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Abstract

Existence and uniqueness of solutions for nonlocal Cahn-Hilliard equations with degenerate potential is shown. The nonlocality
is described by means of a symmetric singular kernel not falling within the framework of any previous existence theory. A con-
vection term is also taken into account. Building upon this novel existence result, we prove convergence of solutions for this class
of nonlocal Cahn-Hilliard equations to their local counterparts, as the nonlocal convolution kernels approximate a Dirac delta.
Eventually, we show that, under suitable assumptions on the data, the solutions to the nonlocal Cahn-Hilliard equations exhibit
further regularity, and the nonlocal-to-local convergence is verified in a stronger topology.
© 2019 L Association Publications de I’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The Cahn-Hilliard equation was originally introduced in [13] in order to model the so-called “spinodal decomposi-
tion” phenomenon occurring during the phase separation processes in binary metallic alloys. Since then it has acquired
fundamental importance in several diffuse-interface models in different fields, ranging from physics and engineering
to biology.

This nonlinear parabolic PDE exhibits a gradient-flow structure (in the H ~'-metric) in terms of the free energy
functional given by, cf. [13],

'L'2 2
Eeut = [ (SR + Fe) . (L.1)

Q

* .
Corresponding author.
E-mail addresses: elisa.davoli@univie.ac.at (E. Davoli), helene.ranetbauer @univie.ac.at (H. Ranetbauer), luca.scarpa@univie.ac.at
(L. Scarpa), lara.trussardi @univie.ac.at (L. Trussardi).

https://doi.org/10.1016/j.anihpc.2019.10.002
0294-1449/© 2019 L’ Association Publications de I’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.


http://www.sciencedirect.com
https://doi.org/10.1016/j.anihpc.2019.10.002
http://www.elsevier.com/locate/anihpc
mailto:elisa.davoli@univie.ac.at
mailto:helene.ranetbauer@univie.ac.at
mailto:luca.scarpa@univie.ac.at
mailto:lara.trussardi@univie.ac.at
https://doi.org/10.1016/j.anihpc.2019.10.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.anihpc.2019.10.002&domain=pdf

628 E. Davoli et al. / Ann. 1. H. Poincaré — AN 37 (2020) 627-651

where €2 is the d-dimensional flat torus, F is a double-well potential, and 7 is a small positive parameter related to the
thickness of the transition region. The choice of the set €2 is classical in the literature, and corresponds to imposing
periodic boundary conditions. The corresponding evolution problem reads as follows

oru+divJeyg =0,

Jeg =—m@)Vucy, (1.2)
_SEcn(u)
=—F =

where pcpy is the chemical potential associated to the energy Ecpy, and the symbol div(-) denotes the divergence
operator. The function m(-) in (1.2) is known as mobility.

The mathematical literature on the classical Cahn-Hilliard equation has been widely developed in the last decades,
in terms of well-posedness of the system with possibly degenerate potentials, viscosity terms and dynamic boundary
conditions, but also in the direction of regularity, long-time behavior of solutions, and optimal control problems.
Among the extensive literature, we mention the works [14-16,18,19,21,37] dealing with existence-uniqueness of
solutions, [20,27,38] for studies on the asymptotic behavior of solutions, and [9,46,51] for analyses of the system
incorporating possibly nonlinear viscosity terms. As far as optimal control problems are concerned, we point out the
contributions [17,22,23,28,40].

In the early 90’s in [36] G. Giacomin and J. Lebowitz considered the hydrodynamic limit of a microscopic model
describing a d-dimensional lattice gas evolving via a Poisson nearest-neighbor process. In this seminal paper, the
authors rigorously derived a nonlocal energy functional of the form

ICH —t?Au+ F'(u),

Ewe = [ [ Koo - uPaxay+ [ Fuwar, (13)
Q Q Q
where K (x, y) is a positive and symmetric convolution kernel, and proposed the corresponding gradient flow as a
model for binary alloys undergoing phase change.
The associated evolution problem, providing a nonlocal variant of the Cahn-Hilliard PDE, is given by the following
system of equations:

o;u +divJyr =0,

INL=—m)Vungr, (1.4)
SFE
u

where (K % 1)(x) := [o K (x, y)dy and (K *u)(x) := [ K (x, y)u(y)dy, for x € Q.

The study of such nonlocal Cahn-Hilliard equations has recently been the subject of an intense research activity
(see, e.g. [1,5,33,35,39] and the references therein). All the available results in the literature dealing with nonlocal
evolution of phase interfaces require the kernel K to be symmetric and of class W'-!. Such requirements are usually
met by checking a condition in the following form

3
|K(x,y)|<Clx —y|™% with O<a<§ (1.5)

(see [25, Remark 1]).

The interest in this nonlocal model is motivated by its atomistic justification and its generality. A further motivation
for the study of models in the form (1.4) is the observation that, at least formally, when the interaction kernel K is
of the form K (x, y) = K(J]x — y|) and concentrates around the origin, then the behavior of the nonlocal interface
evolution problems approaches that of the standard local Cahn-Hilliard equation.

This formal argument is enforced by the rigorous theory involving the variational convergence of nonlocal energies
of the form (1.3) to local integral functionals as in (1.1). Building upon the seminal papers by J. Bourgain, H. Brezis,
and P. Mironescu [10,11], and of V. Mazy’a and T. Shaposhnikova [43,44], a whole nonlocal-to-local framework has
been developed for singular nonlocal kernels associated to fractional Sobolev spaces. This study has been comple-
mented by the I'-convergence analysis and Poincaré inequalities obtained by A. C. Ponce in [48,49]. More specifically,
considering the following family of convolution kernels, identified by a small positive parameter ¢,
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Ke(x.y) = ’)b(c'x_i_y'ﬁ') (1.6)

where (p;). is a suitable sequence of mollifiers, A. C. Ponce showed the variational convergence

1 1
Z//Kg(x,y)(u(x)—u(y))2dxdy—> 5/|w<x)|2dx.
Q Q Q

The first positive result towards rendering the formal nonlocal-to-local convergence of the Cahn-Hilliard models
rigorously has been achieved in [45], where the authors have focused on convergence of weak solutions of the nonlocal
Cahn-Hilliard equation (1.4) to weak solutions of its local counterpart (1.2), as the convolution kernel K approximates
a Dirac delta centered in the origin. In the aforementioned paper, the convergence is studied in the case of constant
mobility, with a non-singular double-well potential satisfying a bounded-concavity assumption of the form

FUE _B17

for a positive constant By small enough, (see [45, Assumption H3]).

Due to the above-mentioned variational convergence result, kernels in the form (1.6) are the most natural choice
in the study of nonlocal phase transition problems. However, in general it is not true that these kernels enjoy a W1
regularity, so that the available existence results in the literature do not apply. In addition, the usual condition (1.5) is
not satisfied by K, as in (1.6). This observation renders the analysis of this class of problems very delicate and several
nontrivial difficulties arise. For example, the definition and regularity of the chemical potential py in (1.4) relies on
the properties of the linear unbounded operator (B, D(B)), defined as

DB):={ve L*(Q): (K * v — (K xv) € LX(Q)},
B(v):=(K x1)v—(K=*v), YveD(B),

whose domain D(B) is, a priori, not explicitly characterizable and not even necessarily containing H 1(Q) (see Sub-
section 2.2). Such endeavours are further enhanced when turning to the analysis of nonlocal diffusions driven by
degenerate potentials.

The first contribution of this paper (see Theorem 2.1) is the development of a well-posedness theory for nonlocal
Cahn-Hilliard equations having singular kernels K, (for ¢ > 0 being fixed) defined as in (1.6).

In our analysis, we remove the small-concavity assumption on the potential that was required in [45], and include
possibly degenerate double-well potentials F' defined on bounded domains. Indeed, while the classical choice for F
is the fourth-order polynomial Fyoi(r) := 1(r> — 1)2, r € R, with minima in =1 (corresponding to the pure phases),
it is well-known that, in view of the physical interpretation of the model, a more realistic description is given by the
logarithmic double-well potential

Flog(s) = g((l + 5)log(1 +5) + (1 — ) log(1 —s)) + % —cs?

for 0 < 6 < 6, and ¢ > 0, which by contrast is defined on the bounded domain (—1, 1) and possesses minima within
the open interval (—1, 1). Another interesting example of F which is included in our treatment is the so-called double-
obstacle potential (see [7,47]), having the form

0 ifse[-1,1]

1
Fop(s) = I—1,11(8) + = (1 =57, [_1,1)(s) 1=
ob(s) [-1.11(5) 2( ) (-1.11(5) {+oo otherwise .

In this latter case, the derivative Féb is not defined in the usual way, and has to be interpreted as the subdifferential
d Fop in the sense of convex analysis (see [4]). Analogously the equations defining the chemical potential must be read
as a differential inclusion instead.

A further extension provided by our work is to consider a nonlocal Cahn-Hilliard equation augmented by a con-
vection term in divergence form, i.e.

oru +div Jyp 4+ div(Bu) =0,

INL=—-VunL, (1.7)
SENL(u)

MNL:(S—:(K*I)M—K*u—i—F/(u).
u
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Here, 8 = B(t, x) denotes the velocity field, depending on time and space, which may be acting on the particular
system in consideration. As a common choice in the literature, we considered constant mobility equal to one.

The interest in additional convective contributions is connected with applications in mixing and stirring of fluids,
as well as in biological realizations of thin films via Langmuir-Blodgett transfer [6,42]. We mention in this direction
the contributions [8,26,31,52] on the local Cahn-Hilliard with convection, [29,30,50] dealing with the nonlocal Cahn-
Hilliard with local convection, and [32,41] on the nonlocal case with nonlocal convection. A nonlocal convective
Cahn-Hilliard type system modelling phase-separation has been analyzed in [24,25]. Relevant studies in coupling the
Cahn-Hilliard equation with a further equation for the velocity field have been the subject of [2,3,12,34].

From a mathematical viewpoint, the presence of convection terms (i.e. when 8 # 0) destroys the gradient-flow
structure of the equation, causing the analysis to be even more delicate.

The proof strategy for Theorem 2.1 relies on three main ingredients: (1) a suitable approximation of the nonlinearity
and an existence analysis for the approximating equations based on a fixed point argument (see Subsection 3.1); (2)
the establishment of uniform estimates by ad-hoc multiplication of the equations with suitable test functions (see
Subsection 3.2); (3) a passage to the limit relying on nontrivial compactness and monotonicity arguments, falling
outside the framework of classical Aubin-Lions embedding results (see Lemma 4 and Subsection 3.3). A delicate
point is the proof of a uniform H '-estimate, which strongly relies on the choice of periodic boundary conditions.

Our second contribution is established in Theorem 2.2, where we show convergence of solutions for the nonlocal
convective Cahn-Hilliard equation with singular kernel to solutions of the associated local one. Our analysis extends
the work in [45] to a wider class of double-well potentials, satisfying no bounded-concavity assumptions and being
possibly degenerate. The nonlocal-to-local convergence in Theorem 2.2 relies in an essential way on the uniform
a-priori estimates established in the proof of Theorem 2.1, and on showing the independence of the identified upper
bounds from the non-locality parameter ¢.

The third and fourth main results of the paper are a regularity analysis for solutions to (1.4). In particular, in
Theorem 2.3 we show that, if the initial datum and the convection velocity satisfy additional integrability and differen-
tiability assumptions, then solutions to the nonlocal Cahn-Hilliard equations exhibit further regularity. In Theorem 2.4
we prove that they also converge to their local counterparts in stronger topologies. The regularity analysis in Theo-
rems 2.3 and 2.4 is the byproduct of a time-differentiation of the nonlocal Cahn-Hilliard equation, and of the use of
higher-order-in-time test functions.

The paper is organized as follows. Section 2 contains a description of the mathematical setting of the paper, the
definition of weak solutions for the nonlocal and local convective Cahn-Hilliard equations, and the precise statements
of the four main results. Sections 3 and 4 are devoted to the proof of Theorems 2.1 and 2.2, respectively. Eventually,
in Section 5 we prove Theorems 2.3 and 2.4.

2. Setting and main results
2.1. Hypotheses

Throughout the paper we will assume the following:

H1: Q is the d-dimensional (d = 2, 3) flat torus and T > 0 is a fixed final time.
H2: The kernel K, : 2 x Q — R is defined as in (1.6):

1
Ke(x,y) = ——=p:(Ix —yD, forae. (x,y) € 2 x Q
|x — I

1

ioc (0, +00) is a family of radial mollifiers on R, satisfying

where (0¢)e>0 C L

pe(r) >0 VreR,Ve>0,

supp(pg) C [0, diam(£2)] Ve>0,
+00

2

/ ,og(r)rd_ldrz— Ve>0,
My

0
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+oo
lim d=lgr =0 V§>0,
81\0/,08(1")7 r >

§

with My := [-1 ley - o[> dH™ (o).

H3: y : R — 2R is a maximal monotone graph such that 0 € y (0). This implies that y = 37, where 7 : R — [0, +-00]
is a proper, convex and lower semicontinuous function. The map IT: R — R is a Lipschitz-continuous function
with Lipschitz constant Cr; > 0. The double-well potential F' will be represented by 7 + I1, where T1(7) :=
fé I1(r) dr for every ¢t € R. Without restriction we will assume that F' is nonnegative.

H4: The velocity B depends on space and time, and satisfies 8 € L2(O, T; L°°(R2; ]Rd)).

We point out that all assumptions collected in H2 correspond to the requirements in [48,49].
For every ¢ > 0, we consider the nonlocal Cahn-Hilliard equation with local convection

e — Ape +div(Bug) =0 in(0,T) x Q, 2.1
te € (Kg * Due — Ke xue + 7y (ue) + IM(ue) in(0,T) xR, (2.2)
ug(0) =uo ¢ in Q, (2.3)

and its local counterpart

o — Ap +div(Bu) =0 in (0,7) x , 2.4)
ue—Au+yu)+ Iu) in(0,T) x , (2.5)
u(0) =ug in Q. (2.6)

2.2. Notation, preliminaries and comments

In the sequel we will identify L?(2) with its dual, so that (H' (), L?(2), (H'())*) will be a classical Hilbert
triplet. We will use the symbol (v)q for ﬁ(v, 1) (m1(@)* 11 (o) for every v e (H'(2))*. Note that for v € L%(Q),
(v)q coincides with the usual average. We recall that the operator

M) e (HY(Q) (e =0}— {we H(Q): (w)g =0}

is defined as the map assigning to every v € (H 1(€))* with null mean the unique element w € H L(Q) such that

(w)o =0, and /Vw(x) -Vex)dx = (v, (/))(HI(Q))*’HI(Q) Yoe Hl(SZ).
Q
It is well known that (—A)~! is a linear isomorphism.
In this paper C indicates a generic positive constant, possibly varying from line to line, depending only on the
setting H1-H4. The dependence of constants on a specific parameter will be indicated explicitly through a subscript.

We collect here some useful properties of the nonlocal term. We define the operator (B., D(B;)) on LZ(Q) in the
following way:

DB;):={ve LZ(Q) (Keg*x 1)v— (K xv) € LZ(SZ)},
B.(v) =(K;x1)v—(K.,*v), VYveD@B,).
It is clear that B, is a linear unbounded operator in L?(), and that for every v € D(B;) we have the representation

v(x) —v(y)
Ix — y/?

B:(v)(x) = /ps(lx =D

Q

dy forae. . xeQ.

We point out that the domain D(B;) is non-trivial. More specifically, we have the following result.
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Lemma 1. For every ¢,0 > 0, there holds C 0.0(Q) c D(B,). Additionally, there exists a constant C¢ s > 0 (only
dependent on ¢ and o ) such that

IB:()ll12(0) < CeolVlcoo YveC™ (). 2.7)
In particular, for every s > % H*(Q2) C D(B;) and there exists C¢ s > 0 such that

IBe ()l 2y < Ceslvllas@ YveH (Q). (2.8)

Proof. A direct computation shows that for every v € C%° (Q) and for almost every x € 2,

00 = 0| NCELy
Bl < [ prths =y _||U||c00(9)/| E .
Q
where
C”__/ pells=b
lx —y|?=°

thanks to H2. The second part of the Lemma follows by the Sobolev embedding H*(2) — C%?(Q) for every s > %
ando € (0,5 —3). O

The operator (B., D(B;)) has been defined as a linear unbounded operator on L2(2). Note that it is not necessarily
true that H'(Q2) ¢ D(B,). Nevertheless, we now show that actually (B,, D(B;)) can be extended, uniformly in ¢, to
a linear bounded operator from H'!() to its dual.

Lemma 2. For every ¢ > 0 the operator (D(B;), B;) can be uniquely extended to a linear continuous operator B, :
H'(Q) — (H'())*. Additionally, there exists a positive constant C, independent of €, such that

IB: )l 1oy < ClIVUll 2 Yve H'(Q). (2.9)

In particular, the family (By), is uniformly bounded in Z(H' (), (H (Q))*) and there exists B € L (H' (),
(HY(2)*) and an infinitesimal sequence (&), such that

Jim (Be, (), ¥) (1@ it = BOL V) aie YUV € H'(Q).
Proof. By the Holder inequality and [10, Theorem 1], we infer that

1
(Ba(v),llf)wl(m)*,ﬂl(m:5//Ka(x,y)(v(X)—v(y))(I/f(X)—I/f(y))dydx
Q Q

1 1/2 12
§§<//Ks(x,y)|v(x)—v()’)|2dydx> (//Kg(x,y)hp(x)_w(y)|2dydx)
Q Q Qo

=ClIIVull 2 @IV Il 2@

forevery v, ¥ € H (). This implies that (D (B;), B;) can be extended uniquely as required (the uniqueness follows
Lemma 1, and from the density of C O*"(ﬁ) in D(B;)). The second part of the lemma follows by observing that
(2.9) implies the uniform boundedness of (B,), in .Z(H' (), (H'(Q))*), and hence its precompactness in the weak
operator topology of Z(H'(Q), (H'())*). O

In what follows, a crucial role is also played by the nonlocal energy contribution

E¢(v) :=% / / Ke(x, ) (0(x) —v(y)’dydx  Yve HY(Q).
Q Q
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Owing to [10, Theorem 1], we have that E, is well-defined, convex, and its differential DE, : H'(Q) — (H'(Q))* is
given by
DE. =B,.

Moreover, by [10] the asymptotic behavior of E, as ¢ — 0T can be characterized as follows

1
lim Eg(v):—/Wv(x)lzdx Voe H(Q). (2.10)
e—01 2

Q

As a corollary, we deduce the following identification of the operator B in Lemma 3.

Lemma 3. Let (D(B;), B;), and B be as in Lemma 2. Then,
lim (Be (v). ) (1@ 1 @) = (= AV V)@@ 1@
where

(=80, ) @) = /Vv(x) VY dx Yo,y e H'(Q).
Q

Proof. By the characterization of the differential of £, we have that

Ec(v1) + (Be(v1), v2 — v1) (g1 @)+, 11 (@) < Ee(v2)

for every vy, v € H 1(Q). Hence, for every subsequence (&;), as in Lemma 2, letting n — oo, by (2.10) we conclude
that

1 1
3 / Vo (o)1 2dx + (B(1), v2 — v1) (1 @y, 11 (@) < E/Ivvz(X)Izdx,
Q Q

from which B = —A. In particular, this implies that the convergence holds along the entire sequence €. O

We conclude this subsection with a lemma providing two fundamental compactness inequalities involving the fam-
ily of operators (B.).. Such results are nontrivial, since they do not fall in the classical framework of the Aubin-Lions
lemmas. The next lemma is a uniform counterpart to [45, Lemma 1].

Lemma 4. For every § > 0 there exist constants Cs > 0 and &5 > O with the following properties:

(1) For every sequence (f:)s C H () there holds

I for = FoslZ ) < 8 / / Koy (6 0)IV foy () = V oy () 2dlydx

Q Q
s / / Koy (6 VIV fos () = ¥ fi 0) Py + Gl for = foslZayo @.11)
Q Q
forevery 0 < ey, e < &s.
(2) For every sequence (f:)s C L*(Q) there holds
I fer = feall 2y < 8Ee) (fe) +8Ee, (fer) + Csl foy = feall i1 gy (2.12)

forevery 0 < ey, ey < &s.

Proof. Assume by contradiction that (2.11) is false. Then, there exists § > 0 having the following property: for every

n € N we can find a sequence (f]"), C H'(Q) and two parameters 8,11, 8,% < ,ll such that
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2 5 2
1o = foallgn ) > 9 / / Kot IV £l (1) = V£ () Pdyda
Q Q

+6//K @ NIV B = VG Pdydy + )l £ = f2172, -
Q Q

Noting that || f7} — fS"2 | 11 () > O for every n and setting

fn n
gl = e g2 = &2
" ||f8'3—f8"%||H1(Q)’ " ”f;’ll’_f;:z”Hl(Q)’
we have

5 / / K1 (x, )|V (x) — Ver(y)Pdydx

Q Q
3 2 2,812 1 22

+5//Kgg(x, NIV, (x) = Vg, (y)|"dydx +nlg, = &ullf2g) <1 VneN.
Q Q

Hence, g — g,zl — 0 strongly in L?(2) and the families (Vgl), and (ng,),, are relatively strongly compact in
L%($2; RY) by [48, Theorem 1.2]. We deduce that gl — g,% — 0 strongly in H' (), but this is a contradiction since by
definition we have ||g,1l - g,% | 1) =1 for all n. The argument for (2.12) is entirely analogous. O

2.3. Main results

Before stating our main results, let us recall the notion of weak solutions to both the nonlocal as well as the local
Cahn-Hilliard equation with local convection.

Definition 1 (Solution to the nonlocal Cahn-Hilliard equation). Let ¢ > 0 and T > 0 be fixed. A solution to the
nonlocal Cahn-Hilliard equation (2.1)—(2.3) on [0, T'], and associated with the initial datum ug , € L*(Q),isa triplet
(ug, e, &) with the following properties

ue € H'(0, T; (H'(2)*) N L*(0,T; H'(Q)),
pe € L*(0,T; H(Q)), & eL*(0,T; L*(Q)),
e =Bo(ug) + & + M(ue), & € y(ug) almost everywhere in (0, T) x €2,

satisfying u,(0) = ug,¢, and such that

(Brtee (0, 9) 111 e, 111 (@) + / Ve (t, x) - Vo(x) dx = / Bt. e (t, x) - Vo (x) dx (2.13)
Q Q

for all ¢ € H' (), and for almost every ¢ € (0, T).
Definition 2 (Solution to the local Cahn-Hilliard equation). Let T > 0 be fixed. A solution to the local Cahn-Hilliard
equation (2.4)—(2.6) on [0, T], and associated with the initial datum ug € H! (2), is a triplet (u, u, &) with the follow-
ing properties

we H' (0, T; (H'(2)") N L*0, T; H*(RQ)),

pwel’0.T:H'(Q),  &eL*(0.T;L*(Q).

u=—-Au+§&+I@u), & e y(u) almost everywhere in (0, T) x €2,

satisfying u(0) = ug, and such that
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Ou(0), @) 1 @y, @) + / Vi, x) - Ve (x) dx = / Bt 0)ut, x) - Vo (x) dx (2.14)
Q Q

for all ¢ € H' (), for almost everyt €(0,7).
Our first result is the well-posedness of solutions to the nonlocal Cahn-Hilliard equation.

Theorem 2.1. Let assumptions H1-H4 be satisfied, and for every ¢ > 0 let

uoe € L*(Q), Puoe) € LY(Q), E¢(ug,e) < +00, (no,e)e € Int D(y). (2.15)

Then, there exists g9 > 0 having the following property: for every € < &g there exists a unique solution (ug, (g, &) to
(2.1)—(2.3) associated with the initial datum u ¢, according to Definition 1. Furthermore, if(,Bl, u(l) .) and (,32, u% o)

are two sets of data satisfying H4 and (2.15), with (u(l) Ja= (u(2) o) then there exists a positive constant M., de-
pending only on the setting H1-H3 and on the norms of the data (8", u(l)yg) and (B2, u(z)yg) appearing in H4 and (2.15),
such that, for any respective solution (ué, /L;, Esl) and (u?, Mg, Esz) to the nonlocal equation (2.1)—~(2.3),

1 212 1 2
”Mg - us ”CO([O,T];(HI(Q))*) + ”Eé‘(ug - ug)”Ll(O,T)
1 2 2 1 22
=< Mé‘ (”l’to,g - uO,s”(Hl(Q))* + ”:B - /3 ||L2(0,T;L3(Q))> .
The second result concerns nonlocal-to-local convergence.

Theorem 2.2. Let assumptions H1-H4 be satisfied. Let ug € H L), and Sfor every e > 0 let ug ¢ satisfy (2.15) and be
such that

sup (”MO,a”%z(Q) + 17 wo. )l 1) + Ee(”O,a)) < 400, (2.16)
£€(0,&9)
Alag, bol CIntD(y): ao < (uoe)o <bo Vee(0,¢), (2.17)
uoe —ug in L*(Q) ase— 0", (2.18)

Let (ug, pe, &) be the unique solution to (2.1)—(2.3) associated to ug . given by Theorem 2.1, and let (u, i, &) be the
unique solution to the local equation (2.4)—(2.6) associated to ug, according to Definition 2.
Then, as € \( 0,

ug —>u  strongly in C°([0, T1; L*(2)) N L*(0, T; H(Q)),
Ortg — st weakly* in LZ(O, T; (Hl(Q))*),
e = weaklyin L*(0, T; H\(Q)),
g, —&  weaklyin L*(0,T; L*(Q)).
The last two results that we present deal with regularity of solutions to the nonlocal equation. In particular, we

show that if the data are more regular, then the solution to the nonlocal equation inherits a further regularity, and the
convergences to the local equation are obtained in stronger topologies.

Theorem 2.3. Let assumptions H1-H4 be satisfied, and suppose also that

BeH (0, T;L*(Q;RY)). (2.19)
For every 0 < ¢ < &g let ug ¢ satisfy (2.15) and

woe € LO(Q),  Beluoe) + 80, + Muoe) € H(Q) Ve €y (uoe). (2.20)

Then the unique solution (ug, (e, &) to the nonlocal equation (2.1)—(2.3) with respect to the initial datum ug ¢ also
satisfies
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ue € WH0, T; (HY Q)Y NHY 0, T; L>() N L*0,T; H ().

If also

BeL®0,T; L®(Q:RY), 2.21)
then in addition

ne € L0, T: H'(Q)), & € L®(0,T; L*(Q)).
If also

divp e L=, T; L3(Q)), (2.22)

then in addition
e € L*(0,T; H*(Q)).

Theorem 2.4. Let assumptions H1-H4 be satisfied. Let ug € H'(2), and for every ¢ > 0 let ug,¢ satisfy (2.15),
(2.16)—(2.18), (2.20) and

sup (“uo,s”LG(Q) + IBe(10,6) + 80,e + H(MOJ/‘“HI(Q)) < +00. 23
€€(0,20), §o,6€¥ (10,¢)

Denoting by (u, u, &) the unique solution to the local equation (2.4)—~(2.6), if (2.19) holds then, in addition to the
convergences in Theorem 2.2,

ug —u  weakly*in W0, T; (H ()" NH' (0, T; L*(Q)).
If also (2.21) holds, then
pe = weakly*in L0, T; H'(Q)),
£, —~¢& weakly* in L*°(0, T; LZ(Q)) .
If also (2.22) holds, then

e =~ 1L weakly in L*(0,T; HX(Q)).
3. Proof of Theorem 2.1

This section contains the proof of existence of a solution (u., t,, &) to the nonlocal convective Cahn-Hilliard
equation. We subdivide it in different steps. In this section, & > 0 is fixed.

3.1. Approximation

For every A > 0, let y,, : R — R be the Yosida approximation of y, having Lipschitz constant 1/, and set P, (s) :=
fos ya(r)dr for every s € R. We consider the approximated problem

dul — Apt +div(But) =0  in(0,T) x Q, (3.1)
ph=—AAut 4+ B ) + @)+ Tw?)  in(0,T) xR, (3.2)
up(0)=uf, inQ, (3.3)
where B8, := P8, Py : R4 — R4 is the projection on the closed ball of radius %, and the initial datum ué . satisfies
uj. e H'(Q),  ul, —>upe inL*(Q), (3.4)
sup (Anuagni,l(g) F 1P @G 1o + Es(ué,g) < +00 (3.5)
1€(0,A0)

for a certain 1g > 0 (possibly depending on ¢).
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Remark 3.1. The existence of an approximating sequence (uéy ). satisfying (3.4)—(3.5) is guaranteed by (2.15). For
example, let us consider the classical elliptic regularization given by the unique solution to the problem

g, — AAug, =upe  inQ. (3.6)

Note that we have not specified any boundary conditions for uéy . as we are working on the torus €2 (hence we have
implicitly required periodic boundary conditions for ué’g). Let us show that (3.4)—(3.5) are satisfied by this choice.
Testing (3.6) by u& . and using the Young inequality on the right-hand side we obtain

1 1
6172 + MIVHG 1720 = S 0,172, -
This readily implies (3.4) and the first bound in (3.5). Moreover, testing (3.6) by yx(ué’ o) we get

/ Yot o (X))uf () dx + A / y; (U o ()| Vuf , (x)|* dx = / ya (U, (X))o, (x) dx .
Q Q Q

Denoting by p;* the convex conjugate of p;, the first term on the left-hand side reads as

/ yauf o ()G o (x) dx = / Paluf o (x)) dx + / P (g o (x))) dx
Q Q Q

the second term on the left-hand side is nonnegative by the monotonicity of y,, while the right-hand side can be
bounded through the Young inequality as

/ Yoty o (X))uo,e (x) dx < / P (o, (x)) dx + / P (v gy o (x))) dx

Q Q Q
5/?(uo,e(X))dx+/)7f(n(ué,g(x)))dx.
Q Q

Rearranging the terms we get ||77A(“3,g)||L'(Q) < ||)9(uo,8)||L|(Q), from which the second bound in (3.5). Finally,
testing (3.6) by Bg(ué o) we have

/Bg(uéyg)(x)ué’g(x)dx+)\/VB5(u6"s)(x) : wg,s(x)dx=/u0,€(x)Bg(ug,£)(x)dx,
Q Q Q

where, thanks to the periodic boundary conditions, on the left-hand side we have

/ B, (1} ) (0w, (1) dr = 2E, ()
Q

and

A A _A A Y 2
A VBe(ug ) (x) - Vug (x) dx = 5 Ke(x, y)IVug o (x) — Vug (y)|"dxdy.
Q Q Q

On the right-hand side, by the Holder and Young inequalities, we have

1
/ 0, OB s ) () dx = / / Ko () 9) (00,0 () — 1t e () o () — s () dx dy
Q Q Q

< V2Ec(u0,6)\/2Ec (uf;,) < Ec(uo.e) + Ec(ug,.) .

Rearranging the terms we get E, (ug’ o) < E¢(ug,e), from which the third bound in (3.5).
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A
£

In this subsection, we show existence of an approximated solution (u ,ué) for every A > 0O fixed. The proof

strategy relies on the use of a fixed-point argument.
For every w € L?(0, T; H*()) with s € (%, 2), Lemma 1 ensures that

B.(w) € L*(0, T; L*()),

so that we can study the auxiliary problem

v — Auy +div(Brv)=0  in(0,T) x 2, (3.7)
Uy = A0 v — LAV + B (w) + y (v) 4 TT(v) in (0,7T) x 2, (3.8)
v(0)=uj, inQ, (3.9)

which can be seen as a local convective viscous Cahn-Hilliard equation with an additional source term in the definition
of the chemical potential. It is well-known (see [26] for example) that such problem admits a unique weak solution
(v, py) with

ve H'(0,T; L*() N (10, T; H'() N L*(0,T; HX(R)), e € L*0,T: H'(Q)),
satisfying (3.7)—(3.9) for example in the sense of distributions. Hence, the map
I L2(0,T; HS(Q) — HY0,T; L*(R2)) N L*°(0, T; H'(2)) N L*(0, T; H*(R))

associating to every w € L%(0, T; H*(2)) the solution v to (3.7)—=(3.9) is well-defined. We proceed by showing that
Fé‘ has also some continuity properties. Fori = 1,2 let w; € L%0, T; H()), and set v; := Fé(w,-). Then taking the
difference of the corresponding equations (3.7) and (3.8) for i = 1, 2, we obtain

0 (V1 — v2) — Ay, — toy) +div(Br(vi —v2)) =0 in (0,7) x €, (3.10)
Koy — Mo, = A0r (V1 — v2) — AA(V1 — v2) + Be (w1 — w2)

+ y2(v1) — ya(v2) + I(v1) — I (v2) in(0,7) x €, (3.11)
v1(0) —v2(0) =0 in Q. (3.12)

Noting that (v; — v2)o = 0 by integrating (3.10), testing (3.10) by (=A) "L — ), equation (3.11) by v; — v2, and
taking the difference, estimate (2.9) and assumption H4 yield

2
lor=v2llcoo.n:2@prezo.7:m1 @)

1 t
= Ce / lwiGs, ) = wals, V71 gy ds + / 2. (016, ) = 72 2(s, D172 g ds
0 0

t t
+ / 1M1 s, ) = TT(wa(s, N2 ds + / o1 Gs. ) = va(s, g ds |,
0 0

for every t € [0, T'].
Testing (3.10) by v; — v2, equation (3.11) by —A(v; — v2), taking the difference, and using Lemma 1, a similar
argument yields

2 2
||U] - U2||C0([O,IJ;H1(Q)) + ”A(Ul - v2)”L2(0,t;L2(Q))

t
S CS,)L! / ”w1(S, ) - w2(5, )”%.IY(Q) ds
0

t
+ / 2.1 Gs, ) — ya(vals, ) + (i (s, ) — M(vals, ~))|Iiz(9) ds
0
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1
2
+ / viGs, -) = vals, )iy g ds}.
0

Hence, summing the two inequalities, using the Lipschitz-continuity of y;, and II, choosing n > 0 sufficiently
small, and applying the Gronwall’s Lemma, we deduce that there exists a positive constant C, , such that
vl — U2||CO([(),T];H1(Q))my(o,T;HZ(Q)) < Ceallw — w2||L2(0,T;HX(Q)) : (3.13)
In particular, I'* is continuous from L2(0, T'; H*(R2)) to L*(0, T; H* ().
Fix Ty > 0. By repeating the argument leading to (3.13) we deduce the estimate
oy = v2llcoqo. 7o) 11 @)nL20. 70 2 @) = Ceanllwr — wall 20, 7: s ) »

for every w € L?(0, Ty; H*(2)), and v = Fé‘(w). Now, since s € (%, 2),if ¢ € (0, 1) is such that

1
s=1-9)-14+9-2, ie v:=s—1c¢€ (51) ,
by interpolation we get that

o1, ) = 02t sy < 1t ) = vat, Mt 01t ) = 02, aein (0,7),
which in turn yields that

s—1 2—s
v — v <|lvi — v} v — v
” 1 2 ” Ll (0.To: H () ” 1 2 ”LZ(O,T();HZ(Q)) ” 1 2 ”CO([O,T()];HI(Q))

< (s = Dllvi = v2llz20,1: m2(2)) + @ = $) [lvi — v2llcoo, 71 1 ()
= Csllvr = v2llcoqo, 7y1; 1 20N L200, To; H2()) -
Consequently, we have that

lvg — w2l L < Cepsllwi —wall 20,7 5 (9)) »

(0,To; H*(2))

where ﬁ > 2 since s < 2. Hence, we infer that

1_s—1
vy —v2l|72 s <T? 2?2 |vi—w] =2 s
l 220,70 52 = Ty l ||LH 0.7y HY (@)

1
2

and we can choose Tj sufficiently small such that T, 7 Ce.s < 1. Thus,

s

lvr — U2”L2(0 To; HS () = =< T _TCE X, sllwp — w2”L2(0 To; HS(2))*

Banach fixed point theorem ensures the existence of a unique weak solution (u? oM 8) to the approximated problem
(3.1)-(3.3) in (0, Tp) x 2, with

u € H'(0, To; L*(22)) N CO([0, Tol; H' () N L*(0, To; H*(R)),  ul € L*(0, To; H'(Q)).

Note that the choice of Ty is independent of the initial time. Moreover, we have the pointwise regularity ug\(To) €
H 1(Q). Such regularity is then enough to extend the solution to the next subinterval [Ty, 27p] (see [26]): using a
standard patching argument in time allows to extend the solution to the whole interval [0, T'].

3.2. Uniform estimates

In this subsection we show that there exists g9 > 0 independent of A, and such that for ¢ < gg the approximated
solutions fulfill some uniform estimates independently of A and €. In what follows we will always assume that A €
(0, 1].

Step 1. We start by fixing ¢ € [0, T'], testing (3.1) with us, (3.2) with 8,14 taking the difference, and integrating
the resulting equation on (0, #). We obtain
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t t

A
//|w§(s,x)|2dxds+A//|a,u§(s,x)|2dxds+§/|w§(z,x)|2dx
Q 0 Q Q

0

FEh () + / Pr+ I (¢, 1)) dx
Q

t

< B A A & A 2
< 3, Dug(t,x) - Vg (t, x)dx dr + > |Vu0’6(x)| dx
Q Q

0

+EoGdh,) + / (P + )y, (1)) dx.
Q

Using assumption H3, the uniform bound (3.5) and as well as Young’s inequality, we get
13 t
A
// |Vt (s, x)|? dx ds + Ee(ul(z, ~))+A// ,u> (s, x)|* dx ds + > / |Vul(z, x)|* dx
Q Q Q

0 0
t t

1 1
SCg—}-E//|Vui‘(t,x)|2dxdt+§//|ﬂA(t,x)ué‘(t,x)|2dxdt (3.14)
0 Q 0 Q

for every ¢t € [0, T'].
We point out that, due to the periodic boundary conditions, and the fact that 2 is the d-dimensional torus, we
formally have

2

1
/VBe(ui‘(s,x)).Vui‘(s,x)dxz—//Kg(x,y)|Vui‘(s,x)—Vui‘(s,y)|2dxdy
Q Q Q

for almost every s € [0, T']. Testing (3.1) with u? and (3.2) with —Au?, by considering the difference between the two
resulting equation and by integrating in the time interval (0, 7), from H3 we deduce the estimate

t t
1
5/|u§(t,x)|2dx+x//|Au§(s,x)|2dms+//y;(ug(s,x))|w§(s,x)|2dxds
Q 0 Q 0 Q

!
A A 2 r A 2
+§ |Vug (¢, x)|"dx + Ko (e, )IVug (s, x) — Vug (s, y)|“dxdyds
Q 0 Q Q

t t
1 1 1
SE/Iué,E(x)Izdx—i—E//|/3A(s,x)u§(s,x)|2dxds+(Cn—i—i)//|Vu;‘(s,x)|2dxds
Q 0 Q 0 Q

t

1 1
55/|ué,£<x>|2dx+§//|m<s,x>u§<s,x>|2dxds
Q Q

0
t t
+l K (x, )|Vu* (s, x) = Vul (s, y)[*dxdyds + C [ [[u’(s, ))?5,0. d
4 & 7y & ) & 7y y S ug S, LZ(Q) S,
0 QQ 0

where the latter inequality holds for ¢ smaller than a suitable constant &g in view of Lemma 4. Noticing that the third
term in the left-hand side of the above estimate is positive owing to the monotonicity of y;, by [48, Theorem 1.1] we
infer the bound
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t
||u;\(t, -)||iz(9) + ”“‘);”iZ(o,z;Hl(Q)) +///Kg(x, y)IVué‘(s, x) — Vuﬁ(s, y)I>dxdyds
0 Q Q

t t
sc| [ubbart [ [ipooudoorads + [l i s ). (3.15)
Q 0 Q 0

By the Holder inequality we deduce the estimate

t t
/ / |Ba(s, )ul (s, x)[* dx ds < / 185G, M oo g 14 (5, 172 B (3.16)
0 Q 0

Thus, summing (3.14), (3.15), and (3.16), recalling H4 we obtain
13
el (8, I 7@y + 121720 1. 11 ey T // |V ul(s, x)|* dx ds
0 Q

! (3.17)
b EWAG, ->)+///Kg<x,y>|wé<s,x)—vMé(s,ynzdxdyds
0 Q Q

Ap2 A2 2
S CE + C”ug ||L2(O,I;L2(Q)) + C”ug ||L2(0,t;H|(Q)) ”ﬂ”LZ(O,T;LOO(Q;Rd))'

Recalling assumption H4 and applying Gronwall’s lemma, from the arbitrariness of ¢ € [0, T'] we deduce that there
exists a constant C, such that

IVl 200.7:120)) < Ce. (3.18)

k1l o 0.7 2@pnr2 .1 )y + APk | Lo 7 1 @nr20.7: H2 @) E1 0.7:22@) < Ce (3.19)

| Ec@) | oo o1y + / / Ke(x, y)|Vuk (-, x) — Vul (-, y)[*dxdy <C.. (3.20)
QQ LY(0,T)

Testing equation (3.1) with a function ¢ € LZ(O, T: H\(Q)), integrating in time, and using (3.18)—(3.20) gives

18 20,7 (111 (@) < Ce- (3.21)

Step 2. In order to obtain an L2(0, T; H'(2))-estimate on the chemical potential /Lé, we need a bound on the
L?(0, T)-norm of the spatial mean of ,ué‘. Thanks to the symmetry of the kernel K, the mean of the convolution terms
vanishes, i.e.

(B (up))g =0.
Since also (Aué)g =0, owing to (3.19) and the Lipschitz continuity of IT, we get

Ao ) ) ) 1 )
(Mg)a = Brug)e + (M (ug) + Mug)a < Ce + Is] 72 @) L1 (@) (3.22)

Hence {(,ué)gz}g is uniformly bounded in L%0,7) if {ya (ué)}g is uniformly bounded in L20,T; LY(2)). We test
(.1 by (=A) (e — (ufy @) and (3.2) by u, — (ué‘,s)g, obtaining

@l (), (=N Wk, ) = Uh D) @@
=:1

+)\.(8tué(l‘), M?(l‘, ) — (u3,5)9)>(H1(Q))*,H1(Q) + )\./ |Vui‘(t,x)|2dx
Q

=1
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+ / B (u})(t, x) (u} (1, x) — (uf ,)e) dx
Q

=13

+ / (o + D) (t, ) Wl (t, x) — uf,)) dx
Q

=4

—/,BA(t,x)u?(t,x)~V(—A)_l(ué(t,x)—(ué’s)g)dx=0.
Q

=I5
We proceed by estimating each integral in the left-hand side of the above equation separately.
It is readily seen that /1 + I is uniformly bounded in L2(0,T) due to (3.19), (3.21) and (3.5).
Regarding I3, since (B, (u?))g = 0 we have that
I3 = 2B (u}),

which is clearly bounded in L%(0,7) by (3.20).
To estimate /4 we observe that in view of (2.15) and (3.4) there exist constants M1, M > 0 depending only on the
position of (1 ¢)q in Int D(y), such that
v ws — uf Do) = Milyaul)| — My,

cf. for example [21, p. 984] and the references within, while

/ T (e () (s (%) — (uy . )e) dx
Q

is bounded in L°°(0, T) thanks to (3.19).
Eventually, /5 can be estimated as follows

T
1Bl - V(=) Wl = g DD 7207112y = / 1B 12 g 1 ek = WG D)1 gy A1
0

where the right-hand side is bounded due to H4 and (3.19).
Combining this information, we conclude by difference that {yA(ué‘)} is uniformly bounded in L%(0,T; LY()).
Thus, from (3.18) and (3.22) we infer that

et 220,711 (g2y) < Ce- (3.23)

Step 3. We proceed by proving that {y; (u2)} is uniformly bounded in L2(0, T; L*(£2)).
We test (3.2) with y;, (ui}). This gives
T

T
//|yx(ué(t,x))|2dxdt+)»//yk/(ué‘(t,x)) (|a,u§(t,x)|2+|w§(z,x)|2) dx dr
0 Q 0 Q
T

+ / / B. (uh) (1, )y (u (1, %)) dx
0 Q
T

_ / / P A A T
0 Q
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We observe that the second term on the left-hand side is nonnegative owing to the monotonicity of y,. Analogously,
the third term on the left-hand side can be rewritten as

T
[ [ [ xetrmuitas —ukem (v - nake.) adyar,
0 @ Q

which is also nonnegative due to the monotonicity of y;. Applying Young’s inequality we deduce the bound
T

/ / (i (e, x) — Tl (2, ) ya (ul (¢, x)) dx dt
Q

0

]dx dr.
2 2

T
- // [ AU R (CAGED N X CAGENI
0 Q
which, together with H3, (3.19) and (3.23), implies the following estimate
||VA(M;L)||L2(0,T;L2(Q)) < Ce. (3.24)
3.3. Passage to the limit as » (0

We perform here the passage to the limit as A \( 0, with 0 < ¢ < g still fixed. In view of the uniform bounds
identified in Section 3.2 and the Aubin-Lions lemma, up to the extraction of (not relabeled) subsequences we have the
following convergences:

ul — u; strongly in L2(0, T; L>(22)) N C°([0, T1; (H' (£2))"), (3.25)

ud = u, weakly* in L>(0, T; L>(Q2)) N L*(0, T; H'(Q)), (3.26)
Aul —0 strongly in L®(0, T; H' () N L0, T; H*(Q)), (3.27)
Bt — dyu, weakly* in L2(0, T; (H'(2))"), (3.28)
[y = e weakly in L0, T; H' (Q)), (3.29)
yul) =& weakly in L%(0, T; L*()), (3.30)

for some
u. € H'(0, T; (HY(Q)*)NL>®0, T; L>(Q) N L*0, T; H(Q)),
e € L*(0,T; H'(Q), & e L*(0, T; LA().

The strong convergence (3.25), the weak convergence (3.30) and the strong-weak closure of the maximal monotone
graph y readily implies that &, € y (1) almost everywhere in (0, T') x €2. The Lipschitz continuity of IT yields also

M(u) — T(ue)  strongly in L?(0, T; L*()). (3.31)
Furthermore, for every ¢ € L(0, T; H*(S2)) by the triangle inequality we have that
T T

//,BA(t,x)ui”(t,x)~Vgo(t,x)dxdt—//,B(I,x)ug(t,x)~V¢(l,x)dxdt
0 Q 0 Q
T
< [ 1860 = p ol e 019 p . o) s
0 Q
T

+//,3(t,x)(ui‘(t,x)—ue(t,x))oV<p(t,x)dxdt.
Q

0
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By the Holder inequality, the fact that 8, — B strongly in L>(0, T'; L3(2)) and the embedding H!(2) — L°(Q), for
the first term on the right-hand side we have

T

//mm,x)—ﬂ(r,x>||ué<r,x>||w(r,x)|dxdr
Q

0
A
=< gl zooo,7; .22 19120, 75 L6(02) 1Br = Bll 20,7513 (02)) = O~

For the second term on the right-hand side note that 8- Vo € L'(0, T; L%(R2)) thanks to assumption H4, the fact that
@ € L*(0, T; H*(2)) and the inclusion H'(Q) < L%(), so that from (3.26)

T
//ﬁ(r,x)(ug(r,x) —ug(t,x)) - Vo(t,x)dxdt — 0.
0 Q
Hence, we conclude that
—divBuut — —divBu,  weakly* in L2(0, T; (H*(R2))*).
From (3.26) and the fact that B, € Z(H' (), (H'(Q))*), it is readily seen that
B:(u’) = B:(u;)  weakly*in L>(0, T; (H'(2))").

By (3.29)—(3.30) and (3.31), by comparison it follows that the sequence (Bg(ué‘))k is bounded in L2(0, T; L%(S2)),
hence we also conclude that B (1) € L%(0, T; L*(R2))

B:(u’) = B.(u;)  weaklyin L*(0, T; L*()).

Now, passing to the limit in (3.1)—(3.2) as A \{ 0, we obtain, in the sense of distributions,

Orute — A = —div(Bu,)

and

e =Be(ue) + & + IT(ue) .

Finally, the strong convergence (3.25) implies also that u,(0) = ug ¢, so that (u., pe, &) is a solution to the nonlocal
Cahn-Hilliard equation (1.7) according to Definition 1. This completes the proof of the first assertion of Theorem 2.1.

3.4. Continuous dependence

Let (B!, u} ) and (B2, u} ) satisfy H4 and (2.15), with (u} ,)o = (u3 ,)q, and let (u}, nl, &}) and (2, 2, £2) be

any corresponding solutions to the nonlocal equation (2.1)—(2.3). Then we have

O (ul —uf) — Au} — u) = —div(g'ul — p*u3).

wh—pl=Be(ul —ul)+ & — &2+ M) — ).

Noting that (u i — ug)g = 0 by the assumption on the initial data, we test the first equation by =N ; — ug), the
second by u é — ug, and take the difference: by performing classical computations we get

1 t t

5||(u; —u) DIy + / Ec(u} —u?)(s)ds + //(g; — D) (s, ) (u} — u)(s, x)dx ds

Q

0 0
t

1
=310~ )y~ [ [ (Td = MG 60l = s v
0 Q
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t

+//ﬂ1(s,x)(u;—ug)(s,x).V(—A)—l(ug—ug)(s,x)dxds
0 Q
t

+//(ﬁ‘ — B (s, )u (s, x) - V(=A) "Ll —u?)(s, x)dxds.
Q

0

By the Lipschitz-continuity of IT we have

t
/ / (M) = @) (s, )y — u)(s, ) dxds < Cllug = uZ 720,112 -
0 Q

while the Holder and Young inequalities yield

t

//ﬁl(s,x)(u; —u)(s,x) - V(=A) "Nl —u?)(s,x)dx ds
Q

0
t

< llug = w1720 12 + / 1" (5, ) 700 () 1 = 4D ()1 - i ds
0

and

t
//(ﬁl — B3 (s, ) (s, x) - V(=A) Ll — u?)(s, x) dx ds
0 Q

t
<1B" =B 720113y T / ez (s, I 760y It = uD 71y ds-
0

The continuous-dependence property stated in Theorem 2.1 follows from Lemma 4 and the Gronwall lemma.
4. Proof of Theorem 2.2

In this section we perform the limit as & N\ 0.

First of all, going back to the arguments performed in the previous section to obtain estimates (3.18)—(3.24), we
observe that assumptions (2.16)—(2.17) guarantee that the sequence of constants (C;), is uniformly bounded for every
e € (0, ep). Consequently, we deduce that there exists C > 0 such that

el 1o, 7t @)nL20.7: 1 (@) =

I Ee(ue) | Lo + //Kg(x, WIVie(x) — Vug(y)[> dx dy <C, 4.1)
R4 LY0,T)

el 20, 7: 11 () =

1€l 220.7: 12 =

Hence, by comparison

||Bg(ue)||L2(O,T;L2(£2)) =C.

By Aubin-Lions compactness results we infer that, up to the extraction of (not relabeled) subsequences,
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Ue = U strongly in L2(0, T; L*(£2)) N C°([0, T); (H'(2))%), (4.2)

Ug — U weakly* in L>°(0, T; L*(2)), (4.3)
Qe — dyu weakly* in L2(0, T; (H'(Q))"), (4.4)
B:(u:) > 1 weakly in L2(0, T; L*(Q)), (4.5)
Me = 14 weakly in L2(0, T; H' (), (4.6)

£ —& weakly in L2(0, T; L*(2)) 4.7

for some
ue HYO,T; (H'(2)*)NL>®0,T; L*(Q)),
pweLl*0,T; H'(Q)), & nel?0,T;L*Q).
We proceed by showing in addition that
ut — u, strongly in C°([0, T1; L*(Q)) N L*(0, T; H (). (4.8)

Indeed, Lemma 4 implies that for every § > 0, there exist Cs > 0 and &5 > 0 such that

”ué‘ - u”iZ(O,T;Hl(Q))
T
< a///mx, VIV (e = )1, ) — Ve = u)(t, )P dx dyde + Csllue —ul 220 7. 1200
0 Q Q
for every 0 < ¢ < g5. Thanks to (4.1), we infer that
”ué‘ - MH%Z(O,T;H] () S CS + C5 ||L£g - u“i2(0,T;L2(Q))

for a constant C > 0. Similarly, using the second inequality in Lemma 4 and (4.1), the same argument ensures also
that
2 2
”ué‘ - u||LOO(0’T;L2(Q)) = (SHES(ME - M)HLOO(O,T) + C5 ”ué‘ - u”CO([O,T];(Hl(Q))*)
= Cé + C3 ||u8 - MHZCO([O,T];(HI(Q))*) .

The strong convergence (4.8) follows then from the arbitrariness of §, and from (4.2).
From the strong convergence of (u.). and the strong-weak closure of maximal monotone graphs it is readily seen
that & € y (1) and that

M(ug) — D)  strongly in L>(0, T; L*()).

Let us now identify the limit n as —Au. As DE; = B, we have that

Ec(z1) + (Be(z1), 22 — 21) (w1 @)y, v () < Ee(22), 4.9)
for all z;,z> € H'(€2). Hence, for all z € L2(0, T; H'(2)) we deduce that

T T

T
/ Ex(us(t, ) di + / / Bo (e (1, ) (26, ) — w1, X)) de di < / Eo(z(t, ) dr. @.10)
0 0 Q 0

The results in [10] and the dominated convergence theorem yield

T

T
/Ee(Z(f’ ) dt — %//IVZ(x,t)lzdxdt.
0 Q

0
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Owing to the convergences (4.8) and (4.5), we have that

T T
//Bg(ug(t,x))(z(t,x) —ug(t,x))dxdr — //n(t,x)(z(t,x) —u(t,x))dxdz.
0 Q 0 Q

Finally, following the exact same steps as in [45], there holds

T

T
/Eg(ue(r, 2)di — %//IVu(t,x)Fdxdt.
0 Q

0

Hence, letting ¢ — 0 in (4.10), we obtain the inequality

T T T
%//|Vu(t,x)|2dxdt+//n(t,x)(z(t,x)—u(t,x))dxdt5%//Wz(t,x)lzdxdt
0 Q 0 Q 0 Q

for every z € L*>(0, T; H'(R)), so that n = —Au € L?(0, T; L>()). By elliptic regularity we infer that u €
L*(0,T; HX(Q)).
Finally, Holder’s inequality, the Sobolev embedding H'!(2) < L°(Q), and the strong convergence (4.8) yield

T
IBue — Bullr20,1.12(02) = / 1B, Lo ll(ue —u)(@, )12 dt
0

< BllL20,7: 1) lue — ull oo, 7:12(2)) = O-

Thus, letting & N\ 0 in Definition 1 (of solution for the nonlocal Cahn-Hilliard) we obtain
oru — A = —div(Bu)
in the sense of distributions, as well as

nw=—-Au+&+TIl(u).

This implies that # is a solution to the local Cahn-Hilliard equation (2.4)—(2.6), and concludes the proof of Theo-
rem 2.2.

5. Proof of Theorems 2.3-2.4

We show first that under the additional assumption (2.20), the solution (u,, i¢, &) to the nonlocal equation is more
regular. Note that here ¢ € (0, g¢) is fixed.

The idea is to argue in a classical way, performing some additional estimates on the approximate solutions (uif, ,ué‘)
constructed in Section 3. To this end, note that by (2.20), the approximating sequence (u%)’ 2)» of initial data satisfying
(3.4)—(3.5) can be chosen with the additional property

sup {llug oo + 1| — AAUG . +Be(uf ) + v ) + T )l g1y} < +00. (5.1)
1€(0,A0)
First of all we need some preparatory work. Note that the elliptic problem corresponding to (3.1)—(3.3) at time O,

i.e.

), — Dptges = —div(BO},)

140,60 = —AAuG  +Beug ) + valug ) + g ),
admits a unique solution (u{)’m, H0.e,1) € (H! (2)* x HY(Q). Testing the first equation by o, the second by
”6, ... and taking the difference yields
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/ IV 100,61 (P dx = —(ugy s =2 Auy , +Be )+ vi (o) + TG D) a1 @y 11 @)
Q

+ /ﬁ(O,X)uS,S(x) “Vio,e,.(x) dx.
Q

From the first equation it is readily seen that

||M6,g,x||(HI(Q))* = ||VMO,5,A||L2(Q) + ||,3(0)M3,5||L2(Q)
with

||,3(0)u(k),g||L2(Q) = ||,3(0)||L3(Q)||M6,g||L6(Q) = CllﬂllHl(O,T;L3(Q))”u()ig”Lé(Q) .

Hence the Young inequality, (2.19), (3.4)—(3.5), and (5.1) imply that

||u6,g,x||([-11(sz))* + ||VM0,5,A||L2(Q) <C.

(5.2)

We are now ready to perform the additional estimate on the approximated solutions. Again, we proceed formally
in order to avoid heavy notations and since everything can be proved rigorously through a further regularization on
the problem. The idea is to (formally) test the time derivative of (3.1) by (—A)~! (Btué‘), the time derivative of (3.2)

by du’ and then to take the difference: the resulting inequality is

t

t
|atu2(t>||§,,l(m)*+A//|vatu2(s,x>|2dxds+/E8<atu§<s, ) ds
0 Q 0

1 I
2

t t
+//y)f(ui‘(s,x))|8,uf;(s,x)|2dxds+//H’(ué‘(s,x))|8tué‘(s,x)|2dxds
0 Q 0 Q

t
1 -
= Ellué),g,xllfm(m)* +//atu§(s,x)ﬁ(s,x).V(—A) Y@y (s, x) dx ds
0 Q

t
+ //ug(s, x)3B(s, x) - V(=A) " (@ul)(s, x) dx ds.
0 Q
Now, note that by Holder’s inequality and (2.19) we have

t
//a,ug(s,x)ﬁ(s,x).V(—A)*l(a,ug)(s,x)dxds
0 @

t

< / 18l (s, I L2y 1BG. Lo @ IV (=AY @ul) (s, ) 2 ds
0

t
1 A2 1 2 A 2
< S 02 + / 1BG5. I 10012 (5) 1 e
0

and

1
//ug(s,x)atﬁ(s,x)-V(—A)—l(atug)(s,x)dx ds
0 Q
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t
< / (s, I Lo 18:BGs. L3 IV (= A) T @ru)ll 12 ds
0

t
1 1
e A e / 19:BCs, I3 ) 1912 () 11 g -
0

Thanks to Lemma 4 there holds

t

||3tué(s)||%H1(Q))* <3 / Ee(at"‘?)(s) ds + C5Haluéniz(O,T;(Hl(Q))*)
0

for é sufficiently small. Hence, putting this information together, using the Lipschitz-continuity of I1, the monotonicity
of y,, condition (5.2) and the already proved estimates (3.19) and (3.21), we are left with

t

(A O / Ee (Byug (s, ) ds

0
t

<C.+ / (||ﬂ<s, Moo + 138, ->||iz(m) 19wz ()51 gy s -
0

Since s — || (s, ~)||%OO(Q) and s — ||9;B(s, ~)||i3(9) belong to LY(0,T) due to (2.19) and H4, using the Gronwall

lemma and recalling [49, Theorem 1.1] we infer that
A
10ru Il oo 0,75 (1 ()20, 73 12(2)) = Ce - (5.3)
Now, if (2.21) holds, we also have

I div(ﬂué)||LOO(0’T;(H1(Q))*) = ||/3M/;||L00(0,T;L2(Q)) = ”,BHLOO(O,T;LOO(Q))””é”LOO(O,T;Lz(Q))’
yielding by (3.19) and by comparison in (3.1),

IVl oo, 71200 < Ce - (5.4)
At this point, going back to the proof of Theorem 2.1, we repeat exactly the same arguments of Step 2 and Step 3:
using the additional estimates (5.3)—(5.4), we deduce

||M?||Loo(0,T;H1(gz)) + @)l Lo, 1:220)) < Ce - (5.5)

Furthermore, if also (2.22) holds we have

Idiv(Bup) Nl 20,7120 < I IVBYE N 120075120 + 1B - Vil 20,7120
- A
< 1div Bll poo (o, 723 ) 14e | L2 (0,7 L6 (22))
+ 1Bl o, 7:2@n I VUl 1200 7:12(2)) »

so that from (3.21) and by comparison in (3.1) we infer that

”A/J/QHLZ(O,T;LZ(Q)) <C. (5.6)
Hence, (5.3)—(5.6) ensure that the limit solution (u¢, i, &) inherits the additional regularity stated in Theorem 2.3.
The proof of Theorem 2.4 follows now as in Section 4, noting that the assumption (2.23) implies that the family
(C¢)e appearing in (5.3)—(5.6) is uniformly bounded in ¢.
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