)√

1 + |∇u(x0)|2
,

1√
1 + |∇u(x0)|2

)
,

we let τ0 be a vector lying in the subspace of Rn+1 generated by v and ν0, such that ν0 · τ0 = 0. We denote by
z(t) = (x(t), y(t)) ∈ Rn+1, t > 0, the position of the particle after the shock, occurring at t = 0. If we consider
the components of the velocity vector z′(t) along ν0 and τ0, according to the laws of reflection we have to impose{

[z′(t) · ν0] ν0 = − (v · ν0) ν0

[z′(t) · τ0] τ0 = (v · τ0) τ0,

that is, {
[z′(t) · ν0] ν0 = − (v · ν0) ν0

z′(t)− [z′(t) · ν0] ν0 = v − (v · ν0) ν0.

So we obtain that

z′(t) = v − 2 (v · ν0) ν0 = v +
2v√

1 + |∇u(x0)|2
ν0 = v +

2v

1 + |∇u(x0)|2
(−∇u(x0), 1)

=

(
−2

∇u(x0)

1 + |∇u(x0)|2
v ,

1− |∇u(x0)|2

1 + |∇u(x0)|2
v

)
.

The trajectory of the particle after the collision is therefore described for t > 0 by
x(t) = x0 − 2

∇u(x0)

1 + |∇u(x0)|2
vt

y(t) = u(x0) +
1− |∇u(x0)|2

1 + |∇u(x0)|2
vt.

The single shock condition at (x0, u(x0)), which is u(x(t)) ≤ y(t) for any t > 0, is then given by

u

(
x0 − 2

∇u(x0)

1 + |∇u(x0)|2
vt

)
≤ u(x0) +

1− |∇u(x0)|2

1 + |∇u(x0)|2
vt.

If we rescale the time by letting t̃x0
:= 2vt

1+|∇u(x0)|2 , the above inequality rewrites as follows

u
(
x0 − t̃x0

∇u(x0)
)
≤ u(x0) +

t̃x0

2

(
1− |∇u(x0)|2

)
.

The above discussion motivates the following

Definition A.1. Let Ω be an open bounded convex subset of Rn. We say that u : Ω → R is a single shock
function on Ω if u is a.e. differentiable in Ω and

u (x− τ∇u(x)) ≤ u(x) +
τ

2

(
1− |∇u(x)|2

)
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for a.e. x ∈ Ω and for every τ > 0 such that x− τ∇u(x) ∈ Ω.

Next we discuss the relation between single shock and q-concave profiles. We start by recalling the definition
of q-concavity.

Definition A.2. (q-concave function) Let Ω be a convex subset of Rn and q ≥ 0. A function u : Ω → R is said

to be q-concave on Ω if the map x 7→ u(x) − q
2 |x|

2
is concave on Ω. Equivalently, u is q-concave on Ω if and

only if

u (λx+ (1− λ) y) ≥ λu(x) + (1− λ)u(y)− q

2
λ(1− λ) |x− y|2

for every x, y ∈ Ω and for every λ ∈ [0, 1].

Lemma A.3. Let q ≥ 0 and Ω ⊂ Rn be a bounded convex open set. If u : Ω → R is a q-concave function on
Ω, and q diam(Ω) ≤ 2, than u has the single shock property on Ω. In particular, if u is concave then it is single
shock in Ω.

Proof. Let x ∈ Ω be such that ∇u(x) exists, and let τ > 0 be such that x− τ∇u(x) ∈ Ω. Using the q-concavity
of u, the fact that if x− τ∇u(x) ∈ Ω then τ |∇u(x)| ≤ diam(Ω), we have

u(x− τ∇u(x)) ≤ u(x) + τ
(
−|∇u(x)|2 +

qτ

2
|∇u(x)|2

)
≤ u(x) + τ

(
−|∇u(x)|2 +

q

2
|∇u(x)|diam(Ω)

)
≤ u(x) + τ

(
−|∇u(x)|2 + |∇u(x)|

)
= u(x) +

τ

2

(
1− |∇u(x)|2

)
− τ

2
(|∇u(x)| − 1)

2

≤ u(x) +
τ

2

(
1− |∇u(x)|2

)
,

where we made use of the assumption q diam(Ω) ≤ 2.

Remark A.4. The inequality q diam(Ω) ≤ 2 is sharp. Indeed, if Ω is a ball, centered at the origin, and
q diam(Ω) > 2, then the function ℘q : Ω → R defined by ℘q(x) := q

2 |x|
2 is not a single-shock function on Ω.

Existence of minimizers of the resistance functional on CMq (Ω) follows the standard arguments.

Lemma A.5. Let Ω be an open bounded convex subset of Rn. Let M > 0 and q ≥ 0. Then for every p ∈ [1,∞)
the class CMq (Ω) is compact with respect to the strong topology of W 1,p

loc (Ω).

Proof. First of all, a concave function v on Ω taking values in [0,M ] satisfies, for every K ⊂⊂ Ω,

|v (z1)− v (z2)| ≤ 2M

dist (K, ∂Ω)
|z1 − z2| for every z1, z2 ∈ K.

Then, if R > 0 is such that Ω ⊂ B0(R), a q-concave function is Lipschitz continuous on any open subset K,
compactly contained in Ω, with Lipschitz constant not exceeding 2M

dist(K,∂Ω) + qR.

Let (un)n∈N be a sequence of elements of CMq (Ω). We shall prove that there exists a strictly increasing
sequence of natural numbers (nk)k∈N and u ∈ SM,q(Ω) such that

unk → u in Lp (Ω) e ∇unk → ∇u in Lp(K) for every K ⊂⊂ Ω.

The sequence (un)n∈N is equi-bounded and equi-Lipschitz on every K ⊂⊂ Ω. By Ascoli-Arzelà theorem, (un)n∈N
admits a convergent subsequence in C(K), for every K ⊂⊂ Ω. By a diagonal argument we may obtain the
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existence of a strictly increasing sequence of natural numbers (nk)k∈N and of a function u ∈ C(Ω), such that
unk → u uniformly on each K ⊂⊂ Ω. Since

u (λx+ (1− λ) y) = lim
k→+∞

unk (λx+ (1− λ) y)

≥ lim
k→+∞

[
λunk(x) + (1− λ)unk(y)− q

2
λ (1− λ) |x− y|2

]
= λu(x) + (1− λ)u(y)− q

2
λ (1− λ) |x− y|2

for every x, y ∈ Ω and for every λ ∈ [0, 1], u is q-concave on Ω. Moreover, since unk(x) ∈ [0,M ] for every x ∈ Ω
and for every k ∈ N, we have u(x) ∈ [0,M ] for every x ∈ Ω. Thus u ∈ CMq (Ω). Now, since Ω is bounded and
(unk)k∈N is an equi-bounded subsequence, by dominated convergence we infer that unk → u in Lp(Ω). In order
to conclude we have to show that ∇unk → ∇u in Lp(K) for every K ⊂⊂ Ω. Since (unk)k∈N is equi-Lipschitz
continuous on each K ⊂⊂ Ω, we have that (∇unk)k∈N is equi-bounded on each K ⊂⊂ Ω. So, it suffices to prove
that

∇unk(x)→ ∇u(x) for a.e. x ∈ Ω.

Let i ∈ {1, . . . , n} and let x ∈ Ω be a fixed point where all unk (k ∈ N) and u are differentiable (almost every
point of Ω meets this requirement). Denoting by ei the ith vector of the standard basis in Rn and letting
ϕnk(x) := unk(x) − q

2x
2, since the functions t 7→ ϕnk(x + tei) are concave, there exists ε0 = ε0(i, x) > 0 such

that, for every ε ∈ (0, ε0)

ϕnk(x+ εei)− ϕnk(x)

ε
≤ ∂iϕnk(x) ≤ ϕnk(x− εei)− ϕnk(x)

−ε

from which, adding qxi and taking into account that ∂iϕunk (x) = ∂iunk(x)− qxi, we have

unk(x+ εei)− unk(x)

ε
− qε

2
≤ ∂iunk(x) ≤ unk(x− εei)− unk(x)

−ε
+
qε

2
.

Passing to the limit as k → +∞, for every ε ∈ (0, ε0) we obtain

u(x+ εei)− u(x)

ε
− qε

2
≤ lim inf

k
∂iunk(x) ≤ lim sup

k
∂iunk(x) ≤ u(x− εei)− u(x)

−ε
+
qε

2
.

Passing now to the limit as ε→ 0 we have

∂iu(x) ≤ lim inf
k

∂iunk(x) ≤ lim sup
k

∂iunk(x) ≤ ∂iu(x),

that is, lim
k→+∞

∂iunk(x) = ∂iu(x).

Corollary A.6. Let Ω be an open bounded convex subset of Rn. Let M > 0 and q ≥ 0. The resistance functional
DΩ admits a minimizer on CMq (Ω).

Proof. Notice that, by dominated convergence, functional DΩ is continuous with respect to the a.e. convergence
of gradients.
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[10] T. Lachand-Robert and É. Oudet, Minimizing within convex bodies using a convex hull method. SIAM J. Optim. 16 (2005)
368–379.

[11] T. Lachand-Robert and M.A. Peletier, Newton’s problem of the body of minimal resistance in the class of convex developable
functions. Math. Nachr. 226 (2001) 153–176.

[12] E. Mainini, M. Monteverde, E. Oudet and D. Percivale, Newton’s aerodynamic for non convex bodies. Rend. Lincei Mat. Appl.
28 (2017) 885–896.

[13] P. Marcellini, Nonconvex integrals of the calculus of variations, in Methods of Nonconvex Analysis (Varenna, 1989). Vol. 1446
of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1990) 16–57.

[14] A. Plakhov, The problem of minimal resistance for functions and domains. SIAM J. Math. Anal. 46 (2014) 2730–2742.

[15] A. Plakhov, Newton’s problem of minimal resistance under the single impact assumption. Nonlinearity 29 (2016) 465–488.

https://github.com/robertfeldt/BlackBoxOptim.jl

	The minimal resistance problem in a class of non convex bodies
	1 Introduction
	1.1 Plan of the paper

	2 Main results
	2.1 One-dimensional case
	2.2 Radial two-dimensional case

	3 Some preliminary results
	4 The one-dimensional case
	4.1 Conclusion of the one-dimensional case

	5 The radial two-dimensional case
	6 Approximation of optimal profiles in the general two-dimensional case
	Appendix A Single shock and Lg-concave profiles

	References

