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Abstract

We give a Wong-Zakai type characterisation of the solutions of quasilinear heat equations driven by space-time white noise in
1 + 1 dimensions. In order to show that the renormalisation counterterms are local in the solution, a careful arrangement of a few
hundred terms is required. The main tool in this computation is a general ‘integration by parts’ formula that provides a number of
linear identities for the renormalisation constants.
© 2020 L’ Association Publications de 1’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

MSC: 60H15; 60L30

Keywords: Stochastic partial differential equations; Renormalisation; Regularity structures; Quasilinear equations

Contents
L. INtrodUCtion . . . .. . . .. e 664
L1, GeneraliSations . . . . ..ot v it e e e e e e e e e 665
2. Integration by parts in renormaliSation . . . . ... ... ... 666
2.1, Formulation . . . . ... ... e 666
2.2, Proof of Lemma 2.4 . . . . ... e 669
3. Proofofthe main theorem . . . . . . ... .. .. .. . e 670
31, TRESEIUP .. vttt e e e 670
3.2, Notational CONVENLIONS . . . . . . .ttt ittt e e et e e e e e e e e et e e e 672
3.3.  Some recursions for the coefficients . . .. .. ... ... ... e 674
3.4. Exploiting the cancellations . . . . . . . ... e 676
R ereNCes . . . . e 682

E-mail address: mate.gerencser @ist.ac.at.

https://doi.org/10.1016/j.anihpc.2020.01.003
0294-1449/© 2020 L’ Association Publications de I’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.anihpc.2020.01.003&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.anihpc.2020.01.003
http://www.elsevier.com/locate/anihpc
mailto:mate.gerencser@ist.ac.at
https://doi.org/10.1016/j.anihpc.2020.01.003

664 M. Gerencsér/Ann. 1. H. Poincaré — AN 37 (2020) 663-682

1. Introduction

The main goal of the present paper is to ‘solve’ the equation
du —a(u)d’u=¢ (1.1)

on T =R/Z, locally in time, with some initial condition (0, -) = ug(-), where a : R — R is a sufficiently regular
function (®> suffices) with values in [A, A~'] for some A > 0, and & is the space-time white noise.

While equation (1.1) looks like a simple nonlinear variation of the stochastic heat equation, a major problem arises
due to the fact that the product a(u)afu is not actually meaningful for # with parabolic regularity less than 1. Since
the white noise £ has regularity less than —3/2, any reasonable solution of (1.1) should have no more regularity than
1/2, making the interpretation of the product on the left-hand side, and thus the equation, far from obvious. One might
try a naive approximation: take a nonnegative symmetric (under the involution x — —x) smooth function p supported
in the unit ball and integrating to 1, set p®(f,x) =& > p(e~2t, e 'x), £ = p &, and solve (1.1) with £° in place of
&. While this sequence of solutions does not converge, one can ‘renormalise’ the divergencies as follows.

Theorem 1.1. Let ug € BX(T) for some 8 € (0,1/2). Then for any p as above there exist deterministic smooth
functions C¢, C%, C? such that the following holds. Let u® be the classical solution of
i — a(u)du’ = E° + C5eya' ) + Cey (@) ) + C ey (@'a”) (u) (1.2)

a(u

on T with initial condition u®(0,-) = uo(-). There exist some (random) T > 0 and u € €%([0, T] x T) that do not
depend on p, such that u® — u in probability in €% ([0, T] x T).

In the case of semilinear SPDEs involving ill-defined products, statements of the above kind on constructing renor-
malised solution theories have been plentiful in recent years, let us just mention the seminal works [9,10,13] from
which most of them stem. As for quasilinear equations, slight variations of (1.1) with noise regularity in (—4/3, —1)
were considered around the same time in three different works [2,6,20]. The former was later extended to the
regime (—3/2, —1) in [17], albeit only in the space-time periodic case. Removing the latter assumption in the regime
(—4/3, —1) or extending to more irregular noises (including space-time white noise as in our situation) is to our best
knowledge work in progress [15,16]. We also remark that the divergence form version of (1.1), i.e. when a(u)a)%u is
replaced by 9, (a(u)dxu), does not require the machinery of singular SPDEs, and has recently been treated in [18,19].

A quite different approach was introduced in [7], which we will build on in the present article. It relies on a trans-
formation that brings (1.1) to a form whose abstract counterpart in the language of regularity structures is relatively
easily seen to be well-posed. This argument is quite short and works for all range of noise regularity, and therefore
provides a general solution theory. In fact, the object u from Theorem 1.1 that we will show to be the limit of u?, is
constructed in [7]. The drawback of this solution theory, however, is that it does not come with a natural approximation
result, and therefore it is not a priori clear what, if anything, this abstract solution has to do with classical quasilinear
PDEs. Statements like Theorem 1.1 have the key role of relating the abstractly well-defined equation to classically
well-defined equations. It is actually natural to conjecture, but out of the scope of the current state of the theory, that
this relation is ‘always’ possible, as was proved in the semilinear case in [1].

Let us now briefly outline what the source of difficulty is in obtaining such approximation results. To loosely
recall the transformation of [7] (its precise formulation is stated in Section 3.1), the key observation is that quasilinear
equations of the type (1.1) are (locally in time) equivalent to systems of the type

(w,v) =1(F(, u,v)),
where  is a convolution map satisfying certain Schauder estimates and F is a subcritical nonlinearity. In particular, v
is a nonlocal function of u. This system can be also written abstractly within regularity structures:

(U, V)=3(F(E, U, V)),

where the lift E of & and the lift of F of F are as in [10], and T is the natural lift of 7. This already shows the first main
issue: if one solves this equation with respect to a renormalised smooth model, then the counterterms generated by
the renormalisation will involve both U and V. Since in the renormalisation of the original equation one only expects
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to see local functions of the solution, we would then need that when reversing the transformation, the counterterms
involving V all magically disappear.

This is far from easy to verify: the number of these terms quickly blows up as the regularity of the noise decreases.
In the case of the space-time white noise, to calculate the counterterms at a single space-time point, the relevant
dimension of the regularity structure is in the range of a few hundred. It is worth noting that there is no symbolic
cancellation between the terms that contribute to the renormalisation, and so the elimination of V has to rely on
cancellations between the renormalisation constants that different symbols generate.

This is our first main step: in Section 2 we establish a number of symmetries that renormalisation constants satisfy.
This can be of interest on its own, for example one can deduce the chain rule for the class of scalar-valued generalised
KPZ equations from such cancellations, a question that goes back to [10, Rem 1.14]. Since such chain rule is part of a
much more general study in the very recent work [3], we do not pursue this direction in any more detail here. Armed
with a sufficiently large class of cancellations, it then remains to put them to use in simplifying the above mentioned
large expression to the form stated in Theorem 1.1. This is the main combinatorial task of the paper and is the content
of Section 3.

Throughout the article we use concepts and terminology from the theory of regularity structures [10] without
repeating any of the definitions, and to a low-level extent, from their renormalisation, see e.g. [12, Sec. 5] for a gentle
introduction.

1.1. Generalisations

There are several directions for extensions of Theorem 1.1. Some of them are immediate, some require mild im-
provement of known methods, and some would likely need new ideas.

e The argument immediately extends to any Gaussian driving noise & with regularity strictly above —5/3 and with
compactly supported covariance function that satisfies the assumption of [5, Sec. 2.4].

e Instead of a spatially periodic setting, one can solve the equation with Dirichlet boundary conditions. This direc-
tion for singular SPDEs was initiated in [8]. However, the application of its results is not completely automatic,
as the construction of the extension % of the reconstruction operator R below regularity —1 in highly nonlin-
ear situation does require some work. We believe that as long as one considers Dirichlet problems, this can be
avoided, and everything above regularity —2 can be completely automatised. A result of this flavor, but not of
this generality, recently appeared in [14, Sec. 3]. For Neumann boundary conditions such a statement is certainly
not expected to hold. In light of the results of [8], one in fact expects a boundary renormalisation to appear in the
Neumann problem for (1.1).

e For non-Gaussian noise, the regularity range (—3/2, —1) would require a much simplified version of the com-
putations in Section 3: instead of 17 trees with 4 noises, one needs to handle 6 trees with 3 noises. When the
regularity is between —3/2 and —8/5, one also gets an additional 6 trees with 4 noises, we briefly address this in
Remark 3.1.

e One could complicate the right-hand side to a general KPZ-like one, that is, to f (u)(3xu)? + g(u)&. Since our
transformation already requires the ‘full’ gKPZ regularity structure, this would not increase the number of trees.
However, the coefficient for each tree would get more complicated. Carrying out the calculations of Section 2 in
this generality ‘by hand’ would require quite some additional effort.

e Both of the two latter generalisations (and even more the case of more irregular noise, where the ad hoc computa-
tions would get humanly infeasible) point to the need of a systematised algebraic/combinatorial treatment, as has
been developed in the semilinear case in [1,4]. One main difference to their setup is that our abstract integration
operator J, while relatively easy to handle from the analytic point of view, makes the algebra more involved, see

e.g. (3.11).
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2. Integration by parts in renormalisation

In this section we formulate some identities that renormalisation constants arising from the renormalisation of
regularity structures satisfy. It is worth noting that here we do not use any Gaussianity assumption. Concerning the
main assumption below, Assumption 2.2 does restrict the generality compared to e.g. [4,5] quite significantly, but it
allows us to work without the major algebraic complications therein, and still obtain a number of cancellations that
will suffice for the proof of Theorem 1.1.

Certain symmetries were obtained in the very recent work [3] for multicomponent generalised KPZ equations
driven by space-time white noise. Our approach here is different and the identities follow from relatively down-to-
earth integration by parts-like arguments. The formulation below furthermore fits well our purposes in Section 3, as
it keeps track of which edges are and which are not required to have the same integration parameter (denoted by ¢
below) for the identities to hold.

2.1. Formulation

Take a regularity structure 7 = (, A, G) as in [10]. We assume the notation

T =P Tu. Tu=span(s i€l

aeA

with some index sets I, thire - dgnotes the topological closure. We denote W = Ugealti 11 € 1}, W_ =
UaeAn(—c0,0) {r; :i € Iy}, by W and W_ subset of these sets containing 7;-s without any nonzero power of X and
by W and W_ the further subset of symbols with at least 2 noise components.

Remark 2.1. Let us briefly comment on the different sets above. The form of the vector space I and its generator W
is somewhat more involved than in the usual examples, for example the ones in [10]. The reason for this generality
is that it accommodates infinite dimensional regularity structures, which is required for quasilinear equations. On the
other hand, the renormalisation group in our setting will be sufficiently simple so that it is described by its action on
9 . Finally, W can be viewed as the set possible subtrees of elements of 77/

We assume that the scaling is parabolic and that all T € I satisfies || > —2. We furthermore assume that .7 is
equipped with an integration operator .¥ = .5, of order 2 that corresponds to a kernel K = K that is 2-smoothing in
the sense of [10, As 5.1], is supported in the unit ball, and satisfies

(3 — cd2)Ke =80 + fo,

where ¢ > 0 is some constant and f = f, is a smooth function. We also assume that .7 is equipped with the abstract
differentiation operator & and we use the shorthand 5" = '=959.

We assume that elements of %/ are obtained after repeated uses of integration (possibly different ones from .%.) and
multiplication operators and therefore can be canonically represented by trees. We understand the notion of subtrees
in the natural way. If 7 has k subtrees isomorphic to T, we denote by Liff, i=1,...,k,all possible embeddings of T in
7. If k > 0, we denote it by T C . If o is a subtree of 7, let L, T be the tree obtained by contracting o to a node. The
action of these contractions on powers of X appearing in the symbols will not play a role in our setting, for details on
that we refer to [12] and for even more details to [4]. For any map g : W_ — R we define Mg : T — T by the linear
and continuous extension of

T MigTi=t+ Y _ (I)ZLLIf T, TeW. 2.1)
TeW_

Note that even in case /. is infinite (which is the situation of Section 3), the sum in (2.1) has finitely many nonzero
contributions.

Fix a set of canonical models J/l( built from a class of approximate noises of a ‘target’ noise £ (which may have
multiple components). We will refer to elements of .o by l'[g , where ¢ € (0, 1] and 8 runs over some parameter set ©.
In the context of Theorem 1.1, for example, ® would be the set of all mollifiers p of the form prescribed preceding the
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theorem. As usual, we assume the translation invariance of the laws of the approximations, and we also assume that the
o-algebras o (I%71)(z) : z € Dy) and o (1M 12)(2) : z € D;) are independent if the distance between Dy, D> C RY
is bigger than R, for some R uniformly in ¢, 6, 71, 72. In a rather large generality [5] showed that one can find maps

- o " ~ 0 ~ .
M? : T — T satisfying some natural conditions such that for all 6 € ® the models I, := Y M? converge in L,

(in the probabilistic sense) to an admissible model MHase—>0.Ina general situation these maps Mf and what the
‘natural conditions’ really mean can be quite complicated, here we restrict our attention to the following simplified
case.

Assumption 2.2. The maps M? are of the form Migey, with

2@ =—EMDO) + Y @) (ENL;;1)0). 22)
TATEMW i

Moreover, for all T € °W, 7 eW_, and embedding ¢, 7, one has (Mf —id)L,,zt =0.

As for the notion of convergence, which is also somewhat involved, the only fact we will explicitly use is that
for some ¢ € R and all Tt € Wﬁ, l:[zr converges to Mz in L,(2,%6.). It then follows that since Elt (as well as
E(h x IIt)IIT for any smooth function %) is a translation invariant distribution, it is actually a constant function, and
its value depends only on the law of £. Viewing (2.2) as a recursive definition of gf, it guarantees that (Eﬁ(:r(O)) =0

- . . . ~ 0 o .
for all T € W_. Assumption 2.2 also implies that for any g, II, M) converges to IIM[g), and the latter is also an
admissible model.

Remark 2.3. Assumption 2.2 is discussed in the setting of (1.1) in Section 3.1. Let us also emphasise that Assump-
tion 2.2 depends not only on .7 but also on the choice of the approximations /. It is general enough to cover for
example symmetric (but not necessarily Gaussian) approximations of generalised KPZ equations. It fails however,
for example, for non-symmetric approximations of the KPZ equation: when contracting in % the middle subtrees

isomorphic to &, one again gets &, which in the non-symmetric case is not invariant under the renormalisation map.

Let us extend g as above as 0 on W \ . With this convention, denoting the set N C 9 such that for all T € N
and all 8 € ® one has gf (r) =0, N always contains all symbols of positive degree.

The root of a tree 7 is denoted by p (with the understanding that it inherits the indices, so for example the root of a
tree called 7; will be denoted by p;). In the following 7o always denotes a tree with a distinguished node (which may
or may not be its root) p;. By T o 7o we denote the tree obtained from gluing T and 7o together by identifying p and
pg - In the special case pg = pg, one has simply 7 o 79 = T 70.

Denote by T C, 7 if T can be embedded as a subtree in t that includes its root p. Given 79, denote by T C, 1o if
T can be embedded as a subtree in 7y that includes its distinguished node pj. Summarising the possible inclusions in
one example:

70 =R§ ot eg: V' Crw, Y Cutw, % Ca 0.

Introduce the following sets

Ay ={(,....t):n=2, GeW, (FTa[lieFTiq €N (2.3)
Vee2,n—1], i(1) # - #i(0), Tik) Ce Tih) }»

o ={(t0,..., ) :n =2, G €W, (t1,...,tm) €, F((F Ta[TieaFTiw) 0 To € N
Vee[l,n—1], i(1) #--- #i(£), To Cx T0, Tith) Ce Ti)}>

Ay ={(t0,..., ) n =2, GeW, (t1,....m) esh, I ((FTaP[lier I Tiwy) 0 To € N
Vee[l,n—1], i(1) #--- #i(f), To Cx T0, Ti(k) Ce Ti(k)}-
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Finally, if a real valued sequence a, converges to a finite limit depending only on the law of &£, we denote it by a, ~ 0.
Our ‘integration by parts’ formulae then read as follows.

Lemma 2.4. Under Assumption 2.2, one has for all (t1, ..., 1T,) € A
ng il i T ) — cZ Z (T DI TP T ) ~ 2.4)
i=1i#j=1

forall (rg,...,Ty) € A>

de (ti[ Ty T ) 0 70) — ([T w) o 1)

—CZ Z I (I )T, ; T ) 0 T0) ~ O, (2.5)

i=1i#j=1

and for all (tg, ..., Ty) € A3

ng t,]_[k;éljtk oro ng (¥ r,)]_[k¢ljrk)oro)

i=1

—CZ Z F'((F I ) ks ; T %) © T0) ~O. (2.6)

i=li#j=1

The following corollary is immediate.
Corollary 2.5. Under Assumption 2.2 there exist maps gg :W_ — R and such that

o The identities (2.4)-(2.5)-(2.6) are satisfied with equality; .
e The sequence of models l'[gM[gg] converge and the limit is of the form Mg for some g depending only on the

law of &; B
o [fforty,..., T € W_ the system of equations
day=0  i=1,...k

is linearly independent of (2.4)-(2.5)-(2.6), then gf can be chosen to agree with gﬁ ont,...,T.

Remark 2.6. One can pictorially represent the above as follows. Focusing on the n = 2 case, the identities (2.4) give
relationships between renormalisation constants of trees obtained from the ‘scheme’ .-, where the different edges
are substituted with different combinations of .¥, ¥/, or contracting the edge, and &4 gives conditions on what

trees can be substituted in the placeholders . Similarly, for (2.5) and (2.6) one substitutes in the ‘scheme’

Example 2.7. Let us list a couple of examples in the case ¢ = 1. We use the graphical convention (as in, for ex-
ample, [11]) of o denoting the noise, — denoting ¥ and — denoting .¥'. Then, assuming |o| > —3/2 — 1/100 and
<, a0, %EN, one has:

82(920) = 3gY (<) Q4 n=411=n=13=14=0,
=287 — g2 (") Q4), n=2,11=0,1,=5",
=4l (o) 287 (:g) — 287 (%6°) Q4 n=3n=n=0,13=",

650 (V%) =3¢ (%) — g/ (20) @35, n=3,m=t=n=1=0,

28 =D+ P - - o n=2n=ln=0mn=",
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= 2423 - 28" (P 26). n=21m=%.n1=n=0.

In the last example we chose pg # po to be the leftmost node in <$e.

Let us check that the given tuples indeed lie in the appropriate ¢; sets, in the first and last example above. To verify
(0,0,0,0) € d1, since there are no nontrivial subtrees of O, the only choice in (2.3) is £: for £ = 2 we have ° € N by
assumption and for £ = 3 we have a¥° € N since | 02| > 0. To verify (&, 0, 0) € 3, first we note that (0,0) € o is
automatic. Since there are no nontrivial subtrees of 71 = 1, = 0 and the only choice for £ is £ = 1, the other condition
in g3 boils down to show T = F/(F'0) o Ty € N for Ty C4 To. For the choice 7y = T this holds by assumption, while
for all other choices |t| > 0.

2.2. Proof of Lemma 2.4

We will sometimes use 85] to emphasise that a differential operator 9, acts on the z variable. We say that a function
Q in n d-dimensional variables is translation-invariant if 7:Q(z1,...,2,) =01+ Z,-. v Zn +2) = 021, ..., Zn)
for all 7 € R?. Notice that if Q is a translation-invariant smooth function and 7 is a compactly supported distribution,
then for any nonzero multiindex «

(0% (1) (0) = 0. (2.7)

Proof of Lemma 2.4. To ease the notation, we drop the 6 index, but it will be clear that the conclusion is
approximation-independent. We start with the proof of (2.4). Denote

o=[hJu o =ullixItn, & =[huIn 0= DI iw, I (2.8)

as well as

Qe(z1,--os2n) = E(Hsfl(zl) T Hsfn(zn))-

Clearly Q. is a translation invariant smooth function which is 0 on {max; min;; |z; — z;| > R}. Let us take a smooth
compactly supported function x ® that is 1 on the ball of radius R + 2 around the origin and denote f® = f xX. From
the Leibniz rule

Y G0+ @ = T K G —2) = XK' G = 2)K' G = 2) [ Tios j K@ — 20) 2.9)
=@ — )P (Ko - DK@ - 20)
we get
Y (Eleo")(2) — ¢}, (EM07))(2)

=f 0u(ats v 2) O — e[ K G = 20) da -z,
(2.10)

_Zi/Qg(zh'--7Z")f(z_Zi)l_[k?giK(Z_Zk)dZ]'--dZn
=Y (BE(ff+ T (M67)(2),

where we used that the integral in the second line vanishes due to (2.7).

There are two essentially different scenarios in which one has 7 C o, First, when L, T 1s obtained from an embed-
ding i, T for some £. This has obvious corresponding embeddings ¢, T, Laij‘L_', and ¢35, 7, and moreover the results of
contracting these subtrees are exactly of the form (2.8), with 7, replaced by LLTZ{—'L'[. In this case therefore one has an
identity analogous to (2.10).

If T C o' is not of this form, then it can be written as T = &' := 7; ]_[k FTyky with some indices £(k) distinct from
each other and from i, and with 7; C, 7;. Denote the set of indices £(k) along with i by /. One can pair these subtrees
with those of o/ and o jm whenever j,m € I: simply define 6/ Cc ol and Gij C ojj as in (2.8), replacing each 7 with
Tx. One then has L(;_;aj = L&j/oj/ = L(;mm/(rmm/ =: 7 forall j, j/,m,m’ € I. Denote the set of all the possible 7-s

obtained this way (with multiplicities) by A. By Assumption 2.2, for all ¥ € A one has I, 7 = I, 7.
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NN

Fig. 1. Different possible positions of subtrees, drawn by blue, for 012, n = 3. The third kind belongs to N by the definition of ¢ . (For interpretation
of the colours in the figure(s), the reader is referred to the web version of this article.)

The definition of ¢f; guarantees that these two cases exhaust all the contributions to the renormalisation of o;;
as well: the only subtrees not covered so far are of the form 7 = (§’ f,-)]_[k J Tory with some indices £(k) distinct
from each other and from i and j. By definition, any T of this form belongs to /, so does not contribute to the
renormalisation (Fig. 1).

Therefore we have

Y (BX0")(2) — X2 (BlL0i)) (D) + X (B R # M) (11:67)) 3)
=Y EADE (X186 = X8 G ).
T€A
After testing with any function integrating to 1 and recalling that EIl7 is a constant distribution, we passtothe e - 0
limit and rearrange the above as

lim,2:(0") — Yz j8e (o)) = ) (BHE)O) lim (Z,-és«if) — iy ,-ég@/))
1#£7€A
+ Y (BIlo’)(0) — ¢),; (EHoy)) (0) + X, (E(f® # Tz) (T167)) (0).
Therefore by a simple induction argument we get the claim.
The proof of the other two claims goes along very similar lines. There are two slight differences, the first one of
which is the definition of Q,: we now set
0:(20,215 -+, 2n) = E(HSTS(ZO)HSTI (z1)--- Hsfn(zn))’

where 7 is the tree obtained by viewing 7 as a tree with root p;j. The other difference is the application of the Leibniz
rule: we simply replace the identity (2.9) with, in the case of (2.5)

K(zo—2)2 G0+ G — 2] L1 K@ — 20) — o+ )@ — 20 [ [ K@ — z0)
_ CK(ZO - Z)Zi;&jK/(Z - Zi)K,(z - Zj)nk¢i,jK(Z - Zk)

= (K(zo ~ D KG— zk)) @.11)
— cdld] (K(zo ~ DK @ =2 K@ — 20 + K'(20 = D[, K (Z — Zk)),
while in the case of (2.6) we make use of
K'(z0— 2260+ HE =2 Tiwi K G — 2) — Go+ /HE =200, K'C — 2) [ K G — 20)
—cK'(@0 = DX K' @ = 2K @ = 2)[ Tii ;K G = 20
(2.12)

=0 (K'(20 = DITK G — 20) = 0 (@ K )20 — DITK E — 20))

— el (K o~ DX K G~ ) [l K G~ 20)).

The integral of Q. against the right-hand sides of (2.11) and (2.12) vanishes as before due to (2.7), and hence the
proof can be concluded precisely as before. O

3. Proof of the main theorem
3.1. The setup

We briefly recall the setup of [7]. For simplicity for certain ‘sufficiently large’ indices from therein we simply take
10, which suffices for (1.1), but which does not play any important role. The approach of [7] relies on a transformation,
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which is of course formal for rough &, but is elementary to check for smooth £. Let, for ¢ € [A, '], P(c, -) be the
Green’s function of the operator 9; — caf. The aforementioned transformation then establishes that (1.1) is equivalent,
locally in time, to

u=1I(a), f)
f=0—=dwl@w, )&+ @a") @) (@) L), f) 3.
+ (@@ @) (@) Iec(a(), f) + 2(aa") ) @xu) lex (@), f),
where the operators I, for multiindices « in ¢ and x are defined as

Lo (b, f)(2) = /(%P)(b(z), 1 —2)f(Z)de (3.2)

and I = Iy. Note that I actually extends to f with regularity above —2, in which case (3.2) of course needs to be
interpreted in the appropriate distributional sense.

One can formulate (3.1) in the theory of regularity structures as follows. Start with the regularity structure built as
in [4,10] for the generalised KPZ equation and denote the set of basis vectors (‘symbols’) by /', and the ones with
negative degree by W/_. Define the ‘number of integrations’ [7] recursively by setting

(XN =[E8]=0, [rF]=[r]+[f], [Irl=[Fr]=[r]+]1.

Denote B = € 10([A, A~1]) and write B for the k-fold tensor product of 9 with itself, completed under the pro-
jective cross norm. In particular, we have a canonical dense embedding of %B; ® 9B, into PBi4,. We also use the
convention %9 = R. We then construct a regularity structure .7 in such a way that each symbol 7 € ¥ determines an
infinite-dimensional subspace J; of the structure space I, isometric to %B|.]. To wit, we set

I = @8} Iy = @ T, J7 =B @span{t}, (3.3)
o ‘r|:(x

and equip the spaces J, with their natural norms. The structure group plays no explicit role for us in this article so

we do not address it, the interested reader can find the details in [7]. The abstract differentiation, multiplication, and

integration operators on J are defined by

2 ®1)=¢ ® Dr,
CRNE®)=C®TT,
FCR)=(®)®IT.

Note in particular that the we have a whole family of integration operators (.7¢);cg. Note also that the multiplication
in general is not commutative. Take a family of kernels (K (C))ce[)“ 2-1]> which, along with their derivatives with respect
to ¢ up to any finite order, are uniformly compactly supported and 2-smoothing in the sense of [10, As 5.1]. We will
denote K¢ = ¢(K®) for ¢ € B and K¢ = K96

In the notation of Section 2 we set ' to be the set of all symbols obtained by repeated uses of integration and
multiplication. Let I, be the canonical model built from &¢ for ¢ > 0, where the dependence on the mollifier p,
which corresponds to 6 in the framework of Section 2, is suppressed. The fact that Assumption 2.2 holds follow from
that, due to the spatial symmetry, one has

EII, (5, ® 8 ® 8. ® <) (0) =EIL (8. ® 5 ® %°)(0) = EI¢ (8 ® 5+ ® ) (0)
=EIL (5. ® %) (0) = EIL, (8. ® %) (0) = EIL, (8. ® 6 ® *)(0) =0

where ® stands for X E. We then set ITs"™ := T, M [¢:1» Where g is from Corollary 2.5, and denote the limiting model
by HSym = ﬁM[g].

We define the maps the K¢ by replacing .¥ and K in [10, Eq. 5.15] by . and K¢, respectively. As before, we
denote H<:¢ := K% We can now introduce the lift of the operator I,. Take two modelled distributions b and f and
set b = (b, 1), b=b—b.1f Oy = 8%9™  then we define

c x>
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B
%, N = Y P it ). (34)

[€]<10

It is shown in [7] that the maps J, satisfy the natural Schauder-estimates on appropriate spaces of modelled dis-
tributions. Assuming for the moment 1y = 0, the abstract counterpart of (3.1) then yields the object u claimed in
Theorem 1.1: We set u = RU, where U is the obtained by solving, with respect to the model IT>Y™, the system of
abstract equations

U=3@aU), %),

F = (1 = Ved (U))E + 2Vexa(U)a' (U)PU + Veea(U) (@' U) (V)

+Vea(U)d"(U)(QU)?,
Va=3a(a(U),§), fora =c,cc,cx.

(3.5)

We will also encounter Ve, although it does not explicitly appear in the equation (3.5). For general initial condition
up, one has to include an additional variant of the operators J (denoted by J in [7, Eq. 4.6]) in the first and third
component of (3.5), but since they do not effect main line of the argument at all, they will be omitted for simplicity.

To prove the theorem, we need to show that if U? is obtained from solving (3.5) with respect to H?ym, then
ué :=RU? solves (1.2).

The plan is similar to the usual derivation of renormalised equations. First we use the abstract equation (3.5) to
derive the form of the expansion of the solution (U, V¢, V¢, V.x) as well as the ‘right-hand-side’ F. That is, for each
tree T we express the coefficient! u; of 7 in U, (vc); in V,, etc. The action of the renormalisation map Mg, on
F then produces for each tree 7 a counterterm g, ( fr ® r) in (3.1). There are two factors complicating this plan.
Firstly, the expansions will have way more terms than one is used to in standard examples like the ones in [10] - each
tree can appear with several different parametrisation on each of its integration edges. Secondly, the renormalisation
of different trees cannot be treated separately: a large number of cancellations have to be exploited to eliminate all
nonlocal counterterms and arrive to the (local) ones stated in Theorem 1.1. All of these cancellations will come from
applications of Lemma 2.4.

3.2. Notational conventions

To organise our calculation, let us introduce a couple of shorthand notation. Firstly, we drop the index ¢, but keep
it in mind that the solution (U, V,, V.., V¢x) we are considering is with respect to the renormalised smooth model
nfym. Fix a space-time point z and in the sequel omit the argument z from any function of space-time (scalar-valued
and J -valued alike). We also omit the # argument from a or any of its derivatives.

In additional to the graphical conventions of Example 2.7, we use squares like m, 8, for generic trees, and their
colour simply serves to distinguish between different ones in the same formula. Since all symbols appearing in the
expansion of the solution are of the form ¢ ® 7, where ¢ is a tensor product of derivatives of §,, we set the shorthand
(i1,...,ik) =908, ® - ® 8*8,. Furthermore, to ease the reading, we rearrange the order of tensor products. Given
a pictorial representation of a tree, the ordering is always top-bottom, left-right, but which one takes precedence will
change occasionally. In the notation (-) the order is a) vertical position of the parents b) horizontal position of the
parents c¢) horizontal position of the children (recall that the parent vertex of an edge is the one closer to the root). For
example,

(0,1,2)® %" = B(57%(2(5% B)(F" B)).

From time to time different ordering of the parameters will be more natural. In (- )~ we list the parameters in order of
a) horizontal position of the parents b) horizontal position of the children c) vertical position of the children. Finally,
in (-)¥ the order is based on a) vertical position of the parents b) vertical position of the children c) horizontal position
of the children. As examples,

! In our terminology the ‘coefficients’ include the distributions attached to the trees. For example in a modelled distribution of the form H (z) =
a1t @) @ T+ ar(2)er(z) ® T we say h? =a18] +arlp.
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(L k £)” ®L2=(i b, j. k) ®%2. (i jk )Y ®a={i k. j.l) ®

We emphasize that these notations all depend on the given pictorial representation. We further set

k!
(khe= D —en o).
> ai=k

The notation is set up to condense more complicated cancellations. For example, while Lemma 2.4 at first sight only
gives

2:((0) ® %) = g (a0 )2 ® V),

one can differentiate this k times with respect to the parameter and obtain
g ((k) ®%) = ge((al(k N2 +k((k —1)2) @ V).

The notations {{ k ))Z’ ,{((k ))j are understood analogously.
Recall that u = RU and write vy = R V,. In general, the coefficient of a symbol z € W in U will be denoted by
ur, and similarly for & and V,,. Some combination of these functions will repeatedly occur:

g=1-vd,

Pc= é(vca” + Ucc(a/)z)» Pce = %(vcca” + vccc(a/)z)a pe= 5(21)60(1/@// + vea”).
One important role of ¢ is that, precisely as in [7], for short times it is nonzero and u solves an equation just like (1.1),
but with an additional term

i > s(fr®r) (3.6)

TeTW-

appearing on the right-hand side. Note that while T/_ is the usual set of negative degree symbols for the generalised
KPZ equation, for each t, fr is the linear combination of many different distributions, see e.g. (3.12) below, and so
(3.6) is in fact a sum of several hundred terms. Our goal to show that this sum is nothing but the counterterm specified
in (1.2), with the appropriate choice of C¢, C¢, C¢.

To this end, given t € W_, for any k, iy, ...i[;] €N, and any function of the form s = gaka', ga*(a')?, gaka'a”,
k € N, we denote h(ij, ..., i) < 0. This reflects that the contributions of all terms of the form A (i1, ..., i[;]) ® 7 to
the renormalisation are precisely as required.

We will repeatedly apply integration by parts identities from Section 2. By writing

R ~nRn (n)

we mean g.(¢] ® 11) = g:({2 ® 12). Given such an identity, we may simplify the expansions of fr. and f,z simulta-
neously, provided they contain the same multiple of ¢; and ¢, respectively. This will be denoted by

A - (n) -

fao=hti+o =0,

A -

(n) —
fo=hHo+0H~ 0.

. . . . . .
Here n will be some Roman numeral and ~ some function. We emphasise that ~ is not a single relation but has to be

read in pairs (or, in more complicated situations, triples, quadruples, etc.). By ~ we mean the summary of all previous
. . . . . . (n)
simplifications of the coefficient of a given symbol, either by =< or ~.

Itis clear from Gaussianity that only 7-s with 2 or 4 instances of & contribute to (3.6), we denote the corresponding
subsets of W by W2, W*. With all this, our goal can be summarised as showing f; ~ 0 for all T € W2, W*.
Finally, let us mention that often the integration by parts will look a bit simpler due to symbols in WY :=

{qu,qﬁ,@p,cip,%,o@o} having vanishing contribution to the renormalisation. This is again a consequence of
Gaussianity. For example, the last line in Example 2.7 simplifies to
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(05 ® 32~ a0 ® &,

It is also worth noting and will be often used that these formulae do not require all edges to have the same parameter.
In particular, edges that do not ‘play’ in a given integration by parts, can have arbitrary derivatives, so for example the
above relation is true more generally:

(0,0,7, j, k) ® & ~a(0,0,0,i,k, j) ® K&

Remark 3.1. One possible way to extend our result to the non-Gaussian case would be to 1) calculate the coefficient
f, for T € WY; 2) keep track of how the performing the steps below effect these coefficients; 3) use the cancellations
relating only elements of W.C to each other (there are in fact 5 of these) to further simplify all of these coefficient to
0 in the sense of ~. To avoid cluttering the already lengthy computation below, we refrain from this generality.

3.3. Some recursions for the coefficients

First we want to treat the contributions from %2, but for later use some steps are formulated in a more general
way. In fact, the terms in W2 had already been treated in [7], but for the sake of completeness, as well as to illustrate
the use of some of the notations above, we include the argument.

First of all, it will be repeatedly used that for any m € W_ one has

ug =7 fa®(0). (37)

Indeed, this follows from the fact that inAf](a(U ), ?;7) the symbol T appears twice: once in the £ = 0 and once in the
£ =1 term. Since, by definition, FKaw g — .1+ (...), one gets the equation

us = fa® (0) +a'usve, (3.8)
and from it, (3.7). One therefore also has
(v)s= fa® (1) +d'usvee = fa® (1) + La'vee(0),
(Vee)s = fa®(2) +a'usvece = fa® ((2) + £a'veec(0))
(ve)p = fa® (1).
Let 2* denote 2 for m #m and 1 for s ==, The above then yields the following recursions

f‘o = —(vc)Ta’ — vca"uT

=—pcfa®(0)—d' fa® (1), (3.9)
f\p = 2*aa’(vcx)T ®F us + 2*aa/uT ®F (Vex)g + 2*vcca(a/)2uT ®F us + 2*vcaa”uT ®F ug
=1 fa® fa® (2*ad (1)2+2apc((0)2), (3.10)

where we denoted by ®* when the parameter derivatives are slightly rearranged after concatenation (since the way
they should be arranged is pretty obvious, we prefer to avoid making this completely precise by introducing further
notations). One obviously has fo = g and we recall the cancellation

(0) ®%~a{(0) @M. ()
Thus we can write
; / @ /
Jo,==qpc(0) —qa’ (1)~ —qa (1) <0,
@

fap=qad (1)1 +qap.(0)2 ~ gaa{ 1))z < 0.

The rest of the article is devoted to show ft ~ ( for
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The recursions (3.9)-(3.10) yield the coefficient of all 8 of the above symbols that are built from the repeated
operations = — %, m — 80 as well as those of &;@, &3?, W For the 6 remaining symbols, however, we have to take

into account the fact that u does not only contain symbols of the form T. Indeed, one has, by a similar argument as the
one leading to (3.8),

um g = %(a/u5®*ﬁ®(1)+a/ﬁ®u?®* (1))
+a'um gve + %(a”ur F ugve + (a’)zuT ®F u?vcc)
=d'um v+ 15 fa® fa® (a'(1)2+ pe((0)2)
=55 /a® fa® ({102 + pe(0))2).
One also easily gets
(vemp=dus®* fo®(2)=1d' fa® fa®(0,2).
From um = we also obtain (here we will only need the case = # n)

(vc)qp:a’uT@)* fo®(2) +a’f-®u? ®*(2)

(3.11)

+a'um svee + a”uT ®* ugvee + (a/)2MT ®* UBVece
=fa® fa® %[a’((), 2)+4d'(2,0)+ %a/vcc(a/« 1)2+ pe(0)2) 4 pec((0)2].

It turns out that due to the regularity and the Gaussianity of our noise, we will not need to calculate the contributions
to u of products with more than 2 terms. From now on all product of parameter derivatives will denote a simple
concatenation so we drop ® from the notation. The above formulae then yield the three more complicated recursions:
for =, % (although we only really need = £ 0) we have

flf = —a”(vc)Tu? — a”uT(vc)? —vea"um o — a'(ve)m o — vcaquu?
= —a" fal{1)2 — 2L a'a" vee fal(0)2 — pefa(@’{(1)2 + pel(0))2)
— fa((@)?(0,2) + (a)*(2,0) +d’pec((0))2) — Fvea” fal{O)2
= fal = (Pe + P2 +d'pec) (0)2 = (ped’ +a") (12 = (@)*(2)2
+2(ah*(1,1)].
Next, we have
f@ = 2aa/(vcx)vu? + 2((a/)2 + ad”) (Vex)quaug + 2aa’(vcx)?qu
+ 2vcca(a’)2u?uq/o + ucf((vcc)ra(a’)2 + vcc((a’)3 + Zaa’a”)ur)u?
+ 2vcaa”u?um + u?((vc)raa” +ve(a'a” + aa”’)ur)u?
= 2aa'(vcx)c\;u? + 2((a’)2 + ad") (Vex)quaus + 2aa’(vcx)?uq.p
+ 2qapcu?uq/o + qa’pcu?uru? + qaﬁcu?uru?
+ a(a’)zucf(vcc)ru? + aa”ucf(vc)ru?
= fa[2a(a")*(0,0,2) +2((@")? +aa")(0,0, 1)
+2a(@)*(1,0,1) +2a(a’)?(1,1,0) +2aa’p.(1,0,0)
+2ad' pe(0) (1 )2 +2a(pe)*(0,0,0) +a’p(0,0,0) +ap.(0,0,0)
+a(@)?(0,2,0) +aa"(0,1,0) +aa’ p(0,0,0)]
= fal(ape +2a(pe)* +ad’ pec +a’ pe) (03 + (aa” +2ad’ pe) (1)3 +a@)*{(2)3
+2(a")%(0,0, 1) — 2a(a")*(1, 1,0)].
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Finally, one can write

fago = 2ad (vex)m outg + 2aa'up(vex)a p +2((@)? + aa") (ver)p(ue)? + daa’ (vexque, o
+ 2((61/)2 + aa”)uru?(vcx)? + Zaa’uq/o(vcx)?
+ 2vecala)? (uvu? + ZMTuq/o) + 214?((1)06)?(1 a)? + vcc((a’)3 + 2aa'a”)u?)u?
+ 2vcaa”(uq'pu<f + ZMTMO\/J) + 2uT((vc)?aa” +ve(a'a" + aa/”)u?)u?
= 2ad’ (vex)m puo + 2ad'un(vex o p + 2((@)? + aa") (Ve g u9)® + 4aa’ (vexgue o
+ 2((6/)2 + aa”)uru?(vcx)? + Zaa’uq/o(vcx)?
+2qap, (uq/ou? + uT2qu) + an’pcur(u?)2 + 2qaﬁcuT(u?)2
+2a (a’)zuT(vcc)?u? + 2aa”uT(vC)<fu?
= fa[2a(a")*(2,0,0) +2a(a)?(0,0,2) +2((@)* + aa")(1,0,0)
+2a(a’)*(1,1,0) +2a(a’)*>(1,0,1) 4 2ad’ p.(1,0,0)
+2((@)?*+ad")(0,0,1)
+2a(a’)?(1,0,1) 4+ 2a(a’)?(0, 1,1) + 2aa’ p.(0,0, 1)
+2aa’ pe(((1)2(0) + (0) ({1 ))2) +4a(pc)*(0,0,0)
+2a'pc(0,0,0) +2ap.(0,0,0)
+2a(a")*(0,2,0) +2aa"(0,1,0) + 2aa’ pec(0,0,0)]
= fa[2(ape +2a(pe)* + aa' pec + ' pe) (O3 +2(ad” +2ad’ pe) (1)3 + 2a(a)*(2))
+2(a")*(1,0,0) +2(a")*(0,0, 1) —2a(a)*(0,1,1) — 2a(a’)*(1,1,0)].

(3.12)

3.4. Exploiting the cancellations

To simplify the above complicated expressions, a number of application of the identities from Section 2 will be
needed. To give some structure to this lengthy computation, in each smaller step we aim to eliminate (in the sense of
~) some terms of a given type.

Eliminating coefficients with p., pec, and a”

The coefficients in the above expressions can be viewed as polynomials in the 6 variables a, a’, a”, p¢, pe, pee, but

terms containing three of these can easily be eliminated. We have the cancellations

(€N2 @2~ (al( )3 +L(L—1)3) @ (¥ +2%). (i)
Applying this with £ = 0, and using the notation fu/ f- = ¢ to denote fu = f- ® ¢, we can write:

r A (D) / /" / /

foo/ fa = =pZ{(0)2 = (ped’ +a") (12 = (@) (2)2+ 2@ (1, 1),

(i)

fogo/ fa = (2a(pe)* +a'pe) (003 + (aa” +2ad’ pe) ( 1)3 +a(@)*{(2)3
+2(a)?(0,0,1) —2a(a)*(1,1,0),

N ~ (ii)
Jago/ fa 2(2a(pe)* +a’ pe) (03 +2(aa” + 2aa’ pc) (1 )3 + 2a(a')*(2))3
+2(a)%(1,0,0) 4+ 2(a")*(0,0,1) — 2a(a")*>(0,1,1) —2a(a")*(1,1,0).
Next we apply (ii) with £ =1
faof fa® —p2(0) — ped § 1) — (@)*( 202 +2@)2(1,1),

(i)

ol fa = (2a(pe)* +' pe = a") ()3 +2ad pe((1)3 +a(@)*(2))
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+2(@)?(0,0,1) —2a(a)?(1,1,0), (3.13)
o ~ (ii)
Jage/ fa % 2(2a(pe)* +a'pe — a”)(0)3 +4ad pe(( 1)z +2a(@)*(2)3

+2@@)*(1,0,0) +2(a’)?(0,0, 1) — 2a(a’)?(0,1,1) — 2a(a’)*(1,1,0). (3.14)

We now write
f@ ~ qpea”(0)(0)s +qa'a” (1)(0)s +(...),
f% ~ —qapea”(0)2(0)3 — gaa'a” (1 )2((0)3 + (...),
where (...) stands for all the terms coming from (3.13) not including a”. Recalling
(0,i,0, /) ® g ~a(0,0,i,0, /) @ % (iii)

for any i and j (although for the moment we only use i = j =0), we have

N (iii) )

fq& X qaa
o i)

f$ ~ —qaa'a”((1)2(0)3 +(...) < (...

(Y({ON3+C.o=(..,

We therefore have
frgol far (2a(p)* +a'pe) (0)3 +2aa’ pe((1)3 +a(@)*(2))
+2(a)?(0,0,1) —2a(@)?(1,1,0),
and performing the similar steps in (3.14), also
fagol fam2(2a(pe)* +d pe) (0))3 +4aa’ pe((1)3 +2a(@’)*(2)3
+2(a)?(1,0,0) +2(a)?(0,0,1) — 2a(a’)*(0,1,1) — 2a(a’)*(1,1,0).

A remark and eliminating second derivatives
Note that above argument could of course be easily repeated with (a’)? in place of a”. Therefore, whenever we
arrive to

frgol far cat(@)?(i,0, j) + (..,

for some ¢ € R, i, j, k € N, we can infer
fogo/ fax ().

(S)
This simplification will reappear later in the proof, and will be denoted by ~. The analogous statement of course
also holds for 802, Keep in mind that the parameter in the latter case has to be of the form (0, i, j ). We can therefore
readily simplify the above to
r » ) 2 I I N2
J&/fa™ (2a(pe)* 4 da' pe) (O3 + 2aa’ pe((1)3 +a@)*(2)3
—2a(a)*(1,1,0),
£ 2 S 2 1 4 N2
fage/ fa = 2(2a(pe)* +a Pe) (003 +4ad’p.(1)3 +2a(a")*(2)3
+2(a)?(1,0,0) —2a(a)*(1,1,0).

To remove the term with 2 derivatives, simply apply (ii) with £ = 2:
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fwﬁ(‘i) 20N — ped (1) +2(@)(1, 1),

Fao fo % (2a(pe’ +a'pe) (003 + (2aa pe — 26@)2) (1)
—2a(a)?(1,1,0),
N ~ (ii)
Jugo! fa = 2(2a(pe)® + ' pe) ((0)3 +2(2ad pe — 2a')) (1)3
+2(@)%(1,0,0) —2a(a’)*(1,1,0).
Eliminating symbols of the form :%'3 , Rf o o
Next we use the identities
(i,€) ®@%o+ (i, £) ®""~ 2(i )(al( N2 +2(€ —1))2) ®Lp- (iv)
Using this withi =0, 1, £ =0, 1, we get
f;p/f-=p?<o,0> +a'pe(0,1) +a'pe(1,0) + @)*(1,1)
(i%V) 0.
fap) far —p2(0)2 — ' pe( 1 )2 +2(a)*(1, 1),

(1v)
~ —2p2(0)2 —2a' pe(( 1 )2 + (@)*(1,1),

)
f({;/f- = —2ap;(0)((0)2 —2ad’ p(0)((1)2 —2ad’ pe(1)((0))2 — 2a(@)*(1)((1)2

(iv)
~ 24’ pe(0) (02 +2(@)* (1) (0. (3.15)

Now we can use (ii) again
~ ~ (ii)
fao/fa= (a)*(1,1).
N (11)
fogol fa ™ —a'pe((0)3 = 2(a)*((1)3 — 2a(a")*(1,1,0),

(5’3 —d'pel(0)3 —2(a)*(0,1,0) — 2a(a)*(1,1,0),

Fugo! fa 24 pe{0)3 — 4@)2(1)3 +2(@)*(1.0,0) — 2a(@)?(1,1,0)

R 24 pe{0))3 — 2(a)?(1,0,0) — 2a(@’y>(1. 1,0).

Similarly to (iv), we have
G ) @B+ (£, ) @M~ 2, j) (a2 + e~ 1)2) ®3Es. W)

Hence, just as above, we can write
fY/ﬁ=—2a(p§<<0>>z<0>+a’pc<<1>>z<0>+a’pc<<0>>z<1>+<a’)2<<1>>z<1>)

W
~0,

fage! fam —=2d' pc((0)3 —2(a)*(1,0,0) —2a(a)*(1,1,0)

R 24/ pe{0 )3 — 2(a)*(1,0,0) — 2a(@)*(1,1,0)

+2ap2((0)3 4 2ad’ pe((1)3 +2a(@)*(1,1,0) 4+ 2a(a’)*(0,1,1)
R (2ap? — 24’ pe) (03 + 200 pe (1) — 2(a¥2(1,0,0),
fag, ) fa= 40> (PZ(0D24002 +a pe 1)2(0N2 +4'pe0D2( 12 + @12 1))
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R —4ad pe((0)s — 4a@)2(1)2(0)2.

Let us now compare the coefficients ofRﬁ and & . Using (3.15) and that ¢ (a')3( 1, 1){0)>, qa(a’)3 {(IN2{1)(0)2 =
0, one can write

fé ~ —2qa(p2(0,0) +a' pe(1,0) +a'pe(0,1)) (0 )2,
fx ~2qad’ (p2(0)(0) +a pe((1)(0) +a pe( 0N (1)) (0 )a.

Using

(02 ® o~ (@l £ )3+ (e —1)3)(0)2 ® % (vi)

with £ =0, 1, we get

A (V1) A (vi)

qﬁ ~ 0, fiﬁ ~ —2q(a)? pe(0)s.

Very similar calculation shows

f & ~0, f% ~4ga(a)*pe(0)e.

Hence, by
0)s ® % — (0)s @Y — (0)s @Yo~ 2a((0)s ® X&s (vii)
we obtain
A (vii) N (vii)

A

and we momentarily postpone the effect of (vii) on fx, f$

Eliminating o\?ﬁ , Qﬁ?

So far the coefficients of the symbols &/@ , &jf , W have not at all been simplified. First, notice that
f?vg =2ga@)*(1,0,1,1)” + (..) =< (...),

and similarly for , . The terms (...) then only contain parameter derivatives of which at most two is 1 and the
rest is 0. From (3.9)-(3.10) it is easy to see that these terms are

fgvg ~qa((0)y (p2(0N; + 24 pZ(( 1)y +2@@)*pe(1,1)7)
+2ga(@)*pe(1)5(0,1)” —ga(@)?*pe(1,0,0,1)~
fq@ ~ =2qa*((0)3 (p2(0)y +a' p(1); + (@) pc(1,1)7)

—2ga*((1)3 (a'p2(0)5” + (@) pe(0,1)7)
—2ga*(@) pel( 1937 (1) (0)~
Thus, from the cancellations
(N (0, J)7 ®@p—( N7 (i, /)7 ® g
~(alens +eqe—103 )i )7 o2 (viii)

we have
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A (viii)

fgvg ~ —qa(@)’p.(1,0,0,1)~

~ (viii)

f@ ~ —qa’p2(0)5 +2qa(@)? pe(0)3 (0, 1)~

—2ga*(1)3 d' p2(0)5 —2qa* (@) pe( 1)y (195 (0)7, (3.16)
as well as
A (viii)
fg ™ —q[(2ap? —24d'pe) (ONT +2ad pe(1)7 —2(a)*(0,0,1)7](pe(0)” +d/(1)7)
+qa0)3 (P2(0N3 +2d'p2( 1) +2(a)?pe(1,1)7) (3.17)

+2ga(@)?pe1);7(0,1)~
= (—qap? +2qa' p2) (0T +2q(@)? pe( 0N (105 —2qaa’ p2{(1)5 (0);

where the last step consists of a simple (but somewhat lengthy) rearrangement of terms and the fact that
q(a’)3(0, 0,1, 1) =<0. One can also rearrange (3.16) as

f&j? ~ —qa?((0Y); (P2(0NT +2a' P2 13 +2(@) pe( 1)~ (1)77)
—2qa*(@)? p(1)37(0) 7 (1)5
+2ga(a)?pe(1,0)7 (0)3” +2ga*(@)? pe(1,0)7(0) 7 (1)3.
We also have from (3.10)
ﬁ@; ~qa*(0)3 (P2UONT +2a p2(1)3 +2@)pel 1) (1)7)
+2qa* (@) pe 113 (0) 7 (1) —qa* @) pel 107 (0N (1)5.

Very similar to the above, we have the cancellations

((E)) (i, j, k)~ ®§’\3f (i, j, k)™ ®o\§?

~( 0 DT LA — 10TV k)T @Y (ix)

and so
ey R 4@ pel( 135 (N7 (1) — 20a>@)pel(ONT (1)

N (ix)
fgy ~ 2qa(a)? pe(1)7 (0N +2qa*(@)? pe(1,0)7(0) 7 (1)5,

and also, similarly to (3.17) but keeping in mind the postponed contribution coming from (vii) to O\ﬁ?,

—

f et @) pe(0)s + (ga*p? — 2qaa’ p?) (0 )5

—2qa(a)pc(0); (105 +2qa’a’ p2(1); (0)3 .
From (3.17)-(3.18) and the identity

(iN (N ®agd~ iy (al€)3” +L(e—1)7) @iy (x)

we easily conclude

(3.18)

A (x) (X)

q?ﬁ ~ 0, f q?jf ~ 0.
Finishing up
Notice next that all remaining terms of & 2, ,q{y’ have 0 derivatives on the bottom edges, so integrating by

parts there is relatively straightforward. Using
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(1,0,i)” ®<e~ali,0,0,i)” ® 2, (xi)

we have, with introducing the shorthand r = g (a’)? p.

fc@ ~ —q(a) (pe(0)” +a'(1)7)(1,1)7 < —q(@)?pc(0,1, 1)~

R 1y ().

Similarly we obtain, also recalling the postponed contribution from (vii) to %,

f@”oﬁ
f%” —2q(a)? pc(0)s
—qa(pc (02 +a'(1)2)(a pe((0)3 +2(a)*(0.1,0) +2a(a’)*(1,1,0))
—a?r ()30 (NS —ar(ONI(0Y (1) —ar(1)3(0) (0)S
= —2r((0))5 — qad' p>(0)s
—ar(20 103000 + 2005 (1) (ONT + (ONT(0) (1)3)
— a3
From the identity

(Jok,0,i ) @Yo+ (0,0, j, k) ®odp~2a(i,0,0, j,k)” @Y (xii)
we have

A (xu)

~ 0
?\3?
fqﬁ X ga@) (pell0)a +a'(192)(1.1)
+q@)?pe(((0)2(0. 1) +a((1)2(0, 1))
= ONs (1) +ar((1)3(1),

A (x11)

%gp ~ q(pe(0) +d'(1))(a'pe((0)3 +2(@)?(0,1,0) +2a(a)*(1,1,0))

+q@)?pe((1,004 (0N} +a(1,0) (1)3)
= qd' p2(O)4+r(2(1,0)¥ <<0>> +2(0, 1)4 (o))
Farl(1)3(1)5.

Now we have

1 @Ge~ (a1)3+(0N3)(1) ®Yo (xiii)

which immediately yields

N (xiii) A (xiii)
f C@p ~ O’ (ﬁ I
Finally, let us restate a version of (iii) with the ordering ( b
()3 ® 5o~ ( (e—1) 3.0% (xiv)

Using (xw) first with £ =i =0, then with £ =i = 1, and finally with £ =1,i =0:
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fp® ) 2r(0ys
—ar(2( 15 0NY +200N3 (1) (ONT + (ONT(0) (1))
—ar (N3N
R ar0ys — 2ar( 1)} 0t R0,
N (xiv)

fR%] ~ r(2(1,0)0Y(0)F +2(0, 1) (ONT) +ar( 1)1

(xiv) (xiv)
X 2r((1)3(0)5 ~ 0.

The proof is complete. O
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