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AN UNBALANCED OPTIMAL TRANSPORT SPLITTING SCHEME

FOR GENERAL ADVECTION-REACTION-DIFFUSION PROBLEMS
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and Léonard Monsaingeon4,5,*

Abstract. In this paper, we show that unbalanced optimal transport provides a convenient framework
to handle reaction and diffusion processes in a unified metric setting. We use a constructive method,
alternating minimizing movements for the Wasserstein distance and for the Fisher-Rao distance, and
prove existence of weak solutions for general scalar reaction-diffusion-advection equations. We extend
the approach to systems of multiple interacting species, and also consider an application to a very
degenerate diffusion problem involving a Gamma-limit. Moreover, some numerical simulations are
included.
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1. Introduction

Since the seminal works of Jordan-Kinderlehrer-Otto [20], it is well known that certain diffusion equations can
be interpreted as gradient flows in the space of probability measures, endowed with the quadratic Wasserstein
distance W. The well-known JKO scheme (a.k.a. minimizing movement), which is a natural implicit Euler scheme
for such gradient flows, naturally leads to constructive proofs of existence for weak solutions to equations or
systems with mass conservation such as, for instance, Fokker-Planck equations [20], Porous Media Equations
[34], aggregation equation [9], double degenerate diffusion equations [32], general degenerate parabolic equation
[1], etc. We refer to the classical textbooks of Ambrosio, Gigli and Savaré [4] and to Villani’s books [45, 46] for
a detailed account of the theory and extended bibliography. Recently, this theory has been extended to study
the evolution of interacting species with mass-conservation, see for examples [8, 15, 21, 24, 47].

Nevertheless in biology, for example for diffusive prey-predator models, the conservation of mass may not
hold, and the classical optimal transport theory does not apply. An unbalanced optimal transport theory was
recently introduced simultaneously in [11, 12, 22, 26, 27], and the resulting Wasserstein-Fisher-Rao (WFR) metrics
(also referred to as the Hellinger-Kantorovich distance HK) allows to compute distances between measures with
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variable masses while retaining a convenient Riemannian structure. See Section 2 for the definition and a short
discussions on this WFR metric. We also refer to [16, 39] for earlier attempts to account for mass variations within
the framework of optimal transport.

The WFR metrics can be seen as an inf-convolution between Wasserstein/transport and Fisher-Rao/reaction
processes, and is therefore extremely convenient to control both in a unified metric setting. This allows to
deal with non-conservative models of population dynamics, see e.g. [22, 23]. In [18], the first and third authors
proposed a variant of the JKO scheme for WFR-gradient flows corresponding to some particular class of reaction-
diffusion PDEs: roughly speaking, the reaction and diffusion were handled separately in the FR, W metrics,
respectively, and then patched together using a particular uncoupling of the inf-convolution, namely WFR2 ≈
W2 + FR2 in some sense (see [18], Sect. 3 for a thorough discussion). However, the analysis was restricted to very
particular structures for the PDE, corresponding to pure WFR gradient-flows.

In this work we aim at extending this splitting scheme in order to handle more general reaction-diffusion
problems, not necessarily corresponding to gradient flows. Roughly speaking, the structure of our splitting
scheme is the following: the transport./diffusion part of the PDE is treated by a single Wasserstein JKO step

ρk
W−−−−−−−→

transport
ρk+1/2,

and the next Fisher-Rao JKO step

ρk+1/2 FR−−−−−−→
reaction

ρk+1

handles the reaction part of the evolution. As already mentioned, the WFR metric will allow to suitably control
both steps in a unified metric framework. We will first state a general convergence result for scalar reaction-
diffusion equations, and then illustrate on a few particular examples how the general idea can be adapted to
treat e.g. prey-predator systems or very degenerate Hele-Shaw diffusion problems. In this work we do not focus
on optimal results and do not seek full generality, but rather wish to illustrate the efficiency of the general
approach.

Another advantage of our splitting scheme is that it is well adapted to existing Monge/Kantorovich/Wasser-
stein numerical solvers, and the Fisher-Rao step turns out to be a simple pointwise convex problem which
can be implemented in a very simple way. See also [10, 13] for a more direct numerical approach by entropic
regularization. Throughout the paper we will illustrate the theoretical results with a few numerical tests. All the
simulations were implemented with the augmented Lagrangian ALG2-JKO scheme from [6] for the Wasserstein
step, and we used a classical Newton algorithm for the Fisher-Rao step.

The paper is organized as follows. In Section 2 we recall the basic definitions and useful properties of the
Wasserstein-Fisher-Rao distance WFR. Section 3 contains the precise description of the splitting scheme and
a detailed convergence analysis for a broad class of reaction-diffusion equations. In Section 4 we present an
extension to some prey-predator multicomponent systems with nonlocal interactions. In Section 5 we extend
the general result from Section 3 to a very degenerate tumor growth model studied in [36], corresponding to a
pure WFR gradient flow: we show that the splitting scheme captures fine properties of the model, particularly the
Γ -convergence of discrete gradient flows as the degenerate diffusion exponent of Porous Medium type m→∞
(this limit is often referred to as the mesa problem, or the incompressible limit). Section 6 contains an extension
to a tumor-growth model coupled with an evolution equation for the nutrients.

2. Preliminaries

Let us first fix some notations. Throughout the whole paper, Ω denotes a possibly unbounded convex subset
of Rd, QT represents the product space [0, T ] × Ω, for T > 0, and we write M+ = M+(Ω) for the set of
nonnegative finite Radon measures on Ω. We say that a curve of measures t 7→ ρt ∈ Cw([0, 1];M+) is narrowly
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continuous if it is continuous with respect to the narrow convergence of measures, namely for the duality with
Cb(Ω) test-functions.

Definition 2.1. The Fisher-Rao distance between ρ0, ρ1 ∈M+ is

FR(ρ0, ρ1) := min
(ρt,rt)∈AFR[ρ0,ρ1]

∫ 1

0

∫
Ω

|rt|2 dρt(x)dt,

where the admissible set AFR[ρ0, ρ1] consists in curves [0, 1] 3 t 7→ (ρt, rt) ∈ M+ ×M such that t 7→ ρt is
narrowly continuous with endpoints ρ0, ρ1, and

∂tρt = ρtrt

in the sense of distributions D′((0, 1)×Ω).

The Monge-Kantorovich-Wasserstein admits several equivalent definitions and formulations, and we refer e.g.
to [4, 43, 45, 46] for a complete description. For our purpose we shall only need the dynamical Benamou-Brenier
formula:

Theorem 2.2 (Benamou-Brenier formula [4, 5]). There holds

W2(ρ0, ρ1) = min
(ρ,v)∈AW[ρ0,ρ1]

∫ 1

0

∫
Ω

|vt|2dρtdt, (2.1)

where the admissible set AW[ρ0, ρ1] consists in curves (0, 1) 3 t 7→ (ρt,vt) ∈ M+ ×M(Ω;Rd) such that t 7→ ρt
is narrowly continuous with endpoints ρ0, ρ1 and solving the continuity equation

∂tρt + div(ρtvt) = 0

in the sense of distributions D′((0, 1)×Ω).

According to the original definition in [11] we have

Definition 2.3. The Wasserstein-Fisher-Rao distance between ρ0, ρ1 ∈M+(Ω) is

WFR2(ρ0, ρ1) := inf
(ρ,v,r)∈AWFR[ρ0,ρ1]

∫ 1

0

∫
Ω

(|vt(x)|2 + |rt|2) dρt(x)dt, (2.2)

where the admissible set AWFR[ρ0, ρ1] is the set of curves t ∈ [0, 1] 7→ (ρt, vt, rt) ∈ M+ ×M(Ω;Rd) ×M such
that t 7→ ρt is narrowly continuous with endpoints ρ0, ρ1 and solves the continuity equation with source

∂tρt + div(ρtvt) = ρtrt.

Comparing Definition 2.3 with Definition 2.1 and Theorem 2.2, this dynamical formulation à la Benamou-
Brenier shows that the WFR distance can be viewed as an inf-convolution of the Wasserstein and Fisher-Rao
distances W, FR. From [11, 12, 22, 26] the infimum in (2.2) is always a minimum, and the corresponding min-
imizing curves t 7→ ρt are of course constant-speed geodesics WFR(ρt, ρs) = |t − s|WFR(ρ0, ρ1). Then (M+, WFR)
is a complete metric space, and WFR metrizes the narrow convergences of measures (see again [11, 12, 22, 26]).
Interestingly, there are other possible formulations of the distance in terms of static unbalanced optimal trans-
portation, primal-dual characterizations with relaxed marginals, lifting to probability measures on a cone over
Ω, duality with subsolutions of Hamilton-Jacobi equations, and we refer to [11, 12, 22, 26, 27] for more details.

As a first useful interplay between the WFR, W, FR distances we have
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Proposition 2.4 ([18]). Let ρ0, ρ1 ∈M+
2 such that |ρ0| = |ρ1|. Then

WFR2(ρ0, ρ1) 6 W2(ρ0, ρ1).

Similarly for all µ0, µ1 ∈M+ (with possibly different masses) there holds

WFR2(µ0, µ1) 6 FR2(µ0, µ1).

Finally, for all ν0, ν1 ∈M+
2 such that |ν0| = |ν1| and all ν ∈M+, there holds

WFR2(ν0, ν) 6 2(W2(ν0, ν1) + FR2(ν1, ν)).

Moreover, we have the following link between the reaction and the velocity in (2.2), which was the original
definition in [22]:

Proposition 2.5 ([18], Prop. 2.2). Definition (2.3) of the WFR distance can be restricted to the subclass of
admissible paths (vt, rt) = (∇ut, ut) for potentials ut ∈ H1(dρt) and continuity equations

∂tρt + div(ρt∇ut) = ρtut.

This shows that (M+, WFR) can be endowed with the formal Riemannian structure constructed as follow:
any two tangent vectors ξ1 = ∂tρ

1, ξ2 = ∂tρ
2 can be uniquely identified with potentials ui by solving the elliptic

equations

ξi = −div(ρ∇ui) + ρui.

Then the Riemannian tensor is naturally constructed on the H1(dρ) scalar product, i.e.

gρ(ξ
1, ξ2) := 〈u1, u2〉H1(dρ) =

∫
Ω

(∇u1 · ∇u2 + u1u2)dρ.

This is purely formal, and we refer again to [18] for discussions. Given a functional

F(ρ) :=

∫
Ω

F (ρ) +

∫
Ω

ρV +
1

2

∫
Ω

(K ∗ ρ)ρ,

this Riemannian structure also allows to compute WFR gradients as

gradWFR F(ρ) = − div

(
ρ∇δF

δρ

)
+ ρ

δF
δρ

= gradW F(ρ) + gradFR F(ρ),

where δF
δρ = F ′(ρ) + V +K ∗ ρ denotes the Euclidean first variation of F with respect to ρ. In other words, the

Riemannian tangent vector gradWFR F(ρ) is represented in the previous H1(dρ) duality by the scalar potential
u = δF

δρ .
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3. An existence result for general parabolic equations

In this section, we propose to solve scalar parabolic equations of the form
∂tρ = div(ρ∇(F ′(ρ) + V ))− ρ(G′(ρ) + U)

ρ|t=0 = ρ0

ρ∇(F ′(ρ) + V )|∂Ω · ν = 0

(3.1)

in a bounded domain Ω ⊂ Rd with Neumann boundary condition and suitable initial conditions. Our goal is to
extend to the case F 6≡ G,V 6≡ U the method initially introduced in [18] for variational WFR-gradient flows, i.e.
(3.1) with F ≡ G and V ≡ U .

We assume for simplicity that F : R→ R is given by

F (z) =


z log z − z (linear diffusion)

or
1

m1−1z
m1 (Porous Media diffusion)

(3.2)

and G : R→ R is given by

G(z) =
1

m2 − 1
zm2 , for some m2 > 1. (3.3)

Note that we cannot take G(z) = z log z − z because the Boltzmann entropy is not well behaved (neither
regular nor displacement convex) with respect to the Fisher-Rao metric in the reaction step, see [18, 26, 27] for
discussions. In addition, we assume that

V ∈W 1,∞(Ω) and U ∈ L∞(Ω).

We denote by EF , EG : M+ → R the energy functionals

EF (ρ) := F(ρ) + V(ρ),

EG(ρ) := G(ρ) + U(ρ),

where

F(ρ) :=

{∫
Ω
F (ρ) if ρ� L|Ω

+∞ otherwise,
and V(ρ) :=

∫
Ω

V ρ,

similarly

G(ρ) :=

{∫
Ω
G(ρ) if ρ� L|Ω

+∞ otherwise,
and U(ρ) :=

∫
Ω

Uρ.

Although more general statements with suitable structural assumptions could certainly be proved, we do not
seek full generality here and choose to restrict from the beginning to the above simple (but nontrivial) setting
for the sake of exposition.
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Definition 3.1. A weak solution of (3.1) with initial datum ρ0 is a curve t 7→ ρ(t, ·) ∈ L1
+ ∩L∞(Ω) defined for

all t ≥ 0 such, that for all T <∞, the pressure PF (ρ) := ρF ′(ρ)− F (ρ) satisfies ∇PF (ρ) ∈ L2([0, T ]×Ω), and∫ +∞

0

(∫
Ω

(ρ∂tφ− ρ∇V · ∇φ−∇PF (ρ) · ∇φ− ρ(G′(ρ) + U)φ) dx

)
dt = −

∫
Ω

φ(0, x)ρ0(x) dx

for every φ ∈ C∞c ([0,+∞)× Rd).

Note that the pressure PF is defined so that the chain rule div(ρ∇F ′(ρ)) = ∆PF (ρ) holds at least for smooth ρ’s.

The starting point of our analysis is that (3.1) can be written, at least formally as,

∂tρ = div(ρ∇(F ′(ρ) + V ))− ρ(G′(ρ) + U) ↔ ∂tρ = − gradW EF (ρ)− gradFR EG(ρ),

see again Section 2 from [18] for a discussion on the FR, W, WFR Riemannian structure and how to compute the
respective gradients. Our splitting scheme is a variant of that originally introduced in [18], and can be viewed
as an operator splitting method: each part of the PDE above is discretized (in time) in its own W, FR metric, and
corresponds respectively to a W/transport./diffusion step and to a FR/reaction step. More precisely, let h > 0
be a small time step. Starting from the initial datum ρ0h := ρ0, we construct two recursive sequences (ρkh)k and

(ρ
k+1/2
h )k such that 

ρ
k+1/2
h ∈ argmin

ρ∈M+,|ρ|=|ρkh|

{
1
2hW

2(ρ, ρkh) + EF (ρ)
}
,

ρk+1
h ∈ argmin

ρ∈M+

{
1
2hFR

2(ρ, ρ
k+1/2
h ) + EG(ρ)

}
.

(3.4)

With our structural assumptions on the various functionals involved and arguing as in [18], the direct method
shows that this scheme is well-posed, i.e. that each minimizing problem in (3.4) admits a unique minimizer. We
construct next two piecewise-constant interpolating curves{

ρh(t) = ρk+1
h ,

ρ̃h(t) = ρ
k+1/2
h ,

for all t ∈ (kh, (k + 1)h]. (3.5)

Our main result in this section is the constructive existence of weak solutions to (3.1):

Theorem 3.2. Assume that ρ0 ∈ L1
+ ∩ L∞(Ω). Then, up to a discrete subsequence (still denoted h → 0 and

not relabeled here), ρh and ρ̃h converge strongly in L1((0, T )×Ω) to a weak solution ρ of (3.1).

Note that any uniqueness for (3.1) would imply convergence of the whole (continuous) sequences ρh, ρ̃h → ρ
as h→ 0, but for the sake of simplicity we shall not address this issue here.

The main technical obstacle in the proof of Theorem 3.2 is to retrieve compactness in time. For the classical
minimizing scheme of any energy E on any metric space (X, d), suitable time compactness is usually retrieved
in the form of the total-square distance estimate

1

2h

∑
k≥0

d2(xk, xk+1) 6 E(x0)− inf E .

This usually works because only one functional is involved, and E(x0) − inf E is obtained as a telescopic sum
of one-step energy dissipations E(xk+1)− E(xk). Here each of our elementary step in (3.1) involves one of the
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W, FR metrics, and we will use the WFR distance to control both simultaneously: this strongly leverages the
inf-convolution structure, the WFR distance being precisely built on a compromise between W/transport and
FR/reaction. On the other hand we also have two different functionals EF , EG, and we will have to carefully
estimate the dissipation of EF during the FR reaction step (driven by EG) as well as the dissipation of EG during
the W transport./diffusion step (driven by EF ).

We start by collecting one-step estimates, exploiting the optimality conditions for each elementary
minimization procedure, and postpone the proof of Theorem 3.2 to the end of the section.

3.1. Optimality conditions and pointwise L∞ estimates

The optimality conditions for the first Wasserstein step ρk → ρk+1/2 in (3.4) are by now classical [43], and
can be written for example

−∇ϕk+1/2
h

h
ρ
k+1/2
h = ∇PF (ρ

k+1/2
h ) + ρ

k+1/2
h ∇V a.e. (3.6)

Here ϕ
k+1/2
h is an optimal (backward) Kantorovich potential from ρ

k+1/2
h to ρkh.

Lemma 3.3. For all k > 0,

‖ρk+1/2
h ‖L1 = ‖ρkh‖L1 (3.7)

and for all constant C such that V (x) 6 C a.e,

ρkh(x) 6 (F ′)−1(C − V (x)) a.e. ⇒ ρ
k+1/2
h (x) 6 (F ′)−1(C − V (x)) a.e. (3.8)

Proof. The Wasserstein step in (3.4) is mass conservative by construction, so the first part is obvious.
As for the second part, F. Otto established in [33] a weaker version of (3.8) in the form (with the same

assumptions on F ):

any minimizer ρ∗ = Argmin
ρ

{
1

2h
W2(ρ, ν) +

∫
Ω

F (ρ)

}
satisfies ‖ρ∗‖L∞ ≤ ‖ν‖L∞ , (3.9)

which we shall refer to as Otto’s maximum principle in the sequel. This was later generalized in [38] to include
an external potential V (x) 6≡ 0 exactly as in our statement. The proof goes by contradiction: assuming that
{ρk+1/2(x) > (F ′)−1(C − V (x))} has positive Lebesgue measure, a careful construction based on the convexity

of F (and the optimal transport plan γk between ρkh and ρ
k+1/2
h ) allows to construct a strictly better competitor

ρ̃
k+1/2
h in (3.4). For the sake of brevity we omit the details and refer to proof of Lemma 2 from [38]. Let us however

briefly mention that the the convexity F ′′ > 0 precisely makes the continuous PDE ∂tρ = div(ρ∇(F ′(ρ) +V )) =
div(ρF ′′(ρ)∇ρ)+(. . .) parabolic. In other words, (3.8) is a discrete equivalent of taking ρ(x) := (F ′)−1(C−V (x))
as a stationary Barenblatt supersolution for ∂tρ = div(ρ∇(F ′(ρ) + V )).

For the second Fisher-Rao reaction step, the optimality condition can be written Section 4.2 from [18] in the
form (√

ρk+1
h −

√
ρ
k+1/2
h

)√
ρk+1
h = −h

2
ρk+1
h

(
G′(ρk+1

h ) + U
)

a.e. (3.10)

As a consequence we have
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Lemma 3.4. There is C ≡ C(U) > 0 such that for h 6 h0(U) small enough we have

ρk+1
h (x) 6 (1 + Ch)ρ

k+1/2
h (x) a.e., (3.11)

and for all M > 0 there is c ≡ c(M,U) such that if ‖ρk+1/2
h ‖∞ 6M then

(1− ch)ρ
k+1/2
h (x) 6 ρk+1

h (x) a.e. (3.12)

Note in particular that this immediately implies

supp ρk+1
h = supp ρ

k+1/2
h , (3.13)

which was to be expected since the reaction part ∂tρ = −ρ(G′(ρ)+U) of the PDE (3.1) preserves strict positivity.

Proof. We start with the upper bound: inside supp ρk+1
h , (3.10) and G′ > 0 give√

ρk+1
h (x)−

√
ρ
k+1/2
h (x) = −h

√
ρk+1
h (x)(G′(ρk+1

h (x)) + U(x))

6 −hU(x)

√
ρk+1
h (x) 6 h‖U‖∞

√
ρk+1
h (x)

whence √
ρk+1
h (x) 6

1

1− h‖U‖∞

√
ρ
k+1/2
h (x).

Taking squares and using

1

(1− h‖U‖∞)2
= 1 + 2‖U‖L∞h+O(h2) 6 1 + 3‖U‖L∞h

for small h gives the desired inequality.
For the lower bound (3.12), we first observe that since G′′ > 0 and from (3.11) we have G′(ρk+1

h ) 6 G′((1 +

Ch)ρ
k+1/2
h ) 6 G′(2M) if h is small enough. Then (3.10) gives inside supp ρk+1

√
ρk+1
h (x)−

√
ρ
k+1/2
h (x)) = −h

√
ρk+1
h (x)(G′(ρk+1

h (x)) + U(x))

> −h(G′(2M) + ‖U‖∞)

√
ρk+1
h (x),

hence

ρk+1
h (x) >

1

(1 + h(G′(2M) + ‖U‖∞))2
ρ
k+1/2
h (x) > (1− ch)ρ

k+1/2
h (x)

for small h.

Combining Lemmas 3.3 and 3.4, we obtain at the continuous level

Proposition 3.5. For all T > 0 there exist constants MT ,M
′
T such that for all t ∈ [0, T ],

‖ρh(t)‖L1∩L∞ , ‖ρ̃h(t)‖L1∩L∞ 6MT
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and

‖ρh(t)− ρ̃h(t)‖L1 6 hM ′T

uniformly in h > 0.

Note from the second estimate that strong L1((0, T ) × Ω) convergence of ρh will immediately imply
convergence of ρ̃h to the same limit.

Proof. Combining (3.8) and (3.11) and arguing by induction, we obtain, for all t ∈ [0, T ],

‖ρh(t)‖L∞ , ‖ρ̃h(t)‖L∞ 6 CT ,

where CT is a constant depending on ‖V ‖L∞ , see Lemma 2 from [38]. The L1 bound is even easier: since the
Wasserstein step is mass preserving, we can integrate (3.11) in space to get

‖ρk+1
h ‖L1 6 (1 + Ch)‖ρk+1/2

h ‖L1 = (1 + Ch)‖ρkh‖L1 .

This immediately gives ‖ρkh‖L1 ≤ (1 + Ch)k‖ρ0‖L1 , and for t 6 T ⇔ k 6 bT/hc we conclude exploiting (1 +
Ch)bT/hc . eCT .

In order to compare now ρh and ρ̃h, we take advantage of the upper bound (3.11) to write ρ
k+1/2
h 6MT as

long as kh 6 T . Taking c = c(MT ) in (3.12) and combining with (3.11), we have

−chρk+1/2
h 6 ρ

k+1/2
h − ρk+1

h 6 Chρ
k+1/2
h a.e.

Integrating in Ω we conclude that

‖ρh(t)− ρ̃h(t)‖L1 = ‖ρk+1
h − ρk+1/2

h ‖L1 6 hmax{c, C}‖ρk+1/2
h ‖L1 6 hmax{c, C}MT = hM ′T

and the proof is complete.

3.2. Total square distance and energy dissipation

Our goal is here to retrieve a total square distance estimate of the form
∑
k WFR

2(ρkh, ρ
k+1
h ) ≤ . . ., see Propo-

sition 3.7 below for a precise statement. According to Proposition 2.4 it is enough to control W2(ρkh, ρ
k+1/2
h )

and FR2(ρ
k+1/2
h , ρk+1

h ) separately, each step being driven by its own F + V and G + U functionals, respectively.
Along the second Fisher-Rao step k+ 1/2→ k+ 1, we will first control the F +V increment (which is a crossed
dissipation estimate), and then directly show that the G + U increment is small enough. This will allow in the
end to recover a telescopic sum as in the classical approach, plus a summable term.

Testing ρ = ρkh in the first Wasserstein step in (3.4), we get as usual

1

2h
W2(ρ

k+1/2
h , ρkh) 6 F(ρkh)−F(ρ

k+1/2
h ) +

∫
Ω

V (ρkh − ρ
k+1/2
h ). (3.14)
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Let t be the optimal map from ρkh to ρ
k+1/2
h = t#ρ

k
h, given by the Gangbo-McCann theorem [19]. Since V is

Globally Lipschitz we get by Young’s inequality with ε

∣∣∣∣∫
Ω

V (ρkh − ρ
k+1/2
h )

∣∣∣∣ ≤ ∫
Ω

|V (x)− V (t(x))|ρkh(x) ≤ ‖∇V ‖∞
∫
|t(x)− x|ρkh(x)

≤ ‖∇V ‖∞
∫ {

ε

h
|t(x)− x|2 +

h

ε

}
ρkh(x) = ‖∇V ‖∞

(
ε

h
W2(ρkh, ρ

k+1/2
h ) +

h

ε
‖ρkh‖L1

)
.

Choosing ε = 1
4‖∇V ‖∞ and recalling from Proposition 3.5 that the mass ‖ρkh‖L1 ≤MT is bounded uniformly, we

can thus reabsorb the W2 term in the left-hand side of (3.14) to obtain

1

4h
W2(ρ

k+1/2
h , ρkh) 6 F(ρkh)−F(ρ

k+1/2
h ) + CTh. (3.15)

The next proposition allows to replace F(ρ
k+1/2
h ) by F(ρkh) above in order to retrieve a telescopic sum, up to a

O(h) term:

Proposition 3.6. For all T > 0 there exists a constant CT > 0 such that, for all k > 0 and k ≤ bT/hc,

F(ρk+1
h ) 6 F(ρ

k+1/2
h ) + CTh. (3.16)

Proof. We first treat the case of F (z) = 1
m1−1z

m1 with m1 > 1. Since F is increasing, we use (3.11) to obtain

F(ρk+1
h )−F(ρ

k+1/2
h ) 6

((1 + Ch)m1 − 1)

m1 − 1

∫
Ω

(ρ
k+1/2
h )m1

6 Ch‖ρk+1/2‖m1−1
L∞ ‖ρk+1/2‖L1 ,

and we conclude from Proposition 3.5.
In the second case F (z) = z log(z)− z, we have

F(ρk+1
h ) =

∫
{ρk+1
h 6e−1}

ρk+1
h log(ρk+1

h ) +

∫
{ρk+1
h >e−1}

ρk+1
h log(ρk+1

h )−
∫
Ω

ρk+1
h .

Note from Proposition 3.5 that the z contribution in F (z) = z log z − z is immediately controlled by |
∫
ρk+1
h −∫

ρ
k+1/2
h | 6 ‖ρk+1

h − ρk+1/2
h ‖L1 6 hM ′T , so we only have to estimate the z log z contribution. Since z 7→ z log z

is increasing on {z > e−1} and using (3.11), the second term in the right hand side becomes∫
{ρk+1
h >e−1}

ρk+1
h log(ρk+1

h ) 6
∫
{ρk+1
h >e−1}

(1 + Ch)ρ
k+1/2
h log((1 + Ch)ρ

k+1/2
h )

6
∫
{ρk+1
h >e−1}

ρ
k+1/2
h log(ρ

k+1/2
h ) + Ch

∫
{ρk+1
h >e−1}

ρ
k+1/2
h log(ρ

k+1/2
h )

+(1 + Ch)

∫
{ρk+1
h >e−1}

ρ
k+1/2
h log(1 + Ch)

6
∫
{ρk+1
h >e−1}

ρ
k+1/2
h log(ρ

k+1/2
h ) + CTh,
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where we used ‖ρk+1/2
h ‖L1 6MT from Proposition 3.5 as well as log(1 +Ch) 6 Ch in the last inequality. Using

the same method with the bound from below (3.12) on {ρk+1
h 6 e−1} (where z 7→ z log z is now decreasing), we

obtain similarly ∫
{ρk+1
h 6e−1}

ρk+1
h log(ρk+1

h ) 6
∫
{ρk+1
h 6e−1}

ρ
k+1/2
h log(ρ

k+1/2
h ) + CTh.

Combining both inequalities gives∫
Ω

ρk+1
h log(ρk+1

h ) 6
∫
Ω

ρ
k+1/2
h log(ρ

k+1/2
h ) + CTh

and the proof is complete.

Summing (3.15) and (3.16) over k we obtain

1

4h

N−1∑
k=0

W2(ρ
k+1/2
h , ρkh) 6 F(ρ0)−F(ρNh ) + CT , (3.17)

where N = bTh c.

The goal is now to estimate the FR2 increment along the second reaction step. Testing ρ = ρ
k+1/2
h in the

Fisher-Rao minimization in (3.4), we obtain

1

2h
FR2(ρk+1

h , ρ
k+1/2
h ) 6 G(ρ

k+1/2
h )− G(ρk+1

h ) +

∫
Ω

U(ρ
k+1/2
h − ρk+1

h ). (3.18)

Since we assumed U ∈ L∞(Ω) and because ρh(t) = ρk+1
h remains close to ρ̃h(t) = ρ

k+1/2
h in L1 uniformly in

t, h by Proposition 3.5, we immediately control the potential part as∫
Ω

U(ρ
k+1/2
h − ρk+1

h ) 6 ‖U‖∞CTh. (3.19)

For the internal energy we argue exactly as in the proof Proposition 3.6 (for the Porous Media part, since we
chose here G(z) = 1

m2−1z
m2), and obtain

G(ρ
k+1/2
h )− G(ρk+1

h ) 6 CTh. (3.20)

Combining (3.18), (3.19) and (3.20), we immediately deduce that

1

2h

N−1∑
k=0

FR2(ρ
k+1/2
h , ρk+1

h ) 6 CT , (3.21)

where N = bTh c as before.

Finally, we recover an approximate compactness in time in the form
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Proposition 3.7. There exists a constant CT > 0 such that for all h small enough and k 6 N = bT/hc,

1

h

N−1∑
k=0

WFR2(ρkh, ρ
k+1
h ) 6 8F(ρ0) + CT . (3.22)

Proof. Adding (3.17) and (3.21) gives

1

h

N−1∑
k=0

W2(ρkh, ρ
k+1/2
h ) + FR2(ρ

k+1/2
h , ρk+1

h ) 6 4
(
F(ρ0)−F(ρNh ) + CT

)
+ 2CT 6 4F(ρ0) + CT ,

since in any case F (z) = 1
m1−1z

m1 > 0 and F (z) = z log z − z > −1 is bounded from below on the bounded

domain Ω, hence F(ρNh ) > −CΩ uniformly. It then follows from Proposition 2.4 that W2(ρkh, ρ
k+1/2
h ) +

FR2(ρ
k+1/2
h , ρk+1

h ) > 1
2WFR

2(ρkh, ρ
k+1
h ) in the left-hand side, and the result immediately follows.

3.3. Estimates and convergences

From the total-square distance estimate (3.22) we recover as usual the approximate 1
2 -Hölder estimate

WFR(ρh(t), ρh(s)) + WFR(ρ̃h(t), ρ̃h(s)) 6 CT |t− s+ h|1/2 (3.23)

for all fixed T > 0 and t, s ∈ [0, T ]. From (3.21) and Proposition 2.4 we have moreover

WFR(ρh(t), ρ̃h(t)) 6 FR(ρh(t), ρ̃h(t)) 6 C
√
h. (3.24)

Using a refined version of Ascoli-Arzelà theorem, Proposition 3.3.1 from [4] and arguing exactly as in
Proposition 4.1 from [18], we see that for all T > 0 and up to extraction of a discrete subsequence, ρh and
ρ̃h converge uniformly to the same WFR-continuous curve ρ ∈ C1/2([0, T ],M+

WFR) as

sup
t∈[0,T ]

(WFR(ρh(t), ρ(t)) + WFR(ρ̃h(t), ρ(t)))→ 0.

In order to pass to the limit in the nonlinear terms, we first strengthen this WFR-convergence into a more
tractable strong L1 convergence. The first step is to retrieve compactness in space:

Proposition 3.8. For all T > 0, ρh and ρ̃h satisfies

‖PF (ρ̃h)‖L2([0,T ];H1(Ω)) 6 CT . (3.25)

Proof. From (3.6) and the L1 ∩ L∞ bounds from Proposition 3.5 we see that∫
Ω

|∇PF (ρ
k+1/2
h )|2 6

2

h2

∫
Ω

|∇ϕk+1/2
h |2(ρ

k+1/2
h )2 + 2

∫
Ω

|∇V |2(ρ
k+1/2
h )2

6
2CT
h2

∫
Ω

|∇ϕk+1/2
h |2ρk+1/2

h + 2‖∇V ‖2∞
∫
Ω

(ρ
k+1/2
h )2

6 CT

(
W2(ρ

k+1/2
h , ρkh)

h2
+ 1

)
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since ϕ
k+1/2
h is the optimal (backward) Kantorovich potential from ρ

k+1/2
h to ρkh. Multiplying by h > 0, summing

over k, and exploiting (3.17) gives

‖PF (ρ̃h)‖2L2([0,T ];H1(Ω)) 6
N−1∑
k=0

h‖PF (ρ
k+1/2
h )‖2H1 6 CT (F(ρ0)−F(ρNh ) + 1) 6 CT ,

where we used as before F(ρNh ) > −CΩ in the last inequality.

We are now finally in position of proving our main result:

Proof of Theorem 3.2. Exploiting (3.22) and (3.25), we can apply a generalized Aubin-Lions lemma Theorem 2
from [41], to obtain that ρ̃h converges to ρ strongly in L1(QT ) (see [24]). By diagonal extraction if needed, we
can assume that the convergence holds in L1(QT ) for all fixed T > 0. Then by Proposition 3.5 we have

‖ρh − ρ‖L1(QT ) 6 ‖ρh − ρ̃h‖L1(QT ) + ‖ρ̃h − ρ‖L1(QT ) 6 CTh+ ‖ρ̃h − ρ‖L1(QT ) → 0

hence ρh → ρ strongly in L1(QT ) as well. Moreover, since PF (ρ̃h) is bounded in L2((0, T ), H1(Ω)) we can
assume that ∇PF (ρ̃h) ⇀ ∇PF (ρ) in L2((0, T ), L2(Ω)) for all T > 0. Following [18], one easily exploits the
Euler-Lagrange equations (3.6) and (3.10) to check that

∫
Ω

(ρk+1
h − ρkh)ϕ = − h

∫
Ω

{
∇PF (ρ

k+1/2
h ) + ρ

k+1/2
h ∇V

}
· ∇ϕ+O

(
‖D2ϕ‖L∞W2(ρ

k+1/2
h , ρkh)

)
−h

2

∫
Ω

√
ρk+1
h

(√
ρk+1
h +

√
ρ
k+1/2
h

) (
G′(ρk+1

h ) + U
)
ϕ

for all smooth ϕ ∈ C2(Ω̄). Summing from k1 = bt1/hc to k2 = bt2/hc and leveraging the strong convergence
ρh, ρ̃h → ρ one easily gets, in the limit h→ 0,

∫
Ω

ρ(t2)ϕ− ρ(t1)ϕ = −
∫ t2

t1

∫
Ω

{
∇PF (ρ) + ρ∇V

}
· ∇ϕ+ ρ(G′(ρ) + U)ϕ

for all 0 < t1 < t2 and ϕ ∈ C1b (Ω). Here we omit the details and refer to the proof of Theorem 4 from [18]. Since
ρ ∈ C([0, T ];M+

WFR) takes the initial datum ρ(0) = ρ0 and WFR metrizes the narrow convergence of measures, this
is well-known to be equivalent to our weak formulation in Definition 3.1, and the proof is complete.

Remark 3.9. In the above proofs one can check that Theorem 3.2 extends in fact to all C1 nonlinearities
G such that G′ > −C is bounded from below (so that the reaction term ∂tρ = (. . .) − ρG′(ρ) does not allow
blow-up). Likewise, we stated and proved our main result in bounded domains for convenience: all the above
arguments immediately extend to Ω = Rd at least for F (z) = 1

m1−1z
m1 > 0. The only argument actually

exploiting the boundedness of Ω was the proof of Proposition 3.7, when we bounded from below F(ρNh ) > −CΩ
in order to retrieve the total-square distance estimate. In the case Ω = Rd and F (z) = z log z− z a lower bound
F(ρNh ) > −CT still holds, but the proof involves Carleman inequalities and requires a tedious control of the
second moments m2(ρ) =

∫
Rd |x|

2ρ and we chose not to address this technical issue for the ease of exposition.
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4. Application to systems

In this section we wish to illustrate the tractability of our splitting approach, and as an example we will solve
systems of the form 

∂tρ1 = div(ρ1∇(F ′1(ρ1) + V1[ρ1, ρ2]))− ρ1(G′1(ρ1) + U1[ρ1, ρ2]),
∂tρ2 = div(ρ2∇(F ′2(ρ2) + V2[ρ1, ρ2]))− ρ2(G′2(ρ2) + U2[ρ1, ρ2]),
ρ1|t=0 = ρ01, ρ2|t=0 = ρ02.

(4.1)

For simplicity we assume again that Ω is a smooth, bounded subset of Rd. The system (4.1) is naturally
supplemented with Neumann boundary conditions,

ρ1∇(F ′1(ρ1) + V1[ρ1, ρ2]) · ν = 0 and ρ2∇(F ′2(ρ2) + V2[ρ1, ρ2]) · ν = 0 on R+ × ∂Ω,

where ν is the outward unit normal to ∂Ω. Here we allow interactions between densities in the potential terms
Vi[ρ1, ρ2] and Ui[ρ1, ρ2]. In the mass-conservative case (without reaction terms), this system has already been
studied in [8, 15, 24], using a semi-implicit JKO scheme introduced by Di Francesco and Fagioli [15]. This
section combines the splitting scheme introduced in the previous section and semi-implicit schemes both for the
Wasserstein JKO step and for the Fisher-Rao JKO step.

For the ease of exposition we keep the same assumptions for Fi and Gi as in the previous section, i.e. the
diffusion terms Fi satisfy (3.2) and the reaction terms Gi satisfy (3.3). Moreover, since the potentials depend
now on the densities ρ1 and ρ2, we need stronger hypotheses: we assume that Vi : L1(Ω;R+)2 →W 1,∞(Ω) are
continuous and verify, uniformly in ρ1, ρ2 ∈ L1(Ω;R+),∥∥∥Vi[ρ1, ρ2]

∥∥∥
W 1,∞(Ω)

6 K(1 + ‖ρ1‖L1(Ω) + ‖ρ2‖L1(Ω)),∥∥∥∇(Vi[ρ1, ρ2])−∇(Vi[µ1, µ2])
∥∥∥
L∞(Ω)

6 K(‖ρ1 − µ1‖L1(Ω) + ‖ρ2 − µ2‖L1(Ω)). (4.2)

The interacting potentials we have in mind are of the form Vi[ρ1, ρ2] = Ki,1 ∗ρ1 +Ki,2 ∗ρ2, where Ki,1,Ki,2 ∈
W 1,∞(Ω) and then Vi satisfies (4.2).

Ui[ρ1, ρ2] > −K, ∀ ρ1, ρ2 ∈ L1(Ω;R+) (4.3)

for some K ∈ R, and

‖Ui[ρ1, ρ2]‖L∞(Ω) 6 KM , ∀‖ρ1‖L1(Ω), ‖ρ2‖L1(Ω) 6M (4.4)

for some nondecreasimg function KM > 0 of M . The examples we have in mind are of the form

U1[ρ1, ρ2] = C1
ρ2

1 + ρ1
, U2[ρ1, ρ2] = −C2

ρ1
1 + ρ1

for some constants Ci ≥ 0, or nonlocal reactions

Ui[ρ1, ρ2](x) =

∫
Ω

Ki,1(x, y)ρ1(y) dy +

∫
Ω

Ki,2(x, y)ρ2(y) dy

for some nonnegative kernels Ki,j ∈ L1 ∩ L∞. Such reaction models appear for example in biological adaptive
dynamics [35].
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Definition 4.1. We say that (ρ1, ρ2) : R+ → L1
+∩L∞+ (Ω) is a weak solution of (4.1) with initial datum (ρ01, ρ

0
2)

if, for i ∈ {1, 2} and all T < +∞, the pressure Pi(ρi) := ρiF
′
i (ρi)−Fi(ρi) satisfies ∇Pi(ρi) ∈ L2([0, T ]×Ω), and∫ +∞

0

(∫
Ω

(ρ∂tφi − ρi∇Vi[ρ1, ρ2] · ∇φi −∇Pi(ρi) · ∇φi − ρi(G′
i(ρi) + Ui[ρ1, ρ2])φi)dx

)
dt = −

∫
Ω

φi(0, x)ρ0i (x)dx,

(4.5)

for all φi ∈ C∞c ([0,+∞)× Rd).

Then, the following result holds,

Theorem 4.2. Assume that ρ01, ρ
0
2 ∈ L1 ∩L∞+ (Ω) and that Vi, Ui satisfy (4.2)–(4.4). Then (4.1) admits at least

one weak solution.

Note that this result can be easily adapted to systems with an arbitrary number of species N > 2, coupled
by nonlocal terms Vi[ρ1, . . . , ρN ] and Ui[ρ1, . . . , ρN ].

Remark 4.3. A refined analysis shows that our approach would allow to handle systems of the form{
∂tρ1 − div(ρ1∇(F ′1(ρ1) + V1)) = −ρ1H1(ρ1, ρ2),

∂tρ2 − div(ρ2∇(F ′2(ρ2) + V2)) = +ρ2H2(ρ1),

where H1 is a nonnegative continuous function and H2 is a continuous functions. Indeed since H1 ≥ 0 the
reaction term is the first equation is nonpositive, hence ‖ρ1(t)‖L∞(Ω) 6 CT . Then it follows that −H2(ρ1)

satisfies assumptions (4.3) and (4.4). A classical example is H2(ρ1) = ρα1 and H1(ρ1, ρ2) = ρα−11 ρ2, where α > 1,
see for example [40] for more discussions.

As already mentioned, the proof of Theorem 4.2 is based on a semi-implicit splitting scheme. More precisely,

we construct four sequences ρ
k+1/2
1,h , ρk+1

1,h , ρ
k+1/2
2,h , ρk+1

2,h defined recursively as
ρ
k+1/2
i,h ∈ argmin

ρ∈M+,|ρ|=|ρki,h|

{
1
2hW

2(ρ, ρki,h) + Fi(ρ) + Vi(ρ|ρk1,h, ρk2,h)
}

ρk+1
i,h ∈ argmin

ρ∈M+

{
1
2hFR

2(ρ, ρ
k+1/2
i,h ) + Gi(ρ) + Ui(ρ|ρk1,h, ρk2,h)

}
,

(4.6)

where the fully implicit terms

Fi(ρ) :=

{∫
Ω
Fi(ρ) if ρ� L|Ω

+∞ otherwise
and Gi(ρ) :=

{∫
Ω
Gi(ρ) if ρ� L|Ω

+∞ otherwise ,

and the semi-implicit terms

Vi(ρ|µ1, µ2) :=

∫
Ω

Vi[µ1, µ2]ρ and Ui(ρ|µ1, µ2) :=

∫
Ω

Ui[µ1, µ2]ρ.

In the previous section, the proof of Theorem 3.2 for scalar equations strongly leveraged the uniform L∞(Ω)-
bounds on the discrete solutions. Here an additional difficulty arises due to the nonlocal terms ∇Vi[ρ1, ρ2] and
Ui[ρ1, ρ2], which are a priori not uniformly bounded in L∞(Ω). Using assumption (4.3) we will first obtain a
uniform L1(Ω)-bound on ρ1, ρ2, and then extend Proposition 3.5 to the system (4.1). This in turn will give a
uniform W 1,∞ control on Vi[ρ1, ρ2] and L∞ control on Ui[ρ1, ρ2] through our assumptions (4.2)–(4.4), which
will finally allow to argue as in the previous section and give L∞ control on ρ1, ρ2. Numerical simulations for a
diffusive prey-predator system are presented at the end of this section.



16 T. GALLOUËT ET AL.

4.1. Properties of discrete solutions

Arguing as in the case of one equation, the optimality conditions for the Wasserstein step and for the
Fisher-Rao step first give

Lemma 4.4. For all k > 0 and i ∈ {1, 2}, we have

‖ρk+1/2
i,h ‖L1 = ‖ρki,h‖L1 . (4.7)

Moreover, there exists Ci ≡ C(Ui) > 0 (uniform in k) such that

ρk+1
i,h (x) 6 (1 + Cih)ρ

k+1/2
i,h (x) a.e. (4.8)

Proof. The first part is simply the mass conservation in the Wasserstein step, and the second part follows the
lines of the proof of (3.11) in Lemma 3.4 using assumption (4.3).

As a direct consequence we have uniform control on the L1-norms:

Lemma 4.5. For all T > 0 there exist constants CT , C
′
T > 0 such that, for all t ∈ [0, T ],

‖ρi,h(t)‖L1 , ‖ρ̃i,h(t)‖L1 6 CT

and ∥∥∥Vi[ρ1,h(t), ρ2,h(t)]
∥∥∥
W 1,∞

,
∥∥∥Vi[ρ̃1,h(t), ρ̃2,h(t)]

∥∥∥
W 1,∞

6 C ′T . (4.9)

Proof. Integrating (4.8) and iterating with (4.7), we obtain for all t 6 T and k 6 bT/hc

‖ρk+1
i,h ‖L1 6 (1 + Cih)‖ρki,h‖L1 6 (1 + Cih)k‖ρ0i ‖L1 6 eCiT ‖ρ0i ‖L1 .

Then (4.9) follows from our assumption (4.2) on the interactions.

Combining (4.8) and (4.9), we deduce

Proposition 4.6. For all T > 0, there exists MT such that for all t ∈ [0, T ],

‖ρi,h(t)‖L∞ , ‖ρ̃i,h(t)‖L∞ 6MT .

Then, there exists ci ≡ c(MT , Ui) ≥ 0, such that, for all k 6 bT/hc and h 6 h0(U1, U2),

(1− cih)ρ
k+1/2
i,h 6 ρk+1

i,h .

In particular, there exist M ′T > 0 such that for all t ∈ [0, T ],

‖ρi,h(t)− ρ̃i,h(t)‖L1 6 hM ′T .

Proof. The first L∞ estimate can be found in Lemma 2 from [38], and the rest of our statement can be proved
exactly as in Lemma 3.4 and Proposition 3.5.
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4.2. Estimates and convergences

Since we proved that V1[ρ1,h, ρ2,h] and V2[ρ1,h, ρ2,h] are bounded in L∞([0, T ],W 1,∞(Ω)), we can argue
exactly as in Section 3.2 for the Wasserstein step and obtain

1

4h
W2(ρ

k+1/2
i,h , ρki,h) 6 Fi(ρki,h)−Fi(ρk+1/2

i,h ) + CTh, (4.10)

see (3.14) and (3.15) for details. Since ρ̃1,h and ρ̃2,h are uniformly bounded in L1(Ω) (Lem. 4.5), our assumption

(4.4) ensures that U1[ρ
k+1/2
1,h , ρ

k+1/2
2,h ] and U2[ρ

k+1/2
1,h , ρ

k+1/2
2,h ] are uniformly bounded in L∞(Ω). Proposition 4.6

then allows to argue exactly as in (3.18) and (3.19) for the Fisher-Rao step, and we get

1

2h
FR2(ρk+1

i,h , ρ
k+1/2
i,h ) 6 Gi(ρk+1/2

i,h )− Gi(ρk+1
i,h ) + CTh. (4.11)

In order to retrieve the total square distance estimate we need to control the energy increments as before:

Proposition 4.7. For all T > 0 and i ∈ {1, 2}, there exist constants CT , C
′
T > 0 such that, for all k > 0 with

hk 6 T ,

Fi(ρk+1
i,h ) 6 Fi(ρk+1/2

i,h ) + CTh,

Gi(ρk+1/2
i,h ) 6 Gi(ρk+1

i,h ) + C ′Th.

Proof. The dissipation of Fi along the Fisher-Rao step is obtained in the same way as Proposition 3.6, the
increment of Gi along the Fisher-Rao step is obtained arguing as in (3.20) and we omit the details.

From (4.10) and (4.11) this immediately gives a telescopic sum

1

2h

(
W2(ρki,h, ρ

k+1/2
i,h ) + FR2(ρ

k+1/2
i,h , ρki,h)

)
6 2[Fi(ρki,h)−Fi(ρk+1

i,h )] + CTh

which in turn yields an approximate 1
2 -Hölder estimate as in Proposition 3.7:

1

h

N−1∑
k=0

WFR2(ρki,h, ρ
k+1
i,h ) 6 8Fi(ρ0i ) + CT .

The rest of the proof of Theorem 4.2 is then identical to Section 3 and we omit the details.

4.3. Numerical application: prey-predator systems

Our constructive scheme can be implemented numerically, by simply discretizing (4.6) in space. We use the
augmented Lagrangian method ALG-JKO from [6] to solve the Wasserstein step, and the Fisher-Rao step is
just a convex pointwise minimization problem. Indeed, it is known [18, 28] that FR2(ρ, µ) = 4‖√ρ − √µ‖2L2 ,
hence the Fisher-Rao step in (4.6) is a mere convex pointwise minimization problem of the form: for all x ∈ Ω
(and omitting all indexes ρi,h),

ρk+1(x) = argmin
ρ∈R+

{
4

∣∣∣∣√ρ−√ρk+1/2(x)

∣∣∣∣2 + 2hF (ρ)

}
.

This is easily solved using any simple Newton procedure.
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t = 0 t = 0.15 t = 0.35 t = 0.5 t = 0.65 t = 0.85 t = 1

Figure 1. Evolution of two species with prey-predator interactions. First row: total density
ρ1 + ρ2. Second row: prey density ρ1. Third row: predator density ρ1.

Figure 1 shows the numerical solution of the following diffusive prey-predator system

{
∂tρ1 −∆ρ1 − div(ρ1∇V1[ρ1, ρ2]) = Aρ1 (1− ρ1)−B ρ1ρ2

1+ρ1
,

∂tρ2 −∆ρ2 − div(ρ2∇V2[ρ1, ρ2]) = Bρ1ρ2
1+ρ1

− Cρ2.

Here the ρ1 species are preys and ρ2 are predators, see for example [31], the parameters A = 10, C = 5, B = 70,
and the interactions are chosen as

V1[ρ1, ρ2] = |x|2 ∗ ρ1 − |x|2 ∗ ρ2, V2[ρ1, ρ2] = |x|2 ∗ ρ1 + |x|2 ∗ ρ2.

In (4.1) this corresponds to

G1(ρ1) = A
ρ21
2
, G2(ρ2) = 0, U1[ρ1, ρ2] =

Bρ2
1 + ρ1

−A, U2[ρ1, ρ2] = − Bρ1
1 + ρ1

+ C.

Of course, U1 and U2 satisfy assumptions (4.3) and (4.4), and then Theorem 4.2 gives a solution of the prey-
predator system. As before, we shall disregard the uniqueness issue for the sake of simplicity. Figure 2 depicts
the time evolution of the L1 mass for each prey/predator species: we observe the usual oscillations in time with
phase opposition, a characteristic behaviour for Lotka-Volterra types of systems.
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Figure 2. Mass evolution for two-species prey-predator interactions.

5. Application to a tumor growth model with very degenerate
diffusion and singular energy

In this section we consider the problem


∂tρ = div(ρ∇p) + ρ(1− p),
p > 0 and p(1− ρ) = 0

0 6 ρ 6 1,

ρ|t=0 = ρ0.

(5.1)

This is a particular case of the tumor growth models studied in [36, 37], and solutions exhibit a Hele-Shaw
patch dynamics: if ρ0 = χΩ0

then the solution remains an indicator ρ(t) = χΩ(t) and the boundary moves with
normal velocity V = −∇p|∂Ω(t), see [2] for a rigorous analysis in the framework of viscosity solutions. At least
formally, we remark that (5.1) is the Wasserstein-Fisher-Rao gradient flow of the singular functional

F(ρ) := F∞(ρ)−
∫
Ω

ρ,

where

F∞(ρ) :=

{
0 if ρ 6 1 a.e,

+∞ otherwise.
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Indeed, the compatibility conditions p > 0 and p(1− ρ) = 0 in (5.1) really mean that the pressure p belongs to
the subdifferential ∂F∞(ρ), and (5.1) thus reads as the gradient flow

dρ

dt
= − gradWFR F(ρ) ↔

{
∂tρ = div(ρ∇u)− ρu
u = p− 1 ∈ −∂F(ρ).

However, this functional is too singular for the previous splitting scheme to correctly capture the very degenerate
diffusion. Indeed, the naive and direct approach from Section 3 would lead to

ρ
k+1/2
h ∈ argmin

ρ61, |ρ|=|ρkh|

{
1
2hW

2(ρ, ρkh)−
∫
Ω
ρ
}
,

ρk+1
h ∈ argmin

ρ61

{
1
2hFR

2(ρ, ρ
k+1/2
h )−

∫
Ω
ρ
}
.

Since the Wasserstein step is mass-conservative by definition, the
∫
ρ term has no effect in the first step and the

latter reads as “project ρkh on {ρ 6 1} w.r.t to the W distance”. Since the output of the reaction step ρk+1
h 6 1,

the Wasserstein step will never actually project anything, and the diffusion is completely shut down. As an
example, it is easy to see that if the initial datum is an indicator ρ0 = χΩ0

then the above naive scheme leads

to a stationary solution ρk+1
h = ρ

k+1/2
h = ρ0 for all k > 0, while the real solution should evolve according to

the aforementioned Hele-Shaw dynamics ρ(t) = χΩ(t) [2, 36]. One could otherwise try to write a semi-implicit
scheme as follows: (1) keep the projection on {ρ 6 1} in the first Wasserstein step. As in [30] a pressure term

p
k+1/2
h appears as a Lagrange multiplier in the Wasserstein projection; (2) in the FR/reaction step, relax the

constraint ρ 6 1 and minimize instead ρk+1 ∈ argmin
{

1
2hFR

2(ρ) +
∫
ρpk+1/2 −

∫
ρ
}

, and keep iterating. This
seems to correctly capture the diffusion at least numerically speaking, but raises technical issues in the rigorous
proof of convergence and most importantly destroys the variational structure at the discrete level (due to the
fact that the reaction step becomes semi-explicit).

We shall use instead an approximation procedure, which preserves the variational structure at the discrete
level: it is well-known that the Porous-Medium functional

Fm(ρ) :=

{∫
Ω

ρm

m−1 if ρm ∈ L1(Ω)

+∞ otherwise

Γ -converges to F∞ in the incompressible limit m → ∞, see [7]. In the spirit of [42], one should therefore
expect that the gradient flow ρm of Fm(ρ) −

∫
ρ converges to the gradient flow ρ∞ of the limiting functional

F(ρ) = F∞(ρ) −
∫
ρ. Implementing the splitting scheme for the regular energy functional Fm(ρ) −

∫
ρ gives

a sequence ρh,m, and we shall prove below that ρh,m converges to a solution of the limiting gradient flow as
m → ∞ and h → 0. However, it is known [17] that the limit depends in general on the interplay between the
time-step h and the regularization parameter (m → ∞ here), and for technical reasons we shall enforce the
CFL-like condition

mh→ 0 as m→∞ and h→ 0.

Note that [36] already contained a similar approximation m→∞ but without exploiting the variational struc-
ture of the m- gradient flow, and our approach is thus different. The above gradient-flow structure was already
noticed and fully exploited in the independent work [10], where existence and uniqueness of weak solutions is
proved and numerical simulations are performed needless of any splitting an using directly the WFR structure
(with an additional entropic approximation). Here we rather emphasize the fact that the splitting does capture
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delicate Γ -convergence phenomena.

In order to make the above discussion more rigorous, we fix a time step h > 0 and construct two sequences

(ρ
k+1/2
h,m )k and (ρkh,m)k, with ρ0h,m = ρ0, defined recursively as


ρ
k+1/2
h ∈ argmin

ρ∈M+, |ρ|=|ρkh|

{
1
2hW

2(ρ, ρkh,m) + Fm(ρ)−
∫
Ω
ρ
}
,

ρk+1
h ∈ argmin

ρ∈M+

{
1
2hFR

2(ρ, ρ
k+1/2
h ) + Fm(ρ)−

∫
Ω
ρ
}
.

(5.2)

As is common in the classical theory of Porous Media equations [44], we define the pressure as the first
variation

pm := F ′m(ρ) =
m

m− 1
ρm−1,

and we write accordingly

p
k+1/2
h,m :=

m

m− 1
(ρ
k+1/2
h,m )m−1 and pk+1

h,m :=
m

m− 1
(ρk+1
h,m)m−1

for the discrete pressures. As in Section 3 we denote by ρh,m(t), ph,m(t) and ρ̃h,m(t), p̃h,m(t) the piecewise

constant interpolations of ρk+1
h,m , p

k+1
h,m and ρ

k+1/2
h,m , p

k+1/2
h,m , respectively.

Our main result is

Theorem 5.1. Assume that ρ0 ∈ BV (Ω), ρ0 6 1, and mh → 0 as h → 0 and m → ∞. Then for all T > 0,
ρh,m, ρ̃h,m both converge to some ρ strongly in L1((0, T )×Ω), the pressures ph,m, p̃h,m both converge to some p
weakly in L2((0, T ), H1(Ω)), and (ρ, p) is the unique weak solution of (5.1).

Since we have a WFR gradient-flow structure, uniqueness should formally follows from the −1 geodesic convex-
ity of the driving functional E∞(ρ)−

∫
Ω
ρ with respect to the WFR distance [25, 27] and the resulting contractivity

estimate WFR(ρ1(t), ρ2(t)) ≤ etWFR(ρ0,1, ρ0,2) between any two solutions ρ1, ρ2. This is proved rigorously in [10],
and therefore we retrieve convergence of the whole sequence ρh,m → ρ in Theorem 5.1 (and not only for sub-
sequences). Given this uniqueness, it is clearly enough to prove convergence along any discrete (sub)sequence,
and this is exactly what we show below.

The strategy of proof for Theorem 5.1 is exactly as in Section 3, except that we need now the estimates to
be uniform in both h→ 0 and m→∞.

5.1. Estimates and convergences

In this section, we improve the previous estimates from Section 3. We start with a universal L∞-bound:

Lemma 5.2. Assume that ρ0 6 1, then for all t ≥ 0,

‖ρh,m(t, ·)‖∞, ‖ρ̃h,m(t, ·)‖∞ 6 1.

Proof. We argue by induction at the discrete level, starting from ρ0 = ρ0h,m 6 1 by assumption. Since ‖ρkh,m‖∞ 6

1, Otto’s maximum principle (3.9) implies that ‖ρk+1/2
h,m ‖∞ 6 ‖ρkh,m‖∞ 6 1 in the Wasserstein step.

We establish now ‖ρk+1
h,m‖∞ 6 ‖ρk+1/2

h,m ‖∞. Assume by contradiction that E := {ρk+1
h,m > 1} has positive

Lebesgue measure. The optimality condition (3.10) for the Fisher-Rao minimization step gives, dividing by
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ρk+1
h,m > 0 in E,

√
ρk+1
h,m −

√
ρ
k+1/2
h,m =

h

2

√
ρk+1
h,m

(
1− m

m− 1
(ρk+1
h,m)m−1

)

Then 1− m
m−1 (ρk+1

h,m)m−1 6 1− m
m−1 < 0 in the right-hand side, hence

√
ρk+1
h,m −

√
ρ
k+1/2
h,m ≤ 0 in E. This is the

desired contradiction since ρk+1
h,m > 1 in E but ρ

k+1/2
h,m 6 1 everywhere.

Noticing that the functional 1
m−1

∫
ρm −

∫
ρ corresponds to taking explicitly F2(z) = zm/m− 1 and V2(x) ≡

−1 in Section 3, it is easy to reproduce the computations from the proof of Lemma 3.4 and carefully track the
dependence of the constants w.r.t m > 1 to obtain

Lemma 5.3. There exists c > 0 such that, for all m > m0 large enough and all h ≤ h0 small enough,

(1− ch)ρ
k+1/2
h,m (x) 6 ρk+1

h,m(x) 6 (1 + h)ρ
k+1/2
h,m (x) a.e. (5.3)

Note that this holds regardless of any compatibility such as hm → 0. The key point is here that the lower
bound c previously depended on an upper bound ρk+1/2 ≤ M in Lemma 3.4, but since we just obtained in
Lemma 5.2 the universal upper bound ρk+1/2 6 1 we end up with a lower bound which is also uniform in h,m.
The proof is identical to that of Lemma 3.4 and we omit the details for simplicity.

Recalling that the Wasserstein step is mass-preserving, we obtain by immediate induction and for all 0 ≤ t ≤ T

‖ρh,m(t)‖L1 , ‖ρ̃h,m(t)‖L1 6 eT ‖ρ0‖L1

as well as

‖ρh,m(t)− ρ̃h,m(t)‖L1 6 CTh. (5.4)

Testing successively ρ = ρkh,m and ρ = ρ
k+1/2
h,m in (5.2), we get

1

2h

(
W2(ρkh,m, ρ

k+1/2
h,m ) + FR2(ρ

k+1/2
h,m , ρk+1

h,m)
)
6 Fm(ρkh,m)−Fm(ρk+1

h,m) +

∫
Ω

(ρ
k+1/2
h,m − ρk+1

h,m).

Using Proposition 2.4 to control WFR2 . 2(W2 + FR2) and the lower bound in (5.3) yields

1

4h
WFR2(ρk+1

h,m , ρ
k
h,m) 6

1

2h

(
W2(ρkh,m, ρ

k+1/2
h,m ) + FR2(ρ

k+1/2
h,m , ρk+1

h,m)
)
6 Fm(ρkh,m)−Fm(ρk+1

h,m) +

∫
Ω

(ρ
k+1/2
h,m − ρk+1

h,m)

6 Fm(ρkh,m)−Fm(ρk+1
h,m) + ch

∫
Ω

ρ
k+1/2
h,m 6 Fm(ρkh,m)−Fm(ρk+1

h,m) + cheT

for all k 6 N := bT/hc. Summing over k we get

1

4h

N−1∑
k=0

WFR2(ρkh,m, ρ
k+1
h,m) 6 Fm(ρ0)−Fm(ρNh,m) + CT

6
1

m− 1

∫
Ω

(ρ0)m + CT 6
1

m− 1

∫
Ω

ρ0 + CT 6 CT ,
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where we used successively Fm ≥ 0 to get rid of Fm(ρNh,m), and (ρ0)m ≤ ρ0 for ρ0 ≤ 1 and m > 1. Consequently,

for all fixed T > 0 and any t, s ∈ [0, T ] we obtain the classical 1
2 -Hölder estimate{

WFR(ρh,m(t), ρh,m(s)) 6 CT |t− s+ h|1/2,
WFR(ρ̃h,m(t), ρ̃h,m(s)) 6 CT |t− s+ h|1/2.

(5.5)

Exploiting the explicit algebraic structure of Fm(z) = 1
m−1z

m, compactness in space will be given here by

Lemma 5.4. If ρ0 ∈ BV (Ω) then

sup
t∈[0,T ]

{
‖ρh,m(t, ·)‖BV (Ω), ‖ρ̃h,m(t, ·)‖BV (Ω)

}
6 eT ‖ρ0‖BV (Ω).

Proof. The argument closely follows the lines of Proposition 5.1 from [18], and strongly exploits the following
result:

Theorem 5.5 (BV estimates for JKO minimizers, Theorem 1.1 from [14]). Let F : R+ → R∪{+∞} be convex
and l.s.c, and g ∈ P2 ∩BV (Ω). If ρ∗ is a minimizer of the variational problem

min
ρ

{
1

2h
W2(ρ, g) +

∫
F (ρ(x))dx

}
,

then ρ∗ ∈ BV (Ω) as well and ∫
Ω

|∇ρ∗| ≤
∫
Ω

|∇g|

in the sense of measures.

This type of BV estimates is highly non trivial and cannot be simply sketched here, but one can think of
this as a quantified smoothing effect for the (formally) parabolic PDE ∂tρ = div(ρ∇F ′(ρ)), of which the first
Wasserstein step in (5.2) is a time-discretization.

Applied to the minimizer ρ
k+1/2
h,m with the convex functional Fm(ρ) = ρm

m−1 , this estimate immediately gives,

together with the mass conservation ‖ρk+1/2
h,m ‖L1 = ‖ρkh,m‖L1 , the BV bound

‖ρk+1/2
h,m ‖BV (Ω) 6 ‖ρkh,m‖BV (Ω).

Using as before the implicit function theorem, we show below that ρk+1
h,m = R(ρ

k+1/2
h,m ) for some suitable (1 +

h)-Lispchitz function R. By standard Lip ◦BV composition [3] this will prove that

‖ρk+1
h,m‖BV (Ω) 6 (1 + h)‖ρk+1/2

h,m ‖BV (Ω)

and will conclude the proof by immediate induction.

Indeed, we already know from (5.3) that ρ
k+1/2
h,m and ρk+1

h,m share the same support. In this support and from

(3.10) it is easy to see that ρ = ρk+1
h,m(x) is the unique positive solution of f(ρ, ρ

k+1/2
h,m (x)) = 0 with

f(ρ, µ) =
√
ρ

(
1− h

2

(
1− m

m− 1
ρm−1

))
−√µ.
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For µ > 0, the implicit function theorem gives the existence of a C1 map R such that f(ρ, µ) = 0⇔ ρ = R(µ),

with R(0) = 0. An algebraic computation shows moreover that 0 < dR
dµ = −∂µf∂ρf |ρ=R(µ)

6 (1 + h) uniformly in

m > 1, hence R is (1 + h)-Lipschitz as claimed and the proof is complete.

Proposition 5.6. Up to extraction of a discrete sequence h→ 0,m→∞, there holds

ρh,m, ρ̃h,m → ρ strongly in L1(QT )

ph,m ⇀ p and p̃h,m ⇀ p̃ weakly in all Lq(QT )

for all T > 0. If in addition mh→ 0 then p = p̃.

Proof. The first part of the statement follows exactly as in Section 3, exploiting the 1
2 -Hölder estimates (5.5)

and the space compactness from Proposition 5.4 in order to apply the Rossi-Savaré theorem [41]. The fact that
ρh,m, ρ̃h,m have the same limit comes from (5.4).

For the pressures, we simply note from ρh,m 6 1 and m � 1 that ph,m = m
m−1ρ

m−1
h,m 6 2ρh,m is bounded in

L1 ∩ L∞(QT ) uniformly in h,m in any finite time interval [0, T ]. Thus up to extraction of a further sequence
we have ph,m ⇀ p in all Lq(QT ), and likewise for p̃h,m ⇀ p̃.

Finally, we only have to check that p = p̃, and this is precisely why we need hm→ 0. Because ρh,m, ρ̃h,m 6 1
and z 7→ zm−1 is (m− 1)-Lipschitz on [0, 1] we have for all fixed t > 0 that∫

Ω

|pm,h(t, ·)− p̃m,h(t, ·)| =
∫
Ω

m

m− 1
|ρm−1h,m (t, ·)− ρ̃m−1h,m (t, ·)|

6 m

∫
Ω

|ρh,m(t)− ρ̃h,m(t)| 6 CThm −→ 0,

where we used (5.4) to control ‖ρh,m(t) − ρ̃h,m(t)‖L1 in the last inequality. Hence p = p̃ and the proof is
complete.

In order to pass to the limit in the diffusion term div(ρ∇p) we first improve the convergence of p̃h,m:

Lemma 5.7. There exists a constant CT , independent of h and m, such that

‖p̃h,m‖L2((0,T ),H1(Ω)) 6 CT

for all T > 0. Consequently, up to a subsequence, p̃h,m converges weakly in L2((0, T ), H1(Ω)) to p.

Proof. The proof is based on the flow interchange technique developed by Matthes et al. in [29]. For fixed small
ε > 0 let η(s, x) be the (smooth) solution of{

∂sη = ∆ηm−1 + ε∆η,

η|s=0 = ρ
k+1/2
h,m

with Neumann boundary conditions. It is well known [4] that η is the Wasserstein gradient flow of

G(ρ) :=

∫
Ω

ρm−1

m− 2
+ ε

∫
Ω

ρ log(ρ).
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Since G is geodesically 0-convex (in the whole space Ω = Rd), η satisfies the Evolution Variational Inequality
(EVI)

1

2

d+

ds
W2(η(s), ρ) 6 G(ρ)− G(η(s)), (5.6)

for all s > 0 and for all ρ ∈ Pac(Ω), where the upper derivative d+

ds f(s) := lim sup
τ→0+

f(s+τ)−f(s)
τ . By optimality of

ρ
k+1/2
h,m = η|s=0 in (5.2), we obtain that

1

2

d+

ds

∣∣∣∣
s=0

W2(η(s), ρkh,m) > −h d+

ds

∣∣∣∣
s=0

Fm(η(s)). (5.7)

Since η is smooth due to the regularizing ε∆ term, we can legitimately integrate by parts for all s > 0

d

ds
Fm(η(s)) =

∫
Ω

m

m− 1
η(s)m−1(∆η(s)m−1 + ε∆η(s))

= −
∫
Ω

m

m− 1
|∇η(s)m−1|2 − ε

∫
Ω

mη(s)m−2|∇η(s)|2

6 −
∫
Ω

m

m− 1
|∇η(s)m−1|2 = −m− 1

m

∫
Ω

∣∣∣∣∇( m

m− 1
η(s)m−1

)∣∣∣∣2

Remarking that m
m−1η(s)m−1 → m

m−1

(
ρ
k+1/2
h,m

)m−1
= p

k+1/2
h,m in the right-hand side above as s→ 0, a classical

lower semi-continuity argument gives that∫
Ω

m− 1

m
|∇pk+1/2

h,m |2 =

∫
Ω

m

m− 1
|∇(ρ

k+1/2
h,m )m−1|2 6 − lim inf

s↘0

d+

ds
Fm(η(s)).

Then from the chain of inequalities (5.6) (and strong continuity G(η(s))→ G(η(0))) we have

h

∫
Ω

m− 1

m
|∇pk+1/2

h,m |2 6 Fm−1(ρkh,m)−Fm−1(ρ
k+1/2
h,m )

+ε

(∫
Ω

ρkh,m log(ρkh,m)−
∫
Ω

ρ
k+1/2
h,m log(ρ

k+1/2
h,m )

)
.

First arguing as in Proposition 3.6 to control

Fm−1(ρk+1
h,m) 6 Fm−1(ρ

k+1/2
h,m ) + CTh,

and then passing to the limit ε↘ 0, we obtain

h

∫
Ω

m− 1

m
|∇pk+1/2

h,m |2 6 Fm−1(ρkh,m)−Fm−1(ρk+1
h,m) + CTh.

Summing over k gives∫ T

0

∫
Ω

|∇p̃h,m(t, x)|2 6
m

m− 1

(
Fm−1(ρ0)−Fm−1(ρNh,m) + CT

)
6 2Fm−1(ρ0) + CT
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for all T < +∞. Due to ρ0 6 1 and m� 1 we can bound Fm−1(ρ0) = 1
m−2

∫
(ρ0)m−1 6 1

m−2
∫
ρ0 6 ‖ρ0‖L1(Ω)

and the result finally follows.

5.2. Properties of the pressure p and conclusion

We start by showing that the limits ρ, p satisfy the compatibility conditions in (5.1).

Lemma 5.8. There holds

0 6 ρ, p 6 1 and p(1− ρ) = 0 a.e. in QT .

Proof. By Lemma 5.2 it is obvious that 0 6 ρ 6 1 and 0 6 p 6 1 are inherited from 0 6 ρh,m 6 1 and 0 6
ph,m = m

m−1ρ
m−1
h,m 6 m

m−1 . In order to prove that p(1− ρ) = 0, we first claim that

ph,m(1− ρh,m)→ 0 a.e. in QT .

Indeed, since ρh,m → ρ strongly in L1(QT ) we can assume ρh,m(t, x)→ ρ(t, x) a.e. If the limit ρ(t, x) < 1 then
ρh,m(t, x) 6 (1 − ε) for all small h and large m, and some ε = ε(t, x) > 0. Hence ph,m(t, x) = m

m−1ρ
m−1
h,m 6

m
m−1 (1− ε)m−1 → 0 while 1− ρh,m remains bounded, and therefore the product ph,m(1− ρh,m)→ 0. Now if the

limit ρ(t, x) = 1 then the pressure ph,m = m
m−1ρ

m−1
h,m 6 m

m−1 remains bounded, while 1 − ρh,m(t, x) → 0 hence
the product goes to zero in this case too.

Thanks to the uniform L∞ bounds ρh,m 6 1 and ph,m 6 m
m−1 6 2 we can apply Lebesgue’s convergence

theorem to deduce from this pointwise a.e. convergence that, for all fixed nonnegative ϕ ∈ C∞c (QT ), there holds

lim
h,m

∫
QT

ph,m(1− ρh,m)ϕ = 0

(the test function ϕ is only needed to localize). On the other hand since ρh,m → ρ strongly in L1(QT ) hence
a.e, and because 0 6 ρh,m 6 1, we see that (1− ρh,m)ϕ→ (1− ρ)ϕ in all Lq(QT ). From Proposition 5.6 we also
had that ph,m ⇀ p in all Lq(QT ), hence by strong-weak convergence we have that∫

QT

p(1− ρ)ϕ = lim

∫
QT

ph,m(1− ρh,m)ϕ = 0

for all ϕ > 0. Because p(1− ρ) > 0 we conclude that p(1− ρ) = 0 a.e. in QT and the proof is achieved.

We end this section with

Proof of Theorem 5.1. We only sketch the argument and refer to [18] for the details. Fix any 0 < t1 < t2 and
ϕ ∈ C2c (Rd). Exploiting the Euler-Lagrange equations (3.6) and (3.10) and summing from k = k1 = bt1/hc to
k = k2 − 1 = bt2/hc − 1, we first obtain

∫
Rd
ρh,m(t2)ϕ− ρh,m(t1)ϕ+

∫ k2h

k1h

∫
Rd
ρ̃h,m∇p̃h,m · ∇ϕ = −

∫ k2h

k1h

∫
Rd
ρh,m(1− ph,m)ϕ+R(h,m),

where the remainder R(h,m)→ 0 for fixed ϕ. The strong convergence ρh,m, ρ̃h,m → ρ, the weak convergences
∇p̃h,m ⇀ ∇p̃ = ∇p and ph,m ⇀ p, and kih → ti are then enough pass to the limit to get the corresponding
weak formulation for all 0 < t1 < t2. Moreover since the limit ρ ∈ C([0, T ];M+

WFR) the initial datum ρ(0) = ρ0

is taken at least in the sense of measures. This gives an admissible weak formulation of (5.1), and the proof is
complete.
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Figure 3. Snapshot of the approximate solution ρh,m(t, .) to (5.1), with m = 100, h = 0.005.

5.3. Numerical simulation

The constructive scheme (5.2) naturally leads to a fully discrete algorithm, simply discretizing the minimiza-
tion problem in space for each W, FR step. We use again the ALG2-JKO scheme [6] for the Wasserstein steps. As
already mentioned the Fisher-Rao step is a mere convex pointwise minimization problem, here explicitly given
by: for all x ∈ Ω,

ρk+1
h,m(x) = argmin

ρ∈R+

{
4

∣∣∣∣√ρ−√ρk+1/2
h,m (x)

∣∣∣∣2 + 2h

(
ρm

m− 1
− 1

)}

and poses no difficulty in the practical implementation using a standard Newton method.
Figure 3 depicts the evolution of the numerical solution ρh,m for m = 100 and with a time step h = 0.005.

We remark that the tumor first saturates the constraint (ρ↗ 1) in its initial support, and then starts diffusing
outwards. This is consistent with the qualitative behaviour described in [36].

6. A tumor growth model with nutrient

In this section we use the same approach for the following tumor growth model with nutrients, appearing
e.g. in [36]



∂tρ− div(ρ∇p) = ρ ((1− p)(c+ c1)− c2) ,

∂tc−∆c = −ρc,
0 6 ρ 6 1,

p > 0 and p(1− ρ) = 0,

ρ|t=0 = ρ0, c|t=0 = c0.

(6.1)

Here c1 and c2 are two positive constants, and the nutrient c diffuses in Ω while being consumed by the tumor ρ.
For technical convenience we work here on a convex bounded domain Ω ⊂ Rd, endowed with natural Neumann
boundary conditions for both ρ and c.

Contrarily to Section 5 this is not a WFR gradient flow anymore, and we therefore introduce a semi-implicit
splitting scheme. We approximate again the singular diffusion by the incompressible limit m→∞. Starting from

the initial data ρ0h,m := ρ0, c0h,m := c0 we construct four sequences ρ
k+1/2
h,m , ρkh,m, c

k+1/2
h,m , ckh,m, defined recursively
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as 
ρ
k+1/2
h,m ∈ argmin

ρ∈M+,|ρ|=|ρkh,m|

{
1
2hW

2(ρ, ρkh,m) + Fm(ρ)
}
,

c
k+1/2
h,m ∈ argmin

c∈M+,|c|=|ckh,m|

{
1
2hW

2(c, ckh,m) +H(ρ)
}
,

(6.2)

and 
ρk+1
h,m ∈ argmin

ρ∈M+

{
1
2hFR

2(ρ, ρ
k+1/2
h,m ) + E1,m(ρ|ck+1/2

h,m )
}
,

ck+1
h,m ∈ argmin

c∈M+

{
1
2hFR

2(c, c
k+1/2
h,m ) + E2(c|ρk+1/2

h,m )
}
,

(6.3)

where

H(ρ) :=

∫
Ω

ρ log(ρ),

E1,m(ρ|c) :=

∫
Ω

(c+ c1)
ρm

m− 1
+

∫
Ω

(c2 − c− c1)ρ,

and

E2(c|ρ) :=

∫
Ω

ρc.

As earlier it is easy to see that these sequences are well-defined (i.e. there exists a unique minimizer for each
step), and the pressures are defined as before as

p
k+1/2
h,m :=

m

m− 1
(ρ
k+1/2
h,m )m−1 and pk+1

h,m :=
m

m− 1
(ρk+1
h,m)m−1.

We denote again by ah,m(t), ãh,m(t) the piecewise constant interpolation of any discrete quantity ak+1
h,m , a

k+1/2
h,m

respectively. Our main result reads:

Theorem 6.1. Assume ρ0 ∈ BV (Ω) with ρ0 6 1 and c0 ∈ L∞(Ω) ∩ BV (Ω). Then ρh,m and ρ̃h,m strongly
converge to ρ in L1((0, T ) × Ω) and ch,m and c̃h,m strongly converge to c in L1((0, T ) × Ω) when h ↘ 0 and
m ↗ +∞. Moreover, if mh → 0, then ph,m, p̃h,m converge weakly in L2((0, T ), H1(Ω)) to a unique p, and
(ρ, p, c) is a solution of (6.1).

Note that uniqueness of solutions would result in convergence of the whole sequence. Uniqueness was proved
in Theorem 4.2 from [36], for slightly more regular weak solutions, but we did not push in this direction for
the sake of simplicity. The method of proof is almost identical to Section 5 so we only sketch the argument and
emphasize the main differences.
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We start by recalling the optimality conditions for the scheme (6.2) and (6.3). The Euler-Lagrange equations
for the tumor densities in the Wasserstein and Fisher-Rao steps areρ

k+1/2
h,m ∇pk+1/2

h,m = ∇ϕ
h ρ

k+1/2
h,m ,√

ρk+1
h,m −

√
ρ
k+1/2
h,m = h

2

√
ρk+1
h,m

(
(1− pk+1

h,m)(c
k+1/2
h,m + c1)− c2

)
,

(6.4)

where ϕ is a (backward) Kantorovich potential for W(ρ
k+1/2
h,m , ρkh,m). For the nutrient, the Euler-Lagrange

equations are ∇c
k+1/2
h,m = ∇ψ

h c
k+1/2
h,m ,√

ck+1
h,m −

√
c
k+1/2
h,m = −h2

√
ck+1
h,mρ

k+1/2
h,m ,

(6.5)

with ψ a Kantorovich potential for W(c
k+1/2
h,m , ckh,m).

Using the optimality conditions for the Fischer-Rao steps, we obtain directly the following L∞ bounds:

Lemma 6.2. For all k > 0

‖ck+1
h,m‖L∞(Ω) 6 ‖c

k+1/2
h,m ‖L∞(Ω) 6 ‖ckh,m‖L∞(Ω),

and at the continuous level

‖ch,m(t, ·)‖L∞(Ω), ‖c̃h,m(t, ·)‖L∞(Ω) 6 ‖c0‖L∞(Ω) ∀ t ≥ 0.

Moreover,

‖ρh,m(t, ·)‖∞, ‖ρ̃h,m(t, ·)‖∞ 6 1

and there exists cT ≡ cT (‖c0‖L∞), CT ≡ CT (‖c0‖L∞) > 0 such that

(1− cTh)ρ
k+1/2
h,m (x) 6 ρk+1

h,m(x) 6 (1 + CTh)ρ
k+1/2
h,m (x) a.e. in Ω.

(1− h)c
k+1/2
h,m (x) 6 ck+1

h,m(x) 6 c
k+1/2
h,m (x) a.e. in Ω. (6.6)

Proof. The proof of the estimates on ch,m and c̃h,m is obvious because one step of Wasserstein gradient flow with

the Boltzmann entropy decreases the L∞-norm in (6.2) (see [1, 34]), and, because the product
√
ck+1
h,mρ

k+1/2
h,m is

nonnegative in (6.5), the L∞-norm is also nonincreasing during the Fischer-Rao step. The proof for ρh,m and ρ̃h,m

is the same as in Lemma 5.2. Using the fact that ‖ρ̃h,m(t, ·)‖∞ 6 1, we see that the term Φ(pk+1
h,m , c

k+1/2
h,m ) :=

(1 − pk+1
h,m)(c

k+1/2
h,m + c1) − c2 in (6.4) is bounded in L∞ uniformly in k. This allows to argue exactly as in

Lemma 3.4 to retrieve the estimate (6.6) and concludes the proof.

With these bounds it is easy to prove as in Proposition 3.6 that

Fm(ρk+1
h,m) 6 Fm(ρ

k+1/2
h,m ) + CTh,

E1,m(ρ
k+1/2
h,m |ck+1/2

h,m )− E1,m(ρk+1
h,m |c

k+1/2
h,m ) 6 CTh,

H(ck+1
h,m) 6 H(c

k+1/2
h,m ) + CTh,

E2(c
k+1/2
h,m |ρk+1/2

h,m )− E2(ck+1
h,m |ρ

k+1/2
h,m ) 6 CTh,

.



30 T. GALLOUËT ET AL.

for some CT independent of m. Then we obtain the usual 1
2 -Hölder estimates in time with respect to the WFR

distance, which in turn implies that ρh,m, ρ̃h,m converge to some ρ ∈ L∞([0, T ], L1(Ω)) and ch,m, c̃h,m converge
to some c ∈ L∞([0, T ], L1(Ω)) pointwise in time with respect to WFR, see (3.21), Proposition 3.7, and (3.23) for
details.

As before we need to improve the convergence in order to pass to the limit in the nonlinear terms. For ρh,m
and ρ̃h,m, this follows from

Lemma 6.3. For all T > 0, if ρ0, c0 ∈ BV (Ω),

sup
t∈[0,T ]

{
‖ρh,m(t, ·)‖BV (Ω) + ‖ch,m(t, ·)‖BV (Ω)

}
6 eCTT (‖ρ0‖BV (Ω) + ‖c0‖BV (Ω))

sup
t∈[0,T ]

{
‖ρ̃h,m(t, ·)‖BV (Ω) + ‖c̃h,m(t, ·)‖BV (Ω)

}
6 eCTT (‖ρ0‖BV (Ω) + ‖c0‖BV (Ω)).

Proof. The argument is a generalization of Lemma 5.4, see Remark 5.1 from [18]. First, the BV -norm is
nonincreasing during the Wasserstein step, Theorem 1.1 from [14],

‖ρk+1/2
h,m ‖BV (Ω) 6 ‖ρkh,m‖BV (Ω) and ‖ck+1/2

h,m ‖BV (Ω) 6 ‖ckh,m‖BV (Ω).

Arguing as in Lemma 5.4, we observe that, inside supp ρ
k+1/2
h,m = supp ρk+1

h,m , the minimizer ρ = ρk+1
h,m(x) is the

unique positive solution of f(ρ, ρ
k+1/2
h,m (x), c

k+1/2
h,m (x)) = 0, with

f(ρ, µ, c) =
√
ρ

(
1− h

2

((
1− m

m− 1
ρm−1

)
(c+ c1)− c2

))
−√µ.

For µ > 0 the implicit function theorem gives as before a C1 map R such that f(ρ, µ, c) = 0 ⇔ ρ = R(µ, c).
An easy algebraic computation and (6.6) then give 0 < ∂µR(µ, c) 6 (1 + CTh) and |∂cR(µ, c)| 6 CTh for some
constant CT > 0 independent of h,m, k. This implies that

‖ρk+1
h,m‖BV (Ω) 6 (1 + CTh)‖ρk+1/2

h,m ‖BV (Ω) + CTh‖ck+1/2
h,m ‖BV (Ω)

6 (1 + CTh)‖ρkh,m‖BV (Ω) + CTh‖ckh,m‖BV (Ω).

The same argument shows that

‖ck+1
h,m‖BV (Ω) 6 (1 + CTh)‖ckh,m‖BV (Ω) + CTh‖ρkh,m‖BV (Ω),

and a simple induction allows to conclude.

Proposition 6.4. Up to extraction of a discrete sequence h→ 0,m→ +∞,

ρh,m, ρ̃h,m → ρ strongly in L1(QT )

ph,m ⇀ p and p̃h,m ⇀ p̃ weakly in all Lq(QT )

for all T > 0. If in addition mh→ 0 then p = p̃ ∈ L2((0, T ), H1(Ω)) and (ρ, p) satisfies

0 6 ρ, p 6 1 and p(1− ρ) = 0 a.e. in QT .

Proof. The argument is the same as for Proposition 5.6, Lemmas 5.7, and Lemma 5.8.
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In order to conclude the proof of Theorem 6.1 we only need to check that ρ, p, c satisfy the weak formulation
of (6.1): the strong convergence of ρh,m, ch,m and the weak convergence of ph,m are enough to take the limit in
the nonlinear terms as in Section 5.2, and we omit the details.
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