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Abstract

In the framework of general negatively curved spaces, we present new superrigidity results and introduce new te
based on bounded cohomology. This applies to irreducible lattices, and more generally to cocycles, of products of
locally compact groups. Together with a new vanishing result for higher rank groups, this also generalizes and u
previously known results in that direction. The non-vanishing results provide a large class of examples for our results
equivalence rigidity (Monod and Shalom, Ann. of Math., in press). We prove the ‘toy-case’ of actions on trees.To cite this
article: N. Monod, Y. Shalom, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

La courbure strictement négative d’un point de vue cohomologique et superrigidité des cocycles. Nous proposons d
nouvelles méthodes cohomologiques pour établir des énoncés de superrigidité dans le cadre général des espaces
courbure strictement négative. Nos résultats s’appliquent aux réseaux irréductibles, ou plus généralement aux cocy
des produits de groupes localement compacts généraux. Avec le concours d’un nouveau théorème d’annulation, on s
généralise de la sorte tous les résultats qui allaient dans ce sens ; en outre, les énoncés de non annulation fournisse
classe d’exemples pour nos résultats en équivalence orbitale (Monod et Shalom, Ann. of Math., in press). Nous don
preuve dans le cas particulièrement simple des arbres.Pour citer cet article : N. Monod, Y. Shalom, C. R. Acad. Sci. Paris,
Ser. I 337 (2003).
 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

The following result associates a cohomological invariant to groupsΓ acting on any metric spaceX that is
negatively curvedin a very general sense. Recall thatΓ < Isom(X) is calledelementaryif it has bounded orbits
in X or if it preserves a point or a pair in the boundary at infinity∂X. WhenX has bounded geometry, this
equivalent to the amenability of the closure ofΓ in H .

E-mail addresses:monod@math.uchicago.edu (N. Monod), yeshalom@post.tau.ac.il (Y. Shalom).
1631-073X/$ – see front matter 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights
reserved.
doi:10.1016/j.crma.2003.10.002
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Theorem 1.1. LetH = Isom(X), whereX is one of the following: (i) Any properCAT(−1) space; (ii) Any Gromov-
hyperbolic graph of bounded valency; (iii) Any Gromov-hyperbolic proper geodesic metric space on whichH acts
cocompactly.

Then for any non-elementary countable subgroup(not necessarily closed) Γ <H , the spaceH2
b(Γ,L2(H)) is

non-zero.

(The complete proof of (i) will be found in [5]; the main additional ingredient needed for (ii) and (iii) is a
work with Mineyev [3].) We will show how this non-vanishing of H2

b (defined below) can be used for rigidi
results. On a different level, we propose the following class of groupsCreg as a cohomological notion of negati
curvature:

Creg := {
Γ : H2

b

(
Γ,
2(Γ )

) �= 0
}
.

Our work [6] on orbit/measure equivalence rigidity applies to this class. Theorem 1.1 implies:

Corollary 1.2. LetH be as above andΓ <H be any discrete non-elementary subgroup. ThenΓ ∈ Creg.

Locally finite trees yield a particular case of the above discussion. However, in view of Bass–Serre the
important to deal with general trees:

Theorem 1.3. LetΓ be a countable group with a non-elementary action on a simplicial tree. Denote byE the set
of edges, endowed with the correspondingΓ -action. ThenH2

b(Γ, 
2(E × E)) is non-zero.
In particular, if Γ is any free productΓ = A ∗B (with A �= 1 and|B| > 2) thenΓ ∈ Creg.

Corollary 1.4. There are2ℵ0 non-isomorphic countable groups inCreg and any countable group embeds into
group inCreg.

The cohomological invariant that we construct combines well with the product formula for bounded cohom
of [1,4]; using the general functorial machinery established in there (and its connection to Poisson bo
theory), we prove the cocycle superrigidity theorem below. In order to formulate it, we observe that a
generalization ofelementarityfrom actions to cocyclesα :G×Ω → H is the existence of a measurableα-invariant
map fromΩ to bounded subsets inX or to points or pairs in∂X. Further, whenG is a product

∏
j Gj , we call

its action onΩ irreducible if each subproductG′
i := ∏

j �=i Gj acts ergodically. For instance, ifΓ < G is a lattice,
then theG-action onΩ = G/Γ is irreducible if and only if the lattice is irreducible in the sense that it proj
densely in eachGi .

Theorem 1.5. Let G = G1 × · · · × Gn be any locally compactσ -compact group with an irreducible measu
preserving action on a standard probability spaceΩ . LetX be a space as in Theorem1.1andα :G × Ω → H be
a non-elementary measurable cocycle, whereH < Isom(X) is any closed subgroup.

Then there is a closed subgroupH ′ <H and a normal compact subgroupK ✁H ′ such thatα is cohomologous
to a cocycleα′ :G × Ω → H ′ whose composition with the natural mapH ′ → H ′/K yields a continuous
homomorphismG → H ′/K which factors through someGj .

Observe that ifX is, say, CAT(−1), then the existence ofH ′ andK simply amounts to saying thatα is equivalent
to a continuous homomorphism ofG upon possibly restricting to an invariant convex subspace ofX.

As usual, cocycle superrigidity implies superrigidity for homomorphisms. There again, the case of a
trees can also be addressed. In this Note, we shall indicate the proof of the following result, which can se
“toy case” illustrating the general line of [5] without raising any of the technical (and geometric) issues occ
with general spaces [3,5].

Theorem 1.6. Let G1, . . . ,Gn be locally compactσ -compact groups and letΓ < G = G1 × · · · × Gn be an
irreducible lattice acting non-elementarily on a simplicial tree. Then there is aΓ -invariant subtree on which th
Γ -action extends continuously to aG-action, factoring through someGj .
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In caseΓ is a cocompact lattice in a product of compactly generated groups (or when allGj are linear and
simple) this result was proved by Shalom in [7].

We turn now to a vanishing theorem generalizing [1, Theorem 21]:

Theorem 1.7. Let Γ < G = G(k) be a lattice, wherek is a local field andG is a connected almostk-simple
algebraic group defined overk with rankkG � 2. Let V be a separable dual isometric BanachΓ -module. Then
H2

b(Γ,V ) ∼= EΓ if k = R andπ1(G) is infinite, andH2
b(Γ,V ) = 0 in all other cases.

In particular, H2
b(Γ,−) vanishes for every unitaryΓ -representation without non-zero invariant vectors.

The latter pins down an important property of higher rank lattices in view of the following consequence
non-vanishing results:

Corollary 1.8. LetΓ be any countable group such thatH2
b(Γ,V ) = 0 for every unitaryΓ -representationV with

V Γ = 0. LetH be as in Theorem1.1. Then every homomorphismΓ → H is elementary.

Finally, we indicate some of the needed cohomological tools (for all the following, see [1,4]). LetG be a
locally compact group andV a separable dual isometric continuous BanachG-module. The (continuous) bounde
cohomology H•cb(G,V ) is defined by the complexCb(G

•+1,V )G of equivariant continuous bounded functio
with the usual homogeneous coboundary:d = ∑

(−1)jdj wheredj omits thej th variable. LetB be a standard
measure space with aG-action preserving the measure class; if the action in amenable in the sense of Zimm
then H•

cb(G,V ) is also realized by the complexL∞
alt(B

•+1,V )G of alternatingL∞ maps. CallB astrong boundary
(for G) if the G-action is amenable and in addition everyG-equivariant measurable mapB × B → V is constant
(for all V as above). It follows then that H2cb(G,V ) is the space of cocycles inL∞

alt(B
3,V )G. It is shown in [1,4]

that every compactly generatedG virtually admits a strong boundary; Kaimanovich later generalized this t
σ -compact locally compact groups [2].

Theorem 1.9 ([1,4]; see also [2]).LetG = G1 × · · · × Gn be any locally compactσ -compact group andV be as
above. Then there is a canonical isomorphismH2

cb(G,V ) ∼= ⊕
Hcb(Gi,V

G′
i ).

We shall give below a short proof – assuming the above functorial machinery (in [1], [4], Theorem
deduced from a general Hochschild–Serre spectral sequence). Let nowΓ < G be an irreducible lattice andW
be a separable dual isometric BanachΓ -module. Then one can defineWi ⊆ W to be the largest (possibly trivia
Γ -submodule on which theΓ -action extends to a continuousG-action factoring throughGi . Using cohomologica
induction and strong boundaries, in [1,4] the following superrigidity formula for bounded cohomology is de
from Theorem 1.9: H2b(Γ,W) = ⊕

H2
cb(Gi,Wi).

2. Selected proofs

LetT be a simplicial tree; for the applications to Theorems 1.3 and 1.6, there is no loss of generality in as
thatT is countable (as a graph). Let�T = T �∂T be the usual ray bordification. Fix a positive integern. We define a
mapα : �T × �T → 
∞(En) as follows. Letζ, ζ ′ ∈ �T . If the edgese1, . . . , en constitute a geodesic path contained
the geodesic[ζ, ζ ′], then we letα(ζ, ζ ′)(e1, . . . en) be±1 according to whether the path has the orientation indu
by [ζ, ζ ′] or the opposite orientation. In all other cases (in particular, if theei ’s do not constitute a geodesic pat
we setα(ζ, ζ ′)(e1, . . . en) = 0.

Define nowω : �T 3 → 
∞(En) by ω = dα. Observe that forn = 1 we haveω = 0 andα is a well known
1-cocycle. But for generaln, the situation is the following: wheneverζ , ζ ′, ζ ′′ are three distinct points of�T such
that each leg of the resulting tripod has length at leastn, there are exactly 6(n − 1) differentn-tuples of edges in
the support ofω(ζ, ζ ′, ζ ′′); this can be immediately checked by observing that a path gets canceled if an
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if it does not cross the centre of the tripod. It follows thatω yields by restriction a bounded measurable cocy
(∂T )3 → 
2(En) that is equivariant under the automorphisms ofT and that does not vanish on any triple of distin
points in∂T (whenn � 2, which we assume from now on).

Suppose now thatΓ is a countable group with a non-elementary action onT . LetB be a strong boundary forΓ .
If T were locally finite, a standard use of boundary theory would yield a measurable equivariant mapf :B → ∂T .
In the general case, a difficulty arises because∂T need not be compact. However, introducing aweaktopology
that does make�T (though not∂T ) compact, we still obtainf as above (a basis for this topology is given by
closure in�T of half-trees). The non-elementarity assumption implies thatf cannot range essentially in triples
non-distinct points, so thatω ◦ f 3 is a non-zero cocycleB3 → 
2(En). We conclude that H2b(Γ, 
2(En)) is non-
zero, proving the main claim of Theorem 1.3 whenn = 2. In the particular case of a free product, or more gener
when the action onEn is proper,
2(En) is a (possibly infinite) multiple of a subrepresentation of
2(Γ ). Using the
realization of H2

b(Γ,−) by cocycles on a strong boundary, one shows that this implies H2
b(Γ, 
2(Γ )) �= 0.

Assume now in addition that we are in the situation of Theorem 1.6. Then the superrigidity formula for bo
cohomology shows that for somei there is a non-zeroΓ -invariant subspaceWi ⊆ 
2(E×E) such that theΓ -action
on Wi extends continuously to aG-action factoring throughGi . Upon possibly passing to aΓ -invariant subtree
of T , it follows (see [7], p. 45) that theΓ -action onT extends similarly, as claimed.

We now indicate a short proof of Theorem 1.9 (provided the functorial machinery). We may for sim
assume thatG = G1 × G2. We denote by infi and resi the maps induced in cohomology by the natural m
G → Gi andGi → G. Let us show that

inf1 + inf2 : H2
cb

(
G1,V

G2
) ⊕ H2

cb

(
G2,V

G1
) −→ H2

cb(G,V ) (∗)

is an isomorphism (with inverse res1⊕ res2). As in usual cohomology, inner automorphisms act trivially in boun
cohomology; it follows that the restriction H•cb(G,V ) → H•

cb(G1,V ) ranges in H•cb(G1,V )G2. Realizing the latter
as a cocycle space on a strong boundary forG1, and since the conjugation action ofG2 onG1 is trivial, we see tha
H2

cb(G1,V )G2 = H2
cb(G1,V

G2) since there are no non-zero coboundaries. Given a classa in H2
cb(G,V ), consider

b = a − inf1res1(a)− inf2res2(a). By functoriality, resi (b) = 0 for bothi. LetBi be strong boundaries forGi ; then
B = B1 × B2 is a strong boundary forG. Thus the classb can be realized by an elementβ of L∞(B3,V )G and
res1 is induced by the inclusion mapL∞(B•,V )G → L∞(B•,V )Gi sinceB is alsoGi -amenable. Thus there
α1 in L∞(B2,V )G1 with dα1 = β . By Fubini,α1 yields a mapB2

2 → L∞(B2
1,V )G1 so thatα1, and hence alsoβ ,

cannot depend on theB1 variables; by symmetryβ is constant and hence trivial in cohomology. This shows tha(∗)
is surjective. Injectivity is apparent if one implements(∗) by the map

L∞
alt

(
B3

1,V
G2

)G1 ⊕ L∞
alt

(
B3

2,V
G1

)G2 −→ L∞
alt

(
B3,V

)G

induced by the factor mapsB → Bi .
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