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Abstract

In this paper, we establish the first rigorous mathematical result on the validation of the hypersonic similarity globally, which
is also called the Mach-number independence principle, for the two dimensional steady potential flow. The hypersonic similarity
is equivalent to the Van Dyke’s similarity theory, that is, if the hypersonic similarity parameter K is fixed, the shock solution
structures (after scaling) are consistent, when the Mach number of the flow is sufficiently large. One of the difficulty is that after
scaling, the solutions are usually of large data since the perturbation of the hypersonic flow is usually not small related to the sonic
speed. In order to make it, we first develop a modified Glimm scheme to construct the approximate solutions with large data and
find fine structure of the elementary wave curves to obtain the global existence of entropy solutions with large data, for fixed K and
sufficiently large Mach number of the incoming flow M. Finally, we further show that for a fixed hypersonic similarity parameter
K, if the Mach number M, — 00, the solutions obtained above approach to the solution of the corresponding initial-boundary
value problem of the hypersonic small-disturbance equations. Therefore, the Van Dyke’s similarity theory is verified rigorously for
the first time.
© 2020 L’ Association Publications de 1’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

MSC: 35B07; 35B20; 35D30; 76J20; 76L.99; 76N 10
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1. Introduction and main result

The flow is called hypersonic when the Mach number of the flow is bigger than five. Since 1940s, there are many
studies on the hypersonic flow (see [20] for example) due to many applications in areodynamics and engineering. The
main difficulty on the study of the hypersonic flow is that the density is relatively very small compared to the speed,
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K = M0 is a fixed constant S

Fig. 1. Hypersonic flow past over a slender wedge.

so like the fluids behaviour near the vacuum, all the characteristics are close to each other and the shock layer is thin.
On the other hand, there is one important feature of the hypersonic flow, which is called the hypersonic similarity.
This property is of great significance on both the theoretical and experimental research of the thin shock layer for the
hypersonic flow (see [3] for more details).

Let 6 be the wedge angle and let M, be the Mach number of the incoming flow (see Fig. 1). Define the similarity
parameter (see (127.3) in Landau-Lifschitz [ 14, Page 482] for more details),

K = Mu0. (1.1)

Physically, the hypersonic similarity means that for a fixed similarity parameter K , the flow structures are similar under
scaling if the Mach number M is sufficiently large. Actually, after scaling, the flows with the same similarity param-
eter K are governed approximately by the same equation, which is called the hypersonic small-disturbance equations
and was first developed by Tsien [20] for the two-dimensional steady irrotational flow and the three-dimensional axi-
ally symmetric steady flow. Recently, Qu-Yuan-Zhao [19] studied a different problem, the hypersonic limit, in which
there is no hypersonic similarity structures since the wedge angle 6 is fixed such that the similarity parameter K
changes for all M, and tends to the infinity for the hypersonic limit My, — oo.

The hypersonic small-disturbance equations and the hypersonic similarity are derived as follows. Suppose the
hypersonic flow is governed by

dx (ou) + dy(pv) =0,

(1.2)
Oxv — dyu =0,
where the density p and the velocity (u, v) satisfy the following Bernoulli’s law:
_ -1
1 5 2 pY ! | Pgo
= —— =By :=ZU, . 1.3
S +v)+y_1 o0 2°°+y—1 (1.3)

For the problem of the hypersonic flow onto a solid slender-body with boundary y = tbox, without loss of the
generality, let us only consider the lower half space domain, i.e., in the region that x > 0 and y < tbhgx with a fixed
constant by < 0 in Fig. 1. The incoming flows are given by

(0,1, V)], _g <o = (0. 0. v0) (V). (1.4)
Along the boundary, the flow satisfies the impermeable slip boundary condition, i.e.,

(u,v) - (tho, —1)=0. (1.5)
Let Uy, be a sufficiently large number. Let

1-y

Aoo :=TMyo =TUsopod -

Obviously, if K is fixed, then a is fixed t0o. So a is also called the hypersonic similarity parameter (see Chapter 4
in [3]). As done in [3,11], we define the following scaling:
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Fig. 2. Hypersonic similarity law.
x=% y=1§, u=Ux(+770), v=UxT0, p=/pup, (1.6)
and substitute (1.6) into equations (1.2) and (1.3) to obtain
3z (p(1+ t2i0)) + 5(pD) =0,
050 — d5u =0, (1.7)
= 12 220y YTl
U+ 5@ +t7u%) + D, =0.

The solid boundary is now given by y = box. Then, the corresponding fluid domain and its boundary are given by
(see Fig. 2)

Q={(F75):5>0, j<box}, I'={F7):%>0, y=hot).

The unit normal of I is n = n(x, bgx) = (b‘”—_lz). Initial condition (1.4) becomes
1452
(6., 9)| ;= (Po. 0, T0) (). T={F=0, y <O0). (1.8)
Along I', condition (1.5) now becomes
((1+7%1),v) |, =0. (1.9)

Physically, the hypersonic similarity is, for a fixed similarity parameter ao, the structure of solutions of (1.7)-(1.9)
is persistent if M, is large (or t is small). Mathematically, the structure of solutions of (1.7)-(1.9) should be in-
vestigated by the simpler equation via neglecting the terms involving 72, that is the hypersonic small-disturbance
equations

0+ 05(p7) = 0,

dzv — dyu =0, (1.10)
1-2 , pr'-1 _
i+ 20"+ U =0,
with initial data (1.8) and boundary condition that
v| . = bo. (1.11)

It is also called the Van Dyke’s similarity theory. So if the Van Dyke’s similarity theory can be justified rigorously,
then the study of the two-dimensional steady hypersonic flow can be much simplified by studying of the hypersonic
small-disturbance equations (1.10), because we do not face the difficulty that the characteristics are so close. On the
other hand, since for the hypersonic flow, the perturbation of the velocity (it, v) is usually not small related to the
sonic speed, so the solutions of (1.7) and (1.10) are usually with large data in the physical applications.
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In this paper, we are going to show the Van Dyke’s similarity theory rigorously. First, since the flow concerned
moves along the wedge from left to right, i.e., 1 + 72 > 0, then from the third equation of (1.7), we have

(5, o; rz)zfiz(\/l—zﬂ—l), (1.12)
where

2(p7 71 —1)
~ (y = Dag,
Then, substituting (1.12) into the first two equations of (1.7), we get

+ 0% (1.13)

d(p(1+12%0)) +95(p0) =0, in €,
(1.14)
0zv — d5u =0, in Q.
Similarly, substituting the third equation in (1.10) into the second equation in (1.10), we have
070 + 95(pv) =0, in
~ Py ) (1.15)
a;v+ay( 24 haL )=0, in €,

where (p, v) satisfies the initial condition (1.18) and the boundary condition (1.11).
To unify equations (1.14) and (1.15), we rewrite (p, v) as (57, 9™), where (1.15) corresponds to the case that
1=0.Let U = (p, ) and

Ww®, 12) = ( @ (1472, <r>>, FU®, %) = ( @ 5@ —u(”) (1.16)
Then, equations (1.14) and (1.15) can be rewritten as
WU, )+ FUD, %) =0, (1.17)
with the initial condition
U@, =Uo(), (1.18)
and the boundary condition
((1+r i@, u@) (—bo, 1)( (1.19)
Now, we will introduce the definition of the entropy solutions of problem (1.17)—(1.19).
Definition 1.1 (Entropy solutions). A weak solution U™ € (BVjoc(22) N LlOC(Q))2 of the initial-boundary value
problem (1.17)=(1.19) in  c R? 7 is called an entropy solution, if for any convex entropy pair (£, Q), that is,

VOW® 1) = VEWD tHVFWU WD), t%) and V2E(W ), 12) > 0, the entropy inequality holds: For any
¢ € CF(R?) with ¢ > 0,

0
// (5(W<f>, tH)dz¢ + Q(W(’),tz)aycz))dxdy—}— / EWP, Hp(0, y)dy
“ * (1.20)
+ /(E(W(’), %), QW™ £2)) . nds > 0,

where Wo(r) W (Up, 72) and n is the unit inner normal on boundary T'.

The main result in this paper is stated as follows.



J. Kuang et al. / Ann. 1. H. Poincaré — AN 37 (2020) 1379-1423 1383

Theorem 1.1 (Main theorem). Suppose that p, and p* are two constant states with 0 < p, < p* < 0o and py is the
given initial density satisfying that po € [px«, p*]. There exist constants C > 0, yo € (1, 2) and &9 > 0 such that for any
y €1, pl and T € (0, g9), if

(v = 1+ 2)(T.V.{Bo, T0) : (=00, 01} + Ibollz=) < C. (1.21)

then initial-boundary value problem (1.17)—~(1.19) admits a global entropy solutions (5, vV with bounded total
variations defined for all x > 0, i.e.,

sup 7.V { (5™, 5 (%, ); (=00, box1} +sup [|(5', 5P)(E, )l Lo ((—00bei) < C, (1.22)

>0 >0
where the constant C > 0 is independent of y — 1 and t. Moreover, as T — 0,

@@, 0 - 0,9 =@, 5, in L' QN BRO)), (1.23)
forany R > 0, where Bz(0) = {()E, §) x> < R} and (p, v) is the entropy solution of the initial-boundary value
problem (1.17)—(1.19) with t = 0, which satisfies that

sup T.V.{(p, V)(x, -); (—00, box]} + sup [|(2, V) (X, )l o ((—o0,bei]) < OC- (1.24)
x>0 x>0
Remark 1.1. When 7 = 0, the convex entropy pair ((W®, £2), Q(W ), £2)) can be taken of the form

2 y—l_l
g(W(O)’O) — pv- + pi’
2 accy(y—1

So the entropy solution (p, v) of problem (1.17)—(1.19) with T = 0 satisfies the entropy inequality

oWO 0)y=veWO ). (1.25)

3EWD,0)+ ;0w ?,0) <0, (1.26)

in the distribution sense.

Remark 1.2. Once the solution (5™, 3™) of problem (1.17)—(1.19) is obtained, it is easy to obtain the solutions
(P, 1@, 5®) of problem (1.7)—(1.9) by solving &™) directly from equation (1.12). Therefore, in this paper, we are
devoted to showing Theorem 1.1.

In this paper, we will give the first rigorous mathematical proof on the Van Dyke’s similarity theory. More precisely,
we will prove that solution U™ of the initial boundary value problem (1.17)—(1.19) with large data has a limit
U as T — 0, where U is a solution of the initial boundary value problem (1.15), (1.18) and (1.11), i.e., problem
(1.17)—(1.19) with T = 0. To achieve this, we first establish the global existence of entropy solutions of the initial
boundary value problem (1.17)—(1.19) for fixed T with large data.

The main difficulty is that we can’t apply the results in [17,18,22] directly, because equations (1.17) is different
from the ones that considered in [17,18,22]. Moreover, the boundary condition (1.19) is Neumann type which is also
different from the one studied in [18], which is the Dirichlet boundary type. As far as we know, there is no result
on the steady supersonic Euler flow with large data. In order to deal with it, we first need to study fine structures
of the elementary wave curves carefully and then derive the local wave interaction estimates. Fortunately, we find
the fine structures to allow us to establish the wave interaction estimates as well as the estimates of the elementary
waves reflection on the boundary. Based on them, we can choose weights %, and C, (see (4.17) below) to construct
a modified Glimm’s type functional and then shows it monotonicity decreasing. Now, we can follow the standard
arguments to show the global existence of entropy solutions of the initial-boundary value problem (1.17)—(1.19) with
uniformly bound in the BV norm independent of t provided that (1.21) holds. Finally, by the uniformly bounds, we
can further extact a subsequence to show that its limit as T — 0 is actually a entropy solution of problem (1.17)—(1.19)
with T = 0. It justifies the Van Dyke’s similarity theory rigorously.

There are many literatures on the global existence of the entropy solutions of small data in the BV space for the
one dimensional hyperbolic conservation laws since J. Glimm’s original paper [12] in 1960s. There are also many
literatures on the BV solutions of the two dimensional steady supersonic Euler flow with small data (see [6-8,10,
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13,23-25]). However, there are few results on the global existence of weak solutions with large data due to the
nonlinearity of the system. As far as we know, only systems with special structures can be dealt with. One of the
most important example is the one dimensional isothermal gas dynamic system. The global existence of the entropy
solutions of this system with large data has been proved by Nishida [16] in 1968. Then Nishida-Smoller extended
the existence result to the isentropic case with the assumption that y is sufficiently close to 1 in [17,18]. Later on,
the existence result was extended to the non-isentropic case by Liu in [15]. Recently, Askura-Corli [1,2] proved these
results by using the wave-front tracking method and see also [4,5,9] for the related results.

The rest of this paper is organized as follows. In Section 2, we study some basic structure for system (1.17) near
T =0, including the Riemann invariants, the fine properties of the elementary wave curves, as well as the solutions
for the Riemann problem including the boundary. As a byproducts, we also give some basic structure for system
(1.15), (i.e. T =0) involving the Riemann invariants, the fine properties of the elementary wave curves, as well as
the solutions for the Riemann problem including the boundary. Section 3 is devoted to the analysis of the local
wave interaction estimates of various type. In Section 4, we construct the approximate solutions by the modified
Glimm scheme, introduce the modified Glimm-type functional by choosing some weights, and then show that it is
a decreasing functional, which leads to the global existence of the entropy solutions to the initial-boundary value
problem (1.17)—(1.19) with large data by a standard procedure. Finally, we show that as T — 0, it approaches to
the solutions of the initial-boundary value problem (1.15), (1.18) and (1.11). In the appendix, we prove Lemma 2.9,
Lemma 3.1, and Lemma 3.5.

Finally, we remark that in what follows, for the notational simplicity, we will denote U™ = (p®, v and (%, 7)
as U = (p,v) and (x, y), respectively.

2. Riemann problem of the initial-boundary value problem (1.17)-(1.19)

In this section, we will study the basic structure of system (1.17) and then consider the corresponding Riemann
solutions.

2.1. Riemann invariants and the shock curves of equations (1.17)

In this subsection, we study some basic structures of the Riemann solutions of system (1.17) of large data. By
direct computation, the eigenvalues of system (1.17) are

w1 —t72 — ao_olpVTil\/l —(y = D7y + Daxtpr 172

AU, tH) = :
1—(t + a5 pr—1Hr?
( oo P ) @.1)
—1
5 v«/l—tr2+agolpVT\/l—(y—l)—l(y+l)ao_o2py—1r2
AU, %) = ;
i 1= (t +ax’pr~Hr2
and the corresponding right eigenvectors are
-1 —1
r_(U,t%) = ( —a2p™ T (- (U, T + Byu(p, v, 7)), aZp™ T dpulp, v, rz)),
- - (2.2)
P U7 = (= aZp™ T (i (U, T + 0,00, 0, 7)), aZop™ T dup, v, 7).
For u(p, v, 72), we have the following lemma.
Lemma 2.1. If y > 1, then we have
Py_z 2 v
up, v, 1) =——-"e—,  Qup,v,1%) = ———, (2.3)
P a2 NT—t12 V1—t1?

and
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v =207 (1= (1= v =2 la2pr)2?)
a2 (1 — 72132 ’

p? " 2vut? 92 u( 2 1-2(y = D7 ta2(p? ! = D7?
_ u(p,v,7°) =— )
a2, (1 —121)3/2 v lP (1 —121)3/2

where t is defined by (1.13).

2 2
appu(pvvaf )=_
(2.4)

2 2
dppu(p, v, 77) =

Proof. First, by (1.13), we have

ar 2pY72 ot
—="__ =
ap aZ v

From u, we also get that

1+ 22u(p, v, t2) =1 —t72.

So it follows that
729 u(p,v rz) = —l(l — ttz)_l/ztZi 729 u(p,v 12) = —l(l — ttz)_l/zrZi
1 s Uy ) ap’ v s Uy ) Bv’

which gives d,u(p, v, t2) and dyu(p, v, t2), respectively. With (2.3), we can further take derivatives with respect to
p, v to derive (2.4). This completes the proof of the lemma. O

Remark 2.1. By Lemma 2.1 and (2.1), we have that
2e(U, ) + dpu(p, v, %)

1

aylp'T (aoo‘pyz‘]vr2 - \/(1 — (= D71y + Daxtpr=1e2) (1 - rr2)> 25)

B (1 - (t—l—a;ozp?’_l)rz)\/l —t12

Lemma 2.2. For the eigenvalues ,y and )_, we have

y—1 r-l1
2 2
(U, 0)=v+ 2" AL (U,0)+ doulp,v,0) = 2 (2.6)
[ oo
and
ri (U, 0) = (ace, 2p"T). @.7)
Moreover,
(v —p'T
0 hs(U.0) =L 22" 55.(U.0)=1. 2.8)
2050

Proof. Firstly, by the definition of ¢, (2.6) and (2.7) follow directly from (2.1) and (2.2). For 0,A+(U, 0), note that
the characteristic equation of system (1.17) is

(1+ 22 + pdpu))A% + ((1 + T2u)dyut — v)A + pdpu — vdyu = 0. (2.9)
Taking derivative on (2.9) with respect to p to obtain that
[2(1 + (u + pdpu)T?)A + (1 + T2u)dyu — v]3pA + 12279, (1 + pd,u)
+ [T20udyu + (1+ 1) 3], ur + poj,u — v0 u + d,u =0.

So take T = 0, we have
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_pappu(p, v,0) +d,u(p,v,0)
20(U, 0) + dyu(p,v,0) —v ’
which gives the expression of 3,4+ (U, 0) with the help of Lemma 2.1 and (2.6).
In the same way, we can also take derivatives on (2.9) with respect to v to have
(1—082u(p,v,0)A(U,0) +vd2u(p,v,0) + du(p,v,0)
20(U, 0) + dyu(p, v,0) — v ’
which implies the expression of 9,A4 (U, 0) by employing Lemma 2.1 and (2.6) again. O

9,MU,0) =

WA (U,0) =

Let
oU, 1) = (0, 04)(U, ) (or 0= (0_, ) (2.10)

be the Riemann invariants satisfying

Vywr(U,7) - re(U, 1% =0.
Without loss of the generality, we can assume w- (U, 72) is defined by solving the following two equations
y=3
=

-1
0pw+(U, t2) = —ago,o_yT dpu(p, v, 12) - (2.11)

VT—172

and

-1
Dy (U, 7%) 1= —alp™ T (e (U, 1) + dyu(p, v, 7))

,oyTilvr2 :l:aoo\/(l —(y—-DNy+ l)agoz,o?’_]tz)(l —172) (2.12)

(l —(t+ a;ozp?’*l)rz)\ﬂ — 172

Remark 2.2. For T =0, w4 (U, 0) can be expressed explicitly as

Y Y
2007 —1 2007 —1
r:=w_(U,0) =axv + (/07), s:=w4+(U,0)=—acv + ('071) (2.13)
y —

y—1
Lemma 2.3. For p > 0, there exists a constant €1 > 0 sufficiently small such that for any t € (0,€1), U = (p, v) can
be represented as a function of w. Moreover, the map U = (p, v) = o = (w_(U, t2), w4 (U, 12)) is bijective for any
fixed parameter p > 0 and sufficiently small parameter T>. Moreover

1 _y3 1
2

V“)*(]|1::0 = <_p

5 ): VoUl,_o= (lp—%_;). (2.14)

" 2as0 2 2000

Proof. By Lemma 2.1 and Remark 2.1,

a2 | 70pu(p,v,0) —A_(U,0) —dyu(p,v,0)
det(VUa)_(U,tz), an)+(U,r2))) =t
=0 pT | =8,u(p,v,0) —A4(U,0) —dyu(p,v,0)
2072
= P > 0.
doo

So it follows from the implicit function theorem that there exists a constant € > 0 sufficiently small such that for any
T € (0, €1), U can be solved as a function of w.
Next, we are going to prove (2.14). Taking derivatives as follows and let 7 =0

dpo_(U,0) 22| _ + dyo— (U, 0) 52| _,
8y (U, 0)52- | _o + By (U, 0) 22| _ =0,

=1,
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which gives the expression of VUw*|r=0 in (2.14) by (2.11) and (2.12). In the same way, one can also get the
expression of Vyw. | _,. We omit the argument for the shortness. O

Now, we are going to study the elementary wave curves to system (2.1) globally. Based on Lemma 2.3, we will use
w_, w4 as the variables in the phase plane for the convenience.

The elementary wave curves consist of the rarefaction wave curve and the shock wave curve. First, for the rarefac-
tion wave curve, one of the Riemann invariants corresponding to A4 (U, 12) or A_(U, rz) is a constant. We denoted
the rarefaction wave by R (or R;) corresponding to A4 (U, 72) (or A_(U, t2)). So, in the phase plane, the rarefaction
wave curves R and Ro which pass through wo = (w— 0, w+,0) = (w—, w+) (U, rz) are

Ri: oy =w40, 0—>w_9 Ro: w—=w_, 04 <w4p0. (2.15)

Next, let us consider the shock wave curves for system (4.2). The shock solutions are the Riemann solutions
satisfying the following Rankine-Hugoniot conditions on the shock with shock speed o (72):

o (HIW U, )] =[FU, )], (2.16)

where the bracket [-] stands for the difference of the value of the quality across the discontinuity. In addition, across
the shock, the following Lax geometry entropy conditions hold:

A_(U, %) <0_(t%) < A_(Uy, t°), or (U, 1% <04 (t?) < rp(Uo, 2), (2.17)

where o_(t2) and o (t?) are the shock speeds corresponding to A_(U, %) and A, (U, t2), respectively. Actually,
entropy condition (2.17) implies that

p>po, V<Uvg, Oor p<po, V<. (2.18)
Eliminating o (72) from the R-H condition (2.16) yields
(pv — povo) (v — vg) = (p — po+ 2 (pulp, v, ) — pou(po. vo, 12)))(u(po, v, 73 —u(p,v,73)).  (2.19)
Let o = p/pg with pg > 0 and define

F (., v, Up; T%) = (av — v0) (v — vo) — (a — 1+ 7% (cu(poct. v, 7) = u(po. vo, 72))> (2.20)

x (u(po, vo, T2 — u(poe, v, T%)).

Then equation (2.19) is equivalent to equation .# («, v, Up; ‘[2) = 0. First, we will study some properties for .# when
T=0.

Lemma 2.4. For .% defined by (2.20) and for y > 1, equation ¥ («, v, Uy; 0) = 0 admits a unique solution v satisfying
that

—1 _
¥ =tp— 200 @—Dr-! -1 2.21)
(y — DaZ (@ +1)

Moreover, we have

2.7 o (2@ =D+ (= Dar 2@ - 1))
Ao le=0 (y—l)ago(a—i—l) ’
0.7 B /2/)5‘1(0[2 —D@r-1=1)
v le=0 (y — Da2, ’ (2.22)
0*.7 -2 v=1_y-3
Ba2 lrmo oo Po ' P (ya+2-y),
%7 7
=V — g, —_— =o—1.
dadv lt=0 av? lr=0
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Proof. (2.21) can be obtained by the direct computation together with the entropy condition (2.18). For (3.7), first for
%, by the direct computation

0F 2 2 2

a = 'U(U - UO) + u(p’ v, T ) - M(,OO, Vo, T ) + PO((X - 1)8,0“(10’ v, T )

+ (o, 0,72 + poadpuip, v, 7)) (u(p, v, T) = u(po, vo, ) ) 7>

+ po(au(p, v, 7%) = u(po, v0, ) ) dpu(p, v, ).

So it follows from Lemma 2.1 that
0.7

Tl =@ =) ulp,v, %) — u(po, vo, T2 + pole — Ddpulp, v, T2

=0

1 20071 — 1 200771 <1
<U2+ (p ) 2 (Po )) 2 y-1

=v(v—10) — = — - — Da? 2,
v b 0T e )T @b

2
Thus the expression of "‘Tf‘  in (2.22) follows with the help of (2.21).
,_

Next, taking derivative on .Z with respect to v

o =2av — (o + vy + (@ — 1)dyu(p, v, %)
v
+ (20u(p, v, %) = (@ + Dupo, v0, 7 ) Dy (p, v, )7

So

0.F

Tu 1o =2av — (o + Dvg+ (@ — 1 dyu(p,v,0) = (¢ + 1) (v — vp).

=
Hence, the expression of %= 3/ ‘ in (2.22) follows by (2.21) again.
In the same way as done for deriving the expression of ﬁ 0 and % o we can further take derivatives on
= =

ad‘; and W1th respect to & and v and let T = 0, then (2. 22) follows from Lemma 2.1. O

Remark 2.3. When 7 =0, it follows from Remark 2.2, entropy condition (2.18), and the straightforward calculation

that
y—1
_ 2 7 (1—a)(1—ar—1) V_l
S so—s—,/ﬁpo2 Y T +Vy= (l—a 2 } . » o
: _ <o , .
: _ /2 5| [acea—er | —a'T) -
ro—r=\75e (VR A -
and
> T [e—veon
S S0 =S =4/y=1Po IS B v s ={Ch T | 02
N _ o> 1. .
? _ /25| [e—berT-n 2 o3 -
ro—1r=,/3=7P = Vv d CRER )

Remark 2.4. When y =1 and t =0, S1 and $ are of the following forms:

[ 2(1-a)
So— 8§ =— Ina — Ine,
ot O<a<l, (2.25)
ro—r=,/— 2$+f‘) Ina — Ina,

St

and
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so—s=—,/2$‘—_:11)1na—lnoz,
a>1. (2.26)
ro—r:,/sz—;l)lna—lna,

Eliminating «, one has

Sy

1— e—%(ro—r+so—s)

ro—r—(so—s)=2 (ro—r+s0—s), 2.27)

1+e 3 (ro—r+s0—s)

where rg — r + sg — s > 0 for the S| wave, and ro — r + s — s < 0 for the S, wave.
Now, we will give the existence and properties of the shock wave curves near t = 0.

Lemma 2.5. There exists a small constant 0 < €3 < €] such that for any t € (0, €2), v can be solved as a function of
o, Uy, rzfrom equation % (a, v, Up; 2)=0,ie, v= o(a, U, 12). Moreover,

_ ol 2 =D+ (y = Dar e — 1) (2.28)
=0 V2v-Dak Ja—D@ - Dat1)s

:l £<\/(a2_1)(ayl —D(@? =D’} —1)(oz+1))_1
=0 4\ (y — Dal

x (2(y — Do (2 —y)e® =20 +y —2) (@ — D@’ = 1)

dp
o

and

BRI
da?

(2.29)

+4Qa = DT = DT+ (= 12?0 - 1D?).

Proof. When o = 1, it is easy to see that p = pg and v = vg. Now, we only consider the case that o # 1. Let

_ F(a,v,Up; T2)

G(a, v, Up; %) =
a—1

By (2.22),,

1G] _@+h-v) _ [ 20" V=D -1

v le=0 a—1 V(@ -Dak a—1 ’
Then,weknow% >0for0<oz<1,3a—G <O fora > 1, and

=0 V=0
3G 20y~
lim —| =xY"° o
a—=E1 Jv lr=0 (27

Therefore, by Lemma 2.4 and the implicit function theorem, there exists a small constant 0 < €, < €1 such
that for any t € (0, €2), equation G(«, v, Up; r2) = 0 admits a unique solution v = ¢(«, Uy, 12). It implies that
F(a, p(a, Uy, %), Ug; %) = 0.

Next, let us compute g—z ‘r—o’ Notice that .7 («, ¢ («, Uy, 12), Uo; 1'2) = 0. Taking derivative on it with respect to «
yields that

(2.30)

0.7 (o, v; 72) n 0.7 (a,v; T2) g _0
da v da
Let 7 =0, then we can obtain (2.28), by Lemma 2.3.
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Finally, taking derivatives with respect to o again on (2.30) yields that

Pp 02, F (1) +202,.F (@, v; 1) e + 02, F (o, v; T2) (00 9)*
da? 3 F (o, v;72) '

So, by Lemma 2.3 and (2.22), we have (2.29). This completes the proof. O

(2.31)

Next, we are going to study the shock wave curves in the Riemann invariants coordinates. First, we have the
following properties for w.

Lemma 2.6. For y € [1, 2], there exists a small constant 0 < €3 < € such that for any t € (0, €3), along the shock
wave curve v = @(a, Up; T%),
d(w_— w_
Wo0=0) o for 0ca<l, (2.32)
o
and
d(ws0 — @)
_ <
oo

where w_ and w are defined by (2.11) and (2.12), and w+ o = w+(Up, ).

0, for a>1, (2.33)

Proof. We only prove (2.32) here since we can treat w4 in the same way. By the definition of w_, along the shock
wave curve,
d(w—p—w-) _ ( dw_  Jdw_ 8(p>

fole o ap + Jv du

vt 0
= agop 2 (poapu(,o, v, r2) + (A_(U, 1:2) + dyu(p, v, rz))£>.

So, by Lemma 2.1, Lemma 2.2 and Lemma 2.5, we obtain that

y—1

,002

o0 __
=0 2/2(y — DA —a)(1 —a’ (1 +a)]

oo

x (2(1 —a" Y4 (y = D — )’ 2

+\/2()/ - D1 —a)(1 —ar—H +a)3ay—3)
<0,

for 0 < @ < 1. It completes the proof of the lemma. O

Denote

B-=w_0—w-, By=wi0— 0. (2.34)

By Lemma 2.6 and the implicit function theorem, « can be regarded as a function of S_ or B4, i.e., « = a1 (B, Up; r2)
and o = a2 (B4, Up; 12). So along the shock wave curves,

By = @1(B—, Up; T%) i= w0 — wi (a1 (B, Up; T2), T2), (2.35)
which is called the S; shock curve, or
B = 2B, Up; T = w— o — w_(aa(By, Up; T2, T2, (2.36)

which is called the S, shock curve.
For the S shock wave curve, we have the following lemma.
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Lemma 2.7. For y € [1,2] and 0 < o < 1, there exists a constant €4 > 0 sufficiently small such that for t € (0, €4),
the shock curve Sy starting at (w— o, w4 o) is

B
=& (-, Up; 5 = | Wi (e, Up; 7° dp, 2.37
B+ 1(B-, Uo; 7°) / 1(a, Up T)a=oz1(ﬂ,Uo;t2) B (2.37)
0
where B_ = w_ o — w— > 0. Moreover,
AP (B, Up; 0 2@ (B, Up; 0
0 220Dy TR0, (2.38)
0p— ap<
Finally, if @ > g9 > 0, then
3Dy (B, Up; 72
Creg < 221F Lot (2.39)

3p_

where C1 > 0 is a constant depending only on the data and &g, and independent of t.

Proof. By (2.35) and Lemma 2.6, we can define

_9Pi(B-, Up: T°)
= 95 .
So (2.37) follows. Moreover,

Wy (o, Up; T2 :

0 —
01 (B, Up:t2) 1= podu(p, v, 1) + (hr (U 72) + dpu(p, v, 72)) B

9B B Ho_p-w.) ~ podpu(p, v, 72) + (A_ (U, 72) + dyu(p, v, 72))dagp

With the help of (2.5) and (2.28), we have

P0dpu (0, v, T _o + (A4 (U, T + duulp, v, 7)) 9|,
P0dou(p, v, T o+ (- (U, 1) + dyu(p, v, 7)) 0] _,

21— ) + (v = D —eDa? 2 = /2y = DI )1 — o’ H(1 +a)}ar 3
21— H+ (= D1 —aDa’ 2 +/2( — DI —a) (1 —a? (1 faPa?

By Lemma 2.6, we know that _ = w_ o — w— is monotonically decreasing with respect to o« when 0 < o < 1.
Notice that B_ =0 when o = 1. Therefore, forO <o <1, - =w_ o —w- > 0.

Next, let us consider W. Note that

lIll|‘[:0 =

W (ar, Up; T2)

-2
2 = (P, 0. 7)) + (- (UL ) + Byu(p.v. 7))y ) T (UL T,

where
JW, %) = pg(()\_ — )02 u(p, v, T2 + (Iphs — IpA_)dpu(p, v, 12)) O
+ 00 (Z(L —Ag) 2 u(p, v, T3 + (A= + Buu(p, v, 7%))dphy
= (h + B0, 0, 7)) 0ph + (D = DA-)dptt(p, v, 7)) ()’
+ ((avx+ +02u(p. v, 1)) (A + dyu(p. v.7%))

— (@ur + 32 u(p, v, 7)) (g + uu(p, v, 12)))(3a¢)3 + p0(hg = A2)pu(p, v, )02 0.



1392 J. Kuang et al. / Ann. 1. H. Poincaré — AN 37 (2020) 1379-1423

When 7 =0, by Lemma 2.1 and Lemma 2.5, we get

3(r=D

JWU,00=a’p, °

7
o 2 (()/ - 3)8a€0|T:0 - Zaao%aw\fzo)

2[(y + Da? =20 +3 — y](l—;‘fﬂ")2 —4a? (1 — ozz)l—y"‘fy[1 +a? 2 (a? — 1)?
V2(r = D —a)(1 —ar H(1 +a)>(1 —a®)(1 —ar~)
« (—aoo(V 1202 2(y—1) 7)

On the other hand, we also have

-2
(P03t (. 0.7 + (- (U, T) + By, v, 7)) 00 )

2y — Datpy " Va1 —a)(1 —a? ) (1 +a)}

(2(1 —a? )+ (y — Dar2(1 —a?) +2(y — D1 —a)(I —a’ D + a)3oﬂ’*3)2.

With the above two equalities, we have

v
da

v - 2T V2( = D —a)( —a? D + )
=0 1—a)(l—ar1

2[(y+1)a2—2a+3—y](%) — 40771 — o)) 2 a2 a? — 1)

X

(2(1 —a? 4 (y = Dar=2(1 —a?) +2(y — D1 —a)(I —ar D1 + a)3ay—3)2.

Let

y—1

1—
T, y):=2[(y + 1)0(2—2054-3—)/](%‘_{1

1 —av!

)2—4<1—a2>ay‘1( y—1 )+ (1=a?) a2,

Note that
A= ( 41 — Z)M—l)2 —8[(y + Do =20 +3 —y](1 —a?)’a’ 2
=8(1—a?)’a’ 220" = (y + D’ + 20 — 3+ y]
=8(1— oc2)201"_2A0(06, Y)s

where Ag(a, y) =27 — (y + l)oz2 + 20 — 3 + y. Obviously, Ap(l,y)=0,andforO<a <land 1 <y <2, we
have 9, Ag(e, ) =2yoe(oﬂ’_2— D4+2(1 —a) >0.S0 A <0Owhen0 <o < land 1 <y <2.Therefore, J(a, y) >0
when ) <o < 1and 1 <y <2.Thus
oV
da
when0<a<land1 <y <2.SoforO<a<landl <y <2,

<0,

=0

2@ (B, Up; 0) (a(w_,o — w_))—l OV (o, Up; T%) 0
= _ > 0.
0B da =0 da =0
Moreover, because W (1, Up; 0) =0, and |\111 |r=0| < 1for0 <o <1, we have
0P (8-, Up; 0
0< % <1. (2.40)

Finally, for o > ¢9 > 0, we can choose €4 > 0 sufficiently small and a constant C; > 0 independent of t such that
when t € (0, €4), C189 < ¥ (a, Up; r2) <1l. O
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Based on the proof, actually, when T = 0, we have the following lemma.

Lemma 2.8. If y € [1, 2], then the shock curve Sy starting at (rg, So) can be written as
ro—r

so—s=g1(ro—1, po) = / hi(a)
0

s dB, (2.41)

a=a( Oz

P

2
where 0 < ag‘g%p‘)) <12 gég’;’p‘)) >0,and B=ry—r>0.

Next, let us consider the properties of the shock wave curve S;.

Lemma 2.9. If y € [1,2] and o > 1, there exists a constant €5 > O sufficiently small such that for t € (0, €5), the
shock wave curve Sy starting at (w— o, w4 o) can be expressed as

B+
_=®y(B4, Up; 12 = | Wa(a, Up; T2 , 242
B 2(B+, Uo: T7) / 2(a, Uos T )a=a2(ﬁ,Uo;r2) (2.42)
0
where By = w4 0— wy <0and
ad ,Up; 0 ERE ,Up; 0
O<M<l, M<O' (2.43)
0B+ 087
Moreover, if a < gy 1, it holds that
D, (B, Ug; T2
0< 2B+ Uoit) —_ Creo (2.44)

0P+

where constant Cp > 0, depending on the data and &, is independent of t.

Because the proof is similar to the one of Lemma 2.7, we postpone the proof to be stated in Appendix A for the
shortness. Based on the proof, we actually have the following lemma for 7 = 0.

Lemma 2.10. If y € [1, 2], then the shock curve S> starting at (ro, so) can be rewritten as
S0—S

ro—r = ga(so — s, po)E/hz(Ol)
0

dp, (2.45)

_ B
a=(—5h77)
)

2
where O < 8‘6"25%”0) <12 ggg’j;p") <0,and B=s9—s <0.

2.2. Riemann solutions of equations (1.17)

Based on Lemma 2.7 and Lemma 2.8, for any constant state wy, = (o— 1, w+,1), let
=w_ —w_ and D=wi L — O+.
Define
ﬁf](l)(m, wr;tH)=—z1+o_p,
KO o7 = { —®1(2, Ui ) 4 wrp. 71> 0, (2.46)
W+, L, 71 <0,

and
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Ur

(x0, Y0)

Fig. 3. Riemann problem without boundary.

— 022, Ups ) +o-, 2<0,
%ﬂz(l)(zz, wr; ) =
w_1, 22 >0, (2.47)
2
3@ (@, 0110 =22+ Wi L,
where functions @ and & are given in Lemma 2.7 and Lemma 2.8, respectively. Let

H (@, o012 = (A, A7) @1, 00 ),

2 €] () 2 (2.48)
My (2, 00, T°) = (A5, 757 ) (22, w15 T7),
and finally denote
H(z, 01370 = A (21, (2, 01 T); T, 2= (21, 22). (2.49)

Then, we can parameterize the 1-waves by z; and parameterize the 2-waves by z. For the case that T = 0, we set
2:=2=(z1,22) and w := ® = (1, 5).
Now, let us consider the Riemann problem of (1.17) with large initial data at x = xg

U, y < Yo,
UGy, = U (2.50)
R Yy > Yo,

where Uy = (pr,vp) and Ug = (pg, vg) are two given constant states satisfying py > 0 and pg > 0 (see Fig. 3). We
have the following proposition that gives the solvability and the invariant region of the Riemann problem of (1.17)
and (2.50).

Proposition 2.1. Suppose that w_ | + w4+ g > —% for some constant 0 < g9 < 4, then there exists a sufficiently
small constant € > 0 such that for any t € [0, €¢), Riemann problem (1.17) and (2.50) admits a unique piecewise
smooth solution U (x, y) without the vacuum state. Moreover solution U (x, y) satisfies

w_(U(x,y), 1) +wr(U(x,y), 15 > o_ 1 + oy g, (2.51)

where wy 1 = w+ (UL, ‘172) and w4 g = w4+ (Ug, rz).

Proof. The existence of the solutions of Riemann problem (1.17) and (2.50) is equivalent to the existence of solutions
z of the following equation,

wg = (2, 01; ). (2.52)
From (2.49), we know that

det (Vz%)(z, wL; rz) =det (V%ig%”l -V, 76, Vzl%>(z, wL; 7:2).
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Based on the sign of z1 and z7, we divide the proof into three cases for checking the sign of the determinant above
to show the existence of solution z of equation (2.52).

Case (i). z1 > 0 and 7» < 0. By the definition of éfl(l) and %”](2), we know that
A (22, UL 1) = = 0o, Ui 1) + o 1. 657 (@2, Uit =~ + w4 1,
and
AV @1, (2, 0157 1) = —21 + 7 (22, 015 ),
HP (21, (2, 015 1) 1) = — Dy (m, U((z2, 015 T)); rz) + 5 (22, 015 7).

So
ijijfl . sz%é
1 0

2 T
(= 00®2(2 UL T, —1)

—VU<D]-8%(1)U —Vy®; -0 U+1
2

(2
7

.
=< — 8, ®2(z2, Up; T%), Vy®y - 00U+ Vu®1 -0 0 U - 35, ®2(z2, UL %) — 1) ,

and
-
V74 = (— 32, @1 (21, U(H(22, w; t2)); 72), —1> .

Note that it follows from Lemma 2.3 that,

VUCI)1~3%(|)U =Vyd; -8%(2)U’
2 =0 2 =0
1 3
=30 70,0121, U (M2, (UL, 0):0)):0)
y—1
=L 151 @2 (21, U (A (@2, 0(UL,0); 0)); 0)
0

1
= 39, @1 (21, U (2. 0(UL. 0):0)): 0).

Then, by Lemma 2.7 and Lemma 2.8,

det(V; ) (z,wr; T%)|  =det (V%i%”l -V, 56, Vi %i)(z, oL )|,

=0
1
= — 14+ 30,1 (21, U (W52 0(UL.0:0)): 0) - (3, @222, Ur: 0) — 1)

<—1.

Thus, for 7 sufficiently small, we can get the existence of solution z of equation (2.52) by applying the implicit
function theorem. Moreover, by the signs of z; and z»,

(U@, y), ) =ws g — P11, U(H (2, 01 1)): 1> 04 g, for z1 >0,

and

o-UE ), ) =0 (2, Ui ?) 401> 01, for <0,
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which leads to the estimate (2.51).

Case (i1). z1 <0 and 20 < 0 (or z1 > 0 and z > 0). Without loss of the generality, we only consider the case that
71 <0 and z2 < 0, since the other case can be treated in the same way. For the case that z; < 0 and z» < 0, notice that

2
(22, Ut = 022, Ups i) +o- 1. 7 (@, Uit =~ +wy 1,

and
%ﬂl(])(m,%(zz, oL Tt = —71 + %ﬂz(l)(zz, wr; ),
AP @, Bz, 01T 1) =~ +op .
So
det(V; ) (z, w0 T%)| = ®a(22, Ur; v%) — 1 < —Cey,
=0
and

w_g=-21—®02. Uit +o_ 1, 0fr=—2+041.
Hence we can obtain the existence of solution z of equation (2.52) directly, and
w_(U(x,y), 1'2) >w_ and oiU(x,y), 12) = W4 R,

which leads to the estimate (2.51).
Case (ii1). z1 < 0 and 2o > 0. In this case, notice that

1 2
%ﬂz( @, 015t =0 1, %”2( "ot =—n+ oL,

and
1 1
AV @, (2, 011 1) = 21 + 7 (22, 01 T,
2 2
AP @1, (2, 01; 1) 1) = 2 (22, 015 7).
Then

1=w_ [ —w_R and =4[ — 04 R-
So we obtain the existence of solution z directly, and in this case it is easy to see
2 2y
o_(U,t°)+wo+(U,t°) =0—_ 1 + o4+ R.

Moreover, notice that

v y—1
P 7| = (-0t w.0)+1
y—1
> L (04U, 0) +0- (UL, 0)) +1
>C >0.

Based on this fact and combining the arguments for Cases (i)-(iii) together, we can choose €5 > 0 sufficiently small
such that for t € (0, €¢), equation (2.52) and then Riemann problem (1.17) and (2.50) admits a unique solution z
without the vacuum states. Moreover, estimate (2.51) follows. It completes the proof of the Proposition. O

Next, let us study the Riemann problem involving boundary. Define
Qo ={(x,y): xo =x <xi1, y <bo(x —x0) + yol,

Fo={(x,y): x0 <x <x1,y=bo(x —x0) + yo}.
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\
(x0, y0) U —— 1,
UL
X =X X=X

Fig. 4. Riemann problem with boundary.

Let us consider the following Riemann problem (see Fig. 4):
»WU,t*) +d,F(U,1%) =0, in Q0,
Ux,y)=Up, on 20N {x =xp}, (2.53)
v(x,y) = (14 72ulp, v, t2))bo, on Ty,

where by < 0 and Uy = (pr, vr) is a given constant state satisfying py > 0.
We have the following lemma on the solvability of Riemann problem (2.53).

Proposition 2.2. Assume that w_ | — acobo > —27—"? for some 0 < g9 < 2, then there exists a small constant €7 > 0

such that for any t € [0, €7), Riemann problem (2.53) admits a unique piecewise smooth solution U (x, y) consists of
a single 2-shock or a 2-rarefaction wave without the vacuum states. Here, o_ 1 = w_ (UL, 12).

Proof. It is easy to see that the existence of solutions of Riemann problem (2.53) is equivalent to the existence of
solutions z; of the following system

w =5z, 01; %),
(2.54)
v=V(w,1?) = (14 1%u(p, v, 72))bo.

Let
G (22, w1, bo; T = V(B(22, w3 T2, T2) — (1 + T2u(p, v, T%))bo,

and consider equation ¥ (z2, wr., bo; 12) = 0 for t sufficiently small.
Note that

1
922, 0(UL.0).b0: 0) = 5 — (5" @2.0(UL. 0:0) = 47 (22, (UL, 0):0)) = by.
(o¢]

Ifbg <vp,ie,w_(UL,0)—wy(Ur,0) > 2axbg, then

1
9 (22, 0(UL.0),b0: 0) = 5—— (22 = ®2(22, UL 0) 4 0- (U1, 0) = 04 (UL 0)) = bo.

(0@}
By Lemma 2.8, we get that
ag(z2,CL)(UL,O),b0,0) 1 CZSO

- 1 — 9., ®y(z0, Up: 0
92 2aoo< 2 P20z, UL ))>2

> 0.

oo
On the other hand, we notice that 4 € C? with respect to z2, then
1
40,w(UL,0), bo; 0) = 2—(607(UL’ 0) — w4 (UL, 0)) — by >0,
Aoo

and



1398 J. Kuang et al. / Ann. 1. H. Poincaré — AN 37 (2020) 1379-1423

by

1
lim ¥9(z,w(Ur,0),bp;0)=—— lim (1
2—>—00

2000 22—>—00

®2(Z2»ULs0)> CU_(UL,O)_CUJ,_(UL,O)
- 22+ -

z 22 2000
= —0OQ.

So, by the intermediate value theorem and the implicit function theorem, there exists a small constant eé > 0 such
that when 7 € [0, €}), equation (2.54) admits a unique solution z; < 0 which consists of a shock wave belonging to
the second family. There is no vacuum state, which can be verified by the observation that w_(U, 0) > w_(Ur, 0),
which leads to

pa| _y—1
P = (04 . 0) +0-U.0)) +1

:Z%i@LWﬁ%%M%>+1

y—1
>—3—(w4me—ﬂwm)+1
> C.
Second, if by > vy, i.e., w_(UL,0) — wy (UL, 0) < 2as.bo, then states Uy, and U are connected by a 2-rarefaction
wave R». So, by (2.47) and (2.54), we know that

o_(U,0) =w_(UL,0), 0+(U,0)=w_(Ur,0)—2axbyp.
This also gives that

pa} y—1 ~
p =T (0- WL, 0) ~ o) + 1> €,
=0 2

which means that the vacuum states dose not appear. Moreover,
G (22, 01, bo; 1) =V((@- L, —22 + w4.1), 7)) = (1 + T2u(p, v, 7))o,
sO

39 (z2, o1, bo; T°)
=—>0.
072 =0 2dc0

Hence by the implicit function theorem, there exists a small constant eé/ > 0 such that for 7 € [0, 69’), equation
(2.54) admits a unique solution z» > 0 such that Uy and U are connected by a 2-rarefaction wave R, without the
vacuum state.

Finally, take €7 = min{eé, eé/ }, then when t € [0, €7), we can get the existence of solutions of Riemann problem
(2.53) without the vacuum states. 0O

3. Local interaction estimates

In order to control the total variation of the approximate solutions which will be constructed in the next section, we
need to study the local interaction estimates of the elementary waves of large data. Firstly, let us consider the estimates
on the difference of the Riemann invariance of the same family along the corresponding shock wave curve. Let us
consider them for the case that 7 = 0 first. By Remark 2.2, as shown in Fig. 5, let

v—1 r—1 r—1
2(py° =1 2(p° =D 2(py> =1
10 1= AooV0 + —— L = oo V] + T 50 1= —dooV) + —— ,
y—1 y—1 y—1
(3.1)
2p"T - 1) 20T — 1) 2p"T — 1)
2 — — 27 —
r::aoov+p4:aoov2+'027, s::—aoov—i—pi,
y —1 y —1 y —1

and
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""""""" (10, 51)
S
(r,s2)
(r0. 50)
(r,s)
r 40
Fig. 5. Lemma 3.1.
(r2,s) (r,5)
T T K
\ S | RY)
1 1
1 1
1 1
1 1
1 1
50
(r1.50) (r0. 50)
Fig. 6. Lemma 3.2.
y=1 =1
20,7 —1 2p, > —1
§1 1= —aooV1 + M, 52 1= —dooV2 + 2o, —D (3.2)

y—1

Then we have the following lemmas.

y—1

Lemma 3.1. Suppose t = 0 and s1 > so. For two S| shock wave curves starting at points (ro, s1) and (ro, so) and
ending at points (r, sp) and (r, s) respectively, if 0 < p, < p; < p* < 00 for i =0 and 1, then there exists a constant
C3 > 0 depending only on p, and p*, such that

0<(so—s)— (51 —52) < C3(y — D)(s1 — s0)(ro — 7). (3.3)

The proof of this lemma will be given in the appendix since it is similar to the one in [17]. Similarly, we also have
the estimate on the difference of r on S, (see Fig. 0).

Lemma 3.2. Assume t = 0 and ro > r1. For two S» shock wave curves starting at points (ry, so) and (ro, So), and
ending at points (r2, s) and (r, s), respectively, if 0 < p, < p; < p* < 0o fori =0 and 1, then there exists a constant
Cé > 0 depending only on p, and p*, such that

0<(r—ro)— (r2—r1) <Ci(y — D(ro —r1)(s — s0)- (3.4
Now, let us consider the case 7 # 0 in the following lemmas.

Lemma 3.3. (see Fig. 7) Assume wy 1 > w4 0. For two S1 shock wave curves starting at points (w— o, wy 1) and
(w—0, w4 ,0) corresponding to (p1, v1) and (pg, vo) respectively, and ending at points (w—, w4 2) and (w—, wy) cor-
responding to (02, v2) and (p, v), respectively. If 0 < p, < p; < p* < 0o for i =0 and 1, then there exists a constant
Cy4 > 0 depending only on p, and p*, such that

w10 —op — (11 —042) < Caly = 1+ 1) (41 — 040 (@0 —0). (3.5)
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Fig. 7. Lemma 3.3.

Proof. Let Aw_=w_0—w_, Aot =w4+,1 —w1,and let wy 2 = 0*(Aw—, Awy, 72). For the case that t = 0, by
Lemma 3.1,

®*(0,0,0) — 0" (Aw—_,0,0) — 0¥ (0, Awy,0) + 0*(Aw_, Aws,0) = O (y — DAw_Aw,.
Therefore, we have
w40~ 0 — (@041 — 01 2)

— 0"(0,0,7%) — 0*(Aw_,0, %) — (a)*(O, Awy,2) — 0" (Aw_, Awsy, 12))
= 0*(0,0,7%) — 0*(0,0,0) — (a)*(Aa)_, 0.7%) — 0" (Aw_, 0, 0))

~ (a)* 0, Awy, 72 — 0" (0, Awr_, 0)) o' (Ao, Awy, T2 — 0" (Ao, Aoy, 0)

+0*(0,0,0) — 0*(Aw_,0,0) — 0*(0, Aw,, 0) + 0" (Aw_, Awy, 0)
1
= r2/e(Aw,, Awy, xtHdx + O)(y — DAw_Aw.,
0

where
e(Aw_, Awy, x12) = 0,20%(0,0, x1%) — 20" (Aw_, 0, xT%)
— 0,200, Awy, xT2) + 020" (Ao, Aw,y, xT%)
=0()Aw_Aw,.
Combining the above two estimates together, we have (3.5). O

Similarly, we also have the estimate on the difference of w_ on S shock wave curves.

Lemma 3.4. (see Fig. 8) Assume w_ o > w_ 1. For & shock wave curves starting at points (w— 1, w4 0) and
(w—,0, w4 ,0) corresponding to (p1, v1) and (pg, vo) respectively, and ending at points (w— 2, wy) and (w—, wy) cor-
responding to (p, v) and (02, v2), respectively. If 0 < p, < p; < p* < 00 for i =0 and 1, then there exists a constant
C}, > 0 depending only on py and p*, such that

w_—w_g—(@_2—-w_1) Ciy =1+ 1)(_0—o_ 1)1 —00). (3.6)
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Fig. 8. Lemma 3.4.

(w— R, w4 R)
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QA k-1
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< (o_ 1,04 1)
(o—, .04 1) \

Xk—1 Xk Xk+1

Fig. 9. Local interaction estimates away from the boundary.

Now we are ready to introduce the local interaction estimates case by case (see Fig. 9). Let v and v’ be the wave
strength of shock wave S; before and after the interaction. Let 8 and B’ be the wave strength of shock wave S, before
and after the interaction. And let 0, 7 and o, &’ be the wave strength of rarefaction wave R | and R; before and after
the interaction respectively.

Lemma 3.5. Let y € [1,2], andlet 0 < p < p < oo. Then, for p € [p, ), there exist positive constants Co > 0, Cs > 0
and § € (0, 1) independent of vy, B, v and p, such that the following interaction estimates hold:

(1) For the case that S, + S1 — S| + S}, i.e., for the wave strength interaction that f + v — v' 4 B', one of the
following estimates holds:

@ V| +1B1<1Bl+ v+ Cs(y — 1+ 3)|Blv],
B V=Wl =¢ IB1=<IBl+Cs(y — 1+ TH)IBlIv|+n, (3.7)
© 1B 1=1Bl—¢ IWI<Iv+Cs(y — 1+ DBV +n,

where 0 <n <8¢ and ¢ > 0 is a constant;
(2) For the case that S, + Ry — R + S}, i.e., for the wave interaction that  + o0 — o' + B', we have |B'| = |BI;
(3) For the case that S; + S, — R + S, i.e., for the wave interaction that 1 + B2 — o' + B', we have |B'| =

|B1] +1B2l;
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Fig. 10. S wave hits the boundary and Sé wave reflects.

(4) For the case that S, + Ry — S| + S} (or S2 + R1 — R + S,), i.e., for the wave interaction that  + 7w —
VvV + B (or B+ 0 — 0 + B'), there exist 1-shock wave vy and 2-shock wave By such that the wave interaction
Bo +vo — V' + B is the same as the one in (1) and the following estimate hold:

lvol + [Bol = 18] = Colvol;

(5) Forthe case that Ro+ S, — 81+ S, (or Ry + 81 — S +R)), i.e., for the wave interaction that 0+ g — v' +
(orm+v— v +0), wehave |V'| + |8’ <|B] — ColV'|;

(6) For the case that Ry + R1 — R + R}, i.e., for the wave interaction that w + 0 — o’ + 1/, we have |o| + || =
lo" + |7'|;

(7) For the case that S1 + Ry — S| + S, i.e., for the wave interaction that v + 0 — V' + ', we have |V'| + |B'| <
vl = ColB'l;

(8) For the case that Sy + S| — S| + R}, i.e., for the wave interaction that v + vy — V' + 7/, we have |V'| =
[vil + [val.

Proof. We postpone the proof into the appendix because it is similar to the one in [17]. O

Next, let us consider the interaction estimates near the boundary. First, we study the case that S; wave hit the
boundary and then reflects (see Fig. 10).

Lemma 3.6. Let y € [1,2], 0 < p < p < 00 and by < 0. Suppose that the constant states Up, Ug € O(Uq) with
OL, PR € [0, ), satisfies that

vr = (1 + t2ug)bo, 0wy g=—P (UL, )+, . (3.8)
Then, for constant state U, € O(Uso) with py € [f, p] which satisfies that

V=1 +12upby, @ g=—02(B UL, ) tow_, (3.9)
we have

B = Kpv, (3.10)
where

Kp=—1+0)(y —1+12), (3.11)

with the bound O(1) depending only on the system and Uy .
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(rr,sR)

Fig. 11. 1 wave hits on the boundary and Sé wave reflects.

Proof. Denote

LB v,y — 1,15 = (1 + tPup)vly — (1 4 2uly) k. (3.12)
When y =1 and 7 =0, (3.12) is reduced to

vy =17 = (§ v+ ) —e).

2050
where g(v) 1= &, (v, Up; zz)‘ L With0<g'<1,g">0.and &3(B', Up; 12)‘ | = —8(=f).Inthis case,
y=I,7= y=I1=
equation £ (B, v,y — 1, ‘1,'2)‘ . 0 admits a unique solution 8’ = —v. Note that
y=L1=

0Lo(B’,v,0,0) ‘
B’

where constant C depends only on p and 6. So it follows from the implicit function theorem that 8’ can be solved as
a C? function of v, y —1, 72, bo and Uy . Moreover,

1
= — 1 ol (_— ) C 0’
y=1,1=0,f'=—v 2%0( g=v))>C>

1

B =pwy—11%)= V/Bvﬁ’(xv, y — 1, t%)dx,
0

where we have used the fact that 8/(0,y — 1, 72) =0 (Fig. 11).
Since B8'(v, 0,0) = —v, then 3,8’ (v, 0, 0) = —1, which gives that

1
B = / (BVIB’(XV, y — 1,73 — 8,8 (xv,0, O))dxv —v=(=140M)(y = 1+ ).
0

So by taking Kp = —1+O()(y — 1 + %), we have equality (3.10) (Fig. 12). O

Now, let us consider the local interaction estimates near the boundary.
Lemma 3.7.Let y € [1,2], and let 0 < p < p < 00. Suppose constant states Uyp,Upy,Upr € O(Us) with
OL, PM > PR € [0, ), satisfy that

vr =1+ 2ug)by, wr =6z, 0m,7), oy =H(z1,oL, ). (3.13)

Then, there exist constants Cpg > 0, Cp1 > 0 and C¢ > 0 independent of y, t, z1, 22 such that for any constant state
Uk € O(Ux) with p € [p, p which satisfies that

V= +12upby, ok =IB(h 0L, (3.14)

the following interaction estimates hold:
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Fig. 12. Local interaction estimates near the boundary.

(1) For the case that S1 + Sy — S), i.e., for the wave strength interaction that v + B — B/, it holds that
1B/ < Kpolv| + 1Bl + Cs(y — 1+ 72|V, (3.15)
with

Ko ()= 1+ Cpo. (3.16)

y:l,'[:

(2) For the case that R1 + Sy — S, (or R1 + S2 — R)}), i.e., for the wave interaction that o +  — B/, it holds that

181 <181+ Co(y — 1+ 7)|Bllo| — Chilol. (3.17)

(3) For the case that S| + Ry — S, (or S1 + Ra — R)}), i.e., for the wave interaction that v + 7 — B’ (or B +0 —
B’), it holds that

18] < Kp1|v] + Co(y — 1+ Hv)?, (3.18)
where

K ‘ —1. ,
o (3.19)

(4) For the case that R\ + Ry — R/, i.e., for the wave interaction that o + w — 7/, it holds that |o| + || = |7’|.
Proof. For the notational simplicity, for y =1 and 7 =0, let

(o, U; 12)|y=”=0 =:g(a), (3.20)
for some o > 0 and U € O(Ux). Then function g satisfies the properties that

0<g) <1, g' >0, (3.21)
for o > 0. As shown in Remark 2.4,

2B, Us T,y 1= —8(=P) (3.22)

for some B <0and U € O(Uy).
For the first case S| + Sy — 8%, from (3.13)-(3.14), we have

vr = (14 2ug)by, w_y—w_r=228,Upn, %), B=wsm—wsr, (3.23)
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oL —ory =0, UL, T, v=o_—o_uy, (3.24)
and

Vi =+ 72uRpby, w_p - g=0B8 UL, B =wip—o g (3.25)
Then,

(14 t2ug)vlp = (1 + t2uly)vg, (3.26)
where (ug, vg) = (u, v)(B, v,y — 1,72, Ur) and (uy, vi) = (', v')(B', ¥ — 1,72, Up). Let

AP B.v.y — 1,12, b, Ur) := (1 + T2ug)vly — (1 + t2up)vg. (3.27)
When y =1 and t =0, equation (3.27) is

1

il 1m0 = 50 (B +8(=8)=B— (=B +v—g), (3.28)

for B <Oandv > 0.
Notice that WAoo _ 1=g' ) —o0, and

>0, limg, oo 2} |

op = 7 2de y=1,1=0 —

1 1
1 ~ -
Ll oo prmps = 5y (80 =B =2 =5 ) ==pv [ [ "6y Eppazai >0,
00

So equation .Z1 (', B, v, 0,0, by, Ur) = 0 admits a unique root B;. By Lemma 2.3,

A PB, B, v,y — 1,72, by, U 1
1B, B, v,y T 0, UL) (l—g/(—ﬁ(/)))>C>0,

ap’ ‘y:l,t:O,ﬂ/zﬂ(’) - 2a00

for some C > 0 depends only on the p and p.
Therefore, it follows from the implicit function theorem that 8’ can be solved as a C? function of B,v,y—1, 72, bo
and Uy, that is

B =B vy-171)
=p'O0.v.y =LY+ B.0.y = 1.t)+ OB, v.y = 1.7°)pv
=Ky + B+ OB, v,y —1.7°)pv,
where coefficient K is given by (3.10) in Lemma 3.6. Moreover,
By =B (B,v,0,0)=p'(0,v,0,0)+ B(8,0,0,0) + OB, v,0,0)8v =—v + B+ O(B,1,0,0)Bv.
Subtracting the two identities above implies that
B =B+ Oy — 1+ +O0M)(y — 1 +77)pv. (3.29)

So the remaining task is to estimate B more carefully (see Fig. 13) for the case that y =1 and t = 0. By
(3.23)-(3.26), we have the relation that

Bo+v—B=gw) +g(=B) —g(—=By. (3.30)

>0, B=(w4m — 04.R)]| <0and B = (04,1 — wz‘r,R)| <0.

where v = (w_ 1 — CU—,M)’J/:LT:O y=1,1=0

Direct computation shows that
8() —g(=B) —g(=Py) =g(v = B) — g(=By) +g(V) + (=) —g(v — B)
28 ENW - B+ By +8(—=p) —gv—p)

> g EDW =B+ By + g E)(—v),
where &1 € (—f), v — B) and & € (v — B, —B'). This together with (3.30) yields that

y=1,7=0
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Fig. 13. S and S, waves interaction and reflection on the boundary.

r — s =2acobg (rr.SR)

(s, sm)
(rL,sp) Rp

Fig. 14. Ry and S, waves interaction and reflection on the boundary.

g'(&) ;
1—g'(&)

_ g (&)
Let Cpp = SUPg| e(— ) v—B).Eac(v—p.—F') l_g,él) , then we have

—Bo—v+B<

1Byl < (1+ Cro) v + B.
So it follows from (3.29) that
1B'1= (14 Coo + Oy = 1473 ) [v] + B+ O = 1+ )]l

This completes the proof for the first case.
Next, for the second case R| + Sy — S, note that 8 and B’ satisfy (3.23) and (3.25),

o+ M=04+1, o0=w_—w_y<0, onRq, (3.31)

and equality (3.26) holds on the boundaries I'y and 'y with (ug, vg) = (4, v)(B,0,y — 1, 72,U.) and (u’R, U}e) =
W, v)B,y — 1,72, UL). Let

LB, B0,y — 1,12, b, Ur) := (1 + T2ug)vp — (1 + t2up)vg.

As done for the first case, similarly, it follows from the implicit function theorem that 8’ can be solved as a C>
function of 8, v,y — 1, 12, by, Uy, with the estimate that

181 <1B'(B,0,0,0)| + O()(y — 1+ 1H)Bll0l. (3.32)
Now, we will estimate (8, 0,0, 0) (see Fig. 14). Let 8] = p'(8,0,0,0). Then

B —B+g(—=B) —g(=B) =lol.
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Fig. 15. S1 and R, waves interaction and reflection on the boundary.

By the mean value theorem, we further have
ol
1—g'(&)
which implies that
111 <181 — Cpilol,

where Cp1 = inf&e(_ﬂ’_ﬁi) % This together with (3.32) yields estimate (3.17).
For the third case that S; + R, — S), we know that (3.24) and (3.25) hold on S and S,

Bi—B & € (=B, =B,

@w_ M = ®W_ R, 7T=0)+,M_0)+,R>0, OIIRQ,

and equality (3.26) holds on boundaries 'y and 'y with (ug, vg) = (u,v)(w,v,y — 1,72, Ur) and (U, V) =
W, v)B,y — 1,72, UL). Let

LB, B0,y — 1,12, b, Ur) := (1 + t2ug)vh — (1 + t2up)vg.

Then similarly as done for the first case, by the implicit function theorem, A’ can be solved as a C2 function of
v,y —1, 1:2, bg, UL, with the following estimate

1B'1 < 1B/ (1, v,0,0)| + O()(y — 1+ )| + Oy — 1 +H)|v]%. (3.33)
For the term g} = p/(, v, 0, 0) (see Fig. 15), we have that

By+v=gWw)—g(=By) +7 =g (EDBy+v), Ese (=)

which implies that |ﬂé| < |v|. Thus, it with (3.33) yields estimate (3.18).
Finally, for the fourth case that R; + R, — R/, estimate is obvious since across the rarefaction waves the strength
of the waves is unchanged. O

4. Global entropy solutions with large data

In this section, we first construct the approximate solution for the initial-boundary value problem (1.17)—(1.19) by
employing the modified Glimm scheme in an approximate domain 2a which will be defined below, and then show
the existence of global entropy solutions with large data.

4.1. Modified Glimm scheme for the problem (1.17)—(1.19)

Since T.V.(Up) < oo, limits limy_, +o Up(y) exist, which are denoted by U. Let

OWs)={U:|U—-U_|+|U - U4 <4T.V.(Up)}. 4.1)
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Fig. 16. The modified Glimm scheme.
Let Ax be the mesh length in the x-direction. Choose a set of points {A}r=o With Ax = (xx, br) = (kAx, bok Ax)
on the straight boundary y = box in order. As shown in Fig. 16, define
ba(x) =br + (x — xp)bg, Vx €lkAx, (k+1)Ax), k>0,
Qar={x,y): kAx <x <(k+1)Ax, y <ba(x)},

Tar={(x.y): kAx <x < (k+ 1)Ax, y=ba(x)}, (4.2)
Qp = U Qak, 'a= U Cak.
k=0 k>0

Let ni be the outer unit normal vector to I'a x as

(bkt1 — bk, —xp41 +xx)  (bo, —1)

nk = = .
V(b1 — bi)? + (g — xp)? \/1 + b}

(4.3)

We choose the mesh length in the y-direction as Ay such that the following Courant-Friedrichs-Lewy condition
holds:

Ax sup max |7 (U, )|} — b, y
Ax UEO(Ui),re(O,e*){ ==+ } s

where €, = min{eg, €7}, and €¢ and €7 are given by Proposition 2.1 and Proposition 2.2, respectively.
For any non-negative integer k and negative integer n, i.e., for k > 0 and n < —1, define

Yen =br + 2n+1+0x)Ay, 4.5)

where oy is randomly chosen in (—1, 1). Then, let

Pr.n = Xy Yieon),s (4.6)

be the mesh points and define the approximate solutions Ua (X, y) in Q4 for any o = (00, 01, - - ) via the Glimm
Scheme inductively as follows.
Step 1. For k = 0, we approximate the initial data by piecewise constant functions.

Uo(yo,n) b +2(n+1)Ay <y <bp+2nAy,
Partr=n= @)
Uo(Yon+1)s b +20+2)Ay <y <by+2(n+ 1Ay,
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where Up(yo,,) and Up(y0,,+1) are constant states.
Step 2. Assume the approximate solution Ua » (x, ¥) has been defined in 2x N {0 < x < x} for k > 0. Then, for
anyn < —1land y € (b +2nAy, by +2(n + 1)Ay), define Ul?,n by

U]?yn = UA,G(xk_s yk,n)- (4.8)
Now, we first solve the Riemann problem in the diamond 7} o whose vertices are (xi, bx), (xk, bk — AYy), (Xk+1, bk)
and (Xx+1, by — Ay) with initial data Ua o = U,?,O, that is
W (Uk,0. 1) + 3, F (Ur0, %) =0, in Ty o,
Uk 0le=x, = U, on {bx — Ay <y <by), 4.9)
((1+ 7%u(pr,0, v,0, 7)), vk,0) e =0, on T
Then, we can obtain the Riemann solution Uy o in T ¢ by Proposition 2.2. Define
Ua,c = Uk, inTyp. (4.10)

Next, we solve the Riemann problem in each diamond 7} , for n < —2 whose vertices are (xi, by + 2nAy),
(xx, br +2(n + 1)Ay), (xpi1, by +2nAy) and (xg41, by +2(n + 1)Ay)

Ox W(Uk,na 772) + ayF(Uk,n’ fz) =0, in Ti.ns
up,. by +2nAy <y <bp+2(n+ 1Ay, 4.11)

Uk,n|x=xk = 0
Ugnots be+2(—1DAy <y <bg+2nAy.

By Proposition 2.1, Riemann problem (4.11) admits a Riemann solution Uy , in T ,. Define
UA,U = Uk,n’ in Tk,n- “4.12)

Therefore, we can construct the approximate solution Ua 4 (x, y) globally provided that we can obtain the uniform
bound of the approximate solutions, which will be the main goal in the next subsection.

4.2. Glimm-type functional and the global existence of entropy solutions

In this subsection, we will introduce the weighted Glimm-type functional and apply the functional to show the
convergence of the approximation solutions and then obtain the global existence of entropy solutions of problem
(1.17)-(1.19) of large data. To obtain it, as done in [12], we introduce mesh curves J which is space-like, and consists
of the line segments jointing the random points P , one by one in the order of n. Obviously, region 24 is the union
of the diamonds whose boundaries are the line segments of the mesh curves with four adjacent random points as
their vertices. Moreover, J divides the region £, into two subregions denoted by J~ and J ™, where J~ denotes the
subregion containing the y-axis and J™ = Qa\J~. Now we can define the order of the mesh curves.

Definition 4.1. Assume that I and J are two mesh curves, we call J > [ if and only if every mesh point of the curve
J is either on I or contained in ™. Moreover, if J > I and every mesh points of J except one lie on I, then we call
J is an immediate successor to /.

For the approximate solution Ua 4 (x, y), let §;(J), where j = 1 or 2, be the set of j-shock waves which go across
the mesh curve J. Let S(J) := S1(J) N $2(J). Define the Glimm-type functional

F(J)=L(J)+4C(y —1+1H)QW), (4.13)
where

L(J)=2L1(J) + La(J), (4.14)

L) =) {lel:aesi(n}, La)=) {IBl:axe S}, (4.15)

and
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Iy

B(m)
I/
v(0)
Xk—1 Xk Xk+1
Fig. 17. A lies in Q.
o) = Z {IaIIﬂI e S1(J), BeSr(J)and a, B are apprOaching}. (4.16)

For the definition of the Glimm’s type functional, we remark that different from the small data case, our definition
in (4.15) and (4.16) for the large data case does not included the rarefaction waves. It is because the strength of the
rarefaction waves can be controlled by the strength of the shock waves.

Constants %}, and C satisfy that

max{K;,o, Kp1, 1} < <min{%, 1+ Co, 4}, C, >max{C5, Cg,%}, (4.17)

where constants §, Cp, C5 and Kpg, Kp1, Ce are given in Lemma 3.5 and Lemma 3.7, respectively.
Then, we have the following lemma for functional F'(J), which ensures the uniform bound of the approximate
solutions.

Lemma 4.1. Suppose that 1 and J are any two space-like mesh curves satisfying J > 1. There exists a constant
C7 > 0 depending only on Cy and &, such that if C.(y — 1 + ) F(I) < C7, then it holds that

F(J) < F(). (4.18)

Proof. Without loss of the generality, we only consider the case that J is an immediate successor to /, since the other
cases can be treated easily by the induction method. Let A be the diamond between [ and J, i.e., A = 1" U J', where
I=1pUI"and J = Ip U J'. The proof is devided into two cases depending the location of A.

Case 1. A lies in the interior of Q24 (see Fig. 17). Let us start with case (1) as listed in Lemma 3.5. For the subcase
(a), we have

L(J) — L(I) < Cs(Hp + D(y — L+ )8l
For Q(J), we have that
QW) — W) = QW Ip) + Qo) — QU', Ip) — Q(Ip) — Q(I')
< >0 (B4 T =181 = vl) = IBlIv]

neS)

= (Csr =1+ HF) = 1)1V,
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Then
F(J) = F(I) = Cs(H + D(y — 1+ 1)V +4Cu(y — 1 +2)(Cs(y — 1+ 12 F(I) —1)I8][v]
<20y =1+ 7)(2C.0r = 1+ P)F (D) — 1) Bl

Therefore, if we choose (y — 1 + t2)F(I) < 2c , then we have F(J) < F(I).
Next, let us consider subcase (b) of case (1) as listed in Lemma 3.5. By Lemma 3.5, we have

L(J) = L(I) < — ¢ + Cs(y —1+12)|Blv|+1
< — (M — 8+ Cs(y — 1+ 12)|Blv],

and
QW) — 0= QW' Io) + Qo) — QU', Io) — Qo) — Q')
< Y wl(B1=181)+ Do 1111 = vl) = 1Bl
nesS) weS)
< Y Il +Csty =1+ B — Y 11z — 1BlIv|
ueS) wesSi)
< (8¢ + Csy = 1+ DBV F() — 1BIIv].
Then
F(J)—F()
< = (S =85 + Cs(y — 1+ TIBIVI +4C,(y — 1+ ((5¢ + Cay = 1+ TIBIV) F(D) — 1BIIv])

Ky —

<452 (Coly 1+ F() — P2 22) 1acuty — 14 ) (Coly — THFD = 3 ) Bl

Therefore, if (y — 1 +72)F(I) < min {2, Z2=2} then F(J) < F(I).

Finally, let us consider subcase (c) of case (1) at listed in Lemma 3.5. Note that

L(J)— L(I) < —(1 — #8)¢ + #Cs(y — 1 + 2| Bl|v],
and
Q) — Q) =0, Ip)+ Qo) — QU', Ip) — Q(Ip) — Q(I")

< Y lwl(Vi=w)+ Y W81 = 181) — 1Bl

HES) weS)
< Y I+ Csty =1+ BV — Y 11z = 1BlIv|
nesS) weSd)

= (56 + Cstr = 1+ TBIV) F () = 1Bl
So, we deduce that
F(J)—F)
< = (1= H8) + H4Cs(y = 1+ DBl +4Culy = 1+ 7)((60 + Cs(r — 1+ rz)lﬂIIVI)F(I) ~1BIIv1)

_%8)+4c (y—1+7 )(C (v =1+ F() ~
45 * "

If we choose (y — 1 + 2)F (1) <min{l48ﬁ’8, 4= %”} then F(J) < F(I).

<48 (Culy = 1+ ) F () - ~) sl
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For case (2) as listed in Lemma 3.5, we have

L) =L =0, OW)—0W)=0W " 1)+ QUo) — QU’, Ip) — Q(Ip) =0.

Therefore F(J) = F(I).
Next, let us consider case (3) as listed in Lemma 3.5. By Lemma 3.5, we have

L(J)—L()=0,
and
0()) = Q) =0W', Io) + Qo) — QU', Ip) — Q(Ip) — QI
< Z Ll (181 = 1811 = 1B21) — 18111 B2

nes(I)

=—|p1llB2] <O0.
So F(J)< F().
Now, for case (4) as listed in Lemma 3.5, with the notations introduced in Lemma 3.1, we introduce a new mesh
curve J between the mesh curves / and J such that we have the local wave interaction 8 + 0 — So + vo from I to J,
and the local wave interaction Sy 4+ vo — v’ + g’ from J to J. Then by Lemma 3.5, we have

F(J) < F(J),

provided that (y — 1 + rz)F(f) < ﬁ Next, we also have that
L(J) = L(I) < (S — 1 = Co)|wl,
o) -0 < Z L1 (1Bol + 1vol — 1B1) + | Bollvol

nes()
< —Colvol F(I) + |Bollvol-
So

F(J) = F(I) = (=1 = Co)lwl +4Cu(y — 1+73)( = Colwl F() + 1ol Ivol )

= w0l (4C. (7 = 1+ T)Bol + (5 — Co) = 4Cu(y = 1 +T)COF (D))

C0+1—J?f/b>
— )

Then, if we choose (y — 1 + ) F(I) < M , then F(J) < F(I). Therefore,

< 4wl (Coy = 1+ THF(D) ~

F(J) < F(J) < F().

For case (5) as listed in Lemma 3.5, we have that

L(J)— L) <A |+ 18— 1Bl < (U —1—Colv'| <0,
and
oWU)—0U) = Z Il (V' + 181 = 1Bl) < —CoF(DV'].
nesS)

It follows that F(J) < F(I).
For case (6) as listed in Lemma 3.5, obviously, we have F(J) = F ().
For case (7) as listed in Lemma 3.5, we have

L(J)) = L) =AW= D)+ 181 < (1 = ) — Cop) B <0,
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/
(m)
v(0) B(r')
l/
J/
Qak
24, k-1 \
Iy
Xk—1 Xk Xiet1

Fig. 18. A covers part of the approximate boundary I"A .

and

QW) — Q) = Y 1ul(V+18'1—Iv]) < —CoF(DIB].

neS(I)

It implies that
F(J) = F(I) = (1= 5 — Cotp = 4C.Coly = 1+ T)F(D)IB| <0.

Therefore, F(J) < F(I).

Finally, for case (8) as listed in Lemma 3.5, it can be treated similarly as the argument above for case (3) at listed
in Lemma 3.5 to obtain (4.18).

Case 2. A covers part of the approximate boundary I's (see Fig. 18). For case (1) as listed in Lemma 3.7, we have
Ly(J) — La(I) < Kp|v| + Cs(y — 1+ z?)|v]|fl and L1(J) — Li(I) < —|v]. So

L(J) = L(I) < = — Kp)Iv] + Co(y — 1+ T)v||B.

For Q(J), we have that
0()— 0 =0, Ip)+ Qo) — Q' Ip) — Q(lp) — Q(I")
< Z Il (181 =181 = Iv]) — |BlIv]

nesS(I)
= (K» = ) F(DIv| + (Coly = 1+ 7 F () = 1) BlIv]
Then, it follows from the estimates of L(J) and Q(J) that
F(J) = F() < (4Co(Kp = Dy = 1+ T F (D) = (= Kp) ) v]
+ Coly — 1+ TH)||Bl +4Cu(y — 1 +12)(Cﬁ(y —1+)F) - 1)|ﬂ|lv|

< (ZC*Kb(y —14+FU) — (A — Kb))lvl

3
+4Cuy = 14+ (Culy = 1+ ) F () = 3 ) BV,

Therefore, if we choose (y — 1 + %) F(I) < min{%, ég,”(;é” }, then F(J) < F(I).

Next, let’s consider case (2) as listed in Lemma 3.7. Note that

L(J)— L(I) < Ce(y — 14+ 13)|Bllo| — Cp1lo]
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and

QW) — Q)= Q(J', To) + Qo) — QUI', o) — Qo) — Q')
< Y Iwl(IB'1-181)

neS)
= (Csty = 1+ 2D)1Bllo] = Corlol ) F(1)
= (Csr =1+ T)F ) = Con ) F(Dol.
Soif Co(y — 1412 F(I) < Cp1, then
F(J) = F(I) = Co(y = 1+7)|Bllo] = Cpilol
+4C.(y = 1479 (Coly = 1+ T)F () = Cot ) F(Dol
= (Coy =1+ TF () = Cyn ) o]
+4C(y =1+ (Culy = 1+ TYF (D) = Cot ) F(Do]
<0.

Finally, let us consider case (3) as listed in Lemma 3.7. By direct computations,

L(J) — L(I) < —(H — Kp1)Iv| + Co(y — 1 + 2 |v]?

and
Q1) — 0= Q(J', Io) + Qo) — QUI', o) — Qo) — Q')
< Y Iwl(B'1-1v)
neS)
= (Kot = DIVl + Coly = 1+ ) F (D).
So

F(J) = F(I) < = () = Kp) | + Coly — 1+ H)|v)?
+4C.(y = 1+ T F(D((Kp1 = DIVl + Coly =1+ T)vP?)
= (= (= Kn1) + Coly = 1+ THF (D) +4C,(Kpt = D(y = 1+ ) F(D)

+4C.Coly = 1+ 2 F(D)) ]

< (= (= Kin) +4Kn Culy = 1+ THF(D + (2Cu(y — 1+ 2HF (D)) vl

So, if we choose (y — 1 +2)F(I) < min{c%, ‘fg’(;léi‘ },then F(J) — F(I) <0.
Based on all the arguments above, let

1 (3 =8 (1= 44— 14+Co— %
C7=min{ —, mln{—,—}, mln{ , }, ,
2 4 45 46 4 4

. (3 b, —Kp ) Jp — Kp1
min —,7}, Cpi, mm{l,i} )
4 2K, 4K,

Soif (y —1+12)F() < g_Z’ we can get estimate (4.18). O

(4.19)
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Let O stand for the initial mesh curve, i.e., for any mesh curve J, we have O < J. Then, by Lemma 4.1, we know
that if C,.(y — 1 4+ t2)F(0O) < C7, then
F(J) < F(O).
Next choose yp € (1,2) and €, > 0 such that Cy(yo — 1 + ef)L(O) <land Cy(yo— 1+ ef)F(O) < C7. Then for
any y € [1, yol and t € (0, €4), we have
F(J)<F(O)=L(O)4+4C.(y — 1+ ‘L'Z)Q(O) <L(O)+4+4C.(y — 1+ rz)Lz(O) < 5L(0).

Notice that L(0) < Cyy (T.V.{Uo(-); (—o00, 0]} + IIbollLoc) for some constant C, > 0 depending only %}, and C,.
So by the standard argument, (see [12,21]), we have the following proposition.

Proposition 4.1. Suppose that py € [ps, p*] for some constant states py and p* with 0 < p, < p* < 00. Then there
exist constants Cg > 0, yp € (1,2) and €, > 0 such that for any y € [1, yl, T € (0,€4) and o € ]_[,fio(—l, 1) if

(v = 1+ 2)(T.V{Us(): (=00,01} + ol 1~ ) = Cs. (4.20)

then, a sequence of global approximate solutions Up »(x, y) for all (x,y) € QA is constructed via the Glimm scheme
as given in §4.1. Moreover, there exist positive constants Cy > 0 and C19 > 0 which is independent of A and o such
that

SUI(D) T.V{Uro(x,); (=00, box]} + SllI(; 1UA,o (X, )l L0 ((—00,box]) < Co, (4.21)
X> X>
and
0
/ |Uno (1. 3 +box1) = Un o (32, 3 + boxa)|dy = Cro Ax + 1 = ), (4.22)
—0o0

for any x1,x > 0.

Proposition 4.1 implies the compactness of the approximate solutions {Ua o (x, y)} in Lzloc (see Theorem 2.4 of
Chapter 2 in [4]). Then, by the standard arguments as done in [12,21,10,24,25], we can obtain the global existence of

the entropy solutions of initial boundary value problem (1.17)—(1.19).

Theorem 4.1. Assume that the range of the initial density pg lies in the interval | ps, p*] for some constants p, and p*
with 0 < ps < p* < 00. There exist constants C1; >0, C1p > 0, C13 > 0 independent of v, t, and yy € (1,2), €, >0

and a null set N such that for any y € [1, 9], T € (0, €,) and o € (H,fio(—l, 1)\/\/) if

(v = 1+ 7)(T.V{Us(): (—00,01} + ol ) = Cur, (4.23)

then, there exist a subsequence {A;}7° and a function Uy (x,y) with bounded total variation such that U, s —>
Uys(x,y) in L! ((—00,box]) as Aj — 0 for every x > 0. The function Uy (x, y) is a global entropy solution of the

loc
initial boundary value problem (1.17)—(1.19) with the properties that

sup T.V.{Uqy (x, ); (=00, box1} + sup | U (x, )| L2 (—o0,b0x7) < C12, (4.24)
x>0 x>0
and
0
/ |Us (x1,y + box1) — Uy (x2,y + box2)|dy < Ci3|x1 — x2|, Vx1,x2>0. (4.25)
—0

Remark 4.1. As the notations introduced in the last sentence in the introduction, i.e., in Section 1, solution Uy (x, y)
to the initial boundary value problem (1.17)—(1.19) which are obtained in Theorem 4.1 actually depends on 7. So in
order to pass the limit 7 — 0 to prove Theorem 1.1, we will use the notations U(ST)()E, y) and (x, ¥) again as done in
the introduction except the last sentence.
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Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. First, the global existence of the entropy solutions Uér) to the initial boundary value prob-
lem (1.17)—(1.19) follows from the Theorem 4.1. Since solution Uér) satisfies estimates (4.24) and (4.25) which is
independent of 7, we can further apply the Helly’s compactness theorem to obtain a subsequence {7;}7°, such that
Uéf") converges to Uéo) a.e. in 2 as t; — 0. Hence, Uéf") — Uéo) in Ll(Q N By (0)) as t; — 0 for any R > 0, where
BR(0) = {()E, §) x4+ 32 < Rz}. Then, by the definition of entropy (1.20), we can show that Uéo) is an entropy
solution to the initial-boundary value problem (1.15), (1.18) and (1.11) with (E(W©@,0), Q(W©,0)), defined by
(1.25), being its convex entropy pair with entropy inequality (1.26) in the distribution sense. This completes the proof
of Theorem 1.1. O
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Appendix A. Proof of Lemma 2.9
In this section, we are going to prove Lemma 2.9.

Proof. By Lemma 2.6 and the implicit function theorem, we define

D2 (B+, Up; 72
B+

Then (2.42) follows. Furthermore, by the straightforward calculation,

Wy (a, Up; 72) =

d(w_ g—w_
0Dy (By, Up; ) 2 podu(p. v, 1) + (- (U, 1) + Byu(p, v, 72)) B
9B, w p0dpu(p, v, T2 4+ (A (U, 12) + dyu(p, v, 7)) dagp
o

When t =0, it follows from Lemma 2.1, Remark 2.1 and Lemma 2.5 that

2N =D+ (y — D@ = Do’ 2 = 2@y — (@ — D@’ = D(a+ 1)3ar—3

2@’ — 1)+ (y = D@2 — Dar=2+/2(y — D(a — D@’ = D)(a + D3ar—3

By Lemma 2.5, we know that B, = w4 o — w4 is monotonically decreasing with respect to o when o > 1. Note
that B+ =0 whena = 1,50 B4+ = w4 o —wy >0 wheno > 1.

2 2
Next, let us consider % Note that
i

\IJ2|1':0 =

AWy (a, Up: T2) -2
T = (0dpu(p v, ) + (A (UL ) + B, v, 7)) ap) T UL T,

where
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JU, )= pé((u — h=) 0t (p, v, T7) + (9ph— — phi)pu(p, v, rz))aarp
+ 0 (2(x+ — )2 (0, v, T + (et + utu(p, v, 7)) A
— (e A+ B0, v, 7))t + (DA = Diy) B0, v, 7)) ()’
+ ((8vk_ + agvu(p, v, 1:2))(A+ + dyu(p, v, 1'2))

— (phy + 32,u(p, v, 7)) (A= + dyulp, v, 7:2))>(8a(p)3 + po (e = 2y )Bpu(p, v, T2 0.

So, for t =0, by Lemma 2.1 and Lemma 2.5, we have

Wy (= D%’T V2 — D@ — D’ T D+ 1)
da lt=0 (@ —D@r-1 -1
2[(y + a2 — 2 +3 — y]("”y’_l;l )2 — 407711 — o)) 2 a2 (e - 1)
” (271 = 1)+ (&~ Dar2(@2 ~ ) 2y ~ D@~ Diar T~ Dia + Dlar )
Define

av~l—1
y —1

2 r=1_1
) 4 - l)oﬂ’_1<a7
y —1

Similar as the argument in the proof of Lemma 2.7, we can show that J(«, y) > 0 when o > 1 and 1 <y < 2. Thus,

we have 33&
o =

J(a,y) ::2[(y+1)a2—2a+3—y]< ) +(a2— l)za”_z.

0>0wheno¢>1and1§y§2.$o

Wy (e, Up; T2)
=0 o

9 ®2(By, Up; 0) (3(w+,o —w+))—1
B3 dar

for o > 1 and 1 < y < 2. Moreover, by the facts that W, (1, Up; 0) = 0 and that |\I-'2|r:0| < 1 for @ > 1, we have

0< ‘Il2|‘1::0 < 1. For given &g, we can choose €5 > 0 sufficiently small and a positive constant C, independent of =

<0,
=0

such that for 7 € (0, €5) and o < 80_1
0 < Ws(a, Up; 72) < 1 — Cae.

This completes the proof of the lemma. O
Appendix B. Proof of lemmas of the local interaction estimates
First, let us give the proof of Lemma 3.1.

Proof of Lemma 3.1. Let Ar =rg —r and As =51 — 5. Notice that
—1

)4
PO — p1= (s0 —s1) <0.
Hence by Lemma 2.2, for £ € ( é , é ), we have
Py Po :
Ar I
0 0
SO—S—(Sl—sz)=/—l —a< ﬁfl— ﬁ71>d5>0
oo la=a;(¢) 0 \ L= =
0 Py P

So in order to show (3.3), we only need to show

(s0 =) — (51 =52) = C3(y — D(s1 = 50)(ro — 7). (B.1)
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Let s = s*(Ar, As; y — 1). Then, by Lemma 2.9 and Lemma 2.10, we know that s* is a C2-function of Ar, As
and y — 1.
For y =1 and @ = 2L, we have

pro’
[ 21— 2(1—
As = — —wlna—lna, Ar = —Mlna—lna.
14+« 14+«
Notice that
AAr —2alna+1-—a?—/-2(0—a)(l+a)lna 0
— <
da V=21 —a)(1+a)3Ina

Then, by the implicit function theorem, « is a function of Ar as o = a(Ar), which is independent on pg and pj.
Hence As is a function of Ar which is independent on pg and p1. Based on this observation, we thus deduce that for
y=1

s%(0,0;0) — s*(Ar, 0; 0) — (s*(O, As; 0) — s*(Ar, As; 0)) =0.

So
so—s— (s1—52)
=5%0,0;7 — 1) —s*(Ar,0;y — 1) — (s*(0, As; y — 1) = s*(Ar, As; ¥ — 1))
=5%(0,0;y — 1) —5%(0,0;0) — (s*(Ar, 0;y — 1) —s™(Ar, 0; 0))
— (s*(O, As;y —1) —s*(0, As; 0)) + (s*(Ar, As;y — 1) —s*(Ar, As; 0)) (B.2)
1
= - 1)/e(Ar, As; x(y = D)dx,
0
where

e(Ar, As; x(y = 1)) = 3y—15™(0,0; x (y — 1)) = dy—15™(Ar, 0; x (¥ — 1))
— 3y—15"(0, As; x (v — D)) + dy—15"(Ar, As; x(y — 1))
= O(1)ArAs.
Substituting the estimate for e(Ar, As; x(y — 1)) into (B.2), we proved (3.3). It completes the proof. O

Now, we will give the proof of Lemma 3.5.

Proof. We will show this Lemma case by case.

First, let us study the first case. In this case, an S, shock wave from the left with wave strength § interacts with an
S shock wave from the right with wave strength v. Both of them enter into A. Denote by v’ and B’ the wave strength
of the resulting shock waves S| and S, issuing out from A after the wave interaction.

Let us consider the estimate in the (w—, w1) plane. Let (w— 1, w4 1), (0— M, 0+ M), (0— g, w4+ r) be the left,
middle and right states before the wave interaction, i.e., (w— ,w+ 1) and (w— y, w4 p) are connected by Si
shock, and (w_ p, w4+ m) and (w_ g, w4 r) are connected by Sy shock. Let (o Mo a)’+ ) be middle state after
the wave interaction which is uniquely determined by the shock curves S} and S which issue from (w_ 1, w4 1) and
(w—.Rr, w4 r) respectively (See Fig. 19).

In order to derive the wave interaction estimate, as shown in Fig. 20, we consider the wave curves S 1 and 32 instead
of the wave curves Si and Sé, such that the wave curves 31 and 32, issuing from (w— 1, w4 1) and (w— g, W+ R)
respectively, intersect at point (®— yr, @4 ). By Lemma 2.2 and Lemma 2.3, we know that the wave curves S and

S, the straight lines w_ = @_ y and w4 = @4y, and the wave curves S| and S} together form the boundaries of
subregions I, 11 and I11. Moreover, (v’ u a)ﬁF »y) must lie in one of them.
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(wo— L, 04 1)

1Bl

(0— M0 M)

(w— 1,04 1)

1
w_ [ ,|o
18] 1Bl (0 L, pp)
v=vy
(- M, @+ M)
(w— R, w4 R)

Fig. 20. Case that (w’_ ,, @/, ) lies in region I.

18l
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We first consider the case that (a)’_’M, a)’+,M) lies in the region I, ie., a)’_!M < ®_ y and a)’+’M > @4 m (See

Fig. 20). In this case, we know that

1 ~ ~1
IB1=1BI<1B"l, @41 -y =dym—d) y=IPol

Notice that

1 A1 ~2 ~2 ~1 1
Wy — Oy y —(Op L =& ) =0y — oy y— (@04 L — 04 y)

~2 ~1 ~ ~1
=0% y = Oy y — (@M — 04 y)

=1B".

By Lemma 2.4, there exists a constant Cs > 0 such that

1 ~1 2 2
Wy —Op (w4, _CU_;,_’M) <Cs(y =1+ 19)vl|Bol

<Cs(y — L+ 3|8l

Then combing (B.3)-(B.5) together, we have that
IB'1— 1Bl < Cs(y — 1+ 1H)v]|B].

(B.3)

(B.4)

(B.5)
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1Bl
1Bl 18l

¢
(— R, 0y R) |¢—> /

v
Fig. 21. Case that (a)/_’M, wf'_’M) ell.

By the same way and by Lemma 2.5, one can also show that
V=l < Cs(y — L+ IIB].
Therefore, we show estimate (a) for the first case in Lemma 3.5.
Next, let us consider the case that (o’ M a)’+ ) € I1. As shown in Fig. 21, we can see that
W=l-¢>0,
and

1 / /2
18°] — 1Bl —N=w, y — W4 s

where ¢ > 0 is a constant.
For the estimate of w’+ M= wf’ > by Lemma 2.4, there exists a constant Cs > 0 such that
Wy oy — w/+2,M =y — w/+1,M - (‘0/+2,M - ‘U/+1,M)
:a)i’M - a)’j’M — (gm0 — &) )
< Cs(y — 1+ )V[| ol
<Cs(y —1+)PIBl.

For the estimate of 1, by Lemma 2.2, we have

n=® (v, Ur; %) — @1(Jv] — {, Up; %) = @) (&5, Up; T2)¢, where & € (Jv] — ¢, [v]),
which implies that n < §¢ by taking

8= sup @ (&5, Up; t) € (0, 1).
&e(v|=¢.IvD.pLe(p,p)

Therefore, combing the estimates above together, we can get estimate (») in Lemma 3.5 for the second case.

Finally, by a similar argument as the one for the second case, for the case that (o’ M wjr ) € 111, we can obtain
the estimate (c¢) in Lemma 3.5.

It completes the proof of case (1).
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V']
—_—
_lo-posn) |
(w/_,Ms (UQ_,M) S{
1 Bol
8/
I
a s 181
(@1 o )
(w— R, w4+ R)
Rz 82
[vol
(w— m>o4 M) [
[v]

Fig. 22. Interactions between Sy and R waves.

Now, let us study case (2).
Similar to case (1), let (w— 1, w4, 1), (w— m, w4 M), (w— g, w4+ gr) be the left, middle and right states before the

wave interaction and let (o, a)/+ ) be the middle state after the wave interaction which is uniquely determined

by the rarefaction wave R and the shock wave S;. Notice that wy 1 = @/, ,, and @4 y = @4 g, then by the mono-

tonicity of function ®,, we have that

1Bl =lwt,g — &)yl =lotm —op =Bl

The proof of the estimates for case (3) is similar to the one for case (2). In fact, by the monotonicity of function
@, we have wy 1 < wi y < w4 g and a)’+ y =+.1. Then

1B/l =loyr — &) yl=lorr— ot L] =|or R — 04 M+ |01 m — oy L] =11+ |2l

Next, let us consider case (4). As shown in Fig. 22, we can find a shock wave 31 such that S, + 31 — Si + 87,
and then one can follow the argument for the proof of case (1) exactly to have that

W'| < vol + Cs(y — 14+ |wollBol, 18I <1Bol +Cs(y — 1+13)|vollBol.

Now, we will consider the estimate between v and vy, and the estimate between 8 and fy. By Lemma 2.3, we can
have that

ol =w_1 —w_py—(0_ 1 —d_ y)
= ®y(|1, Up; %) — D2(1Bol, UL; T2)
= 5%, UL; T (B — Bo), &6 € (1ol IBD),

which implies that

lvol -+ 1Bol = 18] — ( — 1) vl

(&, UL T2)

< ! 1)
<IBl— (W — 1){wol.
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Notice that limg| 100 ®5(I8], UL; 72) = 1, then we get that

1
lim (,42 — 1) =0,
1Bl—>+00 \ @ (&6, UL; T7)
which implies that

1
1)>0.

CO = inf </72 —
g6€{(w—,w4): 0<p<p<p},0<p<pr<p P56, UL; T7)

Now we continue to study case (5), that is the wave interaction between R, and Sp. Let (w— 1, w4.1),
(0—.p, 04+ M), (0— g, w4 g), and (wL‘M, a)ﬁr,M) be defined similarly as before. Then
W= y—o_r—(0-m—o_R)
= Da(—|B'], Ur; T°) — ®2(=|Bl, Ug; 7°)
= @&, Ur: T)(IBI = 1B']). & € (=IBl. —IB'D.
So

W1+ 181 =181~ (grgren ~ M

Based on the proof for case (4), we know that

1

Co:= inf (,72 — 1) 0.
Eoel(0-0)0<p<p<p).0<p<pr<p \ Py (6, UL; T7)

The estimate in case (6) is obviously.

Now, we will prove the estimate for case (7). Similarly, let (w— 1, w4+, 1), (w0— m, w4+ u) and (w— g, w4 r) be the

three states before the wave interaction, and let (o’ M a)/+ ) be the middle state after the wave interaction. Then
Bl =)y — 0 R =041 —0rm — (@40 — ) yy)
= @1(|v], UL; ) — @1(IV'|, Ur; T°)
L2
=@ (&7, UL: to) (vl = '), & e (V'] [v]).
So
W14 181 = vl = (g~ IV
(&7, UL: T2)
Again, we know that

1
Co = inf (,72 — ) > 0.
gre{(0-,01):0<p<p<p),0<p<pr<p \ P (&7, UL: T%)

Finally, the proof of the estimate for case (8) is exactly the same as the one for case (3).
This completes the proof of this lemma. O
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