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Abstract

Existence and uniqueness of solutions for nonlocal Cahn-Hilliard equations with degenerate potential is shown. The nonlocality 
is described by means of a symmetric singular kernel not falling within the framework of any previous existence theory. A con-
vection term is also taken into account. Building upon this novel existence result, we prove convergence of solutions for this class 
of nonlocal Cahn-Hilliard equations to their local counterparts, as the nonlocal convolution kernels approximate a Dirac delta. 
Eventually, we show that, under suitable assumptions on the data, the solutions to the nonlocal Cahn-Hilliard equations exhibit 
further regularity, and the nonlocal-to-local convergence is verified in a stronger topology.
© 2019 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The Cahn-Hilliard equation was originally introduced in [13] in order to model the so-called “spinodal decomposi-
tion” phenomenon occurring during the phase separation processes in binary metallic alloys. Since then it has acquired 
fundamental importance in several diffuse-interface models in different fields, ranging from physics and engineering 
to biology.

This nonlinear parabolic PDE exhibits a gradient-flow structure (in the H−1-metric) in terms of the free energy 
functional given by, cf. [13],

ECH (u) =
ˆ

�

(τ 2

2
|∇u(x)|2 + F(u(x))

)
dx, (1.1)
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where � is the d-dimensional flat torus, F is a double-well potential, and τ is a small positive parameter related to the 
thickness of the transition region. The choice of the set � is classical in the literature, and corresponds to imposing 
periodic boundary conditions. The corresponding evolution problem reads as follows

∂tu + divJCH = 0,

JCH = −m(u)∇μCH ,

μCH = δECH (u)

δu
= −τ 2�u + F ′(u),

(1.2)

where μCH is the chemical potential associated to the energy ECH , and the symbol div(·) denotes the divergence 
operator. The function m(·) in (1.2) is known as mobility.

The mathematical literature on the classical Cahn-Hilliard equation has been widely developed in the last decades, 
in terms of well-posedness of the system with possibly degenerate potentials, viscosity terms and dynamic boundary 
conditions, but also in the direction of regularity, long-time behavior of solutions, and optimal control problems. 
Among the extensive literature, we mention the works [14–16,18,19,21,37] dealing with existence-uniqueness of 
solutions, [20,27,38] for studies on the asymptotic behavior of solutions, and [9,46,51] for analyses of the system 
incorporating possibly nonlinear viscosity terms. As far as optimal control problems are concerned, we point out the 
contributions [17,22,23,28,40].

In the early 90’s in [36] G. Giacomin and J. Lebowitz considered the hydrodynamic limit of a microscopic model 
describing a d-dimensional lattice gas evolving via a Poisson nearest-neighbor process. In this seminal paper, the 
authors rigorously derived a nonlocal energy functional of the form

ENL(u) = 1

4

ˆ

�

ˆ

�

K(x,y)(u(x) − u(y))2dxdy +
ˆ

�

F(u(x))dx, (1.3)

where K(x, y) is a positive and symmetric convolution kernel, and proposed the corresponding gradient flow as a 
model for binary alloys undergoing phase change.

The associated evolution problem, providing a nonlocal variant of the Cahn-Hilliard PDE, is given by the following 
system of equations:

∂tu + divJNL = 0,

JNL = −m(u)∇μNL,

μNL = δENL(u)

δu
= (K ∗ 1)u − K ∗ u + F ′(u),

(1.4)

where (K ∗ 1)(x) := ´
�

K(x, y)dy and (K ∗ u)(x) := ´
�

K(x, y)u(y) dy, for x ∈ �.
The study of such nonlocal Cahn-Hilliard equations has recently been the subject of an intense research activity 

(see, e.g. [1,5,33,35,39] and the references therein). All the available results in the literature dealing with nonlocal 
evolution of phase interfaces require the kernel K to be symmetric and of class W 1,1. Such requirements are usually 
met by checking a condition in the following form

|K(x,y)| ≤ C|x − y|−α with 0 < α <
3

2
(1.5)

(see [25, Remark 1]).
The interest in this nonlocal model is motivated by its atomistic justification and its generality. A further motivation 

for the study of models in the form (1.4) is the observation that, at least formally, when the interaction kernel K is 
of the form K(x, y) = K(|x − y|) and concentrates around the origin, then the behavior of the nonlocal interface 
evolution problems approaches that of the standard local Cahn-Hilliard equation.

This formal argument is enforced by the rigorous theory involving the variational convergence of nonlocal energies 
of the form (1.3) to local integral functionals as in (1.1). Building upon the seminal papers by J. Bourgain, H. Brezis, 
and P. Mironescu [10,11], and of V. Mazy’a and T. Shaposhnikova [43,44], a whole nonlocal-to-local framework has 
been developed for singular nonlocal kernels associated to fractional Sobolev spaces. This study has been comple-
mented by the �-convergence analysis and Poincaré inequalities obtained by A. C. Ponce in [48,49]. More specifically, 
considering the following family of convolution kernels, identified by a small positive parameter ε,



E. Davoli et al. / Ann. I. H. Poincaré – AN 37 (2020) 627–651 629
Kε(x, y) = ρε(|x − y|)
|x − y|2 , (1.6)

where (ρε)ε is a suitable sequence of mollifiers, A. C. Ponce showed the variational convergence

1

4

ˆ

�

ˆ

�

Kε(x, y)(u(x) − u(y))2dxdy → 1

2

ˆ

�

|∇u(x)|2 dx.

The first positive result towards rendering the formal nonlocal-to-local convergence of the Cahn-Hilliard models 
rigorously has been achieved in [45], where the authors have focused on convergence of weak solutions of the nonlocal 
Cahn-Hilliard equation (1.4) to weak solutions of its local counterpart (1.2), as the convolution kernel K approximates 
a Dirac delta centered in the origin. In the aforementioned paper, the convergence is studied in the case of constant 
mobility, with a non-singular double-well potential satisfying a bounded-concavity assumption of the form

F ′′ ≥ −B1,

for a positive constant B1 small enough, (see [45, Assumption H3]).
Due to the above-mentioned variational convergence result, kernels in the form (1.6) are the most natural choice 

in the study of nonlocal phase transition problems. However, in general it is not true that these kernels enjoy a W 1,1

regularity, so that the available existence results in the literature do not apply. In addition, the usual condition (1.5) is 
not satisfied by Kε as in (1.6). This observation renders the analysis of this class of problems very delicate and several 
nontrivial difficulties arise. For example, the definition and regularity of the chemical potential μNL in (1.4) relies on 
the properties of the linear unbounded operator (B, D(B)), defined as

D(B) := {v ∈ L2(�) : (K ∗ 1)v − (K ∗ v) ∈ L2(�)} ,

B(v) := (K ∗ 1)v − (K ∗ v) , ∀v ∈ D(B) ,

whose domain D(B) is, a priori, not explicitly characterizable and not even necessarily containing H 1(�) (see Sub-
section 2.2). Such endeavours are further enhanced when turning to the analysis of nonlocal diffusions driven by 
degenerate potentials.

The first contribution of this paper (see Theorem 2.1) is the development of a well-posedness theory for nonlocal 
Cahn-Hilliard equations having singular kernels Kε (for ε > 0 being fixed) defined as in (1.6).

In our analysis, we remove the small-concavity assumption on the potential that was required in [45], and include 
possibly degenerate double-well potentials F defined on bounded domains. Indeed, while the classical choice for F
is the fourth-order polynomial Fpol(r) := 1

4 (r2 − 1)2, r ∈ R, with minima in ±1 (corresponding to the pure phases), 
it is well-known that, in view of the physical interpretation of the model, a more realistic description is given by the 
logarithmic double-well potential

Flog(s) = θ

2
((1 + s) log(1 + s) + (1 − s) log(1 − s)) + θc

2
− cs2

for 0 < θ < θc and c > 0, which by contrast is defined on the bounded domain (−1, 1) and possesses minima within 
the open interval (−1, 1). Another interesting example of F which is included in our treatment is the so-called double-
obstacle potential (see [7,47]), having the form

Fob(s) = I[−1,1](s) + 1

2
(1 − s2), I[−1,1](s) :=

{
0 if s ∈ [−1,1]
+∞ otherwise .

In this latter case, the derivative F ′
ob is not defined in the usual way, and has to be interpreted as the subdifferential 

∂Fob in the sense of convex analysis (see [4]). Analogously the equations defining the chemical potential must be read 
as a differential inclusion instead.

A further extension provided by our work is to consider a nonlocal Cahn-Hilliard equation augmented by a con-
vection term in divergence form, i.e.

∂tu + divJNL + div(βu) = 0,

JNL = −∇μNL,

μNL = δENL(u)

δu
= (K ∗ 1)u − K ∗ u + F ′(u).

(1.7)
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Here, β = β(t, x) denotes the velocity field, depending on time and space, which may be acting on the particular 
system in consideration. As a common choice in the literature, we considered constant mobility equal to one.

The interest in additional convective contributions is connected with applications in mixing and stirring of fluids, 
as well as in biological realizations of thin films via Langmuir-Blodgett transfer [6,42]. We mention in this direction 
the contributions [8,26,31,52] on the local Cahn-Hilliard with convection, [29,30,50] dealing with the nonlocal Cahn-
Hilliard with local convection, and [32,41] on the nonlocal case with nonlocal convection. A nonlocal convective 
Cahn-Hilliard type system modelling phase-separation has been analyzed in [24,25]. Relevant studies in coupling the 
Cahn-Hilliard equation with a further equation for the velocity field have been the subject of [2,3,12,34].

From a mathematical viewpoint, the presence of convection terms (i.e. when β �≡ 0) destroys the gradient-flow 
structure of the equation, causing the analysis to be even more delicate.

The proof strategy for Theorem 2.1 relies on three main ingredients: (1) a suitable approximation of the nonlinearity 
and an existence analysis for the approximating equations based on a fixed point argument (see Subsection 3.1); (2)

the establishment of uniform estimates by ad-hoc multiplication of the equations with suitable test functions (see 
Subsection 3.2); (3) a passage to the limit relying on nontrivial compactness and monotonicity arguments, falling 
outside the framework of classical Aubin-Lions embedding results (see Lemma 4 and Subsection 3.3). A delicate 
point is the proof of a uniform H 1-estimate, which strongly relies on the choice of periodic boundary conditions.

Our second contribution is established in Theorem 2.2, where we show convergence of solutions for the nonlocal 
convective Cahn-Hilliard equation with singular kernel to solutions of the associated local one. Our analysis extends 
the work in [45] to a wider class of double-well potentials, satisfying no bounded-concavity assumptions and being 
possibly degenerate. The nonlocal-to-local convergence in Theorem 2.2 relies in an essential way on the uniform 
a-priori estimates established in the proof of Theorem 2.1, and on showing the independence of the identified upper 
bounds from the non-locality parameter ε.

The third and fourth main results of the paper are a regularity analysis for solutions to (1.4). In particular, in 
Theorem 2.3 we show that, if the initial datum and the convection velocity satisfy additional integrability and differen-
tiability assumptions, then solutions to the nonlocal Cahn-Hilliard equations exhibit further regularity. In Theorem 2.4
we prove that they also converge to their local counterparts in stronger topologies. The regularity analysis in Theo-
rems 2.3 and 2.4 is the byproduct of a time-differentiation of the nonlocal Cahn-Hilliard equation, and of the use of 
higher-order-in-time test functions.

The paper is organized as follows. Section 2 contains a description of the mathematical setting of the paper, the 
definition of weak solutions for the nonlocal and local convective Cahn-Hilliard equations, and the precise statements 
of the four main results. Sections 3 and 4 are devoted to the proof of Theorems 2.1 and 2.2, respectively. Eventually, 
in Section 5 we prove Theorems 2.3 and 2.4.

2. Setting and main results

2.1. Hypotheses

Throughout the paper we will assume the following:

H1: � is the d-dimensional (d = 2, 3) flat torus and T > 0 is a fixed final time.
H2: The kernel Kε : � × � →R is defined as in (1.6):

Kε(x, y) := 1

|x − y|2 ρε(|x − y|) , for a.e. (x, y) ∈ � × �

where (ρε)ε>0 ⊂ L1
loc(0, +∞) is a family of radial mollifiers on R, satisfying

ρε(r) ≥ 0 ∀ r ∈R, ∀ ε > 0 ,

supp(ρε) ⊂ [0,diam(�)] ∀ ε > 0 ,

+∞ˆ
ρε(r)r

d−1 dr = 2

Md

∀ ε > 0 ,
0
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lim
ε↘0

+∞ˆ

δ

ρε(r)r
d−1 dr = 0 ∀ δ > 0 ,

with Md := ´
Sd−1 |e1 · σ |2 dHd−1(σ ).

H3: γ : R → 2R is a maximal monotone graph such that 0 ∈ γ (0). This implies that γ = ∂γ̂ , where γ̂ : R → [0, +∞]
is a proper, convex and lower semicontinuous function. The map � :R → R is a Lipschitz-continuous function 
with Lipschitz constant C� > 0. The double-well potential F will be represented by γ̂ + �̂, where �̂(t) :=´ t

0 �(r) dr for every t ∈ R. Without restriction we will assume that F is nonnegative.
H4: The velocity β depends on space and time, and satisfies β ∈ L2(0, T ; L∞(�; Rd)).

We point out that all assumptions collected in H2 correspond to the requirements in [48,49].
For every ε > 0, we consider the nonlocal Cahn-Hilliard equation with local convection

∂tuε − �με + div(βuε) = 0 in (0, T ) × �, (2.1)

με ∈ (Kε ∗ 1)uε − Kε ∗ uε + γ (uε) + �(uε) in (0, T ) × �, (2.2)

uε(0) = u0,ε in �, (2.3)

and its local counterpart

∂tu − �μ + div(βu) = 0 in (0, T ) × �, (2.4)

μ ∈ −�u + γ (u) + �(u) in (0, T ) × �, (2.5)

u(0) = u0 in �. (2.6)

2.2. Notation, preliminaries and comments

In the sequel we will identify L2(�) with its dual, so that (H 1(�), L2(�), (H 1(�))∗) will be a classical Hilbert 
triplet. We will use the symbol (v)� for 1

|�| 〈v, 1〉(H 1(�))∗,H 1(�) for every v ∈ (H 1(�))∗. Note that for v ∈ L2(�), 
(v)� coincides with the usual average. We recall that the operator

(−�)−1 : {v ∈ (H 1(�))∗ : (v)� = 0} → {w ∈ H 1(�) : (w)� = 0}
is defined as the map assigning to every v ∈ (H 1(�))∗ with null mean the unique element w ∈ H 1(�) such that

(w)� = 0 , and
ˆ

�

∇w(x) · ∇ϕ(x)dx = 〈v,ϕ〉(H 1(�))∗,H 1(�) ∀ϕ ∈ H 1(�) .

It is well known that (−�)−1 is a linear isomorphism.
In this paper C indicates a generic positive constant, possibly varying from line to line, depending only on the 

setting H1–H4. The dependence of constants on a specific parameter will be indicated explicitly through a subscript.
We collect here some useful properties of the nonlocal term. We define the operator (Bε, D(Bε)) on L2(�) in the 

following way:

D(Bε) := {v ∈ L2(�) : (Kε ∗ 1)v − (Kε ∗ v) ∈ L2(�)} ,

Bε(v) := (Kε ∗ 1)v − (Kε ∗ v) , ∀v ∈ D(Bε) .

It is clear that Bε is a linear unbounded operator in L2(�), and that for every v ∈ D(Bε) we have the representation

Bε(v)(x) =
ˆ

�

ρε(|x − y|)v(x) − v(y)

|x − y|2 dy for a.e. x ∈ �.

We point out that the domain D(Bε) is non-trivial. More specifically, we have the following result.
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Lemma 1. For every ε, σ > 0, there holds C0,σ (�) ⊂ D(Bε). Additionally, there exists a constant Cε,σ > 0 (only 
dependent on ε and σ ) such that

‖Bε(v)‖L2(�) ≤ Cε,σ ‖v‖C0,σ (�) ∀v ∈ C0,σ (�) . (2.7)

In particular, for every s > 3
2 , Hs(�) ⊂ D(Bε) and there exists Cε,s > 0 such that

‖Bε(v)‖L2(�) ≤ Cε,s‖v‖Hs(�) ∀v ∈ Hs(�) . (2.8)

Proof. A direct computation shows that for every v ∈ C0,σ (�) and for almost every x ∈ �,

|Bε(v)(x)| ≤
ˆ

�

ρε(|x − y|) |v(x) − v(y)|
|x − y|2 dy ≤ ‖v‖C0,σ (�)

ˆ

�

ρε(|x − y|)
|x − y|2−σ

dy,

where

Cε,σ :=
ˆ

�

ρε(|x − y|)
|x − y|2−σ

dy < +∞

thanks to H2. The second part of the Lemma follows by the Sobolev embedding Hs(�) ↪→ C0,σ (�) for every s > 3
2

and σ ∈ (0, s − 3
2 ). �

The operator (Bε, D(Bε)) has been defined as a linear unbounded operator on L2(�). Note that it is not necessarily 
true that H 1(�) ⊂ D(Bε). Nevertheless, we now show that actually (Bε, D(Bε)) can be extended, uniformly in ε, to 
a linear bounded operator from H 1(�) to its dual.

Lemma 2. For every ε > 0 the operator (D(Bε), Bε) can be uniquely extended to a linear continuous operator Bε :
H 1(�) → (H 1(�))∗. Additionally, there exists a positive constant C, independent of ε, such that

‖Bε(v)‖(H 1(�))∗ ≤ C‖∇v‖L2(�) ∀v ∈ H 1(�) . (2.9)

In particular, the family (Bε)ε is uniformly bounded in L (H 1(�), (H 1(�))∗) and there exists B ∈ L (H 1(�),

(H 1(�))∗) and an infinitesimal sequence (εn)n such that

lim
n→∞〈Bεn(v),ψ〉(H 1(�))∗,H 1(�) = 〈B(v),ψ〉(H 1(�))∗,H 1(�) ∀v,ψ ∈ H 1(�) .

Proof. By the Hölder inequality and [10, Theorem 1], we infer that

〈Bε(v),ψ〉(H 1(�))∗,H 1(�) = 1

2

ˆ

�

ˆ

�

Kε(x, y)(v(x) − v(y))(ψ(x) − ψ(y))dydx

≤ 1

2

(ˆ
�

ˆ

�

Kε(x, y)|v(x) − v(y)|2dydx
)1/2(ˆ

�

ˆ

�

Kε(x, y)|ψ(x) − ψ(y)|2dydx
)1/2

≤ C‖∇v‖L2(�)‖∇ψ‖L2(�)

for every v, ψ ∈ H 1(�). This implies that (D(Bε), Bε) can be extended uniquely as required (the uniqueness follows 
Lemma 1, and from the density of C0,σ (�) in D(Bε)). The second part of the lemma follows by observing that 
(2.9) implies the uniform boundedness of (Bε)ε in L (H 1(�), (H 1(�))∗), and hence its precompactness in the weak 
operator topology of L (H 1(�), (H 1(�))∗). �

In what follows, a crucial role is also played by the nonlocal energy contribution

Eε(v) := 1

4

ˆ

�

ˆ

�

Kε(x, y)(v(x) − v(y))2dydx ∀v ∈ H 1(�) .
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Owing to [10, Theorem 1], we have that Eε is well-defined, convex, and its differential DEε : H 1(�) → (H 1(�))∗ is 
given by

DEε = Bε.

Moreover, by [10] the asymptotic behavior of Eε as ε → 0+ can be characterized as follows

lim
ε→0+ Eε(v) = 1

2

ˆ

�

|∇v(x)|2dx ∀v ∈ H 1(�) . (2.10)

As a corollary, we deduce the following identification of the operator B in Lemma 3.

Lemma 3. Let (D(Bε), Bε)ε and B be as in Lemma 2. Then,

lim
ε→0

〈Bε(v),ψ〉(H 1(�))∗,H 1(�) = 〈−�v,ψ〉(H 1(�))∗,H 1(�),

where

〈−�v,ψ〉(H 1(�))∗,H 1(�) :=
ˆ

�

∇v(x) · ∇ψ(x)dx ∀v,ψ ∈ H 1(�) .

Proof. By the characterization of the differential of Eε, we have that

Eε(v1) + 〈Bε(v1), v2 − v1〉(H 1(�))∗,H 1(�) ≤ Eε(v2)

for every v1, v2 ∈ H 1(�). Hence, for every subsequence (εn)n as in Lemma 2, letting n → ∞, by (2.10) we conclude 
that

1

2

ˆ

�

|∇v1(x)|2dx + 〈B(v1), v2 − v1〉(H 1(�))∗,H 1(�) ≤ 1

2

ˆ

�

|∇v2(x)|2dx,

from which B = −�. In particular, this implies that the convergence holds along the entire sequence ε. �
We conclude this subsection with a lemma providing two fundamental compactness inequalities involving the fam-

ily of operators (Bε)ε . Such results are nontrivial, since they do not fall in the classical framework of the Aubin-Lions 
lemmas. The next lemma is a uniform counterpart to [45, Lemma 1].

Lemma 4. For every δ > 0 there exist constants Cδ > 0 and εδ > 0 with the following properties:

(1) For every sequence (fε)ε ⊂ H 1(�) there holds

‖fε1 − fε2‖2
H 1(�)

≤ δ

ˆ

�

ˆ

�

Kε1(x, y)|∇fε1(x) − ∇fε1(y)|2dydx

+ δ

ˆ

�

ˆ

�

Kε2(x, y)|∇fε2(x) − ∇fε2(y)|2dydx + Cδ‖fε1 − fε2‖2
L2(�)

(2.11)

for every 0 < ε1, ε2 < εδ .
(2) For every sequence (fε)ε ⊂ L2(�) there holds

‖fε1 − fε2‖2
L2(�)

≤ δEε1(fε1) + δEε2(fε2) + Cδ‖fε1 − fε2‖2
(H 1(�))∗ (2.12)

for every 0 < ε1, ε2 < εδ .

Proof. Assume by contradiction that (2.11) is false. Then, there exists δ̄ > 0 having the following property: for every 
n ∈N we can find a sequence (f n

ε )ε ⊂ H 1(�) and two parameters ε1
n, ε

2
n < 1 such that
n
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‖f n
ε1
n
− f n

ε2
n
‖2
H 1(�)

> δ̄

ˆ

�

ˆ

�

Kε1
n
(x, y)|∇f n

ε1
n
(x) − ∇f n

ε1
n
(y)|2dydx

+ δ̄

ˆ

�

ˆ

�

Kε2
n
(x, y)|∇f n

ε2
n
(x) − ∇f n

ε2
n
(y)|2dydx + n‖f n

ε1
n
− f n

ε2
n
‖2
L2(�)

.

Noting that ‖f n
ε1
n
− f n

ε2
n
‖H 1(�) > 0 for every n and setting

g1
n :=

f n
ε1
n

‖f n
ε1
n
− f n

ε2
n
‖H 1(�)

, g2
n :=

f n
ε2
n

‖f n
ε1
n
− f n

ε2
n
‖H 1(�)

,

we have

δ̄

ˆ

�

ˆ

�

Kε1
n
(x, y)|∇g1

n(x) − ∇g1
n(y)|2dydx

+ δ̄

ˆ

�

ˆ

�

Kε2
n
(x, y)|∇g2

n(x) − ∇g2
n(y)|2dydx + n‖g1

n − g2
n‖2

L2(�)
< 1 ∀n ∈ N .

Hence, g1
n − g2

n → 0 strongly in L2(�) and the families (∇g1
n)n and (∇g2

n)n are relatively strongly compact in 
L2(�; Rd) by [48, Theorem 1.2]. We deduce that g1

n − g2
n → 0 strongly in H 1(�), but this is a contradiction since by 

definition we have ‖g1
n − g2

n‖H 1(�) = 1 for all n. The argument for (2.12) is entirely analogous. �
2.3. Main results

Before stating our main results, let us recall the notion of weak solutions to both the nonlocal as well as the local 
Cahn-Hilliard equation with local convection.

Definition 1 (Solution to the nonlocal Cahn-Hilliard equation). Let ε > 0 and T > 0 be fixed. A solution to the 
nonlocal Cahn-Hilliard equation (2.1)–(2.3) on [0, T ], and associated with the initial datum u0,ε ∈ L2(�), is a triplet 
(uε, με, ξε) with the following properties

uε ∈ H 1(0, T ; (H 1(�))∗) ∩ L2(0, T ;H 1(�)) ,

με ∈ L2(0, T ;H 1(�)) , ξε ∈ L2(0, T ;L2(�)) ,

με = Bε(uε) + ξε + �(uε) , ξε ∈ γ (uε) almost everywhere in (0, T ) × �,

satisfying uε(0) = u0,ε , and such that

〈∂tuε(t), ϕ〉(H 1(�))∗,H 1(�) +
ˆ

�

∇με(t, x) · ∇ϕ(x)dx =
ˆ

�

β(t, x)uε(t, x) · ∇ϕ(x)dx (2.13)

for all ϕ ∈ H 1(�), and for almost every t ∈ (0, T ).

Definition 2 (Solution to the local Cahn-Hilliard equation). Let T > 0 be fixed. A solution to the local Cahn-Hilliard 
equation (2.4)–(2.6) on [0, T ], and associated with the initial datum u0 ∈ H 1(�), is a triplet (u, μ, ξ) with the follow-
ing properties

u ∈ H 1(0, T ; (H 1(�))∗) ∩ L2(0, T ;H 2(�)) ,

μ ∈ L2(0, T ;H 1(�)) , ξ ∈ L2(0, T ;L2(�)) ,

μ = −�u + ξ + �(u) , ξ ∈ γ (u) almost everywhere in (0, T ) × �,

satisfying u(0) = u0, and such that
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〈∂tu(t), ϕ〉(H 1(�))∗,H 1(�) +
ˆ

�

∇μ(t, x) · ∇ϕ(x)dx =
ˆ

�

β(t, x)u(t, x) · ∇ϕ(x)dx (2.14)

for all ϕ ∈ H 1(�), for almost every t ∈ (0, T ).

Our first result is the well-posedness of solutions to the nonlocal Cahn-Hilliard equation.

Theorem 2.1. Let assumptions H1–H4 be satisfied, and for every ε > 0 let

u0,ε ∈ L2(�) , γ̂ (u0,ε) ∈ L1(�) , Eε(u0,ε) < +∞ , (u0,ε)� ∈ IntD(γ ) . (2.15)

Then, there exists ε0 > 0 having the following property: for every ε < ε0 there exists a unique solution (uε, με, ξε) to 
(2.1)–(2.3) associated with the initial datum u0,ε, according to Definition 1. Furthermore, if (β1, u1

0,ε) and (β2, u2
0,ε)

are two sets of data satisfying H4 and (2.15), with (u1
0,ε)� = (u2

0,ε)�, then there exists a positive constant Mε, de-

pending only on the setting H1–H3 and on the norms of the data (β1, u1
0,ε) and (β2, u2

0,ε) appearing in H4 and (2.15), 
such that, for any respective solution (u1

ε, μ
1
ε, ξ

1
ε ) and (u2

ε, μ
2
ε, ξ

2
ε ) to the nonlocal equation (2.1)–(2.3),

‖u1
ε − u2

ε‖2
C0([0,T ];(H 1(�))∗) + ‖Eε(u

1
ε − u2

ε)‖L1(0,T )

≤ Mε

(
‖u1

0,ε − u2
0,ε‖2

(H 1(�))∗ + ‖β1 − β2‖2
L2(0,T ;L3(�))

)
.

The second result concerns nonlocal-to-local convergence.

Theorem 2.2. Let assumptions H1–H4 be satisfied. Let u0 ∈ H 1(�), and for every ε > 0 let u0,ε satisfy (2.15) and be 
such that

sup
ε∈(0,ε0)

(
‖u0,ε‖2

L2(�)
+ ‖γ̂ (u0,ε)‖L1(�) + Eε(u0,ε)

)
< +∞ , (2.16)

∃ [a0, b0] ⊂ IntD(γ ) : a0 ≤ (u0,ε)� ≤ b0 ∀ ε ∈ (0, ε0) , (2.17)

u0,ε ⇀ u0 in L2(�) as ε → 0+ . (2.18)

Let (uε, με, ξε) be the unique solution to (2.1)–(2.3) associated to u0,ε given by Theorem 2.1, and let (u, μ, ξ) be the 
unique solution to the local equation (2.4)–(2.6) associated to u0, according to Definition 2.

Then, as ε ↘ 0,

uε → u strongly in C0([0, T ];L2(�)) ∩ L2(0, T ;H 1(�)) ,

∂tuε ⇀ ∂tu weakly* in L2(0, T ; (H 1(�))∗) ,

με ⇀ μ weakly in L2(0, T ;H 1(�)) ,

ξε ⇀ ξ weakly in L2(0, T ;L2(�)) .

The last two results that we present deal with regularity of solutions to the nonlocal equation. In particular, we 
show that if the data are more regular, then the solution to the nonlocal equation inherits a further regularity, and the 
convergences to the local equation are obtained in stronger topologies.

Theorem 2.3. Let assumptions H1–H4 be satisfied, and suppose also that

β ∈ H 1(0, T ;L3(�;Rd)) . (2.19)

For every 0 < ε < ε0 let u0,ε satisfy (2.15) and

u0,ε ∈ L6(�) , Bε(u0,ε) + ξ0,ε + �(u0,ε) ∈ H 1(�) ∀ ξ0,ε ∈ γ (u0,ε) . (2.20)

Then the unique solution (uε, με, ξε) to the nonlocal equation (2.1)–(2.3) with respect to the initial datum u0,ε also 
satisfies
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uε ∈ W 1,∞(0, T ; (H 1(�))∗) ∩ H 1(0, T ;L2(�)) ∩ L2(0, T ;H 1(�)) .

If also

β ∈ L∞(0, T ;L∞(�;Rd)) , (2.21)

then in addition

με ∈ L∞(0, T ;H 1(�)) , ξε ∈ L∞(0, T ;L2(�)) .

If also

divβ ∈ L∞(0, T ;L3(�)) , (2.22)

then in addition

με ∈ L2(0, T ;H 2(�)) .

Theorem 2.4. Let assumptions H1–H4 be satisfied. Let u0 ∈ H 1(�), and for every ε > 0 let u0,ε satisfy (2.15), 
(2.16)–(2.18), (2.20) and

sup
ε∈(0,ε0), ξ0,ε∈γ (u0,ε)

(‖u0,ε‖L6(�) + ‖Bε(u0,ε) + ξ0,ε + �(u0,ε‖H 1(�)

)
< +∞ . (2.23)

Denoting by (u, μ, ξ) the unique solution to the local equation (2.4)–(2.6), if (2.19) holds then, in addition to the 
convergences in Theorem 2.2,

uε ⇀ u weakly* in W 1,∞(0, T ; (H 1(�))∗) ∩ H 1(0, T ;L2(�)) .

If also (2.21) holds, then

με ⇀ μ weakly* in L∞(0, T ;H 1(�)) ,

ξε ⇀ ξ weakly* in L∞(0, T ;L2(�)) .

If also (2.22) holds, then

με ⇀ μ weakly in L2(0, T ;H 2(�)) .

3. Proof of Theorem 2.1

This section contains the proof of existence of a solution (uε, με, ξε) to the nonlocal convective Cahn-Hilliard 
equation. We subdivide it in different steps. In this section, ε > 0 is fixed.

3.1. Approximation

For every λ > 0, let γλ :R → R be the Yosida approximation of γ , having Lipschitz constant 1/λ, and set γ̂λ(s) :=´ s

0 γλ(r) dr for every s ∈R. We consider the approximated problem

∂tu
λ
ε − �μλ

ε + div(βλu
λ
ε ) = 0 in (0, T ) × �, (3.1)

μλ
ε = −λ�uλ

ε + Bε(u
λ
ε ) + γλ(u

λ
ε ) + �(uλ

ε ) in (0, T ) × �, (3.2)

uλ
ε (0) = uλ

0,ε in �, (3.3)

where βλ := Pλβ , Pλ : Rd → Rd is the projection on the closed ball of radius 1
λ

, and the initial datum uλ
0,ε satisfies

uλ
0,ε ∈ H 1(�) , uλ

0,ε → u0,ε in L2(�) , (3.4)

sup
λ∈(0,λ0)

(
λ‖uλ

0,ε‖2
H 1(�)

+ ‖γ̂λ(u
λ
0,ε)‖L1(�) + Eε(u

λ
0,ε)

)
< +∞ (3.5)

for a certain λ0 > 0 (possibly depending on ε).
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Remark 3.1. The existence of an approximating sequence (uλ
0,ε)λ satisfying (3.4)–(3.5) is guaranteed by (2.15). For 

example, let us consider the classical elliptic regularization given by the unique solution to the problem

uλ
0,ε − λ�uλ

0,ε = u0,ε in �. (3.6)

Note that we have not specified any boundary conditions for uλ
0,ε as we are working on the torus � (hence we have 

implicitly required periodic boundary conditions for uλ
0,ε). Let us show that (3.4)–(3.5) are satisfied by this choice. 

Testing (3.6) by uλ
0,ε and using the Young inequality on the right-hand side we obtain

1

2
‖uλ

0,ε‖2
L2(�)

+ λ‖∇uλ
0,ε‖2

L2(�)
≤ 1

2
‖u0,ε‖2

L2(�)
.

This readily implies (3.4) and the first bound in (3.5). Moreover, testing (3.6) by γλ(u
λ
0,ε) we get

ˆ

�

γλ(u
λ
0,ε(x))uλ

0,ε(x)dx + λ

ˆ

�

γ ′
λ(u

λ
0,ε(x))|∇uλ

0,ε(x)|2 dx =
ˆ

�

γλ(u
λ
0,ε(x))u0,ε(x)dx .

Denoting by γ̂ ∗
λ the convex conjugate of γ̂λ, the first term on the left-hand side reads as

ˆ

�

γλ(u
λ
0,ε(x))uλ

0,ε(x)dx =
ˆ

�

γ̂λ(u
λ
0,ε(x))dx +

ˆ

�

γ̂ ∗
λ (γλ(u

λ
0,ε(x)))dx ,

the second term on the left-hand side is nonnegative by the monotonicity of γλ, while the right-hand side can be 
bounded through the Young inequality as

ˆ

�

γλ(u
λ
0,ε(x))u0,ε(x)dx ≤

ˆ

�

γ̂λ(u0,ε(x))dx +
ˆ

�

γ̂ ∗
λ (γλ(u

λ
0,ε(x)))dx

≤
ˆ

�

γ̂ (u0,ε(x))dx +
ˆ

�

γ̂ ∗
λ (γλ(u

λ
0,ε(x)))dx .

Rearranging the terms we get ‖γ̂λ(u
λ
0,ε)‖L1(�) ≤ ‖γ̂ (u0,ε)‖L1(�), from which the second bound in (3.5). Finally, 

testing (3.6) by Bε(u
λ
0,ε) we have

ˆ

�

Bε(u
λ
0,ε)(x)uλ

0,ε(x)dx + λ

ˆ

�

∇Bε(u
λ
0,ε)(x) · ∇uλ

0,ε(x)dx =
ˆ

�

u0,ε(x)Bε(u
λ
0,ε)(x)dx ,

where, thanks to the periodic boundary conditions, on the left-hand side we have
ˆ

�

Bε(u
λ
0,ε)(x)uλ

0,ε(x)dx = 2Eε(u
λ
0,ε)

and

λ

ˆ

�

∇Bε(u
λ
0,ε)(x) · ∇uλ

0,ε(x)dx = λ

2

ˆ

�

ˆ

�

Kε(x, y)|∇uλ
0,ε(x) − ∇uλ

0,ε(y)|2 dx dy .

On the right-hand side, by the Hölder and Young inequalities, we have
ˆ

�

u0,ε(x)Bε(u
λ
0,ε)(x)dx = 1

2

ˆ

�

ˆ

�

Kε(x, y)(u0,ε(x) − u0,ε(y))(uλ
0,ε(x) − uλ

0,ε(y))dx dy

≤ √
2Eε(u0,ε)

√
2Eε(u

λ
0,ε) ≤ Eε(u0,ε) + Eε(u

λ
0,ε) .

Rearranging the terms we get Eε(u
λ ) ≤ Eε(u0,ε), from which the third bound in (3.5).
0,ε
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In this subsection, we show existence of an approximated solution (uλ
ε, μ

λ
ε) for every λ > 0 fixed. The proof 

strategy relies on the use of a fixed-point argument.
For every w ∈ L2(0, T ; Hs(�)) with s ∈ ( 3

2 ,2
)
, Lemma 1 ensures that

Bε(w) ∈ L2(0, T ;L2(�)) ,

so that we can study the auxiliary problem

∂tv − �μv + div(βλv) = 0 in (0, T ) × �, (3.7)

μv = λ∂tv − λ�v + Bε(w) + γλ(v) + �(v) in (0, T ) × �, (3.8)

v(0) = uλ
0,ε in �, (3.9)

which can be seen as a local convective viscous Cahn-Hilliard equation with an additional source term in the definition 
of the chemical potential. It is well-known (see [26] for example) that such problem admits a unique weak solution 
(v, μv) with

v ∈ H 1(0, T ;L2(�)) ∩ C0([0, T ];H 1(�)) ∩ L2(0, T ;H 2(�)) , μv ∈ L2(0, T ;H 1(�)) ,

satisfying (3.7)–(3.9) for example in the sense of distributions. Hence, the map

�λ
ε : L2(0, T ;Hs(�)) → H 1(0, T ;L2(�)) ∩ L∞(0, T ;H 1(�)) ∩ L2(0, T ;H 2(�))

associating to every w ∈ L2(0, T ; Hs(�)) the solution v to (3.7)–(3.9) is well-defined. We proceed by showing that 
�λ

ε has also some continuity properties. For i = 1, 2 let wi ∈ L2(0, T ; Hs(�)), and set vi := �λ
ε (wi). Then taking the 

difference of the corresponding equations (3.7) and (3.8) for i = 1, 2, we obtain

∂t (v1 − v2) − �(μv1 − μv2) + div(βλ(v1 − v2)) = 0 in (0, T ) × �, (3.10)

μv1 − μv2 = λ∂t (v1 − v2) − λ�(v1 − v2) + Bε(w1 − w2)

+ γλ(v1) − γλ(v2) + �(v1) − �(v2) in (0, T ) × �, (3.11)

v1(0) − v2(0) = 0 in �. (3.12)

Noting that (v1 − v2)� = 0 by integrating (3.10), testing (3.10) by (−�)−1(v1 − v2), equation (3.11) by v1 − v2, and 
taking the difference, estimate (2.9) and assumption H4 yield

‖v1 − v2‖2
C0([0,t];L2(�))∩L2(0,T ;H 1(�))

≤ Cε,λ

{ tˆ

0

‖w1(s, ·) − w2(s, ·)‖2
H 1(�)

ds +
tˆ

0

‖γλ(v1(s, ·)) − γλ(v2(s, ·))‖2
L2(�)

ds

+
tˆ

0

‖�(v1(s, ·)) − �(v2(s, ·))‖2
L2(�)

ds +
tˆ

0

‖v1(s, ·) − v2(s, ·)‖2
L2(�)

ds
}
,

for every t ∈ [0, T ].
Testing (3.10) by v1 − v2, equation (3.11) by −�(v1 − v2), taking the difference, and using Lemma 1, a similar 

argument yields

‖v1 − v2‖2
C0([0,t];H 1(�))

+ ‖�(v1 − v2)‖2
L2(0,t;L2(�))

≤ Cε,λ

{ tˆ

0

‖w1(s, ·) − w2(s, ·)‖2
Hs(�) ds

+
tˆ
‖γλ(v1(s, ·)) − γλ(v2(s, ·)) + �(v1(s, ·)) − �(v2(s, ·))‖2

L2(�)
ds
0
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+
tˆ

0

‖v1(s, ·) − v2(s, ·)‖2
H 1(�)

ds
}
.

Hence, summing the two inequalities, using the Lipschitz-continuity of γλ and �, choosing η > 0 sufficiently 
small, and applying the Gronwall’s Lemma, we deduce that there exists a positive constant Cε,λ such that

‖v1 − v2‖C0([0,T ];H 1(�))∩L2(0,T ;H 2(�)) ≤ Cε,λ‖w1 − w2‖L2(0,T ;Hs(�)) . (3.13)

In particular, �λ
ε is continuous from L2(0, T ; Hs(�)) to L2(0, T ; Hs(�)).

Fix T0 > 0. By repeating the argument leading to (3.13) we deduce the estimate

‖v1 − v2‖C0([0,T0];H 1(�))∩L2(0,T0;H 2(�)) ≤ Cε,λ‖w1 − w2‖L2(0,T0;Hs(�)) ,

for every w ∈ L2(0, T0; Hs(�)), and v = �λ
ε (w). Now, since s ∈ ( 3

2 , 2), if ϑ ∈ (0, 1) is such that

s = (1 − ϑ) · 1 + ϑ · 2 , i.e. ϑ := s − 1 ∈
(

1

2
,1

)
,

by interpolation we get that

‖v1(t, ·) − v2(t, ·)‖Hs(�) ≤ ‖v1(t, ·) − v2(t, ·)‖s−1
H 2(�)

‖v1(t, ·) − v2(t, ·)‖2−s

H 1(�)
a.e. in (0, T ) ,

which in turn yields that

‖v1 − v2‖
L

2
s−1 (0,T0;Hs(�))

≤ ‖v1 − v2‖s−1
L2(0,T0;H 2(�))

‖v1 − v2‖2−s

C0([0,T0];H 1(�))

≤ (s − 1)‖v1 − v2‖L2(0,T0;H 2(�)) + (2 − s)‖v1 − v2‖C0([0,T0];H 1(�))

≤ Cs‖v1 − v2‖C0([0,T0];H 1(�))∩L2(0,T0;H 2(�)) .

Consequently, we have that

‖v1 − v2‖
L

2
s−1 (0,T0;Hs(�))

≤ Cε,λ,s‖w1 − w2‖L2(0,T0;Hs(�)) ,

where 2
s−1 > 2 since s < 2. Hence, we infer that

‖v1 − v2‖L2(0,T0;Hs(�)) ≤ T
1
2 − s−1

2
0 ‖v1 − v2‖

L
2

s−1 (0,T0;Hs(�))
,

and we can choose T0 sufficiently small such that T
1
2 − s−1

2
0 Cε,λ,s < 1. Thus,

‖v1 − v2‖L2(0,T0;Hs(�)) ≤ T
1
2 − s−1

2
0 Cε,λ,s‖w1 − w2‖L2(0,T0;Hs(�)).

Banach fixed point theorem ensures the existence of a unique weak solution (uλ
ε, μ

λ
ε) to the approximated problem 

(3.1)-(3.3) in (0, T0) × �, with

uλ
ε ∈ H 1(0, T0;L2(�)) ∩ C0([0, T0];H 1(�)) ∩ L2(0, T0;H 2(�)), μλ

ε ∈ L2(0, T0;H 1(�)).

Note that the choice of T0 is independent of the initial time. Moreover, we have the pointwise regularity uλ
ε(T0) ∈

H 1(�). Such regularity is then enough to extend the solution to the next subinterval [T0, 2T0] (see [26]): using a 
standard patching argument in time allows to extend the solution to the whole interval [0, T ].

3.2. Uniform estimates

In this subsection we show that there exists ε0 > 0 independent of λ, and such that for ε < ε0 the approximated 
solutions fulfill some uniform estimates independently of λ and ε. In what follows we will always assume that λ ∈
[0, 1].

Step 1. We start by fixing t ∈ [0, T ], testing (3.1) with μλ
ε , (3.2) with ∂tu

λ
ε , taking the difference, and integrating 

the resulting equation on (0, t). We obtain
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tˆ

0

ˆ

�

|∇μλ
ε(s, x)|2 dx ds + λ

tˆ

0

ˆ

�

|∂tu
λ
ε (s, x)|2 dx ds + λ

2

ˆ

�

|∇uλ
ε (t, x)|2 dx

+ Eε(u
λ
ε (t, ·)) +

ˆ

�

(γ̂λ + �̂)(uλ
ε (t, x))dx

≤
tˆ

0

ˆ

�

βλ(t, x)uλ
ε (t, x) · ∇μλ

ε(t, x)dx dt + λ

2

ˆ

�

|∇uλ
0,ε(x)|2 dx

+ Eε(u
λ
0,ε) +

ˆ

�

(γ̂λ + �̂)(uλ
0,ε(x))dx.

Using assumption H3, the uniform bound (3.5) and as well as Young’s inequality, we get

tˆ

0

ˆ

�

|∇μλ
ε(s, x)|2 dx ds + Eε(u

λ
ε (t, ·))+λ

tˆ

0

ˆ

�

|∂tu
λ
ε (s, x)|2 dx ds + λ

2

ˆ

�

|∇uλ
ε (t, x)|2 dx

≤ Cε + 1

2

tˆ

0

ˆ

�

|∇μλ
ε(t, x)|2 dx dt + 1

2

tˆ

0

ˆ

�

|βλ(t, x)uλ
ε (t, x)|2 dx dt (3.14)

for every t ∈ [0, T ].
We point out that, due to the periodic boundary conditions, and the fact that � is the d-dimensional torus, we 

formally have
ˆ

�

∇Bε(u
λ
ε (s, x)) · ∇uλ

ε (s, x)dx = 1

2

ˆ

�

ˆ

�

Kε(x, y)|∇uλ
ε (s, x) − ∇uλ

ε (s, y)|2 dx dy

for almost every s ∈ [0, T ]. Testing (3.1) with uλ
ε and (3.2) with −�uλ

ε , by considering the difference between the two 
resulting equation and by integrating in the time interval (0, t), from H3 we deduce the estimate

1

2

ˆ

�

|uλ
ε (t, x)|2 dx + λ

tˆ

0

ˆ

�

|�uλ
ε(s, x)|2 dx ds +

tˆ

0

ˆ

�

γ ′
λ(u

λ
ε (s, x))|∇uλ

ε (s, x)|2 dx ds

+λ

2

ˆ

�

|∇uλ
ε (t, x)|2 dx +

tˆ

0

ˆ

�

ˆ

�

Kε(x, y)|∇uλ
ε (s, x) − ∇uλ

ε (s, y)|2 dx dy ds

≤ 1

2

ˆ

�

|uλ
0,ε(x)|2 dx + 1

2

tˆ

0

ˆ

�

|βλ(s, x)uλ
ε (s, x)|2 dx ds +

(
C� + 1

2

) tˆ

0

ˆ

�

|∇uλ
ε (s, x)|2 dx ds

≤ 1

2

ˆ

�

|uλ
0,ε(x)|2 dx + 1

2

tˆ

0

ˆ

�

|βλ(s, x)uλ
ε (s, x)|2 dx ds

+ 1

4

tˆ

0

ˆ

�

ˆ

�

Kε(x, y)|∇uλ
ε (s, x) − ∇uλ

ε (s, y)|2 dx dy ds + C

tˆ

0

‖uλ
ε (s, ·)‖2

L2(�)
ds,

where the latter inequality holds for ε smaller than a suitable constant ε0 in view of Lemma 4. Noticing that the third 
term in the left-hand side of the above estimate is positive owing to the monotonicity of γλ, by [48, Theorem 1.1] we 
infer the bound
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‖uλ
ε (t, ·)‖2

L2(�)
+ ‖uλ

ε‖2
L2(0,t;H 1(�))

+
tˆ

0

ˆ

�

ˆ

�

Kε(x, y)|∇uλ
ε (s, x) − ∇uλ

ε (s, y)|2 dx dy ds

≤ C

⎛
⎝ˆ

�

|uλ
0,ε(x)|2 dx +

tˆ

0

ˆ

�

|βλ(s, x)uλ
ε (s, x)|2 dx ds +

tˆ

0

‖uλ
ε (s, ·)‖2

L2(�)
ds

⎞
⎠ . (3.15)

By the Hölder inequality we deduce the estimate

tˆ

0

ˆ

�

|βλ(s, x)uλ
ε (s, x)|2 dx ds ≤

tˆ

0

‖βλ(s, ·)‖2
L∞(�)‖uλ

ε (s, ·)‖2
L2(�))

ds. (3.16)

Thus, summing (3.14), (3.15), and (3.16), recalling H4 we obtain

‖uλ
ε (t, ·)‖2

L2(�)
+ ‖uλ

ε‖2
L2(0,t;H 1(�))

+
tˆ

0

ˆ

�

|∇μλ
ε(s, x)|2 dx ds

+ Eε(u
λ
ε (t, ·)) +

tˆ

0

ˆ

�

ˆ

�

Kε(x, y)|∇uλ
ε (s, x) − ∇uλ

ε (s, y)|2 dx dy ds

≤ Cε + C‖uλ
ε‖2

L2(0,t;L2(�))
+ C‖uλ

ε‖2
L2(0,t;H 1(�))

‖β‖2
L2(0,T ;L∞(�;Rd ))

.

(3.17)

Recalling assumption H4 and applying Gronwall’s lemma, from the arbitrariness of t ∈ [0, T ] we deduce that there 
exists a constant Cε such that

‖∇μλ
ε‖L2(0,T ;L2(�)) ≤ Cε, (3.18)

‖uλ
ε‖L∞(0,T ;L2(�))∩L2(0,T ;H 1(�)) + λ1/2‖uλ

ε‖L∞(0,T ;H 1(�))∩L2(0,T ;H 2(�))∩H 1(0,T ;L2(�)) ≤ Cε, (3.19)

∥∥Eε(u
λ
ε )

∥∥
L∞(0,T )

+
∥∥∥∥∥∥
ˆ

�

ˆ

�

Kε(x, y)|∇uλ
ε (·, x) − ∇uλ

ε (·, y)|2 dx dy

∥∥∥∥∥∥
L1(0,T )

≤ Cε. (3.20)

Testing equation (3.1) with a function ϕ ∈ L2(0, T ; H 1(�)), integrating in time, and using (3.18)–(3.20) gives

‖∂tu
λ
ε‖L2(0,T ;(H 1(�))∗) ≤ Cε. (3.21)

Step 2. In order to obtain an L2(0, T ; H 1(�))-estimate on the chemical potential μλ
ε , we need a bound on the 

L2(0, T )-norm of the spatial mean of μλ
ε . Thanks to the symmetry of the kernel K , the mean of the convolution terms 

vanishes, i.e.

(Bε(u
λ
ε ))� = 0 .

Since also (�uλ
ε )� = 0, owing to (3.19) and the Lipschitz continuity of �, we get

(μλ
ε )� = (∂tu

λ
ε )� + (γλ(u

λ
ε ) + �(uλ

ε ))� ≤ Cε + 1

|�| ‖γλ(u
λ
ε )‖L1(�). (3.22)

Hence {(μλ
ε )�}ε is uniformly bounded in L2(0, T ) if {γλ(u

λ
ε )}ε is uniformly bounded in L2(0, T ; L1(�)). We test 

(3.1) by (−�)−1(uε − (uλ
0,ε)�) and (3.2) by uε − (uλ

0,ε)�, obtaining

〈∂tu
λ
ε (t), (−�)−1(uλ

ε (t, ·) − (uλ
0,ε)�)〉(H 1(�))∗,H 1(�)︸ ︷︷ ︸

=:I1

+λ〈∂tu
λ
ε (t), u

λ
ε (t, ·) − (uλ

0,ε)�)〉(H 1(�))∗,H 1(�) + λ

ˆ

�

|∇uλ
ε (t, x)|2 dx

︸ ︷︷ ︸

=:I2
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+
ˆ

�

Bε(u
λ
ε )(t, x)(uλ

ε (t, x) − (uλ
0,ε)�)dx

︸ ︷︷ ︸
=:I3

+
ˆ

�

(γλ + �)(uλ
ε (t, x))(uλ

ε (t, x) − (uλ
0,ε)�)dx

︸ ︷︷ ︸
=:I4

−
ˆ

�

βλ(t, x)uλ
ε (t, x) · ∇(−�)−1(uλ

ε (t, x) − (uλ
0,ε)�)dx

︸ ︷︷ ︸
=:I5

= 0.

We proceed by estimating each integral in the left-hand side of the above equation separately.
It is readily seen that I1 + I2 is uniformly bounded in L2(0, T ) due to (3.19), (3.21) and (3.5).
Regarding I3, since (Bε(u

λ
ε ))� = 0 we have that

I3 = 2Eε(u
λ
ε ),

which is clearly bounded in L2(0, T ) by (3.20).
To estimate I4 we observe that in view of (2.15) and (3.4) there exist constants M1, M2 > 0 depending only on the 

position of (u0,ε)� in IntD(γ ), such that

γλ(u
λ
ε )(u

λ
ε − (uλ

0,ε)�) ≥ M1|γλ(u
λ
ε )| − M2,

cf. for example [21, p. 984] and the references within, whileˆ

�

�(uε(x))(uε(x) − (uλ
0,ε)�)dx

is bounded in L∞(0, T ) thanks to (3.19).
Eventually, I5 can be estimated as follows

‖βλu
λ
ε · ∇(−�)−1(uλ

ε − (uλ
0,ε)�)‖2

L2(0,T ;L1(�))
≤

T̂

0

‖βλu
λ
ε‖2

L2(�)
‖(uλ

ε − (uλ
0,ε)�)‖2

(H 1(�))∗ dt,

where the right-hand side is bounded due to H4 and (3.19).
Combining this information, we conclude by difference that {γλ(u

λ
ε )} is uniformly bounded in L2(0, T ; L1(�)). 

Thus, from (3.18) and (3.22) we infer that

‖μλ
ε‖L2(0,T ;H 1(�)) ≤ Cε. (3.23)

Step 3. We proceed by proving that {γλ(u
λ
ε )} is uniformly bounded in L2(0, T ; L2(�)).

We test (3.2) with γλ(u
λ
ε ). This gives

T̂

0

ˆ

�

|γλ(u
λ
ε (t, x))|2 dx dt + λ

T̂

0

ˆ

�

γ ′
λ(u

λ
ε (t, x))

(
|∂tu

λ
ε (t, x)|2 + |∇uλ

ε (t, x)|2
)

dx dt

+
T̂

0

ˆ

�

Bε(u
λ
ε )(t, x)γλ(u

λ
ε (t, x))dx dt

=
T̂

0

ˆ

�

(μλ
ε (t, x) − �(uλ

ε (t, x)))γλ(u
λ
ε (t, x))dx dt.
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We observe that the second term on the left-hand side is nonnegative owing to the monotonicity of γλ. Analogously, 
the third term on the left-hand side can be rewritten as

T̂

0

ˆ

�

ˆ

�

Kε(x, y)(uλ
ε (t, x) − uλ

ε (t, y))
(
γλ(u

λ
ε (t, x)) − γλ(u

λ
ε (t, y))

)
dx dy dt,

which is also nonnegative due to the monotonicity of γλ. Applying Young’s inequality we deduce the bound

T̂

0

ˆ

�

(μλ
ε (t, x) − �(uλ

ε (t, x)))γλ(u
λ
ε (t, x))dx dt

≤
T̂

0

ˆ

�

[ |μλ
ε(t, x) − �(uλ

ε (t, x))|2
2

+ |γλ(u
λ
ε (t, x))|2

2

]
dx dt,

which, together with H3, (3.19) and (3.23), implies the following estimate

‖γλ(u
λ
ε )‖L2(0,T ;L2(�)) ≤ Cε. (3.24)

3.3. Passage to the limit as λ ↘ 0

We perform here the passage to the limit as λ ↘ 0, with 0 < ε < ε0 still fixed. In view of the uniform bounds 
identified in Section 3.2 and the Aubin-Lions lemma, up to the extraction of (not relabeled) subsequences we have the 
following convergences:

uλ
ε → uε strongly in L2(0, T ;L2(�)) ∩ C0([0, T ]; (H 1(�))∗) , (3.25)

uλ
ε ⇀ uε weakly* in L∞(0, T ;L2(�)) ∩ L2(0, T ;H 1(�)) , (3.26)

λuλ
ε → 0 strongly in L∞(0, T ;H 1(�)) ∩ L2(0, T ;H 2(�)) , (3.27)

∂tu
λ
ε ⇀ ∂tuε weakly* in L2(0, T ; (H 1(�))∗) , (3.28)

μλ
ε ⇀ με weakly in L2(0, T ;H 1(�)) , (3.29)

γλ(u
λ
ε ) ⇀ ξε weakly in L2(0, T ;L2(�)), (3.30)

for some

uε ∈ H 1(0, T ; (H 1(�))∗) ∩ L∞(0, T ;L2(�)) ∩ L2(0, T ;H 1(�)) ,

με ∈ L2(0, T ;H 1(�)) , ξε ∈ L2(0, T ;L2(�)) .

The strong convergence (3.25), the weak convergence (3.30) and the strong-weak closure of the maximal monotone 
graph γ readily implies that ξε ∈ γ (uε) almost everywhere in (0, T ) × �. The Lipschitz continuity of � yields also

�(uλ
ε ) → �(uε) strongly in L2(0, T ;L2(�)) . (3.31)

Furthermore, for every ϕ ∈ L2(0, T ; H 2(�)) by the triangle inequality we have that∣∣∣∣∣∣
T̂

0

ˆ

�

βλ(t, x)uλ
ε (t, x) · ∇ϕ(t, x)dx dt −

T̂

0

ˆ

�

β(t, x)uε(t, x) · ∇ϕ(t, x)dx dt

∣∣∣∣∣∣
≤

T̂

0

ˆ

�

|βλ(t, x) − β(t, x)||uλ
ε (t, x)||∇ϕ(t, x)|dx dt

+
T̂

0

ˆ

�

β(t, x)(uλ
ε (t, x) − uε(t, x)) · ∇ϕ(t, x)dx dt .
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By the Hölder inequality, the fact that βλ → β strongly in L2(0, T ; L3(�)) and the embedding H 1(�) ↪→ L6(�), for 
the first term on the right-hand side we have

T̂

0

ˆ

�

|βλ(t, x) − β(t, x)||uλ
ε (t, x)||∇ϕ(t, x)|dx dt

≤ ‖uλ
ε‖L∞(0,T ;L2(�))‖ϕ‖L2(0,T ;L6(�)‖βλ − β‖L2(0,T ;L3(�)) → 0 .

For the second term on the right-hand side note that β · ∇ϕ ∈ L1(0, T ; L2(�)) thanks to assumption H4, the fact that 
ϕ ∈ L2(0, T ; H 2(�)) and the inclusion H 1(�) ↪→ L6(�), so that from (3.26)

T̂

0

ˆ

�

β(t, x)(uλ
ε (t, x) − uε(t, x)) · ∇ϕ(t, x)dx dt → 0 .

Hence, we conclude that

−divβλu
λ
ε ⇀ −divβuε weakly* in L2(0, T ; (H 2(�))∗) .

From (3.26) and the fact that Bε ∈ L (H 1(�), (H 1(�))∗), it is readily seen that

Bε(u
λ
ε ) ⇀ Bε(uε) weakly* in L2(0, T ; (H 1(�))∗) .

By (3.29)–(3.30) and (3.31), by comparison it follows that the sequence (Bε(u
λ
ε ))λ is bounded in L2(0, T ; L2(�)), 

hence we also conclude that Bε(uε) ∈ L2(0, T ; L2(�))

Bε(u
λ
ε ) ⇀ Bε(uε) weakly in L2(0, T ;L2(�)) .

Now, passing to the limit in (3.1)–(3.2) as λ ↘ 0, we obtain, in the sense of distributions,

∂tuε − �με = −div(βuε)

and

με = Bε(uε) + ξε + �(uε) .

Finally, the strong convergence (3.25) implies also that uε(0) = u0,ε , so that (uε, με, ξε) is a solution to the nonlocal 
Cahn-Hilliard equation (1.7) according to Definition 1. This completes the proof of the first assertion of Theorem 2.1.

3.4. Continuous dependence

Let (β1, u1
0,ε) and (β2, u2

0,ε) satisfy H4 and (2.15), with (u1
0,ε)� = (u2

0,ε)�, and let (u1
ε, μ

1
ε, ξ

1
ε ) and (u2

ε, μ
2
ε, ξ

2
ε ) be 

any corresponding solutions to the nonlocal equation (2.1)–(2.3). Then we have

∂t (u
1
ε − u2

ε) − �(μ1
ε − μ2

ε) = −div(β1u1
ε − β2u2

ε) ,

μ1
ε − μ2

ε = Bε(u
1
ε − u2

ε) + ξ1
ε − ξ2

ε + �(u1
ε) − �(u2

ε) .

Noting that (u1
ε − u2

ε)� = 0 by the assumption on the initial data, we test the first equation by (−�)−1(u1
ε − u2

ε), the 
second by u1

ε − u2
ε , and take the difference: by performing classical computations we get

1

2
‖(u1

ε − u2
ε)(t)‖2

(H 1(�))∗ +
tˆ

0

Eε(u
1
ε − u2

ε)(s)ds +
tˆ

0

ˆ

�

(ξ1
ε − ξ2

ε )(s, x)(u1
ε − u2

ε)(s, x)dx ds

= 1

2
‖(u1

0,ε − u2
0,ε)‖2

(H 1(�))∗ −
tˆ ˆ

(�(u1
ε) − �(u2

ε))(s, x)(u1
ε − u2

ε)(s, x)dx ds
0 �
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+
tˆ

0

ˆ

�

β1(s, x)(u1
ε − u2

ε)(s, x) · ∇(−�)−1(u1
ε − u2

ε)(s, x)dx ds

+
tˆ

0

ˆ

�

(β1 − β2)(s, x)u2
ε(s, x) · ∇(−�)−1(u1

ε − u2
ε)(s, x)dx ds .

By the Lipschitz-continuity of � we have

tˆ

0

ˆ

�

(�(u1
ε) − �(u2

ε))(s, x)(u1
ε − u2

ε)(s, x)dx ds ≤ C‖u1
ε − u2

ε‖2
L2(0,t;L2(�))

,

while the Hölder and Young inequalities yield

tˆ

0

ˆ

�

β1(s, x)(u1
ε − u2

ε)(s, x) · ∇(−�)−1(u1
ε − u2

ε)(s, x)dx ds

≤ ‖u1
ε − u2

ε‖2
L2(0,t;L2(�))

+
tˆ

0

‖β1(s, x)‖2
L∞(�)‖(u1

ε − u2
ε)(s)‖2

(H 1(�))∗ dx ds

and

tˆ

0

ˆ

�

(β1 − β2)(s, x)u2
ε(s, x) · ∇(−�)−1(u1

ε − u2
ε)(s, x)dx ds

≤ ‖β1 − β2‖2
L2(0,T ;L3(�))

+
tˆ

0

‖u2
ε(s, ·)‖2

L6(�)
‖(u1

ε − u2
ε)(s)‖2

(H 1(�))∗ ds.

The continuous-dependence property stated in Theorem 2.1 follows from Lemma 4 and the Gronwall lemma.

4. Proof of Theorem 2.2

In this section we perform the limit as ε ↘ 0.
First of all, going back to the arguments performed in the previous section to obtain estimates (3.18)–(3.24), we 

observe that assumptions (2.16)–(2.17) guarantee that the sequence of constants (Cε)ε is uniformly bounded for every 
ε ∈ (0, ε0). Consequently, we deduce that there exists C > 0 such that

‖uε‖H 1(0,T ;(H 1(�))∗)∩L2(0,T ;H 1(�)) ≤ C ,

‖Eε(uε)‖L∞(0,T ) +
∥∥∥∥∥∥
ˆ

�

ˆ

�

Kε(x, y)|∇uε(x) − ∇uε(y)|2 dx dy

∥∥∥∥∥∥
L1(0,T )

≤ C , (4.1)

‖με‖L2(0,T ;H 1(�)) ≤ C ,

‖ξε‖L2(0,T ;L2(�)) ≤ C .

Hence, by comparison

‖Bε(uε)‖L2(0,T ;L2(�)) ≤ C .

By Aubin-Lions compactness results we infer that, up to the extraction of (not relabeled) subsequences,
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uε → u strongly in L2(0, T ;L2(�)) ∩ C0([0, T ]; (H 1(�))∗) , (4.2)

uε ⇀ u weakly* in L∞(0, T ;L2(�)) , (4.3)

∂tuε ⇀ ∂tu weakly* in L2(0, T ; (H 1(�))∗) , (4.4)

Bε(uε) ⇀ η weakly in L2(0, T ;L2(�)) , (4.5)

με ⇀ μ weakly in L2(0, T ;H 1(�)) , (4.6)

ξε ⇀ ξ weakly in L2(0, T ;L2(�)) (4.7)

for some

u ∈ H 1(0, T ; (H 1(�))∗) ∩ L∞(0, T ;L2(�)) ,

μ ∈ L2(0, T ;H 1(�)) , ξ, η ∈ L2(0, T ;L2(�)) .

We proceed by showing in addition that

uλ
ε → uε strongly in C0([0, T ];L2(�)) ∩ L2(0, T ;H 1(�)) . (4.8)

Indeed, Lemma 4 implies that for every δ > 0, there exist Cδ > 0 and εδ > 0 such that

‖uε − u‖2
L2(0,T ;H 1(�))

≤ δ

T̂

0

ˆ

�

ˆ

�

Kε(x, y)|∇(uε − u)(t, x) − ∇(uε − u)(t, y)|2 dx dy dt + Cδ‖uε − u‖2
L2(0,T ;L2(�))

for every 0 < ε < εδ . Thanks to (4.1), we infer that

‖uε − u‖2
L2(0,T ;H 1(�))

≤ Cδ + Cδ‖uε − u‖2
L2(0,T ;L2(�))

for a constant C > 0. Similarly, using the second inequality in Lemma 4 and (4.1), the same argument ensures also 
that

‖uε − u‖2
L∞(0,T ;L2(�))

≤ δ‖Eε(uε − u)‖L∞(0,T ) + Cδ‖uε − u‖2
C0([0,T ];(H 1(�))∗)

≤ Cδ + Cδ‖uε − u‖2
C0([0,T ];(H 1(�))∗) .

The strong convergence (4.8) follows then from the arbitrariness of δ, and from (4.2).
From the strong convergence of (uε)ε and the strong-weak closure of maximal monotone graphs it is readily seen 

that ξ ∈ γ (u) and that

�(uε) → �(u) strongly in L2(0, T ;L2(�)) .

Let us now identify the limit η as −�u. As DEε = Bε , we have that

Eε(z1) + 〈Bε(z1), z2 − z1〉(H 1(�))∗,H 1(�) ≤ Eε(z2), (4.9)

for all z1, z2 ∈ H 1(�). Hence, for all z ∈ L2(0, T ; H 1(�)) we deduce that

T̂

0

Eε(uε(t, ·))dt +
T̂

0

ˆ

�

Bε(uε(t, x))(z(t, x) − uε(t, x))dx dt ≤
T̂

0

Eε(z(t, ·))dt. (4.10)

The results in [10] and the dominated convergence theorem yield

T̂

Eε(z(t, ·))dt → 1

2

T̂ ˆ
|∇z(x, t)|2dx dt .
0 0 �
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Owing to the convergences (4.8) and (4.5), we have that

T̂

0

ˆ

�

Bε(uε(t, x))(z(t, x) − uε(t, x))dx dt →
T̂

0

ˆ

�

η(t, x)(z(t, x) − u(t, x))dx dt.

Finally, following the exact same steps as in [45], there holds

T̂

0

Eε(uε(t, ·))dt → 1

2

T̂

0

ˆ

�

|∇u(t, x)|2 dx dt.

Hence, letting ε → 0 in (4.10), we obtain the inequality

1

2

T̂

0

ˆ

�

|∇u(t, x)|2 dx dt +
T̂

0

ˆ

�

η(t, x)(z(t, x) − u(t, x))dx dt ≤ 1

2

T̂

0

ˆ

�

|∇z(t, x)|2 dx dt

for every z ∈ L2(0, T ; H 1(�)), so that η = −�u ∈ L2(0, T ; L2(�)). By elliptic regularity we infer that u ∈
L2(0, T ; H 2(�)).

Finally, Hölder’s inequality, the Sobolev embedding H 1(�) ↪→ L6(�), and the strong convergence (4.8) yield

‖βuε − βu‖L2(0,T ;L2(�)) ≤
T̂

0

‖β(t, ·)‖L∞(�)‖(uε − u)(t, ·)‖L2(�) dt

≤ ‖β‖L2(0,T ;L∞(�))‖uε − u‖L∞(0,T ;L2(�)) → 0 .

Thus, letting ε ↘ 0 in Definition 1 (of solution for the nonlocal Cahn-Hilliard) we obtain

∂tu − �μ = −div(βu)

in the sense of distributions, as well as

μ = −�u + ξ + �(u) .

This implies that u is a solution to the local Cahn-Hilliard equation (2.4)–(2.6), and concludes the proof of Theo-
rem 2.2.

5. Proof of Theorems 2.3–2.4

We show first that under the additional assumption (2.20), the solution (uε, με, ξε) to the nonlocal equation is more 
regular. Note that here ε ∈ (0, ε0) is fixed.

The idea is to argue in a classical way, performing some additional estimates on the approximate solutions (uλ
ε, μ

λ
ε)

constructed in Section 3. To this end, note that by (2.20), the approximating sequence (uλ
0,ε)λ of initial data satisfying 

(3.4)–(3.5) can be chosen with the additional property

sup
λ∈(0,λ0)

{‖uλ
0,ε‖L6(�) + ‖ − λ�uλ

0,ε + Bε(u
λ
0,ε) + γλ(u

λ
0,ε) + �(uλ

0,ε)‖H 1(�)

}
< +∞ . (5.1)

First of all we need some preparatory work. Note that the elliptic problem corresponding to (3.1)–(3.3) at time 0, 
i.e. {

u′
0,ε,λ − �μ0,ε,λ = −div(β(0)uλ

0,ε) ,

μ0,ε,λ = −λ�uλ
0,ε + Bε(u

λ
0,ε) + γλ(u

λ
0,ε) + �(uλ

0,ε) ,

admits a unique solution (u′
0,ε,λ, μ0,ε,λ) ∈ (H 1(�))∗ × H 1(�). Testing the first equation by μ0,ε,λ, the second by 

u′ and taking the difference yields
0,ε,λ
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ˆ

�

|∇μ0,ε,λ(x)|2 dx = −〈u′
0,ε,λ,−λ�uλ

0,ε + Bε(u
λ
0,ε) + γλ(u

λ
0,ε) + �(uλ

0,ε)〉(H 1(�))∗,H 1(�)

+
ˆ

�

β(0, x)uλ
0,ε(x) · ∇μ0,ε,λ(x)dx.

From the first equation it is readily seen that

‖u′
0,ε,λ‖(H 1(�))∗ ≤ ‖∇μ0,ε,λ‖L2(�) + ‖β(0)uλ

0,ε‖L2(�)

with

‖β(0)uλ
0,ε‖L2(�) ≤ ‖β(0)‖L3(�)‖uλ

0,ε‖L6(�) ≤ C‖β‖H 1(0,T ;L3(�))‖uλ
0,ε‖L6(�) .

Hence the Young inequality, (2.19), (3.4)–(3.5), and (5.1) imply that

‖u′
0,ε,λ‖(H 1(�))∗ + ‖∇μ0,ε,λ‖L2(�) ≤ Cε . (5.2)

We are now ready to perform the additional estimate on the approximated solutions. Again, we proceed formally 
in order to avoid heavy notations and since everything can be proved rigorously through a further regularization on 
the problem. The idea is to (formally) test the time derivative of (3.1) by (−�)−1(∂tu

λ
ε ), the time derivative of (3.2)

by ∂tu
λ
ε and then to take the difference: the resulting inequality is

1

2
‖∂tu

λ
ε (t)‖2

(H 1(�))∗ + λ

tˆ

0

ˆ

�

|∇∂tu
λ
ε (s, x)|2 dx ds +

tˆ

0

Eε(∂tu
λ
ε (s, ·))ds

+
tˆ

0

ˆ

�

γ ′
λ(u

λ
ε (s, x))|∂tu

λ
ε (s, x)|2 dx ds +

tˆ

0

ˆ

�

�′(uλ
ε (s, x))|∂tu

λ
ε (s, x)|2 dx ds

= 1

2
‖u′

0,ε,λ‖2
(H 1(�))∗ +

tˆ

0

ˆ

�

∂tu
λ
ε (s, x)β(s, x) · ∇(−�)−1(∂tu

λ
ε )(s, x)dx ds

+
tˆ

0

ˆ

�

uλ
ε (s, x)∂tβ(s, x) · ∇(−�)−1(∂tu

λ
ε )(s, x)dx ds.

Now, note that by Hölder’s inequality and (2.19) we have

tˆ

0

ˆ

�

∂tu
λ
ε (s, x)β(s, x) · ∇(−�)−1(∂tu

λ
ε )(s, x)dx ds

≤
tˆ

0

‖∂tu
λ
ε (s, ·)‖L2(�)‖β(s, ·)‖L∞(�)‖∇(−�)−1(∂tu

λ
ε )(s, ·)‖L2(�) ds

≤ 1

2
‖∂tu

λ
ε‖2

L2(0,t;L2(�))
+ 1

2

tˆ

0

‖β(s, ·)‖2
L∞(�)‖∂tu

λ
ε (s)‖2

(H 1(�))∗ ds

and

tˆ ˆ
uλ

ε (s, x)∂tβ(s, x) · ∇(−�)−1(∂tu
λ
ε )(s, x)dx ds
0 �
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≤
tˆ

0

‖uλ
ε (s, ·)‖L6(�)‖∂tβ(s, ·)‖L3(�)‖∇(−�)−1(∂tu

λ
ε )‖L2(�) ds

≤ 1

2
‖uλ

ε‖2
L2(0,t;H 1(�))

+ 1

2

tˆ

0

‖∂tβ(s, ·)‖2
L3(�)

‖∂tu
λ
ε (s)‖2

(H 1(�))∗ ds.

Thanks to Lemma 4 there holds

‖∂tu
λ
ε (s)‖2

(H 1(�))∗ ≤ δ

tˆ

0

Eε(∂tu
λ
ε )(s)ds + Cδ‖∂tu

λ
ε‖2

L2(0,T ;(H 1(�))∗)

for δ sufficiently small. Hence, putting this information together, using the Lipschitz-continuity of �, the monotonicity 
of γλ, condition (5.2) and the already proved estimates (3.19) and (3.21), we are left with

‖∂tu
λ
ε (t)‖2

(H 1(�))∗ +
tˆ

0

Eε(∂tu
λ
ε (s, ·))ds

≤ Cε +
tˆ

0

(
‖β(s, ·)‖2

L∞(�) + ‖∂tβ(s, ·)‖2
L3(�)

)
‖∂tu

λ
ε (s)‖2

(H 1(�))∗ ds .

Since s �→ ‖β(s, ·)‖2
L∞(�)

and s �→ ‖∂tβ(s, ·)‖2
L3(�)

belong to L1(0, T ) due to (2.19) and H4, using the Gronwall 
lemma and recalling [49, Theorem 1.1] we infer that

‖∂tu
λ
ε‖L∞(0,T ;(H 1(�))∗)∩L2(0,T ;L2(�)) ≤ Cε . (5.3)

Now, if (2.21) holds, we also have

‖div(βuλ
ε )‖L∞(0,T ;(H 1(�))∗) ≤ ‖βuλ

ε‖L∞(0,T ;L2(�)) ≤ ‖β‖L∞(0,T ;L∞(�))‖uλ
ε‖L∞(0,T ;L2(�)) ,

yielding by (3.19) and by comparison in (3.1),

‖∇μλ
ε‖L∞(0,T ;L2(�)) ≤ Cε . (5.4)

At this point, going back to the proof of Theorem 2.1, we repeat exactly the same arguments of Step 2 and Step 3: 
using the additional estimates (5.3)–(5.4), we deduce

‖μλ
ε‖L∞(0,T ;H 1(�)) + ‖γλ(uλ)‖L∞(0,T ;L2(�)) ≤ Cε . (5.5)

Furthermore, if also (2.22) holds we have

‖div(βuλ
ε )‖L2(0,T ;L2(�)) ≤ ‖div(β)uλ

ε‖L2(0,T ;L2(�)) + ‖β · ∇u‖L2(0,T ;L2(�))

≤ ‖divβ‖L∞(0,T ;L3(�))‖uλ
ε‖L2(0,T ;L6(�))

+ ‖β‖L∞(0,T ;L∞(�))‖∇uλ
ε‖L2(0,T ;L2(�)) ,

so that from (3.21) and by comparison in (3.1) we infer that

‖�μλ
ε‖L2(0,T ;L2(�)) ≤ Cε . (5.6)

Hence, (5.3)–(5.6) ensure that the limit solution (uε, με, ξε) inherits the additional regularity stated in Theorem 2.3.
The proof of Theorem 2.4 follows now as in Section 4, noting that the assumption (2.23) implies that the family 

(Cε)ε appearing in (5.3)–(5.6) is uniformly bounded in ε.
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