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Abstract

The dual problem of optimal transportation in Lorentz-Finsler geometry is studied. It is shown that in general no solution exists
even in the presence of an optimal coupling. Under natural assumptions dual solutions are established. It is further shown that the
existence of a dual solution implies that the optimal transport is timelike on a set of full measure. In the second part the persistence
of absolute continuity along an optimal transportation under obvious assumptions is proven and a solution to the relativistic Monge
problem is provided.
© 2019 L’ Association Publications de I’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The theory of optimal transportation on Riemannian manifolds has revolutionized Riemannian geometry during
the last decade with its characterization of lower bounds on the Ricci curvature in terms of optimal transport and the
formulation of synthetic Ricci curvature for metric measure spaces. Einstein’s field equations, the central equations
of general relativity, are equations for the Ricci curvature of a Lorentzian metric. Thus the prospect of developing
generalized notions of spacetimes and solutions to the Einstein field equations readily motivates a theory of optimal
transportation in Lorentzian geometry. The works [15,21,23,27] are first steps in this direction, with the work by
McCann giving a first characterization of lower Ricci curvature bounds for globally hyperbolic spacetimes. Optimal
transportation in the context of special relativity was proposed in [8] and studied in [6,7,19,22].

The present theory is formulated for globally hyperbolic Lorentz-Finsler spacetimes. See Section 2 and [5] for
definitions and properties. The cost function in Lorentz-Finsler geometry is the negative of the time separation, or
Lorentzian distance function, for future causally related points and extended by oo to non-future causally related
points. Because of the distance-like character of this cost function the problem is a relativistic version of the original
Monge problem. This ensures that optimal couplings of finite cost transport along future pointing causal geodesics.
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The non-finiteness, non-Lipschitzity and the discontinuity of the cost function at the boundary of J* cause additional
difficulties, though.

This article is a continuation of the work [27] by the second author on optimal transportation in Lorentz-Finsler
geometry. The first major result, Theorem 2.8, focuses on the existence of solutions to the dual problem of Lorentzian
optimal transportation, also known as the dual Kantorovich problem, see [28]. In [27] the second author gave natural
conditions on the marginals to obtain optimal couplings and the weak Kantorovich duality. Here the weak Kantorovich
duality says that the “inf-sup-equality” holds. No statement on the existence of solutions was made, though. The dual
problem does in general not admit a solution as Section 3.1 shows. The problem lies on the lightcones. In general only
a negligible part of mass is allowed to be transported along lightlike geodesics if a solution is to exist. To circumvent
the underlying phenomenon the condition of strict timelikeness is introduced in Definition 2.6. Theorem 2.8 then
shows that dual solutions exists if the marginals satisfy the strict timelikeness condition and at least one marginal
has connected support. The conditions are met on a weakly dense subset of pairs of measures by Corollary 2.9.
Theorem 2.8 generalizes results in [6,7,21]. The condition of strict timelikeness is related to parts of the definition of
q-separated measures in [21]. Conversely the existence of a dual solution necessitates that only a negligible part of
mass is transported along lightlike geodesics, see Theorem 2.12 the second major result of the present paper. A related
result in special relativity is [7, Theorem C].

It should be noted that both the existence and non-existence of dual solutions adapt to the Lorentzian cost with g €

(0, 1) as studied in [15,21]. Indeed, the proof of Theorem 2.8 makes only use of the causality structure. In Example 3.1

and Theorem 2.12 the adjusted upper bound is —%nl_% and one may replace Lemma 4.1 by McCann’s result on

starshapedness of g-separated measures [21, Proposition 5.5].

An important question for Lorentzian optimal transportation is whether the interpolation measures of an optimal
transport are absolutely continuous with respect to the volume measure if at least one marginal is absolutely continu-
ous. Theorem 2.14, the third major result, shows that intermediate measures are absolutely continuous if one marginal
is absolutely continuous and the other marginal is concentrated on an achronal set. This result seems optimal also
in the non-relativistic setting, as the non-uniqueness of optimal couplings and interpolation measures usually prevent
intermediate measures to be absolutely continuous. However, the optimal couplings constructed from the solution of
the relativistic Monge problem can be used to show that there are indeed absolutely continuous intermediate measure
though they are non-unique even assuming that transport is along time-affinely parametrized geodesics. We emphasize
that the proof of Theorem 2.14 does not rely on the Lipschitz regularity of the transport directions as e.g. in [4], since
Lipschitz regularity is not available, see [27].

We remark that the synthetic proof of existence of optimal transport maps adapts easily to Lorentzian cost functions
with g € (0, 1). Indeed, excluding lightlike geodesics one may parametrized geodesics with respect to arc length. Then
the non-branching property (Lemma 4.8) and a weak measure contraction property (Lemma 4.6) or alternatively the
(K, N)-convexity of the entropy as obtained in [21] are for example sufficient to follow mutatis mutandis the proof of
Cavalletti-Huesmann [11].

The importance of the non-branching property — or equivalently the non-overlapping property of interpolation
measures for costs that are strictly convex functions of the distance — was already observed by McCann [20] and
appeared in the setting of general metric spaces in [25]. Non-branching turned out to be essential to solve the Monge
problem in R” [10] via Sudakov’s needle decomposition [26] and via density estimates using the measure contraction
property in R” [13] and in the Heisenberg group [14].

The last major result, Theorem 2.16, provides a solution to the relativistic Monge problem. It is shown that there
exists an optimal transport map between any two causally related measures whenever the first measure is absolutely
continuous with respect to any volume form of the differentiable manifold. If the second measure is concentrated on an
achronal set this was already proven by the second author, see [27, Theorem 2.12]. The theorem therein also contains
a uniqueness statement. Note, however, the existence proof in this article is independent of [27] and only relies on
a non-branching property of time-affinely parametrized geodesics, see Lemma 4.8 below. Uniqueness then follows
using [27, Proposition 3.21]. This can be seen as a stronger non-branching property that is related to the volume form.

The article is organized as follows: In Section 2 the setting is introduced and the main results are formulated. In
Section 3 two examples are given. One example shows that not all pairs of measures with an optimal coupling admit
a solution to the dual problem. The second example shows that the dual solution does not need to be Lipschitz, i.e.
the optimal transport is not bounded away from the lightcones, despite the existence of a strictly timelike coupling.
Finally Section 4 contains the proofs of all results.
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2. Results

Let M be a smooth manifold. Throughout the article one fixes a complete Riemannian metric 2 on M, though local
changes to the metric will be allowed. Consider a continuous function I.: TM — R, smooth on TM \ T°M (here
T9M denotes the zero section in 7 M) and positive homogenous of degree 2 such that the second fiber derivative is
non-degenerate with index dimM — 1. A set C C T M is a closed cone field it C, :=CNT M, is a closed convex cone
forall pe M and CU TOM is a closed subset of T M. Choose a casual structure C of (M, L), see [27], i.e. select a
closed cone field C with r7(C) = M such that the interior of C is a connected component of {I. > 0}. Define the
Lagrangian L on T M by setting

—+/L(v), forveCl,

L) := .
00, otherwise.

The pair (M, L) is referred to as a Lorentz-Finsler manifold.

One calls an absolutely continuous curve y: I — M (C-)causal if y € C for almost all t € I. Note that this
condition already implies that the tangent vector is contained in C whenever it exists.

Denote with J ¥ (x) the set of points y € M such that there exists a causal curve y: [a, b] — M with y(a) = x
and y (b) = y. Two points x and y will be called causally related if y € J*(x). Note that this relation is in general
asymmetric. Define the set

Jt={(x,y)eM xM|yeJ (x)}

and J=(y):{xeM|yeJT(x)}.
A Lorentz-Finsler manifold is said to be causal if it does not admit a closed causal curve, i.e. JT N A =@ for
A={(x,x)|x e M}.

Definition 2.1. A causal Lorentz-Finsler manifold (M, L) is globally hyperbolic if the sets J*(x) N J~(y) are com-
pactforall x,y e M.

By [5] every globally hyperbolic Lorentz-Finsler spacetime admits a diffeomorphism (called a splitting) M =
R x N such that the projection 7: R x N — R, (0, p) — 6 satisfies

—dt(v) <min{L(v), —|v|}

for all v € C. In the following one fixes a splitting t and refers to it as a time function. Note that though the proofs
below use a particular highly non-unique time function, the existence and uniqueness results do not depend on the
choice of such a function.

Define the Lagrangian action (relative to L) of an absolutely continuous curve y : [a, b] — M:

b
Aly) = / L(y)dt e R U {00}

Note that A(y) € R if and only if y is causal. The following result is proven in the same fashion as in the Lorentzian
case, see [27].

Proposition 2.2. Let (M, L) be globally hyperbolic. Then for every pair (x,y) € JT there exists a minimizer of A
with finite action connecting the two points. The minimizer y solves the Euler-Lagrange equation of L up to monotone
reparametrization and satisfies y € C everywhere.

The Euler-Lagrange equation of I defines a maximal local flow

<I>]L:U—>TM,



346 M. Kell, S. Suhr/Ann. I. H. Poincaré — AN 37 (2020) 343-372

where U C R x T'M is an open neighborhood of {0} x (I'M \ T°M). Note that C and dC are invariant under ®L.
Acurvey: I - Misa oL -orbit if it solves the Euler-Lagrange equation of L, see [27].
For a globally hyperbolic Lorentz-Finsler manifold (M, L) define the Lorentzian cost function

cr: M xM— RU/{oco}
x,y+> min{ A(y)| y connects x and y}.

It is immediate that ¢y, is non-positive for causally related points and infinite otherwise.
Definet: M x M — R, (x,y) —~ t(y) — t(x). Let P (M x M) be the space of Borel probability measures 7 on
M x M such that T € L (). The Lorentzian cost is the functional

P:(M x M) — R U{oo}, 7'[»—)/ch7'[.

The minimization problem for the Lorentzian cost is called the Relativistic Monge-Kantorovich problem: Given
two Borel probability measures pg and w1 on M find a minimizer of the Lorentzian cost among all Borel probability
measures on M x M with first marginal ;¢ and second marginal ;1. Any minimizer will be called an optimal coupling
between o and .

Let P(M) denote the space of Borel probability measures on M. For a splitting t: M — R define

PHM) :={(o, w1)| T € L' (10) N L' (1) and pag, g1 are J*-related}

where two probability measures are J*-related (or just causally related) if there exists a coupling 7 with 7(J 1) = 1.
Note that if 7 is a coupling of two J T -related probability measures po and g1, then (g, i) € P;“ (M) if and only if
T eP(MxM).

A function ¥ : M — R U {oo} with ¢ = 00 is ¢ -convex if there exists a function ¢ : M — R U {00} such that

Y (x) =sup{¢(y) —cL(x,y)| y € M}

for all x € M. The function

YL M — RU{—o0}
y = inf{y(x) +cp(x, y)| x € M}
is called the cy -transform of . A pair (x, y) € M x M belongs to the cy -subdifferential 0.,V if

VL) — Y (x) =crx, y).

Proposition 2.3 (/27]). Let (v, v) € P (M). One has

inf{ / crdm

where the supremum is taken over the functions \ € L! (n), @€ L(v) with () — Y (x) <cr(x,y).

7 is a coupling of u and v} = sup fw(y)dv(y) - / Yx)du(x) ¢,
M M

Proposition 2.3 shows that the weak Kantorovich duality holds.

Definition 2.4. Let (i, v) € P;F(M). A cp-convex function
v M— RU{oo}

is a solution to the dual Kantorovich problem (DKP) for (i, v) if ¥ is w-almost surely finite and

/WL(y)dV(y)—/lﬂ(x)d,u(X)=inf{fCLd7r/
M M

7’ is a coupling of u and v} .
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Since YL (y) — ¥ (x) < cp(x,y) every coupling 7 of u and v with ¢¥“L(y) — ¥ (x) = ¢ (x, y) w-almost surely
will necessarily be optimal.

Definition 2.5 (/28]). A dynamical coupling of two probability measures g and p is a probability measure IT on
the space of continuous curves 7: [0, 1] — M such that (evg)sIT = uo and (evy)zIT= ;.

Dynamical couplings in Lorentzian geometry have been studied in [15,23].

Definition 2.6. A pair (u, v) of probability measures is strictly timelike if there exists a dynamical coupling IT sup-
ported in the subspace of causal curves such that (9;ev)s(IT x L]jo,17) is locally bounded away from 9C where

orev(y,t) :=y().
Remark 2.7.

(1) Recall that every causal curve admits a Lipschitz parameterization. Further the condition of strict timelikeness is
convex in the sense that the set of strictly timelike pairs of measures is convex.

(2) The condition of strict timelikeness generalizes the supercritical speed for relativistic cost functions in [6,7,19].
It is further related to the condition of g-separatedness in [21].

Theorem 2.8 (Existence of dual solutions). Let (j1,v) € P} (M) be strictly timelike and assume that supp ju is con-

nected. Then the DKP for (u, v) has a solution, i.e. there exists a cy-convex function ¥ : M — R U {oo} real-valued
on supp p with

/ YL d(y) — / W(x)du(x)=inf{ / crdn’
M M

For any optimal coupling 7 of u and v one has ¥t (y) — ¥ (x) = cp (x, y) w-almost everywhere, i.e. suppm C 0, V.

7' is a coupling of 1 and v} )

The theorem generalizes [6, Theorem 5.13] and [7, Theorem B]. Note that Theorem 2.8 is most likely optimal,
as Theorem 2.12 shows that dual solutions cannot exist whenever there are optimal couplings transporting a set of
positive measure along dC, the boundary of the lightcone. A 1 + 1-dimensional example of the non-existence of dual
solution is provided in Section 3.1 below.

Corollary 2.9. Every pair (io, 1) € P (M) can be approximated in the weak topology by a sequence
{(ug, WD Inen C PF (M) such that every pair (1), w}) admits a solution to the DKP.

Proof of Corollary 2.9. Choose a vector field X € I'(T M) with L(X) <0 and dt(X) = 1. Denote with gotX the flow
of X. Then

W, v = (X )spo, 1) € PH(M)

is strictly timelike for all n € N. The measure v('} can approximated by a measure 0" with connected support and
supp vy C suppo”.

Now the coupling

n—1 1 n—1 1
(MS,M?):( " v6'+20”, - v’f+;(<pf()u0”)

satisfies the assumptions of Theorem 2.8. O

If ¢ (x,y) = 0 then by Proposition 2.2 there exists a lightlike oL -orbit n, i.e. L(n) = 0, which cannot be
parametrized by “arc length”, i.e. L(3) = 1. In particular, such lightlike L -orbits do not admit a “preferred affine
parametrization” in any sense. However, using the time function T one may reparametrize every causal oL -orbit as
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follows: Denote with I the set of causal minimizers y : [0, 1] — M of A such that d7(y) = const(y). Elements of I"
are called time-affinely parametrized geodesics. For (x, y) € JT consider the subspace

Fioyi={y ellevo(y) =x, evi(y) =y}

where
ev: 'x [0,1] > M, (y,t)— y(t) and ev, :=ev(.,1).
Since (M, L) is assumed to be globally hyperbolic one has I'y . , # @.

Definition 2.10. A Borel measure I1 on I' is a dynamical optimal coupling of o := (evo)yIT and p1 := (evq)I1 if
7 := (evp, ev)zI1 is an optimal coupling between 1o and pt1.

Proposition 2.11 (/27]). Let (o, n1) € P (M). Then there exists a dynamical optimal coupling T1 for o and i
with suppI1 CT.

In the following all Lebesgue measures are understood to be induced by the Riemannian metric /4. The assumptions
(i) and (ii) of the next theorem are similar and yield the same conclusion. It is not necessarily obvious that Theo-
rem 2.12(7) is the analogue of the classical solution to the dual Kantorovich problem for real-valued cost functions,
see [28]. The conclusion of Theorem 2.12 under assumption (ii) on the other hand has no counterpart there.

Theorem 2.12 (Non-existence of dual solutions). Let (i, v) € P (M). Assume that supp j+ N supp v = @ and that the
DKP for (i, v) admits a solution ¥ : M — R U {oo}. Further assume  to be either

(1) supported on a spacelike hypersurface H and that it is absolutely continuous with respect to the Lebesgue measure
Ly on H or
(ii) absolutely continuous with respect to the Lebesgue measure L on M.

Denote with T1 a dynamical optimal coupling of v and v and with T'g the set of lightlike minimizers in T'. Then
IT(Tg) =0, i.e. only a u-negligible set of points is transported along lightlike minimizers.

The theorem generalizes [6, Corollary 3.6] and [7, Theorem C]. Note that Theorem 2.12 is proven indirectly and
relies on a very similar construction as the 1 4+ 1-dimensional example in Section 3.1.

The following two theorems are the second main result of this article. The first theorem has a counterpart in the
work of the second author, see [27, Theorem 2.13] and the second theorem is a solution to the relativistic Monge
problem: For (i, v) € PF (M) find a Borel-measurable map F: M — M such that 7 := (id, F)su is an optimal
coupling of u and v.

Note that the proofs are independent of [27, Theorem 2.13] and rely only on a straightforward geometric argument,
see [27, Proposition 3.22].

Definition 2.13. A set A C M is achronal if cp|a4x4 > 0. In case cp|4x4 = 00 one says that A is acausal.

It is not difficult to see that any time slice {r = 7¢} is acausal. The definition is in accordance with the classical
definitions of acausal and achronal sets in Lorentzian geometry.

Theorem 2.14 (Existence and uniqueness for achronal targets). Let (i, v) € P} (M) such that w is absolutely contin-
uous with respect to the Lebesgue measure on M and v is concentrated on an achronal set. Then there exists a unique
dynamical optimal coupling T1 such that (ev;)zI1 is absolutely continuous for t € [0, 1) and the optimal couplings
(evs, evy)yIT are induced by transport maps.

Remark 2.15. Note that the Monge problem is in general highly non-unique even in the non-relativistic setting. In
the non-relativistic setting the equivalent to being supported on a time slice would be to assume the second measure
is concentrated in a level set of a dual solution to the Monge problem. However, such a condition depends on the first
measure.
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Theorem 2.16 (Solution to the relativistic Monge problem). Let (i1, v) € 73;" (M) such that u is absolutely continuous
with respect to the Lebesgue measure on M. Then there exists a Borel-measurable map F: M — M such that  :=
(id, F)gu is an optimal coupling of (v and v.

3. Two examples
3.1. An example with no dual solution

Let M =R? and
L: TM — R, (x,v)l—)v%—v%
with
C:={(x,v) eTM|v2>|v1l},

where v = (vq, v2). It follows that ¢, is the negative Lorentzian distance on the 2-dimensional Minkowski space. Fix
the splitting

T: M—>R, (s,t)—~t.

Denote with ig, i1: R — M, the maps ig(s) := (s,0) and i (s) := (s, 1), respectively and with £; the Lebesgue
measure on the real line R. Consider the transport problem between

= o)z (Lilo,) and V2= (@) (Lilp1,2)-
The map
T:M— M, (5,0 (s+1,1+1)
induces a causal coupling (id, T )7 of x and v, i.e. (&, V) € P, (M).

Proposition 3.1. The DKP for (jt, V) does not have a solution.

The transport problem for (i, V) is equivalent to the following transport problem on the real line: The restriction
of ¢; to

{((5,0), (t, D)| 5,1 € R} C R? x R?
and the identification
{((5,0), (¢, 1)) s,t e R}=ER x R, ((5,0), (t,1)) = (s5,1)

yield the cost function

—/1—(—012, forls—t|<1

c:RxR—->R, (s,t)
0, for |s —t|>1
and the probability measures i and v are identified with
w=Lilo, 11 and v = Lq[1,2),
respectively.

Lemma 3.2. If 7w is a coupling of v and v with finite c-cost, then

7 = (id, Tz,
where T: R — R, s> s+ 1.
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Proof. Let 7 be a coupling of u and v with finite cost. For every ¢ > 0 one has

w0, e =v(1,1 4+ =v(—1,1+¢]).

The support of 7 is contained in {(s, ¢)| |s — ¢| < 1} since it has finite cost. Therefore
p([0,e]) =7 ([0, e] x R) =7 ([0, e] x [1, 1 +¢]).

By complementary reasoning one concludes that
(e, 1] x R)=n([e, 1] x [1 + &, 2]).

An induction over n then implies that the support of 7 is contained in

2Vl
U @27 (k+ 1) 27" x [T +k-27" 1+ (k+1)-27"])
k=0

for every n € N. The claim follows in the limit forn — co. O

Lemma 3.3. Let [a, b] C R, € > 0 and a Borel measurable set B C [a, b] be given with L{(B) > &(b — a). Then for
all n € N there exists {tj}1<i<n C Bwitht; <...<t, and tiy1 —t; > f—n(b —a).

Proof. Let n € N be given. Consider the function ¢ — £1(B N [a, t]) and choose t; € B such that
Li(BNa,n]) € (0, £ —a)) .
2n
Then one has
Ly (B N [a,n + 20 —a))) <fh-a.
2n n
Next consider the function
> L (Bm [zl +i(b—a),t]), fort > 1 + —(b — a).
2n 2n
Choose 1, € B such that
L (B n [t1 + 2 -a), t2]> c (o, - a)) .
2n 2n
Then one has
£ 3 &
L (B n [a, t+ —(b— a)]) <22b-—a)=220-a).
2n n n
Continue inductively. For k < n one has

n—

1e;"(b —a).
n

£i(|an+ %(b IE k%(b —a)= Ss(b —a) <

Thus one concludes #; + zin(b —a) < b for all k < n. This shows that the construction does not terminate before n
points have been chosen. The claimed properties are clear from the construction. O

Lemma 3.4. There does not exist a c-convex function ¥ : R — RU{oo} with ¥ |[0,1) # 00 and ¥y (y) =¥ (x) = c(x,y)
for w-almost all (x,y) € R x R, where 7 is the coupling in Lemma 3.2.

The existence of a solution to the dual problem is independent of an additive constant in the definition of the cost
function, i.e. for ¢’ := ¢ + 1 the pair (¢’, ¥') solves the DKP for ¢’ iff (¢’, 1 — 1) solves the DKP for c.
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Proof. Let (¢, ) be a solution to the DKP for (u, v), i.e. c(x,y) > ¢(x) + ¥ (y) and

/cdn’:/wdu+f1ﬂdv=/((p+1ﬂ)drr’.

Thus one has ¢ = ¢ 4+ ¢ 7’-almost surely.
Lets <t € [0, 1]. By Lemma 3.3 for every n € N there exist s <t <...t, <t with t4] — 1 > tz;ns and p(t) +
Y (tx + 1) = 0. Thus one has

c(tk+1,1+tk)§C(0,l—i(t—s)> f—ﬂi(t—s).
2n 2n

As in [28, page 61] it follows that

V) Y@+ Y el 1+1)

k=1
/1 _ [n(t —s)
<y¥@)—n %(l‘—s)—W(t)— 7

for all n. Therefore 1 (s) = —oo for all s < 1. But this contradicts the definition of ¥». O

Proof of Proposition 3.1. The claim follows directly from Lemma 3.4 by reversing the identification

{((5,0),(, )]s, teR}IZERxR. O
3.2. An example with non-Lipschitz dual solution

An example is given of a strictly timelike pair (u, v) for which the optimal coupling is not bounded away from
dJT. This counters the intuition that the optimal coupling of strictly timelike pairs is supported away from 9J .

Let 0 < & < 5. Choose a function f € %3 ([0, 51) N C>([0, 5] \ {2}) with

(1) f=1+¢eon][0,1],

) f(x)>—cr((x,0), (1, 1) forx €[1,2),
3 f@=0

@) f(x)>cr((3,0), (x, 1)) for x € (2, 3],
(5) f' <0 near 2.

(6) f=¢e—10n][3,4]

that induces a %—Hélder continuous function f on R/5Z, smooth except at [2] € R/5Z.
Now consider R/5Z x R with the inner product

(L =)g:=dbo> — di*
for (6,1) e R/5Z x R where
C:={v|g(v,v) <0, dt(v) > 0}.

The cost function ¢y, for the pair (g, C) is

—J(t=2= O —n? s<t t—s=0-—n
00, else.

cr((n, ), (0,1)) :{

Define

¢: R/5Z xR — R U{oo}, ¢(y) :=inf{ f(8) + c.((0,0), y)| 0 e R/5Z}.
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Lemma 3.5. One has

@t (y) =infe{p(x) +cr(x, )} =0(y)
forall y e R/5Z x R. It follows that ¢ is cy-concave.

Proof. Indeed first since ¢z (x, x) = 0 one has

¢ () =infi{p(x) +cL(x, M)} < @(y)

for all y.
Fix y e R/5Z x R and choose z € R/5Z x R with ¢°L(y) = ¢(z) + ¢ (z,y). For z choose 6 € R/5Z with
©(z) = f(B) +cL((8,0), z). Then one has

e = f(0) +cL((0,0),y) < f(O) +cL((®,0),2) +cr(z,y) =9@) +cL(z, y) =9 (y)
by the triangle inequality for c; . Thus one has

o(y) =infi {@(x) +cr(x, )} =L (y)
forally. O

As usual define

deg :={(x, M e(y) —ex) =cr(x, y)} € (R/5Z x R) x (R/5Z x R)
and 0.9, := p2(3.¢0 N ({x} x (R/5Z x R))). Note that for all (§’, r) with r > 0 there exists § € R/5Z with (0',1) €

9:9(s,0y since ¢y, is continuous on its domain.

Lemma 3.6. For 6 # [2] and y € 0.¢(9,0) witht(y) > 0one has y € 17(8,0). Further for every (8,t) € R/5Z x [0, 1]
with 0 # [2] the set 3.¢9,0) NR/5Z x {t} has exactly one element.

Proof. Indeed y € d.¢,0) implies

infy, { £ (1) +c((n,0), M)} =@ (y) = f(0) +cL((0,0), y),

i.e. the function n — f(n) + c((n, 0), y) has a minimum in 6. If ¢z ((6, 0), y) = 0 then n — ¢z ((n, 0), y) falls off
to one side of 6 # [2] faster than f can rise by construction. Therefore in this case 6 cannot be a minimum. Thus it
follows that ¢z ((9,0), y) <0, i.e. y € IT((6,0)).

Now fix 8 # [2] and ¢ € [0, 1]. Then the equation

9 9 S
@f((?) + £CL((9,0), 0,1)=0

has exactly one solution 6. Since by the previous paragraph the points in 9.9 o) are characterized as solutions to
this equation, the second part of the claim follows. O

Lemma 3.7. For every neighborhood U of 3J " and every t € (0, 1], the 1-dimensional Lebesgue measure of

{0 e R/SZA\A{121}] ((0,0), y@.1) € U}

is positive, where y 1) denotes the unique point in 9.¢@,0) "R /5Z x {t}.

Proof. The Lebesgue measure of points 6 such that — f/(8) > C is bounded from below by the Lebesgue measure
of the set of points with %CL((Q, 0), (1, 1)) = C for C sufficiently large by the assumptions (2) and (3) above. The
last set has positive Lebesgue measure for every C < oo. For every neighborhood U of 8J7 there exists Cy <
oo such that |a%cL((9, 0), y)| > Cy for all ((6,0),y) € U. Now y = y@ ) is the unique solution to the equation

L F(O)+ Zcr((6,0), y) =0 with (y) =1, and the claim follows. O
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Lemma 3.8. There exists § =6(t) > 0 such that dist((0 —1,1), 0c9(9,0)) > 8 for all 0 # [2].

Proof. For 6 # [2] let (6;, 1) € 3.¢(s.0)- By the Lemma 3.7 one has that

n=cr((n,0), (6. 1))

is smooth at 6 and
0 0 0 0
@f(Q) + £CL((9, 0),0,1))=0% %CL((Q, 0), 6, 1) = —ﬁf(é’).

Since a% f(0) is bounded outside every neighborhood of [2] € R/5Z, the existence of § follows there. By the assump-

tion % f < 0 on a neighborhood of [2] the bound follows in fact for all 6 # [2] since %CL((Q, 0), (', 1)) - —oo for
0'L0—t. O

Now consider the probability measure w := I; £’ where
I:R/5Z — R/S5Z xR, 6+ (6,0),
and £’ is the normalized Lebesgue measure on R/5Z. The following result is a reformulation of [3, Proposition 3]

adapted to the present situation.

Proposition (/3]). Let ¢ be a cp-convex function, and let |1 be a probability measure on M. Then there exists a
probability measure v on M such that ¢ solves the DKP for (i, v).

By the proposition there exists a probability measure v supported on R /5Z x {1} such that ¢ is optimal for the pair
(i, v). By Lemma 3.7 the transport is not bounded away from 3.J 7.

Now a rotation of R/57Z in the negative direction leaves u unchanged, but the coupling induced by ¢ is twisted
into a coupling whose support has positive distance from 3J* by Lemma 3.8. Thus the pair (i1, v) is strictly timelike.

4. Proofs
4.1. Proof of Theorem 2.8

Let (1, v) € P (M) be strictly timelike. Further let p be an optimal coupling of x and v. Note that p is causal
since its cost is finite. Fix (xg, yo) € supp p. Define

¥ J” (suppv) - R U {£o00},

k
X > sup {Z[CL(X{, yi) —en(xi g, yﬁ)]}

i=0

where the supremum is taken over all k € N and all sequences

{(x{, ¥)}o<i<k+1 C supp p with x; | = x and (x{, y) = (X0, Y0)-
One has ¥ (xg) > cr(x0, Yo) — cL(x0, yo) = 0. At the same time the right hand side of the above definition is nonpos-
itive for x = x¢ by cyclic monotonicity, see [27, Proposition 2.7]. Therefore one has ¥ (xg) = 0.

Next one shows that v is real-valued and measurable on supp u. Fix (#, w) € supp p. Consider for k € N chains

{(ui, wi)}o<i<k S suppp with u; 1 € J~(w;) Nsupp u for 0 <i <k — 1 where (ug, wo) = (u, w). Define

A = {wg| {(u;, wi)}o<i<k as just defined}.

The claim is that

p2(p (J7(A) Nsuppp) = A,

where p1, p2: M x M — M are the canonical projections onto the first and second factor respectively. It is easy
to see that A is contained in pg(pl_l(.l_(A)) N supp p). More precisely let y € A. Choose (x,y) € supp p. Then
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x € J (y) C J7(A) since p is causal, i.e. y € pz(pf1 (J7(A)) N supp p). For the opposite inclusion consider y €

pz(pl_l(J_(A)) N supp p). Then there exists x € M with (x,y) € pl_l(J_(A)) N supp p, i.e. (x,y) € supp p and
x € J7(A). So there exists a chain

{(ui, wi)}o<i<k Csuppp

with u;41 € J 7 (w;) Nsuppu for 0 <i <k — 1, (up, wo) = (u, w) and x € J~ (wx). Now define a new chain

{(ui, wi)}o<i<k+1 Csuppp

identical with the original chain for i <k and

W1, Wet1) i= (x, y).

Since (x, y) € supp p this shows that y € A.
By the marginal property one has

1w(J~(A) = p(p; ' (J7(A)) Nsupp p)

and

v(A) = p(p; ' (A) = p(py  (p2(p7 (I~ (A)) Nsupp p)))

by the above characterization of A. Since B C pz_l (p2(B)) for any set B C M x M one knows that v(A) > u(J~(A)).
With the inclusion supp o € J T one has on the other hand v(A) < u(J~(A)), i.e. v(A) = u(J~(A)).

Consequently every causal coupling o’ of (i, v) has to couple J~(A) with A, especially the coupling guaranteed
by the definition of strict timelikeness. But that means J~(A) N supp p is locally uniformly bounded away from
dJ " (A). Since J~(A) N supp u is nonempty and open it has to be equal to supp u since supp u is connected. This
implies A = supp v by the construction of A.

Now let x € supp u be given. Choose y € suppv with (x, y) € supp p. The above argument for the set A with
(uo, wo) = (x,y) yields that there exists a finite chain {(u;, w;)}o<i<k+1 C suppp with cr (4;jy+1, w;) < oo and
(Uk+1, Wr+1) = (X0, Yo). By definition of i one has

k
W)+ Y ler(ui, wi) — cp(uirn, wi)] < ¥ (xo) =0.
i=0
Since
k

> e (i wi) = e (i1, wi)] > —00

i=0
one obtains ¥ (x) < oo.

Next consider the construction of A with (uq, wo) = (x0, yo). Then there exists a finite chain {(u;., wlf Vo<i<k+1 C

supp p with ¢ (uj |, w}) < oo and (u}_, w; ;) = (x, y). This time one has

k
(o) + ) _ler (uj, w)) —er(ufyy, w)] < Yr(x)

i=0

and it follows 1/ (x) > —oo. Since ¢ is continuous and real-valued on J T, one concludes that ¥ is measurable.
Define ¢ : suppv — R U {—o0},

k
() =sup Y ler( y)) — ey y1+ eL (i y)} ,
i=0

where the supremum is taken over all kK € N and sequences

{(x}, ¥)}o<i<k+1 € supp p with y; | =y and (xg, yo) = (x0, Y0).
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Then one has ¥ (x) = supy{g(y) —cr(x,y)}, i.e. ¥ is cr-convex. It follows, like in step 3 of the proof of [28,
Theorem 5.10 (i)] that

YY) —Y(x) =cr(x,y)
for p-almost all (x, y) € M x M. Since ¥°L(y) — ¥ (x) <cr(x,y) everywhere one obtains equality 7-almost every-
where for any optimal coupling 7 of u and v. This finishes the proof of Theorem 2.8.

4.2. Proof of Theorem 2.12(i)

Let IT be a dynamical optimal coupling between u and v and v: M — R U {oo} be a solution to the DKP for
(u, v). The proof is carried out via contradiction, i.e. one assumes that

() >0
or equivalently IT|r, # 0.
One has (evo):I1|r, < 1 and therefore
(evo)pIliry < L.

The goal is to find a set V with positive measure relative to u such that ¥ |y = —oo, i.e. contradicting the definition
of a solution to the DKP for (i, v).

Since the problem is local one can assume that supp ¢ and supp v are compact. The Borel measurable map I' —
TM, y — y(0) induces a measure on dC via the push forward of IT|r,.

Since n and v have disjoint compact support there exists a lower bound gy > 0 on the distance between points
in the supports. In order to illuminate the construction one can, by diminishing &g and considering an intermediate
transport, assume that

(1) there exists a submanifold chart U — R™ of H = R™~! x {0} such that 3,, € intC everywhere and
supp u Usuppv C Bz, (0) CR™ Z U,
(2) the Riemannian metric is induced by the euclidian metric on a convex neighborhood of supp . U supp v and

3) exp]L is a diffeomorphism from an open set in TR” onto B (0) x B1(0).

In order to justify these assumptions one has to show that the intermediate transport has a solution to the DKP for
the transported measures.

Lemma 4.1. Let (i, v) € P (M) such that the DKP for (i, v) has a solution and let T1 be a dynamical optimal
coupling of ;1 and v. Further let 01, 02: I' — [0, 1] be measurable with o1 < 0. Then there exists a solution of the
DKP for the intermediate transport between (ev oo)I1 and (ev 007)zI1.

Proof. (i) First consider the special case o1 = 0. The assertion then claims that for o: I' — [0, 1] the DKP has a
solution for the martingales p and v, := (ev oo )zI1.
Set 7w := (evo, evy)¢I1 and let ¥y : M — R U {00} be a solution of the DKP, i.e. ¥ |supp . 7 00 and

YL (y) — ¥ (x) =cr(x,y), mw-almost everywhere. (1)

Choose a set ¥ C supp 7 of full 7-measure where (1) is satisfied. Then IT is concentrated on 1 := (evo, evi) ' ().
By definition of {“L one has

YrL(y)—v(x) <cp(x,y), forall x,y e M.
Assume that there exists y € X and ¢ € [0, 1] such that

YLy ) =¥y (0) <cr(y©0), y@).
Then there exists x € M with
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Y(x)+eLlx,y @) <y (y(0) +cL(y(0), y ()

by the definition of the ¢y -transform “L. Adding ¢y (y (), y (1)) to both sides and applying the triangle inequality,
which is an equality on the right hand side, one obtains

VE(y (D) <y (x)+cplx, y(1) < (y(0) 4+ cL(y(0), y(1)),
which implies

Yy (1) =¥ (y(0) <cr(y(0), y(1)),
a contradiction. Therefore one has

Yy () — Y (v (0) =cL(y(0), y )

for all y € X and the lemma in the special case o1 = 0 is proved.
(ii) Second consider the case o1 = 0. By definition /“~ is a ¢z -concave function and since v is ¢y -convex one has,
cf. [28],

¥ (x) =sup{yy“(y) —cL(x, )|y € M} = (¥)* (x)

for all x € M. This implies that the transport problem between p and v has a solution of the DKP if and only if there
exists a ¢y -concave function ¢: M — R U {—o0} with

©(y) — ¢t (x) =cp(x,y), m-almost everywhere
for all optimal coupling v of n and v. With an analogous argument as in case (i) one obtains

ey () —@L(y@) =cr(y®),y(1))

forall y € Xr and ¢ € [0, 1] with the notation of the special case. Setting ¢ = ¥°L yields the assertion.
(iii) To complete the proof consider the succession of first the intermediate transport between o[ =0 and ¢} = o
and second the intermediate transport between o' =07 and o) =1. O

For v € TR™ = TU denote with vy the projection of v along 9, onto span{dy, ..., d,,—1}. Further let y, be the
unique ®-orbit with y,(0) = v for v € C.

Lemma 4.2. For gy > 0 sufficiently small there exists Cy < 0o and ¢g > 0 such that for all v € 9C N TlB380 (0) and
t > 0 such that

dist(yy(0), yu (1)) € [€0, 6¢0]
the intersection
Py =07 (ro®) N ({ru(0)} + R™ ™! x {0}
is a smooth hypersurface in {y,(0)} + R~ x {0} with

(a) the norm of the second fundamental form bounded by Cy and
() L(vu, T Pyr) > go.

Proof. Consider for ¢ > 0 the map
re: B1(0) = B.(0), x — ex.

The Lagrangians L, := Slzr;‘L converge uniformly to Lo := IL(0) on every compact subset of 7 B;(0) for ¢ — 0
in every CK-topology. The Euler-Lagrange flow of L, then converges uniformly on compact subsets in every
Ck-topology to the Euler-Lagrange flow of L¢. Note that the Euler-Lagrange equation for L is ¥ = 0. Thus one
has explljo (Cop) = x + Cp and therefore the assertion (a) and (b) hold for L. Since the Riemannian metric % is euclid-
ian on B1(0) one has ﬁr;‘h = h. This together with the fact that
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expLe (Ver N3Ce ) = 3JF (x) C By (0)

for some neighborhood V;  of Oy in Ty B1(0) one obtains the lemma for ¢ > O sufficiently small. O

Statement (b) is equivalent to requiring
bid
L(vg, Nyy) < 5 %

where Z (v, w) denotes the euclidian angle between v and w and N, ; denotes the inward pointing unit normal to P, ;.
Property (a) implies that for ¢ := —— > 0 one has

JCo
Be, (vo(0) + £1Ny,) N ({ru(O)} + R™ ™1 x {0} € I~ (1)) N ({1(0)} + R™1 x {0}).

This and (b) then imply that
(72(0)} + Cone (v. T e2) € I~ (1) N (10} + R < (0]

where
Cone(v, ¢, &) :={w e R" ! x {0}|£ (v, w) < @, |w| < &}

and
&y :=2¢; sin %.

Now for p € B3g,(0), v € Cp, g € {p} — Cone(v, 4, £2) and w € C, with L(wy, vy) < % one has

Biist(p.qysin 2 (P) N (o (0} + R ™1 < {0D) € J ™~ (v (1))

for dist(q, yw (t)) € [€0, 3€0].
Abbreviate

A :=suppl(evo)y(T1|ry)].
Define a map
T: supp(I|ry) — S" 72, ¥y = y(0)p.
Since (rrp o T)¢I|r, = la and w(A) # 0 one has
Ty(I|ry) #0
where 77y TM — M denotes the canonical projection. Choose vy € $™~2 such that
T;(Hr,) (Ben (vo)) > 0.
Then A’ := ”TM(B‘%O (vo)) has positive measure with respect to L, since |4 << Lg. Let p be a Lebesgue point of
Al ie.
Ly(A'NBs(p))

Ly (Bs(p))
Then there exist €3, €4 > 0 such that for the unique v € 9C with vy = vy

Lir (40 By (p)\ Bey (p) 1 (1p) = Cone (v. .62 ) ) ) = .

limg 10

Choose polar coordinates (r, 61, . .., O —2) on Bae; (p)) C R™~1 x {0} centered at p. By Fubini’s Theorem there exists
(M1, ..., Nm—2) such that
2¢3

XA (N, .. Mm—2)rdr > &4.

€3
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Thus the 1-dimensional Lebesgue measure

&4
Li(A'N{r e (e3,263),01 =n1,...,0m—2=nm-2}) > %

Recall Lemma 3.3:
Lemma. Let [a,b] CR, ¢ > 0 and B C [a, b] Borel measurable be given with L1(B) > (b — a). Then for alln € N
there exists {ti}1<i<n C B witht; <... <ty and tiy) —t; > 5.
Applying Lemma 3.3 to
B:=A'N{re(e,263), 01 =n1,...,0m—2=nn2}
yields for every n € N points
X1y Xy € AN {r €(e3,263),00 =01, ..., O = Nm—2}

and yi,...,y, € M such that (x;,y;) € suppm for the optimal coupling 7 induced by II, x;+1 € J~(¥),

dist(x;, xjy+1) > 42‘;3 and Be33 sin 20 (p) € J~ (yn). Using the exponential map of I one sees that there exists C > 0

such that ¢z (xj+1, yi) < —%. Then one has for every point x’ € B, ¢in @ (p)
C
NG

for all n € N where v denotes the solution to the DKP for (i, v). Thus

C
YO S Y0+ Y erGign,3) U ) — (= D— <y () = —vn

Y¥iB @To(p)E—OO

£3 sin

therefore contradicting that i is ¢z -convex.
4.3. Proof of Theorem 2.12(ii)

One can prove Theorem 2.12(ii) in the same fashion as Theorem 2.12(i), but for the sake of avoiding repetition
Theorem 2.12(ii) is reduced to Theorem 2.12(i).

Let f, € L (L) be the density of p with respect to the Lebesgue measure £ on M. If [T1(I"g) > 0O there exists a chart
U — R™ of M such that U is foliated by spacelike hypersurfaces {Hy = R™~! x {s}};cr and (evo):I|r,(U) > 0.
By [27, Corollary 3.5] one can then assume that supp u is contained in U. By Fubini’s Theorem the restriction of f},
to Hjy is integrable with respect to the Lebesgue measure £,,_; on R”~! for almost all s € R. For (X ) p-almost all
s € R one has

mg :=ffﬂd£m_1 >0
H;

where x,, denotes the m-th coordinate function on R™. For s with m; € (0, 0o) define u; by

1
s (A) == — / f,u.d‘cm—l-
myg
ANH;

Note that 1, is a probability measure on Hj. Consider the disintegration {I1;},cr of IT along X, := x,,0evg: I' = R.
Then one has (evo);I1; = ps for p,,-almost all s. This can be seen as follows: Obviously one has (X,,):IT = u,, since
(evo)gIT = p. It follows that for all Borel measurable B C M one has:

[ @i, = [ e Enau,

R R

= f M, (evy ' (B))d(X): 1T =T(evy ' (B)) = u(B)
R
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Thus one has

n() = /(GVo)nns(-)dum
R

and the claim follows from the uniqueness part of the Disintegration Theorem. Finally define v, := (evy)zI1;.

Lemma 4.3. I is an optimal dynamical coupling of j1s and vy for iy, := (Xim)zpu-almost all s € R. Further  solves
the DKP for (s, vs) for py-almost all s.

Proof. The first assertion follows from the second since the pair (i, ¥°L) is admissible (see Section 2). Define
7 1= (evo, evy)yI1;. Assume that i does not solve the DKP for (g, vy) for s ina set B C R of positive w,,,-measure,
i.e.

/ cL(r, y)ds > / WO (y)dvy / ¥ ()dps
MxM M M

for all s € B. Then for some § > 0 one has

/ cLCr, y)ds — 6 > / WO (y)dvy — / v ()dps
MxM M M

for s in a smaller but u,,-non-negligible set Bs C R. This implies that

/ cL(x, y)dm — & / mydiim > / YL (v — f Y
M M

MxM Bs

since cr (x, y) > ¥ (y) — ¥ (x) for all (x, y). Note that fA; mgsdy, > 0 since Bs is w,-non-negligible. This contra-
dicts the assumption that v is a solution to the dual problem for (i, v) since 7 is minimal. O

Theorem 2.12(i) then yields that for almost all s € R one has I1;(I"g) = 0. Since

IT(Ty) = / mgIlg(Io)ds
R

the claim follows. The last equation follows from the respective statement about g, i.e.

n(A) = f mjis(A)ds
R

for all measurable A C R™.
4.4. Proof of Theorem 2.14

The proof of Theorem 2.14 relies on ideas of [11], see also [17,12,18]. Note, however, there is no unique equivalent
to the assumption of achronality resp. acausality of the support of the second measure. Indeed, the Monge problem
is in general highly non-unique. However, the proof in the non-relativistic as well as the relativistic setting relies
essentially on the following two properties: Geodesics with endpoints in a given set are non-branching (Lemma 4.8)
and that there is a weak form of the measure contraction property (Lemma 4.6). The latter holds due to differentiability
of the time function and the exponential map.

For the proof it suffices to consider the case that both supp  and supp v are compact and disjoint. This follows
from the observation that absolute continuity is equivalent to absolute continuity on every compact subset.

Recall that

<I>]L:Uc]R><TM—>TM
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denotes the Euler-Lagrange flow of L. Set
{}xV:={1} xTM)NU.
By [27, Proposition 3.14] the map
exp]L: VoMxM, vi> (mrpy(v), Ty o CDL(I, v))
is a C!-diffeomorphism of a neighborhood of the zero section onto its image and smooth outside 7M. Here
arm:TM—> M
denotes the canonical projection. Set
exp,: VNTMy — M, vi>mrpy o CDL(I, v).
Further since 9; (w7 o ol (t,v)) = ol (t,v) and CDL(l, tv) = ol (t, v) one has
d(exp,)o = dy(ra o D™ (1, )y = idr @)

via the canonical identification TM, = T (T M,)y.

Proposition 4.4. Let v € C;, :=CNT M, such that

d(exp,)v: T(TMp)y — TMexp]};(u)

is singular. Then for every T > 1 the geodesic
Ny: [0, T] > M, t — expp(tv)
is not A-minimizing between its endpoints.
Proof. In the case of v € intC the claim follows mutatis mutandis as in [2, Proposition 7.4.1.], since C 1_small varia-
tions of timelike curves remain timelike.

The case v € dC is the subject of [1, Proposition 6.8]. Note that the definition of Lorentz-Finsler metrics therein is
equivalent to the presently used by virtue of [24]. O

Corollary 4.5. Let K C M be compact. Consider the set K of A-minimal causal 1L-geodesics n: [0,1] — M, i.e.
n(t) = exp, ) (11(0)) and Am) = ¢z (n(0), n(1)), with n(0),n(1) € K. Then there exists a continuous function
e: (0,1) = R.g with

ld(exp,y0));7(0) | < €(®)

forallne K andt €0, 1). Further one has lim;_,ge(t) = 1.

Proof. For a single .A-minimal geodesic n: [0, 1] — M the claim follows directly from Proposition 4.4. Further by
(2) one has e(t) — 1 fort — 0.
Since K is compact the corollary follows from the continuity of the differential of the exponential map. O

For v € C consider the unique time affinely parameterized local .A-minimizer y,: R — M with y,(0) = v. Accord-
ing to [27, Section 3.5] y, is an orbit of a flow on C \ T°M. Define the map

exp’ : C— M, vi=> p(1).
Denote with expj, the restriction of exp” to C N T M. The map satisfies exp (tv) = y, (r) which implies

d(exp},)v — idrm, 3)
for v — 0 and

d(exp},)v(v) = pu(1). “)



M. Kell, S. Suhr/Ann. I. H. Poincaré — AN 37 (2020) 343—-372 361

Further by [27, Proposition 3.5] there exists a smooth map
s:C\T°M — [0, o)
such that exp® (v) = exp(s(v)v) for all v € C\ T°M. One has

d(eXP;)v = d(expp)s(v)v(dsv Quv+s(v)- idTM,,)- (5)

The following lemma is at the heart of the proof of Theorem 2.14. It is an easy consequence of differentiability of
the time function t and the exponential map.

Lemma 4.6 (weak measure contraction property). Let K C M be compact. Then there exists a function f: (0,1) —
(0, 1) with lim;_,q f(t) = 1 such that for all y € K and all measurable A C K N J~ (y) it holds

L(A:y) = f(H)L(A)
where A; , = {ev;y | y € (evo, ev) " HA x {(yDH}.

Proof. From (4) and (5) follows that d(exp;)v is singular if and only if d(expp)v is singular. By Corollary 4.5 and
continuity of both d exp; and d exp,, there exists a function e : (0, 1) — R with

ld (exp} 0)); 0 | < €7 (1) 6)
for any y € (evy, ev)) H(K x {y}). Now consider
Tx,y:={v eC| Iy € (evo, evy) " (K x {y}) with y(0) = v}.
It follows that
Ay =exp’ (1(Tg y N (7)™ (A))).
By equation (6) there exists a function f: (0, 1) — (0, 1) independent of A with
L(Ary) = f()L(A)
for all ¢ € (0, 1). With property (3) one concludes f () — 1 forr — 0. O

For the following proposition observe that due to the fact that geodesics y with (t o y)’ = const are uniquely
defined by their initial velocity one knows that the image of such a geodesic is a one-dimensional rectifiable curve.
In particular, it has zero measure with respect to the Lebesgue measure £ on M. This implies that for distinct points
X,y € M the set

By y:={zeJ (MNJ (x)lcL(z,y) =crL(z,x) +cLlx, y)
or cr(z,x) =cr(z,y) +cL(y, x)}

has vanishing £-measure. In particular,
ﬁ(At,X ﬂ At,y) = 0

for x # y. Note that if x and y are not causally related then A, , N A; , = @.
A more general statement of this form was obtained by the second author in [27].

Lemma 4.7. Let B be a closed achronal set. Then the set
U By
x#yeB

has vanishing L-measure.
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Proof. For z € U,yep B, there exist x, y € B with z € B, . Especially one has ¢z (z,x), c(z, y) < 00. By the
definition of B, one concludes that ¢, (x, y) < oo or ¢z (y, x) < 00.
Now let I'p C I be the subspace of minimizers which intersect B at least twice. By [27, Proposition 3.22] the set

Ur®nir=r
yelp
has vanishing Lebesgue measure in {t = r} for all r € R. Thus
U r®
yelp
has vanishing Lebesgue measure in M. Since
U Beyc U r®
x#yeB yel'p
the claim follows. O

For amap o : I' — [0, 1] and a geodesic y € I" one writes Y, = y(c(y)). Let S C I' be a subset of the space of
minimizing geodesics. Then for s, ¢ € [0, 1] one defines

Stsi=(evs,ev)(S)CM x M,
Sr:=evi(S) and Sy :={Ys}yes C M.
Lemma 4.8. Let S C I' be such that So,1 is cp-cyclically monotone. If Sy is achronal then for all Borel-measurable
maps o : S — (0, 1) one has

LS NsP)y=0

for all Borel-measurable SV, S@ S with Sfl) N sz) =O.
Remark 4.9. If S is additionally acausal, e.g. Sj is contained in a time-slice {t = 79}, then one even has S}, N Sg = .

Proof. Letz € S; N S?,. Then there exist y; € S and y, € S@ such that

cp(xi, yi) =cr(xi,2) +cr(z, yi)
fori =1,2, x; := y;(0) and y; := y; (1).
Since Sp,; is cr-cyclically monotone one has
cr(x1, y1) +cp(x2, y2) <cp(xz, y1) +cp(x1, y2)
< (cL(x2,2) +cr(z, y1) + (cr(x1,2) +cL(z, 2))
=cr(xr, y1) +cr(x2, y2).

This shows that there is a minimizing geodesic connecting x; with y» and passing through z. As geodesics are locally
unique, either y; is on the geodesic connecting z and y> or y; is on the geodesic connecting z and y;. Thus z € By, ,

with y; # y2.
In particular,

ssnszc | By
Y#Y' €SI
Since S is achronal it follows that
LSIns?H =0
by Lemma 4.7. O
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Now one combines Lemma 4.8 with the weak measure contraction property to obtain the following.

Proposition 4.10. Assume that

A x {y,z} Csupppu X suppv

is cp-cyclically monotone for an achronal two-point set {y, z} and some measurable set A. Then A has vanishing
Lebesgue measure.

Proof. By inner regularity of £ one may assume A is compact so that for a fixed € > 0 and ¢ sufficiently close to 0 it
holds

Ay UA; ; CA.

where A¢ is the e-neighborhood of A with respect to the distance dist. Lemma 4.8 implies that
L(A;yNA;)=0 forallrel0,1).

Then the weak measure contraction property yields
L(A) = Elg% L(Ae)

> limsup L(A; y U A; ;)

t—0
=limsup L(A; ) + L(A; )
t—0
>2limsup f (1) L(A) =2L(A)
t—0

which can hold only if A has zero measure. 0O

Lemma 4.8 can be used to prove an interpolation inequality in form of the weak measure contraction property
between any absolutely continuous measure and a causally related achronal discrete measure. In order to prove such
an interpolation inequality for general achronal target measures one needs to approximate the target measures via finite
measures which satisfy the achronality assumption. As such an approximation seems difficult, one proceeds in two
steps: As measures supported in a time slice can be easily approximated one first proves the interpolation inequality
for those measures. In a second step one uses this fact together with the strong non-branching property implied by
Lemma 4.8 to approximate general achronal target measures.

Given a subset C C M x M and s,t € (0, 1) define

Csr=1{(evsy,eviy) |y € (evo, ev) 1 (C)}
and C; = Pl(Ct,t)~

Lemma 4.11. Assume 7 is an optimal coupling with compact support between an absolutely continuous measure
W and a measure v with support in a time-slice {t = 1g}. Then there is a sequence v, = Z,N=n1 A?le_n such that
supp v, C {t = 19} and the optimal couplings m, of (i, v,) converge weakly to an optimal coupling 7’ of (i, v).

Proof. Let X € I'(T M) be a vector field with L(X) < 0 and dt(X) = 1 everywhere and denote with ¢; the flow of
X. The coupling

7, = (id, e )pm

is supported in {c; < 0}. Recall that by [27, Proposition 3.10] there exists a Borel map S: J* — C°([0, 1], M)
with S(x, y) € I'r_,y. The push forward IT} := Syx/ is then a dynamical coupling. Consider the subset I';; C I" of
minimizers y with 7 o y(0) <fg and t o y (1) > tp + ¢. The maps

To: Ty — [0, 1], y = To(y)
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such that 7(y (To(y))) =19 and
R: Ty =Ty, vyt = y(To(y)nl

are continuous. Define
I, := R4 (IT,) and 7, := (evo, evy)sI1,.

It then follows that suppm, C {cr < 0} and supp(p2)47: C {t = 10}. Furthermore, the Prokhorov distance between
Ve := (p2)17e and v tends to zero for ¢ — 0.

Observe that for any approximation by finite measures (v, ¢) of ve the Cr-cost between p and v, ¢ is eventually
finite and the distance between v and v, is eventually less than 2¢. One may also assume that (v, ) has support in
{t =70}

Denote by 7, ¢ the ¢y -optimal coupling of (i, v,.¢). Then

liminf/‘chn,,,é §/chrré.

n—oo

To conclude just observe that for a diagonal sequence ) = T, 1 one has ) — 7 satisfying
'k

/chfr §liminf/ crdmgy < /chn.
k— 00

Since 7 is optimal the 7 must be optimal as well. O

Remark 4.12. If an optimal coupling 7 is supported in the interior of J* then it is possible to obtain an approximation
m, with finite target measures which have support in supp (( pz)tn). Thus it follows that it is possible to keep the
target approximation v, in a fixed achronal set B. Note, however, such an approximation for purely lightlike optimal
couplings is not always possible. It even seems difficult to prove Lemma 4.11 under the assumption that supp v is
achronal.

Proposition 4.13. Let (i, v) € P (M) with u being absolutely continuous and suppv C {t = 19}. Then there is an
optimal coupling 7w of (i, v) such that for all cp-cyclically monotone sets C C suppw with w(C) =1 it holds

L(Cy) = f()L(Co).

Proof. First note if v is a finite measure then the support C = suppm of any cy-cyclically monotone coupling x
satisfies the assumption. Ind_eed, the set of points x € Cy such that (x, y), (x, y’) € C for distinct y, y’ € Cy has zero
L-measure, i.e. L(A],, N A, )=0fori#jandre[0,1) where {y;}}_; = C1 and A" = p1((p2)~" (3:)). Observe
now

n n
LC) =) LA;,) =) fOLAT) = L(Cy)
i=1 i=1

For more general v let v be the weak limit of a sequence 7, with (p2)4, finite as given by Lemma 4.11. Note by
restricting the first marginal of r,, slightly one can assume that the support of i, converges in the Hausdorff metric to
the support of 7. Note that since 7, converges weakly to 7 one must have u(Cg) — 1 where C" = supp 7,,.

If C = suppr is ¢y -cyclically monotone then for all € > 0 and for sufficiently large n € N it holds (Ct(")) C (Cy)e.
Since C; is compact and Cé”) = C one obtains

L(Cy) = lim L{(Ct)e)

= lim sup E(C,("))

n—oo

> limsup f(£)L(C™r)

n—oo

= f(H)L(Co).
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If the support of 7 is not ¢y -cyclically monotone, one may find a ¢y -cyclically monotone subset C C suppm of
full 7-measure and compact sets CX C C such that 7 (C*) — 7(C) and E(Cg) — L(Cyp).

Denote by 7 the coupling obtained by restricting 7 to C¥ and renormalizing. Note that each 7y is supported in
C* and is given as a weak limit of an appropriate restriction of the approximating sequence 7. In particular, one sees
that the claim of the proposition holds for C* so that one concludes with the following chain of inequalities

L(C;) = limsup £(CF)

k—o00

> limsup f (1 L(C§) = f()L(Cy). O

k— 00

Combining the results above one obtains the existence and uniqueness of optimal transport maps if the target is
supported in a time-slice.

Proposition 4.14. Between any absolutely continuous probability measure |1 and any probability measure v supported
in a time-slice {t = 7o} such that (i, v) € PF (M) there exists a unique cy-optimal coupling 7 and this coupling is
induced by a transport map.

Proof. Let w be an optimal coupling for (u, v) and choose a cp -cyclically monotone measurable set C C suppw of
full r-measure.

We claim 7 is induced by a transport map. Note that this implies that 7 is unique.

Suppose the statement was wrong. Then the Selection Dichotomy in [18, Theorem 2.3] gives couplings 71, 7o < 7
which are supported on disjoint sets K x Aj and K x A and their first marginals are equal to ug = ﬁ/ﬁ x» Where

K C M is compact. Since p is absolutely continuous one can additionally assume p g and £ | x are mutually absolutely
continuous.

It is easy to see that all three measures 71, 7 and %(m + mp) are optimal. Thus by Proposition 4.13 there are
optimal couplings 7; between (i x, (p2)r7;) such that the couplings 7; are concentrated on disjoint ¢y -cyclically
monotone sets C' satisfying

L(C) = f(OLC).
Let € > 1. Then Cf C K. for sufficiently small # where K, denotes the e-neighborhood of K. Since the sets Cé
and Cg are disjoint by Lemma 4.8 the sets C;! and C t2 are disjoint as well so that one obtains
LK) = lin})E(Ke)
€e—

> limsup £(C!UC?)

t—0

=limsup £(C}) + L(C?)

t—0

> 2limsup f(t)£(Cyp),

t—0

which is a contradiction as g (K) = ug(Co) =1 and ug and E’ x are mutually absolutely continuous. O
Using Lemma 4.8 one can extend the proposition to general achronal target measures.

Proposition 4.15. The previous preposition also holds for probability measures v supported in an achronal set.
Furthermore, for the unique dynamical optimal coupling T1 and any cp-cyclically monotone set C C suppm with
7 (C) =1 where m = (evo, evy)zI1 it holds

L(Ch) =z f()L(Co).

Proof. Assume 7 is a cp-optimal coupling for (i, v) and choose a ¢ -cyclically monotone measurable set C C
supp  of full -measure.
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Set "= ANC and C>° = C\A where A is the diagonal in M x M. The intersection Cg ncy 0 is u-negligible.

Indeed, all points in the intersection C8 NnCy 9 would have a minimizer passing through that point which in-
tersects two (necessarily distinct) points in Cg and C1>0. Hence the set must be L-negligible which also shows
w(Cyncg® =o.

Observe that the claim implies that 7 is induced by a transport map if and only if 7 restricted to C>? is induced
by a transport map. If either of the cases holds then 7 must be unique.

So without loss of generality one can assume that 7 is concentrated away from the diagonal A. In this case = must
be concentrated on (@ ey Qr,n Where

1 1
Qfo,n:{rft ——}x{tZro—i——}.
n n

Furthermore, 7 is induced by a transport map if and only if for each 7o € Q and n € N, 71|_Q,0‘n is either the zero
measure or induced by a transport map. Thus one may assume that 7 is supported in Q, , for some 19 € Q and
neN.

Leto : I' — (0, 1) be measurable with 7(y,) = 19 whenever y (0) < 79 < y(1). Then given an optimal dynamical
coupling IT one obtains an intermediate measure (1, which is supported in the time-slice {t = 79}. By Proposition 4.14
for any IT there is a unique optimal coupling 7, between u and @, and a measurable map 7, such that 7, =
(d®T5) gH-

We claim that IT is unique among the dynamical couplings representing w. Assume p/, ) and T, are obtained
from a distinct optimal dynamical coupling IT'. In this case the maps T, and 7, do not agree on a set of positive
u-measure. By construction the measure %(m7 + 7)) is the unique optimal coupling between p and %(ug +ul)
which is induced by a transport map. However, this is only possible if 7,, and 7, agree p-almost everywhere. This is
a contradiction and shows that the dynamical coupling IT representing 7 is unique.

Note that for -almost all (x, y) € M x M the point T, (x) is on a geodesic connecting x and y. Since the value
of T, is unique almost everywhere and geodesics are non-branching, for -almost all x € M there can be at most one
geodesics y with yp = x and y,; = T (x). In particular, for p-almost all x € M there is a unique (x, y) € suppm. But
then 7 is induced by a transport map and hence the unique optimal coupling between p and v.

It remains to show that the interpolation inequality holds as well: Let IT be the unique dynamical optimal coupling
and 7 be the unique induced optimal coupling.

Let x : T'— (1 — ¢, 1] be a measurable map such that for a set I'” of full IT measure the set 7 o x (I'") is countable
and whenever y (1) =n(1) then T(y,) =1t (ny).

Let u, be the intermediate measures obtained from y. Then u, is concentrated in countably many time-slices
{t = Tk }ren. Observe that the interpolation property holds when we restrict the coupling to M x {tx}. Since the
endpoints for two different time-slices are disjoint Lemma 4.8 implies that the interpolated points never intersect.
Thus if C is a ¢z -cyclically monotone subset of supp of full w-measure then the set

CX ={(v. 7,0 |7 € evo, ev) ' (C))
is ¢y -cyclically monotone and has full (evg, ev, )¢ I1-measure and it holds
L(C) = f()L(Co).

Via approximation it suffices to show the interpolation property assuming C is compact. Observe now that for
compact C and all § > 0 it holds

Cl C(Cs
for € > 0 sufficiently small. Thus
L(Cy) = lim L((Cy)s)
5—0

> limsup £(C)) > f(t)L(Cp). O

e—0
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Proof of Theorem 2.14. The only thing that is left is to show that the intermediate measures u; = (ev;)¢I1 are abso-
lutely continuous. For this let C = supp and assume (., was not absolutely continuous. Then there is a compact set
C C C such that 1(Co) = s (C;) > 0 and £(C;) =0. In particular, L(Co) > 0. However, the interpolation property
shows 0 = E(ét) > f (t)E(éo) which is clearly a contradiction and thus proving that u; is absolutely continuous. O

The following corollary turns out to be useful in the next section.

Corollary 4.16 (Self-intersection lemma). If i and v are causally related, p is absolutely continuous and v is sup-
ported on an achronal set then for all sets A of full j1-measure there is a tg < 1 such that the intermediate measures
Uz, t € (0, ty) satisfy u;(A) > 0. In particular, u and |u; cannot be mutually singular.

Proof. By restricting  we may assume p has density by M. Then uniqueness of w, implies that the density of u,
is bounded by M - f(t)_l, see [18, 5.15]. Since f(t) — 1 as t — 0 we see that the densities of u; for sufficiently
small ¢ can be uniformly bounded. Now the claim follows directly from the Self-Intersection Lemma in [18, Lemma
64]. O

Remark 4.17. The argument shows that for © = g£ and u; = g; L one has the estimate

1

&) < mg(y())

for IT-almost all y € " where IT is the unique optimal dynamical coupling between u and v.
4.5. Proof of Theorem 2.16

The goal is to reduce the problem to the 1-dimensional case and then construct a map from that solution. The
proof is very similar to the proof of Bianchini—Cavalletti [9] for general non-branching geodesic spaces, see also [10].
However, the lack of a natural parametrization of lightlike geodesics prevents a direct application of their proof. One
of the features of the proof will be to show how the time function t and time-affinely parametrized geodesics can be
used to overcome this obstacle and give a complete solution to the Monge problem in the relativistic setting.

Note that the proof shows that the optimal coupling is in general non-unique without assuming some relative
form of achronality. Indeed, in order to prove uniqueness using the reduction to the 1-dimensional setting on a set
of full measure there must be an almost everywhere defined injective map from the set of transport rays to M which
corresponds to the target of the transport.

By [27, Proposition 2.7] one knows that the any optimal coupling is concentrated on a measurable cy-cyclically
monotone set C.

Definition 4.18 (Maximal cy -cyclically monotone set). A set A C M x M is maximal cy -cyclically monotone in a set
Y C {cr <0} ifitis cg-cyclically monotone and is maximal with respect to inclusion among subsets of X.

It is not difficult to see that a maximal ¢y -cyclically monotone set A must be closed if X is closed. One calls any
maximal element A,,;; of a ¢ -cyclically monotone set A a maximal hull. Note that the maximal hull is in general
not unique.

Lemma 4.19. Every cy-cyclically monotone set A C {cp < 0} is contained in a maximal cp -cyclically monotone set
Apax C {cr <0} In particular, if (i, v) € P (M), then any optimal coupling is supported in a maximal cy.-cyclically
monotone set Ayqc C {cp <0}

Proof. Just observe that if {A;};<; is a chain of ¢y -cyclically monotone sets in the closed set {c¢; < 0} then
A= U A,
iel
is maximal in {c; < 0} and ¢y -cyclically monotone. Thus Zorn’s Lemma gives the existence of a maximal element
Apmax With
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A C Apax Clcp <0}

The last statement follows by observing that a coupling with finite cost must have supportin {c; <0}. O

Let A,;qx be a maximal ¢y -cyclically monotone hull of the support of an optimal coupling 7 of p and v in J .
Further let IT be a dynamical optimal coupling of (i, v).

Lemma 4.20. For any point (x, y) € Ayax and any point z € y € I'x_,y, one has (x,z), (2, ) € Apmax.

Proof. Let {(x;, yi)}1<i<n C Amnax. Then one has

N N
cL(x,2) +en(@y) + Y cnli, y) =cr(x, y) + Y cL(xi, yi)

i=1 i=1
n—1

<cr(e,y)+ Y eL(xi, yir) +eL(xn, )
i=1
n—1
<cr(x,y1)+ ZCL(xiv YirD) +erxn,2) +cr(z, y)
i=1
where the next to last inequality follows from the cyclic monotonicity and the last inequality is the triangle inequality
for c¢y. This implies that (x, z) € Apax. The other case is analogous. Note that ¢y (x, y) < oo since (x,y) € J* and
thus ¢z (x, 2),cL(z,y) <oco. O

Consider the relation R C M x M with

(x,y) ER:& (x,y) € Apax 01 (¥, X) € Apax.

Set Ro1:={(x,y) € R| 3z # x : (x,z) € R}. Then one can assume without loss of generality that R. has full
measure relative to any optimal coupling. This follows from the observation that on R \ R all optimal transports are
constant. It is assumed from here on that R = R~ .

Next define the following two sets:

At ={xeM|Iz#weM:(x,2),(x,w) € Apay and (z, w) ¢ R}
and
AT ={yeM|IxF#zeM:(x,y),(z,y) € Apax and (x, 2) ¢ R}.
Assume the disintegration of m with respect to the first projection is given by
T=UQmy.

Lemma 4.21. For p-almost all x € AT the measures 1, are supported in {(x, x)}.

Proof. If AT is pu-negligible there is nothing to prove. Therefore one can assume by [27, Corollary 3.12] that
w(A™) = 1. After possibly further restricting the transport problem one can suppose that

suppr C{t <t —¢} x {t =19+ ¢}
for a sufficiently small ¢ > 0. Let now

g i={y el t(r(0) =0 = (y(1))}

and o : I'yy — [0, 1] be the map defined by 7(ev(y, o (y)) := 19. Note that IT is supported in I';; under the above
assumptions. Then

o 1= (evo(id, o)) I1
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is an intermediate measure of p and v which is supported in the time-slice {t = 79}. Thus by Proposition 4.14 there
is a unique coupling which, in addition, is induced by a transport map 7. The assumption shows that for p-almost
all x € AT the (unique) geodesics connecting x and T, (x) never intersects AT. Thus /Lg,,(A+) = 0 for the any
intermediate measure i, ; between p and u. . This, however, violates Corollary 4.16. O

Remark 4.22. Under the assumptions of Theorem 2.16 it is even possible to show L£(A™) = 0. For this one needs to
know whether any coupling 77 concentrated in Apax N (AT x {t = 10}) is induced by a transport map. By Theorem 2.14
a sufficient condition would be that 7 is optimal.

If 7, =8, ® &, for all x in a measurable set A C M then & |AxM = (id x id)tM’A- Thus in the following one will
always assume that , # 6, ® ¢ for u-almost all x € M. In particular, the measures u and (pl);(n}MxM\A) are

mutually absolutely continuous. In combination with Lemma 4.21 one concludes that £ (A1) = 0.
Given a symmetric relation R C M x M let the domain of R be defined by

dom(R) := p1(R).

In the following one will use the following short hand notation to define a new symmetric relations R’ C R: R’ is
given by dom(R’) = A for a subset A C dom R if

R'=AxANR.

One easily verifies that dom R’ is indeed equal to A. Furthermore, if A is (Borel) measurable then R’ is (Borel)
measurable or analytic if R is (Borel) measurable or analytic, respectively.

Let R, .4 be obtained by requiring dom(R,.y) = dom(R) \ A™ U A~. Then one may verify that R,.4 is an equiva-
lence relation.

Decompose w into two measures @1 and pp such that @ is concentrated dom(R;.4) and wy on A™. Choose
an optimal coupling 7w along the same decomposition p = 1 + (2. Denote the second marginals by vy and v,
respectively. By the definition of A~ one sees that 7, is concentrated on the diagonal. Thus if one finds an optimal
coupling 771 between 1 and vy which is induced by a transport map then 7 = 7] + 73 is an optimal coupling between
w1 and vy which is induced by transport maps. Thus one may assume p(A+) = 0.

Lemma 4.23. There exists a measurable projection T : dom(Ryeq) — dom(Ryeq) with (x, T (x)) € Ryeq-

Proof. Choose an enumeration {g,},cn of Q. Define inductively disjoint relations {R,},cN as follows: Set Ry :=
Ryeq. Assume that Ry for k < n has been constructed. Define R, 4| by

(X,2) € Ryy1:9 (x,2) € Ry ATy, Y €{T =qui1}: (x,9), (2, Y) € Ry.

R,+1 is an equivalence relation since it is the intersection of two equivalence relations. Thus I§,1+ 1= I?n \ Ry41 18
an equivalence relation. Continuing one obtains a measurable partition {R,},cN Of Ry.q. This follows from the initial
assumption that all minimizer are non-constant.

For all r € R there exists a measurable selection

Srt P1(Rrea N (M x {t =r})) = dom(Ryeq) N{T =r}.
Define the map

T: dom R,y — dom Ryeq, x > Sy, (x) forx e R,. O

Disintegrate w along T, i.e. for pyeq := (T)zpt let {ty}redom(r,.;) b€ the almost everywhere defined family of
probability measures on 7 (dom(R;.4)) such that

M= tUred ® tx.

Lemma 4.24. For [, .q-almost all x € M is the measure t, = t4(t,) is non-atomic.
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Proof. By the assumptions the statement holds for 7 if it holds for 7 restricted to M x M\ A. In particular, one can
assume that for w-almost all (x, y) € M x M one has t(x) < t(y).

Assume now for a set A of positive (,.q-measure the measure 7, has atoms for all x € A. Then there is a compact
set K C M of positive p-measure such that the map

K — P[R), x— 1,
is weakly continuous. Thus the function
F: K xR—[0,1], F(x,r) =t,({r})
is upper semi-continuous. In particular, the set
C=F~(0.1])

is a Borel set and for each (x, r) € C the point r is an atom of 7,. Applying the Selection Theorem [16, Section 423]
to C yields a measurable selection T: p(C) — C such that (x, T'(x)) € C for all x € p1(C). In particular, /J«red|K ®
87 (x) 1s non-trivial. Since ¢, is atomic for all x € K one also has

Hred|K ® (ST(x) L Ured @ t_x-

Translating back to the coupling 7 one sees that there exists a measurable map S: M — M and a set K of positive
p-measure such that

1
7= ([dRS)yu|, K
(K) thl

andforallx #ye K one has x, T(y)) ¢ Rreq and T(x) < t(T (x)).
This implies that for any o : I' — (0, 1) the intermediate measures u,, of (p1)sm’ and (p2)s7’ would be mutually
singular with respect to (p1)s7’. However, as in the proof of Lemma 4.21, this yields a contradiction. O

Remark 4.25. A more involved proof shows that 7, is absolutely continuous. As this strengthened statement is not
needed the details are left to the interested reader.

Disintegrating an optimal coupling 7 along T o p; yields a family of probability measures {s,} such that

T = lred @ Sx,

where s, is a probability measure on

(Ry Ndom(Ryeq)) X Ry with Ry := pa(({x} x M) N R).

Lemma 4.26. For all x € T (dom(R;.q)) the set Ry is diffeomorphic to an interval and the time function t is injective
on R,.

Proof. From Lemma 4.20 and x € Ry one sees that R, is formed by the image of geodesics which contain x and meet
at most at their endpoints. As x € R, is not in ATt or A™, it must be in the interior of R,. Thus, because geodesics
are non-branching and the time function t is strictly increasing along causal curves one sees that R, is the image of
precisely one geodesic. 0O

Define for x € T (dom(R,.4)) the measures ry := (p2)3(sx), i.e.

V= [lred @ Fx.

Next one constructs a transport map for the optimal couplings between 7, and r,. By the previous Lemma the
measures ¢, and r, are concentrated on a single geodesic such that the time function t give a uniquely defined
parametrization. Thus it suffices to solve the one-dimensional optimal transport problem between #, and ry. First
observe the following.
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Lemma 4.27. Let y € I" and 1, v be causally related probability measures on y. Then any causal coupling m, is
optimal.

Proof. Choose a monotone reparameterization [0, 1] — [0, 1] of y to an affine parameter. The cost function for
s,t €[0, 1] then is

c(t—y), ifs<t,

cr(s,t) =
o0 else

for some constant ¢ = c¢(y) < 0. Itis now easy to see that any causal coupling is cyclically monotone, i.e. optimal. O

By Lusin’s Theorem one can assume that x — (t,, r,) is continuous. Set
m(x,a) = tx(r_l(—oo,a])
and
n(x,b) :=ry(t ™ (=00, b]).

With this define ¢ (x, a) = b if b = argmin{m(x, a) < n(x, b)}. Observe that ¢ is measurable and (7, ) is injective on
dom(R;q) so that there is a measurable map ¥ : dom(R,.q) — M such that ¥ (y) = ¢(T (y), T(y)) for i eq-almost
all y € dom(R;¢q).

Again by Lusin’s Theorem one may assume v is continuous. Define a set 7 C M x M as follows

T={0. 20,2 eR, ¥ () =1}

Note that 7 is analytic and for each x € dom(R,..4) there is exactly one (x, y) € 7. Thus 7 agrees on dom(R;.q) X M
with the graph of a measurable function W : dom(R;.q) — M.

The choice of ¢ implies Wy, =r,. Thus (id xW);u is a coupling of p and v. Since W transports monotonously
along each R, one sees that W is an optimal transport map between ¢, and ry. As the initial coupling was optimal, we
see that along each transport ray the cost is not change In particular, the coupling (id x W)z is optimal between u
and v. This finishes the proof of Theorem 2.16.
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