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The aim of this Note is twofold. In the first step we study the Witten deformation for
stratified spaces X and radial Morse functions on them and prove a spectral gap theorem
for the Witten Laplacian. In the second step we focus on spaces with isolated conic
singularities, where we construct a geometric complex associated to the Morse function
and give two comparison results.
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r é s u m é

Cette Note a deux buts : Dans une première partie on étend la déformation de Witten
au cas d’un espace stratifié X muni de fonctions appelées fonctions de Morse radiales.
On démontre le théorème du trou spectral pour le laplacien de Witten. Dans la deuxième
partie, on se place dans la situation d’un espace à singularités isolées et on construit un
complexe géométrique que l’on compare à celui des petites valeurs propres.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Let X be a compact oriented stratified pseudomanifold of dim X = n and let g be a metric on X as in [2] (pp. 223–226).
We refer the reader to [2] for more details and only recall from this definition the most relevant features, namely: X is
equipped with a filtration X = Xn ⊃ Xn−1 = Xn−2 ⊃ Xn−3 ⊃ · · · ⊃ X1 ⊃ X0 of X by closed subsets X j such that X( j) :=
X j \ X j−1 are smooth manifolds of dimension j (if not empty), Xn−1 = Xn−2 and X(n) is dense in X . Moreover for each
p ∈ X( j) , there exists an open neighbourhood (U p, g) in X quasi-isometric to (R j × cL p, g

R j + dr2 + r2 gLp ), where g
R j is a

Riemannian metric on R
j , L p is the link of the stratum X( j) , cL p = L p ×R�0/∼ is the cone over L p , r is the radial coordinate

and gLp is a metric on the stratified space L p . This type of iterated conic metrics has first been studied by Cheeger (see [5]);
so-called metrics on a stratified space “associated with a tuple c = (c2, . . . , cn)” appear in [2] and [9] (p. 345). The metrics
considered in the present article are precisely “metrics associated with c = (2, . . . ,2)” in the terminology of [2] and [9].

Definition 1. We call a continuous function f : X →R a radial Morse function if the following conditions are satisfied:

(a) For each j, the restriction f |X( j) to the stratum X( j) is a smooth Morse function. We denote by Critk( f |X( j) ) the set of
critical points of index k;
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(b) For each point p ∈ Critk( f |X( j) ) there exists an open neighbourhood U p of p in X as well as local coordinates x1, . . . , x j

on X( j) ∩ U p such that one can write f = f (p)+ 1
2 (−x2

1 −· · ·− x2
k + x2

k+1 +· · ·+ x2
j − r2), where r is the radial coordinate;

(c) The gradient ∇ f on X(n) is bounded.

The Witten deformation on singular spaces has been studied by the author already in previous articles (see e.g. [8]).
The Morse functions considered there were called admissible Morse functions and were inspired from the stratified Morse
theory of Goresky and MacPherson [7]. In the context treated in these notes we are however able to prove stronger results,
in particular the comparison theorems (Theorem 5 and Theorem 6) were out of reach in the setting of [8].

2. The Witten deformation and the spectral gap theorem

Let (Ω∗
0 (X(n)),d) be the de Rham complex of smooth forms, compactly supported outside the singular set Xn−2 of X . Let

us denote by 〈 , 〉 the L2-metric on Ω∗
0 (X(n)) induced from the metric g . Let (C,dmax, 〈 , 〉) be the maximal extension of the

de Rham complex into a Hilbert complex, with C i := dom(di,max). The L2-cohomology of X is defined as the cohomology of
the Hilbert complex (C,dmax, 〈 , 〉), H∗

(2)(X) := H∗((C,dmax, 〈 , 〉)). Throughout this article the language of Hilbert complexes
as introduced in [3] is used. Let us however mention that the choice of the maximal extension dmax corresponds to the
choice of an ideal boundary condition in the sense of Cheeger (see [4]). In particular, if X is an odd dimensional space with
isolated singularities, the choice of dmax corresponds to the choice of the ideal boundary condition Va = H [n/2](L p) in [4].
Recall from [5,9] that integration yields an isomorphism Hi

(2)(X(n)) � Hom(I H
m
i (X),R), where by I H

m
i (X) we denote the

intersection homology of X with lower middle perversity m. Since the intersection homology of a compact stratified space
is known to be finitely generated (see [6, Section 3.2]) we deduce, using the general theory of Hilbert complexes (see
Theorem 2.4 in [3]), that the complex (C,dmax, 〈 , 〉) is a Fredholm complex and that therefore 0 /∈ specess(�), where � is
the Laplacian associated to the Hilbert complex (C,dmax, 〈 , 〉).

The Witten deformation (see [10]) generalised to this situation consists in deforming the complex of L2-forms using a
radial Morse function f on X : Let us denote by dt := e−t f det f the deformed differential acting on compactly supported
forms Ω∗

0 (X(n)). The maximal extension of the complex (Ω∗
0 (X(n)),dt , 〈 , 〉), denoted by (Ct ,dt,max, 〈 , 〉), is also a Fredholm

complex, which computes the L2-cohomology of X . The Laplace operator associated to the Hilbert complex (Ct ,dt,max, 〈 , 〉),
�t := (dt,max + δt,min)2, is called the Witten Laplacian. It is a non-negative operator with 0 /∈ specess�t .

Let us denote by ci( f |X(n)
) the number of critical points of f of index i in the top stratum and by

ci( f ) := ci( f |X(n)
) +

∑
p∈Xn−2

mi
p,

where the contribution of a critical point p ∈ Xn−2 of index k is given by mi
p := dim I H

m
i−k(cL p, L p). As in the smooth

situation we get as main result a spectral gap theorem for the Witten Laplacian:

Theorem 2. Let X be a stratified space as in the introduction and let f : X → R be a radial Morse function on X. Then there exist
constants C1, C2, C3 > 0 and t0 > 0 depending on X and f such that for any t > t0 , spec(�t) ∩ (C1e−C2t , C3t) = ∅. Let us denote by
(St ,dt,max, 〈 , 〉) the subcomplex of (Ct ,dt,max, 〈 , 〉) generated by eigenforms to small eigenvalues, then dimS i

t = ci( f ).

As usual, as a corollary of the above spectral gap theorem one gets corresponding Morse inequalities for the L2-
cohomology of X .

As in the smooth situation the main step for the proof of the spectral gap theorem is to study the local model operator
for the Witten Laplacian near critical points of f : Let p ∈ X(0) , then the local model operator Dt,p is an operator on the
infinite cone cL p equipped with the Morse function f = f (p) − r2/2. The boundary conditions near the cone point are
those inherited from the Witten Laplacian. Let Hi(L p) be the space of harmonic i-forms on the link, i.e. forms in ker(�Lp ),
where �Lp is the Laplacian associated to the Hilbert complex of L2-forms on the stratified space L p . Let Ai := {ηi

p,l | l =
1, . . . ,dimHi(L p)} be an orthonormal basis of Hi(L p).

Proposition 3. Let p ∈ X(0) . There exists a constant c > 0 such that spec(Dt,p) ⊂ {0} ∪ [ct,∞) and

ker
(
D

(i)
t,p

) = span
{
(t/π)i/2−n/4

√
vol

(
S2(i−1)−n+1

)(
r−n+1+2(i−1)e−tr2/2ηi−1

p,l ∧ dr
) ∣∣ ηi−1

p,l ∈ Ai−1
}

(1)

for i � n/2 + 1 and 0 else. Moreover, if p is an isolated singularity, Dt,p has discrete spectrum.

With other words, the above proposition shows that, for p ∈ X(0) , the kernel of the local model operator satisfies

ker(D(i)
t,p) � Hom(I H

m
i (cL p, L p),R). For p ∈ Critk( f X( j) ) one gets the local spectral gap theorem, by writing the local model

operator as Dt,p =D
‖
t,p +D

⊥
t,p , where D

⊥
t,p is the operator studied above and D

‖
t,p is the well-known model Witten Laplacian

for a smooth critical Morse point of index k on R
j [10].
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3. The geometric complex and the comparison theorems

From now on we will assume that X is a space with isolated singularities, Sing(X) = X(0) . We moreover restrict to radial
Morse functions which satisfy the following additional conditions: (i) Let U p � c2L p := L p ×[0,2)/∼ be a neighbourhood of
p ∈ Sing(X), then Crit( f |U p\{p}) ⊂ L p × {1} and the direction normal to the link is stable. (ii) L p × {1} is an invariant set for
the negative gradient flow. (iii) The pair ( f , g) is Morse–Smale.

It is not difficult to see that such a function always exists on X . One can then prove that X has a decomposition into
unstable cells X = ⋃

p∈Crit( f ) W u(p). Let p ∈ Sing(X). For this special choice of Morse function we have moreover that the
link L p has a decomposition into the unstable cells of critical points of f in Crit( f )∩(L p ×{1}). Note that this decomposition
is in the same time the unstable cell decomposition of L p with respect to the Morse function hp := f |Lp×{1} : L p × {1} �
L p →R. Therefore we can refine the unstable cell decomposition of X into

X =
( ⋃

p∈Crit( f |X\Sing(X))

W u(p)

)
∪

( ⋃
p∈Sing(X)

( ⋃
q∈Crit(hp)

cW u(q)

))
.

Let us choose orientations on all cells of this decomposition. We can then define the complex (T∗, ∂∗) generated by all cells
of the decomposition, where the boundary operator ∂ is given by the geometric boundary.

Let us denote by (C u
Lp ,∗, ∂Lp ,∗) the Morse–Thom–Smale complex of unstable cells for the smooth Morse function hp on

the link L p . Note that, by condition (ii) obviously (C u
Lp ,∗, ∂Lp ,∗) is a subcomplex of (T∗, ∂∗).

For ξ an (n − i − 1)-form on L p , denote

τp(ξ) :=
∑

q∈Criti(hp)

( ∫
W s

L p
(q)

ξ

)
· [W u

L p
(q)

]
, (2)

where W s/u
Lp

(q) denotes the stable/unstable manifold w.r.t. hp : L p → R. Recall that, in view of condition (i), one has that

W u
Lp

(q) = W u(q). Using smooth Morse theory for the Morse function hp : L p → R on the link L p one can check that, for ξ

a closed (n − i − 1)-form and ζ an (n − i − 2)-form

∂τp(ξ) = 0 and τp(ξ + dζ ) = τp(ξ) ± ∂τp(ζ ). (3)

Moreover, the current ±τp(ξ) is homologous to the regular current ξ . Choose representatives {ξ i
p,l}l for a basis of

Hn−1−i(L p). Denote τ i
p,l := τp(ξ i

p,l) and Bi
p := {τ i

p,l}l .

Definition 4. We denote by (C u∗ , ∂∗) the following subcomplex of (T∗, ∂∗):

C u
i :=

{⊕
x∈Criti( f ) R · [W u(x)] ⊕ ⊕

p∈Sing(X), τ i−1
p,l ∈Bi−1

p
R · [cτ i−1

p,l ] if i � n/2 + 1,⊕
x∈Criti( f ) R · [W u(x)] if i < n/2 + 1.

(4)

In view of (3), we have that ∂C u
i ⊂ C u

i−1. Note moreover that the complex defined above is obviously independent of the

choice of the basis of the cohomology Hn−1−i(L p) � Hn−1−i(L p) � Hi(L p), and moreover, in view of (3), is independent of
the chosen representatives {ξ i

p,l}l . For the comparison result, Theorem 5, we will from now on choose ξ i
p,l := ∗̃ηi

p,l , where

{ηi
p,l}l is the ONB-basis of harmonic i-forms on the link used in (1) and ∗̃ denotes the Hodge-∗-operator on the link L p .

Note that this means, that we have identified (via smooth Morse theory on the link) the cohomology of the link with the
cohomology of the (smooth) Morse–Thom–Smale complex (C u

Lp ,∗, ∂Lp ,∗) and that we equip the later with the metric induced

from the restriction of the L2-metric to the harmonic forms H∗(L p).
The complex (C u∗ , ∂∗) is a subcomplex of the complex of all allowed cells for the middle lower perversity, (T all∗ , ∂∗) ⊂

(T∗, ∂∗). One can show that (C u∗ , ∂∗) computes the intersection homology I H
m
∗ (X). The (densely defined) map P∞ :

(C,dmax) → Hom((C u∗ , ∂∗),R) given by integration is a map of chain complexes, inducing the canonical isomorphism be-
tween the intersection cohomology with middle lower perversity and the L2-cohomology of the space X .

Let p ∈ Critk( f |X\Sing(X)). Then dim ker(Dt,p) = 1 and a generator is ωp =
√

t
π

n/2
e−tr2/2 dx1 ∧ · · · ∧ dxk , where x1, . . . , xn

are local Morse coordinates. For p ∈ Sing(X) let {ωi
p,l} be the ONB-basis of ker(Di

t,p) defined in (1). Let χ be a cut-off
function and define the following forms on X{

Φp(t) := χωp(t)
∣∣ p ∈ Crit( f |X\Sing(X))

}
∪ {

Φ i (t) := χωi (t)
∣∣ p ∈ Sing(X), l = 1, . . . ,dimHi−1(Lp), i � n/2 + 1

}
.
p,l p,l
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Multiplication by et f induces an isomorphism from (St ,dt,max, 〈 , 〉) into a subcomplex (S,dmax, 〈 , 〉t) ⊂ (C,dmax, 〈 , 〉t),
where 〈 , 〉t denotes the twisted (by e−2t f ) L2-metric. We denote by P [0,1]

t : Ct → St the orthogonal projection. Define et :
Hom((C u∗ , ∂∗),R) → (S,dmax, 〈 , 〉t), [W u(p)]∗ → et f P [0,1]

t Φp(t), [cτp,l]∗ �→ et f P [0,1]
t Φp,l(t). (Note that, with the particular

choice for the ξ ’s done above, the metric on the geometric complex has been fixed such that et is, up to a term of order
O(e−ct), an isometry.) Let us denote by P∞,t : (S,dmax, 〈 , 〉t) → Hom((C u∗ , ∂∗),R) the linear map given by integration. We
denote by F ∈ End(Hom(C u

k ,R)) the homomorphism which acts on [W u(p)]∗ and on [cτ i
p,l]∗ by multiplication with f (p).

With I ∈ End(Hom(C u
i ,R)) we denote multiplication by i.

Theorem 5. There exists c > 0 such that for t → ∞, we have P∞,t ◦ et = etF ( π
t )I/2−n/4(A + O(e−ct)), where A is the diagonal

matrix with entries

Aσ =
{

1 for σ = [W u(p)]∗, p ∈ Crit( f |X\Sing(X)),

1/
√

vol(S2(i−1)−n+1) for σ = [cτ i−1
p,l ]∗, p ∈ Sing(X), l ∈ {1, . . . ,dimHi−1(Lp)}. (5)

In particular for large t the linear map of vector spaces P∞,t is an isomorphism.

Theorem 6. With the notations as in Theorem 5 we get

e−1
t ◦ d ◦ et =

√
t

π

(
A−1 + O

(
e−ct))e−tF∂∗etF (

A+ O
(
e−ct)). (6)

To prove Theorem 5 and Theorem 6 one generalises the proof of Theorems 6.11 and 6.12 in [1].
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