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GENERALIZED RING OF NORMS
AND GENERALIZED (¢,I')-MODULES

By FABRIZIO ANDREATTA

ABSTRACT. — We construct a generalization of the field of norms functor, due to J.-M. Fontaine and
J.-P. Wintenberger for local fields, in the case of a ring R which is p-adically formally étale over the Tate
algebra of convergent power series V{T1,Tfl, conTa, Ty 1} over a complete discrete valuation ring V'
of characteristic 0 and with perfect residue field of positive characteristic p. We use this to show that the
category of p-adic representations of the fundamental group of R[%] is equivalent, as a tensor abelian
category, to the category of so-called étale (o, I'r)-modules.
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RESUME. — On généralise la théorie du corps des normes, due a J.-M. Fontaine et J.-P. Wintenberger
dans le cas des corps locaux, au cas d’un anneau R, p-adiquement étale sur 1’algeébre de Tate de séries
formelles convergentes V{T%1,T, 1,,,,,Td,Td_ 1} sur un anneau de valuation discrete complet V' de
caractéristique 0 a corps résiduel parfait de caractéristique p. On en déduit une équivalence de catégories
abéliennes tensorielles entre celle des représentations p-adiques du groupe fondamental de R[%] et celle
des (¢, 'r)-modules étales.
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1. Introduction

Let V be a complete discrete valuation ring of characteristic 0 and with perfect residue field &
of positive characteristic p. Fix a “very ramified” extension V C V. (see 2.1). For example,
one may take V., to be the ring of integers of the cyclotomic extension of V[p~!] obtained
by adjoining all p™-th roots of unity for every n € N. The classical theory of the field of
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600 F. ANDREATTA

norms, due to J.-M. Fontaine and J.-P. Wintenberger [8,9,17], associates to V., a complete,
equicharacteristic p discrete valuation ring E‘t and provides an equivalence of categories
between the category of finite extensions of V., which are normal as rings, and the category
of finite extensions of E{, which are generically separable and are normal as rings.

The main goal of this paper is to generalize such construction. Let R be a p-adically complete
and separated, noetherian algebra over the ring of convergent power series V{ThTfl, ey
Ty, T, 1}, flat as V-algebra such that (I) K C R ®y k is geometrically integral and (II) the
image of T1,...,74 in R ®y k is an absolute p-basis for R ®y k. Fix a “very ramified”
extension R ®y Vo C R as in 2.2. For example, one may consider the “cyclotomic case”
in which V' C V is given by the cyclotomic tower and R ®y Vo C R is given by
taking p"-th roots of the variables 71, ...,Ty for every n € N. Let Tx be a uniformizer of E$
We associate to R, a ring EE, which is a T -adically complete and separated, noetherian
algebra over the ring of convergent power series E‘t{xl,xfl, cey T, x;l}, flat as Ef/—algebra
and having Tx,x1,...,xq as absolute p-basis. More generally, we construct a functor E* of
“generalized ring of norms” associating to an extension S, of R, which is finite and étale
after inverting p and is normal as a ring, a EE—algebra Eg Then,

THEOREM 6.3(1). — For every extension Sy, of R, which is finite and étale after inverting p
and is normal as a ring, Eg is a finite extension of BT, which is étale after inverting 7 and is
normal as a ring.

Since R, C S is finite and étale after inverting p there exists a canonical diagonal
idempotent ¢, € (Soo ®r.. Soo)[p~!]. Following [6, Def. 2.1] we say that R, C So is
almost étale if, letting mo be the maximal ideal of V,, we have that m e, is in the image
of Soo ® R, Seo- Then,

THEOREM 6.3(I1). — Assume that every extension So, of Roo, which is finite and étale
after inverting p and is normal as a ring, is almost étale. Then, the functor EX defines an
equivalence of categories from the category of extensions of R, which are finite and étale
after inverting p and are normal rings, to the category of extensions of EE, which are finite and
étale over E}[7 | and which are normal rings.

The assumption in the theorem is easily proven to be satisfied if R is of Krull dimension < 2.
In general, it holds whenever G. Faltings’ “almost purity theorem” [7, Thm. 4] applies. For
example, it is the case if R is the completion, with respect to an ideal containing p, of the
localization with respect to a multiplicative system of an algebra étale over the polynomial
ring V[T, Ty, ... Ty, Ty '); see 5.12.

Let R be the completion, with respect to an ideal containing p, of the localization with respect
to a multiplicative system of an étale extension of V' [T3, T} LTy, T, 1] and assume also that
we are in the cyclotomic case. Let S be a finite extension of R, which is étale after inverting p
and is normal as a ring. Denote by S, the normalization of S ® g Rs.. Assume it is an integral
domain and denote by I's the automorphism group of S, as S-algebra. It is a finite index
subgroup of the Galois group of 2 C R.; the latter is isomorphic to the semidirect product of
the Galois group I'y of V' C V, (2 Z,, up to a finite group) and of the Galois group I'p = Zg
of R®y Vi C Rs. We construct a noetherian regular integral domain A g of characteristic 0
such that As/pAs = E&[75'], it is p-adically complete and separated, it is endowed with a
continuous action of I'g and with a continuous operator ¢ commuting with I'g and reducing
to Frobenius modulo p. A (¢,T's)-module D is a finitely generated A s-module, endowed with
semilinear, commuting actions of I's and ¢. It is called étale if p ® 1: D ®§S Ags — D is
an isomorphism of A g-modules. We let (,I's) — Mod , be the category of étale (¢,I's)-
modules. It is an abelian tensor category. Let Gg := m1 (S [%],77) be the fundamental group
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GENERALIZED RING OF NORMS AND GENERALIZED (¢, I"')-MODULES 601

of Spec(S[p~']), where the base point 7 is chosen to be the generic one. Let Rep(Gs) be the
category of p-adic representations of Gg i.e., of finitely generated Z,-modules endowed with
a continuous action of Gg. We then deduce from Theorem 6.3 the following analogue of the
classical theory of (¢, 'y )-modules due to J.-M. Fontaine [10] in the case S =V

THEOREM 7.11.— There is an equivalence of abelian tensor categories between the
category Rep(Gg) and the category (p,I's) — ModeAtS.

Here, our work is a generalization of that of Fontaine: the statement of the main theorem and
the strategy of the proof are, mutatis mutandis, as in loc. cit. The key ingredient of the proof is
the relation between the category of p-adic representations of the fundamental group E; [TK]
and the category of unit root ¢-crystals over Eg [7?[_(1] established by N. Katz in [12].

In [4] a generalization of the theory of Fontaine has already been given. It is different from
ours: in loc. cit. the object of study is the category of representations of the Galois group
of Frac(V') with more general coefficients (not only Z,, as in [10], but any complete noetherian
ring with finite residue field). In the case that R is the discrete valuation ring associated to an
higher-dimensional local field an independent construction of the field of norms functor can
be found in [1]. If R is a discrete valuation ring with imperfect residue field admitting a finite
p-basis, a theory of the field of norms and of (¢, I")-modules has been independently developed
in [14].

The paper is organized as follows. Section 2 contains preliminary definitions and construc-
tions. We write R, as the union of subrings R = Ry C Ry C--- C R,, C ---. In the cyclotomic
case we take V;, to be the normalization of V'({,»), where (,» is a primitive p™-th root of unity,

1

1
and R, to be R ®vp,,.. 1, Va [Tlﬁ,...7Td”_"]. Let R C S be a finite extension, étale after
inverting p. Let S, be the normalization of S R R,,.

In Section 3 we study the behavior of the ramification of the extensions R, C S, as n
increases. We rely on [6]. Contrary to what is needed in almost étale theory, though, for our
purposes it is not sufficient that differents get smaller as n increases tending to 0. One needs a
better control on how fast they decrease; see 3.8. In the case of local fields this follows from the
original approach of J. Tate [16] via class field theory.

Section 4 is devoted to the construction and the study of the first properties of the generalized
ring of norms associated to the extension R C .S above. We denote it by EJSr following what now
seems the standard notation at least for S = V'; cf. [3]. Then, Eg is a normal Eg—algebra and
E}, C E} is finite and étale over Ef[7.']; see 4.9.

In Section 5 we state a condition on the ramification of {R,, C S, },, called (RAE) (= refined
almost étaleness). It implies the key property that EE C E; is generically of the right degree
i.e., [Frac(S) : Frac(R)]; see 5.3. In 5.1 we prove that (RAE) is in fact equivalent to Faltings’
almost étaleness (AE). We also give other equivalent formulations in terms of properties of Ej.;

In Section 6 we prove Theorem 6.3. The key point is to construct an inverse to the
functor EX (under the assumption that (RAE) holds). We deduce from 6.3 that the fundamental
groups 71 (Roo[p™1],m) and 71 (EL[7%'], ), n and v being corresponding base points, are
canonically isomorphic; see 6.4 and 6.6.

In Section 7 we prove Theorem 7.11. Thanks to Corollary 6.6 and due to the properties of A g,
it is a consequence of [12].

The rings Eg, A and the theory of (¢,I's)-modules depend on the structure of R as
V{T, Ty LTy, T, "1 algebra. In 5.6 we present some mild functoriality properties of the
ring E;g relatively to the ring R. Unfortunately, one cannot and does not expect to sheafify these
constructions in order to get a global version of 6.3 or 7.11 for (formal) schemes over V. Still,
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602 F. ANDREATTA

our results seem a valuable tool for the study of the various comparison theorems of Fontaine’s
theory, for computing p-adic étale cohomology of schemes over K and for providing new
methods of constructing and studying classical (, 'y, )-modules. We will come back to these
topics soon.

2. The basic ring R
2.1. Notation

Let V be a ring complete with respect to a discrete valuation v satisfying v(p) = 1, with
perfect residue field & of characteristic p and with fraction field K = Frac(V') of characteristic 0.
Let K C K be a Galois extension with group I'y, such that it contains Z,, C I'y as a finite index
subgroup. Define the tower

Koy=KCK =K% CKy=K'% C...CK,=K? % C....

We assume that K,, C K is totally ramified for some n > 0. Let V,, be the normalization of V'
in K. It is complete with respect to the unique discrete valuation extending v. Let k,, be its
residue field. Let

—

Vo=V, Voo = lim Vio/p"Vae.
o0—nN

Let V be the normalization of V' in an algebraic closure K of K. The valuation v extends to a
unique valuation v on K with associated valuation ring V. For every 6 € v(K ) denote by p° a
(any) element of K whose valuation is 6.

Asin[11,0.21.1.4] if A is a ring of characteristic p we denote by A®) the A-algebra defined
by the ring A with structural morphism as A-algebra given by the Frobenius homomorphism
wa:A— Asending a — aP. We denote by AP the image of (4. Recall from [11, 0.21.1.9] that
aset {ay,...,aq} of elements of A is called an absolute p-basis if the monomials {aj ---a; |
0 <i; <pVj}isabasis of A as AP-module.

2.2. DEFINITION. — Let R be a p-adically complete and separated, noetherian, flat V -algebra
such that
I R is an algebra over R := V{Ty, Ty ",..., T4, T; '} the Tate algebra of p-adically

convergent power series in the variables 77, Tfl, LTy, Ty ! and coefficients in V;

II. T1,...,Ty form an absolute p-basis for R ®y k and k C R ®y k is geometrically integral.

Let RO:=RY c---c RY c RO, ," C - be atower of rings such that

1. R +1/ is finite and flat over R?L/ for every n and the tower {R?Ll}n reduces to the Frobenius
tower of R ®y k i.e.,

1
7

RY @y k= (RO @y k) = (RO @y k) [17",...,T]"].
Define R® := RY' @y V,,, R, := R@po R, R, := R, ®y V,, and Roy :=J, Rn. Let Ro
be the p-adic completion of R.,. The hypotheses imply that the maximal ideal of V,, generates

the unique prime ideal B3, of R,, over p so that 3,, is principal. Let Poo := |J,, B, Finally, let

Ly :=Frac(R,) and Lo :=|JL,=Frac(Ro).
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2.3. PROPOSITION. — The following properties hold:

(1) the natural map (R ®y k) @go (R® @y k)P — (R®y k)P) defined by Frobenius is an
isomorphism. In particular, the extension R° @y k — R ®v k is formally étale (for the
discrete topologies);

(2) for every n € N the rings R, /B, and R, Qv k are noetherian, geometrically regular
domains;

(3) foreveryn € N the rings R, and R, are noetherian regular domains, p-adically complete
and separated. In particular, R,, and R), are normal.

Proof. — (1) The first claim follows from 2.2(I1). By [11, 0.21.2.7] it implies that the ring R ®y
k is formally smooth over R® ®vy k. It is formally unramified due to the fact that the relative

differentials Q}%®vk/R0®vk are zero by [11, 0.21.2.5].

(2) We have R, @y k = (R Qv E)*") and R,, /P, = R ®v k. In particular, R, ®y k
is isomorphic to R ®y k as a ring and R,,/%,, is isomorphic to R ®y k' where k C k' is a
finite extension. By 2.2(I) they are then domains. Since R° ®y k is smooth over k, it follows
from [11, 0.19.3.5] that R ®y k', and thus the localization (R ®y k'), at every maximal ideal m
of R ®y k', is formally smooth over k’ for every finite extension k C k’. By [11, 0.22.5.8] this
implies that (R ®y k'), is a geometrically regular local ring. We conclude that the localization
of R, /B, and of R, ®y k at every maximal ideal is geometrically regular. Hence, R, /B,
and R], ®y k are geometrically regular by [11, 0.17.3.2]. In particular, they are regular rings,
thus locally factorial and, hence, normal.

(3) By 2.2(1ID) the rings R,, and R!, are finite as R-modules and, in particular, they are
noetherian and p-adically complete and separated. This implies that every maximal ideal
contains p. Since P, is principal, we conclude from (2) that the localization of R,, and of R,
at every maximal ideal is regular. Hence, R,, and R}, are regular by [11, 0.17.3.2]. In particular,
they are locally factorial and, thus, normal. Then, R,, (resp. R.,) are product of normal domains
which, being quotients of R,, (resp. R},), are p-adically complete and separated. We have proven
that R/, ®y k and R,, /9, are domains. We conclude that R,, and R, are integral domains. O

2.4. The cyclotomic case
The main example to keep in mind is given by the cyclotomic tower
K=KyC---CK,=K({n)C---
and by the rings

1 —1 1 —1
r_ BT T BT T
R, :=R[Ty", 17" ,....,T]" T ].

In this case R C R, is Galois, after inverting p, with Galois group I'r which is the semidirect
product of the Galois group I'y = Gal(K/K) of the tower K C K., and of the Galois
group I'r = Gal(Ruo /R ®v V). Remark that I'y: C Gal(Qy(Gp~)/Qp) = Z;, and that T'p =

Zy @ DZpyg = ZZ, where v; € T is the element acting trivially on V, and such that

1
N Cp"ijn ifi=j,

1
7 if i #£ j.

2.5. DEFINITION. — Let S be an R-algebra such that
— S is normal and V -flat;
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604 F. ANDREATTA

— it is finite as R-module;

- R[%} C S[%] is étale.

Define S, to be the normalization of S ® g R,,. Let M,, be the total field of fractions of .S,,.
Let

Soo::USn, Moo::UMn and @::;ignsm/pnsm.

2.6. DEFINITION. — Let P be the direct limit of a maximal chain of normal R -algebras,
which are domains and, after inverting p, are finite and étale extensions of R.o[+]. If S is a

1
P
normal R, -subalgebra of R*P and R, [%} C S« [%] is finite and étale, define

D)

If S is an R-algebra as in 2.5 contained in R°°P, define

omau(i 3.

3. Ramification theory in towers

In this section we study the ramification of the extensions {R,, C S, },. Let ¢, € (S, ®g,,
S,)[p~!] be the diagonal idempotent; see 3.2. As in [6] we measure the ramification of the
extension R, C S, by the smallest non-negative rational number §,, for which there exists
an element p°» € V,, of valuation v(p’) = §,, such that pJe, lies in the intersection of the
localizations of S,, ®p, S, at all height one prime ideals. Due to work of Faltings, one knows
that 6,, — 0 as n — oo; see 3.6. Our main result is a refinement of this statement, see 3.8, stating
that p™d,, is bounded from above. This is proven by Tate [16] in the case of local fields and
inspired Faltings’ theory of almost étale extensions. Unfortunately, the control one has on §,, in
codimension 1 is not enough a priori to guarantee that p°= ¢,, lies in the image of S, ®r,, S,,. We
will prove that, under some hypotheses, this indeed holds; see 5.11.

3.1. The trace map and idempotents

Let W C Z be a finite extension of normal rings such that the extension of fraction fields
L C M is separable. Consider the W -linear homomorphism

Tr: Z — Homy (Z, W)

defined by 2 — Trps 7 (z - _). Note that Tr is well defined since W C Z is finite and W is
normal.

Let m: M ®; M — M be the multiplication map. Since M is a separable extension of L,
there exists

eeEM @, M

such that m(x) = (Trps/p ®1d)(e- ) for all z € M ®1, M. The idempotent e defines a section
to the multiplication map m (as L-algebras).

Assume that there exist 7 € W and an element of Z ®y Z whose image in M ®, M is Te. By
abuse of notation we denote such element by 7e. Let by, ..., by, be generators of Z as W-module.
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GENERALIZED RING OF NORMS AND GENERALIZED (¢, I"')-MODULES 605

Write

h
Te= Zai ® b;
i=1

with ay,...,ap in Z. We have W -linear maps
g:Z—-W", f:wh—z

given by g(z) := (Tr(za;)); and f((w;);) := >, w;b;. Since for any 2z € Z one has 7z =
>, Tr(za;)b;, we deduce that f o g is multiplication by 7. This implies that Z[r '] is a direct
summand in a free W [r~1]-module of finite rank. In particular, it is a projective W [r~1]-module.

Let I be the kernel of the multiplication map m:Z ®w Z — Z. The differentials le Jw are

defined by I/I?. Let x € I. By assumption 7¢ — 7 lies in I. On the other hand, since L C M is
étale, the kernel of multiplication by e on M ®p, M is I @ z M. Thus, ex =0 and (¢ — 7))z =
—7x € I%. Therefore, T kills le/W. Thus, Z[r~!] is unramified as W[r~!]-algebra. Hence,

Wr=Y c Z[r~1] is étale.
3.2. Notation
With the notation of 2.5, we denote by
Tr, : S, — Hompg, (Sn, Ry)

the trace map x +— Tryy, /p, (2-_) and by e, € M,, ®, M, the canonical idempotent associated
to the separable extension L,, C M,,. Since S,,[p~!] is finite and étale as R, [p~!]-algebra, we
have

en € (S, XR, Sn) [p_l].
3.3. Differents and discriminants

Assume that W C Z is a finite and flat extension of products of Dedekind domains.
Following [15, SIII.3] define the inverse different and the discriminant of W C Z as

@g/lw = {y eM ‘ TI'JM/L(QI?y) eWVx e Z}7 DZ/W = NOI‘mz/W(gz/W).

Then, QE}W contains Z because Z is integral over W and itis a locally free Z-module of rank 1.
In particular, © 7,y is an ideal of Z. Furthermore, D 7,1y is an ideal of V.

The map DE/IW — Homwy (Z, W) defined by = — Trp; (2 - _) is an isomorphism of
Z-modules. Let 7 € Z be an element which annihilates Z/® 5 sw- Then, 7 kills the cokernel
of Tr and the cokernel of

Tr ®1d: Z@w Z — Homyz(Z @w Z,7)
as well. We conclude that 7¢ € Z ®yy Z; the notation is as in 3.1.
3.4. The definition of 4,,(.5)

The discriminant ideal of the extension of Dedekind rings R, sz, C S, ®r,, Ry g, 1S a power
of B, Ry, 53, - By 2.2 we may then assume that it is generated by an element p°»(%) of V;, dividing
a power of p.
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606 F. ANDREATTA

Let ‘Bs.. be a prime of S, over p. Let Pg, := Ps., N Sy. Then, P = Ps., N Reo
and P, = Ps__ N R,. The discriminant ideal of the extension of discrete valuation rings

Ry, C Snps, is generated by an element p (¥s) of V,, dividing a power of p. Furthermore,
In(S) = st& o On(Ps..)-
3.5. LEMMA. — There are only finitely many prime ideals of S+ over Boo.

Proof. —Fix n € N. The extension Frac(R,,) C Frac(S,,) is separable of degree h :=
[Frac(S) : Frac(R)]. Hence, the ring S,, ®pg, Ry, is finite as R, g, -module; see the
discussion in 3.3. In particular, it is a Dedekind domain, free as R,, g3, -module of rank h. We
conclude that the number of prime ideals of S,, over 3,, is at most h. O

3.6. PROPOSITION (cf. [6, Thm. 1.2]). — The sequence {6,,(S)}nenN is a decreasing sequence
of non-negative rational numbers converging to 0. Furthermore, for every n € N the cokernel of
the trace map Tr,, : S,, — Hompg, (S, Ry,), see 3.2, is annihilated by por () and p‘S"(S)SnH -
Sn ®Rn Rn+1-

Proof. — By construction p‘s"(S)HomRn(S,L,Rn) is an R,-submodule of S, g s, for every
height one prime ideal of S,, containing p. Since S, is normal, .S,, coincides with the intersection
of the localization of S,, at all its height one prime ideals. Hence, p°=(%) annihilates the cokernel
of Tr,, as claimed. Consider the diagram

Sn®r, Rugp, =1 Zn —— Znt1:= 541 ORppq B, 9.0

Rn’ﬂpn = Wn - Wn+1 = RnJrl,‘BnJA
‘We have
Zn @, Wii1 = Znp1—  Homw, (Zns1,Wn) < Homw, (Zn @w, Wai1, Wy)
L L

—1 —1 —1
[
D i1 /W D w, OWn Oy w,

Thus,
B.6.1) Dz w,Dw,s/wa D70 w, =D 20w D7 wiss C Zn @, Watt C Zysa.

In particular,
pﬁn(s)*5n+1(5)zn+l C Zp Ow, Wit C Znia
so that ,,(S) > 9,41 (.5). Furthermore,

p5"(s)5n+1 - Sn ®R,,, Rn+1,£Bn+1-

Since R, is a free Ry,-module, Ry, 41 p,., = Rny1 @R, Ra g, and S, is normal, the last
statement of the proposition follows as well.
Due to 3.4 and 3.5 to conclude the proof of the first statement it is enough to show that for

every prime Ps_, the sequence v(Dg, ,, s /R,y ) converges to 0. Let p¢ be a generator of

the maximal ideal of V. By construction Q}%H/RL has Q}%;L+1®vk/R;L = (Rl 1 /PR, 1)% as

quotient. Take N € N so that for every n > N the extension V,, C V,,41 is totally ramified.
In particular, Q%/"H Vi is generated by one element and it is isomorphic to V,,11/Dv, . /v, .
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Furthermore, V(@Vn . /Vn) > p, where 0 < p < £ is a constant independent of n; see [16, Cor. 1,
§3.1]. Since by construction Q}%HH/R"’ ~ Q}%LH/R% ®r: ., R,116 Q%,Hl/vn @V, 1 Bng1, the
module of differentials Q}%nﬂ /Rn is generated by d + 1 elements by Nakayama’s lemma and it
has (R n+1/p”Rn+1)d+1 as a quotient for every n > N.

Write W,, :== R,, 5,, and, abusing the notation, Z,, := Sy, g3, . Due to 3.5 we may choose N
so that Bg, , is the only prime ideal of S, over ‘IBSn for n > N. In particular, Z,, 1, is the
normalization of Z,, ®w, W,+1. Consider the sequence of Z,_;-modules

ﬁ
i QZ /Wh, 2z, Zn+1 —>QZ v+1/Wh QlZn+1/Wn+1'

Let z,, be the residue field of Z,,, with m =n or n 4+ 1. It is a finite extension of the residue
field w,, of W,,. Since [wﬁlp ) s wy,] = p? by 2.2(11), we have [zﬁff) m] = p? so that Q- Jun
is generated by d elements as z,,-module. The maximal ideal I,,, of Z,, is a principal ideal
so that I,,, /12, is a free z,,-module of rank 1. The kernel of 2} T /W 0L is the image

of I,,/I2,. The conclusion is that Q1 Z0 W is generated by < d + 1 elements as Z,,,-module.

m Zm [ Wn

The kernel of (3 contains Q 1 /W ®W, 1, Zn+1 as submodule by [6, Lemma 1.1]. As
explained above, this is generated by d + 1 elements and it has (Z,41/p"Zni1)?t! as
quotient. Since len+1 i is generated by < d + 1 elements, the elementary divisors theorem
implies that Ker(3) contains the kernel of multiplication by p” on lenﬂ /w,, - Hence, Ker(y)
contains the kernel H of multiplication by p” on len W, ®zn Zn+1. Since QZ W is
generated by < d + 1 elements and it has the same length as Z,,/® /W, as Zp-module by
[6, Lemma 1.1], we get that H has at least the length of Z,,,1/p'Z,, 11 as Z,1-module with
t =min{p, (v (’DZTL/WH )/d+ 1)}. It follows from (3.6.1) that the cokernel C' of - is annihilated

by®Dz w, D, T /Wit - Since QlZn+1 Wi is generated by < d+ 1 elements, we conclude that
the length of C'is less or equal to the length of (Z,,11/D 7, /w, D

1 d
Zn+1/Wn+1) +1, The length

of QZ w, 9z, Zp+1 minus the length of QZ e Was is the same as the length of Ker(vy)
minus the length of C. Thus,

V(an/Wn) - V(an+1/Wn+1) 2l— (d+ 1) (QZn/W71©_n+1/Wﬂ+1)
Hence, (d +2)v(Dz, /w, D n+1/Wn+1) > min{p, (v(Dz, w,)/(d+ 1))} for every n > N.

One concludes that v(D ; /w, ) — 0. O

3.7. COROLLARY. — There exists ¢’ € Q with 1 > &’ > 0 depending on {R,},, and there
exists N € N such that there is p° € Vi of valuation v(p® ) = €' and for every n > N’ we
have

RfH-l +p€ R7L+1 - Rn +p€ Rn—i—l-

There exist €' > ¢ >0 and N = N(S,e) € N such that there is p° € Vi of valuation ¢ and for
all n > N we have

Sh 1 CSn+D St
Proof. — Suppose that the first statement holds. Using 3.6, we have for n > N’
Ppén(s)sﬁ-i-l C (Sn ®R., Rn+1)p C Sy R, be-',-l +p(Sn OR, Rn+1)
- Sn + pgl (Sn ®Rn R7l+1) C Sn +p€/Sn+1-
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Hence,

S£+1 C ]ﬁsn +p€ 7p6"(S)Sn+1.
Recall that po»(%) € V,,. Since the elements of S, ;; are integral over S,, and &’ — pé,,(S) — &’
for n — oo by 3.6, we conclude that the corollary holds for the tower {.S,, },,.

We are left to prove the first statement. By construction of R,, and since (R, ,;)? +p° R}, ., =
R, + p*R], 11, Where p*° is a generator of the maximal ideal of V/, it is enough to prove it
for the tower {V,},. In this case we may rely on the classical theory of the field of norms.
Indeed, by assumption the extension V,,, C V4 is totally ramified for m > 0. In particular, for
every n > m the Norm of a uniformizer 7, of V4 is a uniformizer of V,, and V,, and V,,;
have the same residue field. Thus it suffices to prove that there exist 1 > ¢’ > 0 and N’ € N such
that pel € Vnr and Norm(m,,+1) = wfl 11 modulo ps/Vn for every n > N'. This follows from
[17, Lemme 4.2.2.1 & Prop. 1.2.3]. This concludes the proof. O

3.8. THEOREM. — Let Ps_ be a prime ideal of Soo over p. There exists ¢(Ps.,) such
that p"6n(Ps..) < c(Ps..)-

Proof. — For every n € N we denote by W, the p-adic completion of R, 5z, . Let Z,, the p-adic
completion of S, . and let v be the unique valuation on Z,, extending the one on V,,. Let w,,
(resp. z,,) be the residue fields of W, (resp. Z,).

Since Dz, jw, Zn = Z‘D[Zzn/g,/n] and Dz ,w, = pP»(PFs) W, it is enough to prove that the
sequence {p"v(Dz, /w,)}n is bounded from above. If Z C Z’ C Z" are finite and generically
separable extensions of discrete valuation rings, we have Dz /7 = D g1 /7D 71,7. Hence,
passing to Galois closures it suffices to prove the statement assuming that R C S is Galois with

group G. O

3.8.1. LEMMA. — There exist 1 > ¢ > 0 and N € N such that for every n > N we
have Zg+1 +p°Zpt1 =2Zn + 9 Zns1 (in Zy41). In particular, Frobenius defines an isomor-
phism z, 11 =z, C Zn+1 and the ramification index of Z,, C Zy 41 is D.

Proof. — Due to 3.5 we may take N € N so that g, is the unique prime of S,, over P, .
In particular, the rank of Z, as W,-module is constant and independent of n (for n > N)
and the degree of Z,, C Z,, 41 is p®*!. If we prove the first statement, then clearly Frobenius
defines an isomorphism 2,11 — 2,. Since this is true for {w, } by 3.7, we deduce that the
degrees [z, : wy,] are constant and, hence, [2,11 : 2,] = [wy11 : wy,] for every n. The latter is p?
by 2.2. In particular, the ramification index of Z,, C Z,1 is p. We are left to prove the first
statement.

Fix 1 >¢' >cand N € N asin 3.7 so that e’ — pdn (S) > €. It suffices to show that for n > N
the map

Zna1 /D" Zns1 — Zn D" Zn,

defined by raising to the p-th power, is surjective. We know from 3.6 that p?=(%) annihilates
the cokernel of the trace map Tr,,: Z,, — Homy, (Z,,, W,,) and, since Z,, is a free W,,-
module, also the cokernel of Tr,, ®1: Z,, ®w,, Zm — Homyz, (Zn Qw,, Zm,Zm)- By 3.1
the idempotent e,,, associated to the extension Frac(W,,) C Frac(Z,,) satisfies p°(Je,, €
L, @w,, Zm. Fixn > N. Write pont1(S) ent1 = ; Gnt1,i Dby, for suitable elements ay, 41
and by, 11,; of Z,, 1. Since e,,41 is an idempotent, it follows that for x € Z,, we have

pp6n+1(s)x =(Trp41 ®1) (pp5n+1(5)efl+1($ ® 1)) = (Z Trpa1 (afz+1,i‘r)bﬁ+1,i + O(p)) .
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Here, O(p) means up to an element in pZ, ;. Since a£+1,i lies in Z, + pngm_l, the

element Trnﬂ(aﬁﬂ_’ix) lies in W,, +p5/Wn+1. Since the map Wn+1/p6/Wn+1 — Wn/pfl W,
defined by 2z — 2? is surjective, there exists o € Z,,1 ;1 such that

pPont1 Sy = P 4 O(psl).

Since Z,, is normal, y := p~9+1(5)q lies in Z, . Therefore, z = y? + pe ~Pon1(8) 3 for
some J € Z, 1 as wanted. O

For every n € N define W/ as the p-adic completion of the localization of R/, at the
prime ideal 9B,, N R} (the intersection being taken in R,). By 2.3 the ring R] is regular
and R, = R], @y V, so that the ring W is a discrete valuation ring and W,, = W/ Qv V,,.
Let w;, be the residue field of W),. Then, w,, = w], ®y, k,, which is a separable extension of w/,.
Furthermore, W,, C W/, is inert for every m > n. Define Z/, as the normalization of W}, @, Zo
in Z,,. It is a discrete valuation ring. Let z/, be its residue field.

3.8.2. LEMMA. — There exists an integer M > N such that for every n > m > M

(a) wy, C z,, is separable;

(b) Frobenius to the p"~™-th power induces isomorphisms w!, — w!, and z!, — z! ;
© 7,2 7}, @w, Wi

(d) W), CcW/ and Z|, C Z!, are inert.

Proof. — Since W, C W, is inert, the sequence {v(Dz: /) }n is discrete and bounded from
below. Hence, there exists M € N so that it is constant for every n > M. In particular, for
every n > m > M the map Z,, ®w: W, — Z, must be an isomorphism. Then, z;, is a quotient
of 2;, @y wy,. Thus, [2;, 1wy, ] < [z, : w),]. We have strict inequality if and only if w;, C z,
is not separable, since, by definition, Frobenius to the p"~"™-th power induces isomorphisms
w!, — w],. Enlarging M if necessary we may assume that the sequence {[z/, : w},]}n>nm
is constant. In particular, w/, C 2], is separable as claimed. Since (b) holds for {w/,}, by

assumption, the conclusion follows. O

Recall that R C S is assumed to be Galois with group G. Consider a p-Sylow subgroup H
of G and the associated intermediate extensions R=Ty C --- CT; CTy41 C--- C Ty =S such
that Ty C T = SH has degree prime to p, Ty C Ty is étale and, using that a p-group is solvable,
T; C Ti4+1 is Galois, not étale of degree p for ¢ > 2. Let T; ,, be the normalization of T; ®g R,,.
Take N and M big enough so that the conclusions of 3.8.1 and of 3.8.2 hold for the p-adic
completion of the localization of each T; ,, at T; ,, NP, for every n > M. We are left to deal
with the following two cases. The first one is the extension arising from R C T3 js which is
tamely ramified. The second one arises from the extensions T ar C Tj41 0 for 7 > 2. To ease
the notation, we replace the extension R C S with T; ps C Tj41,a and for n > M we denote
by W, (resp. Z,,) the p-adic completion of the localization of T ,,4 s (resp. Tii1,n+n) at its
unique prime ideal above p. In each case, we want to show that the sequence {p"v(Dz_ /w, )}n
is bounded from above.

3.8.3. Case I: the extension W,, C Z,, is tamely ramified for every n
Let

wi=Jw,, 2=z, =7, ow, W,.
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They are both discrete valuation rings with perfect residue fields w’ and z.  respectively.
Tensoring the diagram

zZl — Z,

[ ]

W) — W,

with @, W, we get the diagram

Z/

Note that W,, Qw; W, (resp. Z, Qw: W) is flat as W;,-module (resp. as Z,,-module) and
W, C W. (resp. Z;, C Z._) is inert. The extensions of residue fields

!
Z, “—— Zn
/
w, —— Wy

are separable since we know that w/, C w, is separable and since w, C z, is separable
by assumption. Since W), C W/, and Z] C Z  are inert, the quotient of W, @w, W,
(resp. Zn @w: W!.) modulo the maximal ideal of W, (resp. Z,) is w, Qur, wl (resp.
Zp @21 zL,) which is a perfect field. We conclude that W, @w. W/  and Z, ®w: W, are
still discrete valuation rings and that the different of W,, @y, wW!. CZ, Qw;, W/ is the same
as the different of W,, C Z,,. Hence, to compute the behavior of the sequence {p"v(Dz, ;w,, ) }n
we may as well assume that the residue fields of W,, and Z,, are perfect for every n. Under
this assumption it follows from [16, Prop. 5 & Pf. Prop. 9] using local class field theory

that {p"v(Dz, yw, )} is bounded from above for n > 0.

3.8.4. Case II: the map W,, C Z,, is Galois, not étale, of degree p for every n

By 3.6 we have that v(Dz, ,w, ) < € for n>> 0. Replacing S with S,, we may assume that
this holds for every n. Let o be a generator of the Galois group G.

Assume first that w,, C z, is of degree p, and hence inseparable, for some n. By 3.8.1
this holds for every n. Let @ be a generator of 2, as w,-algebra. Let o € Z,, be a lift
of a. Since W,, C Z,, is Galois of degree p, the element « is a generator of Z,, as W,-
algebra and the minimal polynomial of o over W, is f(X) := [[,(X — o%(«)). By hypothesis
and 3.8.1 there exists 3 € Z, 1 such that o = P + p*v with v € Z,, ;1. Furthermore,
ﬂ generates zn+1 over wyy1 and, hence, Z,,1 as W, i-algebra. Then, v(@ Zn /Wn) =

@) =302 'v(o — 0%(a)) and, analogously, v (92n+1/Wn+1) Zz L v(B = d(B)).
Note that v(o'(a) —a) <v(Dz, /w,) <e. Thus, v(8P — o"(6P)) = v(a — o'(c)). Since
e <1=v(p), wehave pv(3 — o' (3)) = v(BP — o*(8)). Thus, v(Dz, ., /w,.,) = %
and the conclusion follows in this case.

We are left to consider the case that w,, = z,, for some (every) n € N. Let « be a uniformizer
of Z,. It generates Z, as W, -algebra. By 3.8.1 there exists 3 € Z,, 1 such that P = «
modulo p®Z,, 1. In particular, since v(Dz, /w, ) < € by assumption we have v(a) < € so

that /3 is a uniformizer of Znt1. Then, v(D 7, w,) = >0y ' v(o — o%(a)) and, analogously,
V(D z, 1 Wiin) = Doy ' v(8 — o*(8)). The conclusion follows as before.
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3.9. DEFINITION. — With the notation of 3.8 define ¢(S) := Y ¢(Bs..), the sum being taken
over all the (finitely many) prime ideals in S, over p.

3.10. COROLLARY — The cokernel of the trace Tr,,: S, — Hompg, (S, R,), see 3.2, is

e(s) c(8)
annihilated by p S . Furthermore, p»™ S, 41 C Sy, ®g,, Rn+1. In particular, p<P*1>5" Se C
Sn @R, Roo for everyn € N.

Proof. — The assertions follow from 3.6 and 3.8. O

3.11. COROLLARY.— We have S ®r,, Roo = Soo. Furthermore, Sy is Roo-torsion free as
a module and is normal as a ring.

Proof. — Since Eo\o is a flat Ro.-module by A.7, we get from 3.10 the inclusions

pe(S)

P S@p R ‘—>pp15 @R Ro. — S®g Row

Since S is a finite R-module, we conclude from A.7 that the homomorphism S ®g }/%; —
limaoe (S ®r Roo /P Roo) 18 an isomorphism In particular, S ® g ﬁo\o is p-adically complete
and separated Hence, Soc ®r., ROO is p-adically complete and separated and the natural map
Soo R, R — SOO is an isomorphism.

Using A.9 and the first statement, we conclude that §; is p-torsion free and is a normal ring.
In particular, S injects in Soo[p~!] = S[p~] ®r Roo - Since S[p~!] is flat over R[p~1], we
deduce that §O\o[p_1] is flat, and thus torsion free, over R . We conclude that §; is }/%; -torsion
free as a module as claimed. O

4. The generalized ring of norms

The aim of this section is to introduce and study a generalization of (the ring of integers of)
the field of norms of Fontaine—Wintenberger [8,9,17] for the rings R (2.2) and S (2.5). One
knows from loc. cit. that E‘t is a complete discrete valuation ring of characteristic p with residue
field k.. We reprove this result in 4.6. We show that EE is a noetherian, regular, domain formally

étale over the Tate algebra E"';{xl, ce oy Td,y %, cee i}, see 4.7. We prove that E;C is normal

and EE C Eg is generically finite and étale; see 4.9 for a precise statement. We refer the reader
to 4.5 for further properties of Eg

Let e € Q with 1 > ¢ > 0 and let V € N be such that 3.7 holds for the case R=S=1V.
Since V,, C V,,+1 is totally ramified for n > 0 by assumption, it follows from loc. cit. that there
exists a system of uniformizers 7; € V;, for ¢ > N, satisfying Tip =T mod p°.

4.1. DEFINITION (cf. [10, §A.3.1.2]). — Lete € Q with 1 > € > 0. For S, as in 2.5, define

~ ] ~ ~ 1
E;OO = Ololgn Soo/pESooy ESOO = E;oo |:7TI(:|
where the transition morphisms in the limit are defined by raising to the p-th power and where 7 x
is the element (..., 7y, Tpi1,...) € Ef.

Possibly taking a smaller € and a bigger N € N, we may assume that the conclusions of 3.7
hold for S. For every n > N, since p°So, N Sy, = p°S,, we have that S, /p°S,, is a subring
of Seo/P° S0 and for every x € Sy, 11/p°Syt1, we get from 3.7 that 2P € S,, /p®S,,. Thus, the
following makes sense:
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4.2. DEFINITION. — Let

EJSr = lim S,,/p°S,

be the subring of Egoo consisting of elements (zg,x1,...,Zp,...) € Eg‘m such that
Xy € Sy /p°Sy, forn > N. For every m € N let

Ef(m):= Ol)u;nn Sntm /D" Snt+m

be the subring consisting of elements (zq,...,Zy,...) € ng with z,, € Sy ym/P°Sntm for
n > N. Define Eg := E{[7;'] and Eg(m) := Ef (m)[75"].

4.3. Convention

Let o € Q. Following the conventions of 2.1 we denote by 7§ a (any) element a =
(ag,a1,...,an,...) inU,, Ey;(m), if it exists, such that v(a;) = & for i > 0.

One knows that there exists p such that v(7,,) = p% for n > N. Since we are assuming that
there is an element p* € V,, of valuation ¢ and since 7, is a uniformizer of V,, for n > N by

n
assumption, see 3.7, then (3, := % is a non-negative integer. We can, and will, then take 7} ©

to be the element ﬁ'f(" of Eé}

4.4. PROPOSITION. — The ring E}'M has the following properties:

(1) its idempotents are in one-to-one correspondence with those of §; It is a domain if and
only lf§; is a domain;

(2) the map E;m /ﬁgnaf}}‘x — Soo/P°Seo, Sending x = (T0,T1,...,Tim,-..) 10 Ty is
injective. It is an isomorphism if S = R;

3) itis EEoo-torsion free as a module, T§-adically complete and separated and reduced as
a ring. It is endowed with a 7§-adically continuous action of Aut(S/R);

(4) itis a perfect ring of characteristic p.

4.5. PROPOSITION. — The ring E;C has the following properties:

(1) there exists N € N depending on S such that the map E;/ﬁg"EEg — S,/ S,
sending x = (xg,T1,...,Tm,...) to T, is well defined and injective for every n > N.
It is an isomorphism if S = R,

) it is EJ}%—torsion free as a module, reduced as a ring and T -adically complete and
separated,

(3) it is endowed with a Tk -adically continuous action of Aut(Ss/R) compatible with the
one on Egm,

(4) its idempotents are the same as those of Egoo (resp. of Sxo). It is a domain if and only
if Seo (or equivalently §; or E;m) is a domain;

(5) thering EE is noetherian and E;C is finite as EE—module. In particular, EJSr is noetherian.

To have a good theory of the generalized field of norms, it is crucial that the maps
Ef /78 “Ef_ — Sec/p*Sec and Ef /75 “Ef — S,/p°S, (for n > 0), defined in 4.4(2)
and 4.5(1) respectively, are isomorphisms. In the next section we will show that, in fact, if
one is an isomorphism the other is as well and that this is equivalent to the almost étaleness
of the extension R, C So; see 5.1. We refer the reader to 5.10, 5.11 and 5.12 for examples of
situations when this applies. In the rest of this section we study the properties of the generalized
ring of norms which are independent from almost étaleness.
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4.6. COROLLARY (cf.[17, Thm. 2.1.3 & Prop. 4.2.1]). — We have E$ > koo [Tk], where koo
is the residue field of Voo and Ty is as in 4.2. In particular, E$ is a complete dvr of
characteristic p.

Proof. — Note that k., is a finite extension of k so that it is a perfect field. We have a ring
homomorphism ke, — E"ﬁ given by o — (a,a%,ap% ,...). By 4.5 the ring E{; is noetherian
and 7 -adically complete and separated. We then get a homomorphism p: koo [Tk ] — E?} =
lim,, (V,,/p°V,,). By 4.5(1) it is an isomorphism modulo ﬁgng for n > 0. Hence, it is an
isomorphism. O

Let RO := V{Tlﬂ,...,Tjd}. For every i = 1,...,d let z; € E;D be the element x; :=

1 1
(T;,T7, Ti“’2 ,...) (viewed in lim,, R}, /p? R}, with p? € V' generator of the maximal ideal).

1
,ajd

4.7. COROLLARY.— We have Ef, = E{ {z1,...,z4, %, ..
tive to the T i -adic topology on E$ Furthermore, with the notation of 2.1, we have

}; the convergence is rela-

@7.1) B O, (Bf) " = (B)".

In particular,
(1) the extension E;;o C E; is formally étale (for the discrete topology);
(i1) E; is a noetherian regular domain and T, x1, . .., xq form an absolute p-basis for Ef;
1 1

P ™

(iii) EE(m):EE@E;(J Efo(m)=EL[ry ol ... .al" .

4.8. An example: EE in the cyclotomic case

Suppose we are in the case 2.4. Then, we can be more explicit. Let € := (1,(p,(p,--.)s

considered as element of E;_. Note that (¢ — 1) = (7" ") as ideals of Ey,_. By 4.6 we have

Ei}v(k) = kfle — 1].

Finally, Ty := Gal(K,/K) acts continuously on E{,rv(k). Let x:T'y — Z; be the cyclotomic
character determined by the choice of the roots of unity {(,~ }. Then,

v(e) = XM = (1,@(@)’@;2(7), ).
The action of I' on E;O, and hence on EE, is characterized as follows. The group I'y acts

on Ef, and acts trivially on x1,...,z4. Fori =1, ... d the element y; € fR acts trivially on E‘t
and satisfies

- ij ifi= j,
vileg) = {x]- if i j.
4.9. THEOREM. — The rings Eg? and ng are normal. Furthermore, the extensions
Epr—Es and Ep_—Eg_

are finite and étale of the same degree.
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4.10. LEMMA (cf. [10, Section A.3.1.2]).— Let So be the p-adic completion of Sac
Consider the ring

lim S., := {(m(o)’x(1)7.._’x( ) |20 ¢ 5o e m+1)) (m)}7

oo—n

where the transition maps are defined by raising to the p-th power, the multiplicative structure is
induced by the one on S, and the additive structure is defined by

n—oo

(o™, ) o (g™, ) = (s Tim (00 b)),

Then,
(a) the ring structure is well deﬁned commutative, associative with 1;
(b) the natural map limyo.,, S — E S is an isomorphism.

Proof. — See loc. cit. We exhibit the inverse of the map in (b). Take z := (zg,...,Tm,...)

in f)+ For every i, j € N we have that z¥, . gives a well defined element of S../p’Ss

7,+J
and {xi+j}j converges to a unique z(*) € S for j — occ. Then, (@ 2t ) lies

in limyo.,, Soo and we define it to be the image of z. O

4.11. Proof of Proposition 4.4

(1) Let e be an idempotent of §; Then (e,e,...,e,...) is an idempotent of EX = ng .
Seo o0
Vice versa, let (z(?),...,2(™) . ..) be an idempotent of EJr ; the notation is as in 4.10. Then,

(M) = (z(m+)p = x(mH) ie., 2() =) for every i and ; § € N. Furthermore, (2(V)? = z(*)
i.e., 2 is an idempotent of S

Assume that Soo is a domain. Since we have a natural inclusion I:]JSFOO C §;N respecting
the multiplicative structures, see 4.10, we conclude that EJSFOC is a domain. Vice versa, suppose

that §; is not a domain. Since §; is normal and has as total field of fractions the finite product
of fields My ®r, Frac(R ) by 3.11, we conclude that Soo contains a non-trivial idempotent e.
Therefore, EJFoo contains a non-trivial idempotent and, hence, it is not a domain.

(2) It suffices to show that the map ]T];roo /ﬁgnE]:]Jer — Suo /D" Sso, sending x = (2, 21|
z(m) .) to the class of (") modulo p°, is injective. If (") =0 mod p¢, then (™ = 0 mod-

€

ulo prm~" for every m > n since S, is normal. Hence, = € 7rp QEJr By 3.7 Frobenius
on R /p° R is surjective. The last claim follows.

(3) We deduce that lim,, E /7r" ‘EEJr 5 limy, Soo /P S0 = E;Cm as claimed. The
~ N .
continuity of the action of Aut(S.,/R) is obvious. We have a map E?;'oc C So  (resp. EEOO C

—N — —
R, ) respecting the multiplication, see 4.10. It follows from 3.11 that S, is R.-torsion free
as a module and is reduced as a ring. Then, Eg?oo is EEOO -torsion free and is reduced as well.

D Ifz= (20,15, Tn,...) € Egoo, then y = (x1,..., Ty, ...) satisfies y? =x. O
4.12. Proof of Proposition 4.5

The fact that E;C is EE—torsion free and reduced follows from the analogous state-
ments for B and the inclusions Ef C Ef and Ef, C E}; . The map E}/7{ “E{ —
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]:jgoo /ﬁgnef};}o — Suo /D% Sso, sending (@ (D 20m) ) to the class of 2(™) modulo p°,
factors via S, /p®S,, for n > 0 by construction. Using that S,, is normal for every n € N, one
proves as in 4.4 that it is injective. By 3.7 it is also surjective if S = R. Moreover, we conclude
that lim,, EZ / ﬁg"EE; coincides with lim,, S,,/p*S,, = E&. Claims (1) and (2) follow.

Take N > 0 so that Frac(Sy) and Frac(Rs) are linearly disjoint over Frac(Ry) and
Aut(So/R) is the product of Aut(Sy/Ry) and Aut(Rs/R). Such product acts on S,, and,
hence, on S,, /p®S,, for every n > N. Claim (3) follows.

We prove (4). Let ¢ be an idempotent of §o\o Let ¢ be its image in §;/ ‘}3003; =
U,,(Sn/PBrSr). Then, ¢ is an idempotent and lies in S, /9,5, for some n € N. Since S,
(resp. §;) is p-adically complete and using Hensel’s lemma, e lifts uniquely to an idempotent
of S, (resp. E;). Thus, ¢ € S, and (e,e,...,e,...) is an idempotent of E; Thus, the first part
of (4) follows from 4.4(1).

Since S, is normal, it is a domain if and only if it contains no non-trivial idempotent. By
the above, this holds if and only if §; does not contain any non-trivial idempotent i.e., since it
is normal, if and only if §; is a domain. By 4.4(1) this is equivalent to require that E;oo is a
domain. Since Ejg is a subring of Eta if the latter is a domain also E;C is a domain. Suppose
that S is not a domain. Being normal it contains a non-trivial idempotent. By the above, Eg
contains a non-trivial idempotent as well and, hence, it is not a domain.

Next we prove (5). By 3.7 for every n > N the map R,,1/p*R,.41 — R, /p° Ry, (resp. Spy1/
P Snt1 — Sn/p°Sy) defined by raising to the p-th power is well defined; in the case of R, it
is also surjective. To easy the notation we assume that N =0 i.e., that Ry = R and Sy = 5.
In particular, Ef, /7§ Ef, = R/p°R is noetherian. The Ef;-algebra Ef /75E] is a Ef /7§EL =
R/p® R-subalgebra of S/pcS. Since S/p®S is finite as R/p® R-module and R /p° R is noetherian,
we get that Eg / ﬁgE;C is a finite R/p® R-module. Consider the graded rings

e B = @D (RBE) (7 BE) and g B = @D (RES) /(0 ES).

n n

By [2, Prop. 10.24] the ring EE is noetherian if grﬁgE; is. By [2, Cor. 10.25] the ring Eg
is finitely generated as Eg-module if gr--E is finitely generated as gr-- Ej-module. The
ring gr--Ey (resp. grz-Ey) is generated by E /7 Ey, (resp. Eg/TgEy) in degree 0 and
by 7§ in degree 1. Thus, by Hilbert’s basis theorem [2, Cor. 7.6], both conclusions, and hence

claim (5), follow remarking that E}, /7§ E}; is noetherian and Ef /7§ E}; is finitely generated as
E}/7§E}-module. O

4.13. Proof of Corollary 4.7

Consider the map ¢ ® 1:Ef @g+ (Ego)® — (Ef)®). It follows from 4.5(1) and 2.2
R

that, choosing ¢ small enough so that V N p*V,, is the maximal ideal of V, then o ® 1
modulo (ﬁgng) coincides with the base change via k — (V;,/p°V;,)®) of the homomorphism
(R, ®v k) @pos (R) ®vy k)®) — (R @y k)®). This is an isomorphism by 2.2 and 2.3.
Since (E;O)(p) is finite and free as EEO -module, it is 75 -adically complete and separated. Hence,
passing to the inverse limits modulo ﬁg"a for n — oo, we get that ¢ ® 1 is an isomorphism as
claimed.

(1) It follows from (4.7.1) that EEO - E}E is formally smooth (for the discrete topology) by [11,
0.21.2.7] and it is also formally unramified by [11, 0.21.2.5]. This implies the formal étaleness.
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(i1) By 4.6 and 4.5(1) we have (EE/TTKEE) = R,, ®v, koo. By 2.2 the latter is isomorphic
to R, ® koo Which is isomorphic as a ring to R ®y k. In particular, it is a geometrically
regular domain by 2.3. Since E is T -adically complete, every maximal ideal contains 7. We
conclude that the localization of EE at every maximal ideal is regular which implies that E}; R is
regular. In particular, it is the product of integral normal domains each of which is 7 -adically
complete and separated since it is a quotient of EE. Hence, the fact that EE /7K EJ}% is an integral
domain implies that EJIQ is itself an integral domain. The second statement is equivalent to the
isomorphism (4.7.1).

(iii) Follows from (4.7.1). 0O

We are left with the proof of Theorem 4.9. We start with a few lemmas.
4.14. LEMMA. — For every n, with the notation of 4.2, we have that Frobenius on E; (n+1)
defines an isomorphism E{ (n +1) — E¥ (n) — E{(n+1).

p.,...), where x,, €
Smtn+1/P°Smint1 and x,,—1 = aP . Thus, its image lies in E;(n) Vice versa, if y =
(.., Ym,...)is an element oijg(n), thenz = (..., zpm,...), withz; ;= y;41, lies in Eg(n—i— 1)

Proof. — Frobenius on Ef(n + 1) is the map (..., 2p,...) — (..., 2P

and its image via Frobenius is z. Since Ef (n + 1) is reduced by 4.5, Frobenius on E£ (n + 1)
is injective and the lemma follows. O

4.15. LEMMA. — For everyn € N

o(s) e(s)
(1) we have 7" E&(n) ) Ei(n + 1) C 77" Ef(n + 1) C Ef(n) )
EL(n+1) C Ef(n+ 1). In particular; these maps are isomorphisms after inverting 7§;
2) EEOO the wg-adic completion of the perfect closure of E}, the extension EE(n) C EEOO

is faithfully flat and E:g (n) ®E+(n) E+w is Tg-adically complete and separated,
c(S)p C(S)P

(3) we have 7] "V E§ (n )®E;( ) E]Jg caye 1)E+ CEf(n) B (n) E CE{ .
In particular, Es(n) ®g, () Er.. = ES )
Proof. —Let € and N be as in 3.7. Let ¢(S) be as in 3.9. By 3.6, for every n > N we have

c(S) c(S)
(4.15.1) prmn Sm+n DRy Ryyny1 Cprmtn Sm+n+1

C Sm+n ®Rm+n Rm+n+1 C Sm+n+1-

pc(S) p c(S)
(4.15.2) pr" @D S, ®p, Reo Cpr" @D S, C Sy R, Roo C S

(1) By constructlon Rm-s-n+1 is free as R,,t,-module with a basis given by the ele-

ments T, _s_n_HT’)mMJrl Tpm%+1 with 0 <t <p—1and 0< ]Z <p—1 for n> 0;
see 4.2 for the notation. By 4.5(1) we have E*( )/78 “EL(n) =5 Rynyn/p"Rmin. The
ring EZ (n) ®E+(n) 5 (n+1) is 7k -adically complete and separated by 4.5. Its quotient mod-
ulo 7" Ef(n + 1) is

m

(B5(0)/78%) @y (B (n+1)/78%) = (BE(0)/7 %) @Ry (Rmtntt /D" R

The latter injects in Sy4n @R, (Rmsnt1/P° Rimins1) since Ry, is free as Ry, qp-
module so that the map Ef; (n) gt () EL(n+1) —limy, Smin ®r,,., (Rmtnt1/p°), where
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the inverse limit is taken with respect to Frobenius, is injective. Using the given basis of 12,4 y,41
as R,,4+n-module for varying m we also conclude that it is surjective. In conclusion, reducing
modulo p® and taking inverse limits over m of (4.15.1), we get the claim.

(2) By 4.14 the perfect closure E ;""" of E}, coincides with the ring |, Ef(m). Hence,
ELP 7 B = Ro /p* Roe by 4.5(1). We conclude from 4.4 that E, s the 7-adic
completion of Ef;**"". By 4.7 each E};(mn) is free as Ej;-module. Then, the claims follow
from A.7.

(3) To get the homomorphisms claimed in (3), one reduces modulo p° and takes inverse
limits over m with respect to Frobenius of (4.15.2). One is then left to prove that map

El(n) OB+ (n) EfL = limy,(Spim ®r,,,, Roo/P°Rso) is an isomorphism. One knows
R ©° ~

from (2) that Eg?(n) ®E; (n) EEOO is mg-adically complete and separated. One then argues as

in the proof of (1) that the map E¢ (n) Bkt (n) E} /7l “E}, = Suim @R, Roo/P"Roo

is an isomorphism for every m > 0 since by 4.4(2) the homomorphism E;m / ﬁgmgﬁgw —
Roo/p° Roos given by (zg, ..., Tp,...) — Xy, is an isomorphism and since R, /p° R is a free

J1 Jjd
R,,/p°R,-module with a basis given by the elements T,thraner" ~--pom+" with m > 1,
1<t<pmand 1 <5, <p"form>0. O

4.16. The valuation z’ on ]Egm

Let z be a valuation on §; associated to a prime over p. Let
7' Frac(ﬁgoo) — QU{x}, Z'(z):= z(x(o)).

Let z:= (9,21, ) € Frac(f);foc). Then, (z(™)P™ = 2(=™) for all integers 0 < m < n.
Since So is reduced, = 0 iff (") = 0 for every n € N iff 2(®) = 0. Hence, 7' (z) = o if
and only if = 0. By the definition of the product structure on E;L in 4.10, we have that z’ is

oo

multiplicative.

Let # = a + b. In particular, {x,, := (a(™ 4 b(™)P™}, is a Cauchy sequence for the p-adic
topology on §; converging to (9. Since the image of z is contained in Q and z(p) > 0, we
have that z(x,,) — z(z(?)). Moreover,

z(x) = pmz(a(m) + b(m))
> " in{a(a™), 26
= min{z(a(o)) , z(b(o)) }
It follows that z’(a + b) > min{z’(a),z’(b)}. Hence, z’ defines a valuation on ng

4.17. Proof of Theorem 4.9

By 4.14 and 4.15(1), the map Es ®g, Eg) — Eg) induced by Frobenius is an isomorphism.
By [11, 0.21.2.7] this implies that the ring Eg is formally smooth over Ep (for the discrete
topology). In particular, the extension Er — Eg is smooth being of finite type by [11, IV.6.8.6].
Furthermore, it is also unramified due to the fact that the relative differentials Q]{:S JE, Are Zero
by [11, 0.21.2.7] and [11, 0.21.2.5]. Hence, the extension Er C Eg is €tale as claimed. We
already know it is finite by 4.5(5). By 4.15(3) the extension Er__ — Eg__ is finite and étale
since Ep — Eg is finite and étale.
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The ring Esw is normal since it is a finite étale extension of E R., and EEO@ is normal due
to A.6 and 4.15(2). Let © = a/ 7‘1'8 be an element of Eg_ integral over Egoo and such that a €

Egoo and § € Q. Write a = (... ,al™...) as in 4.10. Let z be a valuation on §; associated

to a prime over p. Let z’ be the associated valuation on Frac(EJSroo); see Section 4.16. Since x is
~ -3
integral over EY_ we have that 2/ (z) = z(z(?)) = 2(a(”)) — z(p°) > 0. Hence, z(a(™)p7™) > 0

for every m and z. Since §; is normal by 3.11, we conclude that alm) pp__”’a‘ € §; for every m.
Hence, = € Ef_. This proves that E{_ is normal.

We know that Eg is normal since it is an étale extension of Ep which is regular by 4.7. Let 0 <
¢’ < e.Let x be an element of Eg, which is integral over Ef. Write it as = a /7§ witha € E}
and 6 € Qx. Write a = (...,a(™ .. ) as in 4.10. Let z be a valuation on S, associated to a
prime over p. Let z’ be the valuation on Frac(Egoo) defined by z'((z(©,z(M,...)) := z(z(?);
see Section 4.16. Since x is integral over Eg& we have that z'(x) > 0 i.e., z(2(?)) = z(a(?) —
z(p®) > 0. Hence, z(a(m)p;_’g) > 0 for every m and z. Write ™) = a,,, + p°s with a,,, € S,

-5 -5

p‘fn. Since a™pr™ = a,,p7™ —|—p€7vims and S,, is
normal, we get that amp T liesin S,,. Then, 2 = (... LamMpw ) € limy, (S /P Sm) = ES
as wanted. This proves that E}' isnormal. O

and s € §; Take m satisfying ¢’ < & —

5. Refined almost étaleness

In this section we introduce a condition, denoted by (RAE) for refined almost étaleness, on
the ramification of the extensions {R,, C S, },. See 5.1 for equivalent formulations of (RAE)
among which there is Faltings’ condition (AE) on almost étaleness of the extension R, C Sco.
Assuming that (RAE) holds we prove that the generic degrees of EE C E;C and EEM C E;Soo
are the same as the generic degree of R C .S, see 5.3. We can also prove that f]goo is the 75-adic
completion of the perfection of Ejg“ as in classical case (R = V), see 5.4. Eventually, we can
establish the functoriality of our construction with respect to R; see 5.6. It is quite easy to show
that (RAE) holds if R is of Krull dimension < 2; see 5.10. In more generality it follows from
Faltings’ purity theorem [7, Thm. 4]; see 5.11. The notation is as in 3.2. Consider the conditions

(AE) For everyn € N the element p# Coo is in the image of Soc @R, Soo-

(RAE) There exists £ in N so that p% en Is in the image of S, ®r, Sy for all n € N.

RAE stands for refined almost étaleness: this condition implies, thus refines, the notion of
almost étaleness (AE) of the extension R., C S... The latter is due to [6, Def. 2.1].

5.1. THEOREM. — The following are equivalent:

(a) (RAE) holds for the tower {R,, C Sy };

(b) (AE) holds for the extension Ry C Sso;

(c) for every n € N the map ng /7y
is an isomorphism

(d) there exists N € N such that for every n > N the map EJSF/TTSTLEEJSr — Sy /DSy, given
by (xo,...,Tn,...) — Xy, is an isomorphism.

%ng — Soo/P°Soo, given by (xo, ..., Tp,...) — Ty,

5.2. LEMMA. — Let A be a noetherian, regular domain. Let B be an A-algebra, finite and
torsion free as A-module and normal as a ring. Let QQ be a prime ideal of A of codimension 1
or 2. Then, B®4 Aq is a free Ag-module.

Proof. — If @ is of codimension 1 the statement is clear. Assume that it has codimension 2. It
follows from the Auslander—Buchsbaum formula, cf. [5, Thm. 19.9] that
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pd(B ®4 Ag) = dp(Q,Ag) — dp(Q, B ®4 Ag) where pd stands for projective dimension
and dp is the depth. Since A is regular and B is normal, we have dp(Q, Ag) =2 =dp(Q,B®4
Ag). Hence, pd(B ® 4 Ag) = 0 and the lemma follows. O

5.3. COROLLARY. — Assume that 5.1(d) holds. Then, the degree of the extension Er C Eg is
equal to the degree of the extension R[p~—'] C S[p~1].

Proof. — Let Q be a prime ideal of E}; containing 7 of height < 2. Let {Q,, }m0 be the
tower of prime ideals of {R,,} containing p defined by EE/(ﬁng, QEL =R, /QmRy. We
deduce from 5.2 that S,, o, := S, ®g, R, a, is a free R, o, -module for every n € N of

degree equal to [Frac(S) : Frac(R)]. By 4.7 the ring EE,Q is local and regular. Since Ef, is

—

normal by 4.9, it follows from 5.2 that E; Qg+ E; o 1s free as EE o-module of rank equal to
xR ;

[Frac(EY) : Frac(E%)]. By 5.1(d) we have E& Bpt (EJIQ’Q/frg EEEQ) ~ (Spa,/p°Sn.a,)

and EE,Q/ﬁg 'EEEQ ~ R,.qa,/p°Rn.a, for n>> 0. The corollary follows. O

5.4. COROLLARY. — The following hold:

(i) the ring Eg@o contains the perfect closure of Eg;

(i) if 5.1(d) holds, Egoo coincides with the completion of the perfect closure of E;f with
respect to the ideal (T§).

Proof. — (i) Let © = (z9,21,...) € E5. Let N € N. Then, the element (zx,Zn41,--.)
of B isap"-th root of z.

(ii)) Let € and N be as in 3.7. By 4.14 we have Eg’perf =,, E{(m). By 5.1(d) the
map Eg(m) — SmanN/P°SN+m» given by (Yo, ..., Yn,--.) — YN, is surjective. Since S, =
U, Sn. we conclude that the natural map E5 P — Ef / ﬁgNEflgw = Soo /D" Seo is surjective.
The conclusion follows since f)gm is mg-adically complete and separated by 4.4(3). O

5.5. Functoriality in R

Let R and T be rings satisfying the hypotheses of 2.2 (possibly for different d’s and
different V’s). Denote by {T,},, with Top = T, a tower with the properties of 2.2. Assume that
there exist NV € N and compatible morphisms f,, : R, — T,, for n > N. It follows from the
definition of EX, see 4.2, that they give rise to a ring homomorphism fr : EE — E;

Let R C S be a finite extension, étale after inverting p with S normal. Let U be the
normalization of S ® g T' and let U,, be the normalization of U ® T,,. Note that for ever n > N
we have compatible homomorphisms S,, — U,,. We then obtain a morphism of EE-algebras
fs: E;C — E[Jj Then,

5.6. COROLLARY. — Assume that the equivalent conditions of 5.1 hold for the tower R,, C Sy,
with £ = £(S). The kernel and the cokernel of the map fs®1: Eg ®E; E} — Eg are annihilated

by WS. In particular, fs ® 1 is an isomorphism after inverting T .

Proof. — Denote by e, the idempotent associated to the extension R, [p~!] C S,[p~!] and
by ¢/, the idempotent associated to the extension T,[p~!] C U,[p~!]. Note that U,[p~1] =
Snlp~!] ®g, T,. Hence, ¢, is the image of e,. Then, p% e/, is in the image of S, ®r,
Sn ®r,, T,. Thus, we have pﬁ Sn ®r,, Tn Hp% U, — Sn ®r, T, — U, by 3.1. Reducing
modulo p® and taking inverse limits for n > 0 with respect to Frobenius, we deduce from 4.5(2)
and 5.1(d) homomorphisms 7{E{ gt Ef — 7§E}, - E§ ®gt Ef — E{; of Ef-modules.
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Since Er C Eg and E7 C Ey are finite and étale of the same degree by 5.3, the conclusion
follows. O

We now come to the proof of 5.1. We start with some lemmas.

5.7. LEMMA. - Let 0 <e <1 be as in 3.7 and let 0 < & < e/p be such that there exists an
element p° € Vo of valuation 6. Assume that p°e. lies in the image of S ®Rr., Soo- Then,
the map Soo /D" P2 Ss — Soo /D° P2 Soe, defined by raising to the p-th power, is surjective. In
particular, the natural projection

Egoo /ﬁgn(sfp(s)ﬁgm N Soo/pa—pésom

given by (g, ..., Ty, ...) > Ty, is an isomorphism.

Proof. — The injectivity in the displayed formula follows from 4.4. Clearly the first claim
implies the second. Write p’e., = >, @i ® b; for suitable elements a; and b; of S.. Since e is
an idempotent, it follows that for z € S, we have

Pr=(Trel)(pré (z®1)) = (Z Tr(a?z)b? + O(p)> :

Here, Tr: Soo — R is the trace map and O(p) means up to an element in pS.,. Since the map
R /p°Roo — Roo/P° R defined by z — 2P is surjective by 3.7, there exists a € So, such that
pP°x = aP + O(p°). Since S, is normal, i := p %« lies in S, Therefore, = y? + p*~P° 3 for
some 3 € S, as wanted. O

5.8. LEMMA. — Let E};(n) C B(n) be a finite extension such that Ef;(n)[7 ;'] — B(n)[7 "]
is finite and étale. Let ¢, be the associated idempotent. Assume that there exists { € N such
£

that 7" annihilates the submodule of B(n) ®g+ (nyB(n) consisting of 7 i -torsion elements and
R

0

such that 7" ¢, lies in the image of B(n) g+ (n) B(n). Let Ry, C By, be a finite extension such
R

that Ry, [p~'] — B, [p~1] is finite and étale. Let ¢,, be the idempotent associated as in 3.1. Assume

that there exist 0 < ;l—f, < & < 1 and an isomorphism j : B(n)/75B(n) — B, /p B, as algebras

over EE(n)/ﬁSEE(n) = R, /p°R,, (by 4.5(1)). Then, p§—£ e, lies in the image of By, ®g, Bp.

Proof. — Write 7, := pﬁ_ﬁ' . Consider the polynomial f(X) := X2 —7,, X. Then, by assumption

Tnen is a well defined element of

(B(n)/75B(n)) @g: () (B(n)/75B(n)) < (Bn/p" Bn) ©r, (Bn/p" Bn)
satisfying f(7,,8,) = 0. Take xg € B,, ®g, B, to be any lift of 7,¢, modulo p°. Then,
f'(z0) = 2x9 — 7, and f'(xg) = 7,,(2¢, — 1) modulo p°. Since (2¢, — 1)? = 1, we conclude
that f’(x¢) = 7,,u where v is a unitin B,, ® g, B,. Note that the latter ring is p-adically complete
and separated since it is finite as R,-module. By Hensel’s lemma [5, Thm. 7.3], there exists a
root x € B, ®g, By of f(X) congruent to x¢, and hence equal to 7,,¢,,, modulo pa_i_”e‘.

In what follows we consider B,, ®r,, B, as a left B,-module. Let m,, : B,, ®g, B, — By,
be the multiplication map. Since the image of 7,¢, via the multiplication on B(n) is 7,, we
have m,,(z) = 7, modulo p°~ 7 . Hence, my(x) = 7,v with v a unit satisfying v? = v and v = 1
modulo ps—;l—ﬁ,. By Hensel’s lemma v = 1, i.e. m,, (z) = 7,. It follows from the assumptions that
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the image of multiplication by 7,,e, on B(n) ®g+ (,,) B(n) is B(n) - 7,ey. Thus,
R

z(Bn ®R,,, Bn) - an +p8_§_£ (Bn ®Rn Bn)

Since (z/7,)M = (z/7,,) for every M € N we have

M
x x x _ag
(T_)(Bn ®r, Bn) = (T_) (Bn ®r, Bn) C Bn (7) +p" 77 (B @, Ba)
(as submodules of B, ® Rn w7 1)) Slnce B,, ®g, B, is p-adically separated, we conclude

that *(B,, ®r, Bn) = B,,=. Hence, - = ¢,, as claimed. [
5.9. Proof of Theorem 5.1

(a) = (b) is clear.

(b) = (c): the injectivity follows from 4.4(2). To prove the surjectivity we may shrink . Then,
the implication follows from 5.7.

(c) = (d): the fact that there exists N € N such that the map in (d) is well defined and injective

for n > N follows from 4.5(1). We claim that p ™ i Sp /DSy, is in the image of E+ forn > N.It

suffices to prove this after base change via the faithfully flat morphism EE cEf, R, (see4.15(2)).
By 4.15(3) and 3.10 we have

- - - ) o)
7o VEf CEf®p Ef_CEf . p7" Sy ®g, Ree CP7™ Soo C Sy @, Roo

~ n_~ c(S) ~
Since B, /7l “E}; = Roo/p°Ros by 44(2). (c) implies that (p7™ S, /p°Sy) gt Ef_
o(8) ~
ie., (pP_f‘Sn/pssn) ®R, Roo, is in the image of E;C Qg+ E; as claimed. If z, €
R oo
c(S)
pP" S, /p° Sn is the image of = = (z¢,...,%m,...) € EL, from the normality of S,, we get
that x,, E p D S /D% Sy, for every m > n. Hence, y = x/w %) lies in E+ We conclude that

Sn/p° -5 S,, is in the image of E&. This implies that also EZ — S, /p£S,, is surjective.
(d) = (a): by 4.9 the extension Eg(m) C Eg(m) is finite and étale. Let ¢, be the associated
idempotent as in 3.1. Then there exists ¢ € N such that 7§¢ lies in the image of Eg ®E+ E+

and 7§ annihilates the submodule of 7 g-torsion elements of E& 's gt E{. We deduce from 4.14
£
that 7 "™ € is in the image of B S(m) ®g+ (m) B ( ) and 7 7r0 ~ kills the 7 -torsion of the latter
R
for every m € N. The implication follows then from 5.8 with B,, = S,, and B(n) = E{ (n).

5.10. PROPOSITION. — If R is of Krull dimension < 2, then condition (RAE) holds with
L=1¢(S).

()
Proof. — By 3.10, p ™ Kills the cokernel of the trace map Tr,: S, — Hompg, (S,, Ry),
defined in 3.2. Since .S,, is projective as R,,-module by 5.2, we get that in

Tr, ®Id

Sn OR, Sn HomRn (Sru Rn) R, Sn - HOInSn (Sn OR, Sn» Sn)

the rlght hand map is an isomorphism. We conclude that the cokernel of the composite is killed
c(S)
by p»™ . Hence, reasoning as in 3.1, it follows that p»™ e¢,, lies in S, ®g,, S,. O
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5.11. THEOREM (Faltings’ almost purity theorem). — Assume that the composite of the
extensions V[Tlil, ... ,T(jﬂ] — RY — R is flat and has geometrically regular fibers and that
we are in the cyclotomic case, see 2.4. Then, condition (AE) holds.

Proof. — Due to 2.3 the extension k[Tfﬂ7 e 7ch1] — R ®vy k is formally étale. Hence, R

~ 1 1
satisfies the assumptions of [7, Thm. 4]. Let R :=J,,,cn R[TV™, ..., 77" ]. It is naturally a Roo-
algebra. Define S = Soc @R, R.Due to [7, Thm. 4] the extension R C Sis almost étale. Since R

is the union of finite and étale extensions of R, the conclusion follows. O

The following proposition provides a good source of examples when 5.11 applies. Let B°
be an excellent, noetherian, flat V[TE!, . .. ,Tfl]-algebra such that V[T, ..., TF'] — B has
geometrically regular fibers and the natural map (B ®y k) @go (R° @y k)®) — (B @y k)@,
induced by Frobenius, is an isomorphism. For example, one may take B® = V[T, ... T+,

5.12. PROPOSITION. — Suppose that A is the localization S~ B with respect to a multiplica-
tive system S of an étale extension B of BY. Let J C A be an ideal containing p and let R be
the J-adic completion of A. Assume that 1 # 0 in R. Then,

(i) R is noetherian and p-adically complete and separated,
(i1) R is flat as V[Tlil, . 7Tglil]-algebra;
(i) V[T ... ,Tfl] — R has geometrically regular fibers;
(iv) the natural map (R @y k) @ o (R° @y k)P) — (R ®y k)P is an isomorphism. Thus,
{T1,..., Ty} is an absolute p-basis for R Qv k.
In particular, the theory developed so far applies if k C R ®v k is geometrically integral.

Proof. — (i) and (ii) are clear. (iii) Since B is excellent, also A is excellent by [11, 7.8.3(ii)].
The claim follows from [11, 6.6.1(i)] since both V[T!,. ..,Téﬂ] — A and A — R have
geometric regular fibers (for the second map use [11, 7.8.3(v)]).

(iv) Since p @ 1: (B ®v k) ®@po (B® @y k)P) — (B ®y k)®) is an isomorphism, the same
applies to the localization with respect to .S and to the reduction modulo J" for every n. Note
that (R® ®y k)@ is finite and free as R° ®y k-module. Hence, the J-adic completion of
(A®y k) @po (R® @y k)P coincides with (R @y k) @go (R° @y k)P). On the other hand,
the J-adic completion of (A @y k)P is (R ®y k)®). The claim follows. O

6. The inverse of the functor of generalized ring of norms

Assuming that the equivalent conditions of 5.1 hold, we prove in Theorem 6.3 and its
Corollary 6.4 that the formation of the generalized ring of norms, see 6.2, defines an equivalence
of categories between the category of normal extensions R., C S, finite and étale after
inverting p, and the category of normal extensions E; C B, finite and étale after inverting 7.
The essential tool is the construction of an inverse to the functor of the generalized ring of norms,
see 6.2, based on Appendix B.

6.1. DEFINITION. — Consider

R.-AE: the category of normal R -algebras So, such that Sy, [%] is finite and étale as R, [1—17]-
algebra;

E-AE: the category of normal E};-algebras B such that B[%] is finite and étale as E;[%]-
algebra.

6.2. DEFINITION. — Define the functor
E":R.-AE — E}-AE
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as follows. Let R, C So be an object of R-AE. Let N be any integer for which there exists
anormal Ry-subalgebra Sy of S, such that Sy, [p~!] = Sy ® g, Reo[p~!]. Forevery n > N,
let S, be the normalization of Sy ®g, R,. Define E;C to be the EE-subalgebra of E;m
consisting of elements (ag, ..., an,...) such that a,, € S, /p*S, for n > N. It is clear how to
define E* on morphisms.

6.3. THEOREM. — (I) The functor EX is well defined.

(IT) Assume that the equivalent conditions of 5.1 hold for every object of Roo-AE. Then, the
functor EX is an equivalence of categories. Furthermore, if So. and EJSr are two corresponding
objects, then

(1) the generic degrees of Roo C Soo and EE - Eg? are the same;

(2) the sets of idempotents of So and E; are in natural one-to-one correspondence;

(3) Reolp™t] C Soo[p™'] is Galois if and only if Er C Eg is Galois and the two associated

Galois groups are naturally identified.

Proof. — (I) Let Ry, C S be an object of R,-AE. Let Sy be as in 6.2. Since Ry C R is
faithfully flat, Ry [p~!] — Sn[p~!] is finite and étale. By 4.9 it is normal and E}, C EY is finite
and étale after inverting 7 x . In particular, E;C is an object of EE-AE as claimed.

(IT) We suppose for the moment that ET is an equivalence of categories and we prove the other
claims. Claim (1) follows from 5.3. Claim (2) follows from 4.5(4). Assume that R [p~ ] C

Seolp™ ] is Galois with group H. Then, H acts on SC>O and by 3.11 the invariants S commde
with R . The group H also acts on E+ by 4.4 and, using 4.10, the invariants coincide
with EEO@ . Eventually, H acts on EJSr by 4.5(3). It follows from 4.15(2) and (3) that the invariants
are given by EE. This proves Claim (3).

To prove that EX defines an equivalence of categories we construct an inverse. This is one of
the goals of the rest of this section; see 6.10. O

6.4. COROLLARY (cf. [10, Thm. A.3.1.6]). — Under the assumptions of 6.3 we have an
isomorphism of topological groups

Gal(R°*P[p~'] /R [p™']) = Gal(E3P/ER),

where R*P is as in 2.6 and ER® is the union of the maximal chain of finite and étale extensions
of Eg arising from the maximal chain of finite and étale extensions of Reo[p~!] chosen in 2.6.

6.5. Base points

Assume we have a discrete valuation ring Ty, for some M € N, satisfying the hypotheses
of 2.2 (possibly for different d’s and different Vs from those for R). Let {T},},>n be a
tower with the properties of 2.2. Denote T, := Un T,. Assume that we have compatible
morphisms f,, : R,, — T}, for n > M. For example, one can take 7, to be the localization R,, s,
of R,, at the unique prime ideal 3,, over p.

As in 2.6 define T*°P as the direct limit of a maximal chain of normal domains which are
T -algebras, finite and étale over Tw, [p~!]. Then, 7 : Spec(T5P[p~1]) — Spec(Roo[p~1]) is a
geometric point. _

On the other hand, define E7, := lim,, > as Ty, /p*Ty as the subring of Ef, = 1im Th /pTog
consisting of elements (ag,...,ay,...) such that a, € T, /pT,, for n > 0. Then, E} is a
complete discrete valuation ring and, applying the functor EX of 6.2 to the chain of T, -algebras
involved in the definition of 7P, we obtain by 6.4 a separably closed extension EZ" of the
field Er. Let vy : Spec(EY") — Spec(ER).
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6.6. COROLLARY. — Under the assumptions of 6.3 the functor EX provides an equivalence
of Galois categories between the category of finite and étale covers of Spec(Rq.[p~1]) with base
point np and the category of finite and étale covers of Spec(Eg) with base point vr. In par-
ticular, we have a topological isomorphism of fundamental groups 1 (Spec(Roo[p™1]), 1) =
m1(Spec(Er), vr).

Proof. — In the following if A is a ring and B and C' are A-algebras we write Hom 4 (B, C)

for the set of homomorphisms as A-algebras. Let S, be an object of R.,-AE. Denote by U,
the normalization of T, in Soo ®r_, Tho [p‘l]. Then,

Homp__ (Se[p™'], T°P[p~"]) = Homp__ (Seo, T°%) = Homy_ (Uss, T).

The latter is identified with Homg,.(Ey, ET") by 6.3. By 5.6, we have Eg ®g,, Er = Ey.
Hence, Homg, (Ey, EX") = Homg, (Eg, EX"). Thus, we get the identification

Homp_ (Soo [p_l] , TP [p_l}) =Homg, (ES7 E;?p)

as sets with actions of Aut(Se./Roo ), functorially in Se,. The corollary follows. O

6.7. DEFINITION. — Let B be an object of E};-AE. Consider the direct system {B(n)},en
(resp. {E},(n)}nen), where for every n € N we define B(n) := B (resp. Ef;(n) := E},) and
the transition map B(n) — B(n+ 1) (resp. Ef;(n) — E},(n+ 1)) is Frobenius. Define the direct
limits

Bret .= nh_)rr;CB(n) (resp. E'E’perf = nh_{lolo Ef(n)).

For every n € N, let ¢, € (B(n) BB+ (n) B(n))[7'] be the idempotent defined as in 3.1.

e <
Let £ € N be such that 7" ¢, is in the image of B(n) ®g+ () B(n) and 7" annihilates the
R
submodule of B(n) ®g+ (,,) B(n) of 7k -torsion elements.
R

6.8. Remark.— Due to 4.9 if R C S is as in 2.5, then the extension Ef; C EY is an object
of EE-AE. In 4.2 we have already introduced a ring denoted by Eg(n) By 4.14 the two
notations E; (n) given in 4.2 and in 6.7 agree.

e
Assume that 75¢ is in the image of B(0) ®g+ (o) B(0), then (7leo) 7™ = 7" €, lies in the
R

image of B(n) DEt () B(n). Analogously, if 7§ annihilates the 7 x-torsion of B(0) ®g(0)

B(0), then 72" kills the 7k -torsion of B(n) ®g+ () B(n). Hence, the positive integer ¢, whose
R
existence is claimed in 6.7, does indeed exist.

6.9. THEOREM. — For every object B of EE-AE there exists N = N(B) € N and for
everyn = N there is a Ry, -algebra B,, with the following properties:

(1) B, is normal as a ring, finite as R,-module and R, C B, is étale after inverting p of
degree equal to the generic degree of EE C B;

(2) foreverym >=n > N the Ry,-algebra B, is the normalization of By, g, R, in its total
field of fractions;

(3) foreveryn > N we have an isomorphism gy, :Egn — B(n) as E};(n)-algebras such
that for m > n the homomorphism g () © T'mn © ﬂ];(ln) :B(n) — B(m) is the natural
inclusion defined in 6.7. Here, T, , : E"E} — Egm is induced by the inclusion B,, C B,

n

obtained from (2) and the functoriality of Et;
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4) let j:B — B’ be a homomorphism of objects of EE-AE. There exists N(B,B') ¢ N
such that N(B,B’) > N(B), N(B') and for every n > N(B,B’) there is a unique
homomorphism of R, -algebras

vn: By, — Bl
such that the induced homomorphism (g (y) © Ty © 515(170 :B(n) — B/(n) is the one
defined by j. Here, B are the isomorphisms defined in (3) and ., : Egn — EE/ is the

homomorphism associated to v, applying the functor EX. Furthermore, for m > n the
map v, is induced by v,, via (2);

b)) if B= E;r with R C S as in 2.5 and if the equivalent conditions of 5.1 hold, then
B, = 5S,.

6.10. COROLLARY. — Consider the map
EL-AE — Ro.-AE

associating to E; C B the extension Ry C Boo :=J,, By, defined in 6.9. It is a well defined
functor and the functor EX, defined in 6.2, provides a left inverse. Under the assumptions of 6.3,
it is the inverse of EX.

Proof of Corollary 6.10. —Due to (1) and (2) of 6.9 the R,-algebra B, is an object of
R..-AE. By 6.9(4) the formation of B is functorial. The other claims follow from (3) and (5)
of 6.9.

Proof of Theorem 6.9. — By B.3 there i is N € N and for every n > N there exist a R,,-algebra
B,, and an isomorphism 3, : B,,/p° B,, — B(n)/7§B(n). Furthermore, B,, has no non-trivial
p-torsion and it is finite as R,,-module. Then,

6.9.1. LEMMA. — The extension R,,[p~'] — B, [p~1] is finite and étale of degree equal to the
generic degree of E; Cc B.

Proof. — The finiteness is clear. We prove that Q}Bn /Rn is killed by p. Note that

U, /p=Bo) R0 = B, /R0 [P B, R,

and

1 1 —cnl
Qs /aeBm)/ELm) = MBm)/EL M)/ T B (0) /B (n)-

From the isomorphism of R,,-algebras 3, : B,,/p° B, — B(n)/75B(n), we get that Q}Bn IR,/

QL = QL I )

e
The latter is killed by 7" ; see 3.1. Hence,
B(n)/E}(n) rsK Y 7o

Bn/Rn /Ef(n)’
Q}B /R, pEQ}g Ry, which is then equal to me}g /R for every m € N. Thus, pﬁ
ann1h1lates QlB /R /p™ QB /R, forevery m € N. But QB /R, 18 finite as R,,-module and,
consequently, it is p- ad1cally complete and separated and coincides with the inverse limit
lim,,, (2 IR/ PO /R,,)- We conclude that pp annihilates Q R
We prove that R, — B, is flat after inverting p. Let M be a finite R,,-module. Then,
e
Tor' (M, B,,/p° By,) = Tor' (M, B(n)/7B(n)) and the latter is killed by 7" ; see 3.1. Using
the exact sequence

0— BptBy — By /p* By — 0,
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we get that p%Torl(M, B,) = p°Tor' (M, B,,) = p™Tor' (M, B,,) for every m € N. But
Torl(M ,B,,) is finite as R,,-module and, hence, it is p-adically complete and separated. Thus,
Tor' (M, B,,) is annihilated by pz’L

Denote by ‘3, the unique prime ideal of R, over p. Since B,, has no non-trivial p-torsion,
B, ®r, Rngp, is a free R, g, -module of rank equal to the generic degree d of the
extension R, C B,,. By 4.4(2) and 2.3(2) there is a unique prime ideal P, of EE(n) over Tg.
Since B(n) is normal by assumption, the generic degree f of Ef(n) — B(n) is equal to the
rank of the free Ef(n)p,-module B(n) DE+t () Ef(n)p,. Note that f coincides also with
the generic degree of Ef, — B. Since B, /p°B, = B(n)/7§B(n) and R, g, /p°Ryq, &
E}(n)p, /75EL(n)p, by 4.4(2), we conclude that d = f as claimed. This concludes the proof
of the lemma. O

By B.10 for every m > n > N there is a unique homomorphism u,, ,: B, — B,, of
R,,-algebras such that the diagram

Bu/pBm 22 B(m)/75B(m)

commutes. Then,

6.9.2. LEMMA. — For every m >n > N the map
Um,n ®1: By, ®r,, Ry — By,

is an isomorphism after inverting p.

Proof. — Let C be the cokernel of u,, , ® 1. Then, C'/p*C is identified with the cokernel of

(B(n)/75B(n)) @gs ) B (m) — B(m)/75B(m).

1

If € B(m) then 7r0 =3, Trp (@’ )bp lies in the image of B(n) DEt () EL(m) —
B(m) (see B.1 for the notation). Hence, C'/p*C is annihilated by P ie., pim C = p°C = pMC
for every M € N. Since C is finite as R,,-module, it is p-adically complete and separated i.e.,
C =lim;(C/pMC). Thus, C is annihilated by p% Inparticular, u,, , ®1: B, ®g, Ry — Bm
is surjective after inverting p. By 6.9.1 the generic degree of R,, — B,, coincides with the
generic degree of R,, — B,,. Since these extensions are étale after inverting p by 6.9.1, we
deduce that u,, , ® 1 is an isomorphism after inverting p as claimed. This concludes the proof
of the lemma. O

Let j: B — B’ asin 6.9(4). By B.10 there exists N € N and for every n > N there is a unique
homomorphism of R,,-algebras v,, : B,, — B, such that the diagram

Bo/p°Bn 2% B(n)/75B(n)
Un - g
B,/p*B, - B(n)/75B'(n)

commutes. Furthermore, the homomorphisms {v,,}, are compatible for varying n with the
maps p, ., defined for { B, },, and for { B}, },,. Claims (1)—(4) follow from the following:
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6.9.3. LEMMA. — The ring B, is the normalization of By Q@ry R.,. Furthermore, we have
isomorphisms gy :EJBC" >~ B(n) such that
(1) they are compatible for m = n with the map u,, ,, : B,, — By, and the inclusion B(n) C
B(m) of 6.7;
(ii) given a homomorphism j:B — B’ as in 6.9(4), they are compatible with the homomor-
phisms v, : B,, — B!,

Proof. — By 6.9.2 the map u,, v ® 1: By ®pr, R, — B, is an isomorphism after inverting p.
Hence, if B,, is normal the first statement follows. Let .S,, be the normalization of B,,. Let ¢,,
be the idempotent associated to R,[p~!] C B,[p~!] = Su[p™!]; see 3 2 By 5.8 we have
that pp’“’h ¢, lies in the image of B,, ®, B,. We deduce from 3.1 thatpv"“‘ Sntn C Bpyp for
every h € N. We have E},(n + h)-linear homomorphisms

20
6.9.1) P (Spyn /D" Snin) = Buyn/p° Buin 2B(n+h)/75B(n + h)

- Sn+h/p85n+h-

Taking inverse limits with respect to h € N of the factors in S and B with the transition maps
defined by raising to the p-th power, we get Eg(n)-linear homomorphisms

20

7" Ef(n) — B(n) —» E&(n).

The generic degree of R, — S, is the same as the generic degree of R,, — B,, and coincides
with the generic degree m of EE — B by 6.9.1. By 4.9 the ring E;J(n) is normal and defines a
finite and étale extension of degree m, after inverting 7 ¢, of E},(n). Hence, B(n) 2 E{ (n).
By 5.8 condition (RAE) holds for the tower {B,, },, and, hence, for the tower {5, },, as well.
In particular, we have EZ (n)/7§E& (n) — S,,/p®S,, by 5.1. We then obtain the isomorphisms

B, /p° By, — B(n)/7B(n) — E&(n) /7 EL (n) — S, /p°Sh.

We conclude from Nakayama’s lemma that the inclusion B,, C S,, is an isomorphism. Taking
inverse limits of (6.9.1) with respect to & we conclude that B(n) = Egn. Claims (i) and (ii)
follow. This concludes the proof of the lemma. O

We now prove Claim (5) of 6.9. By 4.9 the extension Er C Eg is finite and étale. Consider
the tower {R,, C S, }. By 5.1(d) there exists N € N such that Eg/frgnEEg ~ S,/p°Sn
for every n > N. Due to 5.1(a) and 3.1 we also conclude that there exist homomorphisms
fn:RM— S, and g,,: S,, — R" such that f, is surjective and f,, o g,, is multiplication by pi™.
Hence, S, is a good lift of E+( ) modulo 7§, in the sense of B.2, if n > N and =~ <e.Buta
good lift is unique by B.10. The conclusion follows. 0O

6.11. Other functors

Consider the following categories:
EE’perf-AE the category of normal E};’perf-algebras, which are finite and étale as
E P [7; ¢]-algebras.

E+ -AE: the category of normal E+ __-algebras, finite and étale as EE [T, ©]-algebras.
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We have the following diagram of functors

E+ ~
Rw-AE —— Ej -AE

Eil T“
perf

Ef-AE —— E}P.AE

Here, EZ is the functor defined in 6.2 and E¥ is the functor given in 4.1. The latter is well
defined due to 4.9. The bottom horizontal arrow _P™ stands for taking the perfection and it
is clearly well defined. The right vertical arrow _ stands for the 7§-adic completion. It is well
defined due to A.9 since EEO@ is the 7§-adic completion of the perfect closure of E}Fi by 4.15.
If the equivalent conditions of 5.1 hold for every object of R.,-AE, the square in the diagram
commutes by 5.4.

We conclude this section strengthening 6.4.

6.12. DEFINITION. — Let {S } be a maximal chain of elements in R.,-AE which are also
integral domains. Let ET (resp. E1) be the 75-adic completion of the direct limit limg__ E;COO
(resp. ET :=limg_ EY). Let E:= E*[7;!] and E := E*[7!] (see 4.2).

—

—H
6.13. LEMMA. — For every extension R, C So in Rso-ED we have RSeP - Seo-

Proof (see [16, §3.2 Prop. 10]). — Every extension S, C T,,, which is finite, étale and Galois
after inverting p and is normal as a ring, is almost étale by assumption. It then follows from
[6, Thm. 2.4(ii)] that for every € > O there exists an element in K in the image of the trace

—H
map Trr_ ;s :Too — Soo of valuation < e. Let f € RseP s {fn}n be a sequence of
elements in R°°P such that f,, = f mod p™. Fix € > 0. For each n let S, C T, é? ) be a finite and
étale Galois extension after inverting p and normal as a ring containing f,, and let y,, € Tég )
be an element such that z,, := Tr ) /s (yn) lies in K and has positive valuation < e.
Then, z,, f,, — TrTég”/SOQ (Ynfn) =0 modulo p". Hence, f, =z, * TrTo(:)/Soo (Ynfn) € Soo +

p"_ETéff ) In particular, {z ! Tr (Yn.fn)}n is a sequence of elements of S, converging

T8 /So
p-adically to f. This implies that f € S, as claimed. O

6.14. PROPOSITION. — The group Gg acts continuously on E and on E, it preserves E*
and ET. For every extension Rs, C S in Reo-ED the rings E‘gm, Es_, Eg and Eg are
preserved by the subgroup Hs C Gr, see 2.6, and

(E"')HS :EJS;’ EHs :Esw, (E+>Hs :Eg, EHs =Eg.
Proof. — Note that E C Eand Et = EESCP so that E* is endowed with a continuous action
of Gr. It is clearly compatible with the action of Aut(S~/R) on E;Coo defined in 4.4. It follows
from 4.10 that E* C (R*P)N (hat meaning p-adic completion). The fact that (E*+)"s = f);foo
_—H — ~ ~ ~ ~
follows then since R*P ~ = S by 6.13. Since E = E*[7,'] and Eg_ = quroo [T, °], we
conclude that Gy acts on E, that H g preserves ESOO and that E"s = E Seo-
By 4.5, E is endowed with an action of Aut(S./R) compatible with that on E;@O for
every Ro, C Soo. Thus, by definition of E*, the group Gg acts on E* and on E = E*[7.'],
compatibly with the action on E, and Hg preserves E;C and Eg = Eg[fr;(l]. Since Er C Egr__
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is faithfully flat, to prove that the inclusion Eg C E™Ms is _an equality we may base change
via g, Egr_ . Then, equality holds since ES =Eg  ®Eg ER EHS by 4.15 and the first

part of the proposition, and since E*s @, E R, C E™s. Since E is normal by 4.9, we get
that Ef = (ET)"s. 0O

7. The correspondence

In this section we prove our main result concerning the p-adic representations of Gg; see 7.11.
Due to 6.6, the proof is a formal consequence of work of N. Katz [12] who constructs an
equivalence between unit root -crystals over a normal, reduced and irreducible affine scheme
of characteristic p and p-adic representations of its algebraic fundamental group.

7.1. DEFINITION. — For any So as in 2.5 let A} := W(E{ ) (resp. As_ = W(Es_))
be the Witt vectors of ]T];“OO (resp. Eg_ ). Define AT := W(E') and A := W(E).

We define on A two topologies called the strong topology and the weak topology. The
strong topology is the usual p-adic topology on Witt vectors. To define the weak topology
consider on E the topology having {7 E™}, as fundamental system of neighborhoods of 0.
On the truncated Witt vectors W,,,(E) we consider the product topology via the isomorphism
W,.(E) = (E)™. Eventually, the weak topology is defined as the projective limit topology
W(E) = lim,, W,,(E).

7.2. PROPOSITION. — The following hold:

@) A isa complete and separated topological algebra for the weak topology and A+
and AS are complete topological subalgebras;

(ii) A is endowed with a continuous action of Gr and A+ = (AN)"s and Ag = A'ts,

(iii) AR - AS lifts the finite étale extension ERO@ - ESoo

@iv) A is endowed with a continuous map , the Frobenius on Witt vectors. It commutes with

the action of Gr on A and it preserves A;oo and Ag_.

Proof. — The result on the invariants in (ii) follows from 6.14. The other claims are left to the
reader. O

7.3. DEFINITION. — With the notation and assumptions of 2.2 assume furthermore that
aV) R®y V, C R, is Galois with group

Gal(R,/R®y V,,) —> (Z/p"Z)".

If S is an R-algebra as in 2.5 contained in R°°P such that S, is an integral domain, define

ol [

Note that T'g is the quotient Gs/Hg; see 2.6. It is a finite index subgroup of I'g. Due to
assumption (IV) the latter is isomorphic to the semidirect product of the Galois group I'y =
Gal(K o /K) of the tower K C K, and of the Galois group I'g = Gal(Roo /R ®y Vo) =2 Z4

7.4. Assumption. — There exists a subring Ap of A R., Which is complete and separated
for the weak topology and is stable under the actions of I'r and of Frobenius ¢ and such
that Ag/pAr =Eg (as subring of Egr__ = Ar__ /pAR_).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



630 F. ANDREATTA

7.5. LEMMA. — The ring A g is a p-adically complete and separated, noetherian and regular
domain.

Proof. — By construction the p-adic convergence in A R.. implies convergence for the weak
topology. In particular, A is p-adically complete and separated. Since Ep is noetherian and
regular by 4.7, also A r is noetherian and regular. We conclude that A i is normal. To prove that
it is a domain it thus suffices to show that it does not contain non-trivial idempotents. Since it is
p-adically complete and separated it suffices by Hensel’s lemma to prove this for the reduction
modulo p i.e., for Eg. By 4.7 the latter is a domain. The conclusion follows. O

7.6. THEOREM. — Assume that R is obtained from R° = V{Tlil, e ,Tfl} iterating finitely
many times the following operations:
(ét) the p-adic completion of an étale extension,;
(loc) the p-adic completion of the localization with respect to a multiplicative system;
(comp) the completion with respect to an ideal containing p.
Assume also that we are in the cyclotomic case; see 2.4. Then, Assumption 7.4 holds.

Proof. — This is proven in Appendix C. O
From now on fix A i as in the Assumption 7.4.

7.7. DEFINITION. — For any S, as in 2.5 define Ag as the unique A p-algebra lifting the
finite and étale extension Ep C Eg.

7.8. PROPOSITION. — For every Rs.-algebra S, such that S is a normal domain and
Roo C S is finite and étale after inverting p we have B
(1) Ag is a subring of Ag__. It is complete for the topology induced from A and it is stable
under the actions of Aut(S/R) and ¢;
(i) A is a regular domain of characteristic 0.
Let A be the closure of the subring | J s.. As of A for the p-adic topology. Then,
(iil) Ag=AMs,

Proof. — Statements (i) and (ii) hold for A iz by assumption and 7.5. Since A C A lifts the
finite and étale extension Er C Eg, claim (ii) follows for A g. Thanks to 6.11 and 7.2(iii) we
have As_ = Ags ®a, Ag_. . Thus, claim (i) is clear. Certainly Ag C AMs (C A"s = Ag__
by 7.2(ii)). Since A is normal and p-adically complete and separated, it suffices to prove the
equality modulo p. Since A /pA C E and Eg = E™S by 6.14, the conclusion follows. O

7.9. DEFINITION. — Let S be a normal R-subalgebra of RSP, étale over R[p~!] such that
S 18 an integral domain; see 2.6. Let Rep(Gg) be the abelian tensor category of finitely
generated Zj,-modules endowed with a continuous action of Gg.

Let (p,I's) — Moda (resp. (¢,I's) — ModSy ) be the abelian tensor category of finitely
generated A g-modules D endowed with

(i) a semi-linear action of I'g;

(i1) a semi-linear homomorphism ¢ commuting with I'g (resp. sothat p®1: D ®i§s Ag— D

is an isomorphism as A g-modules).
For any object M in Rep(Gg), define

D(M) = (A®z, M)"s.

It is an A g-module. It is endowed with a semi-linear action of I's = Gs/Hg. The homomor-
phism ¢ on A defines a semi-linear action of ¢ on © (M) commuting with the action of I'g. For
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any object D in (¢,I's) — Moda . define
V(D) :=(A®ags D)p=1d-

It is a Z,-module. The action of Gg on A and on D (via Gg — I'g) induces an action of Gg
on V(D).

7.10. LEMMA. — Let D be an étale (p,T's)-module annihilated by p. Then, D is a locally
free Eg-module.

Proof. — Since D is finitely generated and A g is noetherian, that claim is equivalent to say
that D is a flat Eg-module. Let m C Eg be a maximal ideal and let E/}\s be the m-adic completion
of Eg. It suffices to prove that the m-adic completion D of D is free as ];“:g—module. Let d be
the dimension of D/mD as Eg/m-vector space. The choice of lifts into D of a basis of D/mD

defines amap f: E\Sd — D which is surjective by Nakayama’s lemma. Since D is étale we have
9®1:(D/m"D)®g, (Es/mP") = D/mP"D for very n. Using this and arguing by induction
on n, we deduce that (Eg/mP"Eg)? and D/mP" D have the same length as Eg-modules for
every n € N. Thus, f is an isomorphism. 0O

7.11. THEOREM (cf. [10, Thm. A.3.4.3]). — Suppose that the equivalent conditions of 5.1
hold for every finite extension of R., which is normal as a ring and is étale over Roo[p~!].
Then, the functors ® and V are inverse one of the other and define an equivalence of abelian
tensor categories between the category Rep(Gs) and the category (¢,T's) — Mody o

Proof (see [12, Prop. 4.1.1]). — By devissage it suffices to prove that p-torsion representations
and p-torsion étale (p,I's)-modules are equivalent via the functors above. The fact that the
functor © is well defined and fully faithful and the fact that ¥V o © = id follow from étale
descent due to 6.6 and 7.8; see [12, Prop. 4.1.1] for details. We prove by induction on n that, for
every étale (¢, I's)-module D annihilated by p”, the group V(D) is finite and ®(V(D)) = D.
The case n = 1 follows from [12, Prop. 4.1.1] and 7.10. Assume the claim holds for n — 1.
It suffices to prove that V(D) — V(D/p"~'D) is surjective for every (¢,I's)-module D
annihilated by p". Indeed, if we denote by D’ the kernel of D — D /p"~1D, it then follows that
0— V(D) — V(D) — V(D/p" D) — 0 is exact. In particular, by the inductive hypothesis
applied to D’ and to D/p"~'D, we get that V(D) is finite and that ©(V(D)) = D. Suppose we
are given an element h € V(D/p"~'D). Let g € Ar ®a, D be an element lifting h. We look
for s€ Ar ®a, D’ such that (g + s) = g + s. Note that t = ¢(g) — g lies in Ap ®a, D’. To
conclude we then have to solve the equation ¢(s) — s =t in ((Up A1) ®a, D’). Since D’ is
annihilated by p, the latter is isomorphic to (U, Er) ®r, V(D’) and Frobenius is ¢ ® 1. Since
HY (U E7,Z/pZ) = 0, the equation ¢(s) — s = ¢ admits solutions as claimed. O
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Appendix A. Criteria for normality
A.1. Notations—Assumptions

Let {Rn }n €N be a set of domains, totally ordered with respect to inclusion i.e., Ry — R; —
-+ R, < ---. Let L,, := Frac(R,,) be the field of fractions of R,, for every n € N. Let

Ry :=lmR, and L. :=limL, =Frac(Re).

Let (p) C Ry be a principal prime ideal. For each n € N assume that
(i) the ring R,, is noetherian and normal and p-adically complete and separated;

(ii) there exists a unique prime ideal *13,, of R,, associated to p and ‘3, is a principal ideal;

(i) R, is finite as R,,-module.

Define Po :=1limP; and let v: L — Q be the unique valuation on L, such that v(p) =1
and the induced valuation ring on L, is the local ring R s . For every 6 € v(R\{0})
choose an element p° € P, such that v(p?) = §. We further require that if § € v(R,\{0}),
then p® € R,,. Let

Roo:= lim Ro/p"Roo and Reoy. = lim Reop /P Room..

be the completion of R, (resp. of R sz_ ) with respect to the ideal generated by p. Assume
furthermore that
(iv) there exist N € N and an element p¢ € Ry of valuation € such that Ry /p° R is aring of
positive characteristic p and for every n > N we have R 1t R =Ry +p° Ry,
as subrings of R, 41.

A.2. LEMMA. — The map E; — R@ is injective.

Proof. — Let n € N. Consider the map 7: Ry /p" Roo — Roop.. /P Roo,p... Let « be an
element of R, such that 7(z) = 0. We conclude from (i) and (ii) of A.1 that p" R N R; = p" R;
for every i € N. Hence, there exists 7 such that x € R; and there is y € R;\'P; so that xy € p™ R;.
Thus, v(zp~™) + v(y) = v(zp~™) > 0. It follows from (i) and (ii) of A.1 that xp~™ € R; i.e.,
x € p" R;. Hence, 7 is injective. O

A.3. LEMMA. — The rings EO\O and R@O are domains. There exists a unique valuation
\A/:Frac(R;:;c)* —-Q

extending the valuation on L*. Its valuation ring is RZEO and
—T[17, . _—
€ Roo » | V() 20 =Rs.

Proof. —Let m,, be a Cauchy sequence of elements of R, g converging p-adically to

an element m of R@ If v(m,) — oo, then m,, — 0 and m = 0. Hence, if m # 0, the
sequence {v(my)}, is bounded above by some constant « and

V(m):= hllngo v(my,)
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is a well defined natural number. There exists N € IN such that my # 0 and v(m,, — my) = 2«
for n > N. Hence, v(m,,) = min(v(my),2a) = v(my) for n > N. Thus, v(m) = v(my).
Using this it follows that ¥ defines a valuation on R@o . In particular, R;;O is a domain. By
construction V extends the valuation on R, g and R;;Zc is its valuation ring. Its uniqueness
is clear. By A.2 also ]/%; is a domain. The last assertion is left to the reader. O

A.4. LEMMA. — There exists a unique map
W: Roo /PooRoo — R/\OO (resp. w:Frac(Roo /PooRoo) — R;,;;x,)

such that w(a) = a mod B and w(a?) = w(a)P for every a. Furthermore, w(ab) = w(a) -
w(b) for every a and b and the composition

Roo/PooRoo—Roo — Roo/p° Roo

(resp. Frac(Roo/&BooRoo)l»Rmc — Roo g /0" Roo,p..)

is a ring homomorphism with the property that for every n > N the image of R, /PR,
(resp. Ry .. /Bn R p,,) is contained in Ry, [p° R, (resp. Ry s, /p° Ry p.,,)-

Proof. — Note that ﬁo\o (resp. R;,‘;o) is complete and separated with respect to the
ideals {(p™Poo)} v (resp. the ideals {(p™ Poo Roo g5 )} n). It follows from (iv) of A.1 that the
1ing Roo/PooRoo (resp. Roo .. / PBoo oo, 3., ) 1s a perfect domain of positive characteristic p

i.e., the map = +— P defines an isomorphism of R, /Poo Roo (resp. R;,f;o / ‘,BooR;,;;C). The
existence of w, with all the required properties apart from the claim on the image of R,, /B, R,
(resp. ann/‘ﬁanmn), follows from [15, I1.5, Prop. 8]. We prove the last claim for R, the
proof for R, gz being entirely similar. We recall from loc. cit. the construction of w. Let A €

R, /B, R, with n > N. Denote by L,, the elements of Eo\o reducing to N " e Ry /PBooRoo
and by Uy, := {a?" | © € L,, }. Then, chosen w,,, € Uy, for every m, the sequence {t, }men is
a Cauchy sequence and its limit is w (). In our case we can choose x,,, € L,;, N Ryt since the
latter is not empty by A.1(iv). Then, the class of u,, = xfnm in Ryt /PRyt liesin R, /p° R,
by A.1(iv). The conclusion follows. O

A.5. LEMMA. — Every non-zero element a of }/3; (resp. R;;;C) can be written uniquely as

a= Zw(an)p‘s"

With @, € Roo/PBooRoo (resp. a, € Frac(Roo /Poo Roo)) s0 that the sequence {6y, | an, # 0} is
strictly increasing and it is either finite or it converges to infinity.

Proof. —For a € ]/%; write @ for ¢ mod ‘Boo]/%:o .Let m > N be an integer such that the image
of a in Ry, /p° R lies in R, 4+ p° R . It follows from A.4 that we have

R /0" R = Ry /B Rin @ (BB /0 R

i.e.,a =w(ap)+p’b; with ap :=aand p° and b; € R,,. Applying the decomposition above to b;
and proceeding by induction, we may write a asasum »_ s __ w(a,)p®~, which is finite since

the valuation v restricted to R, is discrete by A.1(i). This implies that every element a € ﬁo\o
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can be written as a finite suma = 5__ w(ag)p? + p°b for suitable elements a5 € Roo /Poo R

and b € }/E; Proceeding inductively define an increasing sequence of elements d, € Q-
which is either finite or converges to oo and a sequence of elements a, € Ro/PBooR
such that Y, w(a,)p®" converges p-adically to a. We remark that if 0 # ¢ € Roo /Poo R
then v(w(c)) = 0 since w(c) does not lie in P, Roo. In particular, given 0 # a € R, and a
decomposition a = " w(a,)p’" as in the lemma, v(a) = min{6, | a,, # 0}. Using this the
proof of the uniqueness follows. The details are left to the reader. Taking R g3 instead of R
we deduce the existence and uniqueness of the p-adic expansionin Reo g3... O

A.6. PROPOSITION. — If R, /B, R, is normal for every n € N, then R /Poo Roo and @
are normal.

Proof (cf. [13, Ch. 7, Thm. 34]). — Since Roo/PooRo is the direct limit of the normal
domains {R,, /B, Ry}, it is normal. We are left to prove that I/%; is normal. Let = and y
be non-zero elements of }/E\ Let a:= zy~ ! be integral over [ R . In particular, the algebra
Reo [a] C Frac(Roo) is finite as Roo-module. The inclusion Rog C Roo [a] is an isomorphism
after @ o Frac(Ro. ). Hence, the cokernel is killed by some non-zero element d € Ro.. Hence,

dz™ € ymﬁ; for every m € N i.e.,, a is almost integral in the sense of [13, Ch. 7, p. 115].
The p-adic valuation ¥ of a, see A.3, is non-negative. Write @ = Y s w(as)p°® as an element
of R;,c?x using A.5. We claim that a5 € Roo /Poo Roo for every . This implies that a € Eo\o
We proceed by induction on the numberable set {J | a5 # 0}. Let d(a) be the minimum of such
set. Let 6(d) (resp. 6(z), 6(y)) be the minimum of {6 | ds # 0} (resp. {6 | x5 £ 0}, {d | ys #0}).
By the uniqueness in A.5, we get that d(;(d)xg%m) € yg’(by)Roo/‘BooRoo for every m € N.
Since Roo /Poo Roo is the direct limit of the noetherian normal domains { R, /B, Ry}, this
implies that as(,) = ( ) lies in Roo /PooRoo [13, Ch. 7, pp. 115-116]. Assume that the first

7 NON-ZEero coefﬁc1ents a51, .., ag, belong to Roo /Poo Reo- Let b=>"1" , w(as, )p%. If a =0,
we are done. Otherwise, note that @ — b is still integral over R/\oo We conclude as in the
base step of the induction that the first non-zero coefficient (a — b)s in the p-adic expansion
of a — b as an element of R;;Eo lies in R /Poo Roo- But such coefficient is the first non-
zero coefficient as,,, in the p-adic expansion of a different from as,,...,as,. Hence, the
conclusion. O

n+1

A.7. LEMMA. — Assume that R, is free as R;-module for some i € N. Then, the map
R; C Ry is faithfully flat and for any finitely generated R;-module M the map

M ®p, Rog — lim M ®p, (Roo/p" Roo)

is an isomorphism of R..-modules. In particular, if R is free as R;-module for every i, then
Ry — R is flat.

Proof. — For every n € N we denote M,, := M /p™ M. Since R; is p-adically complete and
separated and noetherian, if M is finitely generated, then M = lim,, M,, (here and below lim,,
denotes the inverse limit taken over n € N). Let 0 - A — B — C — 0 be a sequence of finitely
generated R;-modules. Since R, is a free R;-module, one checks that the sequence above is
exact if and only if

0—lim(4, ®g, Rx) — lim(B,, ®g, Roo) — im(C), ®p, Roo) — 0
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is exact. Thus, the functor M — lim, (M, ®g, R~ ) from the category of finitely generated
R;-modules to the category of }/%;-modules is exact. By [2, Prop. 10.13] for any finitely
generated R;-module M the map M ®p, ]/%; — lim, (M,, ® g, Rs) is surjective. Reasoning
as in the proof of [2, Prop. 10.13], we conclude that such map is an isomorphism. In particular,
R; C R, is faithfully flat.

Let J C Ry be an 1deal Let J =R; N J forevery ¢ € I. Since R; C ROo is faithfully flat,
the natural map J; ®g, R — ROo is injective. Consider the maps

lim(J; ®r, Roo) = J @ p.. Roo — Roo

If R is a free R;-module for every ¢ € IN, the composition of the above maps is injective.

The LHS map is surjective. Hence, the RHS map is injective as well and R, — f%; is flat as
claimed. O

A.8. LEMMA. — Assume that }/E; is normal. Let R [1] C S be a finite and étale extension

of subrings of Frac(R ). Then, SN Roo is a normal integral extension of R

Proof Define S, to be the integral closure of R, in S. Since ROO is normal, it is a subring
of Roo. Furthermore, S [ | = S. It suffices to prove that So, = S N Reo. The inclusion C is

trivial; it remains to prove the inclusion D. Define Pg_ := (&BOOJTZ.;) ns

Let d € S Then, there exists ¢ € I such that d is integral over R; and Frac(R;)[d] (as subring
of the total field of fractions Frac(S)) is linearly disjoint from Frac(R.) over Frac(R;).
Let S; be the normalization of R;[d]. Since R; C Sy is generically separable by the choice of
and by hypothesis, it follows from [5, Prop. 13.14] that S, is finite as R;-module. Thus, since
R; is noetherian and p-adically complete and separated by A.1(i), Sy is p-adically complete
and separated. Since S, is contained in 1/%;, it is a domain by A.3 and, in particular, it
contains no non-trivial idempotents. Hensel’s lemma implies that S;/p.S, contains no non-trivial
idempotents. Let s € So. If ps € Sy, then s € Frac(R;)[d] and it is integral over R, and, thus,
over R; by A.l(iii). Hence, s € S;. This proves that pS., N Sy = pSy. Since Soo = J,; Sa
we conclude that S, /pS is equal to the direct limit limg S4/pS,. In particular, it contains
no non-trivial idempotents. By construction we have homomorphisms Reo — Soo — f%;
whose composite is the natural inclusion. Then, S, /pSs decomposes as the direct sum of
Ro-algebras Roo/pRoc @ Ao with multiplication (a,b) - («, 8) = (ac,af + ba + b3). The
image of 1 is the only possible non-zero idempotent i.e., 1 = (1,0).

For every d € S, the ring Sg ®r, R; s, is normal, finite and torsion free as R; g, -
module. Thus, Sq ®g, R/Z; is the product of complete discrete valuation rings [] j Sa,j-
Note that the number of those is bounded above by the generic degree of R., C S
Since So = |J,Sq, it has only finitely many prime ideals {s_ ;}; containing p and
the ring So Qr_ (R@O/pR@) is Ug(I; Sa,j/pSa,;) and, hence, it coincides with
the product [[;(Se,j/PSs,j) of the quotients modulo p of the localizations of S, at the
ideals Pgs__ ;. Note that 1 = (1,...,1) in this decomposition. The reduction modulo p is
also [];(Se,j/pSc,;) = oo,spw/pR@O ® (A ®r., R@) Since 1 — (1,0) by the
above discussion, we conclude that S, has only one prime over P, which must then coincide
with Bs__ . Furthermore, Seo g3 is the valuation ring of Frac(S.) associated to the restriction
to So of the valuation v on I/%; -

Let s € Soo[%] N Ro = 8N Ry. Then, v(s) > 0. Hence, s € Sy g5 . Hence, s lies in
the intersection of all valuation rings containing S.,. Hence, it lies in S, by [2, Cor. 5.22] as
claimed. O
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A.9. PROPOSITION. — Let S be an integral R -algebra and a normal ring. Assume that
(1) Ry is afree R;-module for every i € N;

2) .ﬁ; is normal,

3) S [ | is a finite étale extensions of R [ J-

Then, Soo @R, ROO is normal and p-torsion free.

Proof. — The morphism S,, — S, defined by b+ p - b is injective. It follows from A.7
that multiplication by p is injective on So ®pr_, ﬁ\ Hence, the morphism Soo ®p_ ﬁo\o —
(S0 ®R., R )[ ] is injective. It follows from (2) and (3) that (Soc ® g E\)[%} is normal.

Let ¢ be an element in Sy, ®pg_ Frac(fi:o), which is a product of fields by (3), integral
over Soo ®p_ Reo. Then, c € (Seo @R, E;)[%] ie., p"c € Seo ®R., R, for some n € N.
Fix N € N with N > n. There exists b € S, such that p"c — b € pNSoo RRr., }/E; Let d :=
p~"b. We conclude from the integrality of c that d is integral over Soo @ __ E; . It follows from
the integrality of S, over R that d is integral over Eo\o

Let g be a monic polynomial of minimal degree having coefficients in 1/%; and such
that g(d) = 0. Let h be the minimal polynomial of d over Frac(ﬁ; ). Then, g factors as g = h-h’
for a suitable monic polynomlal n w1th coefficients in Frac(f%\ ). In particular, the coefficients
of h are integral over RoO and, since ROO is normal, they lie in R . Hence, g = h. Let S, be the
integral closure in R [ ] of the subring generated by R [ ] and the coefficients of g. Reasoning
as above and using the normality of R..[p~!] we deduce that the minimal polynomial g of d
over Lo, has coefficients in Roo[p~']. Then, g divides ¢. Since d € S [p~!], we conclude
from (3) that there exists a ring S, finite and étale as R [p~']-algebra, splitting ¢, and hence g,
completely Then, S, is a subring of S,, finite and étale as R [p~']-algebra. It follows from A.8
that S, N ROO (as a subring of R [p _1]) is an integral extension of R.,. Since the coefficients
of g lie in Sy N ROC, we conclude that they are integral over R.. Thus, d is integral over R,
and, hence, d € So. Therefore, ¢ € S R, R/\OO as wanted. O

Appendix B. Some deformation theory

We start with a E+-algebra B, which is normal and finite as EE-module and such
that EfL[7'] C B[’]TK ] is étale. We construct R, -algebras B, for n > 0, with isomor-
phisms B, /p B,, — B(n)/#§B(n). This is achieved lifting B(n)/7§B(n) as a R,-module
first (see B.4-B.6) and then proving that it inherits the structure of algebra (see B.7-B.8). We
further prove that this construction is functorial in B (see B.10).

B.1. Notation

We use the notation of Section 6.7. Let 7§ € E; be the element killing the ramification of
EJr — B i.e., such that there exists an element of B ®,+ B with image 75eo. Abusing the
R

notatlon we still denote this element by 7r0e0 Let by,..., by, be generators of B as E;g—module.
Write 7r0e0 =:a, @by + -+ +ap, @ by, as an element of B ®E+ B.

a
Fix n € N. Then, bp bﬁ are generators of B(n) as E};(n)-module and 7" &, =

1
b”n +--+aj o ®bp in B(n)E;(n)B(n).
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Denote by Tr,, the trace of the finite and étale extension E};(n)[7x'] C B(n)[7x']. Define
the E;(n)-linear homomorphisms

L B(n),

B(n) " Bj(n)"

ot A - . 1

where gn(x) = (Trn(malp ),,Trn(xﬁ,‘; )) and fn(yla'~'7yh) = ylbf + o+ yhb}:: 5
4

see 3.1. Note that f,, is surjective and that f,, 0 g,, is multiplication by 7?5’7 . Let

an =g, o?n.

/4

It satisfies @2 = 7" aip.

B.2. DEFINITION. - Fix n such that 0 < & < e <1 and R, /p*R,, = E}(n)/TGE}(n)
(see 4.5(1)). A good lift of B(n) modulo 75 is an R,-algebra B, and an isomorphism
B,,: Bn/p® B, — B(n)/7§B(n) as algebras over R, /p°R,, = E}(n)/7§EL(n) such that B,
has no non-trivial p-torsion and there exist R,,-linear homomorphisms

9n:Bp — R27
fTL:RZ, — B,

with f,, surjective and whose composite f,, o g,, is multiplication by p»™ .

B.3. PROPOSITION. — Fix a positive integer n and 1 — % >e> i—zf such that R, /p°R,, =
E}(n)/7sEL(n). Then, a good lift of B(n) modulo 7§, in the sense of B.2, exists.

Proof. — It is proven in the next lemmas. See especially B.7 and B.8. O

Regard @, as a h x h-matrix with entries in R,/p°R, identifying Ef(n)/7§E}(n)
with R,,/p®R,, via the isomorphism (yo,y1,...) — ¥yo; see 4.4(2). Let Q(X) be the polyno-
mial X2 — p%X in the variable X. We have the following fundamental lemma, which is an
instance of Hensel’s lemma:

B.4. LEMMA. — For every n such that € > g—f there exists a matrix «y, in Mpxp(Ry)

satisfying Q(a,) = 0 and lifting @, € My« (R, /p°Ry).

Proof. — In what follows we write 7, := ppi". Let B9 € Mpxn(Ry) be any lift of @, €
Mpwn (R /p° Ry). Then, Q' (Bo) = 280 — T, and Q' (Bo) = 2&,, — 7, modulo p*Mp, 1, (Ry,). In
particular, Q’(3)? = 72 modulo p*M},«,(R,,). Since R,, is noetherian and My, 1, (R,,) is finite
as R,-module, My, ., (R,,) is p-adically complete and separated. Thus, Q’(30)? = 72v where v
is an invertible element of My, 1, (R,,). Hence, Q'(53) is not a zero divisor in My« (R,,) and,

since p° = Q’(ﬁo)2f—2v_1, we have p*My,«(R,,) C Q’(Bg)f—Zthh(Rn).

Let A be the Rn-gubalgebra of My, «n(Ry,) of the elements commuting with Gy. Then, A is
p-adically complete and separated asiwell. Put 5, = By. For m > 2 we construct (,, ig A such
that Q(3,,) = 0 modulo Q’(60)2(f—%)thxh(Rn) and B, = Bm_1 mod Q’(ﬂo)(f—%)m*1 X
Mpxn(Ry). Since Q'(5o) is not a zero divisor of My, (R,,), the sequence {(,, }, converges
to an element 3 € A satisfying the requirements of the lemma.

Suppose that f,, has been constructed. We may write Q(f,) = —Q'(8o)*(Z)"d.
Since Q’'(By) and f—z are not zero divisors in Mpy,(R,) and G, lies in A, we have

§cA. Put ﬁm+1=ﬂm+Q'(ﬂo)(§)m6. Since 6 and (3, lie in A, we have
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Q(Bm+1) =Q(Bm) + (Bmd + (Wm)Q’(ﬁo)(%)m - TnéQ’(ﬂo)(f—;)m, up to terms congruent to
zero modulo Q' (B0)2(25 )™My (Ry). We need to check that 3,6 + 63, — 7,6 = Q' (80)8

modulo Q'(8o) - My, x,(Ry,). Remark that §,, = fo modulo Q'(80) 2= My «p(R,). Thus, the
equality we have to check becomes (28y — 7,,)d = Q'(80)d, which is trivially true. O

B.5. DEFINITION. — For every n with 1 — % >e> ﬁ let a,, € My, (Ry,) be a lift of @,

modulo p=t 7 such that a? — PPy, = 0 as in B.4. Let

By = (Rl /(an —pﬁ)) mod p-torsion,

£
{

where p-torsion is the R,,-submodule of R /(a,, — p?™ ) of elements killed by some power of p.
Denote by

fn:RZ—>Bn

the natural projection. Since R,, is p-torsion free, there is a unique R,,-linear map

gn:Bn—>RZ

£
T

through which «, factors. Note that f,, o g,, is multiplication by p?™ .
B.6. The map 3,

Consider the following diagram

B(n)/7, "B(n) -2 (Bi(n)/7, T Ea(m)t 2 B(n)/m " B(n)

l

B./p"t" B, I (Rn/p" 7" R,)" o, Bt B,

e < .
where the vertical isomorphism is induced by E};(n)/ 7?? EL(n) =R,/ pE+P/“ R,,. Consider
the homomorphisms of R,,-modules:

_ _£_
Fnogn: Bu/p 7" B, — B(n) /7, 7" B(n)
and
e
fuoGn:B(n)/7 7" B(n) — B /p 5 B,,.

The image of g, modulo p“# coincides with the image of @, i.e., with the image
of g,, modulo 7‘rg+%. Hence, the image of f, o g, coincides with the image of f, o3,
which is multiplication by froﬁ . Since B(n) has no 7Tx-torsion, the map B(n)/7§B(n) —
7?5’% (B(n)/fr?”i"B(n)) given by multiplication by TT({L" is an isomorphism. Define the
homomorphism of R,,-modules

B+ Bn/p"Bn — B(n)/75B(n)
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£ —
by requiring that 7 3, := f, © gn. Analogously, since B,, has no non-trivial p-torsion by
construction, there is a unique homomorphism of R,,-modules

T :B(n)/75B(n) — B /p° By,

such that ppl"in = f, 0§, Furthermore, 7, o 3, = Id and 3,, o7, = Id. Hence, (3,, is an
isomorphism.

B.7. LEMMA. - Let n € N be such that € > Qp%f . Then, there exists an associative and

commutative Ry -bilinear map ji,: By X B, — B, lifting the multiplication i, defined
modulo p° via the isomorphism 3,,: By, /p° By, = B(n)/7§B(n).

Proof. — We construct an increasing sequence {0, },cn of rational numbers with 5y =¢
and ., — oo and, for every r € N, an associative and commutative R,-bilinear map

o By % Bn*)Bn/péan such that prt! = ty, modulo pér_%”e. Since B,, is finite as

n
R,-module, it is p-adically complete and separated. Hence, p, := lim, u; satisfies the

requirement of the proposition.

Write 7, := ppi". We proceed by induction on 7. Put §, = ¢ and p’ = 7i,,. Suppose that "
has been constructed. Consider a R,,-bilinear map

£:R"x R — R!
such that f,, o £(a,b) = pu” o (fn X fu)(a,b) modulo p°~. Define the map
On: (T Bn) X (TaBy) — By /p* B,

as 8, (Tna, Tnb) == fr 0 &€ 0 (gn(a) x gn(b)). Then, §,(T,a,7,b) = 721" (a,b) modulo p°r.
Consider the map

bo ® by @ by @ b3 @by —"— T,bg - (5" (T”bl’T"(;"(T"bQ’T”b?’))
—6n (Tnén(Tnb17Tnb2)7 Tnb3)) “Tnba

for b; € B,,. Since y, is associative, the term in parenthesis lies in p° (B,, /p®* 7" B,,). Since B,,
has no non-trivial p-torsion, this is isomorphic to B, /p®B,. The latter may be identified
with B(n)/#§B(n) via 3,,. In particular, 7, is well defined and we may view ,, as a Ef(n)-
linear map

Yn:B(n) ) B(n) ) B(n) ) B(n) ) B(n) — B(n)/7;B(n).

Using that for every x and every y € B,, we have

On (Tnl’, Tnpéry) = p,:L (Tnx; Tny) ! pé,. = 7_7%"17 ! pérya

one checks that -y, is a 3-cocycle for the Hochschild cohomology of B(n) considered with its
natural structure of B(n) DEt () B(n)-bimodule i.e., that

Yn(coc1 ®c2 @+ ®e5) — (o ®c1c2®@ @ cs) + -+
+ (71)4'771(60 & e C3 ®C4C5) :O
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for every ¢; € B(n). In particular, v, defines a class in H3(B(n)/E}(n), B(n)/7§B(n)). By
[6, Rmk. (v) p. 259] the latter Hochschild cohomology group is killed by 7,,. More precisely,
consider the Ef,(n)-linear map

®? ®@° _
hy:B(n) ®2™ = B(n) "™ =% B(n)/75B(n)
where the map on the left is given by

1
P

h 1
C()®...®CS|_)(TnEn).CO®...®03:Zaip" b C(]® ®C3
i=1

Then, 7,7y, is the coboundary —dh,, i.e.,
7360 (Tna, T O (Tn b, 7'7,,6)) — 735, (Tnén (Tna, Thb), TnC)
= (—a - hn(b,c) + hy(ab,c) — hy(a,be) + hy(a,b) - c)p5

for every a, b and ¢ € B,,; in the formula we write h,, (z,y) for h,(1 ® x ® y ® 1). Consider the
map

mi L. ( B ) ( ZB,L) —”-Z(Bn/p‘sﬂran),

n
given by
T+1 (T a T7b) - 7—71125” (Tna,mnb) + Trzhn(av b)p6
One checks that it is associative, RR,,-bilinear and reduces to 7,.u” modulo pér+%. Fur-

thermore, its image modulo p® is contained in 7.%(B, /p°B,) and € > %‘f. Since B,, has

_14m:f1 is a well defined R,-bilinear map with values

(o +5—M

no non-trivial p -torsion, pitt =T,

_14£ .. . .
in B,/ p‘S rtemgw , it reduces to p;, modulo p »" and it is associative modulo B, /p
The commutation with an element of B,, defines a biderivation with values in p‘S B, i.e.,

N 21@
a class of H'(B(n)/E};(n),B(n)/7, * B,). Since the latter group is annihilated by 7,, and

1-coboundaries are trivial in our case, we conclude that 7,12/t is commutative. Hence, u!*! is

22¢ .0

commutative modulo B,, /p®~+1 B,, with & o

B.8. LEMMA. — The notation is as in B.7. There is a unique element 1 in B, such
that pn,(x,1) = x for every x € B,. In particular, the R, -linear map R, — B, defined by
1+ 1 defines the structure of R, -algebra on B,,.

Proof. —Let u € By, be a lift of 1 in B,,/p°B,, & B(n)/75B(n). Then, p,(_,u) defines
an isomorphism on B, modulo p* and, hence, on B,, by Nakayama’s lemma. Thus, there
exists 1 € B,, such that 1, (1, u) = w. Using the associativity of y,, we get that i, (p,, (2, 1),u) =
tn (2, o (1,0)) = pn (2, w). Hence, pin, (pn(2,1) — z,u) = 0 forevery z € By, i.e., jin(z,1) =
If there are two such elements 1 and 1’, using the commutativity of pu,, we get that 1’
pn(1,1)=p,(1,1)=1. O

[l

B.9. Functoriality

Let j : B — B’ be ahomomorphism of E+—algebras which are normal and étale over EE [7?;(1}.
Possibly enlargmg ¢, we may and will assume that 7" kills the ramification of E},(n) C B'(n)

as well i.e., that 7} ¢, € B/(n) D pt (n) B’(n). Let B, and B, for m > n be good lifts of B(n)
and B’(m) modulo 7§.
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n

R,,-algebras such that Wy, , modulo p® is the map

B.10. PROPOSITION. — If € > 18 there is a unique homomorphism Uy, ,,: B, — Bl of

By /p° B, 2 B(n)/7§B(n) B/ (n) /5B’ (n) = By, /p° By,

Proof. — As in B.7, we construct ,,, modulo pdr with §g = < 61 < -+ < §p < -+
a sequence of rational number going to infinity. We also show that the induced homomor-
phism w,, ,, : B,, — B, is unique.

Denote by p, and pf, the multiplications on B,, and B,

! respectively. Write 7, := .

o
Suppose that u,, , has been constructed modulo p o~ Denote such map by Uy, - Let

¢€:R" — B! bea R,-linear homomorphism lifting u”, .. o f,. Let

p:=§0gn:By— B'/m/pérJrEB;y
Then, by [7, §2a], the map
bo ® by @ by ® by — by - (T2p(biba) — Tp(b1)p(b2)) - bs

defines a class in the Hochschild cohomology group H?(B(n)/E}(n),B/(m)/7§B’(m)).
Here, we identify p° (B!, /p’"*¢B! ) = B/(m)/7§B/(m) and we give it the structure of
B(n) ®E;(n) B(n)-module via j ® j. As in B.7 one proves that 7,, annihilates the cohomology

group H3(B(n)/Ef(n),B/(m)/75B’(m)). We then conclude that 7u”, , admits a R,,-linear

lifty: B, — B}, /p° By, satisfying i, (y(2),7(y)) = 7y (pn(2,9)) for every z and y in B,,.
Given two lifts v and u’ the map (bg,b1,b2) — Tbo - (u' — u)(by) - by defines a class
in HY(B(n)/E%(n),B’(m)/75B’(m)). Indeed, for every = and y in B(n) we have

T (U —u)(zy) =/ (x)u (y) — (JJ)U(y)
=/ (2) (/' (y) — u(y)) + (v (z) — u(@))u(y)
=Tna - (U'*U)( )+ (u = u)(@) - Ty
Such class is zero if and only if 7#u and 72u’ differ by an inner derivation i.e., they are equal.
Since 7,, annihilates H!(B(n)/E%(n), B’(m)/75B’(m))), we conclude that Tnum ., admits a

unique lift 7 as above. Since & > 15, the map u},f} := % : B, — B,/ Pt B! s well

Z o - .
defined, itis aring homomorphlsm, it lifts uy, ,, modulo p&‘ »" anditis R,-linear. Furthermore,

since ufnﬂlb(l) is an idempotent congruent to 1 modulo p®, we deduce from Hensel’s lemma

that u”+1(1)=1. O

m,n

Appendix C. Construction of A p

This section is devoted to the proof of 7.6. We follow closely [10, §A.3.2.2]. Define 7 :=
w(e) — 1 where w(e) € AJ, is the Teichmiiller lift of e.

C.1. LEMMA. — Let A" be a subring of KROQ containing T and p-adically complete. For

every n € N assume that AT [p" A7 injects in AROO /pnng and it is m-adically complete.
Suppose also that the w-adic topology on AT /p"A™ is finer than the topology induced by the
weak topology on Ag__ /p" AR and that for n =1 the two topologies coincide. Then,
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(a) the m-adic topology on A™ [p™ AT coincides with the induced weak topology for every n.
In particular, AT /p" AT is closed in ARO@ /p";‘;Roc;

(b) AT is the inverse limit lim,, A}, as a topological ring, and it is closed in AROO;

(c) the inverse limit lim,, A} [x~1] is the topological closure of A*[xY] in Ag_ for the
weak topology.

Proof. — For every n denote A} := AT/p"AT and A := Agm/p”.&;gm. The weak
topology on A /p" AR has {w(e — 1)"A;"}; as a fundamental system of neighborhoods.
Since 7" — w(e — 1)P" € p"A Rr..» then {x" A} is a fundamental system of neighborhoods
as well.

(a) By assumption for every r € N there exists an integer h(n,r) > such that 7(»" A+
(7" A;) N A;f. We have to prove that there exists ¢(n,r) > r such that (7™M AF) N At C
7" A", We proceed by induction on n. For n = 1 this is an assumption. Define ¢(n + 1,7)
as the maximum between ¢(1,7) and t(n,h(n + 1,£(1,r))). Clearly t(n + 1,7) > r. Let z €
(rt L AR YN AL, . Then, the image of « in A lies in 7" +14(L) A+ by inductive
hypothesis. Then, there exists y € A,, such that x — 7P+ Lty Jies in pn At | N

AT . Since p"Aj,, = AT, the latter is identified with Af N 7' AT which is
contained in 7" A . Hence, z lies in 7" A},

(b) The ring A R, coincides with the inverse limit lim,, A R/ p"fi R..» as a topological ring.
Since AT is p-adically complete, this implies the claim.

(c) Af[r~!] has {7" A },cz as a fundamental system of neighborhoods for the topology
induced from A Ro./ p”./i R., by (a). In particular, it is closed for the weak topology. Thus,
lim,, A;F[7~1] is closed for the weak topology as well. On the other hand, the topological closure
of A*[r~1] in A Rr., for the weak topology is p-adically complete since p-adic convergence

in A r__ implies convergence for the weak topology. The conclusion follows. O

as wanted.

C.2. LEMMA. — The notation is as in C.1. Let {z; },c1 be a subset of ARO@ of elements whose
classes modulo p lie in EEOO. Assume that (a) either I is a finite set or that (b) zi_l € AT for
every i € I. Denote by AT {y; };c1 the ring of power series in the variables y; convergent for the
weak topology on A™. Then,

(i) for every n we have A*{y;}ier/p" A" {yi}ier = (AT /p" A" ){yi}ier;
(ii) the A" -linear map A [y;icr — AR, sending y; — z; for every i, extends to a unique
map A*{y;}ier — Ar.: N N

(iil) the image of A™{y;}icr — AR, /P"AR. coincides with the ring of w-adically

convergent power series (A /p"AT){z; }iers

(iv) the m-adic topology on (AT /p" AY){z;}icr is finer than the topology induced by the

weak topology on A R/ A Roo-

Proof. — (i) The topology on A7 induced from the weak topology on A R., coincides with
the inverse limit topology lim,, A;\". By assumption, the topology on A" induced from the weak
topology on A Roo/ p”./ni R.. 18 the T-adic topology. In particular, the 7-adic convergence on AT
implies convergence for the weak topology. Since AT is closed, it is 7-adically complete. The
claim follows. _

(ii)—(iv) Note that 7" — w(e — 1)?" lies in p"Apg_. In particular, the weak topol-
ogy on ARDC /p"jNXROO has {Tl’h;&;oo}h as fundamental system of neighborhoods and the

n

ring A;m /p”AEm is m-adically complete. By assumption w(z;) is in AEO@ and zfn =w(z)P
modulo p";l r., for every i. By the assumption on the topology of A" there exists 4 € N such
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that ™" A} C K;x / pnggx . In particular, the power series in the elements {z; };c; with coeffi-
cients in A} and convergent for the 7-adic topology, which coincide in case (b) with the power
series in the elements {z n}ie 1, converge in A R/ p";l R.. as well. Furthermore, the 7-adic
topology is finer than the weak topology induced from A Ro./ p”A R.- O

The first step in the construction of A is the case of R%V(k) =W(k){TH,..., T}

C.3. Construction of A R o)

Note that Eyy, ) & ke — 1] by 4.6 and Ef;  =E . {a1",...,a;"} by 4.7. The weak

()0
topology on A;O / p”A;0 is the w(e — 1)-adic topology. It is the 7-adic topology as

W (k) oo W (k) oo

well because m — w(e — 1) lies in pAJlgO . For every n define A} as the w-adic completion
W (E) oo

of the ring
W, (k) [w(e), wi(z)T .. ,w(xd)ﬂ]

generated over W, (k) by the Teichmiiller lifts w(e) and w(x;)*! for j =1,...,d. It is a

subring A;O / p”i&}o , since the latter is 7m-adically complete, and the 7-adic topology
W (k) oo W (k) _ _
on A is finer than the topology induced from A%, /P" A% . It follows from 4.15
W (k W (k)

oo oo

+

oo

that for n = 1 the two topologies coincide. Define A as the inverse limit lim, A}.

W (k)
Since A}, /p" A = A for every m >n, we have A},  /p"A}, = A Thus, AL,
_ W (k) W (k) W (k)
satisfies the assumptions of C.1 and it is closed in AEO
W (k) o0

Each A,! is stable under the actions of p and ' on A ROy ) / A ROy - Hence, p and '

act continuously on A;O by restriction from A RO . Eventually, define A o as the
W (k) W (k) oo W (k)

closure for the weak topology of A Ry [7~1]. It has the properties claimed in 7.6 thanks to C.1.

C.4. Construction of A o

Since E;,(k) - E‘J; is a finite extension of dvrs generically separable and with perfect
residue fields, it is monogenic i.e., E{, & EQ;V(k) [t]/(f) with f(t) monic of degree m. Let f €
Al,  [T]bealiftof f asamonic polynomial of degree m. Define A}, := AL, [T1/(f(T))

RW(k) RW(k)

— At : ; )
and Apgo := A, ®A;0 ARQN(A-,)' Note that Ago is finite and free as AR%vm module

and Aro/pAgo =E RO, ‘:)Ufz)t] /(f) = Ego. The latter is an étale E R0 -algebra of degree m. In
particular, A ro is the unique étale A ROy ) -algebra lifting the E ROy -algebra E o. By étaleness
there is a unique homomorphism of A RSy ) -algebras A po — A go_lifting the inclusion Ego C
Ero_. It is injective since it is injective modulo p and A ROy and hence A Ro, is p-adically

separated. Furthermore, by uniqueness of étale lifts A ro C A Ro_ is stable under the actions
of ' and . _
Since A, coincides with the image A;O {T} — Apo_andsince At /pAf, =Ef,, we
W (k)

conclude from C.2 that AEO satisfies the assumptions of C.1. In particular, A;go and A o are
closed in A go_.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



644 F. ANDREATTA

We now construct Ar. We proceed as follows. Let R® C R!' C R be extensions obtained
iterating the operations given in 7.6. Note that R! fulfills the hypotheses of 2.2. Suppose that we
have constructed A}, C A Ry, satisfying t~he assumptions of C.1 and such that A7, /pA7,, =
EEl and the closure A g1 of A;l [7in A gy for the weak topology is stable under ¢ andN I'r.
Let R' C R? be obtained applying (ét), (Ioc) or (comp) of 7.6. We then construct AJ1;2 CAgz
satisfying the assumptions of C.I and such that A},/pA},. = E}, and the closure A pe
of AEQ [71in A gz, for the weak topology is stable under ¢ and I'g. In particular, A g2 has
the properties given in 7.4.

C.5. Case (ét)

Let N be as in 4.5. Since R} /p°R} C R% /p°R% is étale by assumption, R%, /p°R% =
R /p*RY[z1,...,20)/J with J = (g1,...,9n) and J/J? = R /p°R%,dz; @ -+ @
R?V / pERfV dzy, by the Jacobian criterion of étaleness; see [11, 0.22.6.1]. Since E;z is 7m-adically
complete, there is a unique prime over « and it is principal and 7 is not a zero divisor in EEQ , we
get from 4.5(1) that EEZ is the quotient of the ring of power series Egl {7,.-.,7p}, convergent
for the m-adic topology, modulo an ideal T = (f,,..., f,) such that 7/72 & EE dy, ©--- @
Ejgz dy,, as E;z -modules.

Let Agl {y1,...,yn} be the ring of power series convergent with respect to the weak
topology on AL, We have AL {y1,...,yn}/pAL {1, sun} — Efi{¥1,..., U5} by C.2.
Let f1,..., fn beliftsof f1,..., f}, to A} {y1,...,yn} and define AEQ = A}{yh oo ynt/I
with I = (f1,..., fn). Modulo p it is isomorphic to EEQ and, in particular, it is noetherian.
Furthermore, /1% = Al dy; @ --- ® AL, dy, as Aj,-modules since this holds modulo p.
Thus, by C.2(ii) there is a unique homomorphism of A;l-algebras A;Z —A gz, lifting the
natural inclusion E; CE R2_- Itis injective since it is injective modulo p and AEQ is p-adically
separated. By C.2 it satisfies the assumptions of C.1. In particular, the closure A g2 of AEZ [771]
in A gz, for the weak topology coincides with A 1 {y1,...,yn}/I so that A 2 is formally étale
as A gi-algebra. Since A g1 is stable under I'g and ¢, then A g is stable under the actions of I' g
and pon Apz .

C.6. Case (loc)

In this case R? is the p-adic completion of the localization of R! with respect to a
multiplicative system S. Since R2 = R? ®p1 R. and R} is finite and free as R'-module, R2
is the p-adic completion of R%[S~1]. It follows from 4.5(1) that EJ};Q is the m-adic completion
of the localization of EJ}Yil with respect to a multiplicative system U stable under ¢ and I'p.
Let U C A;l be the set of elements reducing to U modulo p. Using C.2 define AEZ as
the subring of A Rz, given by AEI {u"}uev. By loc. cit. it satisfies the hypotheses of C.1
and AL, /pAt, 2 E},. Let Ap: be the closure of Af,[77!] in ;&Rio for the weak topology.
By C.1 it is also the closure of the localization of A g1 with respect to the subset of elements
reducing to U modulo p. In particular, since U and A 1 are stable under ¢ and I'g, also A g2 is
stable under the actions of ¢ and I'g.

We are left to discuss Case (comp) i.e., R? is the completion with respect to an ideal .J
containing p. Since R;, = R* ®g1 R,, and R}, is finite and free as R'-module, R} is the
completion of R! with respect to JR.. With the notation of 4.5(1) define I to be kernel
of E},; — R} /(J + p°RY). Since it contains 7}, ©, the completion of E},, with respect to the
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ideal [ is 7§-adically complete and, by 4.5(1), it is isomorphic to E;z modulo any power of 7§.
In particular, it coincides with EJF}‘\. Furthermore, I is stable under the actions of wand I'r. We
start with the following:

C.7. LEMMA. — For every s € N the ring AEl/psA"F'i1 is I-adically separated.

Proof. — Since A}, /p® A}, is noetherian, by [2, Thm. 10.17] the intersection (), "™ consists
of elements killed by some element of 1 + . It suffices to show that 1 + I does not contain
zero divisors. This is proven by induc.tion on s usiqg that p"A'Igl / p”“A;1 = E;l fqr every
integer n > 0 and the latter is a domain and, in particular, it does not have any non-trivial zero
divisors. 0O

C.8. Case (comp)

Let A}, be the (p,I)-adic completion of A},. Then, A},/pA}, = E},. Since A},

is noetherian, the extension A;l — A§2 is flat. Since p is not a zero divisor on Ag: ,
it is not a zero divisor on A;;Q ®a+ Ap ceither. Consider the p-adic completion Aj
R1 e

of A§2 @p+ :&Rl . Modulo p it coincides with E;fi2 QO+ ERl and p is not a zero divisor
~ Rl > Rl > ~ ~
on A,. Frobenius ¢ on E},. is injective by 4.5(2). Since E};, C Epi_ = EE}}O [Ty ] is flat
by 4.15(2), also o ® 1 is injective on EEz ®g+ Epg1 . By 4.15(2) Frobenius is an automorphism
~ ~ Rl e
on Eg: . Thus, Frobenius on E;z ®g+ Eg1 , which coincides with ¢ ® ¢, is injective. Note that
oo e -
E;’zperf _ EJJE? ®E;1 E;iperf by 4.7. Hence, ¢ ® ¢ is surjective on E;Z ®E;1 Er:_ie., thelatter
is a perfect ring. In particular, K.Q coincides with the ring of Witt vectors W(E;z Qg+ E R )
3 r TR

by [15, II.5, Thm. 5]. We then get a homomorphism of AEI -algebras
p:AEz — A;z ®AJ};1 AR& — ;&2 %W(E;z ®E;1 ER;) —)W(ER&) :ARgo

Since p is injective modulo p and AEQ is p-adically separated, p is injective.

We prove that A;Z satisfies the assumptions of C.1. By construction AEQ is p-adically
complete, AEQ / p"AE2 injects in A R2, /p"f& gz, and it is m-adically complete. We are left
to show that the mw-adic topology on AEQ /p”AE2 is finer than the weak topology induced

from A R2, /p”fA Rz, - It follows from 4.7 and from 4.15, applied to the extension W (k) C V/,
that there exists ¢ € N such that for every m

1

(BL) " =B (277, 27" @

EB5)% c Led 77 o7, 2]
S IV iR Xy s Tg |

For every z € Ef, the "lfeichmijller lift w(z)P_}" of 27 in A, /p" A, coincides with the p™-th
power of any lift of z»™ " . Hence, in A2 /p"Agz we have
" er n e . .
WL (ELP) © (AL /AL [W(e) P w(an) 7. wiag) 7.
Passing to m-adic completions we then get that
7rt”"./~&j;go /p"jiggo C (AL /p"AT:) {W(E)P%" , W(:Cl)p%", e ,w(acd)zv;“ }.
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. T e ~ . .
Since EL,{e7= ,2{™ ,...,z;" } CE},, , one proves by induction on m < n that

1

T (A /07 A ) (W(E) P w(a1) 7L w(ea) P} ' Ay A, |

Hence, w(n—Dtr" (Af:/p"A}) C ;&Ez /p":AEQ . The claim follows.

Let A2 be the closure of AJ};Q [771] in A rz_ for the weak topology. We prove that A ge
is stable under ¢ and I'g. By C.1 and the assumption on A;l, we have Api/p"Ap =
(Af:/p" A}, ) [m~1] and the weak topology induced from A R/ A Ry, coincides with the one
induced from the m-adic topology on AEI / p”AEl. Since ¢ and v € I'g act continuously, the
image of A}, /p" AL, under ¢ (resp. 7) is contained in iz (A}, /p"AL,) for some h. If z € I,
since I is stable under ¢ (resp. I'g), there exists y € I such that ¢(x) =y (resp. v(z) = y)
modulo p. Then, y?" coincides with o(z)?" (resp. v(z)P") in A RL /p”ARéc . We conclude
that the system of neighborhoods {I°AF, } is preserved by ¢ (resp. 7). It follows from C.7
that Cauchy sequences relative to the given system of neighborhoods have at most one limit
in Az /p"Apge . In particular, A, /p" AL, — Ag2 /p"Ag: extends in at most one way to
(Af./ p"AJlg2 )[7~1]. Since p defines such an extension and ¢ (resp. v) preserves the ring A g1
and is continuous for the topology defined by the system {/ SAEI }S, then (A;2 / p"AEZ)[ﬂ"l]
is stable under ¢ (resp. ). We conclude from C.1 that A g is stable under ¢ and I'.
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