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Abstract

In the Vlasov-Poisson equation, every configuration which is homogeneous in space provides a stationary solution. Penrose gave
in 1960 a criterion for such a configuration to be linearly unstable. While this criterion makes sense in a measure-valued setting, the
existing results concerning nonlinear instability always suppose some regularity with respect to the velocity variable. Here, thanks
to a multiphasic reformulation of the problem, we can prove an “almost Lyapounov instability” result for the Vlasov-Poisson
equation, and an ill-posedness result for the kinetic Euler equation and the Vlasov-Benney equation (two quasineutral limits of the
Vlasov-Poisson equation), both around any unstable measure.
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1. Introduction

The purpose of this paper is to study the nonlinear instability of a general class of Vlasov equations (see Section 4),
i.e. evolution equations for the density of a system of particles in the phase space. This class of equations contains the
Vlasov-Poisson equation and some of its asymptotic limits. The specificity of this work is the fact that we deal with
the case when for all (¢, x), f(, x, ) is only supposed to be a measure. Let us first describe the physical models we
have in mind.

1.1. Presentation of the physical models

We will apply our abstract result to three models studied in the field of plasma physics: the Vlasov-Poisson equation
for electrons, the kinetic Euler equation and the Vlasov-Benney equation. Let us present them one by one.

The Vlasov-Poisson equation for electrons. A population of electrons of unit mass and unit negative charge mov-
ing in a homogeneous environment of fixed particles of positive charge can be described by a Vlasov-Poisson type
equation. If the domain is the d-dimensional torus T¢ := R¢/Z¢, this equation governs the evolution over time of
the density of electrons f = (f(t,x,v),t €[0,T],x € T v e Rd) in the phase space T4 x R, They write in the
following way:

o f(t, x,v)+v-Vyf(t,x,v) =V, U, x) -V, f(t,x,v) =0,
—AU(t,x) :/f(t,x, v)ydv—1, (D
S0, x,v) = fo(x, v).

It means that the electrons follow the Newton dynamics in the electric potential U they induce together with the fixed
charges. This potential is obtained through an elliptic equation involving the density of electrons in space.

This equation is of major interest in plasma physics, and so has been extensively studied. Among the huge lit-
erature about it, global existence of classical solutions to the Cauchy problem has been obtained in dimension 2 by
Ukay—Okabe in [32], and in dimension 3 by Lions—Perthame in [25] and by Pfaffelmoser in [30]. We refer to [17] for
an overview of the subject.
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The kinetic Euler equation. This equation is deduced from the previous one in the regime of small Debye length,
also called quasineutral limit (see [18]). It reads

o f(t, x,v)+v-Vyf(t,x,v) — Vyipt,x) -V, f(t,x,v) =0,
/f(t,x,v)dv:l, 2)
fQ0,x,v) = folx,v).

It can be seen as a kinetic version of the Euler equation for incompressible fluids: as in the hydrodynamic case,
the particles follow the Newton dynamics in a pressure field p, which is the Lagrange multiplier associated to the
constraint

/f(t,x,v)dv:l. 3)

Incidentally, to any monokinetic solutions to (2) corresponds a solution to the Euler equation and vice versa.

This analogy goes further. Indeed, this equation is linked to an optimization problem, the so-called Brenier model
(see for example [10,11,1]). Following ideas by Arnold (in [2,3]), this model aims to understand the behavior of
incompressible fluids as the geodesics of the set of measure-preserving diffeomorphisms, which is seen as a formal
Riemannian manifold of infinite dimension. In the smooth case (considered by Arnold), the geodesic equation is
nothing but the Euler equation, whereas in general, as shown by Shnirelman in [31], we cannot prevent particles from
crossing each other, and we obtain solutions to the kinetic Euler equation (at least in a weak sense). A study of (2)
with PDE techniques provides information on the optimization problem: using the present paper, the author shows in
[4] that the pressure field in the Brenier model, although continuous in some sense with respect to the data (see [5])
cannot be a smooth function of these.

The Viasov-Benney equation. This equation is another formal limit of the Vlasov-Poisson equation in the quasineu-
tral limit. But this time, it corresponds to the case when we look at the evolution of the population of ions whose
masses are far higher than electrons ones. It reads

& f(t,x,v)+v-Vyf(t,x,v) — Vep(t,x) - Vy £, x,0) =0,
p(t,x)=/f(t,x,v)dv, 4)
£, x,v) = folx,v).

We refer for instance to [20] for its derivation. The study of this Cauchy problem has aroused great interest in the
last few years, as evidenced by the works of Bardos [6], Bardos—Besse [7,8], Han-Kwan—Rousset [24] and references
therein.

1.2. Homogeneous profiles and the Penrose condition

The three equations (1), (2) and (4) admit stationary solutions of a particular form: those which depend only on the
velocity variable. In each case, any smooth profile u = (£ (v)) satisfying

//L(v) dv=1

gives rise to a stationary homogeneous solution. The goal of the present work is to study the nonlinear instability of
the three models around such profiles.

At the linear level, the question of linear stability dates back to the late 50’s and resulted in the seminal paper [29].
In this article, Penrose gave in the context of the Vlasov-Poisson equation (1) a necessary and sufficient condition on
a profile u to be linearly unstable. Let us present this condition. For given n € Z¢ and w € C¢, the linearization of the
Vlasov-Poisson equation (1) around a smooth profile ; admits a solution of the form

a(v)exp (in c(x — a)t)) &)
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for some function a if and only if (n, w) satisfies the equation

/Mdv:mﬁ (6)

n-(v—w)
R4
If in addition JI(n - w) > 0, then this solution is an exponential growing mode, and the stationary solution p turns
out to be linearly unstable. Therefore, for the Vlasov-Poisson equation (1), we can give the following criterion for
exponential growing modes to exist.

Definition 1.1 (Penrose instability condition for Vlasov-Poisson). The smooth profile u is said to be Penrose unstable
for the Vlasov-Poisson (1) equation if there exist n € Z% and w € C4 such that J(n - w) > 0 and satisfying (6).

In the other models, similar formulae can be found, and lead to the following definitions.

Definition 1.2 (Penrose instability condition for kinetic Euler). The smooth profile u is said to be Penrose unstable
for the kinetic Euler equation (2) if there exist n € Z¢ and w € C¢ such that 3(n - ) > 0 and satisfying

/Mdvzo. 7

n-(v—ow)
Rd

Definition 1.3 (Penrose instability condition for Vlasov-Benney). The smooth profile i is said to be Penrose unstable
for the Vlasov-Benney equation (4) if there exist n € Z¢ and w € C? such that J(n - w) > 0 and satisfying

/Mdvzl. (8)

n-(w—ow)
R4

Once again, in the three cases, @ is Penrose unstable for one model if and only if it is linearly unstable when
considered as a stationary solution to this model.

In these three cases, classical examples of stable profiles are the ones admitting a unique maximum. For example,
a Maxwellian is always stable. On the contrary, profiles with two bumps like the superposition of two sufficiently
distant Maxwellian are unstable. We refer to [29] to see how to deduce from formulae (6), (7) and (8) if a profile u is
stable or not using complex analysis.

1.3. Known results for nonlinear instability

In the case when p is Penrose unstable, it is possible to derive nonlinear instability results. We will present some
known results in this subsection.

But before doing it, let us point out a crucial difference between formula (6) and the two formulae (7) and (8). In
the two last ones, as soon as we can find n € Z¢ and w € C¢ such that J(n - w) > 0 and satisfying (7) or (8), then for
all k € N*, kn and w satisfy the same properties (this is a consequence of the scale invariance of these equations as
explained in Subsection 7.2). In view of (5), it means that for any unstable profile, we can find exponential growing
modes with arbitrary large frequency n and with growing rate J(n - w) proportional to this large frequency. The
instability is therefore far more violent in these cases. This additional property is the reason why the results that we
will present are not the same for the Vlasov-Poisson equation and for the two other models.

We also insist on the fact that in all the results presented below, j is supposed to be smooth (C! in the case of Guo
and Strauss, and analytic in the other cases). It also has to satisfy a technical assumption on the way it cancels (see
the so-called & and &'-conditions in [21], designed to ensure that the solutions built are nonnegative). We will see in
Section 2 that we can drop these assumptions: we are able to recover some of these results only assuming that u is a
measure.
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Lyapounov instability for Viasov-Poisson. To our knowledge, the first result of nonlinear instability for the Vlasov-
Poisson equation (1) was proved by Guo and Strauss in [19]. It consists in a Lyapounov instability result in the C'
norm in both variables x and v.

More recently, Han-Kwan—Hauray (in [21], in the case of dimension one) and Han-Kwan—Nguyen (in [23], in any
dimension) showed that the Penrose instability of a smooth profile 1 = (1 (v)) can be used to build a family ( fi)reN
of solutions to (1) and a family of times (Tj)reNn With

Sili=o — 1
k— 400

strongly in any H} , but,
I fe =l =0,
k—400

where the norm is the one of L*°([0, T); H;:U) whatever s’ € Z. Roughly speaking, the Lyapounov instability holds
even if the initial data is taken close to the equilibrium in a very strong topology, and even if we measure the distance
to the equilibrium at further times in a very weak norm. In that case, the sequence (7%) is of the following order:

T, ~ loge, with & := -0 — v
i, 1 (ogerl) e = I fili=o — il

It means that the exponential growing rate of the solutions to the linearized problem prevails.

In a slightly different context, let us also mention Cordier—Grenier—Guo [15] who proved a similar result for several
systems of equations governing plasmas with two phases in one space dimension (related to the Euler-Poisson system).
Somehow, we present here a framework that encompasses the classical kinetic setting and this kind of multiphase
settings.

1ll-posedness for kinetic Euler and Vilasov-Benney. In [22], following ideas by Métivier (see [27]), Han-Kwan and
Nguyen proved that (2) and (4) are ill-posed in any Hy , in the following sense: they show for instance that for any
s € N and any T > 0, the map

Hf, — L*(0,T)xT?xR?

fo >  f solution to (2) or (4),
if exists, cannot be Holder continuous with any exponent in (0, 1] in the neighborhood of any smooth linearly unstable
profile. To do so, for a fixed analytic Penrose unstable profile u, s > 0 and « € (0, 1], they build a sequence of times

(Ty) tending to 0 and a sequence (fx) of analytic solutions, such that for all k, fi is well defined up to time T, and
such that

lim Il fie = 1llz2q0, ) Td xRy
k>too | file=0 — mllys

—+00.

This time, (7) is of order:

1
T
k—+o00 ||

where ¢ 1= || filr=0 — ull 2, and ny is the spatial frequency of the nearest exponential growing mode. The solution fk
is of size & at time 0 and close to an exponential growing mode of spatial frequency ny and of proportional growing
rate, and once again the exponential growing rate of the solution to the linearized problem prevails.

This result is a quantitative extension of [9, Theorem 4.1] by Bardos and Nouri, where it is proved that (4) is
ill-posed from H{", to Hxl’v for any m € N*.

2. New result: the case of non-smooth stationary profiles

As already said, the aim of this paper is to generalize these results in the case when the velocity profile p and the
density f are no longer smooth in the variable v but only measures. We start by defining a notion of solution in that
setting. These solutions are regular with respect to the time variable and the space variable and measures with respect
to the velocity variable.
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2.1. Measure-valued solutions

We will be dealing with functions f : [0, T] x T — P(]Rd) which are smooth when integrated against smooth
functions of the variable v. If ¢ is a smooth and bounded function on R4, we define for all ¢ and x

(fr o), x) 1=/<p(v)f(t,x,dv)~

The function (f, ) is called the macroscopic observable corresponding to ¢. The class of solutions to (1) that we will
consider is defined as follows.

Definition 2.1 (Weak in v and strong in x solutions). We will say that f : [0, T] x T4 — P(RY) is a weak in v and
strong in x solution to (1) if it satisfies in the classical sense for all test function ¢ the system

0 (fs ) (t, x) +div(f, ve)(t,x) + V, U(t,x) - (f, Vo) (1, x) =0,
=AU x)=(f, 1), x) — 1, )
f(0, x,dv) = fo(x,dv).

Equations (25) and (4) have straightforward similar formulations.

This is motivated by the following fact. If u is any probability measure, then it is a weak solution to (1) (resp. (2)
or (4)). Moreover, an integration by parts leads to

n Vvu(v) du(v)
/n v—w =l /{n — )2’ (10)
R

which only involves u and not its derivatives. (We make no difference between the density p and the measure it
induces du(v) = pu(v)dv.) Therefore, the Penrose instability condition of Definition 1.1 (resp. 1.2 or (1.3)) makes
sense for any probability measure p, and it is a natural question to know whether the stability can be studied around
such profiles.

We give examples of unstable profiles in this setting in Appendix A. We show that a superposition of a finite number
of distinct Dirac masses is always unstable for the kinetic Euler equation. This is coherent with the classical setting
where profiles with one bump are stable and profiles with several sufficiently large and sufficiently distant bumps
are unstable. In the two other models, things seem to be more subtle, but we also give in Appendix A conditions for
superpositions of two Diracs of equal mass to be unstable for the Vlasov-Poisson equation and for the Vlasov-Benney
equation.

The natural question that is asked is the following: do there exist unstable weak solutions to (6), (7) and (8) in the
neighborhood of any probability measure w that satisfies the corresponding Penrose condition. In the present paper,
we answer affirmatively to this question. Let us state the results precisely.

2.2. Our new results

In the measure-valued setting, we are only able to evaluate the size of the solutions when integrated against smooth
functions of v. So we will state the results in terms of macroscopic observables. These results might be understood
as follows: whatever the number of macroscopic observables we control at the initial time in very strong norms (one
can think about the macroscopic observables as energies or moments of the system, depending on the integrability
of ), one specific macroscopic quantity will be likely to grow along the flow of the equation even in weak norms.
This macroscopic quantity will be the electric potential in the case of the Vlasov-Poisson equation, the pressure in the
case of the kinetic Euler equation and the density in the case of the Vlasov-Benney equation.

Almost Lyapounov instability for Vlasov-Poisson. In this case, the result we show can be stated in the following way.

Theorem 2.2. Tuke (v an unstable profile, N € N*, @1, ..., o5 € C° (Rd) s € N and a € (0, 1]. Then there exists,
(Tr) € (R, )N and ( fo) a family of measure-valued initial data such that:
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e for all k, there is a weak in v and strong in x solution f* to (1) starting from fé‘ up to time Ty,
e if we denote by Uy the corresponding electric potential, we have:

10kl L1 0, 7)< T4
N - ([0,Ty) x )a —> +o00.
Zi:] ||<f0 B (pl) - </~'La €01>||Wsoo(’]rd) k=00

Moreover

T, ~ |loge with &g := ||Uxli=0ll 71T d)-
kk»+oo| g k| k lUkli=oll (T4

Remark that there is no contribution of the stationary solution in the numerator because the electric potential of the
stationary solution is 0.

We could not prove with our method a Lyapounov instability result: in our proof, we build solutions that actually
satisfy

U — 0,
WUkl 1o mioxme) 2

whereas Lyapounov instability would correspond to the following property:

N
k
le L e et
1=
but:

llciglfg”Uk”Ll([O,Tk)xT“) > 0.

This point will be developed in Remark 7.2.

In conclusion, our method makes it possible to deal with measure-valued solutions. It also allows to drop the
so-called § and §’-conditions in [21] that we already talked about. But on the other hand, the instability result is a
bit weaker than the one of Han-Kwan—Hauray in [21] and Han-Kwan—Nguyen in [23]. In a future work, we hope to
deduce standard Lyapounov instability for the Vlasov-Poisson equation in the sense of [21,23] around rough velocity
profiles from an existence theory in Sobolev spaces for the multiphase representation that we describe below in
Subsection 3.1. This result would be a generalization of [15] in any dimension and for any stationary measures (and
not only superposition of two Diracs).

1ll-posedness for kinetic Euler and Vlasov-Benney. The statement in these cases is similar to the previous one, but
we can take a sequence (7}) tending to zero: the instabilities can develop arbitrarily fast.

Theorem 2.3. Take (v an unstable profile, N € N*, ¢1,..., oy € C° (RY), s € N and o € (0, 1]. Then there exists,
(Ty) € (Ri)N tending to zero and ( fé‘) a family of measure-valued initial data such that:

e for all k, there is a weak in v and strong in x solution f* to (2) starting from fé‘ up to time Ty,
e if we denote by py the corresponding pressure, we have:

I Pl L1 0, 1) x T
S (10,70 x )a i
Zi:l ||<f() ) (pl> - (Mﬂ wi>||wx,:>o(’]rd) k=00

Moreover

1
oo~ (lloged Y
k—+00 [

where g := || pli=0ll ;1 and ny is the spatial frequency of the nearest exponential growing mode.
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The same result holds for (4) instead of (2), replacing the pressure by

Pk — 1,
ok being the density of fi.

In [22], Han-Kwan and Nguyen show a similar result with the additional assumption that u is analytic. So in that
case, our result is a strict generalization. Once again, we can drop the § or §'-condition.

3. Ideas of proof

Before going into the details of the proof, let us present how to build weak in v and strong in x solutions. The
idea is to look for a particular class of solutions: the ones that admit a multiphasic decomposition. The weak in v and
strong in x solutions that we will build will be induced by strong solutions to a different system. Let us explain this
idea.

3.1. A multiphasic representation

We will present in this subsection how to build weak in v and strong in x solutions to the Vlasov-Poisson equation
(1). The other models can be treated the same way. Let us rewrite (1) here for clarity:

o ft,x,v)+v-Vyf(t,x,v) =V, U@, x) -V, f(t,x,v) =0,
—AXU(t,x):/f(t,x,v)dv— 1,
£, x,v) = folx,v).

Assume that the initial data can be decomposed into a superposition of smooth graphs (with densities): there exists
X a polish space, v a Borel probability measure on this set, py = (0§ )acx a family of smooth functions on T (the
densities) and vo = (vy)qex a family of smooth vector fields on T4 (which provide the graphs), such that for all
smooth and bounded function ¢ and for all position x,

/fﬂ(v)fo(x, dv) = /qo(v(‘f () pg (x) dv(@).
Also suppose that we are able to solve (say classically) the following system:

YaeX, ;0% x)+div(p®@, x)v*(,x)) =0,
YaeX, 0,0, x)+ %, x) - Vv, x)=-VU({, x),

—AU(t,x):/,o“(t,x)dv(a)—l,

YaeX, p%=0=p; and v*|;=0 = v{.

(1)

Then, at time ¢ and position x, we can define the measure f(z, x, o) though the macroscopic observable: for all ¢
sufficiently smooth,

/w(v)f(t,x,dv)=(f,w)(t,X) :=/w(v“(t,X))p“(t,X)dv(a)- 12)

Straightforward computations show that this density is a weak in v and strong in x solution to (1), as defined in
Definition 2.1.

Roughly speaking, the multiphasic representation corresponds to the case when the whole population of particles
can be divided into distinguishable phases, each of which can be described by its pointwise density and velocity.
According to the first equation in (11), each density is transported by the corresponding velocity, according to the
second one, each phase is accelerated by the same potential, and according to the third one, the potential is calculated
by taking into account all the phases.
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/\/

-

Fig. 1. On the left, a stationary homogeneous density. Here p is a superposition of three Diracs. In the middle, another density that has a smooth
multiphasic structure indexed by 1. The velocities depend on the position and the density on each graph may not be uniform anymore. On the right,
the density does not have a smooth multiphasic structure indexed by . The velocities of the two lower “phases” are no longer graphs. To get a
multiphasic decomposition, we should add some labels.

This formulation was already used by Grenier in [18] to prove a small time existence result and to analyze precisely
the quasineutral limit. In another direction, Brenier built in [12] and [13] some low regularity solutions to the kinetic
Euler equations in this formulation as minimizers of the mean kinetic action

T
% // [v® (¢, X)|?p(t, x) dx dt dv(er)
0

with prescribed (p%|;=0)wecx and (p*|;=T)ecx- Let us point out that the ill-posedness for this kind of multifluid
system answer questions that were left open in [12, Introduction] and [22, Remark 2.2].

Here, the specificity is the fact that we label the phases by the velocity space R? in the following way. To any prob-
ability measure & on R4 corresponds a stationary homogeneous solution to (1), (2), (4) (in their weak formulations
of type (9)) given by f(x,dv) = du(v). It has a smooth multiphasic decomposition indexed by u itself: defining for
all w, p¥ =1 and v" = w, then for all admissible test function ¢ and all position x,

/fp(v)f(x,dv)=/w(vw(X))pw(X)dM(w)=/<p(v)du(v)~ 13)

Remark that these p and v are stationary solutions to (11) with U = 0. We can then ask the question of linear stability
in this multiphasic formulation. Doing so, we will recover in Subsection 5.1 the Penrose condition. We provide an
illustration on the notion of having a smooth multiphasic decomposition indexed by u at Fig. 1. In fact, in this paper,
we will mainly work with multiphasic formulations.

We are now ready to describe briefly the structure of the proof.

3.2. Sketch of the proof

Analytic regularity with respect to the position. The proof consists in studying the linearized multiphasic system to
get an estimate on the corresponding semigroup, and then to use this estimate to get a nonlinear solution through a
fixed point argument. As in the works [18,21,22], we work in an analytic framework. The densities and velocity fields
in the multiphasic formulation will be analytic functions of x. This is the relevant level of regularity to handle the fact
that in the kinetic Euler equation and in the Vlasov-Benney equation, the force field (—V p and —V p respectively)
are one derivative less regular than the density. So for instance, there is no hope a priori to perform a fixed point
proof of existence in any Sobolev space (besides, our ill-posedness result makes the feasibility of such proof very
unlikely). In our work, this lack of regularity will appear in the fact that the semi-group of the linearized operator will
be continuous only in analytic functional spaces.

Outline of the paper.  Let us present the content of each section of the paper.

Section 4. We introduce the abstract multiphasic model we will work with, and the assumptions we make to perform
the analysis. The three examples presented in Subsection 1.1 in their multiphasic formulations are particular cases of
this model. The homogeneous solutions presented in (13) are still stationary solutions in this framework.

Section 5. We study the linearization of the abstract model around these homogeneous stationary solutions. This sec-
tion is divided in two parts: in Subsection 5.1, we compute the unstable eigenvectors and eigenvalues of the linearized
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system, and in Subsection 5.2, we derive some sharp estimates for the corresponding semigroup in analytic regularity
following [22]. These estimates are crucial to get sufficiently large times of existence for the instabilities to develop
(see the beginning of Subsection 5.2 for more detail).

Section 6. We show that there exist analytic solutions to the abstract model of the form

stationary solution + 7 f 4 remainder

where 1 is a small parameter, f is a solution to the linearized system (typically an exponential growing mode of
spatial frequency n) and the remainder is small with respect to 1 and cancels at t = 0. We also bound from below the
time of existence of such solutions with respect to 1 and n using the estimate derived in the previous section. This is
done at Theorem 6.1 which is the main result of this paper. The strategy is the same as in [18] and [22]: we decompose
the operator as a linear term and an at least quadratic term, and we consider the latter as a source term in a Duhamel
formulation. After a fine analysis of the properties of the analytic norms we use (Subsection 6.2), and of the size of
each term in the Duhamel formulation (Subsection 6.3), we can perform at Subsection 6.4 a fixed point argument as
in Caflish’ proof of the Cauchy-Kovalevskaia theorem (see [14]).

Section 7. We show how to deduce from these existence results Theorem 2.2 and Theorem 2.3. Theorem 7.1 asserts
that the Penrose instability condition always implies almost Lyapounov instability in the abstract multiphasic model.
The only thing we need to do is to use the form of the eigenvalues and the estimates obtained in Theorem 6.1 to
evaluate precisely the size of the initial data in Sobolev types norms and of the solutions in Lebesgue type norms.
Corollary 7.3 is a kinetic version of Theorem 7.1 and directly implies Theorem 2.2.

On the other hand, ill-posedness around Penrose unstable profiles only holds in the abstract multiphasic model
when a further assumption is made on the spectrum of the linearized operator. This is the content of Theorem 7.4, and
of Corollary 7.5, its kinetic counterpart. This assumption is true in the kinetic Euler equation and in the Vlasov-Benney
equation thanks to their scaling properties already discussed in Subsection 1.2. Apart from this new ingredient, the
proof is very similar to the one of Theorem 2.2. However, if Corollary 7.5 directly implies Theorem 2.3 in the Vlasov-
Benney case, we need to work a little bit more to adapt it to the case of the kinetic Euler equation. The reason is the
fact that the initial data of the exponential growing modes we build in the abstract setting do not satisfy the incom-
pressibility constraint. In Subsection 7.3, we present how to fix this problem, and thus how to prove Theorem 2.3 in
the case of the kinetic Euler equation.

Appendices. In Appendix A, we discuss the instability of superposition of Diracs in the physical models. In Ap-
pendix B, we give the proofs of the properties of the analytic norms stated in Subsection 6.2.

4. Presentation of the abstract model
Let us describe the model we will study throughout the paper.
4.1. The abstract model

First, we model the evolution of several phases indexed by a probability measure ;2 on R and described by their
densities (p*),,cre and velocity fields (v**),,cgre Which are functions of time ¢ € R and position x € T<. The torus
is normalized, so that the total mass of its Lebesgue measure is supposed to be equal to one. The notation p(¢) and
v(¢) will stand for the whole families (o™ (¢, o)), g« and (v (¢, o)), cre- These phases follow the Newton dynamics
in a potential U:

VweRY, 3p" (1, x) +div(p" (t, x)v" (1, x)) =0,
vw € RY, v (1, x) + WV (t,x) - VvV (t,x) = =VU[p(t), v()](x), (14)
vweR?Y,  p¥l—o= py and v =0 = vy .

We need now to describe how the phases generate the potential. We suppose it is in the following form:

Ulp,vl(x) :=A [/ P")p"” du(w)] (x), 15)
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where: ® : R¢ — E is a smooth function, E is a normed R-vector space with finite dimension and A is a homogeneous
Fourier multiplier of symbol P : 79 — E(EC; C) = L(E; ]R)C. (The notations EC and L(E; ]R)(C stand for the
complexifications of E and L(E; R) respectively.)

Remark 4.1 (Stationary solution). Defining for all w p” =1 and v = w, the potential is well defined thanks to
(17), its gradient vanishes, and we get a stationary solution (corresponding to the stationary homogeneous solution in
Vlasov-Poisson).

Remark 4.2. It would be natural to solve the two first lines of (14) only for p-almost all w. In addition, it could
seem artificial to prescribe initial conditions for all w and not only for p-almost all w because it would mean describ-
ing the distribution of the particles belonging to a phase that does not contain any particle. However, in this paper,
we build solutions starting from very specific initial conditions (the eigenvectors of the linearized operators around
homogeneous solutions) that have a meaning for all w. So we will indeed solve (14) for all w.

4.2. Gradient structure

We will solve the system (14)-(15) for a particular class of initial data, where the total mass is the same as the one
of the stationary solution, and where the velocity is a gradient.
Formally, a solution to (14)-(15) of the form

(P, v@) =0 +r"1®), w+u"(t)),cra
with

vw e RY, /rw(O, x)dx=0 and u"(0)is a gradient
T4

keeps this structure along the flow: we expect that for all ¢ for which the solution exists,

vw e R?, /rw(t, x)dx=0 and u"(¢) is a gradient.
Td

We will see in the sequel that this is true for our solutions. We give a name to this type of families of functions.
Definition 4.3. Let (r,u) = (v, u"),,cre a family of pairs of analytic functions. We write (r, u) € L if

vuw € RY, /rw(x) dx=0 and u" isa gradient.
Td

4.3. Assumptions

Let us give a few assumptions to be made to perform the analysis. We will need several quantities depending on A,
® and p to be finite. We will take a large number M > 0 that bounds all of them.

Assumption 4.4 (Assumptions on . and ®). We suppose that @ is a power series on R, i.e. there is (ai)end € E N
such that for all w € R,

d(w) = Z way (16)
keNd
where if k = (k1,...,kg) and w = (wy, ..., wy), wk stands for the real number wllCl NERE' wzd. We will also use

the notation |k| := k| + - - - 4+ k4. Moreover, we suppose that there exists o > 0 such that the following quantities are
finite and bounded by M:
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/|4>(w)|du(w) <M, (17)
[ 1d0widuc < m. ()
> |ak||k|/(|w| + o) dp(w) < M, (19)
keNd9 |k|>1
D lallkl(lk| - 1)/(|w| + )M dp(w) < M. (20)
keN9 |k|>2

These quantities are linked together: for instance, (19) clearly implies (18). However we will not develop much
these links, especially since in all the physical models presented in the introduction, @ is polynomial, and in that case,
all these estimates hold with M big enough as soon as

/le”d,u(w) <400

where p is the degree of ®. We will nevertheless write the proof for analytic ® because the estimates are the same as
in the polynomial case.

Assumption 4.5 (Assumptions on P ). We suppose that A is real, which means in terms of its symbol P:
vnez!,  P(—n)=P@), 2

where the conjugate is understood via the identification L(E C, C)=L(E;R)C.
We also suppose that P is uniformly bounded:

sup |P(n)| <M. (22)

neZd

This assumption will be crucial for the semi-group of the linearized operator to be continuous at our level of analytic
regularity. It means that the force field should not involve more than one derivative of the macroscopic observable

/d>(v“’)p’” dp(w).

4.4. Examples
Let us give E, @ and P in our physical models.

e The Vlasov-Poisson case. Equation (1) has a straightforward multiphasic formulation of the form (14)-(15): we
take E=R, =1, P(0) =0and
d 1
Vn e Z°\{0}, P(n)=—.
In|?
e The kinetic Euler case. Equation (2) does not have a priori a multiphasic version of the form (14)-(15) because
the pressure field is not given by a formula as in (15). In fact, we can derive one. The Cauchy problem (2) makes
sense only when fy satisfies some additional properties. First, of course, it must satisfy the incompressibility

constraint. Furthermore, if one integrates formally the first equation with respect to v, one gets because of the
constraint and the fact that the pressure does not depend on the velocity

div, (/ vf(t,x,v) dv) =0. (23)

This means that the macroscopic velocity is divergence-free. This property must hold at time r = 0. Consequently,
fo must satisfy
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/fo(x, v)dv=1,

div, (/ vfo(x,v) dv> =0.

Then, multiplying the equation by v, integrating it with respect to v and finally taking the divergence leads to

(24)

— A, p(t, x) =div, div, (/v Quf(t,x,v) dv> .
In fact, in what follows, we will be dealing directly with:

o ft,x,v)+v-Vif(t,x,v) —Vyip(t,x) -V, f(t,x,v) =0,
—Axp(t, x) = div, div, </ v Uf(t,x,v) dv> , (25)
fO,x,v) = folx,v),

and justify in Subsection 7.3 that when fj satisfies (24), then our solutions are indeed solutions to (2).
Now (25) has a multiphasic version of the form (14)-(15): it suffices to take £E = My(R), ®: v~ vQ®v, P(0) =0
and
(n, X -n)
n|?
e The \;lasov-Benney case. In the case of the Vlasov-Benney equation (4), we take £ =R, ® =1 and for all
nez,

vn e Z4\{0}, VX € My(R), P(n)-X=—

vneZl Pm)=1.
In these three cases, all the assumptions are easy to check.
5. The linearized system

In this section and in the following one, we study the multiphasic system (14) governed by the potential defined
in (15) with the assumptions (17), (18) and (22). In this setting, defining for all w p* =1 and v = w leads to a
stationary solution. The linearized system around this stationary solution is
vweRY, 9,V x) +w - VY@, x) + divu®(z, x)) =0,
VweRY, 3u"(t,x) + (w- Vyu'(t,x) = =VV[r@), u®lx),

(26)
Vir,ul(x) = A /{cb(w)rw +dd(w) - u”}du(w) | (x),
vweRY,  r¥|,_o= ro and u®|;—o = ug .
5.1. Spectral analysis
We look for the exponential growing modes of system (26) i.e. the non-zero solutions of the form
r(t,x) = f(w)exp(rt) exp(in - x), @7
u"(t,x) = g(w) exp(rt) exp(in - x),

withn € Z¢, . € C such that R(A) > 0, and f : R¢ — C and g : R¢ — C? in L>(u) (for V to be well defined thanks
to (17) and (18)). Injecting this ansatz in (26), we get that for all w € R4,

A+in-w)f(w)=—in-g(w),

(A +in-w)gw) = —i (P(n) : / [o@)rw) +aow) - g du(w’)> n.
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As a consequence, if (r, u) is a non-trivial solution, then n # 0 and

P(n)- / {o@)r) +abw) - g duw) £0.

Up to dividing f and g by this number, we can suppose that it is equal to 1. Then, we get for all w,

=t gay= 8)
T ==y ™ W=y
Such f and g are bounded.
Then, setting for all w € R4
‘Ij(n,)\.,w) :Zﬂa
A+in-w
we require:
1= P [ [ fw) +dow) - g duw)
— P /{_q)( y__Int? _.d@(w)-n}d )
DR w()»—i—in-w)2 Yrtin-w piw
——iP(n) o) —L dq)(w)'”}d (w)
=—iPn / —id(w (k+in-w)2+k+in~w m(w
:—iP(n)~/8w\y(n,k,w)-ndu(w)
. P@n) - ®(w) |
= z(/aw{ PE— } nd,u(w)).
In particular, we get the following general Penrose condition:
P(n) - ®(w) .

for instability to hold.

Conversely, if (29) holds for some n € Z4 and M(1) > 0, and if we define f and g by (28), then the exponential
growing modes (27) are (classical, unstable) solutions to the linearized equation (26).

In the end, we have proved the following proposition.

Proposition 5.1. System (26) admits exponential growing modes if and only if there exists n € Z¢ and 1 € C with
R(A) > 0 satisfying (29). In that case, f and g are given up to a scalar by (28).

Consequently, we define what is an unstable profile in the following way.

Definition 5.2 (Unstable profile). We say that the probability measure ; on R is unstable if there exist n € Z¢ and
A € C with (1) > 0 such that (29) holds.

Remark 5.3. When (29) holds, with this choice of f and g, the potential takes a very simple form:
Vir@), u®](x)
= (P(n) - / [ow) fa) +dow) - gw)] du(w’)) exp(ut) explin - x)
=exp(Ar) exp(in - x).

Hence, it is natural to use this quantity to evaluate the size of our solutions, as it is done in Theorem 2.2 and Theo-
rem 2.3.
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Examples.

e In the case of the Vlasov-Poisson equation (1), (29) reads
du(w)

(A+in-w)?
as expected by the combination of (6) and (10) (with the correspondence A = —in - ). In particular, the multi-

phasic formulation and the kinetic one have the exact same unstable eigenvalues.
e In the case of the kinetic Euler system (25), (29) reads

o1 (in-w)?
’—W/aw{m}'”dw)

1 —2nn-w  iln*(n-w)?
- d
|n|2/( tinw T Grin-wy ) W

_,/2(A+in-w)in-w+(n-w)2
= A +in-w)?

. 21')\n-w—(n~w)2
_’/ GotinwE W)

. e
=’/(1 B m)d“(’”)

dp(w)
(A+in-w)?’
So we get the expected Penrose condition in this context (the combination of (7) and (10))
dp(w)
A+in-w)?2
e Finally, in the case of the Dirac-Benney system (4), similar computations show that (29) reads

dp(w) 1
(o+in-w)?  |n?’ (32)

1, (30)

du(w)

=i— A%

€Y

5.2. Sharp semigroup bounds

In this subsection, we will derive sharp estimates in analytic regularity for the semigroup corresponding to system
(26). The philosophy for this result is the following: to build solutions to (14)-(15), we will consider the nonlinear
part of the system as a perturbation of the linear part. As long as the linear part of the solution is small, we will be
able to deduce that the perturbation is even smaller and to perform a fixed point proof. So we want the estimate on
the semigroup to be sharp for the fixed point argument to work until the longest possible times. We work in analytic
regularity because in general, the only bound that we can get for the spectrum of the linearized operator is the fact
that the unstable spectrum increases proportionally with the frequency of the exponential growing modes, as stated in
Proposition 5.4 below.

For each n € Z4, we call

Sy :={A € C such that R(A) > 0 and the Penrose condition (29) holds}. 33)

We already saw that S is empty.
We also call

. P@)-w)]|
A, (Q) '_/aw{i)ﬁ—in'w } ndu(w)

_ip @ |l 40w -n |,
=i (n)’/{_ (w)(k+in.w)2_lx+in-w} H:

(34)
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The first observation to be made is that under condition (22), the size of §,, does not grow too much with n. More
precisely, we have the following proposition.

Proposition 5.4. We have:

R
sup  sup
neZa\{0} AES, In|

< 400

Proof. For n € Z9\{0}, we call
S, :={l € C such that |n|l € S,}.
Now for all n € Z4\{0}, for all w € R? and for all € C such that %t(/) > 0, using (22),
P(n) - ®(x) [do(w)| | [P(w)]
Il ——— 1 .n|<|P
v { |n|l+in~w} "‘ <[P { %O a2 }

<M { [dO(w)| |D(w)] }
= R(l) R()2

In particular, integrating with respect to u and using (17), (18) and (34) leads to

2 M2
— — 0.
R() + R(I)?2 R()—>+oo

|An(InlD] <

As a consequence, there is C > 0 (independent of n) such that if 9(/) > C, then for any n € Z%\{0}, the modulus of
A (|n|l) is lower than 1/2, and so the Penrose condition (29) cannot hold with A = |n|l. O

From now on, we suppose that p is unstable, that is U, .74 S, # . We set

NR)
Y0:= Sup sup >0
neZd\ (0} 1S, |1

(35)

We want to show some bounds on the semigroup related to system (26) in analytic regularity. To do so, following
Grenier in [ 18], we introduce the following Banach spaces of analytic functions (in x).
Take § > 0, and f a function on T¢. We say that f belongs to X if it can be written for all x € T¢:

fx) = Z faexp(in - x),
neZd
with
[fls =) I falexp(8lnl) < +oo.

neZd

Remark that this formula makes sense for f with value in R, R? or E taking for | e | any norm on the corresponding
vector space. So with a slight abuse of notations, we will still write f € X; in all these cases.

Now, if f = (f"),cre is a family of functions on T, we say that f belongs to X if it can be written for all
weR?and x € TY:

fU) =" falw)exp(in-x)

neZd
with for all n € Z4, f, € L°(R?, 1) and with
1flls =Y [falooexp(8inl) < +o0. (36)
neZd

Once again, we keep the same notations for the values of f to be in R, RYor E.
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Finally, to gain space, if r = (r"),,cre € Xs is a family of functions from T to R and u = ") ,cre € Xsisa
family of functions from T to RY, we write

(e, w) s := max (175, lluls). (37)

More generally, if f and g are two families of functions, || f, g||s will stand for the max between || f||s and || g]|5-
Remark that all the exponential growing modes found in the previous subsection belong for all ¢ and all § to X.
We also write

L® = L®((R?, u); R) x L¥((R?, 11); RY).
Its norm is defined by
V(fvﬁ)ELoov |(f712)|OO=maX(|f|OO’|ﬁ|OO)

With the same notation as before, we can see that

I . - L
5 2 G oo exp@ln) < o w)lls < Y 1R i) oo xP(ln).

neZd neZd

The rest of this subsection will be devoted to the proof of the following theorem.

Theorem 5.5. Let 6o > 0 and (ro, ug) € Xs,. There exists a unique classical solution (r(t), u(t)) to (26) at time
t €10, 80/ y0) starting from (ro, uo). It satisfies the following properties:

e forall y > yy, there exists C only depending on M and y (and not §y nor (ro, ug)) such that for all t <do/y,

[ @), u@)];,_,, < Clwo. w0,

e forall 5 < 8y, the map

€0, = (r (1), u(t)) € X
Yo

s continuous,
e if (ro,ug) € Lo (defined in Definition 4.3), then this property is propagated: for all t < 8o/yp, (r(t),u(t)) € Ly.

Remark 5.6. If we write

(r(0), u(t)) =: S;(ro, uo), (38)

then the theorem shows that
IS: (ro. uo) H{;O,W < C|ro. uo) ||50~ (39)

Proof. Take y, § and (rg, up) as in the statement of Theorem 5.5.
Let (r,u) = ((t,x) = r(t, x), u" (t, x)),,cre be a time dependent family of C! functions. For all n € Z¢, we call
Fn, = (7, (¢, w)) and @, = (u, (¢, w)) the Fourier coefficients of these functions, so that for all (¢, x, w),

r(t, x) = Z Fo(t,wyexp(in-x) and u™(t,x)= Z li (, w)exp(in - x). (40)

nez4 neZd

Then (r, u) is a solution to (26) if and only if for all n € Z% and w € R, the pair (7, &t,) is a solution to

Fa(t, w) new n Pat,w) | . . 0
0 [ﬁn(taw)i|+l|: 0 n~wIde:|'|:ﬁn(t,w):|_I"(rn(t)’u"(t))[—in]’ (41

7,(0, w) and #,, (0, w) are the nth Fourier coefficients of ry’ and ug,
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with
Ly (P (1), ity (1)) == P(n) - / {@WNF (1, w') +dP(w") - iy (1, w) } du(w”).
Now it suffices to show the following lemma.

Lemma 5.7. For eachn € 7.9, equation (41) admits a unique solution (F,,, it,) for all times and it is a continuous map
from R4 to L*°.
Moreover, for all y > yy, there exists C only depending on M and y such that this solution satisfies

|(Fn @),y (1)) loo < C|(F(0), it,(0))|oc exp(y In]1).

Indeed, if the lemma is true, the unique classical solution to (26) is given by (40) with (7, ;) given by the lemma.
Then, if y > yp, by the lemma, we can find C only depending on M and y such that for all < §y/y,

[, w05y = 3 10, @)oo exp (180 — yi}in)
neZd

<C Y 1(Fa(0), 4 (0))]oo exp(Soln))

neZd

<Cl(ro,uo)lls,-

Hence, the first point of Theorem 5.5 is proved.
For the second point, let § < 8o and T < (59 — 8)/yo. It suffices to prove that

tel0, Tl (r(0),u(®)) € Xs
is continuous. Take C as given by Lemma 5.7 with y := (80 — §)/T. If t € [0, T'], we need to prove:
lim Z [(Fr(s), tn(s)) — (Fu(t), s (1))]oo exp(8|n]) = 0.
s—1
s€[0,T]nezd
But on the one hand, for all n € Z4, (Fu, 0y,) is continuous in L°°, so that each term of the sum tends to 0. On the
other hand, for all n € Z4 and s € [0, T],
|(Fn(s), iy (5))]oo exp(8|n]) < C|(F4(0), @1, (0))|cc exp(y|nls) exp(8|n])
< C|(#4(0), 2,(0)) |00 exp(y [n|T) exp(|n|)
= C|(#1(0), @1, (0))|c0 exp(8o|n|)

where the last line is obtained by definition of y. This bound does not depend on s and is summable with respect to
n. So the dominated convergence theorem applies and the result follows.
Finally, S; Lo C Lo is a consequence of the fact that the first equation for n = 0 reduces to:

8tf0(ta w) = 0’
and that the second equation for any n € Z4 ensures that for all t and w, the vector Oty (1, w) + in - wit, (¢, w) is

collinear withn. 0O

In order to prove Lemma 5.7, we need to state a result for the family of holomorphic functions (A;), <z« (Which
was defined in (34)). By the definition (35) of yy, we already know that if n € 74 and A is such that 91(1) > yp|n|, then
A, (X) #i. We need a stronger result, which tells that if (L) > y|n| > yp|n|, then A, (L) stays far from i uniformly
in n and J(1). This is the content of the following proposition. We postpone its proof to the end of the subsection.

Proposition 5.8. For all y > yy, there exists § > 0 such that for all n € 7.2, for all » with R(}) > y|n|,

|[An(A) —i] = 6.
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Proof of Lemma 5.7. We fix n € Z%\{0} (there is no evolution for n = 0, so the inequality is trivially true). To
lighten the notations, we denote by o = (e (7, w)) and 8 = (B(z, w)) the functions that will play the roles of (7 (¢))
and (i ()). More precisely, given (o, Bo) € L, we look for solutions to

a(t,w) n-w n at,w) | 0
O [ﬂ(r,w)}—i—l[ 0 n~wIde}'[ﬂ(r,w)}_I"(a(t)’ﬁ(t))[—in]’ “2)
a(0)=ap and B(0)=po,
with
Li(a(2), B(1)) == P(n)-/{Cb(w/)a(t,w/)+d<b(w/)~,3(l,w/)}d,u(w/)~ (43)

(x(2) and B(¢) are notations for (¢, @) and S(¢, e) respectively.)
It is easy to see that this equation generates a C semigroup on L*°. Indeed, call

A, (w) = —i [” 6“’ " ]

n - wldga
An: (@, B) € D(An) > A(w) - [“('”)} ,

0
Bl‘l : (aa ﬂ) € LOO g In(a7 ﬂ) [—ln} .
(The domain D(A,) is the set of couples («, 8) € L* for which the formula in the definition of A, provides an
element of L°°.) Then, Equation (42) can be reformulated as

0 (ee(1), B(1)) = Ap - (a(1), B(1)) + By - (a (1), B(1)).
But on the one hand, A, generates the Cy semigroup (e!47),cr . with for all r € Ry, for all (a, 8) € L™ and for all
weRq,

¢ (o, B)(w) = exp(t Ay (w)) - ["‘(“’) ]

B(w)
=exp(—itn - w) |:(1) I_dl];zl:| . [ggzﬂ

= exp(—itn - w) [a(w) i ﬂ(w)] .

Remark the following estimate of the operator norm of /47

etAn

)51+r|n|. (44)
On the other hand, B, is bounded on L and its operator norm satisfies

Byl < K|n|

where K only depends on M.
Thus, by [28, Chapter 3, Theorem 1.1], A, + B, is the infinitesimal generator of a C semigroup (e
on L°°, and taking a slightly bigger K, for all ¢ > 0,

t(An"FBn))tER
+

”et(An+Bn)|| <exp(K|n|t).

The continuity property stated in Lemma 5.7 follows. The aim is now to lower the constant K down to any y > yp up
to adding a multiplicative constant.
We fix (a0, Bo) € L°°. We will compute the Laplace transform p — H[p] of

t
bt (ef<An+Bn> - e’A") (@0, Bo) = /e(’—”*‘n "B, - (a(s), B(s))ds € L®.
0
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With the previous estimate, we can classically (see for example the proof of [28, Chapter 3, Theorem 5.3]) deduce
that the Laplace transform F of (e!(4ntBn)) is its resolvent, namely for all p € C with R (p) > K |n|,

+00

Flpl:= / e AtB) - (ag, Bo)di € D(A, + Bo)( = D(A,»),
0
and  (pld=—(A4, + By - Flp] = (@0, fo). (45)

In the same way, thanks to (44), for all p € C with 9%(p) > 0 (remark that if @ > 0, then 1 + ¢|n| < (1 + |n|/w)e®"),

—+00
Glpl:= / e P (ap, fo) di € D(A),
0

and (p Idy —An>G[p] = (a0, Po)- (46)
But then, solving the resolvent equations (46) and (45), we easily find that for all p € C with 9i(p) > K|n| > 1,

aw) in- fo(w)

_ | p+in-w (p+in-w)?
Glpl(w) = Bo(w) ; 47)

prin-w
—Inf?
FIpl(w) = GIpl(w) + L (FIp]) | (P+in-w)* | (48)
prin-w
Applying i I, to (48), we get by the definition of I, in (43) and by the definition of A, (p) in (34):

(i = Au(P) ) In(FLPD = i1, (GpD).

But as soon as M(p) > yo|n|, one must have A, (p) # i, and

I,(F[p]) = 1,(G[p))

i
i —An(p)
Finally, we get (at least when R(p) > K |n|)

—In|?

I N
HIpl(w) = Fpl(w) — GIpl(w) = ———1x(G[p]) | P+ -w)
i—Au(p) mn
p+in-w
But this expression is well defined and analytic in p on {p € C |N(p) > yo|n|}. We keep the notation H[p] in this
domain.

In addition, if y > yp, we have the following estimates.

e By Proposition 5.8, there is § > 0 only depending on y such that for all n € Z, for all p with %t(p) > y|n|,

|An(p) —il = 6.

e Now we give an estimate for H[p](w) when R(p) > y|n| and w € RY. We just use the previous consideration,
the fact that when 9(p) > y|n|, then |p + in - w| > y|n| and the formulae for I,,, (43) and for G[p](w), (47).
In the following computation, < means “lower than, up to a multiplicative constant which only depends on M
and y”. We have:
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_ —Inl?
|H[pl(w)| = ’l_zii(p) x [L(GIpD| x || P +_ifl?n- w)?
p+in-w
<IL(GIphI x —
~ lp+in-w

nl ‘/{ (w )< ao(w)  in-po(w’) >+dCI>(w’)-,30(w/)} W
|p+ln w| p+in-w (p+in-w)? p+in-w ’

n| ( |®(w")] + |dP(w)]
~lp+in-w| |p+in-w|

d/t(w/)> (0, Bo)loo- (49)

e There exists C only depending on M and y (and not depending on w) such that for all y > y; and for all w € R?,

+00
5 // Py Eow) du(w')dg < <. (50)
20 0 |yinl +itg - w[yinl+ i 4+ new) I

This is an easy consequence of the explicit computation

+o00
/ T
il it w)| [yl +iq 4 w)
+o0
52/ dq
o (vinl+1g+nwl) (vinl +lg +n - wl)
8 1 log(1 w—n-w
_ +QOg(+Q)withQ=|nw n-w|
yhi2+o 0 il
8
<—.
yn|

As a consequence, gathering (49) and (50), we get that for all w € R,

y|nl+ioco +00
|H[p](w)|dp=/(H[y|n|+iq](w)\dqsC|(ao,ﬂo>|oo, (51
y|n|—ioco —0

with C only depending on M and y. Therefore, the abscissa of convergence of 4 is lower or equal to yp|n|, and the
inverse Laplace transform formula applies, that is for all y > yp and t > 0

ylnl+ioco
1 pt
h(f)=r e’ H[pldp
Tl
y|n|—ioco
orinlt R
== /e’q’H[ylnl—i-iq]dq,
—00
and by (51),
ylnle | +5°
oo = = | [ |Hlvinl +ia]] dg

o]

< Ce”"|(ag, Bo) oo, (52)
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where C only depends on M and y. But

(@(t), B(1)) = " At B (g Bo) = !4 (g, Bo) + (1)

Hence, we get the result by gathering (44) and (52). O
‘We now prove Proposition 5.8.

Proof of Proposition 5.8. Defining the variable & by the formula, A = |n|€, we define for all n € Z\{0}, for all &
with R(€) > 0,

d(w) LA (w) - u,
E+iu,-w)? l§+iun~w

Fu () :=An(ln|§)=—iP(n)-/{( }du(w),

where u,, stands for the vector of the sphere n/|n| € S?~!. All these functions are holomorphic on the half-plane

C} :={£ € C such that % t(§) > 0}.

We know that for all & € C satisfying (&) > o, for all n € Z¢, F, (€) # i, and the goal is to prove that for all y > yy,
there exists § > 0 such that if £ € C satisfies (&) > y, then |F,,(§) — i| = 6.

By contradiction, if the result does not hold, we can find y > yp, (ni)ieN € (Z4HN and E)keN € CN with for all
k € N, (&) = y such that

JimFy ) =i.

We show in several steps that this leads to a contradiction.
Step one: (&;)reN is bounded.

For all w e R? and all € = + i € C with % (&) = o > y, we define the nonnegative function
|P(w)] |dP(w)
HE w)i=— 7+ .
s+ (1Bl = wh* a2+ (18] — |w|)?

On the one hand, for all w € R,

HE w) — 0,
l§1—+o0

and on the other hand for all £ with %(§) > y and w € R4,

I<I>(12v)| n [de@)l
14

Hence, the dominated convergence theorem applies and

HE w) < L'(w).

/H(s, W duw) — 0.
|&]—400
RE)=y

We conclude step one remarking that because of (22), for all n € 74 and EeC?,

[ F(5)] SM/H(E,W)dM(W)- (53)
So as

Fa 0l > 1.

(&x) must be bounded.
Step two: convergence to a non constant holomorphic function.
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Up to an extraction, we can suppose that as k tends to +00, & — &xo With R(Exo) > ¥, Uy, — u € S9-1 and
P(nx) — P € L(EC; C) (with |P|l < M, thanks to (22)). Then, by the dominated convergence theorem, (F, )xeN
converges pointwise to F* defined for all £ € C* by

. _p D (w) .dP(w) - u
FE) =—iP /{(S—l—iww)z+l§+iu-w}d'u(w)'

Furthermore, because of Montel’s theorem, this convergence is locally uniform on C?. In particular,

Fléso) = lim Fy (60 =i.

Moreover, because of (53),

F¢E) — 0.
&]—>+o00
NE)=y

So F cannot be constant.
Step three: conclusion applying Rouché’s theorem.

If £ € C and r > 0, we denote by D(&, r) the closed disk centered at & and of radius r, and C(§,r) = 3dD(&, r) the
circle centered at & and of radius r. Chose » > 0 such that:

o forall £ € D(£uo, 1), R(E) > 0,
e the only zero of F —i in D(éx, 1) 1S &co.

Call
a:= inf |F(&)].
§€C(Es0.r)
If k is sufficiently large because of the locally uniform convergence of (F},) toward F,
sup  |Fy (§) — F(§)| <a,
£€C(600,1)

so Rouché’s theorem applies. For such a k, F,;;, —i and F' — i have the same number of zeroes (counted with mul-
tiplicity) on D(£x0, 7). So Fy,, — i cancels at least once on D(£x, ), and so there exists & with 31(§) > yp such that
F,, (§) =i, which contradicts the definition of yy. O

6. Nonlinear instability
6.1. Statement of the main result

The purpose of this subsection is to prove the existence of solutions to the nonlinear system (14)-(15) for any initial
data in the neighborhood of an unstable stationary solution. The nonlinear system is viewed as a perturbation of the
linearized system (26) for which Theorem 5.5 gives the existence of solutions.

Fix 8o > 0, consider yy as defined in (35) and suppose yp > 0. The initial condition will be taken of the form

(pg, vo) = (1 +ro, w + ug),

with (rg, ug) € Lo and (Vrg, Vug) € X5, for some §p > 0.
We look for solutions of the form

PV, x)=1+r"@t,x)+o% (@, x), vWE,x)=w+u¢, x)+EY(E, x) (54)

where here and in the whole section, (r, u) is a solution to the linear problem: (r(t), u(t)) = S;(ro, uo), and where
(0(0),£(0)) =0.

Injecting this ansatz in (14)-(15), we find that (o', &) must be solution to the following system (where we omit the
dependence of each function in (7, x) to gain space, and where the equations must hold for all w € R)
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9o +w- Vo +div(E") = —div ((rw +o")(u" + éw)>,
&+ (w-V)EY=-VV][0,E]-VW, ,[0,E]— [(Hw+§w)'v](”w+§w),

Vie,E]:=A U {P(w)o” +dd(w) - 6"} du(w):| ,
(55)

Wrulo.£]:= A [/ [o@+u" +8") - o) +0w)du(w)}

+A [/ {cp(w U ) — d(w) — dd(w) - (u” +gw)} du(w)} ,

0"]i=0=0and §"|,—o =0.

As expected, we recognize the linear system (26) plus terms that are at least quadratic. So we give a Duhamel formu-
lation of this system which is clearly equivalent at the level of regularity at which we work

t

- —div ((r(s) +0 () (u(s) +£(s)))

[a(r)}_ /SH ds. (56)
EO 1T —VWralo ), 61— @) + 6V | @) + &)

The derivatives are taken pointwise in w: for instance, the notation div(v) stands for (divv"), cg«. We have written
the couples of density and velocity fields in column to gain space.
We will prove the following theorem.

Theorem 6.1. Suppose that w is unstable as defined in Definition 5.2, so that yy defined in (35) is positive. Take
I' > yo.

Then there exists g > 0 only depending on T', ro and M (the last two appearing in (17), (18), (19), (20) and (22)),
such that for all (ro, uo) € Lo (defined in definition (4.3)), if there is 5o > O such that

[Dro,Duglls, < €o, (57)

then:

e (56) admits a solution (o (t),&(t)) € Lo fort € [0, 50/T],

e forall § <8y, (0,&) is continuous from [0, (8g — 8)/T"] to X3,
e there holds:

IDro, Duo |3,

sup [lo(®), (@) llsg—rt <
1<8p/T &0

(58)

Moreover, this solution is unique in the class of analytic solutions: if (¢, é) is a solution to (56) which is continuous
from [0, T] to X5 for some T < 8y/T and § > 0, then forall t € [0, T], (6 (1), é(t)) =(o(1),&(2)).

Consequently, for such (ro, ug), o and T, equations (14)-(15) admit a unique analytic solution (p(t), v(t)) of the
form (54) with

po=1+ro and vo=w + ug,

and we can estimate thanks to (58) the distance between the linear solution and the nonlinear one.
Finally, (p(t), v(t)) stays real if (py, vo) is real, and p(t) stays nonnegative if p is nonnegative.

Remark 6.2.

e This is an existence result in a neighborhood of the stationary solution: for any initial data (in Lg) sufficiently
close to the stationary solution, we are able to find a local in time solution to (14)-(15). In fact, we could even
drop the condition (rg, ug) € Lo if we were not interested in finding the best time of existence that is possible
with this method.
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e If (rg,ug) € Lo and §g > 0, then

lro, woll < |Dro,Dug]l. (59)

In particular, (57) implies |[ro, #o|| < 9. This remark will be useful in the following.

e In the Vlasov-Poisson case, a famous result by Loeper [26, Theorem 1.2] asserts that there is at most one distribu-
tional solution (in space and velocity) with bounded macroscopic density. Compared to this result, the uniqueness
part of our theorem is very weak: one reformulation of the problem (the multiphasic system) admits a unique
analytic solution. However, in the other cases, the uniqueness of solutions with low regularity in the velocity
variable is an open question.

The proof is based on a fixed point argument in the Duhamel formulation (56). To perform it, we will first list a few
standard (but useful) properties of the family of norms (|| e ||s)s>0 defined in (36). Secondly, we will use these proper-
ties to derive estimates on the source term in Equation (56). We will then show a version of the Cauchy-Kovalevskaia
theorem, very close to the one due to Caflisch in [14]. But we will have to take into account the loss of regularity due
to the presence of S;_; in (56) (as already done in [18,22]). Also, for the first time to our knowledge, our proof allows
to get &0 independent of 8. It is interesting since if (r(¢), u(¢)) is an exponential growing mode of frequency n € Z¢
and ¢ € R, as a function of §,

|eDro, cDug| 5 o c|n| exp(|n|8).

Therefore, we have a precise control on the best § (and corresponding 7') we can take for a given c: once I is fixed,
go is fixed and we can get solutions starting from c(rg, ug) up to time T = §/T" as soon as c|n|exp(|n|8) < go, that is
T x— loﬁ.
||

(Usually, & is a decreasing function of §, and consequently, the condition of existence c exp(|n|§) < go(8) is stronger.)
Therefore, (57) can be seen as a balance between the size of the initial condition and the time of existence given by the
theorem. This is useful when we want to get large times of existence, as we will need in the Vlasov-Poisson case. To
get this result, we will have to take advantage of the fact that a solution starting from L stays in Lg. We will then be
able to use Lemma 6.9 below. We will finally apply this theorem to the proof of Theorem 6.1 thanks to the estimates
that were previously derived.

6.2. Properties of the analytic norms

The following properties are basic tools when working with analytic regularity (at least the first ones), and most
of the proofs can for example be found in [18,16]. However, we will recall them in Appendix B because we have
to obtain uniform estimates with respect to the variable w. The last lemma is more original and delicate. We have
decided to postpone the proofs to the appendix to lighten the reading.

First, we will introduce a notation to bound all the first derivatives of a function in X or X5.

Definition 6.3. Let f € X5 and g € X5 be written for all x € T4

Z fn exp(in-x) and Z gn(w)exp(in - x),

neZd neZd

with for all n € Z4, 3, € L™. We define for all § > 0

IDfls:= Y Inllfalexp(sinl),

neZd
IDglls == > 1n1l2nloc exp(8]nl).
neZd

Remark that this definition makes sense whatever the normed vector space in which f and g take their values. That is
the reason for this definition.
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We move on to the estimates. We write the following propositions for families of functions in X, but the results
are obviously still true for functions in X;.
The first proposition asserts that for all §, || e ||s is a norm of algebra.

Proposition 6.4. Take § > 0 and let f = (f"),cre and g = (§"),cre be two families functions in X5 with f
R-valued. Then fg := (f"g")epra is still in X5, and

Ifglls = Nflsligls-

The second proposition gives the behavior of the norms (|| e ||5) with respect to differentiation.

Proposition 6.5. Take f = (f"),cra in X5 for some § > 0. Then for all 0 < §' < 5, we have the following estimate:

1

D <
IDS Ny < 5=

5 1/ lls-

The next proposition is a Leibniz type formula.

Proposition 6.6. Take § > 0 and let f = ("), cre and g = (8¥),crd be two families of functions with f R-valued.
Then for all 5 > 0 we have the following estimate:

IDCf)ls = IfIsIDglls + glsIDfls-
In particular, if f and g take their values in R¢ and if o and p € N9,

—1 —1
IDFgP)lls < el A1 gD £1ls + 1811 A1 11~ IDg 5. (60)
The following estimate will be useful when estimating the force field.

Proposition 6.7. Take f a E-valued function. Then we have the following estimate:

IVAfls < M|Dfls.
The next lemma asserts more or less that D commutes with the semigroup S.

Lemma 6.8. Take y > yg and C as in Theorem 5.5. If (ro, ug) is such that for some § > 0,
ID(ro, o) lls < +o0,
then the following estimate holds for allt < §/y:

IDS;(ro, uo)lls—y: < ClID(ro, uo)|ls.

We will work with families of functions that have no constant part: their Fourier coefficients of order 0 will be 0.
This is crucial to get gp independent of §p as needed in Subsection 7.1. For such functions, we have the following
estimates.

Lemma 6.9. Let f = (f"),cre € Xs for some 6 > 0, and such that for all w € RY,

/f“’(x) dx =0. 61)
Then for all 0 < §' <,

[PAE

r < .
e
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Finally, we give some estimates dealing with the composition of analytic functions. We recall that the function ®
intervening in the expression (15) of the potential is of the form (16). If A is a nonnegative number, we set:

1010 = Y laa.
keNd

Remark that |®| and its derivatives are sums of nonnegative terms. Thus, they always have a meaning in [0, +oc].
With this definition, assumptions (19) and (20) can be reformulated

/ICDI/(IwIJrro)dM(w)SM, (62)
/|<I>|"(|w| +ro)du(w) <M. (63)
We can now state the last lemma of the subsection.

Lemma 6.10. Take a € R?, f and g two analytic functions from T9 to R¢ and 8 > 0. Then, the following inequalities
hold (with possible infinite values)

|P(a+ f)—Pla+ls < |f —gls|®l'(lal + | £, gls), (64)
ID®(a+ fls < IDfIsI®'(al +1£1s), (65)
|®(a+ f) = P(a) —dD(a) - fls < |fI51DI"(lal +1£1s), (66)
ID{®(a + f) — ®(a+g)}ls 7
<|f —glsIDf.Dgls|®|"(lal + | f, gls) + ID(f — @)ls|®|"(lal + | £, gls),

ID{®(a + f) — ®la+g) —dP(a) - (f = &)}Is )

<{ID(f = 9)ls|f. 8ls +1f — glsIDf£.Dgls}|®|"(lal + | £, gls)-

6.3. Estimates for the source term in the Duhamel formulation

We will estimate the different terms in (56) in order to apply a Cauchy-Kovalevskaia theorem. We take (rg, ug) €
Ly and §¢ > 0, and we call
1 := ||Dro,Dugls,.

Because of (59), we have then

lro, uolls, <n.
We take I' > g (as in the statement of Theorem 6.1), and we define

2 1 1
== —I'= (' — ). 69
vi=3nt g Vo+3( Y0) (69)
In the sequel, C is the constant appearing in Theorem 5.5 with y = y;. It only depends on M and I'. In particular,

with these definitions,

sup ||(r@),u@)|; ., <Cn, (70)
re[o,ao/y.]“ I

sup [[(Vr(@), Va@)|,, _,,, = Cn. (71)
t€[0,80/y11

We begin with the easiest terms.

Proposition 6.11. For all t < §y/y1, we have

| div (r@u®)] ., <20

72
| (@@ - V)um];,_,,, = . "
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For all t < 80/y1, for all § < 8o — y1t, for all n > 0, and for all families p, := (01,&,) and p, := (02, &,), we
have

|div{r® +on@o +&n} —div{eo +on@n +82}|
= (Cn+IDp1.DPals )2y = Palls + (Cn+ 1. Palls ) IDR1 = P,
(@ +8)- V)@ +&) - (@O +8&)- V) @O +&)|

= (Cn+11D&1. D& 115 ) 161 — £alls + (Cn + 161, &2115 ) IDE; — €)1,
where |Dp||s stands for |Do ,DE||s.

(73)

Proof. Inequalities (72) are easy consequences of (70), (71), Proposition 6.4 and Proposition 6.6 once remarked that
for any § > 0 and any vector valued f, || div flls < IDf]ls.
To show inequalities (73), just decompose the differences of products using the relation

(@+b1)(c+d) — (a+br)(c+da)=(a+b))(d —dr) + (c+da)(b1 — by),

and use (70), (71) and Proposition 6.6. O

Let us move on the delicate part of estimating the force field. It is now that we must use the analyticity of ®. We
will prove the following.

Proposition 6.12. There is K only depending on M, ro and T" such that:

e Forallt <68y/y) and for all n such that Cn < rg, we have

IV Wy [0, 01(t) 59—y < K% (74)

(We recall that ro is used in (19) and (20).)
e For all t < 8y/y1, for all § < 8o — yit, for all n such that Cn < ro, and for all families p, := (01, &,) and
P2 :=(02,§,) such that

Cn+lp1, palls <r <ro,

we have
VW, ulo1. &) — VW ulo2. £,1(1)|

75)
< k{(Cn+1Dp.Dpsls) 21 = palls +71D(p; = )1 .

Proof. Proof of (74). By the definition of W, 4 in (55),
W,.4[0,0] = A [/ {CD(w Fuy — CD(w)}rw d,u(w)]

+A [/ {@(w Fu) — d(w) — dCD(w)u“’}d/L(w)i| .

Thus, by Proposition 6.7, if t < §p/y) and § := 8o — 11,

[V Wr.ul0, 0105 < M‘D [ {ow -+ - oo duw

8

+ M‘D/ {CD(w Fu (1)) — D(w) — d@(w)uw(t)] dp(w)

8
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< M/ ‘D <{<I>(w Fu () — @(w)}rwa))’adu(w)

+ M/ ’D {cb(w +u” (1)) — D(w) — d@(w)uwa)} )8 dje(w)
But on the one hand, by (70), (71) and Proposition 6.6,

‘D ({cb(w+uw(r)) — dD(w)}r“’(t))‘a
< CID{®(w + u™ (1)) — ®(w)}ls + C|O(w + u® (1)) — d(w)ls.
= CID{®w + u” ()}]s + C|P(w + u™ (1)) — D(w)]5,
<2C%|®[ (Jw| + Cn),

the last line being obtained using (70), (71), (64) and (65).
On the other hand, by (68),

‘D {<1>(w Fu(1)) — d(w) — dq)(w)uw(t)} ‘5 <2C2p2®|" (Jw| + C1p).
In the end, we find
IVW.al0,000)1s =27 [ {100 Gl + O+ 101" Gl + 1) duw)

We conclude by using (62), (63) and Cn < ry.
Proof of (75). Take t < 8¢/y1,8 < do—y1t, nsuchthat Cn <rp, p; :=(01,&;) and p, := (02, &,) as in the statement.
We have by the definition of W, , in (55):

Wi ulpi]— Wrulpsrl

— A[/{CD(w Ut EY) — <I>(w)}(of” — oﬁ”)du(w)}
+ A[/[cb(w +u"+ &) — d(w+u"+ éﬁ")}(r“’ +02’“)du(w)]

+ A[/{cb(w U ) — B(w -+ £ — dd(w) - (€ — &) du(w)}.
So by Proposition 6.7, omitting the time variable,
IVWrulpi] = VWrulpolls
< st [[p([ew-+um+ &) - o) of - o)) duw)
e
[ ({04 57 = 0w +um+ )} +01)) | e
e

+ M/‘D(@(w F U+ ED) — O(w + u"+ £Y) — dd(w) - (EY — gzw))‘sdu(w).

=:A3

Let us control these terms one by one. First, by Proposition 6.6,

A1 < D(@(w +u"+ ") — @(w))lsllpy — p2lls
+ [P (w +u"+ &) — @(w)|5[ID(p; — p2)lls
= [DO(w +u"+E")slpy — Palls
+ [ @(w +u"+ &) — P(w)5IID(py — p2)lls-
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With (64), (65), (70), (71) and Cn + || py, p2lls <r < ro, we obtain

A1 ={(Cn+1Dp1.Dps )l P = Palls +rD(p1 = pa)ls |91 (wl + r0). (76)
Then, still by Proposition 6.6, (70), (71) and Cn + || py, p2lls <r <ro,
Ax = r|Dfo+ut+ g - d(w +Mw+%'2w)”6
+ (Cn+IDp,Dp,lls) | P(w + u”+ &) — P(w +u"+ 55”)‘5.
Using (67) and (64), we get
Az =7|D(p; — po)lls| @' (lw| + ro)

+rollpy — P2I(Cn + 1IDp1.Dp,lls) 21" (Jw] +ro))
+(Cn+1Dp1,DpslI9)llp1 — P2 llsI Pl (w| + ro)

= (C1+ IDp1.DPall5) [Py = Palls| 191 (] + 7o) + rol DI (1] + 7o)}
+rID(p; — p)lIs|®I (Iw] + ro). 7)

For A3, we just have to use (68). We get

A3 ={rID(p1 = p2) + (€1 +1Dp1.Dpa) 11 = Pall} 101 (] +r0). (78)

The result is obtained by integrating (76), (77) and (78) with respect to w and by using (62) and (63). O
In the end, the results of this subsection can be summarized in the following way.

Theorem 6.13 (Conclusion of the subsection). Take T" > yy, y1 as in (69) and C the constant given by Theorem 5.5
with y = y1. Equation (56) can be rewritten as

t

p(1) = / Sy Ty (5. p(s)) s, (79)
0

with S defined in (38) and satisfying (39), and F, satisfying the following estimates for some K > 0 only depending
on M, roand T.

e Forallt <68y/yo and for all n such that Cn < ro, we have
13 (2, ) lsg—yor < K1 (80)
e Forallt <8o/y1, forall § <8y — y1t, for all n such that Cn < ro, and for all p,; and p, such that

Cn+1lpy, palls <r <ro,

we have
| Fo . py) — Ft, P2)||5
< k{(cn+1Dp1.Dpsls)Ips = palls +71D(Ps = P2)1s -

e Forany pe XsN Ly, § >0, forall n > 0 and for all t < §y/y1,

(81)

Fy(t, p) € Lo. (82)
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Proof. Looking at (56), we see that
—div ((r(t) o))+ E))
~VWralpl = [ @ +8) - V]@®) + &

Estimates (80) and (81) are obvious consequences of (72), (73), (74) and (75).
To see (82), remark that as for all w € R, 4% and &Y are gradients,

fﬂ(tvp):

(@0 +8 V]wn +& = 1v(uw +57). o
6.4. A Cauchy-Kovalevskaia theorem

We want to derive from the estimates (39), (80) and (81) and from property (82) an existence result for equation
(79).
The theorem is the following.

Theorem 6.14. For all T" > yy there exists g9 > 0 only depending on ro, M and T (and not §¢) such that if

1 = €0, (83)

then:

e equation (79) admits a solution p fort € [0, 8o/I"] with values in Ly,
e forall 5 < &g, p is continuous from [0, (59 — 8)/T"] to X5,
o there holds:

2

n
sup  [lp@llsg—rr < —. (84)
1€[0,80/T €0

Moreover, this solution is unique in the class of analytic solutions: if q is a solution to (79) which is continuous
from [0, T] to Xs for some T < 8o/1" and 6 > O, then forall t € [0, T], q(¢t) = p(¢).

Remark 6.15. The proof also gives for free

2
n
sup sup /8o (8o —8—T)'/?|Dp)|; < —. (85)
1€[0,80/T) 8<8o—Tt &0

Proof. Take I > yp, and define as previously y; by (69). As before, C will stand for the constant appearing in
Theorem 5.5 with y = y1. Define as well

=t 2T =yt 2T 0)
V2-—3VO 3 =Y 3 Yo)-

In the whole proof, equation (39) will be used with y», and the corresponding constant will be considered as a function
of I. Also, in the whole proof, K will denote a large constant which will be likely to grow from line to line, but only
depending on rg, M and T.

First we define the following norm:

1/2
lpll:="sup 1p@lso-ri+V3o sup (80—8—T1)"*IDp®)lis. (86)
1€[0,80/T1 1<8/T
§<89—T1
This type of norm has been used for the first time by Caflish in [14]. Here, we have chosen the exponent in the
derivative part equal to 1/2 and we have added a factor /8y. All these choices are made to obtain &y independent of
8o as the following computations will show.
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For a given 7, we introduce the scheme:

Po=0,
t
Vn>0, p,. @) ::/S,_S}',,(s, P, (s))ds.
0

First of all, 0 € L. Moreover, if p € Ly is sufficiently regular, and if 0 < s <1, then (s, p) € Lo by (82), and
s0 S;—sFy(s, p) € Lo by Theorem 5.5. Consequently, it is easy to prove by induction that for alln € N and all t > 0
such that the definition of p, (#) makes sense, then p,(t) € Lo. In particular, p, (¢) will satisfy (61) and, we will be

able to use Lemma 6.9.

Now we suppose that (83) holds and we will show that as soon as & is small enough, then the scheme will converge

to a certain p for which we will give an estimate.
Step one: estimating p.
Let us begin the computations by estimating ||| )2 H| Ifr <8o/T,

t
121 O 50 < / 113 Fy (5, ) 13y
0

t
<K / 175 (52 0) 150 Py s s
0

t

< K/ ”]:n(sa O)”So—yls ds
exp (o — y18) — (8o — (' — y2)t — y25)

t

2
< K—n/exp(— (y2 — y1)s) ds
exp (' — y2)1) )

< K n’
“yn—yiexp(C—yi)

Putting the y» — y1 in the constant C and using I > y», we get

1Py @) llsy—r: < Cn?.

by (39),

by Lemma 6.9,

by (80),

On the other hand, choose t < §p/I" and § < §g — I't. Taking for all s € [0, 7]

§(s) = S+t —s)+8— s
= 5 ,

t
”Dpl(t)”éf/”DSt—s]:n(st)”tS ds
0

t
<K / IDF, (5, O35 ys(r—s) ds
0

t
x / 1G5, 0) s
B O A )
0

by Lemma 6.8,

by Proposition 6.5,

(87)
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t
< K/ 175 (5. Ollso—1s e~ Go—ns=8'() g by Lemma 6.9,
§(s) =8 =yt —s)
0
o Go—d—yatt(n—y9)/2
<K / ds by (0),
/ S0 =8 —yat + (2 —y1)s
13
< Knte—Go=8-12/2 / ds
- / So—08 =yt + (2 —y1)s
= Kn?e~Go=8—10/2 log do=d=pt .
8o — 8 — yat
But remark that for t < §o/I" and § < 69 — I'?,
8o — 8 — pit
Voo(80— 8 — Ft)l/Ze—(so—S—ym/z log (=~ N7
30— 38—yt
. s 1—6—yi
<80e %% sup  sup (1-6— Ff)l/ze_(l_‘s_n’)/z log ~7y1~ ,
F<1/T5<1-TF I—68—yt
and that
N S 1-8—wni
sup sup (1 —6— Ff)lﬂe_(l_s_n’)/z log ~7y1~
F<1/T§<1—T7 1 —8—yat
only depends on I'. So we can include this factor in the constant C and because Spe~%/2 < 2, we get
1/2
V80(80 =8 —T1) " IDp, 0)lls < K. (88)
Gathering (87) and (88), we conclude that
o]l < &n.
Step two: estimating p, — p,,_; by induction.
Now, we prove by induction that when & is sufficiently small, then for all n > 1,
Il = pucill =271l ®
and
2.l <. (90)
Basis step. When n = 1, (89) is automatically true, and as under condition (83),
llp:i[| < Kn* < Keon,
as soon as
1
Key < =, 91
f0=3 (28]
we have
n
<-. 92
el =5 (92)
Equation (90) is then trivially true forn = 1.
Induction step. If the result is true for k = 1, ..., n, let us estimate the norm |” Pni1— Py ’” First of all, as soon as
T
£0< (93)

C+1’
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then for all s < §¢o/T,

Cn+11pu(s), Pr—1()llsg—rs < (C+ Dy <ro,
so we will be able to use (81) with r := (C + 1)n. Take t < §¢/T". By setting for all s € [0, 7]

3(s) :==380 — (I' = y2)t — 125,
we have by (39), (81), (90), (86) and Lemma 6.9:

[ Pns1(t) = Pu()llso—rs

t
< / 11— [ Fy (52 P () = Fop (52 Pt () lsg—re ds
0
t
<K / 1 (5, P () = Fy (5. By (5D lscs) ds
0

t
<K / {(Cn+1Dp,-19).Dp, ) 56) ) 124) = Puci ) lscs)
0

+(C+ DD, (5) = o1 (5Dl | ds

n P = Pucill

t
<K Cn+
0/{( ! «/30(50—5@)—rs)”2>eXP(80—Fs—8(s))

| — puci| }
+(C+ 1y ds
V50(80 — 8(s) —T's)'/?
t
C C+2
<K|p,— Purln / + ds.
I = poet] ) { exp (8o — I's — 8(s)) V80(80 — T's — <3(s))1/2 }
But using
80— s —8(s) = (T — y2)t — ([ = y)s,
we get
t
1Pas1 @) = PyOllsg-rs < K| Py = Puci || {C +(C+ 2>/§ }
<K||py = puci|In-
In particular,
1
120s1®) = P, Olls < 2|20 = Pocil O
as Soon as
1
Keo< 7. ©3)

On the other hand, if r < §p/T" and § < §g — I't, by using Lemma 6.8,

13
ID(Py1 (1) — Pp()ls < K/ ID(Fy (s, Pn($)) = Fp(s, Pu1 () lls4y2(1-s) ds.
0
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We get rid of the D by using Proposition 6.5 with for all s € [0, t],

S+t —s)+686—Ts
> .
With this choice, for all s € [0, ¢],

8(s):=

A(s) = 8(s) — 8 — ya(t —s) =89 — ['s — 8(s) = %

2
Consequently,

ID(Py1() — Pa()]ls = K

t
/||~7:n(S,Pn(S))—fr;(S,an(S))Ha(s) ds

A(s) '
0

By the exact same estimations of ||.F,(s, p,,(s)) — F;, (s, p,_1(s))|ls(s) as before,

ID(Pn+1(1) = Pa(O)ls

t
C C+2
<K|lpy—pus mno/ { A(s)exp (A(s)) " V8o A(s)32 } o

We just have to use

AGs) > dg—8—Tt
s —_—
- 2
to get the bound
t 1
/ ds ( 80—8—Ft)/ ds
A(s)exp (A(s)) 2 A(s)
0 0
t
do—8—Tt d
<2exp (— 0 )/ 5
2 So—38—yat — (' —y2)s

do—8—Tt 8o — & — ot
<dexp (00T g (=0 =1ty
2 So—6—Tt
And besides, by (96),

t

/ ds  _ 42 1
A2 T =y (59— 6 —11)'/*

In the end,

V30(80 =8 = T1) 2 ID(p,y1 (1) = py)lls < K || Py — Pu_y 0L + 1),

with
1/2 Sg—6—TIt 8o — 6 — ot
L= sup do(6o —8 —TI't exp (— log
1<8/T \/_( ) 2 So—8—Tt
§<do—Tt
- 1—6—yof
<8oexp(—80/2) sup (1—5—T7)10g [ —2— 22
i<1/r 1-6-Tt
S<1-TT
- 1—8— i
<2 sup (I—S—thl/zlog ~7y2~
f<1/T 1—-86—-Tt

§<1-T7

—3—=pyt =T =y2)s

523

(96)
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and

< 1—8—ypf
sup (1-6— Ff)]/zlog (77/2>

f<1/r 1 —S—Ff
S<1-Tt

only depending on I'. Thus,

V80(80 =8 = T) 2 ID(pyy 41 (1) — Pu@) s < K| Py — Pus ||
< Keo||py — pu |-

Once again,
So—8—Tt\'? 1
) 1P@u1®© = Pa)lls = g llpn = Pal 97)
as soon as
1
Key < —. 98
& < 1 (98)

So under conditions (95), (98), then (94) and (97) hold and thus by summing them,
1

slpa = pucill =27 -

l20s1 = pall <

To get

llPnsll = n.

it suffices to sum (89) for all the integers up to n + 1 and (92). So we are done with our induction as soon as &g satisfies
91), (93), (95), (98).
Step three: conclusion of the first and third point of the statement.

We have shown that when &g is small enough, under condition (83), (p,,),eN is a Cauchy sequence in the Banach
space of functions having finite norm ||| e |||. So it converges to a certain p which turns out to be a solution to equation
(79) and which belongs to L for all of its times of existence (L is closed even for the topology of distributions).
Moreover, by summing (89) for all n > 1 and by using (87) and (91), we get

2
n
Il =2lle )l < -

Inequalities (84) and (85) follow easily.
Step four: continuity of p.

Here, we show the second point of the statement. First, because of (81) (with p; = p and p, = 0), (84) and (85),
we can estimate F: for all r < §o/T" and for all § < 89 — I't, there is a constant K such that

592, p()ls = 99)

(8o —8 —T)l/2”
(For this part of the proof, we do not need to be cautious with the dependences of K; a priori, it depends on everything
except for # and §.) In what follows, K will be a large constant growing from line to line.
Then, if 0 <t < 1p < §p/T, using (79), we get:
131 4]
p(2) — p(t) = /{Stz—s = St—s}Fy(s, p(s))ds +/St2—s}'n(s, p(s))ds (100)
0 I

Now, we chose § < §p and we suppose 0 <] <ty < T := (5o — 8)/T". The goal is to show that the two terms in
(100) tend to zero in Xs when f, — t goes to zero. The easiest term is the second one:
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t 9]
/Szz—sf,,(s,p(s))ds S/IISzz-an(s,p(s))lla ds
4]

n 5

%)
SK/”}—n(s»P(S))||5+)/2(12—s)d5
n

ds

[5)

<K

- /(50—5—FS—V2(I2—S))1/2
4]

_Kf ds
a J (DT =) =yl = 5))1/2
1

- Ki ds
- p (T = y2)(T —s)1/?
1
T
<K / ds
- (T = ) (T —s)1/?
T—(nn—11)
= KV n—n,

which tends to zero when f, — ¢; tends to zero.
We treat the first term in two stages: > \( 1 and then #; ' 1.
The case #; \ t;. We have:

by (39),

by (99),

131 3]
/ (Sus—s — Sy} Fy (5. p(s))ds = / (Suysy — 1d)Syy_s Fy (5. p(s)) ds
0 0

= {Slz—tl - Id}p(tl)

525

According to the continuity part of Theorem 5.5, this term tends to zero in X as #, \( #; provided p(#1) € Xy for

some 8’ > §. But this is the case as we know that p(#1) € Xs,—ry,, and 8o — 'ty > §o — I'T = 6.

The case t; /' to. We also have:

3]

3]
/ (s — Sy —s)F (5. pls)) ds = / Sy (S, — [} Fy (5, p(s)) ds
0

0
Consequently,

n

/{Szz—s—Szl —s}Fy(s, p(s))ds

0

8

3]
< / 1S —s {811y — 1) (5. p(s))ls ds
0

4]
< / 1S, = IA}Fy (5, PN l5pm0y )
0

by (39),
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5]
= / Lyr, {S— — 1} F, (5. PO 5420, —s) ds. (101)
0
On the one hand, if s € [0, 12), F, (s, p(s)) € Xy for all §’ < 8o — I's, and

S+t —s)<8+T(p —s)<8+T(T —s)=6y)—Is.

So by the continuity part of Theorem 5.5

1SSt| ”{Stz—l‘] - Id}fn(sa P(S))||8+y2(11 —s5) =< ||{St2—t| - Id}fi](s’ p(s))”5+)/2(l‘27s)

— 0.
t /'t

On the other hand, for all s € [0, 1),

Ls<t I{St, -, — Ld}Fy (s, P I6+12(1—5)
=< ]lsftl ”Stz—tl]:n(sv P(S))||6+y2(t1 —s) + ]lsftl ||~7'—n(5’ P(S))||8+y2(t|—x)
<2||Fy(s, D s+12(t2—5)
K
<
T (8o —8—Ts— (2 —5)1/?
K
<
(T = y2)(T —s)1/2

where we used (99) to get the fourth line. This bound does not depend on #; and is summable between O and 1, < T.
So the dominated convergence theorem applies, and we can pass to the limit #; 7t in (101).
Step five: uniqueness.

Suppose 1 < go. The computations of the induction part of step two show that if ¢; and ¢, are two solutions to
(79) up to time §o/I" that satisfy

sup  |lq1(#), g2 llso—rr <1, (102)
t€[0,60/T]

then

1
lla2 = a1l = 3 llaz = 4

Consequently, in that case, q(t) = g, (¢) for all t € [0, §o/T].

Moreover, we have seen that &y does not depend on §p. So if we replace §p by some ¢ in (102), then the conclusion
holds up to time ¢p/T.

Now take p as built in step three and ¢, T < 8p/I" and § > 0O as in the statement of the theorem. Let 79 € [0, T'] be
defined by:

to:=sup{r € [0, T]| p(1) =q()}.

Suppose by contradiction that 7o < T'.
By the previous considerations, it suffices to find ¢y < 8¢ such that #y < (o/I" < T and

sup  [lglly-re <7 (103)
t€lto,0/T']
Indeed, if such a ¢ exists, then (102) holds with (¢ instead of &y, g := p and g, := q. (The estimate for p and the
estimate for ¢ before 7 are due to ¢y < &g and ]”p”} <n.) Hence, for all t <y/T", q(t) = p(¢) and as ¢p/T" > 19, the
maximality of # is contradicted.
As p(tg) € Lo, 8 +— ||plls is an increasing function. So as

| p(to)llsg—r1 <1,
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for all (9 < &9,

g (t0)lig—r10 = Il PO llg—T10 < 1-

In addition, if ¢ is sufficiently small, then ¢y — I'tg < §, where §, given in the statement of the theorem, is such that ¢
is continuous in X . For such (g there is ¢; > fg such that for all ¢ € [#g, t],

lgOllo-rr = lIgDllg-r1y <1

Up to taking an even lower (g > foI" we can suppose furthermore that ¢o/I" < 1. For such a ¢y, (103) holds and the
result follows. 0O

6.5. Conclusion: proof of Theorem 6.1

Theorem 6.1 is a direct application of Theorem 6.14.
The fact that (p(¢), v(¢)) stays real is a consequence of (21). Indeed, with these assumptions, on the one hand, with
the notations of the proof of Lemma 5.7:

vneZ? A_,=A, and B_,=B8B,.

So the linear solutions are real if (pq, vo) is real. On the other hand, the fixed point procedure developed in the proof
of Theorem 6.14 send real functions on real functions. So the nonlinear solutions also stay real.

The fact that p(#) stays nonnegative is a classical fact in the theory of the continuity equation and can be understood
for example through the characteristics method. O

7. Consequences

In this section, we will give some consequences of our results. First, we will prove that the solution to equations
(14)-(15) are almost Lyapounov unstable in the neighborhood of any linearly unstable stationary profile. Theorem 2.2
for the Vlasov-Poisson equation will be a direct application of this result. Then, we show an ill-posedness result
implying Theorem 2.3 when the unstable spectrum grows linearly with the frequency of the exponential growing
modes, as it does in the kinetic Euler equation and in the Vlasov-Benney equation.

7.1. Almost Lyapounov instability

Take p an unstable profile, as defined in Definition 5.2. We consider yy as defined in (35). We also take y € (0, yp)
and

=2p-v,
chosensothatI' — yp =y0 — 7.
From now on, we take (1, 1) € Z%\{0} x C such that (29) holds and such that %(1)/|n| € [y, yol.

Because of Subsection 5.1, taking the real part of the exponential growing mode associated to (n, A), and using the
notations:

n . A Qo+u-w
u:=—, r+ip:=—, 6O(w):=arctan| —— |, (104)
In| In| r
we obtain that for all c e R,
cos [n -x + |n|pt — 29(w)]
rév(tvx) =—C 2 2 exp(|n|rt)’
re+(@+u-w
(¢ ) (105)

sin [n -x + |n|pt — G(w)]

ul(t,x):=c exp(|nlrt) x u,

r2 4+ (¢ +u-w)?
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is a real solution to the linearized system (26). Its initial data is clearly in L. We see thanks to Remark 5.3 that it
corresponds to the linear potential

Vire(®),uc(1)](x) = ccos(n - x + |n|gt) exp(|n|rt). (106)
We deduce our “almost Lyapounov instability” result.
Theorem 7.1 (Almost Lyapounov instability). Take s € N and o € (0, 1]. Then there exists (p’é, Ué)keN a family of
analytic initial data tending uniformly in w towards the stationary solution (1, w) in W5, (Ty)reN a family of

positive times tending to 4+00 such that for all k € N, the unique analytic solution (p*, v*) to (14)-(15) starting from
(pk, vk), is defined up to time Ty, and satisfies
0> 70

/ min (1165 = 111 0,73y xmey» 1057 = Wil 0,1y x ) ) dia ()

p p = k—) ~+00. 107)
sup f max (Ilof" = s, 10 = wilwsos )} oo
weR4
Moreover, we have the following asymptotics for the potential:
Ulpk, v 1 - UL, wll a
1U1e - e O 7 — +oo, (108)
sup fmax (10§ = Hwsoe, " = wiysoe ) | 427
weR4
where (1, w) is a notation for the homogeneous stationary solution.
Moreover
T  ~ |logexl
k—+00
(109)

with & := sup [max <||p§’w — 1, ||v’5’“’ - w||L1>}.
weR4

Remark 7.2.

e A classical Lyapounov instability result would mean some discontinuity of the numerator of (107) in the topology
generated by the norm in the denominator. Here we show instead that the numerator cannot be Holder continuous
with any Holder exponent with respect to the denominator. That is why we call this result almost Lyapounov
instability.

e Equation (108) shows that the instability does not come from the multiphasic representations of the solutions.
Indeed, the potential does not depend on this representation.

Proof. Chose y < yy sufficiently close to yp to have

ay y
1—(1—— Y 110
o > 2)1" ( )

with T := 9 + (yo — y). Now take (n, A) as in the beginning of the subsection, (ci)ren € (O, 1]N a sequence con-
verging to 0, satisfying:

ckln| < cf/z.
Take T} > 0O the unique positive number such that

cxlnlexp(n|TTy) = 7> (111)
Then we define (r, u¥) := (ucy, re;) using (105). Remark that

2
||DrS,Du]6||er < cxlnlexp(|n|TTy) = C:/ - 0.

—+00
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(The symbol < means “lower than up to a constant which is independent of k”.) So when k is sufficiently large,
condition (57) of Theorem 6.1 is satisfied with 8o = I'Tj. As a consequence, the unique analytic solution (%, v%) to
(14)-(15) starting from the initial data (p’(‘), v’é) =1+ r’é, w+ ug) is well defined up to time 7%, and is of the form

vYw € RY, pk’w=1+rk’w+ak’w and vk’w=w+uk'w+§k’w.

Moreover, (ak, ‘g‘k) satisfies the estimate (58), which gives:
sup [lo' (1), £ lIrr—n < cgexpln|TTi). (112)

1<Ty

Let us move on to the proof of the asymptotics (107). First, we estimate (p’é, v(’;). It is given explicitly by (1 +
r*, w + u*) and formula (105) with = 0. We deduce:

K, k.
sup max(||p0w—1||wx,oo, ||v0“’—w||Ws,oo) ~ . (113)
weRd k—+o00

Now we have to estimate (o, v*) in L' ((0, Ty) x T¢) (we denote by || e ||;1 its norm to lighten the notations).
First, remark that for all w € R9,

. k k
min (1105 = 11, o5 = wi 1)
; k, k, k, k,
= min (15— o™ s Nl = 165 ,0)
: k, k, k, k,
= min (115, b 0 ) = max (105 185711 ).

But now, with formula (105) and equation (111), we easily see that

[ min (14 )

2 crexp(In|rTy) — ck
2 crexp(nly Ty) — ck

> crexp(n|TT)"'T — ¢

> cl-U-a/y/m _

Zc]if(lfa/Z)y/F_i_ o (c;f(lfoz/Z)y/F)' (114)

k——+o00
On the other hand, with the help of (36), (37), (112) and Lemma 6.9, we get that for all ¢ € [0, Ti],

sup max (1lo* (0l 1cray- 16" Ol o))
weRd

< lle* @), & o

<exp (= T(Tk —0)llo* @), & O lr—n

< cgexp (TQ2In| — DTi) exp(T't).
Integrating over time, we get by (110)

sup max (lo*” 1, 184" 1) S cf exp(@In|To)
weRd

Sk
— 0 <c,1*(‘*°‘/2)y/r). (115)

k— 00

Gathering (113), (114) and (115), we get



530 A. Baradat / Ann. I. H. Poincaré — AN 37 (2020) 489-547

/ min (1105 = 110z 1957 = wlao.mpsere ) diew)

o
sup f max (llof"” = Ulwsee, e = wilwsos )|

welRd
LI (c}c‘““"/z)”r)
Z k—)(—)i[—oo
Ck
— 400,
k——+00

by (110), which gives (107).
To prove (108), remark that for all k € N,

Ulp*, v 1= U1, w] + VK, uf] + Viek, €4

+A / {®(w +uh? +£5) — D)) (F Y + o5 ) dp(w)

41

+ A / {®(w +uF? 4 £5) — d(w) — dD(w) - @5 +E5) ) du(w) .

w>
On the one hand, V[r¥, u¥] is given by (106) and we compute easily as in (114) that

||V[rk’uk]”LlZc}i—(l—a/2)}//f‘+ 0 <C11—(1—a/2)y/1“>_

k— 400
On the other hand, using the definition of V in (26) and estimates (17), (18) and (22),
IVIo* & e S sup max (Ilo* 1,1, 165 1)

weR4
ch - o (C]i—(l—a/Z))//r),

k— 00

by (115).

(116)

(117)

(118)

Let us show how to treat Wy defined in (116), W, being treated in the same way and satisfying the same estimate.
In the second line, we use (22) and Proposition 6.4, in the third line, we use (64), in the fourth line, we use (62), and

finally in the last line, we use the same arguments as for (115):

Ty
IWillpr < / \A/{cb(w g — ()} + 0B dp(w) | dr
0

Ty
< / / |D(w + uh + E5) — @ (w)olrF? + o* P dp(w) dr
0
Ty
< k,w k,w k,w k,w d (D/ d
< osup PR ool + 5 g dre [ @) (Jw] 4 ro) du(w)
weRd
0
<= o (Ci—a—a/z)wr)
k—~o00

We get (108) by gathering (117), (118), (119) and (113).
Finally, (109) is a consequence of (111) and the explicit estimate

k,w k,w
sup max (ol = U, v = wllp) ~ e O
weRd k—>+00

(119)
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We can now go back to the kinetic formulation and give a corollary which implies Theorem 2.2. We recall that in
Theorem 2.2, we suppose that we control a certain number of macroscopic observables at the initial time. But with
(12), it is easy to go from a multiphasic representation of the system to macroscopic observables. This remark leads
to the following statement.

Corollary 7.3. Take v an unstable profile, N € N*, ¢, ..., ¢N € C?O(Rd), s € N and a € (0, 1]. Take (p’(‘), vlé)keN
and (Ty)xeN as in the previous theorem, and (p*, v¥)ieN the corresponding solutions. For each i, call

(fE i) = / i (v ) oy dpa(w).
Then, we have:

Ulp*, v1 - U1, w] d
l NP k ||L1((g,mx11“ )y oo (120)
Zi:] ||<f0 9 (pl) - </"L’ ¢l>||wsoo(’]rd) ko0

Moreover,

T, ~ |logel, (121)
k— 400
where g := |U[p*, v¥1|;=0 — U[1, w]|| 1.

Proof. In view of (108), to prove (120) it suffices to show that if ¢ € C° (R%), there exists C > 0 such that for all
smooth (p, v),

H/w(v“’)p"’ du(w) —/w(w)du(w)H

WS.OO

<C sup {max(”,ow — 1|ws., 0¥ — UJHWS.OO)},
weR4

This is an easy consequence of the following decomposition:
/fp(vw)pw dp(w) — /(p(w) dp(w)
= /{w(vw)pw —pw)}du(w)

= /cp(v“’){p“’ — 1}du(w) + /{go(v“’) —p(w)}dp(w).
To prove (121), just remark that because of (106), taking (cx) as in the previous proof,

k .k k, k,
10", v limo = UL wlllr ~  sup max (llof™” = o o™ = wlip) ~ e O
k +00 <R k——+00

7.2. Ill-posedness when the spectrum is highly unbounded

With an additional assumption, we can show an ill-posedness result for equations (14)-(15). The assumption is the
following.

Assumption on the structure of the unbounded spectrum. We assume that the number )y defined in (35) satisfies

. ")
yo = limsup sup . (122)
In|—+o0reS, 7]

(We recall that S, is defined in (33).) This assumption means that there exist exponential growing modes of frequency
n with growing rates of order ||y for arbitrary large |n|.
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Examples. The kinetic Euler system (25) and the Vlasov-Benney system (4) satisfy the following property: if n € Z¢
and X € C are such that A € S, then for all k € N*, kA € Sy,. This can be directly checked using the Penrose
conditions (31) and (32). As a consequence, for all n € Z% and k € N,

kS, C Skn-
Equation (122) follows easily. This property is a consequence of the following scaling for (2) and (4):
if f(z,x,v) is asolution and k € N, then f(kt, kx, v) is also a solution.
Under this assumption, the instability proved at Theorem 7.1 is true even in small times.
Theorem 7.4. Take (v an unstable profile satisfying assumption (122), s € N and o € (0, 1]. Then there exists
(pl(‘), vé)keN a family of analytic initial data tending uniformly in w towards the stationary solution (1, w) in W*°,
(Ti)keN a family of positive times tending to zero such that for all k € N, the unique analytic solution (p*, v¥) to

(14)-(15) starting from (plé, v](‘)), is defined up to time Ty, and satisfies (107) and (108).
Moreover

1
T, ~ (I 0g8k|)’ (123)
k—+o00 [ng|

where

k,w kaw
e = sup { max (Jlpf" = 1o, Iof™ = wi))}
weR4

and where ny is the spatial frequency of the nearest exponential growing mode.

Proof. The proof is very similar to the one of Theorem 7.1, except that here the eigenvalue depends on k. Thanks to
assumption (122), we choose (1, Ax)reN a family of solutions to (29) with

|ng| — oo,
k——+00

R
VkeN, rpi= (t)

— Y0
|ng| k—-+oo

Now we take for all k:

Ck - 0, B:= g(as +2). (124)

_ ;
[ni|P k—-+oo

We take y sufficiently close to yg to have (with ' =2y9 — y)

Lo r (et _ s
a.—l—i-ﬂ F(l ) ﬁ><a<1 ﬂ>’ (125)
_ 1y a 1 o

We suppose up to forgetting the first terms that for all k € N,
K>y, (127)
Using the notations (104) indexed by k for (ng, Ax), we define
cos [nk - X+ |nglort — 249k(w)]
rE+ (g +ug - w)?

U, x) = —cp exp(|nklrit),

| (128)
sin [nk <X+ |nglekt — 9k(w)]

0, x) = ¢ exp(|ng|ret) X u.

\/r,?-l-(ﬁl)k-i-uk ~w)2
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Remark that

cklnkl _ e/t D)a/4 _ d-a2
= <c .

02/4 k k—+o00

Consequently, we can suppose that for all k € N,
/4

o
cklnil < ¢
In that case, we take T} the unique positive number satisfying
4
celniexp(ini | TTi) = /.
Remark that automatically, as 1 < B(1 — «/4),

lo
T, ~ |log ck| o
k—+o00 [ng| k—+00

Formula (123) follows easily. Then,

k k 4
IDr6.Dulrs, < celnel exp(nelFTi) = ¢i* — o.

—+00

533

(129)

So when £ is sufficiently large, condition (57) of Theorem 6.1 is satisfied with §o = I'T;. As a consequence, the unique
analytic solution (0%, v%) to (14)-(15) starting from the initial data (plé, vg) =1+ r’é, w + ul(‘)) is well defined up to

time 7%, and is of the form

vw e RY, PR =145 £ 6k and 0% = w 4+ ubv 4 gV,
Moreover, (ak, & k) satisfies the estimate (58), which gives:

sup [lo/(1), £ (- S cglnel® exp(2lng| T Te).

t<Ti

In this context (113) becomes (using (124)):
1—s

sup max (Il = Hiwsoe, o™ = wilwso ) ~ exlnil’ = ¢ /7.

weR4
Equation (114) becomes (thanks to (127) and (129) and the definition of a in (125))

- k, k,
[ min (1 1 ) a2 -

1+1
Zc,’j—ck+ /8,

crexp(In|TT)"/T — ¢

But clearly a < 1 + 1/8, so that

[min (I ) dr) 2 6+ o (@D
k—+400
Finally, (115) becomes because of (129), (126) and (130):
max (1lo*" 11 1651 ) < cflni? exp@LImgl T)
gc,‘j/zz o (c)).

k— 400

Gathering (131), (132) and (133), we get

/ min (165 = 110,73y xmey» 195 = wilp1 0,1y ) dia ()

o
sup | max (||,015’w — e, b — w||Wm)}
weRd

g+ o ()
k—+00
2 —> 00,
ST ko

using (125) in the last line. Estimate (108) is proved in the exact same way as in the previous proof.

(130)

(131)

(132)

(133)
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As in the previous subsection, Theorem 7.4 has a kinetic counterpart. The following corollary implies Theorem 2.3
in the Vlasov-Benney case. For the kinetic Euler case, the next subsection (in particular Theorem 7.9) is also needed.

Corollary 7.5. Take w an unstable profile satisfying assumption (122), N € N* ¢1,...,pon € CL‘?O(Rd), s € N and
a € (0,1]. Take (pg, Ug)keN and (Ty)reN as in the previous theorem (in particular (Ty) converges to zero), and
(0%, vk)keN the corresponding solutions. For each i, call

(fE, i) = / i (vg ™) o5 dpu(w).

Then, we have:

IULp*, v¥1 — UL, wlll 11 (0. 70)x T4
! . L((a,mx )y too.
Zi:] ||<f() B (pl> - (Mv wi)“w&,@o(’]rd) k=00

Moreover
loge
T, ~ | log ex| ’
k—+oo \ |kl
where g == ||U[p*, v*]|,—0 — U1, w] 1 and ny is the spatial frequency of the nearest exponential growing mode.

Proof. The proof is the same as the one of Corollary 7.3. O
7.3. The specific case of the kinetic Euler equation

As already said in the introduction, in the case of the kinetic Euler equation, our abstract framework let us solve
(25), but not (2): our method applies when we have a formula for the force field, and not when it is defined through a
constraint. So an argument must be added to prove Theorem 2.3. It is done in three steps.

First we will show in Theorem 7.6 that the measure-valued solutions to (25) built in Theorem 6.1 are in fact
measure-valued solutions to (2) provided the initial data satisfies (24) (which makes sense in a measure-valued setting).

Unfortunately, the initial data used in the proof of Theorem 7.4 (the initial data of the exponential growing modes)
do not satisfy this property. We will give in Lemma 7.7 a way to add a quadratic perturbation to these initial data in
order to regain (24).

Finally, Theorem 7.9 will be nothing but an adaptation of Theorem 7.4 in the case of the kinetic Euler equation. It
can be seen as a stability result for this theorem: if we modify the initial data chosen in the proof of Theorem 7.4 by a
quadratic perturbation, then the result is still true.

The two kinetic Euler equations coincide in analytic regularity. Take f a smooth solution to (25). Such a solution f
satisfies

3, </f<r,x, v) dv) +div (/ of(tx. v)dv) o,
3 div (/vf(t,x, v)dv) +div <—Vp(t,x) {/f(t,x, vy dv — 1}) —0,

and so

0r¢ (/f(t,x,v)dv)+div<—Vp(t,x){/f(t,x,v)dv—l}):O.

This equation holds in the measure-valued setting for the solutions of Theorem 6.1 taking successively ¢ = 1 and
¢(v) := v in the weak formulation. (The second one is not bounded but f must have a finite second order moment in
virtue of (17), (39) and (58).) We call R = (R(¢, x)) the scalar function defined by

R(t,x) :=/f(t,x, v)dv — 1.
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Considering the previous computation, as soon as

/f()(o, v)dv=1 and div (/ vfo(e, v) dv) =0, (134)

then R must be a solution to the linear equation (once p is known)

{BzzR(t,x)+diV<—Vp(t,x)R(t,x)) —0, (135)
Rli=0 =0, 0;R|;=0 =0.

Remark that because of (3) and (23), the initial condition of a solution to (2) must satisfy (134).
In Theorem 6.1, we have built solutions to (14)-(15) satisfying for some §p > 0 and I' > 0 (among other estimates)

sup sup  [lp@), v(1)|ls < +o0,
0<t<40/I"' 0<6<ép—TI't

sup sup (6o — 96 — Ft)1/2|Dp(t)|5 < 400.
0<r<809/T 0<6<é9—T't

(The second one is an easy consequence of (15), Proposition 6.6, (19) and (85).) Therefore, there is C > 0 such that
for all ¢ € [0, 80/I"), for all 6 € [0, 6o — I'?),

Dp®)ls < ————. 136

PPOls = 72 (136)
When integrating the estimate we have on p, we also get

sup sup  |R(t)|s < +o0 (137)

0<r<80/T 0<8<8y—Tt

We are now able to prove the following.
Theorem 7.6. If (136) holds, the only solution to (135) satisfying (137) is 0.
In particular, the solutions to (25) built in Theorem 6.1 and for which (134) holds are solutions to (2), as announced.

Proof. We call T := 8¢ /I" the time of existence of our solution and
to :=sup{r < T such that R() =0 and 9; R(¢) = 0}.

The goal is to show that 7o = T'. By contradiction if it is not the case, we can do the change of variable t < (¥ — 1p),
T < (T —1t9) >0, 8o < (8o — I'tp) and suppose that #y = 0. Then, we just have to show that there exists ¢ € (0, T')
such that

Vi<e, R(@)=0.

Indeed, if so, for all ¥ < ¢, 9; R(t) = 0 and the definition of #y would be contradicted. For ¢ € (0, T'), we define

N(¢g):= sup sup |R(t)]|s < +o00.

0<t<e 0<8<8y—TI't

We will show that if ¢ is sufficiently small, then

N(e) < %N(e).

The result follows easily. Because R(0) =0, R(0) =0, forallt < T,

t s
R(t,x)=//div(—Vp(T,x)R(T,x))dtds.
0 0
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Thus, if § <89 —I't,
t s
ROk = [ [ 1av-Vp@R@ s dr s
00
But using Proposition 6.4 and Proposition 6.5, and defining

, So—T7—3
S(r)=o4 0" T7°%
2
we get
V()R s
R(O)s <//| p(T) (T)|a()d ds
§(t)—96

52// IDp(®)s' )| R(Ds(z) dr ds.
So—o6—TI71

By (136) and the definition of N,if ¢ > 0and ¢ <e¢,

IR(®)|s <2\/_CN(£)//(8—drds

§—T1)32

L8 N(s)/ e Fs)m ds

8ch(s)((80 — V2 5y —5— rz)l/z).

Taking the supremum on § < §y — I['t, and then on ¢ < ¢, we get

8v2C
N(e) < \ﬁ; Vv TeN((g).
We obtain the result by taking

1'*3
&< —.
~ 512C?

Choosing appropriate initial conditions. We recall that the initial conditions used in the proof of Theorem 7.4 are of
the form (14 ro, w + uo), ro and ug being given for all w € R? and x € T by the formulae:

. cos [n X = 29(w)] exp(in - x)
0 = e et uw)? z_cm<<r+i¢+iu~w>2>’

(138)

sin[n-x—@(w)] ; in -
e P Xuz_cm(M>xu,
/r + (@ +u-w)? r+ig+iu-w

where cand ¢ € R, r > 0, n € Z¢, u = n/|n| and (w) := arctan ({¢ + u - w}/r). In the case of the kinetic Euler
equation, these are initial data of an exponential growing mode corresponding to the eigenvalue A = |n|(r + i¢)
provided (31) holds. We suppose it is the case.

The first condition in (134) holds for these data. Indeed, in this context (use (12)), we have to check that for all
X € Td,

/r(l)” (x)du(w) =0.
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But
d
/r(’)”(x) dp(w) =—ch (exp(in -x)/ (r+ i(pu—iui)zi . w)2>
~ . . dp(w)
==l explin-x) [ e
. (139)
by 31).

However, the second condition in (134) does not hold in general. In this setting, it would mean that

divy </ (w + uf)“(x))(l +ry (x)) du(w))

cancels. But

[ g ) (1473 0 e

= / wdup(w)

w iu
—cR in - d
¢ <exp(ln x)/{(r+i¢+iu~w)2+r+i<p+iu-w} u(w))

~ 02/ cos [n -X = 29(u))] sin [n -X = Q(w)]
(2 + @+ - wp?) 2

Taking the divergence, we get

div, (/ (w +ug (0, x))(l +rX (O, x)) d,u(w))

0 . in-w _ 1
= —c|n|*R (exp(ln x)/{()»—i—in-w)z A+in~w}du(w))

cos [Zn x— 39(w)]
—c*n- u/ 373 du(w).
(r2+ (@ +u-w)?) /

But the first term can be rewritten

cln>%h (Aexp(in-x)/(kdﬂ) =0 (140)

+in-w)?
because of (31). Finally, we end up with

divy (/(w + ug’(x))(l +ry (x)) du(w))

— 2014 in - M
= —c*|n|*R (exp(2l" x)/(x+in-w)3>’

which does not cancel in general. Nevertheless, the crucial point is that the first order (in ¢) cancels. We give the initial
data we shall consider in the following lemma.

du(w) X u.

Lemma 7.7. Take (ro, ug) the couple defined in (138) and suppose (31) holds with & = |n|(r +i¢). We call

vie | {r(’)”uow— / r&’(y)u@f(y)dy}du(w) (141)

vweRY, ¥ =u¥-V. (142)

Then (pgy, Vo) := (14 ro, w + @o) belongs to Lo and satisfies the multiphasic version of (134).
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In particular, according to Theorem 7.6, the solution to (25) built in Theorem 6.1 starting from these data are also
solution to (2).

Remark 7.8. The vector field V is a quadratic function of (r, u). We can even give the following explicit formula
using (138) and trigonometric identities. For all x € T4, we have

2 3 X —
c /(sm[Zn x —36(w)] du(w) x u. (143)

Ve =-
X 2 r2+((ﬂ+u~w)2)3/2

Proof. The first condition in (134) only involves rg, which is unchanged, and has already been checked in (139). We
just have to check the second one. We have

div, (/(l +ry)(w —i—fto)du(w))

= div, (/(1 +r(1)0)(u) +u8} _ V)d,u(w))

=div, (/{r{)"w + u%’}d,u(w)) + divy </ rouy du(w))
— div, <v/(1 +r(§“)du(w)> .

We have checked in (140) that the first term cancels. The second one equals the third one because of (139) and because
by the definition of V,

divV =div (/ ro uy d,u(w)) .

Finally, (0, V) € Lo because V is the gradient of the function defined for all x € T¢ by:

i/ cos[2n - x — 36 (w)] o
4nl ) (

u(w).
P24 (p+u-w?)?

Stability of Theorem 7.4. We are now ready to state and prove Theorem 7.4 in the case of the kinetic Euler equation.
Of course as in the previous cases, this theorem has a kinetic version that implies Theorem 2.3 in the kinetic Euler
case.

Theorem 7.9. Take p an unstable profile for the kinetic Euler equation (satisfying the Penrose condition (31)), s € N
and o € (0, 1]. Consider (pé, v’é)keN and (Ty)reN the families of data and times given by Theorem 7.4.
Then for all k, the unique analytic solution (i)k, T)k) to the multiphasic kinetic Euler equation starting from (plé, 1716)

is defined up to time Ty, ( f)g being chosen as in Lemma 7.7). This family of solutions still satisfy the asymptotics (107)
and (108), and (Ty)reN still satisfies (123).

Remark 7.10. In particular, thanks to Theorem 7.6 and Lemma 7.7, Theorem 7.4 holds for Equation (2), and not only
for (25).

Proof. Let us take (ng)reN, (M)ieN> (¢k)reN> B> ¥, [ and (T)ieN as in the proof of Theorem 7.4.

First, let us check that for k sufficiently large, there exists a multiphasic solution to (25) starting from (p'(j, 5]5) up
to time 7. To use Theorem 6.1, we need to check condition (57). We just have to consider the velocity part because
the density part is unchanged. Using the notations of Lemma 7.7 with the index k (Vi is defined in (141) and ﬁé is
defined in (142)), we have (using (143)):
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IDig |7, < IDulirr, + IDVilrs,
< cxlnglexp(Ink|TTi) + cqlnkl exp(2lng [T Tk)

a2
< CO‘/4 + Ck_
~k Il

the last line being obtained thanks to (129). In particular, if k is sufficiently large, ||12’6||er < g&p. So for such k,
Theorem 6.1 guarantees the existence of a unique analytic multiphasic solution (,5](‘), %) to (25) up to time Ty. It has
the following form: for all w € R4,

,5k’w =1+ rk,w + (;;k,w _ rk,w) _i_&k,w,
6k,w =w4 uk,w + (ﬁk,w _ uk,w) + ék,w,
where:
k k _ k kY e o
o (r(1),u"(1)) = Si(ry, ugy) is given by (128),

o (F @), d" 1) =S (rk, af),

~k
° (&k , &) satisfies the same estimates as (o', Ek) in the proof of Theorem 7.4.

Comparing with the proof of Theorem 7.4, we just need to show that the additional term

F @), @ 1)) — @), uh (1)) = 5,0, Vi)

is negligible both in the estimate of the initial condition and in the L' estimate. Thus, the two things we have to prove
are:

e for the initial condition

1—=s/p
V 5,00 = y
IVillw k_ioo(ck )

e for the L! estimate

15:€0, VIOl L1 (0.73)x Ty = 0 oQ(c,f),

—+

where a is defined in (125).

For the first one, thanks to (143) and (124),
Vv, soe < 2 s s < 1—s/B\2 — 1—s/B )
IVellwsoo S ¢ x 2l < 6P = o (")

For the second one,

Ty
15:0.Y01,, = [ 15,0, Vo loar
0

Tk
S/IVklrz dr by (5.5),
0
T
SCi/GXP(ZInkIFt)dt by (143),
0

02
< —klexp<2|nk|er>
k

~ |
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ca/Z
S |rfk|3 by (129),
SEPPP =5 () by (126).

k— 00

This concludes the proof. 0O
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Appendix A. About the instability of superpositions of Diracs
A.l. The kinetic Euler case

In this subsection, we give ourselves an integer p > 2, p positive numbers o1, ..., ap, and p distinct points of R,
ai,...,ap. We define
Mi=0o18q + - —}—apSap.

We assume o] + - - -+, = 1 for u to be a stationary solution of the kinetic Euler equation. The measure  is unstable
for the kinetic Euler equation.

Proposition A.1. The measure ( is unstable in the sense of the Penrose condition corresponding to the kinetic Euler
equation, namely (31).

Proof. Take n € Z¢ such that n - ai,...,n-ap, are distinct. We show that for all such n, there exists A € C with
N(A) > 0 such that
d p
pw) Yok o (144)
(A +in-w)? P (A +in-ag)?

For all 1 € C with R(}) # 0, (144) holds if and only if P(A) =0, where P is the following polynomial:

P
P(X)=) o [[(X +in-ap*.

k=1 I#k

This polynomial is of degree 2(p — 1). As p > 2, according to the fundamental theorem of algebra, it admits at least
one complex root z.

If z=ix with x € R, then either there is exactly one k¢ such that x = —n - ay, or for all [, x # —n - a; (if so, we set
ko :=1). In each case, for all [ # kg, x # —n - a;, SO

P
—DPPGx) =Y ox [ [x+n-ar)?
k=1 I#k
Zako l_[(x+n'al)2
Ik
> 0.
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Hence, we get a contradiction and )(z) # 0.
Moreover remark that P(—X) = P(X). So we also have P(—z) = 0. But necessarily, 1(z) > 0 or H(—2) > 0. We
conclude that there is A € C with (1) > 0 with P(X) = 0. For this A, (144) holds. O

A.2. The Vlasov-Poisson and Vlasov-Benney case
Here we establish:

Proposition A.2. Letm > 0 and a # b € R4. Set:
=25+ 28
= 70T S b-
e In dimension d = 1, u is unstable in the sense of the Penrose condition corresponding to the Vlasov-Poisson
equation (30) and to the Viasov-Benney equation (32) if and only if:

—-b
“2 < Jm.

0<

e Indimensiond > 2, u is always unstable in the sense of the Penrose condition corresponding to the Vliasov-Benney
equation (32).

e In dimension d > 2 and for a given m > 0, call S,, C (RH? the set of those (a, b) such that | is unstable in the
sense of the Penrose condition corresponding to the Vlasov-Poisson equation (30).

(i) If (a — b)/2 has one of its coordinates in (—/m, \/m)\{0}, then (a,b) € Sy,.
(ii) The set Sy, is open dense in (R%)2.

Remark A.3. It will be clear from the proof that for instance, if:
a=_b=(LvO"" 50)7

with L > /m, then u is not unstable for the Vlasov-Poisson equation.

Proof. According to (30), (32), u is unstable if there exists (n, A) with 3(L) > 0 such that:

1 m 1 m -1, for Vlasov-Poisson,
- — = 1
2 (A+ia-n)? + 2 (A +ib-n)? P for Vlasov-Benney.

Up to replacing A by A +i(a + b) - n/2, we can always suppose b = —a # 0 (this is a consequence of the Galilean
invariance of the equations). With this change, in the following, a plays then the role of (a — b)/2. We get:

m 1 m -1, for Vlasov-Poisson,

1
- _ = 1
2(A+ia-n)? + 2 (A —ia-n)? —W, for Vlasov-Benney.

For the remaining of the argument, we set e(n) to be 1 in the case of the Vlasov-Poisson equation, and 1/|n|? in the
case of the Vlasov-Benney equation.
So for a given n € Z to be fixed later, we want to find a root of the following fourth order polynomial:

P(X) :e(n){X2 +(a ~n)2}2 +m{x2 —(a ~n)2}

with positive real part. As P is even, such a root exists if and only if P admits strictly less than four roots (counted
with multiplicity) that are imaginary numbers, i.e. if and only if:

0(X):= P(iX) = e(n){X2 —(@- n)2}2 - m{X2 Y- n)z}
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admits strictly less than four real roots (counted with multiplicity). But it is clear that Q has exactly one simple root
in (—00, a - n) and exactly one simple root in (a - n, +00). Hence, at it is even and of order four, we easily deduce that
Q admits strictly less than four real roots (counted with multiplicity) if and only if:

00 = e(n)(a.n)4 —m(a ~n)2 <0,
i.e. if and only if:
0<en)(a -n)2 < m.

In dimension d = 1, the result follows easily as the minimum of e(n) (a - n)z, n # 0 is achieved forn = 1.
In dimension d > 2, u is unstable if and only if:

inf Vem)la-n| < /m. (145)
#0

neZd st.an

In the case of the Vlasov-Benney equation e(n) = 1/|n|?, (145) reduces to:

n
a . —_—
In|

<Jm,

in
neZ4 s.t.an#0

and holds because the set {n/|n|, n € Z¢ and a - n # 0} is dense in the unit sphere of R,
In the case of the Vlasov-Poisson equation e(n) = 1, (145) reduces to:

inf la-n| < /m.

neZd s.t. a-n#0

If we are in the case of point (i), just take for n the unit vector corresponding to the mentioned coordinate. Else, one
can prove that if a has two coordinates a; and a> with a» # 0 and a;/a; ¢ Q, then':

inf la-n| =0,
neZd s.t. a-n#0

and point (ii) follows. The fact that S, is open is obvious. O
Appendix B. Proofs of the properties of the analytic norms
We give in this appendix the proofs of the results stated in Subsection 6.2.

Proof of Proposition 6.4. We have for all w € R? and x € T¢:
U@ =" fuwyexp(ik-x) and g"(x)= ) &(w)exp(il - x),
keZd lezd

with for all n f, and , in L®. Consequently,

frx)e"(x) = Z ( Z fk(w)g’l(w)) exp(in - x).

neZd \k+i=n
It follows with (36) that

Ifells= Y| > fi

neZd lk+l=n 0

<Y Y rlooexp@IkDIgileo exp(8ll])

neZd k+l=n

exp(8|nl)

' Consider vectors n having nonzero coordinates only on the directions corresponding to a; and ap, and remark that the set {ajn; +
asny, (n1.n2) € Z4} C R is a dense additive subgroup of R.
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<| D 1leoexp@lih | | D 12l exp(slil)

keZd leZd
=flslglls- O

Proof of Proposition 6.5. For all w € R? and x € T¥,

fU) =Y fulw)explin - x),

neZd

with for all n, fn € L. Consequently, if §’ < 8,

IDflls =Y Inll fuloo exp(3'In])

neZd

= 2 Ualsoexp@in]) x Inlexp (= (6 = 8)inl)

neZd

= X talwexpeind | x sup faexp (=@ —8)a)]
neZd acRy

< lfl O

=5_¢ 8-

Proof of Proposition 6.6. We have already seen in the proof of Proposition 6.4 that with the same notations, for all
x €T?and w e RY,

fYg" (x) = Z ( Z ﬂ(w)@(w)) exp(in - x).

neZd \k+l=n
So
IDUfOls= Y Inl| Y fidi| exp(in))

neZd  lk+i=n 00

< >0 (k12 frlool 81w exp(81n)
neZd k+l=n

=3 2 [l flocléilos + 1 klooll1211oo | expIKD expsie)
neZd k+l=n

= > Ikl felooe®™ > a1l + Y 1 filooe®™ Y 11118k looe!
keZd leZd keZd leZd

= fllslDglls + gllsIDf s
Inequality (60) is simply obtained by induction on || + |8]. O

Proof of Proposition 6.7. For all x € T4,

fo)= )" faexplin-x),

neZd

with for all n fn € E. Consequently

VAf(x)=—i Y P(n)- fuexp(in-x)n.

neZd
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In particular, using (22),

IVAfls =Y InllP@) - ful exp(Sln])

neZd
<M ) Inll fulexp(in))
neZd
=<M|Dfls. O

Proof of Lemma 6.8. The unique classical solution to (26) is given by (40) with (¥, &,,) given by Lemma 5.7. As a
consequence,

[DE @, w@)];_, = D 1llGa@, @) exp (16 = ye)inl)
neZd

<C Z [7]|(7,(0), 11, (0)) |00 exp(8]n])
neZd
< C|D(ro,up)lls.- O

Proof of Lemma 6.9. For all w € R? and x € TY,

fU) =Y falw)explin - x),

neZd
with for all n, fn € L. But by (61), fo(w) =0 forall w e RY. Consequently, if 8" < §,
Iflls =D falocexp(8’n])
neZ4\{0}

S I uleoexp@inl) x exp (— (6 — 8)lnl)
neZ4\{0}

IA

D 1 falooexp@inl) | x exp(— (5 —4")

neZd

_ ISl
exp(§ — &)’

Proof of Lemma 6.10. To prove these three estimates, we only need to consider the case when & : w — wk for some

k € N?. For the general case, it suffices then to multiply the inequalities obtained by |ax| and to sum over k. For

ie{l,...,d}, wedenote by 1; € RY the vector Whose only nonzero coordinate is a one at position i. Then, if « and

B € N4 are such that « + 8 = k — 1;, we chose )/O’HS € N in such a way that for all X and ¥ € R?,

d
xk _yk= Z(x,- -Y) Z Vap XYl (146)
i=1 a+p=k—1;
(Use Bernoulli’s formula to find such yo’;’ﬁ.) Up to now, we omit to specify ineachlinei =1,...,danda+8 =k —1;.

Remark that taking for 2 € R, X = (1 + h)1; and Y = 1;, the previous formula leads to

I+ —1=hY "yl (1 +h)®.
a,p

Taking the derivative at 7 = 0, we obtain

> Vap=hi (147)
a,p
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In particular, summing over i,

Y vig=Ikl. (148)
i,a,p

Proof of (64). We want to show

@+ ) = (@+)"ls <|f — gls x IkI(lal + £, gl "
But by (146), the triangle inequality and Proposition 6.4,

la+ N —@+fs=D_(fi—e) D vipgla+ H*a+e’

o, B s
<If—gls Y_ vipal+1£1" (al + g
i,a,f
<If—glsUal+1£. gl Y vi,
i,a,B

=1f —gls x [kl(lal + | £ gls)* 7",
the last line being obtained by (148).
Proof of (65). To prove
D@+ £)*ls < IKIIDfls(al + 1D,
it suffices to develop (a + f)X, use the triangle inequality and the fact that for all o € N¢,

IDf%ls < lell 1D £ s,

which is (60) of Proposition 6.6 with 8 = 0. One can then re-factorize and get the result. The proof of (66) follows
the same path.
Proof of (67). Here we need to prove

ID{(a+ ¥ — @+ g)"}s < |f — glsIDf.Dgls x [k|(k] — D(lal + | £, gls)¥I 7
+ID(f — @)ls x [kl(lal + 1 £, gls)™ 1.
But using (146) and then Proposition 6.6, we get

ID{(a+ )" =@+ &)")s < Y vl 4IDIfi — g)la+ )@+ g)F)s

i,a,pB
<If—gls Y vigIDila+ )@+ g)F}s
i,o,p
=8
+ID(f = )5 Y vagla+ ¥ a+g)Fs.

io,B

=85

To estimate Sy, remark that thanks to Proposition 6.6, for all « and 8 such that |«| + |8] = |k| — 1,

ID{(a + f)*(a+&)P}s < lel(al + 1 £19)' """ (al + 1) P! D f1s
+1Bl(al + 1 f19)*(al + 1g1s)P'~ ' IDgls
< (| +18D(lal +1£. gls) =D £.Dgls
= (k| — D(lal + | £, gls)"* 72D f.Dgls.



546 A. Baradat / Ann. I. H. Poincaré — AN 37 (2020) 489-547

It remains to sum over «, 8 and to use (148) to get

S1 < |kl(Jk| — D)(la] + 1 £ gls)*1 72D £,Dgls.

The sum $; is estimated in the same way as in the proof of (64). The result follows.
Proof of (68). At last, we have to show

Dla+NF =@+ ) = Y ki (fi — )],

<{ID(f = »)s| f- gls + | f — glsID£.Dgls}kI (k] — D(lal + | £ gls)" 2.
Thanks to (146) and (147),

Pl@+ N =@t = Y kia s =0,
= )Dzi:(fi — g,-);;yéﬁ((a + % a +g)ﬂ —aa+ﬁ>‘8.

By similar computations as before,

Dla+ ) = @+ = Y kid" " (fi = a0

<If—sgls Y_ vi 4IDi@+ NH)*@+g)P}ls
i,a,p

=S

+ID(f — 2)ls 2;9 Vol;,,g‘(a + % a+g)P —a*h g

=5

The sum S; has already been estimated in the proof of (67). For S;, remark that
@+ )@+ = | < (al+1f1)" lal + 1g15)!P' — fa]

< (lal + £, gls) K171 — |a| k-
< (k| = Dal + £, gl 21 £, gls.

Indeed, for the first line, you just have to develop the product, simplify the term a**#, use the triangle inequality and
Proposition 6.4, and finally re-factorize. Our estimation does not depend on i, «, 8, so taking the sum, by (148),

Sy < kI(kl — D(lal + 1 f, gl)*21 £, gls-

Hence, the result. O
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