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Abstract

We show that a stably ergodic diffeomorphism can be C1 approximated by a diffeomorphism having stably non-zero Lyapunov
exponents. To cite this article: J. Bochi et al., C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une remarque sur les difféomorphismes conservatifs. On montre qu’un difféomorphisme stablement ergodique peut être C1

approché par un difféomorphisme ayant des exposants de Lyapunov stablement non-nuls. Pour citer cet article : J. Bochi et al.,
C. R. Acad. Sci. Paris, Ser. I 342 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Two central notions in Dynamical Systems are ergodicity and hyperbolicity. In many works showing that certain
systems are ergodic, some kind of hyperbolicity (e.g. uniform, non-uniform or partial) is a main ingredient in the
proof. In this note the converse direction is investigated.

Let M be a compact manifold of dimension d � 2, and let μ be a volume measure in M . Take α > 0 and let
Diff1+α

μ (M) be the set of μ-preserving C1+α diffeomorphisms, endowed with the C1 topology. Let SE ⊂ Diff1+α
μ (M)

be the set of stably ergodic diffeomorphisms (i.e., the set of diffeomorphisms such that every sufficiently C1-close
C1+α conservative diffeomorphism is ergodic).

Our result answers positively a question of [8]:

Theorem 1. There is an open and dense set R ⊂ SE such that if f ∈ R then f is non-uniformly hyperbolic, that is,
all Lyapunov exponents of f are non-zero. Moreover, every f ∈ R admits a dominated splitting T M = E+ ⊕ E−,
where E+ (resp. E−) coincides a.e. with the sum of the Oseledets spaces corresponding to positive (resp. negative)
Lyapunov exponents.
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Remark 1. The set SE contains all Anosov diffeomorphisms, and many partially hyperbolic ones – see e.g. [10]. It is
not true that every stably ergodic diffeomorphism can be approximated by a partially hyperbolic system, see [13,7].

Remark 2. Let SE ′ be the set of diffeomorphisms f ∈ SE such that every power f k , k � 2, is ergodic. Then every f

in SE ′ ∩R is Bernoulli. This follows from Theorem 1 and Pesin theory (see Theorem 5.10 in [11]).

The proof of Theorem 1 has three steps:

1. A stably ergodic (or stably transitive) diffeomorphism f must have a dominated splitting. This is true because if
it did not, [6] permits us to perturb f and create a periodic point whose derivative is the identity. Then, using the
Pasting lemma from [1] (for which C1+α regularity is an essential hypothesis), one breaks transitivity.

2. A result of [5] gives a perturbation of f such that the sum of the Lyapunov exponents ‘inside’ each of the bundles
of the (finest) dominated splitting is non-zero.

3. Using a result of [4], we find another perturbation such that the Lyapunov exponents in each of the bundles
become almost equal. (If we attempted to make the exponents exactly equal, we could not guarantee that the
perturbation is C1+α .) Since the sum of the exponents in each bundle varies continuously, we conclude there are
no zero exponents.

Remark 3. The perturbation techniques of [5] and [4] in fact don’t assume ergodicity, but are only able to control the
integrated Lyapunov exponents. That is why we have to assume stable ergodicity (in place of stable transitivity) in
Theorem 1.

Remark 4. Theorem 1 is stated in C1 topology because in higher topologies the technology from [6,5], and [4] is not
available. The C1+α diffeomorphisms come from [1]. To get our result in C1 topology (which perhaps would be more
natural) one has to solve the following problem: any diffeomorphism having a periodic point tangent to the identity
may be C1-approximated by a non-transitive diffeomorphism.

Remark 5. Some ideas of the present proof were already present in [9].

Let us recall briefly the definition and some properties of dominated splittings, see [6] for details. Let f ∈
Diff1

μ(M).
A Df -invariant splitting T M = E1 ⊕ · · · ⊕ Ek , with k � 2, is called a dominated splitting (over M) if there are

constants c, τ > 0 such that

‖Df n(x) · vj‖
‖Df n(x) · vi‖ < c e−τn (1)

for all x ∈ M , all n � 1, and all unit vectors vi ∈ Ei(x) and vj ∈ Ej(x), provided i < j . (One can also define in the
same way a dominated splitting over an f -invariant set.)

A dominated splitting is always continuous, that is, the spaces Ei(x) depend continuously on x. Also, a dominated
splitting persists under C1-perturbations of the map. More precisely, if g is sufficiently close to f , then g has a
dominated splitting E1

g ⊕· · ·⊕Ek
g , called the continuation, with dimEi

g = dimEi and which coincides with the given
one when g = f . Moreover, Ei

g(x) depends continuously on g (and x).

A dominated splitting E1 ⊕ · · · ⊕ Ek is called the finest dominated splitting if there is no dominated splitting
defined over all M with more than k bundles. If some dominated splitting exists, then the finest dominated splitting
exists, is unique, and refines every dominated splitting.

The continuation of the finest dominated splitting is not necessarily the finest dominated splitting of the perturbed
diffeomorphism. We call a dominated splitting for f ∈ Diff1+α

μ (M) stably finest if it has a continuation which is
the finest dominated splitting of every sufficiently C1-close diffeomorphism of class C1+α . It is easy to see that
diffeomorphisms with stably finest dominated splittings are (open and) dense among C1+α diffeomorphisms with a
dominated splitting.

Let λ1(f, x) � · · · � λd(f, x) be the Lyapunov exponents of f (counted with multiplicity), defined for almost all x.
(See e.g. [2] for definition and basic properties of Lyapunov exponents.) We write also
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λi(f ) =
∫

M

λi(f, x)dμ(x). (2)

Assume f has a dominated splitting E1 ⊕ · · · ⊕ Ek . Then the Oseledets splitting is a measurable refinement of it.
For simplicity of writing, we will say the exponent λp belongs to the bundle Ei if d1 +· · ·+di−1 < p � d1 +· · ·+di ,
where di = dimEi . By (1), there is an uniform gap between Lyapunov exponents that belong to different bundles.

We now give the proof of Theorem 1 in detail. Let R be the set of f ∈ SE such that f has a dominated splitting
E+ ⊕ E− with λp(f ) > 0 > λp+1(f ), where p = dimE+. First we see that R is an open set. Indeed, given f ∈ R,
there is an open set U � f where the dominated splitting has a continuation, say E+

g ⊕ E−
g for g ∈ U . As λp+1 is the

top exponent in E−, we can write

λp+1(g) = inf
n∈N

1

n

∫

M

log
∥∥Dgn(x)

∣∣
E−

g (x)

∥∥dμ(x). (3)

Therefore g ∈ U 	→ λp+1(g) is an upper semicontinuous function. Accordingly, λp+1(g) < 0 for all g sufficiently
close to f . And analogously for λp , showing that R is open.

Next we show that R is dense in SE . Take f ∈ Diff1+α
μ (M) a stably ergodic diffeomorphism. As mentioned, this

implies that f has a dominated splitting, see [1]. As remarked above, we can assume, after a perturbation of f if
necessary, that f has a stably finest dominated splitting.

For all g sufficiently close to f , we denote by E1
g ⊕ · · · ⊕ Ek

g the finest dominated splitting of g. Let us indicate
by Ji(g) the sum of all Lyapunov exponents λp(g) that belong to Ei

g . Then we can also write

Ji(g) =
∫

M

log
∣∣detDg|Ei

g

∣∣dμ. (4)

In particular, Ji(·) is a continuous function in the neighborhood of f .
By the theorem from [5], up to C1-perturbing f , we may assume Ji(f ) �= 0 for all i. (It is important to notice that

the perturbed map can be taken of class C1+α since so is the original f .)
In the last step we need the following proposition:

Proposition 1. Let f ∈ SE . Assume that f has a stably finest dominated splitting E1
f ⊕ · · · ⊕ Ek

f . Then for all ε > 0

there exists a perturbation g ∈ Diff1+α
μ (M) of f such that if the Lyapunov exponents λp(g), λq(g) belong to the same

bundle Ei
g , then |λp(g) − λq(g)| < ε.

Applying the proposition, we find g close to f such that all λp(g) in Ei
g are close to Ji(g)/dimEi and therefore

are non-zero. This finishes the proof of Theorem 1, modulo giving the:

Proof of Proposition 1. For f ∈ Diff1+α
μ (M) and 1 � p � d , let us write Λp(f ) = λ1(f )+· · ·+λp(f ). Then Λp(·)

is an upper semicontinuous function (see [2] or [4]). Since Diff1+α
μ (M) is not a complete metric space, we cannot

deduce that the set of continuity points of Λp(·) is dense. Nevertheless, for every ε > 0, the set

Dε,p = {
f ∈ Diff1+α

μ (M); ∃U � f open s.t.
∣∣Λp(g1) − Λp(g2)

∣∣ < ε ∀g1, g2 ∈ U
}

is (open and) dense in Diff1+α
μ (M). (This is an easy exercise using Λp � 0.) In particular, Dε = ⋂d

p=1 Dε,p is dense.

Now let f ∈ SE have a stably finest dominated spitting into k bundles. Fix ε > 0 and take g ∈ Dε very C1-close
to f . We claim that g has the desired properties: for any i = 1, . . . , k, if λp , λq belong to Ei

g then λp , λq are close.
Clearly, it suffices to consider the case q = p + 1.

Consider the set Dp(g) of points x ∈ M such that there exists a dominated splitting To(g,x)M = F ⊕ G over
the closure of the g-orbit of x, with dimF = p. Notice there is no dominated splitting T M = F ⊕ G (over M)
with dimF = p, because λp and λp+1 belong to the same bundle of the finest dominated splitting of g. Thus no
x ∈ Dp(g) can have a dense orbit. In particular, Dp(g) has zero measure. By Proposition 4.17 from [4], there exists a
C1-perturbation h of g such that
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Λp(h) < Λp(g) −
∫

M\Dp(g)

λp(g, x) − λp+1(g, x)

2
dμ(x) + ε

= Λp(g) − λp(g) − λp+1(g)

2
+ ε.

(In the notation of [4], Γp(g,∞) = M \Dp(g).) Because g is C1+α , the map h given by the proof of Proposition 4.17
in [4] is C1+α as well. Since g ∈ Dε,p and h is close to g, we have |Λp(h) − Λp(g)| < ε and accordingly λp(g) −
λp+1(g) < 4ε. �

We close this note with some questions about what can be said in the absence of stable ergodicity. The following
question (similar to one in [12]) is likely to have a positive answer:

Problem 1. Is it true that for the generic f ∈ Diff1
μ(M), either all Lyapunov exponents are zero at almost every point,

or f is non-uniformly hyperbolic (i.e., all Lyapunov exponents are non-zero almost everywhere)?

Notice this is true if dimM = 2, by [3] (later extended in [4]). Using the main result of the papers [4] and [5], it is
not difficult to show that the dichotomy of Problem 1 holds true modulo an eventual positive answer to the following
well known conjecture of A. Katok:

Problem 2. Is it true that the generic map f ∈ Diff1
μ(M) is ergodic?
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