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Abstract

We study an extremal problem concerning the supremum of the Fourier transforms (characteristic functions) of probability
distributions under the constraint that the Fourier transforms vanish at a fixed point. This problem arises from the investigation
of the survival amplitudes of quantum states driven by Schrddinger dynamics, and has general and curious implications for the
evolution pictures of quantum systeriis.cite thisarticle: S. Luo, Z. Zhang, C. R. Acad. Sci. Paris, Ser. | 341 (2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Un probléme extrémal pour transformée de Fourier de probabilité. On résout un probléme extrémal concernant des
fonctions caractéristiques soumises a la condition de s’annuler en un point fixé. L'origine du probléme est I'étude de I'amplitude
de survie d'un état quantique dans la dynamique de Schrédinger, et la solution exprime un phénomeéne curieux dans I'évolution

des systemes quantiqu®sur citer cet article: S. Luo, Z. Zhang, C. R. Acad. Sci. Paris, Ser. | 341 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

For any probability distribution functiof (that is, F' is a non-decreasing, right continuous function”Ryrwith
liM;o oo F(t) =0, lim;_, o F(t) =1), letp(t) = ffooo e Y dF (x) be its Fourier transform. In probability theory,
¢ is usually called the characteristic function®f4]. Let @ be the set of all characteristic functions, and for any
fixedT > 0, let®dy ={¢ € : ¢(T) = 0} be the set of all characteristic functions which vanish-atT. We want
to address the following, physically motivated, problem:

For ¢ € [0, T], what is the supremum of |¢ (¢)| when ¢ variesin @7 ? That is, we want to deter mine the function
M7 (t) defined by the extremal problem M7 (1) = SURyeq, |9 (1)1, 1 € [0, T1.

In quantum mechanicg,(r) may be interpreted as the survival amplitude (whose absolute square is the survival
probability or decay law) of a quantum state with energy distributiérixd, and is useful in characterizing the
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evolution speed of quantum states and time-energy uncertainty relations [3,5,6]. The condifipa: 0 means
that the quantum state evolves into an orthogonal state atZinfieis natural to ask what possible values can the
survival amplitude take at some earlier time

Before we attack the above problem, let us first consider some examples in order to appreciate the intricacy of
this problem.

For any positive, relatively prime integers and n satisfying 2< m < n, putd = %27” and consider the
characteristic functiogh () of a uniform lattice distribution supported ¢n-jd: j=1,2,...,m}:

_ 1
W)‘m;é :

Clearly,¢(T) = 0 and|¢ (2 /d)| = 1, that is|¢ (1)| = 1 whent = % T. Consequently, we know that'r (1) = 1
foranyt € {*:T: 2<m <n, m andn are relatively primg The above set consists of all rational multiples7of
in (0, T) except those with numerator 1.
Based on the above example, it is tempting to guessihat) = 1 for anyr € [0, T') since it seems that we
have such a large freedom to vary the characteristic functions. However, there are some curious exceptions whict
are of number-theoretic origin. In fact, by use of the inequality (see Feller [1], page 527)

< 5 (1+]p @)
which holds for any characteristic functigr(z), and by considering (r) = cosZx, we readily conclude that
MT<2—Tk> :cos%, k=12,....
Our main result may be stated as follows.
Theorem 1.1. Put % = w, then M7 (t) = cos5 if w isaninteger, and M7 (r) = 1 otherwise.
It is interesting to compare our problem with a similar one proposed by Fryntov [2]. Specificadly; et @7

be the subset ob7 consisting of all characteristic functions which vanish on the intdifabo). Let M7 o(t) =
SURsea, o 19 (D)1, 1 € (0, T). Then apparentlyMy o(r) < Mr(t). Fryntov proved that

M o(t) =CO0S il Vit e r_r 2,3
= R Kl , N=4,9,....
T.0 n+1 n n-—1

2. Determination of My (t) when % isan integer

In this section, we show tha'7 (¢) = cosg when% = w is an integer. This is a consequence of the following
elementary facts.

Lemma?2.l. Let qﬁ}e C &7 bethe set consisting of all real-valued characteristic functions ¢ (¢) suchthat ¢ (T) = 0.
Thenfor anyt € (0, T),
Mr(t) = sup ¢(1).
pecdR
Proof. Clearly,

Mr(t)= sup|g ()| > sup ¢ ().
pedr pedk
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On the other hand, for any characteristic funcigam), and for anyy € R, the function Rég¥'¢ (1)) (real part) is
areal-valued characteristic function, and moreover, for any fixétere always existg (which may depend or)
such that B’¢(¢) is real and non-negative, and this in turn implies that

Mr(t)= suplp(®)| < supg(). O
pedr peok

Lemma2.2. For any ¢ € R and any positive integer n, and for any real-valued characteristic function ¢ (¢), it holds
that

T
n .

Moreover, for any fixed T > 0, the above inequality can become an equality at t = % by taking ¢ (1) = cosZt
which satisfies ¢ (T) = 0.

@) < (t)lsinn cos
o) <p(n Y, Z‘F

Proof. The desired inequality follows from integrating the following inequality with respecttdgtte probability
distribution of¢ (1)):

cost 1sin 7 cosnt <cosn teR
n- 2 S o '
To prove this latter inequality, puft(z) = cost — %sin% cosnt. For fixedn, we want to find the maximum value
of f(¢r) whent changes inR. Clearly, f(¢) is a bounded, smooth function with period 2t suffices to restrict
t to [0, 27]. The maximum value off can only occur at stationary points (that is, the zero pointg’¢f)) of

f or at the end points = 0, 27. Now by putting f'(t) = —sint + sinZ_ sinnt = 0, we obtain the solutions
t=0,m, gn, Ty 20 — % forn even, and =0, r, 2n, 5., m — 5., m + 5., 2w — 5. for n odd. Evaluatingf (¢) at
these points, one readily concludes that pag)f (r) = cosZ.. O

3. Determination of M7 (¢) when % isnot an integer

Forany%g@g%’andintegen}l,put
1 1 _ —cosd _2n7t+9
PL=P3=57 "cosp’ P?T1_cow’ T

Then clearly{p1, p2, p3} is a probability vector. Let (t) = 2?21 pje”fd be the characteristic function of the
lattice distribution supported ofy-jd: j = 1,2, 3} with probabilities{p;: j = 1,2, 3}. Itis easily verified that
¢£1T) =0and|¢(r)|=1foranyr = 22T, m=1,2,...,n. Noting % <6 < ¥, we conclude thab7 (1) =1
when

dm 4dm
re | a3l a1l |
n=11<m<n At At

We want to show that

T 4m 4m
/1= n=123..1= o,
(0. ]/{n n=123 } U [4n+3 A1 }

n=21,1<m<n

In fact, for any relatively prime integers andg satisfying 2< p < ¢, we can find a positive integérsuch that
p < 4k < 3p, and can also find positive integef8 < n’ such thatn’q — n’p = 1. Therefore, multiplying both
sides ofm’q —n’p =1 byk and putm = m'k, n =n'k, we havenqg = np + k which implies(4n + 1) p < 4mq <
(4n + 3)p. Thatis,
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p 4m 4m
—T e T, ——T|.
q dn+3 4n+1

In summary, we have shown that any rational muIti@lE of T with 2 < p < ¢ belongs to an interval of the form
[Aﬂ3 T, 4,‘1"_“:1 ]. However, the set consisting of all such rational multiples is denf iRi], we conclude that the
set[0, T1/{L: n=1,2,3,...} and the setU,>1. l<m<n[4n+3 4m_T] are identical. This in turn implies that

> An+1
Mz (t) = 1 for anyr € [0, T]/{’jj. n=123,..}.

4. Implicationsfor quantum evolutions

The characteristic function of a probability distribution has a physical interpretation as the survival amplitude
(whose absolute square is the survival probability) of a quantum state. Following the physicist’s terminology and
considering the evolution of an arbitrary initial quantum staté (represented by a normalized wave function)
driven by a time-independent energy observable (Hamiltontan)he evolving statéy;) is determined by the
Schrédinger equation

0
hEWz):HWt)s Vo) = 1Y),

wheref is the Planck constant divided by 2Formally, the solution is given biyy;) = e 1"H/% |y}, and the survival
amplitude at time is defined ag (1) = (¥ |y;) = (y|e "H/|y) 1t € R.
Now let{|E)} be the complete set of the energy eigenstates:

H|E)=E|E), (E'|E)=8(E' — E).

Let |¢) be expanded in the energy eigenstates/gs= [ 1(E)|E) dE, where the integration (and also all sub-
sequent integrations) is over the spectrumzafWhen the energy spectrum is discrete, all integrals should be
interpreted as discrete sums. TheW&/%|y) = [ e "E/") (E)|E) dE, and by the Parseval theorem,

Consequently, the survival amplitude is precisely the characteristic function of the state probability deBSify
in energy representation if we replacy ¢ /4. The conditionp (T') = 0 means that the initial sta¢') evolves into
an orthogonal state at= 7. Our result indicates then a restriction on the valueg @j for others. For example,
if the state|yr) will die atr = T (that is,¢ (T) = 0), then it can never revive (that ig(¢r) = 1) atr = % for any
integern, although it may revive at other instants.
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