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Abstract

We give a Wong-Zakai type characterisation of the solutions of quasilinear heat equations driven by space-time white noise in 
1 + 1 dimensions. In order to show that the renormalisation counterterms are local in the solution, a careful arrangement of a few 
hundred terms is required. The main tool in this computation is a general ‘integration by parts’ formula that provides a number of 
linear identities for the renormalisation constants.
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1. Introduction

The main goal of the present paper is to ‘solve’ the equation

∂tu − a(u)∂2
xu = ξ (1.1)

on T = R/Z, locally in time, with some initial condition u(0, ·) = u0(·), where a : R → R is a sufficiently regular 
function (C5 suffices) with values in [λ, λ−1] for some λ > 0, and ξ is the space-time white noise.

While equation (1.1) looks like a simple nonlinear variation of the stochastic heat equation, a major problem arises 
due to the fact that the product a(u)∂2

xu is not actually meaningful for u with parabolic regularity less than 1. Since 
the white noise ξ has regularity less than −3/2, any reasonable solution of (1.1) should have no more regularity than 
1/2, making the interpretation of the product on the left-hand side, and thus the equation, far from obvious. One might 
try a naïve approximation: take a nonnegative symmetric (under the involution x �→ −x) smooth function ρ supported 
in the unit ball and integrating to 1, set ρε(t, x) = ε−3ρ(ε−2t, ε−1x), ξε = ρε ∗ ξ , and solve (1.1) with ξε in place of 
ξ . While this sequence of solutions does not converge, one can ‘renormalise’ the divergencies as follows.

Theorem 1.1. Let u0 ∈ C2δ(T ) for some δ ∈ (0, 1/2). Then for any ρ as above there exist deterministic smooth 
functions Cε· , C̄ε· , C̃ε· such that the following holds. Let uε be the classical solution of

∂tu
ε − a(uε)∂2

xuε = ξε + Cε
a(uε)a

′(uε) + C̄ε
a(uε)(a

′)3(uε) + C̃ε
a(uε)(a

′a′′)(uε) (1.2)

on T with initial condition uε(0, ·) = u0(·). There exist some (random) T > 0 and u ∈ Cδ([0, T ] × T ) that do not 
depend on ρ, such that uε → u in probability in Cδ([0, T ] ×T ).

In the case of semilinear SPDEs involving ill-defined products, statements of the above kind on constructing renor-
malised solution theories have been plentiful in recent years, let us just mention the seminal works [9,10,13] from 
which most of them stem. As for quasilinear equations, slight variations of (1.1) with noise regularity in (−4/3, −1)

were considered around the same time in three different works [2,6,20]. The former was later extended to the 
regime (−3/2, −1) in [17], albeit only in the space-time periodic case. Removing the latter assumption in the regime 
(−4/3, −1) or extending to more irregular noises (including space-time white noise as in our situation) is to our best 
knowledge work in progress [15,16]. We also remark that the divergence form version of (1.1), i.e. when a(u)∂2

xu is 
replaced by ∂x(a(u)∂xu), does not require the machinery of singular SPDEs, and has recently been treated in [18,19].

A quite different approach was introduced in [7], which we will build on in the present article. It relies on a trans-
formation that brings (1.1) to a form whose abstract counterpart in the language of regularity structures is relatively 
easily seen to be well-posed. This argument is quite short and works for all range of noise regularity, and therefore 
provides a general solution theory. In fact, the object u from Theorem 1.1 that we will show to be the limit of uε, is 
constructed in [7]. The drawback of this solution theory, however, is that it does not come with a natural approximation 
result, and therefore it is not a priori clear what, if anything, this abstract solution has to do with classical quasilinear 
PDEs. Statements like Theorem 1.1 have the key role of relating the abstractly well-defined equation to classically
well-defined equations. It is actually natural to conjecture, but out of the scope of the current state of the theory, that 
this relation is ‘always’ possible, as was proved in the semilinear case in [1].

Let us now briefly outline what the source of difficulty is in obtaining such approximation results. To loosely 
recall the transformation of [7] (its precise formulation is stated in Section 3.1), the key observation is that quasilinear 
equations of the type (1.1) are (locally in time) equivalent to systems of the type

(u, v) = I
(
F̂ (ξ, u, v)

)
,

where I is a convolution map satisfying certain Schauder estimates and F is a subcritical nonlinearity. In particular, v
is a nonlocal function of u. This system can be also written abstractly within regularity structures:

(U,V ) = I
(
F̂(�,U,V )

)
,

where the lift � of ξ and the lift of F̂of F̂ are as in [10], and I is the natural lift of I . This already shows the first main 
issue: if one solves this equation with respect to a renormalised smooth model, then the counterterms generated by 
the renormalisation will involve both U and V . Since in the renormalisation of the original equation one only expects 
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to see local functions of the solution, we would then need that when reversing the transformation, the counterterms 
involving V all magically disappear.

This is far from easy to verify: the number of these terms quickly blows up as the regularity of the noise decreases. 
In the case of the space-time white noise, to calculate the counterterms at a single space-time point, the relevant 
dimension of the regularity structure is in the range of a few hundred. It is worth noting that there is no symbolic 
cancellation between the terms that contribute to the renormalisation, and so the elimination of V has to rely on 
cancellations between the renormalisation constants that different symbols generate.

This is our first main step: in Section 2 we establish a number of symmetries that renormalisation constants satisfy. 
This can be of interest on its own, for example one can deduce the chain rule for the class of scalar-valued generalised 
KPZ equations from such cancellations, a question that goes back to [10, Rem 1.14]. Since such chain rule is part of a 
much more general study in the very recent work [3], we do not pursue this direction in any more detail here. Armed 
with a sufficiently large class of cancellations, it then remains to put them to use in simplifying the above mentioned 
large expression to the form stated in Theorem 1.1. This is the main combinatorial task of the paper and is the content 
of Section 3.

Throughout the article we use concepts and terminology from the theory of regularity structures [10] without 
repeating any of the definitions, and to a low-level extent, from their renormalisation, see e.g. [12, Sec. 5] for a gentle 
introduction.

1.1. Generalisations

There are several directions for extensions of Theorem 1.1. Some of them are immediate, some require mild im-
provement of known methods, and some would likely need new ideas.

• The argument immediately extends to any Gaussian driving noise ξ with regularity strictly above −5/3 and with 
compactly supported covariance function that satisfies the assumption of [5, Sec. 2.4].

• Instead of a spatially periodic setting, one can solve the equation with Dirichlet boundary conditions. This direc-
tion for singular SPDEs was initiated in [8]. However, the application of its results is not completely automatic, 
as the construction of the extension R̂ of the reconstruction operator R below regularity −1 in highly nonlin-
ear situation does require some work. We believe that as long as one considers Dirichlet problems, this can be 
avoided, and everything above regularity −2 can be completely automatised. A result of this flavor, but not of 
this generality, recently appeared in [14, Sec. 3]. For Neumann boundary conditions such a statement is certainly 
not expected to hold. In light of the results of [8], one in fact expects a boundary renormalisation to appear in the 
Neumann problem for (1.1).

• For non-Gaussian noise, the regularity range (−3/2, −1) would require a much simplified version of the com-
putations in Section 3: instead of 17 trees with 4 noises, one needs to handle 6 trees with 3 noises. When the 
regularity is between −3/2 and −8/5, one also gets an additional 6 trees with 4 noises, we briefly address this in 
Remark 3.1.

• One could complicate the right-hand side to a general KPZ-like one, that is, to f (u)(∂xu)2 + g(u)ξ . Since our 
transformation already requires the ‘full’ gKPZ regularity structure, this would not increase the number of trees. 
However, the coefficient for each tree would get more complicated. Carrying out the calculations of Section 2 in 
this generality ‘by hand’ would require quite some additional effort.

• Both of the two latter generalisations (and even more the case of more irregular noise, where the ad hoc computa-
tions would get humanly infeasible) point to the need of a systematised algebraic/combinatorial treatment, as has 
been developed in the semilinear case in [1,4]. One main difference to their setup is that our abstract integration 
operator I, while relatively easy to handle from the analytic point of view, makes the algebra more involved, see 
e.g. (3.11).
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2. Integration by parts in renormalisation

In this section we formulate some identities that renormalisation constants arising from the renormalisation of 
regularity structures satisfy. It is worth noting that here we do not use any Gaussianity assumption. Concerning the 
main assumption below, Assumption 2.2 does restrict the generality compared to e.g. [4,5] quite significantly, but it 
allows us to work without the major algebraic complications therein, and still obtain a number of cancellations that 
will suffice for the proof of Theorem 1.1.

Certain symmetries were obtained in the very recent work [3] for multicomponent generalised KPZ equations 
driven by space-time white noise. Our approach here is different and the identities follow from relatively down-to-
earth integration by parts-like arguments. The formulation below furthermore fits well our purposes in Section 3, as 
it keeps track of which edges are and which are not required to have the same integration parameter (denoted by c
below) for the identities to hold.

2.1. Formulation

Take a regularity structure T = (T, A, G) as in [10]. We assume the notation

T=
⊕
α∈A

Tα , Tα = span{τi : i ∈ Iα},

with some index sets Iα , where · denotes the topological closure. We denote Ŵ= ∪α∈A{τi : i ∈ Iα}, Ŵ− =
∪α∈A∩(−∞,0){τi : i ∈ Iα}, by W̃ and W̃− subset of these sets containing τi-s without any nonzero power of X and 
by W̄and W̄− the further subset of symbols with at least 2 noise components.

Remark 2.1. Let us briefly comment on the different sets above. The form of the vector space Tand its generator Ŵ
is somewhat more involved than in the usual examples, for example the ones in [10]. The reason for this generality 
is that it accommodates infinite dimensional regularity structures, which is required for quasilinear equations. On the 
other hand, the renormalisation group in our setting will be sufficiently simple so that it is described by its action on 
W̄. Finally, W̃can be viewed as the set possible subtrees of elements of W̄.

We assume that the scaling is parabolic and that all τ ∈ Ŵ satisfies |τ | > −2. We furthermore assume that T is 
equipped with an integration operator I= Ic of order 2 that corresponds to a kernel K = Kc that is 2-smoothing in 
the sense of [10, As 5.1], is supported in the unit ball, and satisfies

(∂t − c∂2
x )Kc = δ0 + fc,

where c > 0 is some constant and f = fc is a smooth function. We also assume that T is equipped with the abstract 
differentiation operator D and we use the shorthand I′ = DI.

We assume that elements of Ŵare obtained after repeated uses of integration (possibly different ones from Ic) and 
multiplication operators and therefore can be canonically represented by trees. We understand the notion of subtrees 
in the natural way. If τ has k subtrees isomorphic to τ̄ , we denote by ιiτ τ̄ , i = 1, . . . , k, all possible embeddings of τ̄ in 
τ . If k > 0, we denote it by τ̄ ⊂ τ . If σ is a subtree of τ , let Lστ be the tree obtained by contracting σ to a node. The 
action of these contractions on powers of X appearing in the symbols will not play a role in our setting, for details on 
that we refer to [12] and for even more details to [4]. For any map g : W̄− → R we define M[g] : T→ Tby the linear 
and continuous extension of

τ �→ M[g]τ := τ +
∑

τ̄∈W̄−

g(τ̄ )
∑

i

Lιiτ τ̄ τ, τ ∈ Ŵ. (2.1)

Note that even in case W̄− is infinite (which is the situation of Section 3), the sum in (2.1) has finitely many nonzero 
contributions.

Fix a set of canonical models M0 built from a class of approximate noises of a ‘target’ noise ξ (which may have 
multiple components). We will refer to elements of M0 by �θ

ε , where ε ∈ (0, 1] and θ runs over some parameter set �. 
In the context of Theorem 1.1, for example, � would be the set of all mollifiers ρ of the form prescribed preceding the 
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theorem. As usual, we assume the translation invariance of the laws of the approximations, and we also assume that the 
σ -algebras σ

(
(�θ

ε τ1)(z) : z ∈ D1
)

and σ
(
(�θ

ε τ2)(z) : z ∈ D2
)

are independent if the distance between D1, D2 ⊂ Rd

is bigger than R, for some R uniformly in ε, θ, τ1, τ2. In a rather large generality [5] showed that one can find maps 

M̂θ
ε : T→ T satisfying some natural conditions such that for all θ ∈ � the models �̂

θ

ε := �θ
εM̂

θ
ε converge in Lp

(in the probabilistic sense) to an admissible model �̂ as ε → 0. In a general situation these maps M̂θ
ε and what the 

‘natural conditions’ really mean can be quite complicated, here we restrict our attention to the following simplified 
case.

Assumption 2.2. The maps M̂θ
ε are of the form M[ĝθ

ε ], with

ĝθ
ε (τ ) = −(E�θ

ετ )(0) +
∑

τ �=τ̄∈W̄−

ĝθ
ε (τ̄ )

∑
i

(E�θ
εLιiτ τ̄ τ )(0). (2.2)

Moreover, for all τ ∈ Ŵ, τ̄ ∈ W̄−, and embedding ιτ τ̄ , one has (M̂θ
ε − id)Lιτ τ̄ τ = 0.

As for the notion of convergence, which is also somewhat involved, the only fact we will explicitly use is that 

for some α ∈ R and all τ ∈ Ŵ, �̂
θ

ε τ converges to �̂τ in Lp(�, Cα
loc). It then follows that since E�̂τ (as well as 

E(h ∗ �̂τ)�̂τ̄ for any smooth function h) is a translation invariant distribution, it is actually a constant function, and 

its value depends only on the law of ξ . Viewing (2.2) as a recursive definition of ĝθ
ε , it guarantees that (E�̂

θ

ετ (0)) = 0

for all τ ∈ W̄−. Assumption 2.2 also implies that for any g, �̂
θ

εM[g] converges to �̂M[g], and the latter is also an 
admissible model.

Remark 2.3. Assumption 2.2 is discussed in the setting of (1.1) in Section 3.1. Let us also emphasise that Assump-
tion 2.2 depends not only on T but also on the choice of the approximations M0. It is general enough to cover for 
example symmetric (but not necessarily Gaussian) approximations of generalised KPZ equations. It fails however, 
for example, for non-symmetric approximations of the KPZ equation: when contracting in the middle subtrees 

isomorphic to , one again gets , which in the non-symmetric case is not invariant under the renormalisation map.

Let us extend g as above as 0 on Ŵ\ W̄−. With this convention, denoting the set N⊂ Ŵ such that for all τ ∈ N

and all θ ∈ � one has ĝθ
ε (τ ) = 0, N always contains all symbols of positive degree.

The root of a tree τ is denoted by ρ (with the understanding that it inherits the indices, so for example the root of a 
tree called τ1 will be denoted by ρ1). In the following τ0 always denotes a tree with a distinguished node (which may 
or may not be its root) ρ∗

0 . By τ ◦ τ0 we denote the tree obtained from gluing τ and τ0 together by identifying ρ and 
ρ∗

0 . In the special case ρ0 = ρ∗
0 , one has simply τ ◦ τ0 = ττ0.

Denote by τ̄ ⊂• τ if τ̄ can be embedded as a subtree in τ that includes its root ρ. Given τ0, denote by τ̄ ⊂∗ τ0 if 
τ̄ can be embedded as a subtree in τ0 that includes its distinguished node ρ∗

0 . Summarising the possible inclusions in 
one example:

τ0 =
ρ∗

0
e.g.: ⊂ τ0, ⊂∗ τ0, ⊂• τ0.

Introduce the following sets

A1 = {(τ1, . . . , τn) : n ≥ 2, τi ∈ W̃, (I′τ̄i(1))
∏�

k=2Iτ̄i(k) ∈ N (2.3)

∀� ∈ [2, n − 1], i(1) �= · · · �= i(�), τ̄i(k) ⊂• τi(k)},
A2 = {(τ0, . . . , τn) : n ≥ 2, τi ∈ W̃, (τ1, . . . , τn) ∈ A1, I

(
(I′τ̄i(1))

∏�
k=2Iτ̄i(k)

) ◦ τ̄0 ∈ N

∀� ∈ [1, n − 1], i(1) �= · · · �= i(�), τ̄0 ⊂∗ τ0, τ̄i(k) ⊂• τi(k)},
A3 = {(τ0, . . . , τn) : n ≥ 2, τi ∈ W̃, (τ1, . . . , τn) ∈ A1, I′((I′τ̄i(1))

∏�
k=2Iτ̄i(k)

) ◦ τ̄0 ∈ N

∀� ∈ [1, n − 1], i(1) �= · · · �= i(�), τ̄0 ⊂∗ τ0, τ̄i(k) ⊂• τi(k)}.
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Finally, if a real valued sequence aε converges to a finite limit depending only on the law of ξ , we denote it by aε ∼ 0. 
Our ‘integration by parts’ formulae then read as follows.

Lemma 2.4. Under Assumption 2.2, one has for all (τ1, . . . , τn) ∈ A1

n∑
i=1

ĝθ
ε

(
τi

∏
k �=i Iτk

) − c

n∑
i=1

n∑
i �=j=1

ĝθ
ε

(
(I′τi)(I

′τj )
∏

k �=i,j Iτk

) ∼ 0, (2.4)

for all (τ0, . . . , τn) ∈ A2

n∑
i=1

ĝθ
ε

(
I

(
τi

∏
k �=iIτk

) ◦ τ0
) − ĝθ

ε

(
(
∏

kIτk) ◦ τ0
)

− c

n∑
i=1

n∑
i �=j=1

ĝθ
ε

(
I

(
(I′τi)(I

′τj )
∏

k �=i,j Iτk

) ◦ τ0
) ∼ 0, (2.5)

and for all (τ0, . . . , τn) ∈ A3

n∑
i=1

ĝθ
ε

(
I′(τi

∏
k �=iIτk

) ◦ τ0
) −

n∑
i=1

ĝθ
ε

((
(I′τi)

∏
k �=iIτk

) ◦ τ0
)

− c

n∑
i=1

n∑
i �=j=1

ĝθ
ε

(
I′((I′τi)(I

′τj )
∏

k �=i,j Iτk

) ◦ τ0
) ∼ 0. (2.6)

The following corollary is immediate.

Corollary 2.5. Under Assumption 2.2 there exist maps gθ
ε : W̄− →R and such that

• The identities (2.4)-(2.5)-(2.6) are satisfied with equality;
• The sequence of models �θ

εM[gθ
ε ] converge and the limit is of the form �̂M[g] for some g depending only on the 

law of ξ ;
• If for τ1, . . . , τk ∈ W̄− the system of equations

gθ
ε (τi) = 0 i = 1, . . . , k

is linearly independent of (2.4)-(2.5)-(2.6), then gθ
ε can be chosen to agree with ĝθ

ε on τ1, . . . , τk .

Remark 2.6. One can pictorially represent the above as follows. Focusing on the n = 2 case, the identities (2.4) give 
relationships between renormalisation constants of trees obtained from the ‘scheme’ , where the different edges 

are substituted with different combinations of I, I′, or contracting the edge, and A1 gives conditions on what 

trees can be substituted in the placeholders . Similarly, for (2.5) and (2.6) one substitutes in the ‘scheme’ .

Example 2.7. Let us list a couple of examples in the case c = 1. We use the graphical convention (as in, for ex-
ample, [11]) of denoting the noise, denoting I and denoting I′. Then, assuming | | > −3/2 − 1/100 and 

, , ∈ N, one has:

gθ
ε ( ) = 3gθ

ε ( ) (2.4), n = 4, τ1 = τ2 = τ3 = τ4 = ,

= 2gθ
ε ( ) − gθ

ε ( ) (2.4), n = 2, τ1 = , τ2 = ,

= 4gθ
ε ( ) + 2gθ

ε ( ) − 2gθ
ε ( ) (2.4), n = 3, τ1 = τ2 = , τ3 = ,

6gθ
ε ( ) = 3gθ

ε ( ) − gθ
ε ( ) (2.5), n = 3, τ0 = τ1 = τ2 = τ3 = ,

2gθ
ε ( ) = gθ

ε ( ) + gθ
ε ( ) − gθ

ε ( ) − gθ
ε ( ) (2.6), n = 2, τ0 = , τ1 = , τ2 = ,
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= 2gθ
ε ( ) − 2gθ

ε ( ) (2.6), n = 2, τ0 = , τ1 = τ2 = .

In the last example we chose ρ∗
0 �= ρ0 to be the leftmost node in .

Let us check that the given tuples indeed lie in the appropriate Ai sets, in the first and last example above. To verify 
( , , , ) ∈ A1, since there are no nontrivial subtrees of , the only choice in (2.3) is �: for � = 2 we have ∈ Nby 
assumption and for � = 3 we have ∈ N since | | > 0. To verify ( , , ) ∈ A3, first we note that ( , ) ∈ A1 is 
automatic. Since there are no nontrivial subtrees of τ1 = τ2 = and the only choice for � is � = 1, the other condition 
in A3 boils down to show τ = I′(I′ ) ◦ τ̄0 ∈ N for τ̄0 ⊂∗ τ0. For the choice τ̄0 = this holds by assumption, while 
for all other choices |τ | > 0.

2.2. Proof of Lemma 2.4

We will sometimes use ∂ [z]
α to emphasise that a differential operator ∂α acts on the z variable. We say that a function 

Q in n d-dimensional variables is translation-invariant if Tz̄Q(z1, . . . , zn) := Q(z1 + z̄, . . . , zn + z̄) = Q(z1, . . . , zn)

for all z̄ ∈Rd . Notice that if Q is a translation-invariant smooth function and η is a compactly supported distribution, 
then for any nonzero multiindex α

(
∂ [z̄]
α (Tz̄η)

)
(Q) = 0. (2.7)

Proof of Lemma 2.4. To ease the notation, we drop the θ index, but it will be clear that the conclusion is 
approximation-independent. We start with the proof of (2.4). Denote

σ = ∏
k Iτk, σ i = τi

∏
k �=i Iτk, σ̊ i = ∏

k �=i Iτk, σij = (I′τi)(I
′τj )

∏
k �=i,j Iτk, (2.8)

as well as

Qε(z1, . . . , zn) = E
(
�ετ1(z1) · · ·�ετn(zn)

)
.

Clearly Qε is a translation invariant smooth function which is 0 on {maxi minj �=i |zi − zj | ≥ R}. Let us take a smooth 
compactly supported function χR that is 1 on the ball of radius R + 2 around the origin and denote f R = f χR . From 
the Leibniz rule

∑
i (δ0 + f )(z̄ − zi)

∏
k �=iK(z̄ − zk) − c

∑
i �=jK

′(z̄ − zi)K
′(z̄ − zj )

∏
k �=i,jK(z̄ − zk) (2.9)

= (∂t − c�)[z̄]
(
K(z0 − z̄)

∏
kK(z̄ − zk)

)

we get
∑

i (E�εσ
i)(z̄) − c

∑
i �=j (E�εσij )(z̄)

=
∫

Qε(z1, . . . , zn)(∂t − c�)[z̄]
(∏

kK(z̄ − zk)
)

dz1 · · ·dzn

− ∑
i

∫
Qε(z1, . . . , zn)f (z̄ − zi)

∏
k �=iK(z̄ − zk) dz1 · · ·dzn

= −∑
i

(
E(f R ∗ �ετi)(�εσ̊

i
)
)(z̄),

(2.10)

where we used that the integral in the second line vanishes due to (2.7).
There are two essentially different scenarios in which one has τ̄ ⊂ σ i . First, when ισ i τ̄ is obtained from an embed-

ding ιτ�
τ̄ for some �. This has obvious corresponding embeddings ισ j τ̄ , ισij

τ̄ , and ισ̊ j τ̄ , and moreover the results of 
contracting these subtrees are exactly of the form (2.8), with τ� replaced by Lιτ� τ̄ τ�. In this case therefore one has an 
identity analogous to (2.10).

If τ̄ ⊂ σ i is not of this form, then it can be written as τ̄ = σ̃ i := τ̃i

∏
k Iτ̃�(k) with some indices �(k) distinct from 

each other and from i, and with τ̃j ⊂• τj . Denote the set of indices �(k) along with i by I . One can pair these subtrees 
with those of σ j and σjm whenever j, m ∈ I : simply define σ̃ j ⊂ σ j and σ̃ij ⊂ σij as in (2.8), replacing each τk with 
τ̃k . One then has Lσ̃j σ j = L

σ̃j ′ σ j ′ = Lσ̃mm′ σmm′ =: τ̂ for all j, j ′, m, m′ ∈ I . Denote the set of all the possible τ̂ -s 

obtained this way (with multiplicities) by A. By Assumption 2.2, for all τ̂ ∈ A one has �ετ̂ = �̂ετ̂ .
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Fig. 1. Different possible positions of subtrees, drawn by blue, for σ12, n = 3. The third kind belongs to Nby the definition of A1. (For interpretation 
of the colours in the figure(s), the reader is referred to the web version of this article.)

The definition of A1 guarantees that these two cases exhaust all the contributions to the renormalisation of σij

as well: the only subtrees not covered so far are of the form τ̄ = (I′τ̃i )
∏

k Iτ̃�(k) with some indices �(k) distinct 
from each other and from i and j . By definition, any τ̄ of this form belongs to N, so does not contribute to the 
renormalisation (Fig. 1).

Therefore we have∑
i (E�̂εσ

i)(z̄) − c
∑

i �=j (E�̂εσij )(z̄) + ∑
i

(
E(f R ∗ �̂ετi)(�̂εσ̊

i
)
)(z̄)

=
∑
τ̂∈A

(E�̂ετ̂ )(z̄)
(∑

i ĝε(σ̃
i ) − c

∑
i �=j ĝε(σ̃ij )

)
.

After testing with any function integrating to 1 and recalling that E�̂τ is a constant distribution, we pass to the ε → 0
limit and rearrange the above as

lim
ε→0

∑
i ĝε(σ

i) − c
∑

i �=j ĝε(σij ) =
∑

1�=τ̂∈A

(E�̂τ̂ )(0) lim
ε→0

(∑
i ĝε(σ̃

i ) − c
∑

i �=j ĝε(σ̃ij )
)

+ ∑
i (E�̂σ i)(0) − c

∑
i �=j (E�̂σij )(0) + ∑

i

(
E(f R ∗ �̂τi)(�̂σ̊ i

)
)(0).

Therefore by a simple induction argument we get the claim.
The proof of the other two claims goes along very similar lines. There are two slight differences, the first one of 

which is the definition of Qε: we now set

Qε(z0, z1, . . . , zn) = E
(
�ετ

∗
0 (z0)�ετ1(z1) · · ·�ετn(zn)

)
,

where τ ∗
0 is the tree obtained by viewing τ0 as a tree with root ρ∗

0 . The other difference is the application of the Leibniz 
rule: we simply replace the identity (2.9) with, in the case of (2.5)

K(z0 − z̄)
∑

i (δ0 + f )(z̄ − zi)
∏

k �=iK(z̄ − zk) − (δ0 + f )(z̄ − z0)
∏

kK(z̄ − zk)

− cK(z0 − z̄)
∑

i �=jK
′(z̄ − zi)K

′(z̄ − zj )
∏

k �=i,jK(z̄ − zk)

= ∂
[z̄]
t

(
K(z0 − z̄)

∏
kK(z̄ − zk)

)

− c∂ [z̄]
x

(
K(z0 − z̄)

∑
iK

′(z̄ − zi)
∏

k �=iK(z̄ − zk) + K ′(z0 − z̄)
∏

kK(z̄ − zk)
)
,

(2.11)

while in the case of (2.6) we make use of

K ′(z0 − z̄)
∑

i (δ0 + f )(z̄ − zi)
∏

k �=iK(z̄ − zk) − (δ0 + f )(z̄ − z0)
∑

iK
′(z̄ − zi)

∏
k �=iK(z̄ − zk)

− cK ′(z0 − z̄)
∑

i �=jK
′(z̄ − zi)K

′(z̄ − zj )
∏

k �=i,jK(z̄ − zk)

= ∂
[z̄]
t

(
K ′(z0 − z̄)

∏
kK(z̄ − zk)

)
− ∂ [z̄]

x

(
(∂tK)(z0 − z̄)

∏
kK(z̄ − zk)

)

− c∂ [z̄]
x

(
K ′(z0 − z̄)

∑
iK

′(z̄ − zi)
∏

k �=iK(z̄ − zk)
)
.

(2.12)

The integral of Qε against the right-hand sides of (2.11) and (2.12) vanishes as before due to (2.7), and hence the 
proof can be concluded precisely as before. �
3. Proof of the main theorem

3.1. The setup

We briefly recall the setup of [7]. For simplicity for certain ‘sufficiently large’ indices from therein we simply take 
10, which suffices for (1.1), but which does not play any important role. The approach of [7] relies on a transformation, 
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which is of course formal for rough ξ , but is elementary to check for smooth ξ . Let, for c ∈ [λ, λ−1], P(c, ·) be the 
Green’s function of the operator ∂t − c∂2

x . The aforementioned transformation then establishes that (1.1) is equivalent, 
locally in time, to

u = I (a(u), f̂ )

f̂ = (
1 − a′(u)Ic(a(u), f̂ )

)
ξ + (aa′′)(u)(∂xu)2Ic(a(u), f̂ )

+ (a(a′)2)(u)(∂xu)2Icc(a(u), f̂ ) + 2(aa′)(u)(∂xu)Icx(a(u), f̂ ),

(3.1)

where the operators Iα , for multiindices α in c and x are defined as

Iα(b,f )(z) =
∫

(∂αP )(b(z), z − z′)f (z′) dz′ (3.2)

and I = I∅. Note that I actually extends to f with regularity above −2, in which case (3.2) of course needs to be 
interpreted in the appropriate distributional sense.

One can formulate (3.1) in the theory of regularity structures as follows. Start with the regularity structure built as 
in [4,10] for the generalised KPZ equation and denote the set of basis vectors (‘symbols’) by W, and the ones with 
negative degree by W−. Define the ‘number of integrations’ [τ ] recursively by setting

[Xk] = [�] = 0, [τ τ̄ ] = [τ ] + [τ̄ ], [Iτ ] = [I′τ ] = [τ ] + 1.

Denote B= C−10([λ, λ−1]) and write Bk for the k-fold tensor product of B with itself, completed under the pro-
jective cross norm. In particular, we have a canonical dense embedding of Bk ⊗ B� into Bk+�. We also use the 
convention B0 = R. We then construct a regularity structure T in such a way that each symbol τ ∈ Wdetermines an 
infinite-dimensional subspace Tτ of the structure space T, isometric to B[τ ]. To wit, we set

T=
⊕

α

Tα , Tα :=
⊕
|τ |=α

Tτ , Tτ := B[τ ] ⊗ span{τ } , (3.3)

and equip the spaces Tα with their natural norms. The structure group plays no explicit role for us in this article so 
we do not address it, the interested reader can find the details in [7]. The abstract differentiation, multiplication, and 
integration operators on Tare defined by

D(ζ ⊗ τ) = ζ ⊗ Dτ,

(ζ ⊗ τ)(ζ̄ ⊗ τ̄ ) = (ζ ⊗ ζ̄ ) ⊗ τ τ̄ ,

Iζ (ζ̄ ⊗ τ) = (ζ ⊗ ζ̄ ) ⊗ Iτ.

Note in particular that the we have a whole family of integration operators (Iζ )ζ∈B. Note also that the multiplication 
in general is not commutative. Take a family of kernels (K(c))c∈[λ,λ−1], which, along with their derivatives with respect 
to c up to any finite order, are uniformly compactly supported and 2-smoothing in the sense of [10, As 5.1]. We will 
denote Kζ = ζ(K(·)) for ζ ∈ B and Kc;� = K∂�δc .

In the notation of Section 2 we set Ŵ to be the set of all symbols obtained by repeated uses of integration and 
multiplication. Let �ε be the canonical model built from ξε for ε > 0, where the dependence on the mollifier ρ, 
which corresponds to θ in the framework of Section 2, is suppressed. The fact that Assumption 2.2 holds follow from 
that, due to the spatial symmetry, one has

E�ε

(
δc ⊗ δc′ ⊗ δc′′ ⊗ )

(0) = E�ε

(
δc ⊗ δc′ ⊗ )

(0) = E�ε

(
δc ⊗ δc′ ⊗ )

(0)

= E�ε

(
δc ⊗ )

(0) = E�ε

(
δc ⊗ )

(0) = E�ε

(
δc ⊗ δc′ ⊗ )

(0) = 0

where stands for X�. We then set �Sym
ε := �εM[gε], where gε is from Corollary 2.5, and denote the limiting model 

by �Sym = �̂M[g].
We define the maps the Kζ by replacing I and K in [10, Eq. 5.15] by Iζ and Kζ , respectively. As before, we 

denote Kc;� := K∂�δc We can now introduce the lift of the operator Iα. Take two modelled distributions b and f and 
set b̄ = 〈 b, 1 〉, b̂ = b − b̄. If ∂α = ∂k

c ∂m
x , then we define
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Iα(b,f )(z) :=
∑

|�|≤10

(b̂(z))�

�! (DmKb̄(z);k+�f )(z) . (3.4)

It is shown in [7] that the maps Iα satisfy the natural Schauder-estimates on appropriate spaces of modelled dis-
tributions. Assuming for the moment u0 = 0, the abstract counterpart of (3.1) then yields the object u claimed in 
Theorem 1.1: We set u = RU , where U is the obtained by solving, with respect to the model �Sym, the system of 
abstract equations

U = I(a(U), F̂) ,

F̂= (1 − Vca
′(U))� + 2Vcxa(U)a′(U)DU + Vcca(U)(a′(U))2(DU)2

+ Vca(U)a′′(U)(DU)2 ,

Vα = Iα(a(U), F̂) , for α = c, cc, cx.

(3.5)

We will also encounter Vccc, although it does not explicitly appear in the equation (3.5). For general initial condition 
u0, one has to include an additional variant of the operators I (denoted by Î in [7, Eq. 4.6]) in the first and third 
component of (3.5), but since they do not effect main line of the argument at all, they will be omitted for simplicity.

To prove the theorem, we need to show that if Uε is obtained from solving (3.5) with respect to �Sym
ε , then 

uε := RUε solves (1.2).
The plan is similar to the usual derivation of renormalised equations. First we use the abstract equation (3.5) to 

derive the form of the expansion of the solution (U, Vc, Vcc, Vcx) as well as the ‘right-hand-side’ F̂. That is, for each 
tree τ we express the coefficient1 uτ of τ in U , (vc)τ in Vc, etc. The action of the renormalisation map M[gε] on 
F̂ then produces for each tree τ a counterterm gε

(
f̂τ ⊗ τ

)
in (3.1). There are two factors complicating this plan. 

Firstly, the expansions will have way more terms than one is used to in standard examples like the ones in [10] - each 
tree can appear with several different parametrisation on each of its integration edges. Secondly, the renormalisation 
of different trees cannot be treated separately: a large number of cancellations have to be exploited to eliminate all 
nonlocal counterterms and arrive to the (local) ones stated in Theorem 1.1. All of these cancellations will come from 
applications of Lemma 2.4.

3.2. Notational conventions

To organise our calculation, let us introduce a couple of shorthand notation. Firstly, we drop the index ε, but keep 
it in mind that the solution (U, Vc, Vcc, Vcx) we are considering is with respect to the renormalised smooth model 
�

Sym
ε . Fix a space-time point z and in the sequel omit the argument z from any function of space-time (scalar-valued 

and T-valued alike). We also omit the u argument from a or any of its derivatives.
In additional to the graphical conventions of Example 2.7, we use squares like , , for generic trees, and their 

colour simply serves to distinguish between different ones in the same formula. Since all symbols appearing in the 
expansion of the solution are of the form ζ ⊗ τ , where ζ is a tensor product of derivatives of δa , we set the shorthand 
〈 i1, . . . , ik 〉 = ∂i1δa ⊗ · · · ⊗ ∂ik δa . Furthermore, to ease the reading, we rearrange the order of tensor products. Given 
a pictorial representation of a tree, the ordering is always top-bottom, left-right, but which one takes precedence will 
change occasionally. In the notation 〈 · 〉 the order is a) vertical position of the parents b) horizontal position of the 
parents c) horizontal position of the children (recall that the parent vertex of an edge is the one closer to the root). For 
example,

〈0,1,2 〉 ⊗ = �
(
I∂2δa (�(Iδa�)(I∂δa�)

)
.

From time to time different ordering of the parameters will be more natural. In 〈 · 〉→ we list the parameters in order of 
a) horizontal position of the parents b) horizontal position of the children c) vertical position of the children. Finally, 
in 〈 · 〉↓ the order is based on a) vertical position of the parents b) vertical position of the children c) horizontal position 
of the children. As examples,

1 In our terminology the ‘coefficients’ include the distributions attached to the trees. For example in a modelled distribution of the form H(z) =
a1(z)ζ1(z) ⊗ + a2(z)ζ2(z) ⊗ we say h = a1ζ1 + a2ζ2.
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〈 i, j, k, � 〉→ ⊗ = 〈 i, �, j, k 〉 ⊗ , 〈 i, j, k, � 〉↓ ⊗ = 〈 i, k, j, � 〉 ⊗ .

We emphasize that these notations all depend on the given pictorial representation. We further set

〈〈k 〉〉� =
∑

∑
αi=k

k!
α! 〈α1, . . . , α� 〉.

The notation is set up to condense more complicated cancellations. For example, while Lemma 2.4 at first sight only 
gives

gε

(〈0 〉 ⊗ ) = gε

(
a〈〈0 〉〉2 ⊗ )

,

one can differentiate this k times with respect to the parameter and obtain

gε

(〈k 〉 ⊗ ) = gε

((
a〈〈k 〉〉2 + k〈〈k − 1 〉〉2

) ⊗ )
.

The notations 〈 〈 k 〉 〉→� , 〈 〈 k 〉 〉↓� are understood analogously.
Recall that u = RU and write vα = RVα . In general, the coefficient of a symbol τ ∈ W in U will be denoted by 

uτ , and similarly for F̂and Vα . Some combination of these functions will repeatedly occur:

q = 1 − vca
′,

pc = 1
q

(
vca

′′ + vcc(a
′)2), pcc = 1

q

(
vcca

′′ + vccc(a
′)2), p̂c = 1

q
(2vcca

′a′′ + vca
′′′).

One important role of q is that, precisely as in [7], for short times it is nonzero and u solves an equation just like (1.1), 
but with an additional term

1
q

∑
τ∈W−

gε

(
f̂τ ⊗ τ

)
(3.6)

appearing on the right-hand side. Note that while W− is the usual set of negative degree symbols for the generalised 
KPZ equation, for each τ , f̂τ is the linear combination of many different distributions, see e.g. (3.12) below, and so 
(3.6) is in fact a sum of several hundred terms. Our goal to show that this sum is nothing but the counterterm specified 
in (1.2), with the appropriate choice of Cε· , C̄ε· , C̃ε· .

To this end, given τ ∈ W−, for any k, i1, . . . i[τ ] ∈ N, and any function of the form h = qaka′, qak(a′)3, qaka′a′′, 
k ∈ N, we denote h〈 i1, . . . , i[τ ] 〉 � 0. This reflects that the contributions of all terms of the form h〈 i1, . . . , i[τ ] 〉 ⊗ τ to 
the renormalisation are precisely as required.

We will repeatedly apply integration by parts identities from Section 2. By writing

ζ1 ⊗ τ1 ∼ ζ2 ⊗ τ2 (n)

we mean gε(ζ1 ⊗ τ1) = gε(ζ2 ⊗ τ2). Given such an identity, we may simplify the expansions of f̂τ1 and f̂τ2 simulta-
neously, provided they contain the same multiple of ζ1 and ζ2, respectively. This will be denoted by

f̂τ1 = hζ1 + ζ̄1
(n)≈ ζ̄1,

f̂τ2 = hζ2 + ζ̄2
(n)≈ ζ̄2.

Here n will be some Roman numeral and h some function. We emphasise that 
(n)≈ is not a single relation but has to be 

read in pairs (or, in more complicated situations, triples, quadruples, etc.). By ≈ we mean the summary of all previous 

simplifications of the coefficient of a given symbol, either by � or 
(n)≈.

It is clear from Gaussianity that only τ -s with 2 or 4 instances of � contribute to (3.6), we denote the corresponding 
subsets of W− by W2−, W4− . With all this, our goal can be summarised as showing f̂τ ≈ 0 for all τ ∈ W2−, W4− .

Finally, let us mention that often the integration by parts will look a bit simpler due to symbols in WG− :=
{ , , , , , } having vanishing contribution to the renormalisation. This is again a consequence of 
Gaussianity. For example, the last line in Example 2.7 simplifies to



674 M. Gerencsér / Ann. I. H. Poincaré – AN 37 (2020) 663–682
〈〈0 〉〉5 ⊗ ∼ a〈〈0 〉〉6 ⊗ .

It is also worth noting and will be often used that these formulae do not require all edges to have the same parameter. 
In particular, edges that do not ‘play’ in a given integration by parts, can have arbitrary derivatives, so for example the 
above relation is true more generally:

〈0,0, i, j, k 〉 ⊗ ∼ a〈0,0,0, i, k, j 〉 ⊗ .

Remark 3.1. One possible way to extend our result to the non-Gaussian case would be to 1) calculate the coefficient 
f̂τ for τ ∈ WG− ; 2) keep track of how the performing the steps below effect these coefficients; 3) use the cancellations 
relating only elements of WG− to each other (there are in fact 5 of these) to further simplify all of these coefficient to 
0 in the sense of ≈. To avoid cluttering the already lengthy computation below, we refrain from this generality.

3.3. Some recursions for the coefficients

First we want to treat the contributions from W2− , but for later use some steps are formulated in a more general 
way. In fact, the terms in W2− had already been treated in [7], but for the sake of completeness, as well as to illustrate 
the use of some of the notations above, we include the argument.

First of all, it will be repeatedly used that for any ∈ W− one has

u = 1
q
f̂ ⊗ 〈0 〉. (3.7)

Indeed, this follows from the fact that in I(a(U), F̂) the symbol appears twice: once in the � = 0 and once in the 
� = 1 term. Since, by definition, Ka(u),1F̂= vc1 + (. . .), one gets the equation

u = f̂ ⊗ 〈0 〉 + a′u vc, (3.8)

and from it, (3.7). One therefore also has

(vc) = f̂ ⊗ 〈1 〉 + a′u vcc = f̂ ⊗ (〈1 〉 + 1
q
a′vcc〈0 〉) ,

(vcc) = f̂ ⊗ 〈2 〉 + a′u vccc = f̂ ⊗ (〈2 〉 + 1
q
a′vccc〈0 〉) ,

(vcx) = f̂ ⊗ 〈1 〉.
Let 2∗ denote 2 for �= and 1 for = . The above then yields the following recursions

f̂ = −(vc) a′ − vca
′′u

= −pcf̂ ⊗ 〈0 〉 − a′f̂ ⊗ 〈1 〉 , (3.9)

f̂ = 2∗aa′(vcx) ⊗∗ u + 2∗aa′u ⊗∗ (vcx) + 2∗vcca(a′)2u ⊗∗ u + 2∗vcaa′′u ⊗∗ u

= 1
q
f̂ ⊗ f̂ ⊗ (

2∗aa′〈〈1 〉〉2 + 2∗apc〈〈0 〉〉2
)
, (3.10)

where we denoted by ⊗∗ when the parameter derivatives are slightly rearranged after concatenation (since the way 
they should be arranged is pretty obvious, we prefer to avoid making this completely precise by introducing further 
notations). One obviously has f̂ = q and we recall the cancellation

〈0 〉 ⊗ ∼ a〈〈0 〉〉2 ⊗ . (i)

Thus we can write

f̂ = −qpc〈0 〉 − qa′〈1 〉 (i)≈ −qa′〈1 〉 � 0,

f̂ = qaa′〈〈1 〉〉2 + qapc〈〈0 〉〉2
(i)≈ qaa′〈〈1 〉〉2 � 0.

The rest of the article is devoted to show f̂τ ≈ 0 for
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τ ∈ { , , , , , , , , , , , , , , , , , }.
The recursions (3.9)-(3.10) yield the coefficient of all 8 of the above symbols that are built from the repeated 

operations → , → , as well as those of , , . For the 6 remaining symbols, however, we have to take 

into account the fact that u does not only contain symbols of the form . Indeed, one has, by a similar argument as the 
one leading to (3.8),

u = 2∗
2

(
a′u ⊗∗ f̂ ⊗ 〈1 〉 + a′f̂ ⊗ u ⊗∗ 〈1 〉)

+ a′u vc + 2∗
2

(
a′′u ⊗∗ u vc + (a′)2u ⊗∗ u vcc

)
= a′u vc + 1

q
2∗
2 f̂ ⊗ f̂ ⊗ (

a′〈〈1 〉〉2 + pc〈〈0 〉〉2
)

= 1
q2

2∗
2 f̂ ⊗ f̂ ⊗ (

a′〈〈1 〉〉2 + pc〈〈0 〉〉2
)
.

(3.11)

One also easily gets

(vcx) = a′u ⊗∗ f̂ ⊗ 〈2 〉 = 1
q
a′f̂ ⊗ f̂ ⊗ 〈0,2 〉.

From u we also obtain (here we will only need the case �= )

(vc) = a′u ⊗∗ f̂ ⊗ 〈2 〉 + a′f̂ ⊗ u ⊗∗ 〈2 〉
+ a′u vcc + a′′u ⊗∗ u vcc + (a′)2u ⊗∗ u vccc

= f̂ ⊗ f̂ ⊗ 1
q

[
a′〈0,2 〉 + a′〈2,0 〉 + 1

q
a′vcc

(
a′〈〈1 〉〉2 + pc〈〈0 〉〉2

) + pcc〈〈0 〉〉2
]
.

It turns out that due to the regularity and the Gaussianity of our noise, we will not need to calculate the contributions 
to u of products with more than 2 terms. From now on all product of parameter derivatives will denote a simple 
concatenation so we drop ⊗ from the notation. The above formulae then yield the three more complicated recursions: 
for = , (although we only really need �= ) we have

f̂ = −a′′(vc) u − a′′u (vc) − vca
′′u − a′(vc) − vca

′′′u u

= −a′′f̂ 〈〈1 〉〉2 − 2 1
q
a′a′′vccf̂ 〈〈0 〉〉2 − pcf̂

(
a′〈〈1 〉〉2 + pc〈〈0 〉〉2

)
− f̂

(
(a′)2〈0,2 〉 + (a′)2〈2,0 〉 + a′pcc〈〈0 〉〉2

) − 1
q
vca

′′′f̂ 〈〈0 〉〉2

= f̂
[ − (

p̂c + p2
c + a′pcc

)〈〈0 〉〉2 − (
pca

′ + a′′)〈〈1 〉〉2 − (a′)2〈〈2 〉〉2

+ 2(a′)2〈1,1 〉].
Next, we have

f̂ = 2aa′(vcx) u + 2
(
(a′)2 + aa′′)(vcx) u u + 2aa′(vcx) u

+ 2vcca(a′)2u u + u
(
(vcc) a(a′)2 + vcc

(
(a′)3 + 2aa′a′′)u )

u

+ 2vcaa′′u u + u
(
(vc) aa′′ + vc

(
a′a′′ + aa′′′)u )

u

= 2aa′(vcx) u + 2
(
(a′)2 + aa′′)(vcx) u u + 2aa′(vcx) u

+ 2qapcu u + qa′pcu u u + qap̂cu u u

+ a(a′)2u (vcc) u + aa′′u (vc) u

= f̂
[
2a(a′)2〈0,0,2 〉 + 2

(
(a′)2 + aa′′)〈0,0,1 〉

+ 2a(a′)2〈1,0,1 〉 + 2a(a′)2〈1,1,0 〉 + 2aa′pc〈1,0,0 〉
+ 2aa′pc〈0 〉〈〈1 〉〉2 + 2a(pc)

2〈0,0,0 〉 + a′pc〈0,0,0 〉 + ap̂c〈0,0,0 〉
+ a(a′)2〈0,2,0 〉 + aa′′〈0,1,0 〉 + aa′pcc〈0,0,0 〉]

= f̂
[(

ap̂c + 2a(pc)
2 + aa′pcc + a′pc

)〈〈0 〉〉3 + (
aa′′ + 2aa′pc

)〈〈1 〉〉3 + a(a′)2〈〈2 〉〉3

+ 2(a′)2〈0,0,1 〉 − 2a(a′)2〈1,1,0 〉].
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Finally, one can write

f̂ = 2aa′(vcx) u + 2aa′u (vcx) + 2
(
(a′)2 + aa′′)(vcx) (u )2 + 4aa′(vcx) u

+ 2
(
(a′)2 + aa′′)u u (vcx) + 2aa′u (vcx)

+ 2vcca(a′)2(u u + 2u u
) + 2u

(
(vcc) a(a′)2 + vcc

(
(a′)3 + 2aa′a′′)u )

u

+ 2vcaa′′(u u + 2u u
) + 2u

(
(vc) aa′′ + vc

(
a′a′′ + aa′′′)u )

u

= 2aa′(vcx) u + 2aa′u (vcx) + 2
(
(a′)2 + aa′′)(vcx) (u )2 + 4aa′(vcx) u

+ 2
(
(a′)2 + aa′′)u u (vcx) + 2aa′u (vcx)

+ 2qapc

(
u u + u 2u

) + 2qa′pcu (u )2 + 2qap̂cu (u )2

+ 2a(a′)2u (vcc) u + 2aa′′u (vc) u

= f̂
[
2a(a′)2〈2,0,0 〉 + 2a(a′)2〈0,0,2 〉 + 2

(
(a′)2 + aa′′)〈1,0,0 〉

+ 2a(a′)2〈1,1,0 〉 + 2a(a′)2〈1,0,1 〉 + 2aa′pc〈1,0,0 〉
+ 2

(
(a′)2 + aa′′)〈0,0,1 〉

+ 2a(a′)2〈1,0,1 〉 + 2a(a′)2〈0,1,1 〉 + 2aa′pc〈0,0,1 〉
+ 2aa′pc

(〈〈1 〉〉2〈0 〉 + 〈0 〉〈〈1 〉〉2
) + 4a(pc)

2〈0,0,0 〉
+ 2a′pc〈0,0,0 〉 + 2ap̂c〈0,0,0 〉

+ 2a(a′)2〈0,2,0 〉 + 2aa′′〈0,1,0 〉 + 2aa′pcc〈0,0,0 〉]
= f̂

[
2
(
ap̂c + 2a(pc)

2 + aa′pcc + a′pc

)〈〈0 〉〉3 + 2
(
aa′′ + 2aa′pc

)〈〈1 〉〉3 + 2a(a′)2〈〈2 〉〉3

+ 2(a′)2〈1,0,0 〉 + 2(a′)2〈0,0,1 〉 − 2a(a′)2〈0,1,1 〉 − 2a(a′)2〈1,1,0 〉].

(3.12)

3.4. Exploiting the cancellations

To simplify the above complicated expressions, a number of application of the identities from Section 2 will be 
needed. To give some structure to this lengthy computation, in each smaller step we aim to eliminate (in the sense of 
≈) some terms of a given type.
Eliminating coefficients with p̂c, pcc , and a′′

The coefficients in the above expressions can be viewed as polynomials in the 6 variables a, a′, a′′, pc, p̂c, pcc , but 
terms containing three of these can easily be eliminated. We have the cancellations

〈〈� 〉〉2 ⊗ ∼ (
a〈〈� 〉〉3 + �〈〈� − 1 〉〉3

) ⊗ ( + 2
)
. (ii)

Applying this with � = 0, and using the notation f̂ /f̂ = ζ to denote f̂ = f̂ ⊗ ζ , we can write:

f̂ /f̂
(ii)≈ −p2

c 〈〈0 〉〉2 − (
pca

′ + a′′)〈〈1 〉〉2 − (a′)2〈〈2 〉〉2 + 2(a′)2〈1,1 〉,
f̂ /f̂

(ii)≈ (
2a(pc)

2 + a′pc

)〈〈0 〉〉3 + (
aa′′ + 2aa′pc

)〈〈1 〉〉3 + a(a′)2〈〈2 〉〉3

+ 2(a′)2〈0,0,1 〉 − 2a(a′)2〈1,1,0 〉,
f̂ /f̂

(ii)≈ 2
(
2a(pc)

2 + a′pc

)〈〈0 〉〉3 + 2
(
aa′′ + 2aa′pc

)〈〈1 〉〉3 + 2a(a′)2〈〈2 〉〉3

+ 2(a′)2〈1,0,0 〉 + 2(a′)2〈0,0,1 〉 − 2a(a′)2〈0,1,1 〉 − 2a(a′)2〈1,1,0 〉.
Next we apply (ii) with � = 1

f̂ /f̂
(ii)≈ −p2

c 〈〈0 〉〉2 − pca
′〈〈1 〉〉2 − (a′)2〈〈2 〉〉2 + 2(a′)2〈1,1 〉,

f̂ /f̂
(ii)≈ (

2a(pc)
2 + a′pc − a′′)〈〈0 〉〉3 + 2aa′pc〈〈1 〉〉3 + a(a′)2〈〈2 〉〉3
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+ 2(a′)2〈0,0,1 〉 − 2a(a′)2〈1,1,0 〉, (3.13)

f̂ /f̂
(ii)≈ 2

(
2a(pc)

2 + a′pc − a′′)〈〈0 〉〉3 + 4aa′pc〈〈1 〉〉3 + 2a(a′)2〈〈2 〉〉3

+ 2(a′)2〈1,0,0 〉 + 2(a′)2〈0,0,1 〉 − 2a(a′)2〈0,1,1 〉 − 2a(a′)2〈1,1,0 〉. (3.14)

We now write

f̂ ≈ qpca
′′〈0 〉〈〈0 〉〉3 + qa′a′′〈1 〉〈〈0 〉〉3 + (. . .),

f̂ ≈ −qapca
′′〈〈0 〉〉2〈〈0 〉〉3 − qaa′a′′〈〈1 〉〉2〈〈0 〉〉3 + (. . .),

where (. . .) stands for all the terms coming from (3.13) not including a′′. Recalling

〈0, i,0, j 〉 ⊗ ∼ a〈0,0, i,0, j 〉 ⊗ (iii)

for any i and j (although for the moment we only use i = j = 0), we have

f̂
(iii)≈ qa′a′′〈1 〉〈〈0 〉〉3 + (. . .) � (. . .),

f̂
(iii)≈ −qaa′a′′〈〈1 〉〉2〈〈0 〉〉3 + (. . .) � (. . .).

We therefore have

f̂ /f̂ ≈ (
2a(pc)

2 + a′pc

)〈〈0 〉〉3 + 2aa′pc〈〈1 〉〉3 + a(a′)2〈〈2 〉〉3

+ 2(a′)2〈0,0,1 〉 − 2a(a′)2〈1,1,0 〉,
and performing the similar steps in (3.14), also

f̂ /f̂ ≈ 2
(
2a(pc)

2 + a′pc

)〈〈0 〉〉3 + 4aa′pc〈〈1 〉〉3 + 2a(a′)2〈〈2 〉〉3

+ 2(a′)2〈1,0,0 〉 + 2(a′)2〈0,0,1 〉 − 2a(a′)2〈0,1,1 〉 − 2a(a′)2〈1,1,0 〉.
A remark and eliminating second derivatives

Note that above argument could of course be easily repeated with (a′)2 in place of a′′. Therefore, whenever we 
arrive to

f̂ /f̂ ≈ cak(a′)2〈 i,0, j 〉 + (. . .),

for some c ∈R, i, j, k ∈ N, we can infer

f̂ /f̂ ≈ (. . .).

This simplification will reappear later in the proof, and will be denoted by 
(S)≈ . The analogous statement of course 

also holds for . Keep in mind that the parameter in the latter case has to be of the form 〈 0, i, j 〉. We can therefore 
readily simplify the above to

f̂ /f̂
(S)≈ (

2a(pc)
2 + a′pc

)〈〈0 〉〉3 + 2aa′pc〈〈1 〉〉3 + a(a′)2〈〈2 〉〉3

− 2a(a′)2〈1,1,0 〉,
f̂ /f̂

(S)≈ 2
(
2a(pc)

2 + a′pc

)〈〈0 〉〉3 + 4aa′pc〈〈1 〉〉3 + 2a(a′)2〈〈2 〉〉3

+ 2(a′)2〈1,0,0 〉 − 2a(a′)2〈1,1,0 〉.
To remove the term with 2 derivatives, simply apply (ii) with � = 2:
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f̂ /f̂
(ii)≈ −p2

c 〈〈0 〉〉2 − pca
′〈〈1 〉〉2 + 2(a′)2〈1,1 〉,

f̂ /f̂
(ii)≈ (

2a(pc)
2 + a′pc

)〈〈0 〉〉3 + (
2aa′pc − 2(a′)2)〈〈1 〉〉3

− 2a(a′)2〈1,1,0 〉,
f̂ /f̂

(ii)≈ 2
(
2a(pc)

2 + a′pc

)〈〈0 〉〉3 + 2
(
2aa′pc − 2(a′)2)〈〈1 〉〉3

+ 2(a′)2〈1,0,0 〉 − 2a(a′)2〈1,1,0 〉.
Eliminating symbols of the form , , ,

Next we use the identities

〈 i, � 〉 ⊗ + 〈 i, � 〉 ⊗ ∼ 2〈 i 〉(a〈〈� 〉〉2 + 2�〈〈� − 1 〉〉2
) ⊗ . (iv)

Using this with i = 0, 1, � = 0, 1, we get

f̂ /f̂ = p2
c 〈0,0 〉 + a′pc〈0,1 〉 + a′pc〈1,0 〉 + (a′)2〈1,1 〉

(iv)≈ 0,

f̂ /f̂ ≈ −p2
c 〈〈0 〉〉2 − a′pc〈〈1 〉〉2 + 2(a′)2〈1,1 〉,

(iv)≈ −2p2
c 〈〈0 〉〉2 − 2a′pc〈〈1 〉〉2 + (a′)2〈1,1 〉,

f̂ /f̂ = −2ap2
c 〈0 〉〈〈0 〉〉2 − 2aa′pc〈0 〉〈〈1 〉〉2 − 2aa′pc〈1 〉〈〈0 〉〉2 − 2a(a′)2〈1 〉〈〈1 〉〉2

(iv)≈ 2a′pc〈0 〉〈〈0 〉〉2 + 2(a′)2〈1 〉〈〈0 〉〉2. (3.15)

Now we can use (ii) again

f̂ /f̂
(ii)≈ (a′)2〈1,1 〉.

f̂ /f̂
(ii)≈ −a′pc〈〈0 〉〉3 − 2(a′)2〈〈1 〉〉3 − 2a(a′)2〈1,1,0 〉,
(S)≈ −a′pc〈〈0 〉〉3 − 2(a′)2〈0,1,0 〉 − 2a(a′)2〈1,1,0 〉,

f̂ /f̂
(ii)≈ −2a′pc〈〈0 〉〉3 − 4(a′)2〈〈1 〉〉3 + 2(a′)2〈1,0,0 〉 − 2a(a′)2〈1,1,0 〉
(S)≈ −2a′pc〈〈0 〉〉3 − 2(a′)2〈1,0,0 〉 − 2a(a′)2〈1,1,0 〉.

Similarly to (iv), we have

〈 i, j, � 〉 ⊗ + 〈 i, �, j 〉 ⊗ ∼ 2〈 i, j 〉(a〈〈� 〉〉2 + �〈〈� − 1 〉〉2
) ⊗ . (v)

Hence, just as above, we can write

f̂ /f̂ = −2a
(
p2

c 〈〈0 〉〉2〈0 〉 + a′pc〈〈1 〉〉2〈0 〉 + a′pc〈〈0 〉〉2〈1 〉 + (a′)2〈〈1 〉〉2〈1 〉)
(v)≈ 0,

f̂ /f̂ ≈ −2a′pc〈〈0 〉〉3 − 2(a′)2〈1,0,0 〉 − 2a(a′)2〈1,1,0 〉
(v)≈ −2a′pc〈〈0 〉〉3 − 2(a′)2〈1,0,0 〉 − 2a(a′)2〈1,1,0 〉

+ 2ap2
c 〈〈0 〉〉3 + 2aa′pc〈〈1 〉〉3 + 2a(a′)2〈1,1,0 〉 + 2a(a′)2〈0,1,1 〉

(S)≈ (
2ap2

c − 2a′pc

)〈〈0 〉〉3 + 2aa′pc〈〈1 〉〉3 − 2(a′)2〈1,0,0 〉,
f̂ /f̂ = 4a2(p2

c 〈〈0 〉〉2〈〈0 〉〉2 + a′pc〈〈1 〉〉2〈〈0 〉〉2 + a′pc〈〈0 〉〉2〈〈1 〉〉2 + (a′)2〈〈1 〉〉2〈〈1 〉〉2
)
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(v)≈ −4aa′pc〈〈0 〉〉4 − 4a(a′)2〈〈1 〉〉2〈〈0 〉〉2.

Let us now compare the coefficients of and . Using (3.15) and that q(a′)3〈 1, 1 〉〈 〈 0 〉 〉2, qa(a′)3〈 〈 1 〉 〉2〈 1 〉〈 〈 0 〉 〉2 �
0, one can write

f̂ ≈ −2qa′(p2
c 〈0,0 〉 + a′pc〈1,0 〉 + a′pc〈0,1 〉)〈〈0 〉〉2,

f̂ ≈ 2qaa′(p2
c 〈〈0 〉〉〈0 〉 + a′pc〈〈1 〉〉〈0 〉 + a′pc〈〈0 〉〉〈1 〉)〈〈0 〉〉2.

Using

〈〈� 〉〉2〈〈0 〉〉2 ⊗ ∼ (
a〈〈� 〉〉3 + �〈〈� − 1 〉〉3

)〈〈0 〉〉2 ⊗ (vi)

with � = 0, 1, we get

f̂
(vi)≈ 0, f̂

(vi)≈ −2q(a′)2pc〈〈0 〉〉5.

Very similar calculation shows

f̂ ≈ 0, f̂ ≈ 4qa(a′)2pc〈〈0 〉〉6.

Hence, by

〈〈0 〉〉5 ⊗ − 〈〈0 〉〉5 ⊗ − 〈〈0 〉〉5 ⊗ ∼ 2a〈〈0 〉〉6 ⊗ , (vii)

we obtain

f̂
(vii)≈ 0, f̂

(vii)≈ 0,

and we momentarily postpone the effect of (vii) on f̂ , f̂ .

Eliminating ,

So far the coefficients of the symbols , , have not at all been simplified. First, notice that

f̂ = 2qa(a′)3〈1,0,1,1 〉→ + (. . .) � (. . .),

and similarly for , . The terms (. . .) then only contain parameter derivatives of which at most two is 1 and the 
rest is 0. From (3.9)-(3.10) it is easy to see that these terms are

f̂ ≈ qa〈〈0 〉〉→2
(
p3

c 〈〈0 〉〉→2 + 2a′p2
c 〈〈1 〉〉→2 + 2(a′)2pc〈1,1 〉→)

+ 2qa(a′)2pc〈〈1 〉〉→2 〈0,1 〉→ − qa(a′)2pc〈1,0,0,1 〉→,

f̂ ≈ −2qa2〈〈0 〉〉→3
(
p3

c 〈〈0 〉〉→2 + a′p2
c 〈〈1 〉〉→2 + (a′)2pc〈1,1 〉→)

− 2qa2〈〈1 〉〉→3
(
a′p2

c 〈〈0 〉〉→2 + (a′)2pc〈0,1 〉→)
− 2qa2(a′)2pc〈〈1 〉〉→2 〈〈1 〉〉→2 〈0 〉→

Thus, from the cancellations

〈〈� 〉〉→2 〈 i, j 〉→ ⊗ −〈〈� 〉〉→2 〈 i, j 〉→ ⊗
∼ (

a〈〈� 〉〉→3 + �〈〈� − 1 〉〉→3
)〈 i, j 〉→ ⊗ (viii)

we have
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f̂
(viii)≈ −qa(a′)2pc〈1,0,0,1 〉→,

f̂
(viii)≈ −qa2p3

c 〈〈0 〉〉→5 + 2qa(a′)2pc〈〈0 〉〉→3 〈0,1 〉→

− 2qa2〈〈1 〉〉→3 a′p2
c 〈〈0 〉〉→2 − 2qa2(a′)2pc〈〈1 〉〉→2 〈〈1 〉〉→2 〈0 〉→, (3.16)

as well as

f̂
(viii)≈ −q

[(
2ap2

c − 2a′pc

)〈〈0 〉〉→3 + 2aa′pc〈〈1 〉〉→3 − 2(a′)2〈0,0,1 〉→](
pc〈0 〉→ + a′〈1 〉→)

+ qa〈〈0 〉〉→2
(
p3

c 〈〈0 〉〉→2 + 2a′p2
c 〈〈1 〉〉→2 + 2(a′)2pc〈1,1 〉→)

+ 2qa(a′)2pc〈〈1 〉〉→2 〈0,1 〉→
� ( − qap3

c + 2qa′p2
c

)〈〈0 〉〉→4 + 2q(a′)2pc〈〈0 〉〉→2 〈〈1 〉〉→2 − 2qaa′p2
c 〈〈1 〉〉→2 〈〈0 〉〉→2

(3.17)

where the last step consists of a simple (but somewhat lengthy) rearrangement of terms and the fact that 
q(a′)3〈 0, 0, 1, 1 〉 � 0. One can also rearrange (3.16) as

f̂ ≈ −qa2〈〈0 〉〉→2
(
p3

c 〈〈0 〉〉→3 + 2a′p2
c 〈〈1 〉〉→3 + 2(a′)2pc〈1 〉→〈〈1 〉〉→2

)

− 2qa2(a′)2pc〈〈1 〉〉→2 〈0 〉→〈〈1 〉〉→2
+ 2qa(a′)2pc〈1,0 〉→〈〈0 〉〉→3 + 2qa2(a′)2pc〈1,0 〉→〈0 〉→〈〈1 〉〉→2 .

We also have from (3.10)

f̂ ≈ qa3〈〈0 〉〉→3
(
p3

c 〈〈0 〉〉→3 + 2a′p2
c 〈〈1 〉〉→3 + 2(a′)2pc〈1 〉→〈〈1 〉〉→2

)

+ 2qa3(a′)2pc〈〈1 〉〉→3 〈0 〉→〈〈1 〉〉→2 − qa3(a′)2pc〈〈1 〉〉→2 〈〈0 〉〉→2 〈〈1 〉〉→2 .

Very similar to the above, we have the cancellations

〈〈� 〉〉→2 〈 i, j, k 〉→ ⊗ −〈〈� 〉〉→2 〈 i, j, k 〉→ ⊗
∼ (

a〈〈� 〉〉→3 + �〈〈� − 1 〉〉→3
)〈 i, j, k 〉→ ⊗ , (ix)

and so

f̂
(ix)≈ −qa3(a′)2pc〈〈1 〉〉→2 〈〈0 〉〉→2 〈〈1 〉〉→2 − 2qa2(a′)2pc〈〈0 〉〉→4 〈〈1 〉〉→2

f̂
(ix)≈ 2qa(a′)2pc〈1 〉→〈〈0 〉〉→4 + 2qa2(a′)2pc〈1,0 〉→〈0 〉→〈〈1 〉〉→2 ,

and also, similarly to (3.17) but keeping in mind the postponed contribution coming from (vii) to ,

f̂ ≈ −2q(a′)2pc〈〈0 〉〉5 + (
qa2p3

c − 2qaa′p2
c

)〈〈0 〉〉→5
− 2qa(a′)2pc〈〈0 〉〉→2 〈〈1 〉〉→3 + 2qa2a′p2

c 〈〈1 〉〉→2 〈〈0 〉〉→3 .

(3.18)

From (3.17)-(3.18) and the identity

〈〈 i 〉〉→2 〈〈� 〉〉→2 ⊗ ∼ 〈〈 i 〉〉→2
(
a〈〈� 〉〉→3 + �〈〈� − 1 〉〉→3

) ⊗ (x)

we easily conclude

f̂
(x)≈ 0, f̂

(x)≈ 0.

Finishing up
Notice next that all remaining terms of , , have 0 derivatives on the bottom edges, so integrating by 

parts there is relatively straightforward. Using
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〈 i,0, i 〉→ ⊗ ∼ a〈 i,0,0, i 〉→ ⊗ , (xi)

we have, with introducing the shorthand r = q(a′)2pc

f̂
(xi)≈ 0

f̂ ≈ −q(a′)2(pc〈0 〉→ + a′〈1 〉→)〈1,1 〉→ � −q(a′)2pc〈0,1,1 〉→
(xi)≈ −r〈〈1 〉〉→2 〈1 〉.

Similarly we obtain, also recalling the postponed contribution from (vii) to ,

f̂ ≈ 0,

f̂ ≈ −2q(a′)2pc〈〈0 〉〉5

− qa
(
pc〈〈0 〉〉2 + a′〈〈1 〉〉2

)(
a′pc〈〈0 〉〉3 + 2(a′)2〈0,1,0 〉 + 2a(a′)2〈1,1,0 〉)

− a2r〈〈1 〉〉↓2 〈0 〉↓〈〈1 〉〉↓2 − ar〈〈0 〉〉↓2 〈0 〉↓〈〈1 〉〉↓2 − ar〈〈1 〉〉↓2 〈0 〉↓〈〈0 〉〉↓2
� −2r〈〈0 〉〉5 − qaa′p2

c 〈〈0 〉〉5

− ar
(
2〈〈1 〉〉↓2 〈〈0 〉〉↓3 + 2〈〈0 〉〉↓2 〈1 〉↓〈〈0 〉〉↓2 + 〈〈0 〉〉↓2 〈0 〉↓〈〈1 〉〉↓2

)
− a2r〈〈1 〉〉↓3 〈〈1 〉〉↓2 .

From the identity

〈 j, k,0, i 〉↓ ⊗ + 〈 i,0, j, k 〉↓ ⊗ ∼ 2a〈 i,0,0, j, k 〉→ ⊗ (xii)

we have

f̂
(xii)≈ 0

f̂
(xii)≈ qa(a′)2(pc〈〈0 〉〉2 + a′〈〈1 〉〉2

)〈1,1 〉

+ q(a′)2pc

(〈〈0 〉〉2〈0,1 〉 + a〈〈1 〉〉2〈0,1 〉)
� r〈〈0 〉〉3〈1 〉 + ar〈〈1 〉〉3〈1 〉,

f̂
(xii)≈ q

(
pc〈0 〉 + a′〈1 〉)(a′pc〈〈0 〉〉3 + 2(a′)2〈0,1,0 〉 + 2a(a′)2〈1,1,0 〉)

+ q(a′)2pc

(〈1,0 〉↓〈〈0 〉〉↓2 + a〈1,0 〉↓〈〈1 〉〉↓2
)

� qa′p2
c 〈〈0 〉〉4 + r

(
2〈1,0 〉↓〈〈0 〉〉↓2 + 2〈0,1 〉↓〈〈0 〉〉↓2

)
+ ar〈〈1 〉〉↓2 〈〈1 〉〉↓2 .

Now we have

〈〈1 〉〉2〈1 〉 ⊗ ∼ (
a〈〈1 〉〉3 + 〈〈0 〉〉3

)〈1 〉 ⊗ (xiii)

which immediately yields

f̂
(xiii)≈ 0, f̂

(xiii)≈ 0.

Finally, let us restate a version of (iii) with the ordering 〈 · 〉↓:

〈〈� 〉〉↓2 〈〈 i 〉〉↓2 ⊗ ∼ (
a〈〈� 〉〉↓3 + �〈〈� − 1 〉〉↓3

)〈〈 i 〉〉↓2 . ⊗ (xiv)

Using (xiv) first with � = i = 0, then with � = i = 1, and finally with � = 1, i = 0:
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f̂
(xiv)≈ −2r〈〈0 〉〉5

− ar
(
2〈〈1 〉〉↓2 〈〈0 〉〉↓3 + 2〈〈0 〉〉↓2 〈1 〉↓〈〈0 〉〉↓2 + 〈〈0 〉〉↓2 〈0 〉↓〈〈1 〉〉↓2

)
− a2r〈〈1 〉〉↓3 〈〈1 〉〉↓2

(xiv)≈ −2r〈〈0 〉〉5 − 2ar〈〈1 〉〉↓3 〈〈0 〉〉↓2
(xiv)≈ 0,

f̂
(xiv)≈ r

(
2〈1,0 〉↓〈〈0 〉〉↓2 + 2〈0,1 〉↓〈〈0 〉〉↓2

) + ar〈〈1 〉〉↓2 〈〈1 〉〉↓2 .

(xiv)≈ 2r〈〈1 〉〉↓2 〈〈0 〉〉↓2
(xiv)≈ 0.

The proof is complete. �
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