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Abstract

In this paper, we establish the first rigorous mathematical result on the validation of the hypersonic similarity globally, which 
is also called the Mach-number independence principle, for the two dimensional steady potential flow. The hypersonic similarity 
is equivalent to the Van Dyke’s similarity theory, that is, if the hypersonic similarity parameter K is fixed, the shock solution 
structures (after scaling) are consistent, when the Mach number of the flow is sufficiently large. One of the difficulty is that after 
scaling, the solutions are usually of large data since the perturbation of the hypersonic flow is usually not small related to the sonic 
speed. In order to make it, we first develop a modified Glimm scheme to construct the approximate solutions with large data and 
find fine structure of the elementary wave curves to obtain the global existence of entropy solutions with large data, for fixed K and 
sufficiently large Mach number of the incoming flow M∞. Finally, we further show that for a fixed hypersonic similarity parameter 
K , if the Mach number M∞ → ∞, the solutions obtained above approach to the solution of the corresponding initial-boundary 
value problem of the hypersonic small-disturbance equations. Therefore, the Van Dyke’s similarity theory is verified rigorously for 
the first time.
© 2020 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction and main result

The flow is called hypersonic when the Mach number of the flow is bigger than five. Since 1940s, there are many 
studies on the hypersonic flow (see [20] for example) due to many applications in areodynamics and engineering. The 
main difficulty on the study of the hypersonic flow is that the density is relatively very small compared to the speed, 
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Fig. 1. Hypersonic flow past over a slender wedge.

so like the fluids behaviour near the vacuum, all the characteristics are close to each other and the shock layer is thin. 
On the other hand, there is one important feature of the hypersonic flow, which is called the hypersonic similarity. 
This property is of great significance on both the theoretical and experimental research of the thin shock layer for the 
hypersonic flow (see [3] for more details).

Let θ be the wedge angle and let M∞ be the Mach number of the incoming flow (see Fig. 1). Define the similarity 
parameter (see (127.3) in Landau-Lifschitz [14, Page 482] for more details),

K = M∞θ. (1.1)

Physically, the hypersonic similarity means that for a fixed similarity parameter K , the flow structures are similar under 
scaling if the Mach number M∞ is sufficiently large. Actually, after scaling, the flows with the same similarity param-
eter K are governed approximately by the same equation, which is called the hypersonic small-disturbance equations 
and was first developed by Tsien [20] for the two-dimensional steady irrotational flow and the three-dimensional axi-
ally symmetric steady flow. Recently, Qu-Yuan-Zhao [19] studied a different problem, the hypersonic limit, in which 
there is no hypersonic similarity structures since the wedge angle θ is fixed such that the similarity parameter K
changes for all M∞ and tends to the infinity for the hypersonic limit M∞ → ∞.

The hypersonic small-disturbance equations and the hypersonic similarity are derived as follows. Suppose the 
hypersonic flow is governed by{

∂x(ρu) + ∂y(ρv) = 0,

∂xv − ∂yu = 0,
(1.2)

where the density ρ and the velocity (u, v) satisfy the following Bernoulli’s law:

1

2
(u2 + v2) + ργ−1

γ − 1
= B∞ := 1

2
U2∞ + ρ

γ−1∞
γ − 1

. (1.3)

For the problem of the hypersonic flow onto a solid slender-body with boundary y = ±τb0x, without loss of the 
generality, let us only consider the lower half space domain, i.e., in the region that x ≥ 0 and y ≤ τb0x with a fixed 
constant b0 < 0 in Fig. 1. The incoming flows are given by

(ρ,u, v)
∣∣
x=0,y≤0 = (ρ0, u0, v0

)
(y). (1.4)

Along the boundary, the flow satisfies the impermeable slip boundary condition, i.e.,

(u, v) · (τb0,−1) = 0. (1.5)

Let U∞ be a sufficiently large number. Let

a∞ := τM∞ = τU∞ρ
1−γ

2∞ .

Obviously, if K is fixed, then a∞ is fixed too. So a∞ is also called the hypersonic similarity parameter (see Chapter 4 
in [3]). As done in [3,11], we define the following scaling:
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Fig. 2. Hypersonic similarity law.

x = x̄, y = τ ȳ, u = U∞(1 + τ 2ū), v = U∞τ v̄, ρ = ρ∞ρ̄, (1.6)

and substitute (1.6) into equations (1.2) and (1.3) to obtain⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂x̄

(
ρ̄(1 + τ 2ū)

)+ ∂ȳ(ρ̄v̄) = 0,

∂x̄ v̄ − ∂ȳ ū = 0,

ū + 1
2 (v̄2 + τ 2ū2) + ρ̄γ−1−1

(γ−1)a2∞
= 0.

(1.7)

The solid boundary is now given by ȳ = b0x̄. Then, the corresponding fluid domain and its boundary are given by 
(see Fig. 2)

� = {(x̄, ȳ) : x̄ > 0, ȳ < b0x̄}, � = {(x̄, ȳ) : x̄ > 0, ȳ = b0x̄}.
The unit normal of � is n = n(x̄, b0x̄) = (b0,−1)√

1+b2
0

. Initial condition (1.4) becomes

(ρ̄, ū, v̄)
∣∣
I = (ρ̄0, ū0, v̄0

)
(ȳ), I = {x̄ = 0, ȳ ≤ 0}. (1.8)

Along �, condition (1.5) now becomes(
(1 + τ 2ū), v̄

) · n
∣∣
�

= 0. (1.9)

Physically, the hypersonic similarity is, for a fixed similarity parameter a∞, the structure of solutions of (1.7)-(1.9)
is persistent if M∞ is large (or τ is small). Mathematically, the structure of solutions of (1.7)-(1.9) should be in-
vestigated by the simpler equation via neglecting the terms involving τ 2, that is the hypersonic small-disturbance 
equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂x̄ ρ̄ + ∂ȳ(ρ̄v̄) = 0,

∂x̄ v̄ − ∂ȳ ū = 0,

ū + 1
2 v̄2 + ρ̄γ−1−1

(γ−1)a2∞
= 0,

(1.10)

with initial data (1.8) and boundary condition that

v̄
∣∣
�

= b0. (1.11)

It is also called the Van Dyke’s similarity theory. So if the Van Dyke’s similarity theory can be justified rigorously, 
then the study of the two-dimensional steady hypersonic flow can be much simplified by studying of the hypersonic 
small-disturbance equations (1.10), because we do not face the difficulty that the characteristics are so close. On the 
other hand, since for the hypersonic flow, the perturbation of the velocity (ū, v̄) is usually not small related to the 
sonic speed, so the solutions of (1.7) and (1.10) are usually with large data in the physical applications.
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In this paper, we are going to show the Van Dyke’s similarity theory rigorously. First, since the flow concerned 
moves along the wedge from left to right, i.e., 1 + τ 2ū > 0, then from the third equation of (1.7), we have

ū(ρ̄, v̄; τ 2) = 1

τ 2

(√
1 − tτ 2 − 1

)
, (1.12)

where

t = 2
(
ρ̄γ−1 − 1

)
(γ − 1)a2∞

+ v̄2. (1.13)

Then, substituting (1.12) into the first two equations of (1.7), we get⎧⎨
⎩

∂x̄

(
ρ̄(1 + τ 2ū)

)+ ∂ȳ(ρ̄v̄) = 0, in �,

∂x̄ v̄ − ∂ȳ ū = 0, in �.
(1.14)

Similarly, substituting the third equation in (1.10) into the second equation in (1.10), we have⎧⎨
⎩

∂x̄ ρ̄ + ∂ȳ(ρ̄v̄) = 0, in �,

∂x̄ v̄ + ∂ȳ

( 1
2 v̄2 + ρ̄γ−1−1

(γ−1)a2∞

)= 0, in �,
(1.15)

where (ρ̄, v̄) satisfies the initial condition (1.18) and the boundary condition (1.11).
To unify equations (1.14) and (1.15), we rewrite (ρ̄, v̄) as (ρ̄(τ ), v̄(τ )), where (1.15) corresponds to the case that 

τ = 0. Let U(τ) = (ρ̄(τ ), v̄(τ )) and

W(U(τ), τ 2) =
(
ρ̄(τ )

(
1 + τ 2ū(τ )

)
, v̄(τ )

)
, F (U(τ), τ 2) =

(
ρ̄(τ )v̄(τ ),−ū(τ )

)
. (1.16)

Then, equations (1.14) and (1.15) can be rewritten as

∂x̄W(U(τ), τ 2) + ∂ȳF (U(τ), τ 2) = 0, (1.17)

with the initial condition

U(τ)
∣∣
I = U0(y), (1.18)

and the boundary condition(
(1 + τ 2ū(τ )), v̄(τ )

)
· (−b0,1)

∣∣∣
�

= 0. (1.19)

Now, we will introduce the definition of the entropy solutions of problem (1.17)–(1.19).

Definition 1.1 (Entropy solutions). A weak solution U(τ) ∈ (BVloc(�) ∩ L1
loc(�)

)2 of the initial-boundary value 
problem (1.17)–(1.19) in � ⊂ R2+ is called an entropy solution, if for any convex entropy pair (E, Q), that is, 
∇Q(W(τ), τ) = ∇E(W(τ), τ 2)∇F(U(W(τ)), τ 2) and ∇2E(W(τ), τ 2) ≥ 0, the entropy inequality holds: For any 
φ ∈ C∞

0 (R2) with φ ≥ 0,

¨

�

(
E(W(τ), τ 2)∂x̄φ +Q(W(τ), τ 2)∂ȳφ

)
dxdy +

0ˆ

−∞
E(W

(τ)
0 , τ 2)φ(0, y)dy

+
ˆ

�

(E(W(τ), τ 2),Q(W(τ), τ 2)) · nds ≥ 0,

(1.20)

where W(τ)
0 = W(U0, τ 2) and n is the unit inner normal on boundary �.

The main result in this paper is stated as follows.



J. Kuang et al. / Ann. I. H. Poincaré – AN 37 (2020) 1379–1423 1383
Theorem 1.1 (Main theorem). Suppose that ρ∗ and ρ∗ are two constant states with 0 < ρ∗ < ρ∗ < ∞ and ρ̄0 is the 
given initial density satisfying that ρ̄0 ∈ [ρ∗, ρ∗]. There exist constants C > 0, γ0 ∈ (1, 2) and ε0 > 0 such that for any 
γ ∈ [1, γ0] and τ ∈ (0, ε0), if

(γ − 1 + τ 2)
(
T .V .

{
(ρ̄0, v̄0) : (−∞,0]}+ ‖b0‖L∞

)
≤ C, (1.21)

then initial-boundary value problem (1.17)–(1.19) admits a global entropy solutions (ρ̄(τ ), v̄(τ )) with bounded total 
variations defined for all x̄ > 0, i.e.,

sup
x̄>0

T .V .
{
(ρ̄(τ ), v̄(τ ))(x̄, ·); (−∞, b0x̄]}+ sup

x̄>0
‖(ρ̄(τ ), v̄(τ ))(x̄, ·)‖L∞((−∞,b0x̄]) ≤ C̃, (1.22)

where the constant C̃ > 0 is independent of γ − 1 and τ . Moreover, as τ → 0,

(ρ̄(τ ), v̄(τ )) → (ρ̄(0), v̄(0)) = (ρ̄, v̄), in L1(� ∩ BR̄(O)), (1.23)

for any R̄ > 0, where BR̄(O) = {(x̄, ȳ) : x̄2 + ȳ2 ≤ R̄
}

and (ρ̄, v̄) is the entropy solution of the initial-boundary value 
problem (1.17)–(1.19) with τ = 0, which satisfies that

sup
x̄>0

T .V .
{
(ρ̄, v̄)(x̄, ·); (−∞, b0x̄]}+ sup

x̄>0
‖(ρ̄, v̄)(x̄, ·)‖L∞((−∞,b0x̄]) < ∞. (1.24)

Remark 1.1. When τ = 0, the convex entropy pair (E(W(τ), τ 2), Q(W(τ), τ 2)) can be taken of the form

E(W(0),0) = ρv2

2
+ ργ−1 − 1

a∞γ (γ − 1)
, Q(W(0),0) = vE(W(0),0). (1.25)

So the entropy solution (ρ̄, v̄) of problem (1.17)–(1.19) with τ = 0 satisfies the entropy inequality

∂x̄E(W(0),0) + ∂ȳQ(W(0),0) ≤ 0, (1.26)

in the distribution sense.

Remark 1.2. Once the solution (ρ̄(τ ), v̄(τ )) of problem (1.17)–(1.19) is obtained, it is easy to obtain the solutions 
(ρ̄(τ ), ū(τ ), v̄(τ )) of problem (1.7)–(1.9) by solving ū(τ ) directly from equation (1.12). Therefore, in this paper, we are 
devoted to showing Theorem 1.1.

In this paper, we will give the first rigorous mathematical proof on the Van Dyke’s similarity theory. More precisely, 
we will prove that solution U(τ) of the initial boundary value problem (1.17)–(1.19) with large data has a limit 
U as τ → 0, where U is a solution of the initial boundary value problem (1.15), (1.18) and (1.11), i.e., problem 
(1.17)–(1.19) with τ = 0. To achieve this, we first establish the global existence of entropy solutions of the initial 
boundary value problem (1.17)–(1.19) for fixed τ with large data.

The main difficulty is that we can’t apply the results in [17,18,22] directly, because equations (1.17) is different 
from the ones that considered in [17,18,22]. Moreover, the boundary condition (1.19) is Neumann type which is also 
different from the one studied in [18], which is the Dirichlet boundary type. As far as we know, there is no result 
on the steady supersonic Euler flow with large data. In order to deal with it, we first need to study fine structures 
of the elementary wave curves carefully and then derive the local wave interaction estimates. Fortunately, we find 
the fine structures to allow us to establish the wave interaction estimates as well as the estimates of the elementary 
waves reflection on the boundary. Based on them, we can choose weights Kb and C∗ (see (4.17) below) to construct 
a modified Glimm’s type functional and then shows it monotonicity decreasing. Now, we can follow the standard 
arguments to show the global existence of entropy solutions of the initial-boundary value problem (1.17)–(1.19) with 
uniformly bound in the BV norm independent of τ provided that (1.21) holds. Finally, by the uniformly bounds, we 
can further extact a subsequence to show that its limit as τ → 0 is actually a entropy solution of problem (1.17)–(1.19)
with τ = 0. It justifies the Van Dyke’s similarity theory rigorously.

There are many literatures on the global existence of the entropy solutions of small data in the BV space for the 
one dimensional hyperbolic conservation laws since J. Glimm’s original paper [12] in 1960s. There are also many 
literatures on the BV solutions of the two dimensional steady supersonic Euler flow with small data (see [6–8,10,
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13,23–25]). However, there are few results on the global existence of weak solutions with large data due to the 
nonlinearity of the system. As far as we know, only systems with special structures can be dealt with. One of the 
most important example is the one dimensional isothermal gas dynamic system. The global existence of the entropy 
solutions of this system with large data has been proved by Nishida [16] in 1968. Then Nishida-Smoller extended 
the existence result to the isentropic case with the assumption that γ is sufficiently close to 1 in [17,18]. Later on, 
the existence result was extended to the non-isentropic case by Liu in [15]. Recently, Askura-Corli [1,2] proved these 
results by using the wave-front tracking method and see also [4,5,9] for the related results.

The rest of this paper is organized as follows. In Section 2, we study some basic structure for system (1.17) near 
τ = 0, including the Riemann invariants, the fine properties of the elementary wave curves, as well as the solutions 
for the Riemann problem including the boundary. As a byproducts, we also give some basic structure for system 
(1.15), (i.e. τ = 0) involving the Riemann invariants, the fine properties of the elementary wave curves, as well as 
the solutions for the Riemann problem including the boundary. Section 3 is devoted to the analysis of the local 
wave interaction estimates of various type. In Section 4, we construct the approximate solutions by the modified 
Glimm scheme, introduce the modified Glimm-type functional by choosing some weights, and then show that it is 
a decreasing functional, which leads to the global existence of the entropy solutions to the initial-boundary value 
problem (1.17)–(1.19) with large data by a standard procedure. Finally, we show that as τ → 0, it approaches to 
the solutions of the initial-boundary value problem (1.15), (1.18) and (1.11). In the appendix, we prove Lemma 2.9, 
Lemma 3.1, and Lemma 3.5.

Finally, we remark that in what follows, for the notational simplicity, we will denote U(τ) = (ρ̄(τ ), v̄(τ )) and (x̄, ȳ)

as U = (ρ, v) and (x, y), respectively.

2. Riemann problem of the initial-boundary value problem (1.17)-(1.19)

In this section, we will study the basic structure of system (1.17) and then consider the corresponding Riemann 
solutions.

2.1. Riemann invariants and the shock curves of equations (1.17)

In this subsection, we study some basic structures of the Riemann solutions of system (1.17) of large data. By 
direct computation, the eigenvalues of system (1.17) are

λ−(U, τ 2) = v
√

1 − tτ 2 − a−1∞ ρ
γ−1

2

√
1 − (γ − 1)−1(γ + 1)a−2∞ ργ−1τ 2

1 − (t + a−2∞ ργ−1)τ 2
,

λ+(U, τ 2) = v
√

1 − tτ 2 + a−1∞ ρ
γ−1

2

√
1 − (γ − 1)−1(γ + 1)a−2∞ ργ−1τ 2

1 − (t + a−2∞ ργ−1)τ 2
,

(2.1)

and the corresponding right eigenvectors are

r−(U, τ 2) =
(

− a2∞ρ− γ−1
2
(
λ−(U, τ 2) + ∂vu(ρ, v, τ 2)

)
, a2∞ρ− γ−1

2 ∂ρu(ρ, v, τ 2)
)
,

r+(U, τ 2) =
(

− a2∞ρ− γ−1
2
(
λ+(U, τ 2) + ∂vu(ρ, v, τ 2)

)
, a2∞ρ− γ−1

2 ∂ρu(ρ, v, τ 2)
)
.

(2.2)

For u(ρ, v, τ 2), we have the following lemma.

Lemma 2.1. If γ > 1, then we have

∂ρu(ρ, v, τ 2) = − ργ−2

a2∞
√

1 − tτ 2
, ∂vu(ρ, v, τ 2) = − v√

1 − tτ 2
, (2.3)

and
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∂2
ρρu(ρ, v, τ 2) = −

(γ − 2)ργ−3
(

1 − (t − (γ − 2)−1a−2∞ ργ−1
)
τ 2
)

a2∞(1 − τ 2t)3/2 ,

∂2
ρvu(ρ, v, τ 2) = − ργ−2vτ 2

a2∞(1 − τ 2t)3/2 , ∂2
vvu(ρ, v, τ 2) = −1 − 2(γ − 1)−1a−2∞ (ργ−1 − 1)τ 2

(1 − τ 2t)3/2 ,

(2.4)

where t is defined by (1.13).

Proof. First, by (1.13), we have

∂t

∂ρ
= 2ργ−2

a2∞
,

∂t

∂v
= 2v.

From u, we also get that

1 + τ 2u(ρ, v, τ 2) =
√

1 − tτ 2.

So it follows that

τ 2∂ρu(ρ, v, τ 2) = −1

2
(1 − tτ 2)−1/2τ 2 ∂t

∂ρ
, τ 2∂vu(ρ, v, τ 2) = −1

2
(1 − tτ 2)−1/2τ 2 ∂t

∂v
,

which gives ∂ρu(ρ, v, τ 2) and ∂vu(ρ, v, τ 2), respectively. With (2.3), we can further take derivatives with respect to 
ρ, v to derive (2.4). This completes the proof of the lemma. �
Remark 2.1. By Lemma 2.1 and (2.1), we have that

λ±(U, τ 2) + ∂vu(ρ, v, τ 2)

=
a−1∞ ρ

γ−1
2

(
a−1∞ ρ

γ−1
2 vτ 2 ±

√(
1 − (γ − 1)−1(γ + 1)a−2∞ ργ−1τ 2

)
(1 − tτ 2)

)
(

1 − (t + a−2∞ ργ−1
)
τ 2
)√

1 − tτ 2
.

(2.5)

Lemma 2.2. For the eigenvalues λ+ and λ−, we have

λ±(U,0) = v ± ρ
γ−1

2

a∞
, λ±(U,0) + ∂vu(ρ, v,0) = ±ρ

γ−1
2

a∞
, (2.6)

and

r±(U,0) = (a∞,±ρ
γ−3

2 ). (2.7)

Moreover,

∂ρλ±(U,0) = ± (γ − 1)ρ
γ−3

2

2a∞
, ∂vλ±(U,0) = 1. (2.8)

Proof. Firstly, by the definition of t , (2.6) and (2.7) follow directly from (2.1) and (2.2). For ∂ρλ±(U, 0), note that 
the characteristic equation of system (1.17) is(

1 + τ 2(u + ρ∂ρu)
)
λ2 + ((1 + τ 2u)∂vu − v

)
λ + ρ∂ρu − v∂vu = 0. (2.9)

Taking derivative on (2.9) with respect to ρ to obtain that[
2
(
1 + (u + ρ∂ρu)τ 2)λ + (1 + τ 2u)∂vu − v

]
∂ρλ + τ 2λ2∂ρ

(
u + ρ∂ρu

)
+ [τ 2∂ρu∂vu + (1 + τ 2u)∂2

ρvu
]
λ + ρ∂2

ρρu − v∂2
ρvu + ∂ρu = 0.

So take τ = 0, we have



1386 J. Kuang et al. / Ann. I. H. Poincaré – AN 37 (2020) 1379–1423
∂ρλ(U,0) = −ρ∂ρρu(ρ, v,0) + ∂ρu(ρ, v,0)

2λ(U,0) + ∂vu(ρ, v,0) − v
,

which gives the expression of ∂ρλ±(U, 0) with the help of Lemma 2.1 and (2.6).
In the same way, we can also take derivatives on (2.9) with respect to v to have

∂vλ(U,0) =
(
1 − ∂2

vvu(ρ, v,0)
)
λ(U,0) + v∂2

vvu(ρ, v,0) + ∂vu(ρ, v,0)

2λ(U,0) + ∂vu(ρ, v,0) − v
,

which implies the expression of ∂vλ±(U, 0) by employing Lemma 2.1 and (2.6) again. �
Let

ω(U, τ 2) = (ω−,ω+
)
(U, τ 2) (or ω = (ω−,ω+)) (2.10)

be the Riemann invariants satisfying

∇Uω±(U, τ 2) · r±(U, τ 2) = 0.

Without loss of the generality, we can assume ω±(U, τ 2) is defined by solving the following two equations

∂ρω±(U, τ 2) := −a2∞ρ− γ−1
2 ∂ρu(ρ, v, τ 2) = ρ

γ−3
2√

1 − tτ 2
, (2.11)

and

∂vω±(U, τ 2) := −a2∞ρ− γ−1
2
(
λ±(U, τ 2) + ∂vu(ρ, v, τ 2)

)

= −
ρ

γ−1
2 vτ 2 ± a∞

√(
1 − (γ − 1)−1(γ + 1)a−2∞ ργ−1τ 2

)
(1 − tτ 2)(

1 − (t + a−2∞ ργ−1
)
τ 2
)√

1 − tτ 2
.

(2.12)

Remark 2.2. For τ = 0, ω±(U, 0) can be expressed explicitly as

r := ω−(U,0) = a∞v + 2(ρ
γ−1

2 − 1)

γ − 1
, s := ω+(U,0) = −a∞v + 2(ρ

γ−1
2 − 1)

γ − 1
. (2.13)

Lemma 2.3. For ρ > 0, there exists a constant ε1 > 0 sufficiently small such that for any τ ∈ (0, ε1), U = (ρ, v) can 
be represented as a function of ω. Moreover, the map U = (ρ, v) �→ ω = (ω−(U, τ 2), ω+(U, τ 2)) is bijective for any 
fixed parameter ρ > 0 and sufficiently small parameter τ 2. Moreover

∇ω−U
∣∣
τ=0 =

(1

2
ρ− γ−3

2 ,
1

2a∞

)
, ∇ω+U

∣∣
τ=0 =

(1

2
ρ− γ−3

2 ,− 1

2a∞

)
. (2.14)

Proof. By Lemma 2.1 and Remark 2.1,

det
(
∇Uω−(U, τ 2), ∇Uω+(U, τ 2)

)∣∣∣
τ=0

= a2∞
ρ

γ−1
2

∣∣∣∣∣∣
−∂ρu(ρ, v,0) −λ−(U,0) − ∂vu(ρ, v,0)

−∂ρu(ρ, v,0) −λ+(U,0) − ∂vu(ρ, v,0)

∣∣∣∣∣∣
= 2ργ−2

a∞
> 0.

So it follows from the implicit function theorem that there exists a constant ε1 > 0 sufficiently small such that for any 
τ ∈ (0, ε1), U can be solved as a function of ω.

Next, we are going to prove (2.14). Taking derivatives as follows and let τ = 0{
∂ρω−(U,0)

∂ρ
∂ω−
∣∣
τ=0 + ∂vω−(U,0) ∂v

∂ω−
∣∣
τ=0 = 1,

∂ρω+(U,0)
∂ρ
∣∣ + ∂vω+(U,0) ∂v

∣∣ = 0,

∂ω− τ=0 ∂ω− τ=0
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which gives the expression of ∇Uω−
∣∣
τ=0 in (2.14) by (2.11) and (2.12). In the same way, one can also get the 

expression of ∇Uω+
∣∣
τ=0. We omit the argument for the shortness. �

Now, we are going to study the elementary wave curves to system (2.1) globally. Based on Lemma 2.3, we will use 
ω−, ω+ as the variables in the phase plane for the convenience.

The elementary wave curves consist of the rarefaction wave curve and the shock wave curve. First, for the rarefac-
tion wave curve, one of the Riemann invariants corresponding to λ+(U, τ 2) or λ−(U, τ 2) is a constant. We denoted 
the rarefaction wave by R1 (or R2) corresponding to λ+(U, τ 2) (or λ−(U, τ 2)). So, in the phase plane, the rarefaction 
wave curves R1 and R2 which pass through ω0 = (ω−,0, ω+,0) = (ω−, ω+)(U0, τ 2) are

R1 : ω+ = ω+,0, ω− > ω−,0 R2 : ω− = ω−,0, ω+ < ω+,0. (2.15)

Next, let us consider the shock wave curves for system (4.2). The shock solutions are the Riemann solutions 
satisfying the following Rankine-Hugoniot conditions on the shock with shock speed σ(τ 2):

σ(τ 2)[W(U,τ 2)] = [F(U, τ 2)], (2.16)

where the bracket [·] stands for the difference of the value of the quality across the discontinuity. In addition, across 
the shock, the following Lax geometry entropy conditions hold:

λ−(U, τ 2) < σ−(τ 2) < λ−(U0, τ
2), or λ+(U, τ 2) < σ+(τ 2) < λ+(U0, τ

2), (2.17)

where σ−(τ 2) and σ+(τ 2) are the shock speeds corresponding to λ−(U, τ 2) and λ+(U, τ 2), respectively. Actually, 
entropy condition (2.17) implies that

ρ > ρ0, v < v0, or ρ < ρ0, v < v0. (2.18)

Eliminating σ(τ 2) from the R-H condition (2.16) yields

(ρv − ρ0v0)(v − v0) =
(
ρ − ρ0 + τ 2(ρu(ρ, v, τ 2) − ρ0u(ρ0, v0, τ

2)
))(

u(ρ0, v0, τ
2) − u(ρ, v, τ 2)

)
. (2.19)

Let α = ρ/ρ0 with ρ0 > 0 and define

F (α, v,U0; τ 2) = (αv − v0)(v − v0) −
(
α − 1 + τ 2(αu(ρ0α,v, τ 2) − u(ρ0, v0, τ

2)
))

× (u(ρ0, v0, τ
2) − u(ρ0α,v, τ 2)

)
.

(2.20)

Then equation (2.19) is equivalent to equation F (α, v, U0; τ 2) = 0. First, we will study some properties for F when 
τ = 0.

Lemma 2.4. For F defined by (2.20) and for γ > 1, equation F (α, v, U0; 0) = 0 admits a unique solution v satisfying 
that

v = v0 −
√

2ρ
γ−1
0 (α − 1)(αγ−1 − 1)

(γ − 1)a2∞(α + 1)
. (2.21)

Moreover, we have

∂F

∂α

∣∣∣
τ=0

= −
ρ

γ−1
0

(
2(αγ−1 − 1) + (γ − 1)αγ−2(α2 − 1)

)
(γ − 1)a2∞(α + 1)

,

∂F

∂v

∣∣∣
τ=0

= −
√

2ρ
γ−1
0 (α2 − 1)(αγ−1 − 1)

(γ − 1)a2∞
,

∂2F

∂α2

∣∣∣
τ=0

= −a−2∞ ρ
γ−1
0 αγ−3(γ α + 2 − γ ),

∂2F ∣∣∣ = v − v0,
∂2F

2

∣∣∣ = α − 1.

(2.22)
∂α∂v τ=0 ∂v τ=0
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Proof. (2.21) can be obtained by the direct computation together with the entropy condition (2.18). For (3.7), first for 
∂F
∂α

, by the direct computation

∂F

∂α
= v(v − v0) + u(ρ, v, τ 2) − u(ρ0, v0, τ

2) + ρ0(α − 1)∂ρu(ρ, v, τ 2)

+
(
u(ρ, v, τ 2) + ρ0α∂ρu(ρ, v, τ 2)

)(
u(ρ, v, τ 2) − u(ρ0, v0, τ

2)
)
τ 2

+ ρ0

(
αu(ρ, v, τ 2) − u(ρ0, v0, τ

2)
)
∂ρu(ρ, v, τ 2)τ 2.

So it follows from Lemma 2.1 that

∂F

∂α

∣∣∣
τ=0

= v(v − v0) + u(ρ, v, τ 2) − u(ρ0, v0, τ
2) + ρ0(α − 1)∂ρu(ρ, v, τ 2)

= v(v − v0) − 1

2

(
v2 + 2(ργ−1 − 1)

(γ − 1)a2∞
− v2

0 − 2(ρ
γ−1
0 − 1)

(γ − 1)a2∞

)
− a−2∞ ρ

γ−1
0 (α − 1)αγ−2.

Thus the expression of ∂F
∂α

∣∣∣
τ=0

in (2.22) follows with the help of (2.21).

Next, taking derivative on F with respect to v

∂F

∂v
= 2αv − (α + 1)v0 + (α − 1)∂vu(ρ, v, τ 2)

+
(

2αu(ρ, v, τ 2) − (α + 1)u(ρ0, v0, τ
2)
)
∂vu(ρ, v, τ 2)τ 2.

So

∂F

∂v

∣∣∣
τ=0

= 2αv − (α + 1)v0 + (α − 1)∂vu(ρ, v,0) = (α + 1)(v − v0).

Hence, the expression of ∂F
∂v

∣∣∣
τ=0

in (2.22) follows by (2.21) again.

In the same way as done for deriving the expression of ∂F
∂ρ

∣∣∣
τ=0

and ∂F
∂v

∣∣∣
τ=0

, we can further take derivatives on 
∂F
∂ρ

and ∂F
∂v

with respect to α and v and let τ = 0, then (2.22) follows from Lemma 2.1. �
Remark 2.3. When τ = 0, it follows from Remark 2.2, entropy condition (2.18), and the straightforward calculation 
that

S1 :

⎧⎪⎪⎨
⎪⎪⎩

s0 − s =
√

2
γ−1ρ

γ−1
2

0

{
−
√

(1−α)(1−αγ−1)
α+1 +

√
2

γ−1 (1 − α
γ−1

2 )

}

r0 − r =
√

2
γ−1ρ

γ−1
2

0

{√
(1−α)(1−αγ−1)

α+1 +
√

2
γ−1 (1 − α

γ−1
2 )

} 0 < α ≤ 1, (2.23)

and

S2 :

⎧⎪⎪⎨
⎪⎪⎩

s0 − s =
√

2
γ−1ρ

γ−1
2

0

{
−
√

(α−1)(αγ−1−1)
α+1 −

√
2

γ−1 (α
γ−1

2 − 1)

}

r0 − r =
√

2
γ−1ρ

γ−1
2

0

{√
(α−1)(αγ−1−1)

α+1 −
√

2
γ−1 (α

γ−1
2 − 1)

} α ≥ 1. (2.24)

Remark 2.4. When γ = 1 and τ = 0, S1 and S2 are of the following forms:

S1 :

⎧⎪⎨
⎪⎩

s0 − s = −
√

− 2(1−α)
α+1 lnα − lnα,

r0 − r =
√

− 2(1−α)
α+1 lnα − lnα,

0 < α ≤ 1, (2.25)

and
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S2 :

⎧⎪⎨
⎪⎩

s0 − s = −
√

2(α−1)
α+1 lnα − lnα,

r0 − r =
√

2(α−1)
α+1 lnα − lnα,

α ≥ 1. (2.26)

Eliminating α, one has

r0 − r − (s0 − s) = 2

√√√√1 − e− 1
2 (r0−r+s0−s)

1 + e− 1
2 (r0−r+s0−s)

(
r0 − r + s0 − s

)
, (2.27)

where r0 − r + s0 − s ≥ 0 for the S1 wave, and r0 − r + s0 − s ≤ 0 for the S2 wave.

Now, we will give the existence and properties of the shock wave curves near τ = 0.

Lemma 2.5. There exists a small constant 0 < ε2 < ε1 such that for any τ ∈ (0, ε2), v can be solved as a function of 
α, U0, τ 2 from equation F (α, v, U0; τ 2) = 0, i.e., v = ϕ(α, U0, τ 2). Moreover,

∂ϕ

∂α

∣∣∣
τ=0

= −
√

ρ
γ−1
0

2(γ − 1)a2∞
2(αγ−1 − 1) + (γ − 1)αγ−2(α2 − 1)√

(α − 1)(αγ−1 − 1)(α + 1)3
, (2.28)

and

∂2ϕ

∂α2

∣∣∣
τ=0

= 1

4

√
2ρ

γ−1
0

(γ − 1)a2∞

(√
(α2 − 1)(αγ−1 − 1)(α2 − 1)(αγ−1 − 1)(α + 1)

)−1

×
(

2(γ − 1)αγ−3((2 − γ )α2 − 2α + γ − 2
)
(α2 − 1)(αγ−1 − 1)

+ 4(2α − 1)(αγ−1 − 1)2 + (γ − 1)2α2(γ−2)(α2 − 1)2
)
.

(2.29)

Proof. When α = 1, it is easy to see that ρ = ρ0 and v = v0. Now, we only consider the case that α �= 1. Let

G(α,v,U0; τ 2) = F (α, v,U0; τ 2)

α − 1
.

By (2.22)2,

∂G

∂v

∣∣∣
τ=0

= (α + 1)(v − v0)

α − 1
= −

√
2ρ

γ−1
0

(γ − 1)a2∞

√
(α2 − 1)(αγ−1 − 1)

α − 1
.

Then, we know ∂G
∂v

∣∣∣
τ=0

> 0 for 0 < α < 1, ∂G
∂v

∣∣∣
τ=0

< 0 for α > 1, and

lim
α→±1

∂G

∂v

∣∣∣
τ=0

= ∓
√

2ρ
γ−1
0

a∞
�= 0.

Therefore, by Lemma 2.4 and the implicit function theorem, there exists a small constant 0 < ε2 < ε1 such 
that for any τ ∈ (0, ε2), equation G(α, v, U0; τ 2) = 0 admits a unique solution v = ϕ(α, U0, τ 2). It implies that 
F (α, ϕ(α, U0, τ 2), U0; τ 2) = 0.

Next, let us compute ∂ϕ
∂α

∣∣∣
τ=0

. Notice that F (α, ϕ(α, U0, τ 2), U0; τ 2) = 0. Taking derivative on it with respect to α

yields that

∂F (α, v; τ 2)

∂α
+ ∂F (α, v; τ 2)

∂v

∂ϕ

∂α
= 0. (2.30)

Let τ = 0, then we can obtain (2.28), by Lemma 2.3.
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Finally, taking derivatives with respect to α again on (2.30) yields that

∂2ϕ

∂α2 = −∂2
ααF (α, v; τ 2) + 2∂2

αvF (α, v; τ 2)∂αϕ + ∂2
vvF (α, v; τ 2)(∂αϕ)2

∂vF (α, v; τ 2)
. (2.31)

So, by Lemma 2.3 and (2.22), we have (2.29). This completes the proof. �
Next, we are going to study the shock wave curves in the Riemann invariants coordinates. First, we have the 

following properties for ω±.

Lemma 2.6. For γ ∈ [1, 2], there exists a small constant 0 < ε3 < ε2 such that for any τ ∈ (0, ε3), along the shock 
wave curve v = ϕ(α, U0; τ 2),

∂(ω−,0 − ω−)

∂α
< 0, f or 0 < α < 1, (2.32)

and
∂(ω+,0 − ω+)

∂α
< 0, f or α > 1, (2.33)

where ω− and ω+ are defined by (2.11) and (2.12), and ω±,0 = ω±(U0, τ 2).

Proof. We only prove (2.32) here since we can treat ω+ in the same way. By the definition of ω−, along the shock 
wave curve,

∂(ω−,0 − ω−)

∂α
= −

(
ρ0

∂ω−
∂ρ

+ ∂ω−
∂v

∂ϕ

∂α

)

= a2∞ρ− γ−1
2

(
ρ0∂ρu(ρ, v, τ 2) + (λ−(U, τ 2) + ∂vu(ρ, v, τ 2)

)∂ϕ

∂α

)
.

So, by Lemma 2.1, Lemma 2.2 and Lemma 2.5, we obtain that

∂(ω−,0 − ω−)

∂α

∣∣∣
τ=0

= − ρ
γ−1

2
0

2
√

2(γ − 1)(1 − α)(1 − αγ−1)(1 + α)3

×
(

2(1 − αγ−1) + (γ − 1)(1 − α2)αγ−2

+
√

2(γ − 1)(1 − α)(1 − αγ−1)(1 + α)3αγ−3
)

< 0,

for 0 < α < 1. It completes the proof of the lemma. �
Denote

β− = ω−,0 − ω−, β+ = ω+,0 − ω+. (2.34)

By Lemma 2.6 and the implicit function theorem, α can be regarded as a function of β− or β+, i.e., α = α1(β−, U0; τ 2)

and α = α2(β+, U0; τ 2). So along the shock wave curves,

β+ = �1(β−,U0; τ 2) := ω+,0 − ω+(α1(β−,U0; τ 2), τ 2), (2.35)

which is called the S1 shock curve, or

β− = �2(β+,U0; τ 2) := ω−,0 − ω−(α2(β+,U0; τ 2), τ 2), (2.36)

which is called the S2 shock curve.
For the S1 shock wave curve, we have the following lemma.
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Lemma 2.7. For γ ∈ [1, 2] and 0 < α < 1, there exists a constant ε4 > 0 sufficiently small such that for τ ∈ (0, ε4), 
the shock curve S1 starting at (ω−,0, ω+,0) is

β+ = �1(β−,U0; τ 2) =
β−ˆ

0

�1(α,U0; τ 2)

∣∣∣
α=α1(β,U0;τ 2)

dβ, (2.37)

where β− = ω−,0 − ω− > 0. Moreover,

0 <
∂�1(β−,U0;0)

∂β−
< 1,

∂2�1(β−,U0;0)

∂β2−
> 0. (2.38)

Finally, if α > ε0 > 0, then

C1ε0 <
∂�1(β−,U0; τ 2)

∂β−
< 1, (2.39)

where C1 > 0 is a constant depending only on the data and ε0, and independent of τ .

Proof. By (2.35) and Lemma 2.6, we can define

�1(α,U0; τ 2) := ∂�1(β−,U0; τ 2)

∂β−
.

So (2.37) follows. Moreover,

∂�1(β−,U0; τ 2)

∂β−
=

∂(ω+,0−ω+)

∂α

∂(ω−,0−ω−)

∂α

= ρ0∂ρu(ρ, v, τ 2) + (λ+(U, τ 2) + ∂vu(ρ, v, τ 2)
)
∂αϕ

ρ0∂ρu(ρ, v, τ 2) + (λ−(U, τ 2) + ∂vu(ρ, v, τ 2)
)
∂αϕ

.

With the help of (2.5) and (2.28), we have

�1
∣∣
τ=0 = ρ0∂ρu(ρ, v, τ 2)

∣∣
τ=0 + (λ+(U, τ 2) + ∂vu(ρ, v, τ 2)

)
∂αϕ
∣∣
τ=0

ρ0∂ρu(ρ, v, τ 2)
∣∣
τ=0 + (λ−(U, τ 2) + ∂vu(ρ, v, τ 2)

)
∂αϕ
∣∣
τ=0

= −2(1 − αγ−1) + (γ − 1)(1 − α2)αγ−2 −√2(γ − 1)(1 − α)(1 − αγ−1)(1 + α)3αγ−3

2(1 − αγ−1) + (γ − 1)(1 − α2)αγ−2 +√2(γ − 1)(1 − α)(1 − αγ−1)(1 + α)3αγ−3
.

By Lemma 2.6, we know that β− = ω−,0 − ω− is monotonically decreasing with respect to α when 0 < α ≤ 1. 
Notice that β− = 0 when α = 1. Therefore, for 0 < α < 1, β− = ω−,0 − ω− > 0.

Next, let us consider ∂
2�1(β−,U0;τ 2)

∂β2−
. Note that

∂�1(α,U0; τ 2)

∂α
=
(
ρ0∂ρu(ρ, v, τ 2) + (λ−(U, τ 2) + ∂vu(ρ, v, τ 2)

)
∂αϕ
)−2

J (U, τ 2),

where

J (U, τ 2) = ρ2
0

((
λ− − λ+

)
∂2
ρρu(ρ, v, τ 2) + (∂ρλ+ − ∂ρλ−

)
∂ρu(ρ, v, τ 2)

)
∂αϕ

+ ρ0

(
2
(
λ− − λ+

)
∂2
ρvu(ρ, v, τ 2) + (λ− + ∂vu(ρ, v, τ 2)

)
∂ρλ+

− (λ+ + ∂vu(ρ, v, τ 2)
)
∂ρλ− + (∂vλ+ − ∂vλ−

)
∂ρu(ρ, v, τ 2)

)
(∂αϕ)2

+
((

∂vλ+ + ∂2
vvu(ρ, v, τ 2)

)(
λ− + ∂vu(ρ, v, τ 2)

)
− (∂vλ− + ∂2

vvu(ρ, v, τ 2)
)(

λ+ + ∂vu(ρ, v, τ 2)
))

(∂αϕ)3 + ρ0
(
λ+ − λ−

)
∂ρu(ρ, v, τ 2)∂2

ααϕ.
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When τ = 0, by Lemma 2.1 and Lemma 2.5, we get

J (U,0) = a−3∞ ρ
3(γ−1)

2
0 α

3γ−7
2

(
(γ − 3)∂αϕ

∣∣
τ=0 − 2α∂2

ααϕ
∣∣
τ=0

)

=
2
[
(γ + 1)α2 − 2α + 3 − γ

]( 1−αγ−1

γ−1

)2 − 4αγ−1(1 − α2) 1−αγ−1

γ−1 + αγ−2(α2 − 1)2√
2(γ − 1)(1 − α)(1 − αγ−1)(1 + α)3(1 − α2)(1 − αγ−1)

×
(

− a4∞(γ − 1)2ρ
2(γ−1)

0 α
3γ−7

2

)
.

On the other hand, we also have(
ρ0∂ρu(ρ, v, τ 2) + (λ−(U, τ 2) + ∂vu(ρ, v, τ 2)

)
∂αϕ
)−2

= 2(γ − 1)a4∞ρ
−2(γ−1)

0 α−(γ−1)(1 − α)(1 − αγ−1)(1 + α)3(
2(1 − αγ−1) + (γ − 1)αγ−2(1 − α2) +√2(γ − 1)(1 − α)(1 − αγ−1)(1 + α)3αγ−3

)2 .

With the above two equalities, we have

∂�1

∂α

∣∣∣
τ=0

= − (γ − 1)2α
γ−5

2
√

2(γ − 1)(1 − α)(1 − αγ−1)(1 + α)

(1 − α)(1 − αγ−1)

×
2
[
(γ + 1)α2 − 2α + 3 − γ

]( 1−αγ−1

γ−1

)2 − 4αγ−1(1 − α2) 1−αγ−1

γ−1 + αγ−2(α2 − 1)2

(
2(1 − αγ−1) + (γ − 1)αγ−2(1 − α2) +√2(γ − 1)(1 − α)(1 − αγ−1)(1 + α)3αγ−3

)2 .

Let

J (α, γ ) : = 2
[
(γ + 1)α2 − 2α + 3 − γ

](1 − αγ−1

γ − 1

)2 − 4(1 − α2)αγ−1
(1 − αγ−1

γ − 1

)
+ (1 − α2)2αγ−2.

Note that

� =
(

− 4(1 − α2)αγ−1
)2 − 8

[
(γ + 1)α2 − 2α + 3 − γ

](
1 − α2)2αγ−2

= 8
(
1 − α2)2αγ−2[2αγ − (γ + 1)α2 + 2α − 3 + γ

]
= 8
(
1 − α2)2αγ−2�0(α, γ ),

where �0(α, γ ) = 2αγ − (γ + 1)α2 + 2α − 3 + γ . Obviously, �0(1, γ ) = 0, and for 0 < α < 1 and 1 ≤ γ ≤ 2, we 
have ∂α�0(α, γ ) = 2γ α(αγ−2 −1) +2(1 −α) > 0. So � < 0 when 0 < α < 1 and 1 ≤ γ ≤ 2. Therefore, J (α, γ ) > 0
when 0 < α < 1 and 1 ≤ γ ≤ 2. Thus

∂�1

∂α

∣∣∣
τ=0

< 0,

when 0 < α < 1 and 1 ≤ γ ≤ 2. So for 0 < α < 1 and 1 ≤ γ ≤ 2,

∂2�1(β−,U0;0)

∂β2−
=
(∂(ω−,0 − ω−)

∂α

)−1∣∣∣
τ=0

∂�1(α,U0; τ 2)

∂α

∣∣∣
τ=0

> 0.

Moreover, because �1(1, U0; 0) = 0, and 
∣∣�1
∣∣
τ=0

∣∣< 1 for 0 < α < 1, we have

0 <
∂�1(β−,U0;0)

∂β−
< 1. (2.40)

Finally, for α > ε0 > 0, we can choose ε4 > 0 sufficiently small and a constant C1 > 0 independent of τ such that 
when τ ∈ (0, ε4), C1ε0 < �1(α, U0; τ 2) < 1. �
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Based on the proof, actually, when τ = 0, we have the following lemma.

Lemma 2.8. If γ ∈ [1, 2], then the shock curve S1 starting at (r0, s0) can be written as

s0 − s = g1(r0 − r, ρ0) =
r0−rˆ

0

h1(α)

∣∣∣∣∣α=α1(
β

ρ
(γ−1)/2
0

)
dβ, (2.41)

where 0 ≤ ∂g1(β,ρ0)
∂β

< 1, ∂
2g1(β,ρ0)

∂2β
≥ 0, and β = r0 − r ≥ 0.

Next, let us consider the properties of the shock wave curve S2.

Lemma 2.9. If γ ∈ [1, 2] and α > 1, there exists a constant ε5 > 0 sufficiently small such that for τ ∈ (0, ε5), the 
shock wave curve S2 starting at (ω−,0, ω+,0) can be expressed as

β− = �2(β+,U0; τ 2) =
β+ˆ

0

�2(α,U0; τ 2)

∣∣∣
α=α2(β,U0;τ 2)

dβ, (2.42)

where β+ = ω+,0 − ω+ < 0 and

0 <
∂�2(β+,U0;0)

∂β+
< 1,

∂2�2(β+,U0;0)

∂β2+
< 0. (2.43)

Moreover, if α < ε−1
0 , it holds that

0 <
∂�2(β+,U0; τ 2)

∂β+
< 1 − C2ε0, (2.44)

where constant C2 > 0, depending on the data and ε0, is independent of τ .

Because the proof is similar to the one of Lemma 2.7, we postpone the proof to be stated in Appendix A for the 
shortness. Based on the proof, we actually have the following lemma for τ = 0.

Lemma 2.10. If γ ∈ [1, 2], then the shock curve S2 starting at (r0, s0) can be rewritten as

r0 − r = g2(s0 − s, ρ0) ≡
s0−sˆ

0

h2(α)

∣∣∣∣∣α=α2(
β

ρ
(γ−1)/2
0

)
dβ, (2.45)

where 0 < ∂g2(β,ρ0)
∂β

< 1, ∂
2g2(β,ρ0)

∂2β
< 0, and β = s0 − s ≤ 0.

2.2. Riemann solutions of equations (1.17)

Based on Lemma 2.7 and Lemma 2.8, for any constant state ωL = (ω−,L, ω+,L), let

z1 = ω−,L − ω− and z2 = ω+,L − ω+.

Define

H (1)
1 (z1,ωL; τ 2) = −z1 + ω−,L,

H (2)
1 (z1,ωL; τ 2) =

{−�1(z1,UL; τ 2) + ω+,L, z1 > 0,

ω+,L, z1 < 0,

(2.46)

and
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x = x0

UL

UM

UR

(x0, y0)

Fig. 3. Riemann problem without boundary.

H (1)
2 (z2,ωL; τ 2) =

{−�2(z2,UL; τ 2) + ω−,L, z2 < 0,

ω−,L, z2 > 0,

H (2)
2 (z2,ωL; τ 2) = −z2 + ω+,L,

(2.47)

where functions �1 and �2 are given in Lemma 2.7 and Lemma 2.8, respectively. Let

H1(z1,ωL; τ 2) = (H (1)
1 ,H (2)

1

)
(z1,ωL; τ 2),

H2(z2,ωL, τ 2) = (H (1)
2 ,H (2)

2

)
(z2,ωL; τ 2),

(2.48)

and finally denote

H (z,ωL; τ 2) =: H1(z1,H2(z2,ωL; τ 2); τ 2), z = (z1, z2). (2.49)

Then, we can parameterize the 1-waves by z1 and parameterize the 2-waves by z2. For the case that τ = 0, we set 
z := z = (z1, z2) and ω := ω0 = (r, s).

Now, let us consider the Riemann problem of (1.17) with large initial data at x = x0

U(x,y)
∣∣
x=x0

=
{

UL, y < y0,

UR, y > y0,
(2.50)

where UL = (ρL, vL) and UR = (ρR, vR) are two given constant states satisfying ρL > 0 and ρR > 0 (see Fig. 3). We 
have the following proposition that gives the solvability and the invariant region of the Riemann problem of (1.17)
and (2.50).

Proposition 2.1. Suppose that ω−,L + ω+,R > − 4−ε0
γ−1 for some constant 0 < ε0 < 4, then there exists a sufficiently 

small constant ε6 > 0 such that for any τ ∈ [0, ε6), Riemann problem (1.17) and (2.50) admits a unique piecewise 
smooth solution U(x, y) without the vacuum state. Moreover solution U(x, y) satisfies

ω−(U(x, y), τ 2) + ω+(U(x, y), τ 2) ≥ ω−,L + ω+,R, (2.51)

where ω±,L = ω±(UL, τ 2) and ω±,R = ω±(UR, τ 2).

Proof. The existence of the solutions of Riemann problem (1.17) and (2.50) is equivalent to the existence of solutions 
z of the following equation,

ωR = H (z,ωL; τ 2). (2.52)

From (2.49), we know that

det
(∇zH

)
(z,ωL; τ 2) = det

(
∇H2H1 · ∇z2H2, ∇z1H1

)
(z,ωL; τ 2).
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Based on the sign of z1 and z2, we divide the proof into three cases for checking the sign of the determinant above 
to show the existence of solution z of equation (2.52).

Case (i). z1 > 0 and z2 < 0. By the definition of H (1)
1 and H (2)

1 , we know that

H (1)
2 (z2,UL; τ 2) = −�2(z2,UL; τ 2) + ω−,L, H (2)

2 (z2,UL; τ 2) = −z2 + ω+,L,

and

H (1)
1 (z1,H2(z2,ωL; τ 2); τ 2) = −z1 + H (1)

2 (z2,ωL; τ 2),

H (2)
1 (z1,H2(z2,ωL; τ 2); τ 2) = −�1

(
z1,U

(
H2(z2,ωL; τ 2)

); τ 2
)

+ H (2)
2 (z2,ωL; τ 2).

So

∇H2H1 · ∇z2H2

=
⎛
⎜⎝

1 0

−∇U�1 · ∂
H (1)

2
U −∇U�1 · ∂

H (2)
2

U + 1

⎞
⎟⎠ ·
(

− ∂z2�2(z2,UL; τ 2), −1
)�

=
(

− ∂z2�2(z2,UL; τ 2), ∇U�1 · ∂
H (1)

2
U + ∇U�1 · ∂

H (2)
2

U · ∂z2�2(z2,UL; τ 2) − 1

)�
,

and

∇z1H1 =
(

− ∂z1�1
(
z1,U(H2(z2,ωL; τ 2)); τ 2), −1

)�
.

Note that it follows from Lemma 2.3 that,

∇U�1 · ∂
H (1)

2
U

∣∣∣∣
τ=0

= ∇U�1 · ∂
H (2)

2
U

∣∣∣∣
τ=0

= 1

2
ρ

3−γ
2 ∂ρ�1

(
z1,U

(
H2(z2,ω(UL,0);0)

);0
)

= γ − 1

4
∂
ρ

γ−1
2

�2

(
z1,U

(
H1(z2,ω(UL,0);0)

);0
)

= −1

2
∂z1�1

(
z1,U

(
H2(z2,ω(UL,0);0)

);0
)
.

Then, by Lemma 2.7 and Lemma 2.8,

det
(∇zH

)
(z,ωL; τ 2)

∣∣∣∣
τ=0

=det
(
∇H2H1 · ∇z2H2, ∇z1H1

)
(z,ωL; τ 2)

∣∣
τ=0

= − 1 + 1

2
∂z1�1

(
z1,U

(
H2(z2,ω(UL,0);0)

);0
)

·
(
∂z2�2

(
z2,UL;0

)− 1
)

< − 1.

Thus, for τ sufficiently small, we can get the existence of solution z of equation (2.52) by applying the implicit 
function theorem. Moreover, by the signs of z1 and z2,

ω+(U(x, y), τ 2) = ω+,R − �1(z1,U
(
H2(z2,ωL; τ 2)

); τ 2)> ω+,R, for z1 > 0,

and

ω−(U(x, y), τ 2) = �1

(
z2,UL; τ 2

)
+ ω−,L> ω−,L, for z2 < 0,
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which leads to the estimate (2.51).

Case (ii). z1 < 0 and z2 < 0 (or z1 > 0 and z2 > 0). Without loss of the generality, we only consider the case that 
z1 < 0 and z2 < 0, since the other case can be treated in the same way. For the case that z1 < 0 and z2 < 0, notice that

H (1)
2 (z2,UL; τ 2) = −�2(z2,UL; τ 2) + ω−,L, H (2)

2 (z2,UL; τ 2) = −z2 + ω+,L,

and

H (1)
1 (z1,H2(z2,ωL; τ 2); τ 2) = −z1 + H (1)

2 (z2,ωL; τ 2),

H (2)
1 (z1,H2(z2,ωL; τ 2); τ 2) = −z2 + ω+,L.

So

det
(∇zH

)
(z,ωL; τ 2)

∣∣∣∣
τ=0

= �2(z2,UL; τ 2) − 1 < −Cε0,

and

ω−,R = −z1 − �2(z2,UL; τ 2) + ω−,L, ω+,R = −z2 + ω+,L.

Hence we can obtain the existence of solution z of equation (2.52) directly, and

ω−(U(x, y), τ 2) > ω−,L and ω+(U(x, y), τ 2) = ω+,R,

which leads to the estimate (2.51).

Case (iii). z1 < 0 and z2 > 0. In this case, notice that

H (1)
2 (z2,ωL; τ 2) = ω−,L, H (2)

2 (z2,ωL; τ 2) = −z2 + ω+,L,

and

H (1)
1 (z1,H2(z2,ωL; τ 2); τ 2) = −z1 + H (1)

2 (z2,ωL; τ 2),

H (2)
1 (z1,H2(z2,ωL; τ 2); τ 2) = H (2)

2 (z2,ωL; τ 2).

Then

z1 = ω−,L − ω−,R and z2 = ω+,L − ω+,R.

So we obtain the existence of solution z directly, and in this case it is easy to see

ω−(U, τ 2) + ω+(U, τ 2) = ω−,L + ω+,R.

Moreover, notice that

ρ
γ−1

2

∣∣∣
τ=0

= γ − 1

4

(
ω−(U,0) + ω+(U,0)

)
+ 1

≥ γ − 1

4

(
ω+(UR,0) + ω−(UL,0)

)
+ 1

> Ĉ > 0.

Based on this fact and combining the arguments for Cases (i)-(iii) together, we can choose ε6 > 0 sufficiently small 
such that for τ ∈ (0, ε6), equation (2.52) and then Riemann problem (1.17) and (2.50) admits a unique solution z
without the vacuum states. Moreover, estimate (2.51) follows. It completes the proof of the Proposition. �

Next, let us study the Riemann problem involving boundary. Define

�0 = {(x, y) : x0 ≤ x < x1, y ≤ b0(x − x0) + y0},
�0 = {(x, y) : x0 ≤ x < x1, y = b0(x − x0) + y0}.
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�0

Fig. 4. Riemann problem with boundary.

Let us consider the following Riemann problem (see Fig. 4):⎧⎪⎪⎨
⎪⎪⎩

∂xW(U, τ 2) + ∂yF (U, τ 2) = 0, in �0,

U(x, y) = UL, on �0 ∩ {x = x0},
v(x, y) = (1 + τ 2u(ρ, v, τ 2)

)
b0, on �0,

(2.53)

where b0 < 0 and UL = (ρL, vL) is a given constant state satisfying ρL > 0.
We have the following lemma on the solvability of Riemann problem (2.53).

Proposition 2.2. Assume that ω−,L − a∞b0 > − 2−ε0
γ−1 for some 0 < ε0 < 2, then there exists a small constant ε7 > 0

such that for any τ ∈ [0, ε7), Riemann problem (2.53) admits a unique piecewise smooth solution U(x, y) consists of 
a single 2-shock or a 2-rarefaction wave without the vacuum states. Here, ω−,L = ω−(UL, τ 2).

Proof. It is easy to see that the existence of solutions of Riemann problem (2.53) is equivalent to the existence of 
solutions z2 of the following system{

ω = H2(z2,ωL; τ 2),

v = V(ω, τ 2) = (1 + τ 2u(ρ, v, τ 2)
)
b0.

(2.54)

Let

G (z2,ωL, b0; τ 2) = V(H2(z2,ωL; τ 2), τ 2) − (1 + τ 2u(ρ, v, τ 2)
)
b0,

and consider equation G (z2, ωL, b0; τ 2) = 0 for τ sufficiently small.
Note that

G
(
z2,ω(UL,0), b0;0

)= 1

2a∞

(
H (1)

2 (z2,ω(UL,0);0) − H (2)
2 (z2,ω(UL,0);0)

)
− b0.

If b0 < vL, i.e., ω−(UL, 0) − ω+(UL, 0) > 2a∞b0, then

G
(
z2,ω(UL,0), b0;0

)= 1

2a∞

(
z2 − �2(z2,UL;0) + ω−(UL,0) − ω+(UL,0)

)
− b0.

By Lemma 2.8, we get that

∂G
(
z2,ω(UL,0), b0;0

)
∂z2

= 1

2a∞

(
1 − ∂z2�2(z2,UL;0)

)
>

C2ε0

2a∞
> 0.

On the other hand, we notice that G ∈ C2 with respect to z2, then

G (0,ω(UL,0), b0;0) = 1

2a∞
(
ω−(UL,0) − ω+(UL,0)

)− b0 > 0,

and
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lim
z2→−∞G (z2,ω(UL,0), b0;0) = 1

2a∞
lim

z2→−∞

(
1 − �2(z2,UL;0)

z2

)
z2 + ω−(UL,0) − ω+(UL,0)

2a∞
− b0

= −∞.

So, by the intermediate value theorem and the implicit function theorem, there exists a small constant ε′
7 > 0 such 

that when τ ∈ [0, ε′
7), equation (2.54) admits a unique solution z2 < 0 which consists of a shock wave belonging to 

the second family. There is no vacuum state, which can be verified by the observation that ω−(U, 0) > ω−(UL, 0), 
which leads to

ρ
γ−1

2

∣∣∣
τ=0

= γ − 1

4

(
ω+(U,0) + ω−(U,0)

)
+ 1

= γ − 1

2

(
ω−(U,0) − a∞b0

)
+ 1

>
γ − 1

2

(
ω−(UL,0) − a∞b0

)
+ 1

> C̃.

Second, if b0 > vL, i.e., ω−(UL, 0) − ω+(UL, 0) < 2a∞b0, then states UL and U are connected by a 2-rarefaction 
wave R2. So, by (2.47) and (2.54), we know that

ω−(U,0) = ω−(UL,0), ω+(U,0) = ω−(UL,0) − 2a∞b0.

This also gives that

ρ
γ−1

2

∣∣∣
τ=0

= γ − 1

2

(
ω−(UL,0) − a∞b0

)
+ 1 > C̃,

which means that the vacuum states dose not appear. Moreover,

G (z2,ωL, b0; τ 2) = V((ω−,L,−z2 + ω+,L), τ 2) − (1 + τ 2u(ρ, v, τ 2)
)
b0,

so

∂G (z2,ωL, b0; τ 2)

∂z2

∣∣∣
τ=0

= 1

2a∞
> 0.

Hence by the implicit function theorem, there exists a small constant ε′′
7 > 0 such that for τ ∈ [0, ε′′

7 ), equation 
(2.54) admits a unique solution z2 > 0 such that UL and U are connected by a 2-rarefaction wave R2 without the 
vacuum state.

Finally, take ε7 = min{ε′
7, ε

′′
7 }, then when τ ∈ [0, ε7), we can get the existence of solutions of Riemann problem 

(2.53) without the vacuum states. �
3. Local interaction estimates

In order to control the total variation of the approximate solutions which will be constructed in the next section, we 
need to study the local interaction estimates of the elementary waves of large data. Firstly, let us consider the estimates 
on the difference of the Riemann invariance of the same family along the corresponding shock wave curve. Let us 
consider them for the case that τ = 0 first. By Remark 2.2, as shown in Fig. 5, let

r0 := a∞v0 + 2(ρ
γ−1

2
0 − 1)

γ − 1
= a∞v1 + 2(ρ

γ−1
2

1 − 1)

γ − 1
, s0 := −a∞v0 + 2(ρ

γ−1
2

0 − 1)

γ − 1
,

r := a∞v + 2(ρ
γ−1

2 − 1)

γ − 1
= a∞v2 + 2(ρ

γ−1
2

2 − 1)

γ − 1
, s := −a∞v + 2(ρ

γ−1
2 − 1)

γ − 1
,

(3.1)

and
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(r, s)

r0r
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S1

Fig. 5. Lemma 3.1.

•

•

•

•

(r1, s0) (r0, s0)

(r2, s) (r, s)

s0

s

S2 S2

Fig. 6. Lemma 3.2.

s1 := −a∞v1 + 2(ρ
γ−1

2
1 − 1)

γ − 1
, s2 := −a∞v2 + 2(ρ

γ−1
2

2 − 1)

γ − 1
. (3.2)

Then we have the following lemmas.

Lemma 3.1. Suppose τ = 0 and s1 > s0. For two S1 shock wave curves starting at points (r0, s1) and (r0, s0) and 
ending at points (r, s2) and (r, s) respectively, if 0 < ρ∗ < ρi < ρ∗ < ∞ for i = 0 and 1, then there exists a constant 
C3 > 0 depending only on ρ∗ and ρ∗, such that

0 ≤ (s0 − s) − (s1 − s2) ≤ C3(γ − 1)(s1 − s0)(r0 − r). (3.3)

The proof of this lemma will be given in the appendix since it is similar to the one in [17]. Similarly, we also have 
the estimate on the difference of r on S2 (see Fig. 6).

Lemma 3.2. Assume τ = 0 and r0 > r1. For two S2 shock wave curves starting at points (r1, s0) and (r0, s0), and 
ending at points (r2, s) and (r, s), respectively, if 0 < ρ∗ < ρi < ρ∗ < ∞ for i = 0 and 1, then there exists a constant 
C′

3 > 0 depending only on ρ∗ and ρ∗, such that

0 ≤ (r − r0) − (r2 − r1) ≤ C′
3(γ − 1)(r0 − r1)(s − s0). (3.4)

Now, let us consider the case τ �= 0 in the following lemmas.

Lemma 3.3. (see Fig. 7) Assume ω+,1 > ω+,0. For two S1 shock wave curves starting at points (ω−,0, ω+,1) and 
(ω−,0, ω+,0) corresponding to (ρ1, v1) and (ρ0, v0) respectively, and ending at points (ω−, ω+,2) and (ω−, ω+) cor-
responding to (ρ2, v2) and (ρ, v), respectively. If 0 < ρ∗ < ρi < ρ∗ < ∞ for i = 0 and 1, then there exists a constant 
C4 > 0 depending only on ρ∗ and ρ∗, such that

ω+,0 − ω+ − (ω+,1 − ω+,2) ≤ C4(γ − 1 + τ 2)(ω+,1 − ω+,0)(ω−,0 − ω−). (3.5)
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S1
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Fig. 7. Lemma 3.3.

Proof. Let �ω− = ω−,0 − ω−, �ω+ = ω+,1 − ω+,0, and let ω+,2 = ω∗(�ω−, �ω+, τ 2). For the case that τ = 0, by 
Lemma 3.1,

ω∗(0,0,0) − ω∗(�ω−,0,0) − ω∗(0,�ω+,0) + ω∗(�ω−,�ω+,0) = O(1)(γ − 1)�ω−�ω+.

Therefore, we have

ω+,0 − ω+ − (ω+,1 − ω+,2)

= ω∗(0,0, τ 2) − ω∗(�ω−,0, τ 2) −
(
ω∗(0,�ω+, τ 2) − ω∗(�ω−,�ω+, τ 2)

)

= ω∗(0,0, τ 2) − ω∗(0,0,0) −
(
ω∗(�ω−,0, τ 2) − ω∗(�ω−,0,0)

)

−
(
ω∗(0,�ω+, τ 2) − ω∗(0,�ω−,0)

)
+ ω∗(�ω−,�ω+, τ 2) − ω∗(�ω−,�ω+,0)

+ ω∗(0,0,0) − ω∗(�ω−,0,0) − ω∗(0,�ω+,0) + ω∗(�ω−,�ω+,0)

= τ 2

1ˆ

0

e(�ω−,�ω+, χτ 2)dχ +O(1)(γ − 1)�ω−�ω+,

where

e(�ω−,�ω+, χτ 2) = ∂τ 2ω
∗(0,0, χτ 2) − ∂τ 2ω

∗(�ω−,0, χτ 2)

− ∂τ 2ω
∗(0,�ω+, χτ 2) + ∂τ 2ω

∗(�ω−,�ω+, χτ 2)

= O(1)�ω−�ω+.

Combining the above two estimates together, we have (3.5). �
Similarly, we also have the estimate on the difference of ω− on S2 shock wave curves.

Lemma 3.4. (see Fig. 8) Assume ω−,0 > ω−,1. For S2 shock wave curves starting at points (ω−,1, ω+,0) and 
(ω−,0, ω+,0) corresponding to (ρ1, v1) and (ρ0, v0) respectively, and ending at points (ω−,2, ω+) and (ω−, ω+) cor-
responding to (ρ, v) and (ρ2, v2), respectively. If 0 < ρ∗ < ρi < ρ∗ < ∞ for i = 0 and 1, then there exists a constant 
C′

4 > 0 depending only on ρ∗ and ρ∗, such that

ω− − ω−,0 − (ω−,2 − ω−,1) ≤ C′
4(γ − 1 + τ 2)(ω−,0 − ω−,1)(ω+ − ω+,0). (3.6)



J. Kuang et al. / Ann. I. H. Poincaré – AN 37 (2020) 1379–1423 1401
•

•

•

•

(ω−,1,ω+,0) (ω−,0,ω+,0)

(ω−,2,ω+) (ω−,ω+)

ω+,0

ω+

S2 S2

Fig. 8. Lemma 3.4.
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Fig. 9. Local interaction estimates away from the boundary.

Now we are ready to introduce the local interaction estimates case by case (see Fig. 9). Let ν and ν′ be the wave 
strength of shock wave S1 before and after the interaction. Let β and β ′ be the wave strength of shock wave S2 before 
and after the interaction. And let o, π and o′, π ′ be the wave strength of rarefaction wave R1 and R2 before and after 
the interaction respectively.

Lemma 3.5. Let γ ∈ [1, 2], and let 0 < ρ̂ < ρ̌ < ∞. Then, for ρ ∈ [ρ̂, ρ̌], there exist positive constants C0 > 0, C5 > 0
and δ ∈ (0, 1) independent of γ , β , ν and ρ, such that the following interaction estimates hold:

(1) For the case that S2 + S1 → S ′
1 + S ′

2, i.e., for the wave strength interaction that β + ν → ν′ + β ′, one of the 
following estimates holds:

(a) |ν′| + |β ′| ≤ |β| + |ν| + C5(γ − 1 + τ 2)|β||ν|,
(b) |ν′| = |ν| − ζ, |β ′| ≤ |β| + C5(γ − 1 + τ 2)|β||ν| + η,

(c) |β ′| = |β| − ζ, |ν′| ≤ |ν| + C5(γ − 1 + τ 2)|β||ν| + η,

(3.7)

where 0 ≤ η ≤ δζ and ζ > 0 is a constant;
(2) For the case that S2 +R1 → R′

1 + S ′
2, i.e., for the wave interaction that β + o → o′ + β ′, we have |β ′| = |β|;

(3) For the case that S2 + S2 → R′
1 + S ′

2, i.e., for the wave interaction that β1 + β2 → o′ + β ′, we have |β ′| =
|β1| + |β2|;
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Fig. 10. S1 wave hits the boundary and S ′
2 wave reflects.

(4) For the case that S2 + R2 → S ′
1 + S ′

2 (or S2 + R1 → R′
1 + S ′

2), i.e., for the wave interaction that β + π →
ν′ + β ′ (or β + o → o′ + β ′), there exist 1-shock wave ν0 and 2-shock wave β0 such that the wave interaction 
β0 + ν0 → ν′ + β ′ is the same as the one in (1) and the following estimate hold:

|ν0| + |β0| ≤ |β| − C0|ν0|;
(5) For the case that R2 +S2 → S ′

1 +S ′
2 (or R2 +S1 → S ′

1 +R′
2), i.e., for the wave interaction that 0 +β → ν′ +β ′

(or π + ν → ν′ + 0′), we have |ν′| + |β ′| ≤ |β| − C0|ν′|;
(6) For the case that R2 +R1 →R′

1 +R′
2, i.e., for the wave interaction that π + o → o′ + π ′, we have |o| + |π | =

|o′ + |π ′|;
(7) For the case that S1 +R1 → S ′

1 + S ′
2, i.e., for the wave interaction that ν + o → ν′ + β ′, we have |ν′| + |β ′| ≤

|ν| − C0|β ′|;
(8) For the case that S1 + S1 → S ′

1 + R′
2, i.e., for the wave interaction that ν1 + ν2 → ν′ + π ′, we have |ν′| =

|ν1| + |ν2|.

Proof. We postpone the proof into the appendix because it is similar to the one in [17]. �
Next, let us consider the interaction estimates near the boundary. First, we study the case that S1 wave hit the 

boundary and then reflects (see Fig. 10).

Lemma 3.6. Let γ ∈ [1, 2], 0 < ρ̂ < ρ̌ < ∞ and b0 < 0. Suppose that the constant states UL, UR ∈ O(U∞) with 
ρL, ρR ∈ [ρ̂, ρ̌], satisfies that

vR = (1 + τ 2uR)b0, ω+,R = −�1(ν,UL, τ 2) + ω+,L. (3.8)

Then, for constant state U ′
R ∈O(U∞) with ρ′

R ∈ [ρ̂, ρ̌] which satisfies that

v′
R = (1 + τ 2u′

R)b0, ω′−,R = −�2(β
′,UL, τ 2) + ω−,L, (3.9)

we have

β ′ = Kbν, (3.10)

where

Kb = −1 +O(1)(γ − 1 + τ 2), (3.11)

with the bound O(1) depending only on the system and UL.
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Fig. 11. S1 wave hits on the boundary and S′
2 wave reflects.

Proof. Denote

L0(β
′, ν, γ − 1, τ 2) := (1 + τ 2uR)v′

R − (1 + τ 2u′
R)vR. (3.12)

When γ = 1 and τ = 0, (3.12) is reduced to

L0(β
′, ν, γ − 1, τ 2)

∣∣∣
γ=1,τ=0

= 1

2a∞

(
β ′ + ν + g(−β ′) − g(ν)

)
,

where g(ν) := �1(ν, UL; τ 2)

∣∣∣
γ=1,τ=0

with 0 < g′ < 1, g′′ > 0, and �2(β
′, UL; τ 2)

∣∣∣
γ=1,τ=0

= −g(−β ′). In this case, 

equation L0(β
′, ν, γ − 1, τ 2)

∣∣∣
γ=1,τ=0

= 0 admits a unique solution β ′ = −ν. Note that

∂L0(β
′, ν,0,0)

∂β ′
∣∣∣
γ=1,τ=0,β ′=−ν

= 1

2a∞

(
1 − g′(−ν)

)
> C > 0,

where constant C depends only on ρ̂ and ρ̌. So it follows from the implicit function theorem that β ′ can be solved as 
a C2 function of ν, γ − 1, τ 2, b0 and UL. Moreover,

β ′ = β ′(ν, γ − 1, τ 2) = ν

1ˆ

0

∂νβ
′(χν, γ − 1, τ 2)dχ,

where we have used the fact that β ′(0, γ − 1, τ 2) = 0 (Fig. 11).
Since β ′(ν, 0, 0) = −ν, then ∂νβ

′(ν, 0, 0) = −1, which gives that

β ′ =
1ˆ

0

(
∂νβ

′(χν, γ − 1, τ 2) − ∂νβ
′(χν,0,0)

)
dχν − ν = (− 1 +O(1)(γ − 1 + τ 2)

)
ν.

So by taking Kb = −1 +O(1)(γ − 1 + τ 2), we have equality (3.10) (Fig. 12). �
Now, let us consider the local interaction estimates near the boundary.

Lemma 3.7. Let γ ∈ [1, 2], and let 0 < ρ̂ < ρ̌ < ∞. Suppose constant states UL, UM, UR ∈ O(U∞) with 
ρL, ρM, ρR ∈ [ρ̂, ρ̌], satisfy that

vR = (1 + τ 2uR)b0, ωR = H2(z2,ωM, τ 2), ωM = H1(z1,ωL, τ 2). (3.13)

Then, there exist constants Cb0 > 0, Cb1 > 0 and C6 > 0 independent of γ , τ , z1, z2 such that for any constant state 
U ′

R ∈ O(U∞) with ρ′
R ∈ [ρ̂, ρ̌] which satisfies that

v′
R = (1 + τ 2u′

R)b0, ω′
R = H2(z

′
2,ωL, τ 2), (3.14)

the following interaction estimates hold:
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Fig. 12. Local interaction estimates near the boundary.

(1) For the case that S1 + S2 → S ′
2, i.e., for the wave strength interaction that ν + β → β ′, it holds that

|β ′| ≤ Kb0|ν| + |β| + C6(γ − 1 + τ 2)|β||ν|, (3.15)

with

Kb0

∣∣∣
γ=1,τ=0

= 1 + Cb0. (3.16)

(2) For the case that R1 + S2 → S ′
2 (or R1 + S2 →R′

2), i.e., for the wave interaction that o + β → β ′, it holds that

|β ′| ≤ |β| + C6(γ − 1 + τ 2)|β||o| − Cb1|o|. (3.17)

(3) For the case that S1 +R2 → S ′
2 (or S1 +R2 →R′

2), i.e., for the wave interaction that ν + π → β ′ (or β + o →
β ′), it holds that

|β ′| ≤ Kb1|ν| + C6(γ − 1 + τ 2)|ν|2, (3.18)

where

Kb1

∣∣∣
γ=1,τ=0

= 1. (3.19)

(4) For the case that R1 +R2 → R′
2, i.e., for the wave interaction that o + π → π ′, it holds that |o| + |π | = |π ′|.

Proof. For the notational simplicity, for γ = 1 and τ = 0, let

�1(α,U ; τ 2)
∣∣
γ=1,τ=0 =: g(α), (3.20)

for some α > 0 and U ∈O(U∞). Then function g satisfies the properties that

0 < g′(α) < 1, g′′(α) > 0, (3.21)

for α > 0. As shown in Remark 2.4,

�2(β,U ; τ 2)
∣∣
γ=1,τ=0 = −g(−β), (3.22)

for some β < 0 and U ∈O(U∞).
For the first case S1 + S2 → S ′

2, from (3.13)-(3.14), we have

vR = (1 + τ 2uR)b0, ω−,M − ω−,R = �2(β,UM, τ 2), β = ω+,M − ω+,R, (3.23)
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ω+,L − ω+,M = �1(ν,UL, τ 2), ν = ω−,L − ω−,M, (3.24)

and

v′
R = (1 + τ 2u′

R)b0, ω−,L − ω′−,R = �2(β
′,UL, τ 2), β ′ = ω+,L − ω′+,R. (3.25)

Then,

(1 + τ 2uR)v′
R = (1 + τ 2u′

R)vR, (3.26)

where (uR, vR) = (u, v)(β, ν, γ − 1, τ 2, UL) and (u′
R, v′

R) = (u′, v′)(β ′, γ − 1, τ 2, UL). Let

L1(β
′, β, ν, γ − 1, τ 2, b0,UL) := (1 + τ 2uR)v′

R − (1 + τ 2u′
R)vR. (3.27)

When γ = 1 and τ = 0, equation (3.27) is

L1
∣∣
γ=1,τ=0 = 1

2a∞

(
β ′ + g(−β ′) − β − g(−β) + ν − g(ν)

)
, (3.28)

for β < 0 and ν > 0.

Notice that 
∂
(
L1
∣∣
γ=1,τ=0

)
∂β ′ = 1−g′(−β ′)

2a∞ > 0, limβ ′→−∞ L1
∣∣
γ=1,τ=0 = −∞, and

L1
∣∣
γ=1,τ=0,β ′=β−ν

= 1

2a∞

(
g(ν − β) − g(−β) − g(ν)

)
= −βν

1ˆ

0

1ˆ

0

g′′(ξν − ξ̃β)dξdξ̃ > 0.

So equation L1(β
′, β, ν, 0, 0, b0, UL) = 0 admits a unique root β ′

0. By Lemma 2.3,

∂L1(β
′, β, ν, γ − 1, τ 2, b0,UL)

∂β ′
∣∣∣
γ=1,τ=0,β ′=β ′

0

= 1

2a∞

(
1 − g′(−β ′

0)
)

> C > 0,

for some C > 0 depends only on the ρ̂ and ρ̌.
Therefore, it follows from the implicit function theorem that β ′ can be solved as a C2 function of β, ν, γ −1, τ 2, b0

and UL, that is

β ′ = β ′(β, ν, γ − 1, τ 2)

= β ′(0, ν, γ − 1, τ 2) + β ′(β,0, γ − 1, τ 2) +O(β, ν, γ − 1, τ 2)βν

= Kbν + β +O(β, ν, γ − 1, τ 2)βν,

where coefficient Kb is given by (3.10) in Lemma 3.6. Moreover,

β ′
0 := β ′(β, ν,0,0) = β ′(0, ν,0,0) + β ′(β,0,0,0) +O(β, ν,0,0)βν = −ν + β +O(β, ν,0,0)βν.

Subtracting the two identities above implies that

β ′ = β ′
0 +O(1)(γ − 1 + τ 2)ν +O(1)(γ − 1 + τ 2)βν. (3.29)

So the remaining task is to estimate β ′
0 more carefully (see Fig. 13) for the case that γ = 1 and τ = 0. By 

(3.23)-(3.26), we have the relation that

β ′
0 + ν − β = g(ν) + g(−β) − g(−β ′

0), (3.30)

where ν = (ω−,L − ω−,M

)∣∣
γ=1,τ=0 > 0, β = (ω+,M − ω+,R

)∣∣
γ=1,τ=0 < 0 and β ′

0 = (ω+,L − ω′+,R

)∣∣
γ=1,τ=0 < 0. 

Direct computation shows that

g(ν) − g(−β) − g(−β ′
0) = g(ν − β) − g(−β ′

0) + g(ν) + g(−β) − g(ν − β)

≥ g′(ξ1)(ν − β + β ′
0) + g(−β) − g(ν − β)

≥ g′(ξ1)(ν − β + β ′
0) + g′(ξ2)(−ν),

where ξ1 ∈ (−β ′ , ν − β) and ξ2 ∈ (ν − β, −β ′). This together with (3.30) yields that
0
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Fig. 13. S1 and S2 waves interaction and reflection on the boundary.
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Fig. 14. R1 and S2 waves interaction and reflection on the boundary.

−β ′
0 − ν + β ≤ g′(ξ2)

1 − g′(ξ1)
ν.

Let Cb0 = supξ1∈(−β ′
0,ν−β),ξ2∈(ν−β,−β ′)

g′(ξ2)
1−g′(ξ1)

, then we have

|β ′
0| ≤ (1 + Cb0)|ν| + β.

So it follows from (3.29) that

|β ′|≤
(

1 + Cb0 +O(1)(γ − 1 + τ 2)
)
|ν| + β +O(1)(γ − 1 + τ 2)|ν||β|.

This completes the proof for the first case.
Next, for the second case R1 + S2 → S ′

2, note that β and β ′ satisfy (3.23) and (3.25),

ω+,M = ω+,L, o = ω−,L − ω−,M < 0, on R1, (3.31)

and equality (3.26) holds on the boundaries �k and �k+1 with (uR, vR) = (u, v)(β, o, γ − 1, τ 2, UL) and (u′
R, v′

R) =
(u′, v′)(β ′, γ − 1, τ 2, UL). Let

L2(β
′, β, o, γ − 1, τ 2, b0,UL) := (1 + τ 2uR)v′

R − (1 + τ 2u′
R)vR.

As done for the first case, similarly, it follows from the implicit function theorem that β ′ can be solved as a C2

function of β, ν, γ − 1, τ 2, b0, UL with the estimate that

|β ′| ≤ |β ′(β, o,0,0)| +O(1)(γ − 1 + τ 2)|β||o|. (3.32)

Now, we will estimate β ′(β, 0, 0, 0) (see Fig. 14). Let β ′
1 = β ′(β, 0, 0, 0). Then

β ′
1 − β + g(−β ′

1) − g(−β) = |o|.
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Fig. 15. S1 and R2 waves interaction and reflection on the boundary.

By the mean value theorem, we further have

β ′
1 − β = |o|

1 − g′(ξ3)
, ξ3 ∈ (−β,−β ′

1),

which implies that

|β ′
1| ≤ |β| − Cb1|o|,

where Cb1 = infξ3∈(−β,−β ′
1)

1
1−g′(ξ3)

. This together with (3.32) yields estimate (3.17).
For the third case that S1 +R2 → S ′

2, we know that (3.24) and (3.25) hold on S1 and S ′
2,

ω−,M = ω−,R, π = ω+,M − ω+,R > 0, on R2,

and equality (3.26) holds on boundaries �k and �k+1 with (uR, vR) = (u, v)(π, ν, γ − 1, τ 2, UL) and (u′
R, v′

R) =
(u′, v′)(β ′, γ − 1, τ 2, UL). Let

L3(β
′, β, o, γ − 1, τ 2, b0,UL) := (1 + τ 2uR)v′

R − (1 + τ 2u′
R)vR.

Then similarly as done for the first case, by the implicit function theorem, β ′ can be solved as a C2 function of 
π, ν, γ − 1, τ 2, b0, UL, with the following estimate

|β ′| ≤ |β ′(π, ν,0,0)| +O(1)(γ − 1 + τ 2)|ν| +O(1)(γ − 1 + τ 2)|ν|2. (3.33)

For the term β ′
2 = β ′(π, ν, 0, 0) (see Fig. 15), we have that

β ′
2 + ν = g(ν) − g(−β ′

2) + π ≥ g′(ξ4)(β
′
2 + ν), ξ4 ∈ (−β ′

2, ν)

which implies that |β ′
2| ≤ |ν|. Thus, it with (3.33) yields estimate (3.18).

Finally, for the fourth case that R1 +R2 → R′
2, estimate is obvious since across the rarefaction waves the strength 

of the waves is unchanged. �
4. Global entropy solutions with large data

In this section, we first construct the approximate solution for the initial-boundary value problem (1.17)–(1.19) by 
employing the modified Glimm scheme in an approximate domain �� which will be defined below, and then show 
the existence of global entropy solutions with large data.

4.1. Modified Glimm scheme for the problem (1.17)–(1.19)

Since T .V .(U0) < ∞, limits limy→±∞ U0(y) exist, which are denoted by U±. Let

O(U±) = {U : |U − U−| + |U − U+| < 4T .V .(U0)
}
. (4.1)
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Fig. 16. The modified Glimm scheme.

Let �x be the mesh length in the x-direction. Choose a set of points {Ak}k=0 with Ak = (xk, bk) = (k�x, b0k�x)

on the straight boundary y = b0x in order. As shown in Fig. 16, define

b�(x) = bk + (x − xk)b0, ∀x ∈ [k�x, (k + 1)�x), k ≥ 0,

��,k = {(x, y) : k�x ≤ x < (k + 1)�x, y < b�(x)},
��,k = {(x, y) : k�x ≤ x < (k + 1)�x, y = b�(x)},
�� =

⋃
k≥0

��,k, �� =
⋃
k≥0

��,k.

(4.2)

Let nk be the outer unit normal vector to ��,k as

nk = (bk+1 − bk,−xk+1 + xk)√
(bk+1 − bk)2 + (xk+1 − xk)2

= (b0,−1)√
1 + b2

0

. (4.3)

We choose the mesh length in the y-direction as �y such that the following Courant-Friedrichs-Lewy condition 
holds:

�y

�x
< sup

U∈O(U±),τ∈(0,ε∗)

{
max
l=± |λl(U, τ 2)|}− b0, (4.4)

where ε∗ = min{ε6, ε7}, and ε6 and ε7 are given by Proposition 2.1 and Proposition 2.2, respectively.
For any non-negative integer k and negative integer n, i.e., for k ≥ 0 and n ≤ −1, define

yk,n = bk + (2n + 1 + σk)�y, (4.5)

where σk is randomly chosen in (−1, 1). Then, let

Pk,n = (xk, yk,n), (4.6)

be the mesh points and define the approximate solutions U�,σ (x, y) in �� for any σ = (σ0, σ1, · · ·) via the Glimm 
Scheme inductively as follows.

Step 1. For k = 0, we approximate the initial data by piecewise constant functions.

U�,σ (x = 0, y) =
{

U0(y0,n), bk + 2(n + 1)�y ≤ y ≤ bk + 2n�y,

U (y ), b + 2(n + 2)�y ≤ y ≤ b + 2(n + 1)�y,
(4.7)
0 0,n+1 k k
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where U0(y0,n) and U0(y0,n+1) are constant states.
Step 2. Assume the approximate solution U�,σ (x, y) has been defined in �� ∩ {0 < x < xk} for k > 0. Then, for 

any n ≤ −1 and y ∈ (bk + 2n�y, bk + 2(n + 1)�y), define U0
k,n by

U0
k,n = U�,σ (xk−, yk,n). (4.8)

Now, we first solve the Riemann problem in the diamond Tk,0 whose vertices are (xk, bk), (xk, bk −�y), (xk+1, bk)

and (xk+1, bk − �y) with initial data U�,σ = U0
k,0, that is⎧⎪⎪⎨

⎪⎪⎩
∂xW(Uk,0, τ

2) + ∂yF (Uk,0, τ
2) = 0, in Tk,0,

Uk,0|x=xk
= U0

k,0, on {bk − �y < y < bk},(
(1 + τ 2u(ρk,0, vk,0, τ

2)), vk,0
) · nk = 0, on �k.

(4.9)

Then, we can obtain the Riemann solution Uk,0 in Tk,0 by Proposition 2.2. Define

U�,σ = Uk,0, in Tk,0. (4.10)

Next, we solve the Riemann problem in each diamond Tk,n for n ≤ −2 whose vertices are (xk, bk + 2n�y), 
(xk, bk + 2(n + 1)�y), (xk+1, bk + 2n�y) and (xk+1, bk + 2(n + 1)�y)⎧⎪⎪⎨

⎪⎪⎩
∂xW(Uk,n, τ

2) + ∂yF (Uk,n, τ
2) = 0, in Tk,n,

Uk,n|x=xk
=
{

U0
k,n, bk + 2n�y < y < bk + 2(n + 1)�y,

U0
k,n−1, bk + 2(n − 1)�y < y < bk + 2n�y.

(4.11)

By Proposition 2.1, Riemann problem (4.11) admits a Riemann solution Uk,n in Tk,n. Define

U�,σ = Uk,n, in Tk,n. (4.12)

Therefore, we can construct the approximate solution U�,σ (x, y) globally provided that we can obtain the uniform 
bound of the approximate solutions, which will be the main goal in the next subsection.

4.2. Glimm-type functional and the global existence of entropy solutions

In this subsection, we will introduce the weighted Glimm-type functional and apply the functional to show the 
convergence of the approximation solutions and then obtain the global existence of entropy solutions of problem 
(1.17)-(1.19) of large data. To obtain it, as done in [12], we introduce mesh curves J which is space-like, and consists 
of the line segments jointing the random points Pk,n one by one in the order of n. Obviously, region �� is the union 
of the diamonds whose boundaries are the line segments of the mesh curves with four adjacent random points as 
their vertices. Moreover, J divides the region �� into two subregions denoted by J− and J+, where J− denotes the 
subregion containing the y-axis and J+ = ��\J−. Now we can define the order of the mesh curves.

Definition 4.1. Assume that I and J are two mesh curves, we call J > I if and only if every mesh point of the curve 
J is either on I or contained in I+. Moreover, if J > I and every mesh points of J except one lie on I , then we call 
J is an immediate successor to I .

For the approximate solution U�,σ (x, y), let Sj (J ), where j = 1 or 2, be the set of j -shock waves which go across 
the mesh curve J . Let S(J ) := S1(J ) ∩ S2(J ). Define the Glimm-type functional

F(J ) = L(J ) + 4C∗(γ − 1 + τ 2)Q(J ), (4.13)

where

L(J ) = KbL1(J ) + L2(J ), (4.14)

L1(J ) =
∑{|α| : α ∈ S1(J )

}
, L2(J ) =

∑{|β| : α ∈ S2(J )
}
, (4.15)

and
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Fig. 17. � lies in �� .

Q(J) =
∑{|α||β| : α ∈ S1(J ), β ∈ S2(J ) and α,β are approaching

}
. (4.16)

For the definition of the Glimm’s type functional, we remark that different from the small data case, our definition 
in (4.15) and (4.16) for the large data case does not included the rarefaction waves. It is because the strength of the 
rarefaction waves can be controlled by the strength of the shock waves.

Constants Kb and C∗ satisfy that

max
{
Kb0, Kb1, 1

}
< Kb < min

{1

δ
, 1 + C0, 4

}
, C∗ > max

{
C5, C6,Kb

}
, (4.17)

where constants δ, C0, C5 and Kb0, Kb1, C6 are given in Lemma 3.5 and Lemma 3.7, respectively.
Then, we have the following lemma for functional F(J ), which ensures the uniform bound of the approximate 

solutions.

Lemma 4.1. Suppose that I and J are any two space-like mesh curves satisfying J > I . There exists a constant 
C7 > 0 depending only on C0 and δ, such that if C∗(γ − 1 + τ 2)F (I) ≤ C7, then it holds that

F(J ) < F(I). (4.18)

Proof. Without loss of the generality, we only consider the case that J is an immediate successor to I , since the other 
cases can be treated easily by the induction method. Let � be the diamond between I and J , i.e., � = I ′ ∪ J ′, where 
I = I0 ∪ I ′ and J = I0 ∪ J ′. The proof is devided into two cases depending the location of �.

Case 1. � lies in the interior of �� (see Fig. 17). Let us start with case (1) as listed in Lemma 3.5. For the subcase 
(a), we have

L(J ) − L(I) ≤ C5(Kb + 1)(γ − 1 + τ 2)|β||ν|.
For Q(J), we have that

Q(J) − Q(I) = Q(J ′, I0) + Q(I0) − Q(I ′, I0) − Q(I0) − Q(I ′)

≤
∑

μ∈S(I)

|μ|(|β ′| + |ν′| − |β| − |ν|)− |β||ν|

≤
(
C5(γ − 1 + τ 2)F (I) − 1

)
|β||ν|.
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Then

F(J ) − F(I) = C5(Kb + 1)(γ − 1 + τ 2)|β||ν| + 4C∗(γ − 1 + τ 2)
(
C5(γ − 1 + τ 2)F (I) − 1

)|β||ν|
≤ 2C∗(γ − 1 + τ 2)

(
2C∗(γ − 1 + τ 2)F (I) − 1

)
|β||ν|.

Therefore, if we choose (γ − 1 + τ 2)F (I) < 1
2C∗ , then we have F(J ) < F(I).

Next, let us consider subcase (b) of case (1) as listed in Lemma 3.5. By Lemma 3.5, we have

L(J ) − L(I) ≤ − Kbζ + C5(γ − 1 + τ 2)|β||ν| + η

≤ − (Kb − δ)ζ + C5(γ − 1 + τ 2)|β||ν|,
and

Q(J) − Q(I) = Q(J ′, I0) + Q(I0) − Q(I ′, I0) − Q(I0) − Q(I ′)

≤
∑

μ∈S(I)

|μ|(|β ′| − |β|)+ ∑
μ′∈S(I)

|μ′|(|ν′| − |ν|)− |β||ν|

≤
∑

μ∈S(I)

|μ|(η + C5(γ − 1 + τ 2)|β||ν|)− ∑
μ′∈S(I)

|μ′|ζ − |β||ν|

≤
(
δζ + C5(γ − 1 + τ 2)|β||ν|

)
F(I) − |β||ν|.

Then

F(J ) − F(I)

≤ − (Kb − δ)ζ + C5(γ − 1 + τ 2)|β||ν| + 4C∗(γ − 1 + τ 2)
((

δζ + C3(γ − 1 + τ 2)|β||ν|)F(I) − |β||ν|
)

≤4δζ
(
C∗(γ − 1 + τ 2)F (I) − Kb − δ

4δ

)
+ 4C∗(γ − 1 + τ 2)

(
C∗(γ − 1 + τ 2)F (I) − 3

4

)
|β||ν|.

Therefore, if (γ − 1 + τ 2)F (I) < min
{ 3

4C∗ , Kb−δ
4δC∗

}
, then F(J ) < F(I).

Finally, let us consider subcase (c) of case (1) at listed in Lemma 3.5. Note that

L(J ) − L(I) ≤ −(1 − Kbδ)ζ + KbC5(γ − 1 + τ 2)|β||ν|,
and

Q(J) − Q(I) = Q(J ′, I0) + Q(I0) − Q(I ′, I0) − Q(I0) − Q(I ′)

≤
∑

μ∈S(I)

|μ|(|ν′| − |ν|)+ ∑
μ′∈S(I)

|μ′|(|β ′| − |β|)− |β||ν|

≤
∑

μ∈S(I)

|μ|(η + C5(γ − 1 + τ 2)|β||ν|)− ∑
μ′∈S(I)

|μ′|ζ − |β||ν|

≤
(
δζ + C5(γ − 1 + τ 2)|β||ν|

)
F(I) − |β||ν|.

So, we deduce that

F(J ) − F(I)

≤ − (1 − Kbδ)ζ + KbC5(γ − 1 + τ 2)|β||ν| + 4C∗(γ − 1 + τ 2)
((

δζ + C5(γ − 1 + τ 2)|β||ν|)F(I) − |β||ν|
)

≤4δζ
(
C∗(γ − 1 + τ 2)F (I) − 1 − Kbδ

4δ

)
+ 4C∗(γ − 1 + τ 2)

(
C∗(γ − 1 + τ 2)F (I) − 4 − Kb

4

)
|β||ν|.

If we choose (γ − 1 + τ 2)F (I) < min
{ 1−Kbδ , 4−Kb

}
, then F(J ) < F(I).
4δC∗ 4C∗
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For case (2) as listed in Lemma 3.5, we have

L(J ) − L(I) = 0, Q(J ) − Q(I) = Q(J ′, I0) + Q(I0) − Q(I ′, I0) − Q(I0) = 0.

Therefore F(J ) = F(I).
Next, let us consider case (3) as listed in Lemma 3.5. By Lemma 3.5, we have

L(J ) − L(I) = 0,

and

Q(J) − Q(I) = Q(J ′, I0) + Q(I0) − Q(I ′, I0) − Q(I0) − Q(I ′)

≤
∑

μ∈S(I)

|μ|(|β ′| − |β1| − |β2|
)− |β1||β2|

= −|β1||β2| < 0.

So F(J ) < F(I).
Now, for case (4) as listed in Lemma 3.5, with the notations introduced in Lemma 3.1, we introduce a new mesh 

curve J̃ between the mesh curves I and J such that we have the local wave interaction β + 0 → β0 + ν0 from I to J̃ , 
and the local wave interaction β0 + ν0 → ν′ + β ′ from J̃ to J . Then by Lemma 3.5, we have

F(J ) < F(J̃ ),

provided that (γ − 1 + τ 2)F (J̃ ) < 1
2C∗ . Next, we also have that

L(J̃ ) − L(I) ≤ (Kb − 1 − C0)|ν0|,
Q(J̃ ) − Q(I) ≤

∑
μ∈S(I)

|μ|(|β0| + |ν0| − |β|)+ |β0||ν0|

≤ −C0|ν0|F(I) + |β0||ν0|.
So

F(J̃ ) − F(I) ≤ (Kb − 1 − C0)|ν0| + 4C∗(γ − 1 + τ 2)
(

− C0|ν0|F(I) + |β0||ν0|
)

≤ |ν0|
(

4C∗(γ − 1 + τ 2)|β0| + (Kb − C0) − 4C∗(γ − 1 + τ 2)C0F(I)
)

≤ 4|ν0|
(
C∗(γ − 1 + τ 2)F (I) − C0 + 1 − Kb

4

)
.

Then, if we choose (γ − 1 + τ 2)F (I) < C0+1−Kb

4C∗ , then F(J̃ ) < F(I). Therefore,

F(J ) < F(J̃ ) < F(I).

For case (5) as listed in Lemma 3.5, we have that

L(J ) − L(I) ≤ Kb|ν′| + |β ′| − |β| ≤ (Kb − 1 − C0)|ν′| < 0,

and

Q(J) − Q(I) ≤
∑

μ∈S(I)

|μ|(|ν′| + |β ′| − |β|)≤ −C0F(I)|ν′|.

It follows that F(J ) < F(I).
For case (6) as listed in Lemma 3.5, obviously, we have F(J ) = F(I).
For case (7) as listed in Lemma 3.5, we have

L(J ) − L(I) ≤ Kb(|ν′| − |ν|) + |β ′| ≤ (1 − Kb − C0Kb)|β ′| < 0,
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Fig. 18. � covers part of the approximate boundary �� .

and

Q(J) − Q(I) ≤
∑

μ∈S(I)

|μ|(|ν′| + |β ′| − |ν|)≤ −C0F(I)|β ′|.

It implies that

F(J ) − F(I) ≤
(

1 − Kb − C0Kb − 4C∗C0(γ − 1 + τ 2)F (I)
)
|β ′| < 0.

Therefore, F(J ) < F(I).
Finally, for case (8) as listed in Lemma 3.5, it can be treated similarly as the argument above for case (3) at listed 

in Lemma 3.5 to obtain (4.18).
Case 2. � covers part of the approximate boundary �� (see Fig. 18). For case (1) as listed in Lemma 3.7, we have 

L2(J ) − L2(I ) ≤ Kb|ν| + C6(γ − 1 + τ 2)|ν||β| and L1(J ) − L1(I ) ≤ −|ν|. So

L(J ) − L(I) ≤ −(Kb − Kb)|ν| + C6(γ − 1 + τ 2)|ν||β|.

For Q(J), we have that

Q(J) − Q(I) = Q(J ′, I0) + Q(I0) − Q(I ′, I0) − Q(I0) − Q(I ′)

≤
∑

μ∈S(I)

|μ|(|β ′| − |β| − |ν|)− |β||ν|

≤ (Kb − 1
)
F(I)|ν| +

(
C6(γ − 1 + τ 2)F (I) − 1

)
|β||ν|.

Then, it follows from the estimates of L(J ) and Q(J) that

F(J ) − F(I) ≤
(

4C∗(Kb − 1)(γ − 1 + τ 2)F (I) − (Kb − Kb)
)
|ν|

+ C6(γ − 1 + τ 2)|ν||β| + 4C∗(γ − 1 + τ 2)
(
C6(γ − 1 + τ 2)F (I) − 1

)
|β||ν|

≤
(

2C∗Kb(γ − 1 + τ 2)F (I) − (Kb − Kb)
)
|ν|

+ 4C∗(γ − 1 + τ 2)
(
C∗(γ − 1 + τ 2)F (I) − 3

4

)
|β||ν|.

Therefore, if we choose (γ − 1 + τ 2)F (I) < min{ 3
4C∗ , Kb−Kb

2KbC∗ }, then F(J ) < F(I).
Next, let’s consider case (2) as listed in Lemma 3.7. Note that

L(J ) − L(I) ≤ C6(γ − 1 + τ 2)|β||o| − Cb1|o|
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and

Q(J) − Q(I) = Q(J ′, I0) + Q(I0) − Q(I ′, I0) − Q(I0) − Q(I ′)

≤
∑

μ∈S(I)

|μ|(|β ′| − |β|)

≤
(
C6(γ − 1 + τ 2)|β||o| − Cb1|o|

)
F(I)

≤
(
C6(γ − 1 + τ 2)F (I) − Cb1

)
F(I)|o|.

So if C∗(γ − 1 + τ 2)F (I) ≤ Cb1, then

F(J ) − F(I) ≤ C6(γ − 1 + τ 2)|β||o| − Cb1|o|
+ 4C∗(γ − 1 + τ 2)

(
C6(γ − 1 + τ 2)F (I) − Cb1

)
F(I)|o|

≤
(
C∗(γ − 1 + τ 2)F (I) − Cb1

)
|o|

+ 4C∗(γ − 1 + τ 2)
(
C∗(γ − 1 + τ 2)F (I) − Cb1

)
F(I)|o|

≤ 0.

Finally, let us consider case (3) as listed in Lemma 3.7. By direct computations,

L(J ) − L(I) ≤ −(Kb − Kb1
)|ν| + C6(γ − 1 + τ 2)|ν|2

and

Q(J) − Q(I) = Q(J ′, I0) + Q(I0) − Q(I ′, I0) − Q(I0) − Q(I ′)

≤
∑

μ∈S(I)

|μ|(|β ′| − |ν|)

≤
(
(Kb1 − 1)|ν| + C6(γ − 1 + τ 2)|ν|2

)
F(I).

So

F(J ) − F(I) ≤ −(Kb − Kb1
)|ν| + C6(γ − 1 + τ 2)|ν|2

+ 4C∗(γ − 1 + τ 2)F (I)
(
(Kb1 − 1)|ν| + C6(γ − 1 + τ 2)|ν|2

)
≤
(

− (Kb − Kb1
)+ C6(γ − 1 + τ 2)F (I) + 4C∗(Kb1 − 1)(γ − 1 + τ 2)F (I)

+ 4C∗C6(γ − 1 + τ 2)2F 2(I )
)
|ν|

≤
(

− (Kb − Kb1
)+ 4Kb1C∗(γ − 1 + τ 2)F (I) + (2C∗(γ − 1 + τ 2)F (I)

)2)|ν|.

So, if we choose (γ − 1 + τ 2)F (I) ≤ min{ 1
C∗ , Kb−Kb1

4Kb1C∗ }, then F(J ) − F(I) ≤ 0.
Based on all the arguments above, let

C7 = min

{
1

2
, min

{3

4
,
Kb − δ

4δ

}
, min

{1 − Kbδ

4δ
,

4 − Kb

4

}
,

1 + C0 − Kb

4
,

min
{3

4
,
Kb − Kb

2Kb

}
, Cb1, min

{
1,

Kb − Kb1

4Kb

}}
.

(4.19)

So if (γ − 1 + τ 2)F (I) < C7 , we can get estimate (4.18). �

C∗
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Let O stand for the initial mesh curve, i.e., for any mesh curve J , we have O ≤ J . Then, by Lemma 4.1, we know 
that if C∗(γ − 1 + τ 2)F (O) < C7, then

F(J ) < F(O).

Next choose γ0 ∈ (1, 2) and ε∗ > 0 such that C∗(γ0 − 1 + ε2∗)L(O) < 1 and C∗(γ0 − 1 + ε2∗)F (O) < C7. Then for 
any γ ∈ [1, γ0] and τ ∈ (0, ε∗), we have

F(J ) < F(O) = L(O) + 4C∗(γ − 1 + τ 2)Q(O) ≤ L(O) + 4C∗(γ − 1 + τ 2)L2(O) < 5L(O).

Notice that L(O) ≤ C∗∗
(
T .V .{U0(·); (−∞, 0]} +‖b0‖L∞

)
for some constant C∗∗ > 0 depending only Kb and C∗. 

So by the standard argument, (see [12,21]), we have the following proposition.

Proposition 4.1. Suppose that ρ0 ∈ [ρ∗, ρ∗] for some constant states ρ∗ and ρ∗ with 0 < ρ∗ < ρ∗ < ∞. Then there 
exist constants C8 > 0, γ0 ∈ (1, 2) and ε∗ > 0 such that for any γ ∈ [1, γ0], τ ∈ (0, ε∗) and σ ∈∏∞

k=0(−1, 1) if

(γ − 1 + τ 2)
(
T .V .

{
U0(·); (−∞,0]}+ ‖b0‖L∞

)
≤ C8, (4.20)

then, a sequence of global approximate solutions U�,σ (x, y) for all (x, y) ∈ �� is constructed via the Glimm scheme 
as given in §4.1. Moreover, there exist positive constants C9 > 0 and C10 > 0 which is independent of � and σ such 
that

sup
x>0

T .V .
{
U�,σ (x, ·); (−∞, b0x]}+ sup

x>0
‖U�,σ (x, ·)‖L∞((−∞,b0x]) ≤ C9, (4.21)

and
0ˆ

−∞

∣∣U�,σ (x1, y + b0x1) − U�,σ (x2, y + b0x2)
∣∣dy ≤ C10

(
�x + |x1 − x2|

)
, (4.22)

for any x1, x2 > 0.

Proposition 4.1 implies the compactness of the approximate solutions {U�,σ (x, y)} in L1
loc (see Theorem 2.4 of 

Chapter 2 in [4]). Then, by the standard arguments as done in [12,21,10,24,25], we can obtain the global existence of 
the entropy solutions of initial boundary value problem (1.17)–(1.19).

Theorem 4.1. Assume that the range of the initial density ρ0 lies in the interval [ρ∗, ρ∗] for some constants ρ∗ and ρ∗
with 0 < ρ∗ < ρ∗ < ∞. There exist constants C11 > 0, C12 > 0, C13 > 0 independent of γ , τ , and γ0 ∈ (1, 2), ε∗ > 0

and a null set N such that for any γ ∈ [1, γ0], τ ∈ (0, ε∗) and σ ∈
(∏∞

k=0(−1, 1)\N
)

if

(γ − 1 + τ 2)
(
T .V .

{
U0(·); (−∞,0]}+ ‖b0‖L∞

)
≤ C11, (4.23)

then, there exist a subsequence {�i}∞i=0 and a function Uσ (x, y) with bounded total variation such that U�i,σ →
Uσ (x, y) in L1

loc((−∞, b0x]) as �i → 0 for every x > 0. The function Uσ (x, y) is a global entropy solution of the 
initial boundary value problem (1.17)–(1.19) with the properties that

sup
x>0

T .V .
{
Uσ (x, ·); (−∞, b0x]}+ sup

x>0
‖Uσ (x, ·)‖L∞((−∞,b0x]) ≤ C12, (4.24)

and
0ˆ

−∞

∣∣Uσ (x1, y + b0x1) − Uσ (x2, y + b0x2)
∣∣dy ≤ C13|x1 − x2|, ∀x1, x2 > 0. (4.25)

Remark 4.1. As the notations introduced in the last sentence in the introduction, i.e., in Section 1, solution Uσ(x, y)

to the initial boundary value problem (1.17)–(1.19) which are obtained in Theorem 4.1 actually depends on τ . So in 
order to pass the limit τ → 0 to prove Theorem 1.1, we will use the notations U(τ)

σ (x̄, ȳ) and (x̄, ȳ) again as done in 
the introduction except the last sentence.
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Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. First, the global existence of the entropy solutions U(τ)
σ to the initial boundary value prob-

lem (1.17)–(1.19) follows from the Theorem 4.1. Since solution U(τ)
σ satisfies estimates (4.24) and (4.25) which is 

independent of τ , we can further apply the Helly’s compactness theorem to obtain a subsequence {τi}∞i=1 such that 

U
(τi)
σ converges to U(0)

σ a.e. in � as τi → 0. Hence, U(τi)
σ → U

(0)
σ in L1(� ∩ BR̄(O)) as τi → 0 for any R̄ > 0, where 

BR̄(O) = {(x̄, ȳ) : x̄2 + ȳ2 ≤ R̄2
}
. Then, by the definition of entropy (1.20), we can show that U(0)

σ is an entropy 
solution to the initial-boundary value problem (1.15), (1.18) and (1.11) with (E(W(0), 0), Q(W(0), 0)), defined by 
(1.25), being its convex entropy pair with entropy inequality (1.26) in the distribution sense. This completes the proof 
of Theorem 1.1. �
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Appendix A. Proof of Lemma 2.9

In this section, we are going to prove Lemma 2.9.

Proof. By Lemma 2.6 and the implicit function theorem, we define

�2(α,U0; τ 2) := ∂�2(β+,U0; τ 2)

∂β+
.

Then (2.42) follows. Furthermore, by the straightforward calculation,

∂�2(β+,U0; τ 2)

∂β+
=

∂(ω−,0−ω−)

∂α

∂(ω+,0−ω+)

∂α

= ρ0∂ρu(ρ, v, τ 2) + (λ−(U, τ 2) + ∂vu(ρ, v, τ 2)
)
∂αϕ

ρ0∂ρu(ρ, v, τ 2) + (λ+(U, τ 2) + ∂vu(ρ, v, τ 2)
)
∂αϕ

.

When τ = 0, it follows from Lemma 2.1, Remark 2.1 and Lemma 2.5 that

�2
∣∣
τ=0 = −2(αγ−1 − 1) + (γ − 1)(α2 − 1)αγ−2 −√2(γ − 1)(α − 1)(αγ−1 − 1)(α + 1)3αγ−3

2(αγ−1 − 1) + (γ − 1)(α2 − 1)αγ−2 +√2(γ − 1)(α − 1)(αγ−1 − 1)(α + 1)3αγ−3
.

By Lemma 2.5, we know that β+ = ω+,0 − ω+ is monotonically decreasing with respect to α when α > 1. Note 
that β+ = 0 when α = 1, so β+ = ω+,0 − ω+ > 0 when α > 1.

Next, let us consider ∂
2�2(β+,U0;τ 2)

∂β2+
. Note that

∂�2(α,U0; τ 2)

∂α
=
(
ρ0∂ρu(ρ, v, τ 2) + (λ+(U, τ 2) + ∂vu(ρ, v, τ 2)

)
∂αϕ
)−2

J̃ (U, τ 2),

where
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J̃ (U, τ 2) = ρ2
0

((
λ+ − λ−

)
∂2
ρρu(ρ, v, τ 2) + (∂ρλ− − ∂ρλ+

)
∂ρu(ρ, v, τ 2)

)
∂αϕ

+ ρ0

(
2
(
λ+ − λ−

)
∂2
ρvu(ρ, v, τ 2) + (λ+ + ∂vu(ρ, v, τ 2)

)
∂ρλ−

− (λ− + ∂vu(ρ, v, τ 2)
)
∂ρλ+ + (∂vλ− − ∂vλ+

)
∂ρu(ρ, v, τ 2)

)
(∂αϕ)2

+
((

∂vλ− + ∂2
vvu(ρ, v, τ 2)

)(
λ+ + ∂vu(ρ, v, τ 2)

)
− (∂vλ+ + ∂2

vvu(ρ, v, τ 2)
)(

λ− + ∂vu(ρ, v, τ 2)
))

(∂αϕ)3 + ρ0
(
λ− − λ+

)
∂ρu(ρ, v, τ 2)∂2

ααϕ.

So, for τ = 0, by Lemma 2.1 and Lemma 2.5, we have

∂�2

∂α

∣∣∣
τ=0

= (γ − 1)2α
γ−5

2
√

2(γ − 1)(α − 1)(αγ−1 − 1)(α + 1)

(α − 1)(αγ−1 − 1)

×
2
[
(γ + 1)α2 − 2α + 3 − γ

](
αγ−1−1

γ−1

)2 − 4αγ−1(1 − α2) 1−αγ−1

γ−1 + αγ−2(α2 − 1)2

(
2(αγ−1 − 1) + (γ − 1)αγ−2(α2 − 1) +√2(γ − 1)(α − 1)(αγ−1 − 1)(α + 1)3αγ−3

)2 .

Define

J̃ (α, γ ) : = 2
[
(γ + 1)α2 − 2α + 3 − γ

](αγ−1 − 1

γ − 1

)2 − 4(α2 − 1)αγ−1
(αγ−1 − 1

γ − 1

)
+ (α2 − 1

)2
αγ−2.

Similar as the argument in the proof of Lemma 2.7, we can show that J̃ (α, γ ) > 0 when α > 1 and 1 ≤ γ ≤ 2. Thus, 

we have ∂�2
∂α

∣∣∣
τ=0

> 0 when α > 1 and 1 ≤ γ ≤ 2. So

∂2�2(β+,U0;0)

∂β2+
=
(∂(ω+,0 − ω+)

∂α

)−1∣∣∣
τ=0

∂�2(α,U0; τ 2)

∂α

∣∣∣
τ=0

< 0,

for α > 1 and 1 ≤ γ ≤ 2. Moreover, by the facts that �2(1, U0; 0) = 0 and that |�2
∣∣
τ=0| < 1 for α > 1, we have 

0 < �2
∣∣
τ=0 < 1. For given ε0, we can choose ε5 > 0 sufficiently small and a positive constant C2 independent of τ

such that for τ ∈ (0, ε5) and α < ε−1
0

0 < �2(α,U0; τ 2) < 1 − C2ε0.

This completes the proof of the lemma. �
Appendix B. Proof of lemmas of the local interaction estimates

First, let us give the proof of Lemma 3.1.

Proof of Lemma 3.1. Let �r = r0 − r and �s = s1 − s0. Notice that

ρ0 − ρ1 = γ − 1

4
(s0 − s1) ≤ 0.

Hence by Lemma 2.2, for ξ ∈
(

β

ρ

γ−1
2

1

, β

ρ

γ−1
2

0

)
, we have

s0 − s − (s1 − s2) =
�rˆ

0

∂h1

∂α

∣∣∣
α=α1(ξ)

∂α

∂ξ

( β

ρ
γ−1

2
0

− β

ρ
γ−1

2
1

)
dβ ≥ 0.

So in order to show (3.3), we only need to show

(s0 − s) − (s1 − s2) ≤ C3(γ − 1)(s1 − s0)(r0 − r). (B.1)
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Let s2 = s∗(�r, �s; γ − 1). Then, by Lemma 2.9 and Lemma 2.10, we know that s∗ is a C2-function of �r , �s

and γ − 1.
For γ = 1 and α = ρ1

ρ0
, we have

�s = −
√

−2(1 − α)

1 + α
lnα − lnα, �r =

√
−2(1 − α)

1 + α
lnα − lnα.

Notice that

∂�r

∂α
= −−2α lnα + 1 − α2 −√−2(1 − α)(1 + α)3 lnα√−2(1 − α)(1 + α)3 lnα

< 0.

Then, by the implicit function theorem, α is a function of �r as α = α(�r), which is independent on ρ0 and ρ1. 
Hence �s is a function of �r which is independent on ρ0 and ρ1. Based on this observation, we thus deduce that for 
γ = 1

s∗(0,0;0) − s∗(�r,0;0) − (s∗(0,�s;0) − s∗(�r,�s;0)
)= 0.

So

s0 − s − (s1 − s2
)

= s∗(0,0;γ − 1) − s∗(�r,0;γ − 1) − (s∗(0,�s;γ − 1) − s∗(�r,�s;γ − 1)
)

= s∗(0,0;γ − 1) − s∗(0,0;0) − (s∗(�r,0;γ − 1) − s∗(�r,0;0)
)

− (s∗(0,�s;γ − 1) − s∗(0,�s;0)
)+ (s∗(�r,�s;γ − 1) − s∗(�r,�s;0)

)

= (γ − 1)

1ˆ

0

e(�r,�s;χ(γ − 1))dχ,

(B.2)

where

e(�r,�s;χ(γ − 1)) = ∂γ−1s
∗(0,0;χ(γ − 1)) − ∂γ−1s

∗(�r,0;χ(γ − 1))

− ∂γ−1s
∗(0,�s;χ(γ − 1)) + ∂γ−1s

∗(�r,�s;χ(γ − 1))

= O(1)�r�s.

Substituting the estimate for e(�r, �s; χ(γ − 1)) into (B.2), we proved (3.3). It completes the proof. �
Now, we will give the proof of Lemma 3.5.

Proof. We will show this Lemma case by case.
First, let us study the first case. In this case, an S2 shock wave from the left with wave strength β interacts with an 

S1 shock wave from the right with wave strength ν. Both of them enter into �. Denote by ν′ and β ′ the wave strength 
of the resulting shock waves S ′

1 and S ′
2 issuing out from � after the wave interaction.

Let us consider the estimate in the (ω−, ω+) plane. Let (ω−,L, ω+,L), (ω−,M, ω+,M), (ω−,R, ω+,R) be the left, 
middle and right states before the wave interaction, i.e., (ω−,L, ω+,L) and (ω−,M, ω+,M) are connected by S1
shock, and (ω−,M, ω+,M) and (ω−,R, ω+,R) are connected by S2 shock. Let (ω′−,M, ω′+,M) be middle state after 
the wave interaction which is uniquely determined by the shock curves S ′

1 and S ′
2 which issue from (ω−,L, ω+,L) and 

(ω−,R, ω+,R) respectively (See Fig. 19).
In order to derive the wave interaction estimate, as shown in Fig. 20, we consider the wave curves Ŝ1 and Ŝ2 instead 

of the wave curves S ′
1 and S ′

2, such that the wave curves Ŝ1 and Ŝ2, issuing from (ω−,L, ω+,L) and (ω−,R, ω+,R)

respectively, intersect at point (ω̂−,M, ω̂+,M). By Lemma 2.2 and Lemma 2.3, we know that the wave curves Ŝ1 and 
Ŝ2, the straight lines ω− = ω̂−,M and ω+ = ω̂+,M , and the wave curves S′

1 and S ′
2 together form the boundaries of 

subregions I , II and III . Moreover, (ω′ , ω′ ) must lie in one of them.
−,M +,M



J. Kuang et al. / Ann. I. H. Poincaré – AN 37 (2020) 1379–1423 1419
(ω−,L,ω+,L)(ω′−,M
,ω′+,M

)

(ω−,M,ω+,M)

(ω−,R,ω+,R)

|β|
|β ′|

|ν′|

|ν|

S2

S1

S ′
1

S ′
2

Fig. 19. Interactions between S2 and S1 waves.

(ω−,L,ω+,L)

(ω−,L,ω1+,M
)

(ω′−,M
,ω′+,M

)

(ω−,M ,ω+,M)

(ω−,R,ω+,R)

(ω̂−,M , ω̂+,M)

(ω̂−,M , ω̂2+,M
)

(ω̂−,M , ω̂1+,M
)

v = vM

|β|

|β ′| |β|

|β ′′|

|β0|
|ν|

|ν|

|ν′|

S2

S1

Ŝ1

S ′
1

Ŝ2S ′
2

I

II

III

Fig. 20. Case that (ω′−,M
,ω′+,M

) lies in region I .

We first consider the case that (ω′−,M, ω′+,M) lies in the region I , i.e., ω′−,M < ω̂−,M and ω′+,M > ω̂+,M (See 
Fig. 20). In this case, we know that

|β ′| − |β| ≤ |β ′′|, ω+,L − ω1+,L = ω̂+,M − ω̂1+,M = |β0|. (B.3)

Notice that

ω1+,M − ω̂1+,M − (ω+,L − ω̂2+,M) = ω̂2+,M − ω̂1+,M − (ω+,L − ω1+,M)

= ω̂2+,M − ω̂1+,M − (ω̂+,M − ω̂1+,M)

= |β ′′|.
(B.4)

By Lemma 2.4, there exists a constant C5 > 0 such that

ω1+,M − ω̂1+,M − (ω+,L − ω̂2+,M) ≤ C5(γ − 1 + τ 2)|ν||β0|
≤ C5(γ − 1 + τ 2)|ν||β|.

(B.5)

Then combing (B.3)-(B.5) together, we have that

|β ′| − |β| ≤ C5(γ − 1 + τ 2)|ν||β|.
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(ω−,L,ω+,L)

(ω−,L,ω1+,M
)

(ω′−,M
,ω′+,M

)

(ω−,M ,ω+,M)

(ω−,R,ω+,R)

(ω̂−,M , ω̂−,M)

(ω′−,M
,ω′2+,M

)

(ω′−,M
,ω′1+,M

)
v = vM

|β|

|β ′| |β|

η
|β0|

|ν′|

|ν′|

|ν′|

|ν|

ζ

S2

S1

Ŝ1

S ′
1

Ŝ2

S ′
2

Fig. 21. Case that (ω′−,M
,ω′+,M

) ∈ II .

By the same way and by Lemma 2.5, one can also show that

|ν′| − |ν| ≤ C5(γ − 1 + τ 2)|ν||β|.
Therefore, we show estimate (a) for the first case in Lemma 3.5.

Next, let us consider the case that (ω′−,M, ω′+,M) ∈ II . As shown in Fig. 21, we can see that

|ν′| = |ν| − ζ > 0,

and

|β ′| − |β| − η = ω′+,M − ω′2+,M,

where ζ > 0 is a constant.
For the estimate of ω′+,M − ω′2+,M , by Lemma 2.4, there exists a constant C5 > 0 such that

ω′+,M − ω′2+,M = ω′+,M − ω′1+,M − (ω′2+,M − ω′1+,M)

= ω1+,M − ω′1+,M − (ω+,M − ω′+,M)

≤ C5(γ − 1 + τ 2)|ν′||β0|
≤ C5(γ − 1 + τ 2)|ν||β|.

For the estimate of η, by Lemma 2.2, we have

η = �1(|ν|,UL; τ 2) − �1(|ν| − ζ,UL; τ 2) = �′
1(ξ5,UL; τ 2)ζ, where ξ5 ∈ (|ν| − ζ, |ν|),

which implies that η ≤ δζ by taking

δ = sup
ξ5∈(|ν|−ζ,|ν|),ρL∈(ρ̂,ρ̌)

�′
1(ξ5,UL; τ 2) ∈ (0,1).

Therefore, combing the estimates above together, we can get estimate (b) in Lemma 3.5 for the second case.
Finally, by a similar argument as the one for the second case, for the case that (ω′−,M, ω′+,M) ∈ III , we can obtain 

the estimate (c) in Lemma 3.5.
It completes the proof of case (1).
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(ω−,L,ω+,L)

(ω′−,M
,ω′+,M

)

(ω−,M,ω+,M)

(ω̂−,M, ω̂+,M)

(ω−,R,ω+,R)

|β|

|β0|

|ν0|

|ν|

|β ′|

|ν′|

S2
R2

Ŝ1

S ′
1

S ′
2

Fig. 22. Interactions between S2 and R2 waves.

Now, let us study case (2).
Similar to case (1), let (ω−,L, ω+,L), (ω−,M, ω+,M), (ω−,R, ω+,R) be the left, middle and right states before the 

wave interaction and let (ω′−,M, ω′+,M) be the middle state after the wave interaction which is uniquely determined 
by the rarefaction wave R′

1 and the shock wave S ′
2. Notice that ω+,L = ω′+,M and ω+,M = ω+,R , then by the mono-

tonicity of function �2, we have that

|β ′| = |ω+,R − ω′+,M | = |ω+,M − ω+,L| = |β|.

The proof of the estimates for case (3) is similar to the one for case (2). In fact, by the monotonicity of function 
�2, we have ω+,L < ω+,M < ω+,R and ω′+,M = ω+,L. Then

|β ′| = |ω+,R − ω′+,M | = |ω+,R − ω+,L| = |ω+,R − ω+,M | + |ω+,M − ω+,L| = |β1| + |β2|.

Next, let us consider case (4). As shown in Fig. 22, we can find a shock wave Ŝ1 such that S2 + Ŝ1 → S ′
1 + S ′

2, 
and then one can follow the argument for the proof of case (1) exactly to have that

|ν′| ≤ |ν0| + C5(γ − 1 + τ 2)|ν0||β0|, |β ′| ≤ |β0| + C5(γ − 1 + τ 2)|ν0||β0|.

Now, we will consider the estimate between ν and ν0, and the estimate between β and β0. By Lemma 2.3, we can 
have that

|ν0| = ω−,L − ω−,M − (ω−,L − ω̂−,M)

= �2(|β|,UL; τ 2) − �2(|β0|,UL; τ 2)

= �′
2(ξ6,UL; τ 2)(β − β0), ξ6 ∈ (|β0|, |β|),

which implies that

|ν0| + |β0| = |β| − ( 1

�′
2(ξ6,UL; τ 2)

− 1
)|ν0|

≤ |β| −
( 1

�′
2(ξ6,UL; τ 2)

− 1
)
|ν0|.
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Notice that lim|β|→+∞ �′
2(|β|, UL; τ 2) = 1, then we get that

lim|β|→+∞

( 1

�′
2(ξ6,UL; τ 2)

− 1
)

= 0,

which implies that

C0 := inf
ξ6∈{(ω−,ω+): 0<ρ̂<ρ<ρ̌},0<ρ̂<ρL<ρ̌

( 1

�′
2(ξ6,UL; τ 2)

− 1
)

> 0.

Now we continue to study case (5), that is the wave interaction between R2 and S2. Let (ω−,L, ω+,L), 
(ω−,M, ω+,M), (ω−,R, ω+,R), and (ω′−,M, ω′+,M) be defined similarly as before. Then

|ν′| = ω′−,M − ω−,R − (ω−,M − ω−,R)

= �2(−|β ′|,UR; τ 2) − �2(−|β|,UR; τ 2)

= �′
2(ξ6,UR; τ 2)(|β| − |β ′|), ξ6 ∈ (−|β|,−|β ′|).

So

|ν′| + |β ′| = |β| −
( 1

�′
2(ξ6,UL; τ 2)

− 1
)
|ν′|.

Based on the proof for case (4), we know that

C0 := inf
ξ6∈{(ω−,ω+):0<ρ̂<ρ<ρ̌},0<ρ̂<ρL<ρ̌

( 1

�′
2(ξ6,UL; τ 2)

− 1
)

> 0.

The estimate in case (6) is obviously.

Now, we will prove the estimate for case (7). Similarly, let (ω−,L, ω+,L), (ω−,M, ω+,M) and (ω−,R, ω+,R) be the 
three states before the wave interaction, and let (ω′−,M, ω′+,M) be the middle state after the wave interaction. Then

|β ′| = ω′+,M − ω+,R = ω+,L − ω+,M − (ω+,L − ω′+,M)

= �1(|ν|,UL; τ 2) − �1(|ν′|,UL; τ 2)

= �′
1(ξ7,UL; τ 2)(|ν| − |ν′|), ξ7 ∈ (|ν′|, |ν|).

So

|ν′| + |β ′| = |ν| −
( 1

�′
1(ξ7,UL; τ 2)

− 1
)
|ν′|.

Again, we know that

C0 := inf
ξ7∈{(ω−,ω+):0<ρ̂<ρ<ρ̌},0<ρ̂<ρL<ρ̌

( 1

�′
1(ξ7,UL; τ 2)

− 1
)

> 0.

Finally, the proof of the estimate for case (8) is exactly the same as the one for case (3).
This completes the proof of this lemma. �
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