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Abstract

In the framework of general negatively curved spaces, we present new superrigidity results and introduce new techniques
based on bounded cohomology. This applies to irreducible lattices, and more generally to cocycles, of products of arbitrary
locally compact groups. Together with a new vanishing result for higher rank groups, this also generalizes and unifies all
previously known results in that direction. The non-vanishing results provide a large class of examples for our results on orbit
equivalence rigidity (Monod and Shalom, Ann. of Math., in press). We prove the ‘toy-case’ of actions orTtre#s.this
article: N. Monod, Y. Shalom, C. R. Acad. Sci. Paris, Ser. | 337 (2003).
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Résumé

La courbure strictement négative d’un point de vue cohomologique et superrigidité des cocycles. Nous proposons de
nouvelles méthodes cohomologiques pour établir des énoncés de superrigidité dans le cadre général des espaces métrique
courbure strictement négative. Nos résultats s'appliquent aux réseaux irréductibles, ou plus généralement aux cocycles, pot
des produits de groupes localement compacts généraux. Avec le concours d’'un nouveau théoréme d’annulation, on subsume
généralise de la sorte tous les résultats qui allaient dans ce sens; en outre, les énoncés de non annulation fournissent une va
classe d’exemples pour nos résultats en équivalence orbitale (Monod et Shalom, Ann. of Math., in press). Nous donnons une
preuve dans le cas particulierement simple des arB@s. citer cet article: N. Monod, Y. Shalom, C. R. Acad. Sci. Paris,

Ser. | 337 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Introduction

The following result associates a cohomological invariant to gratuecting on any metric spack that is
negatively curvedn a very general sense. Recall tHat< Isom(X) is calledelementaryf it has bounded orbits
in X or if it preserves a point or a pair in the boundary at infirtity. When X has bounded geometry, this is
equivalent to the amenability of the closurelofin H.
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Theorem 1.1. Let H = Isom(X), whereX is one of the following(i) Any properCAT (—1) space (i) Any Gromov-
hyperbolic graph of bounded valendiii) Any Gromov-hyperbolic proper geodesic metric space on wHigtts
cocompactly.

Then for any non-elementary countable subgr@ug necessarily closedl” < H, the spacé—lg(l", L%(H)) is
non-zero.

(The complete proof of (i) will be found in [5]; the main additional ingredient needed for (ii) and (iii) is a joint
work with Mineyev [3].) We will show how this non-vanishing ofﬁl—(defined below) can be used for rigidity
results. On a different level, we propose the following class of grégsas a cohomological notion of negative
curvature:

Creg:= {I': HE(I", ¢*(I")) #0}.
Our work [6] on orbit/measure equivalence rigidity applies to this class. Theorem 1.1 implies:
Corollary 1.2. Let H be as above and’ < H be any discrete non-elementary subgroup. TheaCreg.

Locally finite trees yield a particular case of the above discussion. However, in view of Bass—Serre theory, it is
important to deal with general trees:

Theorem 1.3. Let I be a countable group with a hon-elementary action on a simplicial tree. Denakethg set
of edges, endowed with the correspondifi@ction. Theng(F, (2(E x E)) is non-zero.
In particular, if I' is any free producf” = A x B (with A # 1 and|B| > 2) thenI” € Creg.

Corollary 1.4. There are2™ non-isomorphic countable groups theg and any countable group embeds into a
group inCreg.

The cohomological invariant that we construct combines well with the product formula for bounded cohomology
of [1,4]; using the general functorial machinery established in there (and its connection to Poisson boundary
theory), we prove the cocycle superrigidity theorem below. In order to formulate it, we observe that a natural
generalization olementarityrom actions to cocycleg: G x £2 — H is the existence of a measurablénvariant
map from2 to bounded subsets ik or to points or pairs ird X. Further, whernG is a producﬂj G;, we call
its action ons2 irreducibleif each subprodudf’; := ]_[j ; G; acts ergodically. For instance,ff < G is a lattice,
then theG-action on§2 = G/I' is irreducible if and only if the lattice is irreducible in the sense that it projects
densely in eacld;.

Theorem 1.5. Let G = G1 x --- x G, be any locally compact-compact group with an irreducible measure
preserving action on a standard probability spa@e Let X be a space as in Theorelmlando: G x 2 — H be
a non-elementary measurable cocycle, whidre: Isom(X) is any closed subgroup.

Then there is a closed subgro#fi < H and a normal compact subgroup < H’ such thatx is cohomologous
to a cocyclea’: G x £ — H’ whose composition with the natural ma)’ — H’/K yields a continuous
homomorphisn& — H’/K which factors through some ;.

Observe that il is, say, CAT—1), then the existence ¢i’ andK simply amounts to saying thatis equivalent
to a continuous homomorphism 6fupon possibly restricting to an invariant convex subspace.of

As usual, cocycle superrigidity implies superrigidity for homomorphisms. There again, the case of arbitrary
trees can also be addressed. In this Note, we shall indicate the proof of the following result, which can serve as &
“toy case” illustrating the general line of [5] without raising any of the technical (and geometric) issues occurring
with general spaces [3,5].

Theorem 1.6. Let G4, ..., G, be locally compact -compact groups and lef < G = G1 x --- x G, be an
irreducible lattice acting non-elementarily on a simplicial tree. Then there I3-mvariant subtree on which the
I'-action extends continuously toG-action, factoring through somé ;.
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In casel” is a cocompact lattice in a product of compactly generated groups (or whéry ate linear and
simple) this result was proved by Shalom in [7].
We turn now to a vanishing theorem generalizing [1, Theorem 21]:

Theorem 1.7. Let I' < G = G(k) be a lattice, where is a local field andG is a connected almogt-simple
algebraic group defined over with rank,G > 2. Let V be a separable dual isometric Bana¢hmodule. Then
H2(I", V) = ET if k = R and1(G) is infinite, andH2(I", V) = 0 in all other cases.

In particular, H%(F, —) vanishes for every unitar¥ -representation without non-zero invariant vectors.

The latter pins down an important property of higher rank lattices in view of the following consequence of the
non-vanishing results:

Corollary 1.8. Let I be any countable group such tHaE(F, V) = 0 for every unitaryl" -representatior’/ with
VI =0. LetH be as in Theorerti.1. Then every homomorphish— H is elementary.

Finally, we indicate some of the needed cohomological tools (for all the following, see [1,4])5 et a
locally compact group and a separable dual isometric continuous Ban@etmodule. The (continuous) bounded
cohomology Ry, (G, V) is defined by the compleg(G**1, V)G of equivariant continuous bounded functions
with the usual homogeneous coboundary: Z(—l)fdj whered; omits thejth variable. LetB be a standard
measure space with@-action preserving the measure class; if the action in amenable in the sense of Zimmer [8],
then H,,(G, V) is also realized by the complebgﬁ(B‘”, V)¢ of alternatingL > maps. CallB astrong boundary
(for G) if the G-action is amenable and in addition everyequivariant measurable max B — V is constant
(for all V as above). It follows then that?.;)(G, V) is the space of cocycles ibgﬁ(B3, V)9, Itis shown in [1,4]
that every compactly generaté#l virtually admits a strong boundary; Kaimanovich later generalized this to all
o-compact locally compact groups [2].

Theorem 1.9 ([1,4]; see also [2])LetG = G1 x --- x G, be any locally compaet-compact group and& be as
above. Then there is a canonical isomorphlﬂﬁg(G, V) Z P He(Gi, Vo).

We shall give below a short proof — assuming the above functorial machinery (in [1], [4], Theorem 1.9 is
deduced from a general Hochschild—Serre spectral sequence). LeFnow be an irreducible lattice an®/
be a separable dual isometric Band¢imodule. Then one can defig € W to be the largest (possibly trivial)
I'-submodule on which th€'-action extends to a continuoGsaction factoring througly; . Using cohomological
induction and strong boundaries, in [1,4] the following superrigidity formula for bounded cohomology is deduced
from Theorem 1.9: B(I", W) = @ H2,(Gi. W)).

2. Selected proofs

Let T be a simplicial tree; for the applications to Theorems 1.3 and 1.6, there is no loss of generality in assuming
that7 is countable (as a graph). LEt= T 13T be the usual ray bordification. Fix a positive integeWe define a
mapa:T x T — (> (E") as follows. Letz, ¢’ € T. If the edgess, . . ., e, constitute a geodesic path contained in
the geodesifz, ¢'], then we let (¢, ') (e1, . . . e,) be+1 according to whether the path has the orientation induced
by [¢, ¢’] or the opposite orientation. In all other cases (in particular, iftfeedo not constitute a geodesic path),
we seta(Z, ') (e, ...e,) =0.

Define noww: T 2 — ¢*°(E™) by w = da. Observe that fon = 1 we havew = 0 ande is a well known
1-cocycle. But for generad, the situation is the following: whenever ¢/, ¢” are three distinct points &f such
that each leg of the resulting tripod has length at leashere are exactly@ — 1) differentn-tuples of edges in
the support ofw (¢, ¢’, ¢); this can be immediately checked by observing that a path gets canceled if and only
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if it does not cross the centre of the tripod. It follows thayields by restriction a bounded measurable cocycle
(0T)3 — ¢?(E™) that is equivariant under the automorphismgafnd that does not vanish on any triple of distinct
points indT (whenn > 2, which we assume from now on).

Suppose now that is a countable group with a non-elementary actiorfohet B be a strong boundary far.
If T were locally finite, a standard use of boundary theory would yield a measurable equivariafit Bap o7 .
In the general case, a difficulty arises becatieneed not be compact. However, introducingi@aktopology
that does mak& (though notd7') compact, we still obtairy as above (a basis for this topology is given by the
closure inT of half-trees). The non-elementarity assumption implies haannot range essentially in triples of
non-distinct points, so that o 2 is a non-zero cocycl®® — ¢2(E"). We conclude that {I", ¢2(E™)) is non-
zero, proving the main claim of Theorem 1.3 wheg 2. In the particular case of a free product, or more generally
when the action oi£” is properf2(E") is a (possibly infinite) multiple of a subrepresentatioi®(f"). Using the
realization of Irﬁ(]", —) by cocycles on a strong boundary, one shows that this impﬁéEHz(F)) #0.

Assume now in addition that we are in the situation of Theorem 1.6. Then the superrigidity formula for bounded
cohomology shows that for som¢here is a non-zerf -invariant subspac®; C ¢?(E x E) such that the™-action
on W; extends continuously to @-action factoring througlt;;. Upon possibly passing to B-invariant subtree
of T, it follows (see [7], p. 45) that th&'-action onT extends similarly, as claimed.

We now indicate a short proof of Theorem 1.9 (provided the functorial machinery). We may for simplicity
assume thatG = G1 x G2. We denote by infand reg the maps induced in cohomology by the natural maps
G — G; andG; — G. Letus show that

infy + infz: HZ(G1, VO2) @ HZ,(G2, Vo) — HZ(G, V) (%)

is an isomorphism (with inverse re® res). As in usual conomology, inner automorphisms act trivially in bounded
cohomology; it follows that the restriction?HG, V) — Hg,(G1, V) ranges in K, (G, V)%2, Realizing the latter

as a cocycle space on a strong boundaryfgprand since the conjugation action@$ on G is trivial, we see that
HZ,(G1, V)92 = H3 (G1, V 92) since there are no non-zero coboundaries. Given a alassi3 (G, V), consider

b =a —infires (a) —infores(a). By functoriality, reg(b) = O for bothi. Let B; be strong boundaries f@¥; ; then

B = B1 x B is a strong boundary fof. Thus the clas$ can be realized by an elemesiof L>° (B3, V)¢ and

reg is induced by the inclusion map™>(B®, V)¢ — L>°(B*, V)% sinceB is alsoG;-amenable. Thus there is
a1 in L®(B2, V)61 with day = B. By Fubini, a1 yields a mapBZ — L>(BZ, V)61 so thatey, and hence alsg,
cannot depend on th variables; by symmetrg is constant and hence trivial in cohomology. This showsthat

is surjective. Injectivity is apparent if one implemes by the map

(B2 V)T @ L (B3 VO — Lgi(B% v)°

induced by the factor mapg® — B;.
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