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AN UNBALANCED OPTIMAL TRANSPORT SPLITTING SCHEME
FOR GENERAL ADVECTION-REACTION-DIFFUSION PROBLEMS

THOMAS GALLOUET"?, MAXIME LABORDE®
AND LEONARD MONSAINGEON*?*

Abstract. In this paper, we show that unbalanced optimal transport provides a convenient framework
to handle reaction and diffusion processes in a unified metric setting. We use a constructive method,
alternating minimizing movements for the Wasserstein distance and for the Fisher-Rao distance, and
prove existence of weak solutions for general scalar reaction-diffusion-advection equations. We extend
the approach to systems of multiple interacting species, and also consider an application to a very
degenerate diffusion problem involving a Gamma-limit. Moreover, some numerical simulations are
included.
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1. INTRODUCTION

Since the seminal works of Jordan-Kinderlehrer-Otto [20], it is well known that certain diffusion equations can
be interpreted as gradient flows in the space of probability measures, endowed with the quadratic Wasserstein
distance W. The well-known JKO scheme (a.k.a. minimizing movement), which is a natural implicit Euler scheme
for such gradient flows, naturally leads to constructive proofs of existence for weak solutions to equations or
systems with mass conservation such as, for instance, Fokker-Planck equations [20], Porous Media Equations
[34], aggregation equation [9], double degenerate diffusion equations [32], general degenerate parabolic equation
[1], etc. We refer to the classical textbooks of Ambrosio, Gigli and Savaré [4] and to Villani’s books [45, 46] for
a detailed account of the theory and extended bibliography. Recently, this theory has been extended to study
the evolution of interacting species with mass-conservation, see for examples [8, 15, 21, 24, 47].

Nevertheless in biology, for example for diffusive prey-predator models, the conservation of mass may not
hold, and the classical optimal transport theory does not apply. An unbalanced optimal transport theory was
recently introduced simultaneously in [11, 12, 22, 26, 27], and the resulting Wasserstein-Fisher-Rao (WFR) metrics
(also referred to as the Hellinger-Kantorovich distance HK) allows to compute distances between measures with
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2 T. GALLOUET ET AL.

variable masses while retaining a convenient Riemannian structure. See Section 2 for the definition and a short
discussions on this WFR metric. We also refer to [16, 39] for earlier attempts to account for mass variations within
the framework of optimal transport.

The WFR metrics can be seen as an inf-convolution between Wasserstein/transport and Fisher-Rao/reaction
processes, and is therefore extremely convenient to control both in a unified metric setting. This allows to
deal with non-conservative models of population dynamics, see e.g. [22, 23]. In [18], the first and third authors
proposed a variant of the JKO scheme for WFR-gradient flows corresponding to some particular class of reaction-
diffusion PDEs: roughly speaking, the reaction and diffusion were handled separately in the FR,W metrics,
respectively, and then patched together using a particular uncoupling of the inf-convolution, namely WFR? ~
W2 + FR? in some sense (see [18], Sect. 3 for a thorough discussion). However, the analysis was restricted to very
particular structures for the PDE, corresponding to pure WFR gradient-flows.

In this work we aim at extending this splitting scheme in order to handle more general reaction-diffusion
problems, not necessarily corresponding to gradient flows. Roughly speaking, the structure of our splitting
scheme is the following: the transport./diffusion part of the PDE is treated by a single Wasserstein JKO step

k W k+1/2
LN Ve )

transport
and the next Fisher-Rao JKO step

FR
k+1/2 pk+1

p -
reaction

handles the reaction part of the evolution. As already mentioned, the WFR metric will allow to suitably control
both steps in a unified metric framework. We will first state a general convergence result for scalar reaction-
diffusion equations, and then illustrate on a few particular examples how the general idea can be adapted to
treat e.g. prey-predator systems or very degenerate Hele-Shaw diffusion problems. In this work we do not focus
on optimal results and do not seek full generality, but rather wish to illustrate the efficiency of the general
approach.

Another advantage of our splitting scheme is that it is well adapted to existing Monge /Kantorovich/Wasser-
stein numerical solvers, and the Fisher-Rao step turns out to be a simple pointwise convex problem which
can be implemented in a very simple way. See also [10, 13] for a more direct numerical approach by entropic
regularization. Throughout the paper we will illustrate the theoretical results with a few numerical tests. All the
simulations were implemented with the augmented Lagrangian ALG2-JKO scheme from [6] for the Wasserstein
step, and we used a classical Newton algorithm for the Fisher-Rao step.

The paper is organized as follows. In Section 2 we recall the basic definitions and useful properties of the
Wasserstein-Fisher-Rao distance WFR. Section 3 contains the precise description of the splitting scheme and
a detailed convergence analysis for a broad class of reaction-diffusion equations. In Section 4 we present an
extension to some prey-predator multicomponent systems with nonlocal interactions. In Section 5 we extend
the general result from Section 3 to a very degenerate tumor growth model studied in [36], corresponding to a
pure WFR gradient flow: we show that the splitting scheme captures fine properties of the model, particularly the
I'-convergence of discrete gradient flows as the degenerate diffusion exponent of Porous Medium type m — oo
(this limit is often referred to as the mesa problem, or the incompressible limit). Section 6 contains an extension
to a tumor-growth model coupled with an evolution equation for the nutrients.

2. PRELIMINARIES

Let us first fix some notations. Throughout the whole paper, {2 denotes a possibly unbounded convex subset
of R%, Qr represents the product space [0, 7] x 2, for T > 0, and we write M+t = M™T(2) for the set of
nonnegative finite Radon measures on 2. We say that a curve of measures t — p; € Cy ([0, 1]; M) is narrowly
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continuous if it is continuous with respect to the narrow convergence of measures, namely for the duality with
Cp(12) test-functions.

Definition 2.1. The Fisher-Rao distance between pg, p1 € M is

1
FR(po, p1) := min / |7¢|% dpy (x)dt,
(pt,re) EAmR[pP0,p1] 0 0

where the admissible set Agg[po, p1] consists in curves [0,1] 3 ¢ — (pt,7¢) € MT x M such that ¢ — p; is
narrowly continuous with endpoints pg, p1, and

atpt = PtTt

in the sense of distributions D’((0,1) x £2).

The Monge-Kantorovich-Wasserstein admits several equivalent definitions and formulations, and we refer e.g.
to [4, 43, 45, 46] for a complete description. For our purpose we shall only need the dynamical Benamou-Brenier
formula:

Theorem 2.2 (Benamou-Brenier formula [4, 5]). There holds

1
o) =, min [ Pdps (2.1)
(p,v)EAu[po,p1] Jo J 0

where the admissible set Aylpo, p1] consists in curves (0,1) 3t — (py,v¢) € M x M(2;RY) such that t — p,
s narrowly continuous with endpoints pg, p1 and solving the continuity equation

atpt + diV(ptVt) =0

in the sense of distributions D'((0,1) x £2).
According to the original definition in [11] we have

Definition 2.3. The Wasserstein-Fisher-Rao distance between pg, p1 € MT(£2) is

1
WFR(po,p1) = inf / / (V@) + [r]?) dps (), (2.2)
(p,v,r)€Aus[po,p1] Jo J 0

where the admissible set Ayrg[po, p1] is the set of curves t € [0,1] — (p¢, ve,7¢) € MT X M(Q;Rd) x M such
that ¢ — p; is narrowly continuous with endpoints pg, p1 and solves the continuity equation with source

Orpt + div(pive) = pere.

Comparing Definition 2.3 with Definition 2.1 and Theorem 2.2, this dynamical formulation a la Benamou-
Brenier shows that the WFR distance can be viewed as an inf-convolution of the Wasserstein and Fisher-Rao
distances W,FR. From [11, 12, 22, 26] the infimum in (2.2) is always a minimum, and the corresponding min-
imizing curves t — p; are of course constant-speed geodesics WFR(p;, ps) = |t — s|WFR(po, p1). Then (M™ WFR)
is a complete metric space, and WFR metrizes the narrow convergences of measures (see again [11, 12, 22, 206]).
Interestingly, there are other possible formulations of the distance in terms of static unbalanced optimal trans-
portation, primal-dual characterizations with relaxed marginals, lifting to probability measures on a cone over
2, duality with subsolutions of Hamilton-Jacobi equations, and we refer to [11, 12, 22, 26, 27] for more details.

As a first useful interplay between the WFR, W, FR distances we have
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Proposition 2.4 ([18]). Let po, p1 € M3 such that |po| = |p1|. Then

WER? (po, 1) < W (po, p1)-
Similarly for all po, p1 € M™ (with possibly different masses) there holds
WER® (110, f11) < FR? (o, 1)
Finally, for all vo,v1 € M3 such that |vy| = |v1| and all v € M™, there holds
WFR? (g, v) < 2(W?(vo, 1) + FR? (11, v)).

Moreover, we have the following link between the reaction and the velocity in (2.2), which was the original
definition in [22]:

Proposition 2.5 ([18], Prop. 2.2). Definition (2.3) of the WFR distance can be restricted to the subclass of
admissible paths (vi,r¢) = (Vug,ug) for potentials uy € H(dp;) and continuity equations

atpt + dlv(ptVut) = ptlU¢.

This shows that (M™,WFR) can be endowed with the formal Riemannian structure constructed as follow:
any two tangent vectors ! = 9;p', €2 = 9,p? can be uniquely identified with potentials u? by solving the elliptic
equations

¢ = —div(pVu') + pu'’.

Then the Riemannian tensor is naturally constructed on the H'(dp) scalar product, i.e.
gp(€1,§2> = (ul, u2>H1(dP) = / (Vul . qu + u1u2)dp.
Q

This is purely formal, and we refer again to [18] for discussions. Given a functional

f(p)::/QF(/))Jr/QpV+%/Q(K*p)p7

this Riemannian structure also allows to compute WFR gradients as
. 0F oOF
gradygs F(p) = —div (PV(;p> + pTP = grady F(p) + grade F(p),

where % = F'(p) + V + K * p denotes the Euclidean first variation of F with respect to p. In other words, the

Riemannian tangent vector gradyg F(p) is represented in the previous H'(dp) duality by the scalar potential
6F

u= .
op
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3. AN EXISTENCE RESULT FOR GENERAL PARABOLIC EQUATIONS

In this section, we propose to solve scalar parabolic equations of the form

Op = div(pV(F'(p) +V)) = p(G'(p) + U)
pli=o = p" (3.1)
PV (EF'(p) +V)lpp v =0

in a bounded domain 2 C R¢ with Neumann boundary condition and suitable initial conditions. Our goal is to
extend to the case F' # G,V # U the method initially introduced in [18] for variational WFR-gradient flows, i.e.
(3.1) with F =G and V = U.

We assume for simplicity that F' : R — R is given by

zlogz — z (linear diffusion)
F(z)=qor (3.2)

L_>m  (Porous Media diffusion)
mlfl

and G : R — R is given by

1
G(z) = - 1zm2, for some mg > 1. (3.3)

Note that we cannot take G(z) = zlogz — z because the Boltzmann entropy is not well behaved (neither
regular nor displacement convex) with respect to the Fisher-Rao metric in the reaction step, see [18, 26, 27| for
discussions. In addition, we assume that

VeWwh>(0) and U e L®(0).
We denote by £p,Eg : MT — R the energy functionals

Er(p) == F(p) + V(p),

Ea(p) == G(p) +U(p),

where

_ o Fp) ifp<Lg
Fp) = ,
+o00 otherwise,

and V(p) :z/ Vo,
7

similarly

G ifp L
G(p) == Jo G(p) P . 12 and U(p) = / Up.
400 otherwise, 0
Although more general statements with suitable structural assumptions could certainly be proved, we do not
seek full generality here and choose to restrict from the beginning to the above simple (but nontrivial) setting
for the sake of exposition.
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Definition 3.1. A weak solution of (3.1) with initial datum p° is a curve ¢ — p(t,-) € L1 N L°°(§2) defined for
all t > 0 such, that for all T < oo, the pressure Pr(p) := pF'(p) — F(p) satisfies VPr(p) € L2([0,T] x §2), and

/0+oo ( /Q (p0s6s — pVV - V6 =V Pp(p) - Vo — p(G'(p) + U)) dx) Q= - /Q 50, 2),°(z) da

for every ¢ € C°([0, +00) x R9).
Note that the pressure Pg is defined so that the chain rule div(pVF’(p)) = APr(p) holds at least for smooth p’s.

The starting point of our analysis is that (3.1) can be written, at least formally as,
Op = div(pV(F'(p) +V)) = p(G'(p) +U) < Oip = —grady Er(p) — grade £ (p),

see again Section 2 from [18] for a discussion on the FR, W, WFR Riemannian structure and how to compute the
respective gradients. Our splitting scheme is a variant of that originally introduced in [18], and can be viewed
as an operator splitting method: each part of the PDE above is discretized (in time) in its own W, FR metric, and
corresponds respectively to a W/transport./diffusion step and to a FR/reaction step. More precisely, let A > 0
be a small time step. Starting from the initial datum ,02 := p%, we construct two recursive sequences (pZ)k and

(prH/z)k such that

k+1/2 .
pp e argmin {EW(p,pk) +Er(p)}
pEMT,|p|=|pf|

(3.4)

. k+1/2
pitt e argmm{ﬁFR?(p, pn %)+ So(p)}-
pEMT

With our structural assumptions on the various functionals involved and arguing as in [18], the direct method
shows that this scheme is well-posed, i.e. that each minimizing problem in (3.4) admits a unique minimizer. We
construct next two piecewise-constant interpolating curves

£ = ptl
{2’8 B ;’g+1}2 for all t € (kh, (k + 1)h]. (3.5)
h — Fhp )

Our main result in this section is the constructive existence of weak solutions to (3.1):

Theorem 3.2. Assume that p° € L N L>(£2). Then, up to a discrete subsequence (still denoted h — 0 and
not relabeled here), pn, and py, converge strongly in L*((0,T) x §2) to a weak solution p of (3.1).

Note that any uniqueness for (3.1) would imply convergence of the whole (continuous) sequences py,, pp, — p
as h — 0, but for the sake of simplicity we shall not address this issue here.

The main technical obstacle in the proof of Theorem 3.2 is to retrieve compactness in time. For the classical
minimizing scheme of any energy £ on any metric space (X, d), suitable time compactness is usually retrieved
in the form of the total-square distance estimate

1
o ng(xk,ka) < E(2°) —inf&.
k>0

This usually works because only one functional is involved, and £(zg) — inf £ is obtained as a telescopic sum
of one-step energy dissipations £(z**1) — £(z*). Here each of our elementary step in (3.1) involves one of the
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W,FR metrics, and we will use the WFR distance to control both simultaneously: this strongly leverages the
inf-convolution structure, the WFR distance being precisely built on a compromise between W/transport and
FR/reaction. On the other hand we also have two different functionals £, g, and we will have to carefully
estimate the dissipation of £ during the FR reaction step (driven by £z) as well as the dissipation of £¢ during
the W transport. /diffusion step (driven by Ep).

We start by collecting one-step estimates, exploiting the optimality conditions for each elementary
minimization procedure, and postpone the proof of Theorem 3.2 to the end of the section.

3.1. Optimality conditions and pointwise L°° estimates

The optimality conditions for the first Wasserstein step p* — p**1/2 in (3.4) are by now classical [43], and
can be written for example

_VSOZH/Q

. pZ“/z = VPF(p:H/z) + p:+1/2VV a.e. (3.6)
Here @ZH/ % is an optimal (backward) Kantorovich potential from pﬁﬂ/ % to p’fL.
Lemma 3.3. Forall k >0,
k
loh™ Ml = okl e (3.7)
and for all constant C such that V(x) < C a.e,
_ k _
ph(@) < (F)HC=V@)ae = p @) <E)HC-V(@) ae (3.8)

Proof. The Wasserstein step in (3.4) is mass conservative by construction, so the first part is obvious.
As for the second part, F. Otto established in [33] a weaker version of (3.8) in the form (with the same
assumptions on F'):

1
any minimizer p* = Argmin{%WQ(p, v) —|—/ F(p)} satisfies ||p™||pee < ||V Lo, (3.9)
p 2

which we shall refer to as Otto’s maximum principle in the sequel. This was later generalized in [38] to include
an external potential V(z) # 0 exactly as in our statement. The proof goes by contradiction: assuming that
{p*+1/2(2) > (F")~'(C — V(z))} has positive Lebesgue measure, a careful construction based on the convexity

of F (and the optimal transport plan 4* between pf and p’fbﬂ/ 2) allows to construct a strictly better competitor

ﬁZH/ % in (3.4). For the sake of brevity we omit the details and refer to proof of Lemma 2 from [38]. Let us however

briefly mention that the the convexity F"" > 0 precisely makes the continuous PDE 0p = div(pV (F'(p)+V)) =
div(pF"(p)Vp)+(...) parabolic. In other words, (3.8) is a discrete equivalent of taking p(z) := (F')~1(C -V (z))
as a stationary Barenblatt supersolution for d;p = div(pV(F'(p) + V)). O

For the second Fisher-Rao reaction step, the optimality condition can be written Section 4.2 from [18] in the
form

h
(\/pl}flJrl _ \/PZH/Q) \/pIZJrl _ _§piz+1 (G +U)  ae (3.10)

As a consequence we have
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Lemma 3.4. There is C = C(U) > 0 such that for h < ho(U) small enough we have
P @) < (14 CR) T P () ace., (3.11)
and for all M > 0 there is ¢ = ¢(M,U) such that if leﬁ_l/ZHOO < M then
(1—ch)pi 2 (2) < pf () ace. (3.12)
Note in particular that this immediately implies

k+1 2
supp pf 1 = supp py Y/ (3.13)

which was to be expected since the reaction part 9,p = —p(G’(p) +U) of the PDE (3.1) preserves strict positivity.
Proof. We start with the upper bound: inside supp pk"'1 (3.10) and G’ > 0 give

\/pk+l \/ k+1/2( ) —h pk+1< )(G/(pZJrl(CL‘))—f—U(.Z'))

—hU @)\ o (@) < U]y /o (@)

whence

1
/pl}§+1(x) < W /p2+1/2(x).

Taking squares and using

1

A= hU=)? 1+ 2|Ullpeh+ O(h?) < 1+ 3||U||Leh

for small h gives the desired inequality.
For the lower bound (3.12), we first observe that since G” > 0 and from (3.11) we have G’(pf™) < G'((1 +

Ch)p k+1/2) < G'(2M) if h is small enough. Then (3.10) gives inside supp p**?

\/pk“ \/pk:+1/2 —ha/ o (@) (G (05 () + U(2))
> —h(G'(2M) + |Ul|o)y/ i (),

hence

1
pr TP (@) = (1= ch)pp P ()

k+1
A T IR I E

for small h. 0
Combining Lemmas 3.3 and 3.4, we obtain at the continuous level

Proposition 3.5. For all T > 0 there exist constants My, M}, such that for all t € [0,T),

lon(@)llLianes, [|pn ()| 1AL < Mr



AN UNBALANCED OPTIMAL TRANSPORT SPLITTING SCHEME 9

and
lpn(t) = pu(t)llLr < hM7p

uniformly in h > 0.

Note from the second estimate that strong L'((0,7) x §2) convergence of pj, will immediately imply
convergence of pp to the same limit.

Proof. Combining (3.8) and (3.11) and arguing by induction, we obtain, for all ¢ € [0,T],

lon ()|, Ipn ()] L < Cr,

where Cr is a constant depending on ||V 1=, see Lemma 2 from [38]. The L' bound is even easier: since the
Wasserstein step is mass preserving, we can integrate (3.11) in space to get

1PE o < L+ CR)lpp ™2 1pe = (1 + Ch)||p |1

This immediately gives ||pf|r: < (1 + Ch)¥[|p°| 11, and for t < T & k < |[T/h| we conclude exploiting (1 +
Ch)\_T/hj 5 eCT .

In order to compare now p; and g, we take advantage of the upper bound (3.11) to write p;clﬂ/z < Mrp as
long as kh < T. Taking ¢ = ¢(Mr) in (3.12) and combining with (3.11), we have

—chpl,frl/2 < pZH/Q — pﬁ“ < Chplfﬁ_l/2 a.e.

Integrating in {2 we conclude that
lpn(®) = an(®)llr = [lpf+t = pf 2| < hmax{e, CY|py /%11 < hmax{e, C} My = hMj,

and the proof is complete. O

3.2. Total square distance and energy dissipation
Our goal is here to retrieve a total square distance estimate of the form Y, WFR?(p}, pZH) < ..., see Propo-

sition 3.7 below for a precise statement. According to Proposition 2.4 it is enough to control W?(p}, prH/ 2)

and FR? (pZH/ 2, pffl) separately, each step being driven by its own F +V and G + U functionals, respectively.
Along the second Fisher-Rao step k+1/2 — k4 1, we will first control the 7 +V increment (which is a crossed
dissipation estimate), and then directly show that the G 4+ U increment is small enough. This will allow in the
end to recover a telescopic sum as in the classical approach, plus a summable term.

Testing p = pf in the first Wasserstein step in (3.4), we get as usual

1
ﬁWQ(pZH/Q’ pE) < F(pk) — Fort ) + /Q V(pk — o). (3.14)
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Let t be the optimal map from pf to pkﬂ/2 = typ}, given by the Gangbo-McCann theorem [19]. Since V is

Globally Lipschitz we get by Young’s inequality with e

/ V(pk — pp %)
2

< [ V@) = V(@)@ < 1TVl [ It -l @)
<19Vl / {;n(x) ol 2 abe) = 19 (592005 + 2 )

Choosing € = W and recalling from Proposition 3.5 that the mass ||pf| 1 < My is bounded uniformly, we
can thus reabsorb the W? term in the left-hand side of (3.14) to obtain

1
ook < Flph) = Flp %) + Crh. (3.15)

The next proposition allows to replace F(p, k1/ 2) by F(p§) above in order to retrieve a telescopic sum, up to a
O(h) term:

Proposition 3.6. For all T > 0 there exists a constant Cp > 0 such that, for all k > 0 and k < |T/h],
Flop™) < Floy ™) + Crh. (3.16)

Proof. We first treat the case of F(z) = mllilzml with mq > 1. Since F is increasing, we use (3.11) to obtain

1+ Ch)y™ — 1 N
o) - Fithy < LEGUEZD) [ oz,

< ORIl 2 Z oM o,

and we conclude from Proposition 3.5.
In the second case F'(z) = zlog(z) — 2z, we have

f(pﬁJrl) /kJrl pl;LJrl log( k+1)+/
{pp " <e71}

1 k k
(o> 1}ph+ logle +1) /pthl.
Py ZeT

Note from Proposition 3.5 that the z contribution in F(z) = zlog z — z is immediately controlled by | fpk‘"1

prH/Q ||p’chl p2+1/2||L1 < hM., so we only have to estimate the zlogz contribution. Since z — zlog z

is increasing on {z > e~!} and using (3.11), the second term in the right hand side becomes

/ ol og(el ™) < [ (14 Ch)p ™ log((1 4+ Ch)p/?)
(i ze 1)

(Pt e}

k k k k
< /{ - l}ph“”log@h“”)wh / oy 1og(py %)
P e~

{1 ze 1)

+(1+Ch) / pr 2 10g(1 4 Ch)
{1 ze 1)

</ oyt log () %) + O,
{okt1 ey
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where we used th+ /2||L1 < My from Proposition 3.5 as well as log(1 + Ch) < Ch in the last inequality. Using

the same method with the bound from below (3.12) on {pf** < e~} (where z — zlog z is now decreasing), we
obtain similarly

/ pht log(py ™) </ ot log (o) %) + Crh.
ol <e 1}

k —
(o <1}

Combining both inequalities gives

o) < o ow(eh ) + o

and the proof is complete. O

Summing (3.15) and (3.16) over k we obtain

N—
1 Pk
@Z 12 08) < F(0°) = Fo})) + Cr, (3.17)
k=0
where N = [L].
The goal is now to estimate the FR? increment along the second reaction step. Testing p = pkﬂ/ in the
Fisher-Rao minimization in (3.4), we obtain
1 k k k
ﬁwwﬂ%wﬁg<wﬁg%ﬂ+/wwm P, (3.18)
Q

Since we assumed U € L>(£2) and because py,(t) = pi ' remains close to i (t) = p;,

t, h by Proposition 3.5, we immediately control the potential part as

RHLZ 4y uniformly in

k+1/2
| U@ = ) < U )Crh. (3.19)
2
For the internal energy we argue exactly as in the proof Proposition 3.6 (for the Porous Media part, since we
chose here G(z) = m21_1zm2), and obtain
Gpp %) = G < Crh. (3.20)

Combining (3.18), (3.19) and (3.20), we immediately deduce that
1 = /
— § R2(pp T2 pithy < © 3.21
2h P ) X T, ( )

where N = [ L] as before.

Finally, we recover an approximate compactness in time in the form
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Proposition 3.7. There exists a constant Cp > 0 such that for all h small enough and k < N = |T/h|,

S| =

N-—
Z WFR2(pf, p 1) < 8F(p°) + Cr. (3.22)
k=0

Proof. Adding (3.17) and (3.21) gives

N-—-1

1

2 Wk ) R (0 pE ) < 4(F(6°) = Flpl) + Or) + 200 <4F (") + O,
k=0

1

since in any case F/(2) = ==

1 >0 and F(z) = zlogz — z > —1 is bounded from below on the bounded

domain (2, hence F(pY) > —Cq uniformly. It then follows from Proposition 2.4 that W?(p ,pk'H/ 4
Ph ho Ph

FRz(pkH/ 2 O > 1WFR?(pk, py ) in the left-hand side, and the result immediately follows.

O
3.3. Estimates and convergences
From the total-square distance estimate (3.22) we recover as usual the approximate %—Ht’)lder estimate
WER(p1 (1), pr(s)) + WFR(Fn (1), pn(s)) < Crlt — s + h|'/? (3.23)
for all fixed T'> 0 and t, s € [0,T]. From (3.21) and Proposition 2.4 we have moreover
WER(pn(t), on(t)) < FR(pn(t), on(t)) < CVh. (3.24)

Using a refined version of Ascoli-Arzela theorem, Proposition 3.3.1 from [4] and arguing exactly as in
Proposition 4.1 from [18], we see that for all 7' > 0 and up to extraction of a discrete subsequence, p;, and
pr, converge uniformly to the same WFR-continuous curve p € CY/2([0, T], M) as

S, }(WFR(ph(t), p(t)) + WER(pn (1), p(t))) —= 0.

In order to pass to the limit in the nonlinear terms, we first strengthen this WFR-convergence into a more
tractable strong L' convergence. The first step is to retrieve compactness in space:

Proposition 3.8. For allT > 0, pn, and py satisfies

| Pe(pn)ll L2 (o, m);m1 (2)) < O (3.25)

Proof. From (3.6) and the L' N L*> bounds from Proposition 3.5 we see that

/ IVPp(py )2 < hQ/ IVor V2R (o /%) +2/ YV 2(oE %)

2CT k+1/2(2 k+1/2 k+12
<2 [Tt 2wV, [ oy

w2 k+1/2
<o (W .
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since @), K+1/2 s the optimal (backward) Kantorovich potential from p,

over k, and exploiting (3.17) gives

K172 46 p% Multiplying by A > 0, summing

N—-1
k
1Pe (a2 o, 715111 2y < D MIPe(o ™) < Cr(F(p°) = Flo) +1) < Cr,
k=0

where we used as before F(pY) > —Cy, in the last inequality. O
We are now finally in position of proving our main result:

Proof of Theorem 3.2. Exploiting (3.22) and (3.25), we can apply a generalized Aubin-Lions lemma Theorem 2
from [41], to obtain that p;, converges to p strongly in L'(Qr) (see [24]). By diagonal extraction if needed, we
can assume that the convergence holds in L!(Qr) for all fixed T' > 0. Then by Proposition 3.5 we have

lon — pller@ry < llen — Pullr@r) + 1160 — Pl @) < Crh+ ||pn — pllzr (@) — 0

hence p;, — p strongly in L'(Q7) as well. Moreover, since Pr(py) is bounded in L?((0,7T), H'(£2)) we can
assume that VPp(p,) — VPr(p) in L2((0,T),L?(£2)) for all T > 0. Following [18], one easily exploits the
Euler-Lagrange equations (3.6) and (3.10) to check that

[kt =obe == [ {TPeG) + 429V} o+ 0 (Dl k™2 b))

/ \/p’“+1 (\/,0’“+1 + \/pffm) (G +U) e

for all smooth ¢ € C?(2). Summing from k; = |t1/h| to ky = |t2/h] and leveraging the strong convergence
Phy P — p one easily gets, in the limit h — 0,

[ plta)e = p(t)e = - / /Q [V Pr(p) +pVV } - Vot 0@ () + U

for all 0 < #; < t and ¢ € C{(£2). Here we omit the details and refer to the proof of Theorem 4 from [18]. Since
p € C([0,T); Miig) takes the initial datum p(0) = p° and WFR metrizes the narrow convergence of measures, this
is well-known to be equivalent to our weak formulation in Definition 3.1, and the proof is complete. O

Remark 3.9. In the above proofs one can check that Theorem 3.2 extends in fact to all C' nonlinearities
G such that G’ > —C is bounded from below (so that the reaction term d¢p = (...) — pG’(p) does not allow
blow-up). Likewise, we stated and proved our main result in bounded domains for convenience: all the above
arguments immediately extend to 2 = R? at least for F(z) = mll

— 2™ 2 0. The only argument actually
exploiting the boundedness of {2 was the proof of Proposition 3.7, when we bounded from below F (ph )= —Cqp
in order to retrieve the total-square distance estimate. In the case 2 = R? and F(z ) = zlog z — z a lower bound
F(p) > —Cr still holds, but the proof involves Carleman inequalities and requires a tedious control of the
second moments my(p) = [pa |z|>p and we chose not to address this technical issue for the ease of exposition.
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4. APPLICATION TO SYSTEMS

In this section we wish to illustrate the tractability of our splitting approach, and as an example we will solve
systems of the form

Orp1 = div(p1 V(F{(p1) + Vilp1, p2])) — p1(G1(p1) + Uilp1, p2]),
Orpa = div(p2V(F3(p2) + Valp1, p2])) — p2(G5(p2) + Uzlp1, p2)), (4.1)
Plit=0 = s P2|t=0 = p3.

For simplicity we assume again that (2 is a smooth, bounded subset of R?. The system (4.1) is naturally
supplemented with Neumann boundary conditions,

p1V(Fi(p1) + Vilpr, po]) - v = 0 and poV(F5(p2) + Valp1, p2]) - v =0  on RY x 942,

where v is the outward unit normal to 0f2. Here we allow interactions between densities in the potential terms
Vilp1, p2] and U;[p1, p2]. In the mass-conservative case (without reaction terms), this system has already been
studied in [8, 15, 24], using a semi-implicit JKO scheme introduced by Di Francesco and Fagioli [15]. This
section combines the splitting scheme introduced in the previous section and semi-implicit schemes both for the
Wasserstein JKO step and for the Fisher-Rao JKO step.

For the ease of exposition we keep the same assumptions for F; and G; as in the previous section, i.e. the
diffusion terms F; satisfy (3.2) and the reaction terms G; satisfy (3.3). Moreover, since the potentials depend
now on the densities p; and ps, we need stronger hypotheses: we assume that V; : L'(2;R1)? — W1 () are
continuous and verify, uniformly in p1, p» € L'(£2;RT),

’Vi[prQ]H

|9Wilor, p2) = VWil )| < Ko = mllzs oy + o2 = 2 llxce). (4:2)

<K+ pillzre) + lle2llr(2);

Wl,00(2)

The interacting potentials we have in mind are of the form V;[p1, p2] = K;1 % p1+ K; 2 % pa, where K; 1, K; 2 €
Whee(2) and then V; satisfies (4.2).

Uilpr, pa) = =K, Vp1,p2 € L'(2;RY) (4.3)
for some K € R, and
|Uilp1, p2lllLoe () < Knr,  Vpillorys lp2lloio) < M (4.4)

for some nondecreasimg function Kj; > 0 of M. The examples we have in mind are of the form

P2
1+ p1

P1

U1[01,/12]=Cl 1+

) U2[P17p2] = _02
for some constants C; > 0, or nonlocal reactions
Ulon pel(@) = [ Kia@ao)d+ [ Koale () dy

for some nonnegative kernels K; ; € L' N L>. Such reaction models appear for example in biological adaptive
dynamics [35].
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Definition 4.1. We say that (p1, p2) : Rt — L N L°(£2) is a weak solution of (4.1) with initial datum (p?, p3)
if, for i € {1,2} and all T' < 400, the pressure P;(p;) := p; F!(p:) — F;(p;) satisfies VP;(p;) € L?([0,T] x £2), and

+o0o
/0 ( L (006 = piTVilprspa] -V = VPA(p0) - Vo= (Gl + Ui[m,pzn@)dx) at == [ 6.0.0)00(@)d.
(4.5)
for all ¢; € C22([0, +00) x RY).

Then, the following result holds,

Theorem 4.2. Assume that p, p € L' N LL(2) and that Vi, U; satisfy (4.2)~(4.4). Then (4.1) admits at least
one weak solution.

Note that this result can be easily adapted to systems with an arbitrary number of species N > 2, coupled
by nonlocal terms V;[p1,...,pn] and U;[p1,. .., pN].

Remark 4.3. A refined analysis shows that our approach would allow to handle systems of the form

Oep1r — div(pi V(F(p1) + V1)) = —p1Hi(p1, p2),
Op2 — div(p2V(F5(p2) + V2)) = +p2Ha(p1),

where H; is a nonnegative continuous function and Hs is a continuous functions. Indeed since H; > 0 the

reaction term is the first equation is nonpositive, hence ||p1(t)|[z(2) < Cr. Then it follows that —H(p1)

satisfies assumptions (4.3) and (4.4). A classical example is Ha(p1) = p$ and Hy(p1, p2) = p$ ' pa, where o > 1,

see for example [40] for more discussions.

As already mentioned, the proof of Theorem 4.2 is based on a semi-implicit splitting scheme. More precisely,

k+1/2 k+1/2 .
we construct four sequences /’1; / ,p’f‘zl, sz,rl / ,pg‘zl defined recursively as

k+1/2 .
pin/? € argmin {ﬁWQ(p, Pin) + Filp) +Vi(p|p'f,h,p’§,h)}
PEMT |p|=pF |
(4.6)
. k+1/2
il e argmin {ﬁFRQ(p, P2+ Gilp) +Ui(plp’f,h7p’§,h)} :
p€

where the fully implicit terms

Fi(p) = {f() Fi(p) ifp< Lo and  Gy(p) i= {fn Gi(p) ifp<Lig

400 otherwise 400 otherwise ,

and the semi-implicit terms

Vi(plpa, p2) ZZ/QVi[ul,m]p and Ui (plpa, p2) ZZ/QUZ’[,ULNQ]P-

In the previous section, the proof of Theorem 3.2 for scalar equations strongly leveraged the uniform L*°({2)-
bounds on the discrete solutions. Here an additional difficulty arises due to the nonlocal terms VV;[p1, p2] and
Uilp1, p2], which are a priori not uniformly bounded in L*°(f2). Using assumption (4.3) we will first obtain a
uniform L!(£2)-bound on py, p2, and then extend Proposition 3.5 to the system (4.1). This in turn will give a
uniform W1 control on V;[p1, p2] and L> control on U;[p1, p2] through our assumptions (4.2)—(4.4), which
will finally allow to argue as in the previous section and give L°° control on p1, p2. Numerical simulations for a
diffusive prey-predator system are presented at the end of this section.
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4.1. Properties of discrete solutions

Arguing as in the case of one equation, the optimality conditions for the Wasserstein step and for the
Fisher-Rao step first give

Lemma 4.4. For all k > 0 and i € {1,2}, we have

k+1/2
s T 2 = 1okl e (4.7)

Moreover, there exists C; = C(U;) > 0 (uniform in k) such that
P (@) < L+ Gk P(2)  ace. (4.8)

Proof. The first part is simply the mass conservation in the Wasserstein step, and the second part follows the
lines of the proof of (3.11) in Lemma 3.4 using assumption (4.3). O

As a direct consequence we have uniform control on the L!-norms:

Lemma 4.5. For all T > 0 there exist constants Cr,Ch > 0 such that, for all t € [0,T],
lpi,n )Ly [1in ()2 < C7

and

Proof. Integrating (4.8) and iterating with (4.7), we obtain for all ¢ < T and k < |T/h]

Vilra®). pean )|, < O (49)

Vilpra(), p2n(0)] Wi

Wi’
P55 e < (L4 Cam)llpiallr < (L4 Cih)* (1ol < €Tl
Then (4.9) follows from our assumption (4.2) on the interactions. O

Combining (4.8) and (4.9), we deduce

Proposition 4.6. For all T > 0, there exists M such that for all t € [0,T],
pi,n (@)oo s, n ()L < Mr.
Then, there exists ¢; = ¢(Mp,U;) > 0, such that, for all k < |T/h| and h < ho(Ur,Us),
(1= esh)pl " < ot
In particular, there exist My > 0 such that for all t € [0,T1,
ll03,n(t) = pin ()]l 2 < WM.

Proof. The first L estimate can be found in Lemma 2 from [38], and the rest of our statement can be proved
exactly as in Lemma 3.4 and Proposition 3.5. O
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4.2. Estimates and convergences

Since we proved that Vi[pi p,p2n] and Valp1n,pe.n] are bounded in L>([0,T], W1>°(£2)), we can argue
exactly as in Section 3.2 for the Wasserstein step and obtain

1
Wi k) < Fulpli) = Filoi3?) + Or, (4.10)

see (3.14) and (3.15) for details. Since py 5, and ps , are uniformly bounded in L' (£2) (Lem. 4.5), our assumption
k+1/2  k+1/2 k+1/2  k+1/2 . oo s

(4.4) ensures that Ui[p; ;' py ), /7] and Uslp; ), "7, py ), ' 7] are uniformly bounded in L°°(§2). Proposition 4.6

then allows to argue exactly as in (3.18) and (3 19) for the Fisher-Rao step, and we get

1 k+1/2 k+1/2
SEFR N ) < Gl ) = Gulk ) + O (4.11)

In order to retrieve the total square distance estimate we need to control the energy increments as before:

Proposition 4.7. For all T > 0 and i € {1,2}, there exist constants Cr,Clh > 0 such that, for all k > 0 with
hk < T,

Fi(oh i) < Flpi 2 + Crh,
Gt *) < Gilpk Y + Chph.

Proof. The dissipation of F; along the Fisher-Rao step is obtained in the same way as Proposition 3.6, the
increment of G; along the Fisher-Rao step is obtained arguing as in (3.20) and we omit the details. O

From (4.10) and (4.11) this immediately gives a telescopic sum
1 k+1/2 k+1/2
o= (W25 Pl 2) + R, k) ) < 2UFilpl) = Filplf ] + Crh

which in turn yields an approximate %—Hb'lder estimate as in Proposition 3.7:

& > WERY (0, ) < 8F(pf) + Cr

The rest of the proof of Theorem 4.2 is then identical to Section 3 and we omit the details.

4.3. Numerical application: prey-predator systems

Our constructive scheme can be implemented numerically, by simply discretizing (4.6) in space. We use the
augmented Lagrangian method ALG-JKO from [6] to solve the Wasserstein step, and the Fisher-Rao step is
just a convex pointwise minimization problem. Indeed, it is known [18, 28] that FR*(p, ) = 4[|\/p — /i3,
hence the Fisher-Rao step in (4.6) is a mere convex pointwise minimization problem of the form: for all z € 2
(and omitting all indexes p; 1),

2

peERT

P (z) = argmin {4 '\f — /P2 ()| + 2hF(p)} .

This is easily solved using any simple Newton procedure.
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t=0.5 t =0.65 t=0.85 t=1

F1GURE 1. Evolution of two species with prey-predator interactions. First row: total density
p1 + p2. Second row: prey density p;. Third row: predator density p;.

Figure 1 shows the numerical solution of the following diffusive prey-predator system

{atm — Apy — div(pr VVilp1, pal) = Apy (1 — py) — BL2,

Bips — Aps — div(psVVa[py, pa]) = FEL2 — Cp.

Here the p; species are preys and po are predators, see for example [31], the parameters A = 10,C = 5, B = 70,
and the interactions are chosen as

Vilpr, pa] = |2 % p1 — [af* % pa,  Vo[pu, po] = [2]* % p1 + |2]? % pa.
In (4.1) this corresponds to

Bp:
14 p1

Bps
1+p1

2
Gi(p) = Aﬂ, Ga(p2) =0, Uilp1,p2] = +C

5 — A, Uspi,p2] =—

Of course, U; and U satisfy assumptions (4.3) and (4.4), and then Theorem 4.2 gives a solution of the prey-
predator system. As before, we shall disregard the uniqueness issue for the sake of simplicity. Figure 2 depicts
the time evolution of the L! mass for each prey/predator species: we observe the usual oscillations in time with
phase opposition, a characteristic behaviour for Lotka-Volterra types of systems.
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mass of prey
mass of predator
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FIGURE 2. Mass evolution for two-species prey-predator interactions.

5. APPLICATION TO A TUMOR GROWTH MODEL WITH VERY DEGENERATE
DIFFUSION AND SINGULAR ENERGY

In this section we consider the problem

Op = div(pVp) + p(1 - p),
p=0 and p(l—p)=0
0<p<l,
Plt=0 = .

This is a particular case of the tumor growth models studied in [36, 37], and solutions exhibit a Hele-Shaw
patch dynamics: if p° = xp, then the solution remains an indicator p(t) = X o) and the boundary moves with
normal velocity V = —Vp|aq@), see [2] for a rigorous analysis in the framework of viscosity solutions. At least
formally, we remark that (5.1) is the Wasserstein-Fisher-Rao gradient flow of the singular functional

where

0 if p<1 ae,
+o00 otherwise.
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Indeed, the compatibility conditions p > 0 and p(1 — p) = 0 in (5.1) really mean that the pressure p belongs to
the subdifferential 0F(p), and (5.1) thus reads as the gradient flow

dp

Op = div(pVu) —
ar — gradygg F(p) { & (V)

u=p—1¢€—0F(p).

However, this functional is too singular for the previous splitting scheme to correctly capture the very degenerate
diffusion. Indeed, the naive and direct approach from Section 3 would lead to

k+1/2 )
ot argmin  {5:W?(p, ) — [0},
p<1, |p|=|pk|
pitl ¢ argmin{ =FR*(p, p), kH/Q - /o p}
p<l

Since the Wasserstein step is mass-conservative by definition, the f p term has no effect in the first step and the
latter reads as “project ph on {p < 1} w.r.t to the W distance”. Since the output of the reaction step kar1 <1,
the Wasserstein step will never actually project anything, and the diffusion is completely shut down. As an
example, it is easy to see that if the initial datum is an indicator p° = y, then the above naive scheme leads
to a stationary solution pk+1 = pZH/ 2= p° for all k > 0, while the real solution should evolve according to
the aforementioned Hele-Shaw dynamics p(t) = x () [2, 36]. One could otherwise try to write a semi-implicit
scheme as follows: (1) keep the projection on {p < 1} in the first Wasserstein step. As in [30] a pressure term
prH/ appears as a Lagrange multiplier in the Wasserstein projection; (2) in the FR/reaction step, relax the
constraint p < 1 and minimize instead p**! € argmin { -FR?(p) + [ pp**1/2 — [ p}, and keep iterating. This
seems to correctly capture the diffusion at least numerically speaking, but raises technical issues in the rigorous
proof of convergence and most importantly destroys the variational structure at the discrete level (due to the
fact that the reaction step becomes semi-explicit).

We shall use instead an approximation procedure, which preserves the variational structure at the discrete
level: it is well-known that the Porous-Medium functional

]_' (p f.Q m—1 1fpm€L1(_Q)
" ’ +00 otherwise

I'-converges to Fo in the incompressible limit m — oo, see [7]. In the spirit of [42], one should therefore
expect that the gradient flow p,, of F,,(p) — [ p converges to the gradient flow po, of the limiting functional
F(p) = Foo(p) — [ p- Implementing the splitting scheme for the regular energy functional F,(p) — [ p gives
a sequence ph7m, and we shall prove below that pj, ,, converges to a solution of the limiting gradlent flow as
m — oo and h — 0. However, it is known [17] that the limit depends in general on the interplay between the
time-step h and the regularization parameter (m — oo here), and for technical reasons we shall enforce the
CFL-like condition

mh—0 as m — oo and h — 0.

Note that [36] already contained a similar approximation m — oo but without exploiting the variational struc-
ture of the m- gradient flow, and our approach is thus different. The above gradient-flow structure was already
noticed and fully exploited in the independent work [10], where existence and uniqueness of weak solutions is
proved and numerical simulations are performed needless of any splitting an using directly the WFR structure
(with an additional entropic approximation). Here we rather emphasize the fact that the splitting does capture
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delicate I'-convergence phenomena.

In order to make the above discussion more rigorous, we fix a time step h > 0 and construct two sequences
k+1/2
(p

hom )k and (p’,;m)k, with p)) . = p°, defined recursively as

k+1/2 .
pth/ € argmin {Qhwz(p,phm)—i-}" fnp}
pEMT, |pl=|pk|
(5.2)

. k+1/2
ot € argmin { AFR2 (0. p%) 4 Foulp) — [0}
pEMt

As is common in the classical theory of Porous Media equations [44], we define the pressure as the first
variation

m
m = F/ = ——pm Y
m(p) = P
and we write accordingly
k+1/2 m k+1/2\m— m
P’ = (o and pf = ()

for the discrete pressures. As in Section 3 we denote by pp.m(t), Phm(t) and pp m(t), Prm(t) the piecewise
constant interpolations of pﬁ‘;{, pfti and pﬁti/ 2, pﬁtj/ 2 respectively.

Our main result is

Theorem 5.1. Assume that p® € BV (2), p° <1, and mh — 0 as h — 0 and m — oo. Then for all T > 0,
Ph,ms Ph,m both converge to some p strongly in L*((0,T) x §2), the pressures pp m, Pr,m both converge to some p
weakly in L2((0,T), H*(£2)), and (p,p) is the unique weak solution of (5.1).

Since we have a WFR gradient ﬂow structure, uniqueness should formally follows from the —1 geodesic convex-
ity of the driving functional €., f p with respect to the WFR distance [25 27] and the resulting contractivity
estimate WFR(p!(t), p%(t)) < e WFR(p0 Y 9:2) between any two solutions p*, p?. This is proved rigorously in [10],
and therefore we retrieve convergence of the whole sequence pp m, — p in Theorem 5.1 (and not only for sub-
sequences). Given this uniqueness, it is clearly enough to prove convergence along any discrete (sub)sequence,
and this is exactly what we show below.

The strategy of proof for Theorem 5.1 is exactly as in Section 3, except that we need now the estimates to
be uniform in both A — 0 and m — oc.

5.1. Estimates and convergences

In this section, we improve the previous estimates from Section 3. We start with a universal L°°-bound:

Lemma 5.2. Assume that p° < 1, then for all t > 0,

llonm (E, Moo, 1on.m (E; oo < 1.

0
h,m

oo < 112F pmlloo < 1 in the Wasserstein step.

Proof. We argue by induction at the discrete level, starting from p® = p
k+1 /2

< 1 by assumption. Since ||PZ,m||oo <

1, Otto’s maximum principle (3.9) implies that ||p},

We establish now ||pk+1||OO Hpkﬂ/zﬂoo. Assume by contradiction that E : {pk‘H > 1} has positive

Lebesgue measure. The optimality condition (3.10) for the Fisher-Rao minimization step gives, dividing by
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pﬁ“ >0in E,

k+1 k:+1/2_h k+1 m k+1ym—1
\V /)h,tn ~VPrm = 9V ph,tn <1 E— l(ph,tn)m >

Then 1 — L(p’,ﬁi)m‘l < 1— ™5 <0 in the right-hand side, hence ,/pﬁ;}b - \/pﬁﬁ;m < 0in E. This is the

k:+1/2

desired contradiction since pk+1 >1in E but p, < 1 everywhere. O

Noticing that the functional —5 [ p™ — [ p corresponds to taking explicitly F»(z) = 2™/m — 1 and Va(z) =

—1 in Section 3, it is easy to reproduce the computations from the proof of Lemma 3.4 and carefully track the
dependence of the constants w.r.t m > 1 to obtain

Lemma 5.3. There exists ¢ > 0 such that, for all m > mg large enough and all h < hg small enough,
k+1/2 k+1/2
(1= ch)py (@) < piin (@) < (LW P () ace (5.3)
Note that this holds regardless of any compatibility such as hm — 0. The key point is here that the lower
bound ¢ previously depended on an upper bound pFt1/2 < M in Lemma 3.4, but since we just obtained in
Lemma 5.2 the universal upper bound p*+1/2 < 1 we end up with a lower bound which is also uniform in h, m.

The proof is identical to that of Lemma 3.4 and we omit the details for simplicity.
Recalling that the Wasserstein step is mass-preserving, we obtain by immediate induction and for all0 < ¢ < T

lonm @z, onm @]y < eTllp%]2r

as well as

[on,m(t) = Prm ()22 < Crh. (5.4)

k+1/2 .

Testing successively p = ph m and p=py,- n (5.2), we get

g (P )+ PRS2, D) < ) = Fulihi + [ (0157 = ol
Using Proposition 2.4 to control WFR? < 2(W? + FR?) and the lower bound in (5.3) yields
ﬁWFRQ(pkfﬁ,ph m) < 21h< (ks Py’ ) + R0 0%, D) ) < B0l ) = Fon ) +/ (o> = P50
h,m

k
< Fanlpk ) = Fr(Ph1) + ch /Q P < (o) = Fonlot)) + che”

for all k < N := |T/h|. Summing over k we get

N—

1

LSRR 1) < P~ Folofl) + C
k=0
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where we used successively F;, > 0 to get rid of Fp,(py,,), and (p°)™ < p° for p® < 1 and m > 1. Consequently,
for all fixed T > 0 and any ¢, s € [0,7] we obtain the classical %—Hélder estimate

CT|t — S+ h‘l/z,

5.5
OT|t—S+h‘1/2. ( )

<
WFR(ﬁh7m(t)7 ﬁh,m(s)) <

{WFR(phm(t), Prom(5))

Exploiting the explicit algebraic structure of F,,(z) = ﬁzm, compactness in space will be given here by

Lemma 5.4. If p° € BV (£2) then

sup {[|pn,m(t: )N Bv(2): |5nmE ) aviey } < el 1% avio)-
te[0,T]

Proof. The argument closely follows the lines of Proposition 5.1 from [18], and strongly exploits the following
result:

Theorem 5.5 (BV estimates for JKO minimizers, Theorem 1.1 from [14]). Let F: Rt — RU{+00} be convex
and l.s.c, and g € Po N BV (£2). If p* is a minimizer of the variational problem

win { 2?(0.0) + [ Floteas.

then p* € BV (£2) as well and

/IW*IS/ Vgl
2 (93

This type of BV estimates is highly non trivial and cannot be simply sketched here, but one can think of
this as a quantified smoothing effect for the (formally) parabolic PDE 9;p = div(pVE’(p)), of which the first

Wasserstein step in (5.2) is a time-discretization.
k4+1/2

in the sense of measures.

with the convex functional F,,(p) = p , this estimate immediately gives,
2 0 = 116 i, the BV bound

Applied to the minimizer Ph.m

together with the mass conservation ||p

th m ||BV(Q) ||p;€L,m||BV(Q)'

Using as before the implicit function theorem, we show below that p]Hl = R(pz’ti/ 2) for some suitable (1 +
h)-Lispchitz function R. By standard Lip o BV composition [3] this will prove that

it By () < (1+h)||ﬂhm lsvie

and will conclude the proof by immediate induction.

k:+1/2 k+1

share the same support. In this support and from

(3.10) it is easy to see that p = pfbtnl( ) is the unique p031tlve solution of f(p, pZ';i/Q( )) = 0 with

Indeed, we already know from (5.3) that p),_ and p)’

flosp) = \/ﬁ(l - g (1 _ m7nlpm_1)) R
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For p > 0, the implicit function theorem gives the existence of a C* map R such that f(p,u) =0 < p = R(p),

with R(0) = 0. An algebraic computation shows moreover that 0 < % = L}c‘ R < (14 h) uniformly in
o

m > 1, hence R is (1 + h)-Lipschitz as claimed and the proof is complete. O

Proposition 5.6. Up to extraction of a discrete sequence h — 0, m — oo, there holds

Phoms Phym — p - strongly in L' (Qr)

DPhom —D and Dpm — P weakly in all LY(Qr)

for all T > 0. If in addition mh — 0 then p = p.

Proof. The first part of the statement follows exactly as in Section 3, exploiting the %—Hélder estimates (5.5)
and the space compactness from Proposition 5.4 in order to apply the Rossi-Savaré theorem [41]. The fact that
Ph.m, Ph,m have the same limit comes from (5.4).

For the pressures, we simply note from pp, ,, <1 and m > 1 that pp ., = 2pn,m is bounded in

mm 1 p;,n'r_nl
L' N L (Q7) uniformly in h,m in any finite tlme interval [0,7]. Thus up to extraction of a further sequence
we have pp ., — p in all Lq(QT) and likewise for pp m — P.

Finally, we only have to check that p = p, and this is precisely why we need hm — 0. Because pp m, pnh,m < 1

and z — 2™~ 1 is (m — 1)-Lipschitz on [0, 1] we have for all fixed ¢ > 0 that

[ s =t )l = [ ot = )

m/ () = Frm(®)] < Crhm —s 0,

where we used (5.4) to control ||pnm(t) — pn,m(t)||rr in the last inequality. Hence p = p and the proof is
complete. O

In order to pass to the limit in the diffusion term div(pVp) we first improve the convergence of pp,

Lemma 5.7. There exists a constant Cp, independent of h and m, such that

1Br,m 20,1y, 11 (2)) < Cr

for all T > 0. Consequently, up to a subsequence, pp m converges weakly in L*((0,T), H'(£2)) to p.

Proof. The proof is based on the flow interchange technique developed by Matthes et al. in [29]. For fixed small
e > 0 let n(s,x) be the (smooth) solution of

k+1/2

O = An™ 1 4 cAn,
7]‘5 0 — ph m

with Neumann boundary conditions. It is well known [4] that n is the Wasserstein gradient flow of

m—1

_[r o
G(p) == +€/Qp1 g(p)-

Qm—2
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Since G is geodesically 0-convex (in the whole space {2 = Rd), 7 satisfies the Evolution Variational Inequality
(EVI)

1d+
55" ((s):p) < G(p) = Gn(s)), (5.6)

M. By optimality of

for all s > 0 and for all p € P2¢({2), where the upper derivative %f(s) := lim sup

T—0t

pZ‘tﬁ/Q = 7)|s=0 in (5.2), we obtain that

1d*
2ds|,_,

W2 (n(s), Pl m) = e
s Fh,ym

T | Fnlo) (57)

Since 7 is smooth due to the regularizing eA term, we can legitimately integrate by parts for all s > 0

SFalnts) = [ %0(8)’”‘1@77(8)’"‘1 +ean(s))

el s 1Oy O O,

- %IW(S)’”*IQ:—% [ v (e

m—1
ZE/Q) = pkﬁ/Q in the right-hand side above as s — 0, a classical

2

N

Remarking that —2-n(s)™ 1 — 1o (p

m—1
lower semi-continuity argument gives that

d+
/ 7|V k+1/2|2 / m kn:i/Z)m—llQ < —lirsn\‘itr)lf E]—'m(n(s)).

Then from the chain of inequalities (5.6) (and strong continuity G(n(s)) — G(n(0))) we have
h [ TV < Foaphan) = Frca (127
ve ([ dhontontoh) = [ AL 0851).
First arguing as in Proposition 3.6 to control

k+1/2
fm 1(Pﬁti) < fm 1(/7};;/ )+ CTh,

and then passing to the limit € \, 0, we obtain
m-— k+1/2 2 E+1
h 7|V 2 < a1 (0F ) — Frn—1(ph ) + Crhr.

Summing over k gives

T
~ m
/ / \Vph7m(t,x)|2 g m 1 (-/—"m—l(po) - fm—l(Pme) + CT) g 2fm—1(p0) + OT
0 2 -
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for all T < 400. Due to p° <1 and m > 1 we can bound F,,—1(p°) = 5 [(0°)™ "t < 5 [ p° < 11P° 110

m—2

and the result finally follows. O

5.2. Properties of the pressure p and conclusion
We start by showing that the limits p, p satisfy the compatibility conditions in (5.1).
Lemma 5.8. There holds

0<p,p<l and p(l—p)=0 ae inQr.

Proof. By Lemma 5.2 it is obvious that 0 < p <1 and 0 < p < 1 are inherited from 0 < pp,m <1 and 0 <

DPhom = %p%—nl < 5. In order to prove that p(1 — p) = 0, we first claim that

Phom(l — prm) = 0 ae. in Qp.

Indeed, since py, ., — p strongly in L'(Qr) we can assume pp, ,(t,x) — p(t, z) a.e. If the limit p(t,z) < 1 then
Phom(t,z) < (1 —¢) for all small b and large m, and some € = ¢(t,x) > 0. Hence pp n(t,x) = %p?f,fnl <
(1 - g)™~1 — 0 while 1 — pj, ,, remains bounded, and therefore the product ps (1 — pp.m) — 0. Now if the
limit p(t,xz) = 1 then the pressure pj ,, = %p;{f;ﬁ < 5 remains bounded, while 1 — pj, m(f,2) — 0 hence
the product goes to zero in this case too.

Thanks to the uniform L°° bounds pp,», < 1 and pp . < %5 < 2 we can apply Lebesgue’s convergence

theorem to deduce from this pointwise a.e. convergence that, for all fixed nonnegative ¢ € C°(Qr), there holds

lim ph,m(l - ph,m)@ =0

h,m QT

(the test function ¢ is only needed to localize). On the other hand since pp, ,, — p strongly in L'(Qr) hence
a.e, and because 0 < pp.m < 1, we see that (1 — ppm)e — (1 —p)e in all LY(Qr). From Proposition 5.6 we also
had that pp ., — p in all LY(Qr), hence by strong-weak convergence we have that

/ p(L—p)p =Tim [ phom(l = prm)p =0
T Qr

for all ¢ > 0. Because p(1 — p) > 0 we conclude that p(1 — p) = 0 a.e. in Q7 and the proof is achieved. O
We end this section with

Proof of Theorem 5.1. We only sketch the argument and refer to [18] for the details. Fix any 0 < ¢; < ¢2 and
¢ € C2(R%). Exploiting the Euler-Lagrange equations (3.6) and (3.10) and summing from k = k; = [t1/h] to
k=ko—1=|ta/h] — 1, we first obtain

k?zh k‘zh
/ ph,m(tZ)QD - Ph,m(tl)W + / PhomVDhm - Vo = — / / ph,m(l - ph,m)‘P + R(h, m)a
R4 kih R4 kih R4

where the remainder R(h, m) — 0 for fixed ¢. The strong convergence pp, m, pr.m — p, the weak convergences
Vonm — VD = Vp and pp,m — p, and k;h — t; are then enough pass to the limit to get the corresponding
weak formulation for all 0 < #; < to. Moreover since the limit p € C([0,T]; M) the initial datum p(0) = p°
is taken at least in the sense of measures. This gives an admissible weak formulation of (5.1), and the proof is
complete. O



AN UNBALANCED OPTIMAL TRANSPORT SPLITTING SCHEME 27

t=0 t=20.3 t=20.5 t=0.7 t=1

FIGURE 3. Snapshot of the approximate solution pp, ., (¢,.) to (5.1), with m = 100, h = 0.005.

5.3. Numerical simulation

The constructive scheme (5.2) naturally leads to a fully discrete algorithm, simply discretizing the minimiza-
tion problem in space for each W, FR step. We use again the ALG2-JKO scheme [6] for the Wasserstein steps. As
already mentioned the Fisher-Rao step is a mere convex pointwise minimization problem, here explicitly given

by: for all x € {2,
2 m
+2h< P 1)}
m—1

and poses no difficulty in the practical implementation using a standard Newton method.

Figure 3 depicts the evolution of the numerical solution py, ., for m = 100 and with a time step h = 0.005.
We remark that the tumor first saturates the constraint (p 1) in its initial support, and then starts diffusing
outwards. This is consistent with the qualitative behaviour described in [36].

Piﬁ(iﬁ) = argmin {4 ‘\//j _ pZ:l;im(x)

pERT

6. A TUMOR GROWTH MODEL WITH NUTRIENT

In this section we use the same approach for the following tumor growth model with nutrients, appearing
e.g. in [36]

Op — div(pVp) = p((1 = p)(c+ c1) — c2),

Oic — Ac = —pc,

0<p<1, (6.1)
p = 0and p(1 —p) =0,

_ 0 _ .0
Plt=0 = P Ct=0 = C".

Here ¢; and ¢y are two positive constants, and the nutrient ¢ diffuses in 2 while being consumed by the tumor p.
For technical convenience we work here on a convex bounded domain 2 C R¢, endowed with natural Neumann
boundary conditions for both p and c.

Contrarily to Section 5 this is not a WFR gradient flow anymore, and we therefore introduce a semi-implicit
splitting scheme. We approximate again the singular diffusion by the incompressible limit m — oo. Starting from

0 k+1/2 k+1/2

the initial data pf) , = p%, ¢} = ® we construct four sequences p, | /7, pf i /7 ¢k defined recursively
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as
k+1/2 .
o> € argmin  { W (0,0 ) + Fnlp) }
pEMT |pl=pf .|
(6.2)
G/t e argmin - {g(e.c,) +H(p) |
c€M+,\c|:\cﬁ’m\
and
Phom € argmin{ﬁFRQ(p, P’ ) + Sl,m(pICZ,ﬁ/Q)} ;
pEMT*
(6.3)
cﬁﬁ € argmin {ﬁFRz(C, 022/2) + 52(c|p2ﬁ/2)} ,
’ ceM+ ’ ’
where
Hp) := / plog(p),
19,
pm
Eunlole) = [ (+en Lt [(@=ccp
and

exelo) = | pe

As earlier it is easy to see that these sequences are well-defined (i.e. there exists a unique minimizer for each
step), and the pressures are defined as before as

k+1/2 M (k+1/2)m,1

ph7m T _ 1 h,m

k+1 . M (k-i—l)mfl
- _ .

and ph,m T m—1 ph,m

We denote again by ap m (t), @n,m(t) the piecewise constant interpolation of any discrete quantity a’fbﬁ, a’;}t;/ 2

respectively. Our main result reads:

Theorem 6.1. Assume p° € BV () with p° <1 and ® € L>(2) N\ BV (2). Then phm and ppm strongly
converge to p in LY((0,T) x 2) and cpm and é, m strongly converge to ¢ in L'((0,T) x 2) when h \, 0 and
m  +oo. Moreover, if mh — 0, then pp m,Pnm converge weakly in L*((0,T), H'(£2)) to a unique p, and
(psp,c) is a solution of (6.1).

Note that uniqueness of solutions would result in convergence of the whole sequence. Uniqueness was proved
in Theorem 4.2 from [36], for slightly more regular weak solutions, but we did not push in this direction for
the sake of simplicity. The method of proof is almost identical to Section 5 so we only sketch the argument and
emphasize the main differences.
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We start by recalling the optimality conditions for the scheme (6.2) and (6.3). The Euler-Lagrange equations
for the tumor densities in the Wasserstein and Fisher-Rao steps are

1<;+1/2V k+1/2 e, +1/2
_k Phm_2 (6.4)
k+1/2 k+1/2 .
N \/mfm/ %\/pii“( — e ) ),

where ¢ is a (backward) Kantorovich potential for W(p,kl';lb/ 2,p§7m). For the nutrient, the Euler-Lagrange

equations are

Ve k+1/2 vy k+1/2

h hm ’
k+1 K2 _ _h [ k+1/2 (6.5)
Ch,m Ch,m 21/ Shom )
k+1/2

with ) a Kantorovich potential for W(c), ;, ch m)-
Using the optimality conditions for the Fischer-Rao steps, we obtain directly the following L°° bounds:

Lemma 6.2. For allk >0

k+1 /2‘

HCkHHLw(Q) ||C \Lw(n) ||Chm||Loo(n)

and at the continuous level

llch,m (t, )l Lee(2)s |1€nm (t, )L () < llcollpeoy YVt >0.

Moreover,

[lon,m (8 Mloos 1nm (E ) oo <1

and there exists cr = cr(||col|n<), Cr = Cr(||col||n=) > 0 such that

(1= crh)op V2 (@) < pik (@) < (1+ Crh)pp V2 (@) ae. in 2.

(1- h)cﬁti/z( ) < CZ+ () < ck+1/2(x) a.e. in {2. (6.6)

h,m

Proof. The proof of the estimates on ¢y, ,,, and €, is obvious because one step of Wasserstein gradient flow with
k+1 k+1/2 .

the Boltzmann entropy decreases the L>-norm in (6.2) (see [1, 34]), and, because the product b

1S

nonnegative in (6.5), the L>-norm is also nonincreasing during the Fischer-Rao step. The proof for pj, and Ph.m

is the same as in Lemma 5.2. Using the fact that ||gn,m(t,)]|cc < 1, we see that the term @(pzti, ]Ztnl/Z) =

(1 —piti)( RL/2 ¢1) — co in (6.4) is bounded in L uniformly in k. This allows to argue exactly as in
Lemma 3.4 to retrleve the estimate (6.6) and concludes the proof. O

With these bounds it is easy to prove as in Proposition 3.6 that

FanlptD) < Fn(ppt2/%) + Crh,
51 m( k+1/2 ck+1/2) 51m(pk+1 k+1/2) < CTh,

h,m hm
H(cgfﬁ) < H(c ’“*1/2) 1 Crh,
Ex(cbHI2| i) g <“wﬁﬂﬁ\@w
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for some C7 independent of m. Then we obtain the usual %—Hélder estimates in time with respect to the WFR
distance, which in turn implies that pp m, pn,m converge to some p € L>([0, 7], L*(£2)) and ¢p m, éh,m converge
to some ¢ € L>([0,T], L' (£2)) pointwise in time with respect to WFR, see (3.21), Proposition 3.7, and (3.23) for
details.

As before we need to improve the convergence in order to pass to the limit in the nonlinear terms. For pp,
and Py, this follows from

Lemma 6.3. For all T > 0, if p°,c° € BV(92),

S[UP {onm ) Bve) + llenmE eviy} <eTT10°sv ) + I Bv2)
telo,

sup {||th Nsve) + Inm(t, )|l By Q)} <e
te[0,T]

rT (|| p° |Bv2) + 1] BV (2))-

Proof. The argument is a generalization of Lemma 5.4, see Remark 5.1 from [18]. First, the BV-norm is
nonincreasing during the Wasserstein step, Theorem 1.1 from [14],

||th/ IBvie) < ok mllBve) —and ||Chm/ IBv2) < ek mllBv(o)-

Arguing as in Lemma 5.4, we observe that, inside supp ph +1/2 = supp p’;‘;}b, the minimizer p = ,ok+1( ) is the

unique positive solution of f(p, pztim(:z:) CZ-Z/Q( )) = 0, with

fowe=vo (15 ((1- 2 ) e ra)-a) ) - Vi

For ;1 > 0 the implicit function theorem gives as before a C! map R such that f(p,p,c) =0 < p = R(u,c).
An easy algebraic computation and (6.6) then give 0 < 0,R(,¢) < (14 Crh) and |0.R(u, ¢)| < Crh for some
constant Cr > 0 independent of h, m, k. This implies that

(1+Cr h)”pth /2||BV(Q) + CThHCﬁE/QHBV(Q)
(1+ Crh)l|pf mllBv(2) + Crhlick pmllBvo)-

sz,trﬂ|BV(Q)

NN

The same argument shows that

ek vy < (14 Crh)llck )l vie) + Crhlipk |l svie),

and a simple induction allows to conclude. O

Proposition 6.4. Up to extraction of a discrete sequence h — 0,m — +o0,

Phoms Phom — p - strongly in L' (Qr)

Phom — P and Ppm —D weakly in all LY(Qr)
for all T > 0. If in addition mh — 0 then p=p € L*((0,T), H'(£2)) and (p,p) satisfies
0<p,p<l and p(l—p)=0 ae. inQr.

Proof. The argument is the same as for Proposition 5.6, Lemmas 5.7, and Lemma 5.8. O
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In order to conclude the proof of Theorem 6.1 we only need to check that p, p, ¢ satisfy the weak formulation
of (6.1): the strong convergence of pj, m, ch,m and the weak convergence of py, ,, are enough to take the limit in
the nonlinear terms as in Section 5.2, and we omit the details.
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