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Abstract

The dual problem of optimal transportation in Lorentz-Finsler geometry is studied. It is shown that in general no solution exists 
even in the presence of an optimal coupling. Under natural assumptions dual solutions are established. It is further shown that the 
existence of a dual solution implies that the optimal transport is timelike on a set of full measure. In the second part the persistence 
of absolute continuity along an optimal transportation under obvious assumptions is proven and a solution to the relativistic Monge 
problem is provided.
© 2019 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The theory of optimal transportation on Riemannian manifolds has revolutionized Riemannian geometry during 
the last decade with its characterization of lower bounds on the Ricci curvature in terms of optimal transport and the 
formulation of synthetic Ricci curvature for metric measure spaces. Einstein’s field equations, the central equations 
of general relativity, are equations for the Ricci curvature of a Lorentzian metric. Thus the prospect of developing 
generalized notions of spacetimes and solutions to the Einstein field equations readily motivates a theory of optimal 
transportation in Lorentzian geometry. The works [15,21,23,27] are first steps in this direction, with the work by 
McCann giving a first characterization of lower Ricci curvature bounds for globally hyperbolic spacetimes. Optimal 
transportation in the context of special relativity was proposed in [8] and studied in [6,7,19,22].

The present theory is formulated for globally hyperbolic Lorentz-Finsler spacetimes. See Section 2 and [5] for 
definitions and properties. The cost function in Lorentz-Finsler geometry is the negative of the time separation, or 
Lorentzian distance function, for future causally related points and extended by ∞ to non-future causally related 
points. Because of the distance-like character of this cost function the problem is a relativistic version of the original 
Monge problem. This ensures that optimal couplings of finite cost transport along future pointing causal geodesics. 
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The non-finiteness, non-Lipschitzity and the discontinuity of the cost function at the boundary of J+ cause additional 
difficulties, though.

This article is a continuation of the work [27] by the second author on optimal transportation in Lorentz-Finsler 
geometry. The first major result, Theorem 2.8, focuses on the existence of solutions to the dual problem of Lorentzian 
optimal transportation, also known as the dual Kantorovich problem, see [28]. In [27] the second author gave natural 
conditions on the marginals to obtain optimal couplings and the weak Kantorovich duality. Here the weak Kantorovich 
duality says that the “inf-sup-equality” holds. No statement on the existence of solutions was made, though. The dual 
problem does in general not admit a solution as Section 3.1 shows. The problem lies on the lightcones. In general only 
a negligible part of mass is allowed to be transported along lightlike geodesics if a solution is to exist. To circumvent 
the underlying phenomenon the condition of strict timelikeness is introduced in Definition 2.6. Theorem 2.8 then 
shows that dual solutions exists if the marginals satisfy the strict timelikeness condition and at least one marginal 
has connected support. The conditions are met on a weakly dense subset of pairs of measures by Corollary 2.9. 
Theorem 2.8 generalizes results in [6,7,21]. The condition of strict timelikeness is related to parts of the definition of 
q-separated measures in [21]. Conversely the existence of a dual solution necessitates that only a negligible part of 
mass is transported along lightlike geodesics, see Theorem 2.12 the second major result of the present paper. A related 
result in special relativity is [7, Theorem C].

It should be noted that both the existence and non-existence of dual solutions adapt to the Lorentzian cost with q ∈
(0, 1) as studied in [15,21]. Indeed, the proof of Theorem 2.8 makes only use of the causality structure. In Example 3.1
and Theorem 2.12 the adjusted upper bound is −C

2 n1− q
2 and one may replace Lemma 4.1 by McCann’s result on 

starshapedness of q-separated measures [21, Proposition 5.5].
An important question for Lorentzian optimal transportation is whether the interpolation measures of an optimal 

transport are absolutely continuous with respect to the volume measure if at least one marginal is absolutely continu-
ous. Theorem 2.14, the third major result, shows that intermediate measures are absolutely continuous if one marginal 
is absolutely continuous and the other marginal is concentrated on an achronal set. This result seems optimal also 
in the non-relativistic setting, as the non-uniqueness of optimal couplings and interpolation measures usually prevent 
intermediate measures to be absolutely continuous. However, the optimal couplings constructed from the solution of 
the relativistic Monge problem can be used to show that there are indeed absolutely continuous intermediate measure 
though they are non-unique even assuming that transport is along time-affinely parametrized geodesics. We emphasize 
that the proof of Theorem 2.14 does not rely on the Lipschitz regularity of the transport directions as e.g. in [4], since 
Lipschitz regularity is not available, see [27].

We remark that the synthetic proof of existence of optimal transport maps adapts easily to Lorentzian cost functions 
with q ∈ (0, 1). Indeed, excluding lightlike geodesics one may parametrized geodesics with respect to arc length. Then 
the non-branching property (Lemma 4.8) and a weak measure contraction property (Lemma 4.6) or alternatively the 
(K, N)-convexity of the entropy as obtained in [21] are for example sufficient to follow mutatis mutandis the proof of 
Cavalletti-Huesmann [11].

The importance of the non-branching property – or equivalently the non-overlapping property of interpolation 
measures for costs that are strictly convex functions of the distance – was already observed by McCann [20] and 
appeared in the setting of general metric spaces in [25]. Non-branching turned out to be essential to solve the Monge 
problem in Rn [10] via Sudakov’s needle decomposition [26] and via density estimates using the measure contraction 
property in Rn [13] and in the Heisenberg group [14].

The last major result, Theorem 2.16, provides a solution to the relativistic Monge problem. It is shown that there 
exists an optimal transport map between any two causally related measures whenever the first measure is absolutely 
continuous with respect to any volume form of the differentiable manifold. If the second measure is concentrated on an 
achronal set this was already proven by the second author, see [27, Theorem 2.12]. The theorem therein also contains 
a uniqueness statement. Note, however, the existence proof in this article is independent of [27] and only relies on 
a non-branching property of time-affinely parametrized geodesics, see Lemma 4.8 below. Uniqueness then follows 
using [27, Proposition 3.21]. This can be seen as a stronger non-branching property that is related to the volume form.

The article is organized as follows: In Section 2 the setting is introduced and the main results are formulated. In 
Section 3 two examples are given. One example shows that not all pairs of measures with an optimal coupling admit 
a solution to the dual problem. The second example shows that the dual solution does not need to be Lipschitz, i.e. 
the optimal transport is not bounded away from the lightcones, despite the existence of a strictly timelike coupling. 
Finally Section 4 contains the proofs of all results.
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2. Results

Let M be a smooth manifold. Throughout the article one fixes a complete Riemannian metric h on M , though local 
changes to the metric will be allowed. Consider a continuous function L : T M → R, smooth on T M \ T 0M (here 
T 0M denotes the zero section in T M) and positive homogenous of degree 2 such that the second fiber derivative is 
non-degenerate with index dimM − 1. A set C ⊂ T M is a closed cone field if Cp := C ∩T Mp is a closed convex cone 
for all p ∈ M and C ∪ T 0M is a closed subset of T M . Choose a casual structure C of (M, L), see [27], i.e. select a 
closed cone field C with πT M(C) = M such that the interior of C is a connected component of {L > 0}. Define the 
Lagrangian L on T M by setting

L(v) :=
{

−√
L(v), for v ∈ C,

∞, otherwise.

The pair (M, L) is referred to as a Lorentz-Finsler manifold.
One calls an absolutely continuous curve γ : I → M (C-)causal if γ̇ ∈ C for almost all t ∈ I . Note that this 

condition already implies that the tangent vector is contained in C whenever it exists.
Denote with J+(x) the set of points y ∈ M such that there exists a causal curve γ : [a, b] → M with γ (a) = x

and γ (b) = y. Two points x and y will be called causally related if y ∈ J+(x). Note that this relation is in general 
asymmetric. Define the set

J+ := {(x, y) ∈ M × M| y ∈ J+(x)}
and J−(y) : {x ∈ M| y ∈ J+(x)}.

A Lorentz-Finsler manifold is said to be causal if it does not admit a closed causal curve, i.e. J+ ∩ 
 = ∅ for 

 := {(x, x)| x ∈ M}.

Definition 2.1. A causal Lorentz-Finsler manifold (M, L) is globally hyperbolic if the sets J+(x) ∩ J−(y) are com-
pact for all x, y ∈ M .

By [5] every globally hyperbolic Lorentz-Finsler spacetime admits a diffeomorphism (called a splitting) M ∼=
R × N such that the projection τ : R × N →R, (θ, p) 
→ θ satisfies

−dτ(v) ≤ min{L(v),−|v|}
for all v ∈ C. In the following one fixes a splitting τ and refers to it as a time function. Note that though the proofs 
below use a particular highly non-unique time function, the existence and uniqueness results do not depend on the 
choice of such a function.

Define the Lagrangian action (relative to L) of an absolutely continuous curve γ : [a, b] → M :

A(γ ) :=
b∫

a

L(γ̇ )dt ∈R∪ {∞}

Note that A(γ ) ∈R if and only if γ is causal. The following result is proven in the same fashion as in the Lorentzian 
case, see [27].

Proposition 2.2. Let (M, L) be globally hyperbolic. Then for every pair (x, y) ∈ J+ there exists a minimizer of A
with finite action connecting the two points. The minimizer γ solves the Euler-Lagrange equation of L up to monotone 
reparametrization and satisfies γ̇ ∈ C everywhere.

The Euler-Lagrange equation of L defines a maximal local flow

�L : U → T M,
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where U ⊂ R × T M is an open neighborhood of {0} × (T M \ T 0M). Note that C and ∂C are invariant under �L. 
A curve γ : I → M is a �L-orbit if it solves the Euler-Lagrange equation of L, see [27].

For a globally hyperbolic Lorentz-Finsler manifold (M, L) define the Lorentzian cost function

cL : M × M →R∪ {∞}
x, y 
→ min {A(γ )| γ connects x and y} .

It is immediate that cL is non-positive for causally related points and infinite otherwise.
Define τ : M × M → R, (x, y) 
→ τ(y) − τ(x). Let Pτ (M × M) be the space of Borel probability measures π on 

M × M such that τ ∈ L1(π). The Lorentzian cost is the functional

Pτ (M × M) →R∪ {∞}, π 
→
∫

cLdπ.

The minimization problem for the Lorentzian cost is called the Relativistic Monge-Kantorovich problem: Given 
two Borel probability measures μ0 and μ1 on M find a minimizer of the Lorentzian cost among all Borel probability 
measures on M ×M with first marginal μ0 and second marginal μ1. Any minimizer will be called an optimal coupling
between μ0 and μ1.

Let P(M) denote the space of Borel probability measures on M . For a splitting τ : M → R define

P+
τ (M) := {(μ0,μ1)| τ ∈ L1(μ0) ∩ L1(μ1) and μ0, μ1 are J+-related}

where two probability measures are J+-related (or just causally related) if there exists a coupling π with π(J+) = 1. 
Note that if π is a coupling of two J+-related probability measures μ0 and μ1, then (μ0, μ1) ∈ P+

τ (M) if and only if 
π ∈ Pτ (M × M).

A function ψ : M → R ∪ {∞} with ψ �≡ ∞ is cL-convex if there exists a function ζ : M →R ∪ {±∞} such that

ψ(x) = sup {ζ(y) − cL(x, y)| y ∈ M}
for all x ∈ M . The function

ψcL : M → R∪ {−∞}
y 
→ inf {ψ(x) + cL(x, y)| x ∈ M}

is called the cL-transform of ψ . A pair (x, y) ∈ M × M belongs to the cL-subdifferential ∂cL
ψ if

ψcL(y) − ψ(x) = cL(x, y).

Proposition 2.3 ([27]). Let (μ, ν) ∈P+
τ (M). One has

inf

{∫
cLdπ

∣∣∣∣π is a coupling of μ and ν

}
= sup

⎧⎨
⎩

∫
M

ϕ(y)dν(y) −
∫
M

ψ(x)dμ(x)

⎫⎬
⎭ ,

where the supremum is taken over the functions ψ ∈ L1(μ), ϕ ∈ L1(ν) with ϕ(y) − ψ(x) ≤ cL(x, y).

Proposition 2.3 shows that the weak Kantorovich duality holds.

Definition 2.4. Let (μ, ν) ∈ P +
τ (M). A cL-convex function

ψ : M → R∪ {∞}
is a solution to the dual Kantorovich problem (DKP) for (μ, ν) if ψ is μ-almost surely finite and∫

M

ψcL(y)dν(y) −
∫
M

ψ(x)dμ(x) = inf

{∫
cLdπ ′

∣∣∣∣π ′ is a coupling of μ and ν

}
.
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Since ψcL(y) − ψ(x) ≤ cL(x, y) every coupling π of μ and ν with ψcL(y) − ψ(x) = cL(x, y) π -almost surely 
will necessarily be optimal.

Definition 2.5 ([28]). A dynamical coupling of two probability measures μ0 and μ1 is a probability measure � on 
the space of continuous curves η : [0, 1] → M such that (ev0)�� = μ0 and (ev1)�� = μ1.

Dynamical couplings in Lorentzian geometry have been studied in [15,23].

Definition 2.6. A pair (μ, ν) of probability measures is strictly timelike if there exists a dynamical coupling � sup-
ported in the subspace of causal curves such that (∂t ev)�(� × L|[0,1]) is locally bounded away from ∂C where 
∂t ev(γ, t) := γ̇ (t).

Remark 2.7.

(1) Recall that every causal curve admits a Lipschitz parameterization. Further the condition of strict timelikeness is 
convex in the sense that the set of strictly timelike pairs of measures is convex.

(2) The condition of strict timelikeness generalizes the supercritical speed for relativistic cost functions in [6,7,19]. 
It is further related to the condition of q-separatedness in [21].

Theorem 2.8 (Existence of dual solutions). Let (μ, ν) ∈ P+
τ (M) be strictly timelike and assume that suppμ is con-

nected. Then the DKP for (μ, ν) has a solution, i.e. there exists a cL-convex function ψ : M → R ∪ {∞} real-valued 
on suppμ with∫

M

ψcL(y)dν(y) −
∫
M

ψ(x)dμ(x) = inf

{∫
cLdπ ′

∣∣∣∣π ′ is a coupling of μ and ν

}
.

For any optimal coupling π of μ and ν one has ψcL(y) − ψ(x) = cL(x, y) π -almost everywhere, i.e. suppπ ⊂ ∂cL
ψ .

The theorem generalizes [6, Theorem 5.13] and [7, Theorem B]. Note that Theorem 2.8 is most likely optimal, 
as Theorem 2.12 shows that dual solutions cannot exist whenever there are optimal couplings transporting a set of 
positive measure along ∂C, the boundary of the lightcone. A 1 + 1-dimensional example of the non-existence of dual 
solution is provided in Section 3.1 below.

Corollary 2.9. Every pair (μ0, μ1) ∈ P+
τ (M) can be approximated in the weak topology by a sequence

{(μn
0, μn

1)}n∈N ⊂P+
τ (M) such that every pair (μn

0, μ
n
1) admits a solution to the DKP.

Proof of Corollary 2.9. Choose a vector field X ∈ �(T M) with L(X) < 0 and dτ(X) = 1. Denote with ϕX
t the flow 

of X. Then

(νn
0 , νn

1 ) := ((ϕX−t )�μ0,μ1) ∈ P+
τ (M)

is strictly timelike for all n ∈N . The measure νn
0 can approximated by a measure on with connected support and

suppνn
0 ⊂ suppon.

Now the coupling

(μn
0,μn

1) :=
(

n − 1

n
νn

0 + 1

n
on,

n − 1

n
νn

1 + 1

n
(ϕX

1 )�o
n

)
satisfies the assumptions of Theorem 2.8. �

If cL(x, y) = 0 then by Proposition 2.2 there exists a lightlike �L-orbit η, i.e. L(η̇) ≡ 0, which cannot be 
parametrized by “arc length”, i.e. L(η̇) ≡ 1. In particular, such lightlike �L-orbits do not admit a “preferred affine 
parametrization” in any sense. However, using the time function τ one may reparametrize every causal �L-orbit as 
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follows: Denote with � the set of causal minimizers γ : [0, 1] → M of A such that dτ(γ̇ ) ≡ const(γ ). Elements of �
are called time-affinely parametrized geodesics. For (x, y) ∈ J+ consider the subspace

�x→y := {γ ∈ �| ev0(γ ) = x, ev1(γ ) = y}
where

ev : � × [0,1] → M, (γ, t) 
→ γ (t) and evt := ev(., t).

Since (M, L) is assumed to be globally hyperbolic one has �x→y �=∅.

Definition 2.10. A Borel measure � on � is a dynamical optimal coupling of μ0 := (ev0)�� and μ1 := (ev1)�� if 
π := (ev0, ev1)�� is an optimal coupling between μ0 and μ1.

Proposition 2.11 ([27]). Let (μ0, μ1) ∈ P+
τ (M). Then there exists a dynamical optimal coupling � for μ0 and μ1

with supp� ⊆ �.

In the following all Lebesgue measures are understood to be induced by the Riemannian metric h. The assumptions 
(i) and (ii) of the next theorem are similar and yield the same conclusion. It is not necessarily obvious that Theo-
rem 2.12(i) is the analogue of the classical solution to the dual Kantorovich problem for real-valued cost functions, 
see [28]. The conclusion of Theorem 2.12 under assumption (ii) on the other hand has no counterpart there.

Theorem 2.12 (Non-existence of dual solutions). Let (μ, ν) ∈P+
τ (M). Assume that suppμ ∩ suppν = ∅ and that the 

DKP for (μ, ν) admits a solution ψ : M → R ∪ {∞}. Further assume μ to be either

(i) supported on a spacelike hypersurface H and that it is absolutely continuous with respect to the Lebesgue measure 
LH on H or

(ii) absolutely continuous with respect to the Lebesgue measure L on M .

Denote with � a dynamical optimal coupling of μ and ν and with �0 the set of lightlike minimizers in �. Then 
�(�0) = 0, i.e. only a μ-negligible set of points is transported along lightlike minimizers.

The theorem generalizes [6, Corollary 3.6] and [7, Theorem C]. Note that Theorem 2.12 is proven indirectly and 
relies on a very similar construction as the 1 + 1-dimensional example in Section 3.1.

The following two theorems are the second main result of this article. The first theorem has a counterpart in the 
work of the second author, see [27, Theorem 2.13] and the second theorem is a solution to the relativistic Monge 
problem: For (μ, ν) ∈ P+

τ (M) find a Borel-measurable map F : M → M such that π := (id, F)�μ is an optimal 
coupling of μ and ν.

Note that the proofs are independent of [27, Theorem 2.13] and rely only on a straightforward geometric argument, 
see [27, Proposition 3.22].

Definition 2.13. A set A ⊂ M is achronal if cL|A×A ≥ 0. In case cL|A×A ≡ ∞ one says that A is acausal.

It is not difficult to see that any time slice {τ = τ0} is acausal. The definition is in accordance with the classical 
definitions of acausal and achronal sets in Lorentzian geometry.

Theorem 2.14 (Existence and uniqueness for achronal targets). Let (μ, ν) ∈P+
τ (M) such that μ is absolutely contin-

uous with respect to the Lebesgue measure on M and ν is concentrated on an achronal set. Then there exists a unique 
dynamical optimal coupling � such that (evt )�� is absolutely continuous for t ∈ [0, 1) and the optimal couplings 
(evt , ev1)�� are induced by transport maps.

Remark 2.15. Note that the Monge problem is in general highly non-unique even in the non-relativistic setting. In 
the non-relativistic setting the equivalent to being supported on a time slice would be to assume the second measure 
is concentrated in a level set of a dual solution to the Monge problem. However, such a condition depends on the first 
measure.
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Theorem 2.16 (Solution to the relativistic Monge problem). Let (μ, ν) ∈P+
τ (M) such that μ is absolutely continuous 

with respect to the Lebesgue measure on M . Then there exists a Borel-measurable map F : M → M such that π :=
(id, F)�μ is an optimal coupling of μ and ν.

3. Two examples

3.1. An example with no dual solution

Let M = R2 and

L : T M → R, (x, v) 
→ v2
1 − v2

2

with

C := {(x, v) ∈ T M| v2 ≥ |v1|},
where v = (v1, v2). It follows that cL is the negative Lorentzian distance on the 2-dimensional Minkowski space. Fix 
the splitting

τ : M →R, (s, t) 
→ t.

Denote with i0, i1 : R → M , the maps i0(s) := (s, 0) and i1(s) := (s, 1), respectively and with L1 the Lebesgue 
measure on the real line R. Consider the transport problem between

μ := (i0)�(L1|[0,1]) and ν := (i1)�(L1|[1,2]).

The map

T : M → M, (s, t) 
→ (s + 1, t + 1)

induces a causal coupling (id, T )�μ of μ and ν, i.e. (μ, ν) ∈ P+
τ (M).

Proposition 3.1. The DKP for (μ, ν) does not have a solution.

The transport problem for (μ, ν) is equivalent to the following transport problem on the real line: The restriction 
of cL to

{((s,0), (t,1))| s, t ∈R} ⊂ R2 ×R2

and the identification

{((s,0), (t,1))| s, t ∈R} ∼= R×R, ((s,0), (t,1)) ∼= (s, t)

yield the cost function

c : R×R→ R, (s, t) 
→
{

−√
1 − (s − t)2, for |s − t | ≤ 1

∞, for |s − t | ≥ 1

and the probability measures μ and ν are identified with

μ = L1|[0,1] and ν = L1|[1,2],

respectively.

Lemma 3.2. If π is a coupling of μ and ν with finite c-cost, then

π = (id, T )�μ,

where T : R → R, s 
→ s + 1.
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Proof. Let π be a coupling of μ and ν with finite cost. For every ε > 0 one has

μ([0, ε]) = ν([1,1 + ε]) = ν([−1,1 + ε]).
The support of π is contained in {(s, t)| |s − t | ≤ 1} since it has finite cost. Therefore

μ([0, ε]) = π([0, ε] ×R) = π([0, ε] × [1,1 + ε]).
By complementary reasoning one concludes that

π([ε,1] ×R) = π([ε,1] × [1 + ε,2]).
An induction over n then implies that the support of π is contained in

2n⋃
k=0

([k · 2−n, (k + 1) · 2−n] × [1 + k · 2−n,1 + (k + 1) · 2−n])
for every n ∈N . The claim follows in the limit for n → ∞. �
Lemma 3.3. Let [a, b] ⊂ R, ε > 0 and a Borel measurable set B ⊂ [a, b] be given with L1(B) ≥ ε(b − a). Then for 
all n ∈N there exists {ti}1≤i≤n ⊂ B with t1 < . . . < tn and ti+1 − ti ≥ ε

2n
(b − a).

Proof. Let n ∈N be given. Consider the function t 
→ L1(B ∩ [a, t]) and choose t1 ∈ B such that

L1(B ∩ [a, t1]) ∈
(

0,
ε

2n
(b − a)

)
.

Then one has

L1

(
B ∩

[
a, t1 + ε

2n
(b − a)

))
≤ ε

n
(b − a).

Next consider the function

t 
→ L1

(
B ∩

[
t1 + ε

2n
(b − a), t

])
, for t > t1 + ε

2n
(b − a).

Choose t2 ∈ B such that

L1

(
B ∩

[
t1 + ε

2n
(b − a), t2

])
∈

(
0,

ε

2n
(b − a)

)
.

Then one has

L1

(
B ∩

[
a, t2 + ε

2n
(b − a)

])
≤ 2

ε

n
(b − a) = 2

ε

n
(b − a).

Continue inductively. For k < n one has

L1

([
a, tk + ε

2n
(b − a)

])
≤ k

ε

n
(b − a) = k

n
ε(b − a) ≤ n − 1

n
ε(b − a).

Thus one concludes tk + ε
2n

(b − a) < b for all k < n. This shows that the construction does not terminate before n
points have been chosen. The claimed properties are clear from the construction. �
Lemma 3.4. There does not exist a c-convex function ψ : R → R ∪{∞} with ψ |[0,1] �≡ ∞ and ψc(y) −ψ(x) = c(x, y)

for π -almost all (x, y) ∈R ×R, where π is the coupling in Lemma 3.2.

The existence of a solution to the dual problem is independent of an additive constant in the definition of the cost 
function, i.e. for c′ := c + 1 the pair (ϕ′, ψ ′) solves the DKP for c′ iff (ϕ′, ψ − 1) solves the DKP for c.
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Proof. Let (ϕ, ψ) be a solution to the DKP for (μ, ν), i.e. c(x, y) ≥ ϕ(x) + ψ(y) and∫
c dπ ′ =

∫
ϕ dμ +

∫
ψ dν =

∫
(ϕ + ψ)dπ ′.

Thus one has c = ϕ + ψ π ′-almost surely.
Let s < t ∈ [0, 1]. By Lemma 3.3 for every n ∈ N there exist s ≤ t1 < . . . tn ≤ t with tk+1 − tk ≥ t−s

2n
and ϕ(tk) +

ψ(tk + 1) = 0. Thus one has

c (tk+1,1 + tk) ≤ c

(
0,1 − 1

2n
(t − s)

)
≤ −

√
1

2n
(t − s).

As in [28, page 61] it follows that

ψ(s) ≤ ψ(t) +
n∑

k=1

c (tk+1,1 + tk)

≤ ψ(t) − n

√
1

2n
(t − s) = ψ(t) −

√
n(t − s)

2

for all n. Therefore ψ(s) = −∞ for all s < 1. But this contradicts the definition of ψ . �
Proof of Proposition 3.1. The claim follows directly from Lemma 3.4 by reversing the identification

{((s,0), (t,1))| s, t ∈R} ∼=R×R. �
3.2. An example with non-Lipschitz dual solution

An example is given of a strictly timelike pair (μ, ν) for which the optimal coupling is not bounded away from 
∂J+. This counters the intuition that the optimal coupling of strictly timelike pairs is supported away from ∂J+.

Let 0 < ε < 1
2 . Choose a function f̄ ∈ C0, 1

2 ([0, 5]) ∩ C∞([0, 5] \ {2}) with

(1) f̄ ≡ 1 + ε on [0, 1],
(2) f̄ (x) > −cL((x, 0), (1, 1)) for x ∈ [1, 2),
(3) f̄ (2) = 0
(4) f̄ (x) > cL((3, 0), (x, 1)) for x ∈ (2, 3],
(5) f̄ ′ < 0 near 2.
(6) f̄ ≡ ε − 1 on [3, 4]

that induces a 1
2 -Hölder continuous function f on R/5Z, smooth except at [2] ∈R/5Z.

Now consider R/5Z ×R with the inner product

(L =)g := dθ2 − dt2

for (θ, t) ∈ R/5Z ×R where

C := {v| g(v, v) ≤ 0, dt (v) ≥ 0}.
The cost function cL for the pair (g, C) is

cL((η, s), (θ, t)) =
{

−√
(t − s)2 − (θ − η)2, s ≤ t, t − s ≥ θ − η

∞, else.

Define

ϕ : R/5Z×R→ R∪ {∞}, ϕ(y) := inf{f (θ) + cL((θ,0), y)| θ ∈R/5Z}.



352 M. Kell, S. Suhr / Ann. I. H. Poincaré – AN 37 (2020) 343–372
Lemma 3.5. One has

ϕcL(y) = infx{ϕ(x) + cL(x, y)} ≡ ϕ(y)

for all y ∈ R/5Z ×R. It follows that ϕ is cL-concave.

Proof. Indeed first since cL(x, x) = 0 one has

ϕcL(y) = infx{ϕ(x) + cL(x, y)} ≤ ϕ(y)

for all y.
Fix y ∈ R/5Z × R and choose z ∈ R/5Z × R with ϕcL(y) = ϕ(z) + cL(z, y). For z choose θ ∈ R/5Z with 

ϕ(z) = f (θ) + cL((θ, 0), z). Then one has

ϕ(y) ≤ f (θ) + cL((θ,0), y) ≤ f (θ) + cL((θ,0), z) + cL(z, y) = ϕ(z) + cL(z, y) = ϕcL(y)

by the triangle inequality for cL. Thus one has

ϕ(y) = infx{ϕ(x) + cL(x, y)} = ϕcL(y)

for all y. �
As usual define

∂cϕ := {(x, y)| ϕ(y) − ϕ(x) = cL(x, y)} ⊆ (R/5Z×R) × (R/5Z×R)

and ∂cϕx := p2(∂cϕ ∩ ({x} × (R/5Z × R))). Note that for all (θ ′, t) with t ≥ 0 there exists θ ∈ R/5Z with (θ ′, t) ∈
∂cϕ(θ,0) since cL is continuous on its domain.

Lemma 3.6. For θ �= [2] and y ∈ ∂cϕ(θ,0) with t (y) > 0 one has y ∈ I+(θ, 0). Further for every (θ, t) ∈R/5Z ×[0, 1]
with θ �= [2] the set ∂cϕ(θ,0) ∩R/5Z × {t} has exactly one element.

Proof. Indeed y ∈ ∂cϕ(θ,0) implies

infη{f (η) + cL((η,0), y)} = ϕ(y) = f (θ) + cL((θ,0), y),

i.e. the function η 
→ f (η) + cL((η, 0), y) has a minimum in θ . If cL((θ, 0), y) = 0 then η 
→ cL((η, 0), y) falls off 
to one side of θ �= [2] faster than f can rise by construction. Therefore in this case θ cannot be a minimum. Thus it 
follows that cL((θ, 0), y) < 0, i.e. y ∈ I+((θ, 0)).

Now fix θ �= [2] and t ∈ [0, 1]. Then the equation

∂

∂θ
f (θ) + ∂

∂θ
cL((θ,0), (θ ′, t)) = 0

has exactly one solution θ ′. Since by the previous paragraph the points in ∂cϕ(θ,0) are characterized as solutions to 
this equation, the second part of the claim follows. �
Lemma 3.7. For every neighborhood U of ∂J+ and every t ∈ (0, 1], the 1-dimensional Lebesgue measure of

{θ ∈R/5Z \ {[2]}| ((θ,0), y(θ,t)) ∈ U}
is positive, where y(θ,t) denotes the unique point in ∂cϕ(θ,0) ∩R/5Z × {t}.

Proof. The Lebesgue measure of points θ such that −f ′(θ) ≥ C is bounded from below by the Lebesgue measure 
of the set of points with ∂

∂θ
cL((θ, 0), (1, 1)) ≥ C for C sufficiently large by the assumptions (2) and (3) above. The 

last set has positive Lebesgue measure for every C < ∞. For every neighborhood U of ∂J+ there exists CU <

∞ such that 
∣∣ ∂
∂θ

cL((θ,0), y)
∣∣ ≥ CU for all ((θ, 0), y) ∈ U . Now y = y(θ,t) is the unique solution to the equation 

∂
∂θ

f (θ) + ∂
∂θ

cL((θ, 0), y) = 0 with t (y) = t , and the claim follows. �
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Lemma 3.8. There exists δ = δ(t) > 0 such that dist((θ − t, t), ∂cϕ(θ,0)) ≥ δ for all θ �= [2].

Proof. For θ �= [2] let (θt , t) ∈ ∂cϕ(θ,0). By the Lemma 3.7 one has that

η 
→ cL((η,0), (θt , t))

is smooth at θ and
∂

∂θ
f (θ) + ∂

∂θ
cL((θ,0), (θt , t)) = 0 ⇔ ∂

∂θ
cL((θ,0), (θt , t)) = − ∂

∂θ
f (θ).

Since ∂
∂θ

f (θ) is bounded outside every neighborhood of [2] ∈R/5Z, the existence of δ follows there. By the assump-
tion ∂

∂θ
f < 0 on a neighborhood of [2] the bound follows in fact for all θ �= [2] since ∂

∂θ
cL((θ, 0), (θ ′, t)) → −∞ for 

θ ′ ↓ θ − t . �
Now consider the probability measure μ := I�L′ where

I : R/5Z ↪→R/5Z×R, θ 
→ (θ,0),

and L′ is the normalized Lebesgue measure on R/5Z. The following result is a reformulation of [3, Proposition 3]
adapted to the present situation.

Proposition ([3]). Let ϕ be a cL-convex function, and let μ be a probability measure on M . Then there exists a 
probability measure ν on M such that ϕ solves the DKP for (μ, ν).

By the proposition there exists a probability measure ν supported on R/5Z ×{1} such that ϕ is optimal for the pair 
(μ, ν). By Lemma 3.7 the transport is not bounded away from ∂J+.

Now a rotation of R/5Z in the negative direction leaves μ unchanged, but the coupling induced by ϕ is twisted 
into a coupling whose support has positive distance from ∂J+ by Lemma 3.8. Thus the pair (μ, ν) is strictly timelike.

4. Proofs

4.1. Proof of Theorem 2.8

Let (μ, ν) ∈ P+
τ (M) be strictly timelike. Further let ρ be an optimal coupling of μ and ν. Note that ρ is causal 

since its cost is finite. Fix (x0, y0) ∈ suppρ. Define

ψ : J−(suppν) →R∪ {±∞},

x 
→ sup

{
k∑

i=0

[cL(x′
i , y

′
i ) − cL(x′

i+1, y
′
i )]

}

where the supremum is taken over all k ∈ N and all sequences

{(x′
i , y

′
i )}0≤i≤k+1 ⊂ suppρ with x′

k+1 = x and (x′
0, y

′
0) = (x0, y0).

One has ψ(x0) ≥ cL(x0, y0) − cL(x0, y0) = 0. At the same time the right hand side of the above definition is nonpos-
itive for x = x0 by cyclic monotonicity, see [27, Proposition 2.7]. Therefore one has ψ(x0) = 0.

Next one shows that ψ is real-valued and measurable on suppμ. Fix (u, w) ∈ suppρ. Consider for k ∈ N chains 
{(ui, wi)}0≤i≤k ⊆ suppρ with ui+1 ∈ J−(wi) ∩ suppμ for 0 ≤ i ≤ k − 1 where (u0, w0) = (u, w). Define

A := {wk| {(ui,wi)}0≤i≤k as just defined}.
The claim is that

p2(p
−1
1 (J−(A)) ∩ suppρ) = A,

where p1, p2 : M × M → M are the canonical projections onto the first and second factor respectively. It is easy 
to see that A is contained in p2(p

−1(J−(A)) ∩ suppρ). More precisely let y ∈ A. Choose (x, y) ∈ suppρ. Then 
1
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x ∈ J−(y) ⊂ J−(A) since ρ is causal, i.e. y ∈ p2(p
−1
1 (J−(A)) ∩ suppρ). For the opposite inclusion consider y ∈

p2(p
−1
1 (J−(A)) ∩ suppρ). Then there exists x ∈ M with (x, y) ∈ p−1

1 (J−(A)) ∩ suppρ, i.e. (x, y) ∈ suppρ and 
x ∈ J−(A). So there exists a chain

{(ui,wi)}0≤i≤k ⊂ suppρ

with ui+1 ∈ J−(wi) ∩ suppμ for 0 ≤ i ≤ k − 1, (u0, w0) = (u, w) and x ∈ J−(wk). Now define a new chain

{(ui,wi)}0≤i≤k+1 ⊂ suppρ

identical with the original chain for i ≤ k and

(uk+1,wk+1) := (x, y).

Since (x, y) ∈ suppρ this shows that y ∈ A.
By the marginal property one has

μ(J−(A)) = ρ(p−1
1 (J−(A)) ∩ suppρ)

and

ν(A) = ρ(p−1
2 (A)) = ρ(p−1

2 (p2(p
−1
1 (J−(A)) ∩ suppρ)))

by the above characterization of A. Since B ⊂ p−1
2 (p2(B)) for any set B ⊂ M ×M one knows that ν(A) ≥ μ(J−(A)). 

With the inclusion suppρ ⊆ J+ one has on the other hand ν(A) ≤ μ(J−(A)), i.e. ν(A) = μ(J−(A)).
Consequently every causal coupling ρ′ of (μ, ν) has to couple J−(A) with A, especially the coupling guaranteed 

by the definition of strict timelikeness. But that means J−(A) ∩ suppμ is locally uniformly bounded away from 
∂J−(A). Since J−(A) ∩ suppμ is nonempty and open it has to be equal to suppμ since suppμ is connected. This 
implies A = suppν by the construction of A.

Now let x ∈ suppμ be given. Choose y ∈ suppν with (x, y) ∈ suppρ. The above argument for the set A with 
(u0, w0) = (x, y) yields that there exists a finite chain {(ui, wi)}0≤i≤k+1 ⊂ suppρ with cL(ui+1, wi) < ∞ and 
(uk+1, wk+1) = (x0, y0). By definition of ψ one has

ψ(x) +
k∑

i=0

[cL(ui,wi) − cL(ui+1,wi)] ≤ ψ(x0) = 0.

Since

k∑
i=0

[cL(ui,wi) − cL(ui+1,wi)] > −∞

one obtains ψ(x) < ∞.
Next consider the construction of A with (u0, w0) = (x0, y0). Then there exists a finite chain {(u′

i , w
′
i )}0≤i≤k+1 ⊂

suppρ with cL(u′
i+1, w

′
i ) < ∞ and (u′

k+1, w
′
k+1) = (x, y). This time one has

ψ(x0) +
k∑

i=0

[cL(u′
i ,w

′
i ) − cL(u′

i+1,w
′
i )] ≤ ψ(x)

and it follows ψ(x) > −∞. Since cL is continuous and real-valued on J+, one concludes that ψ is measurable.
Define ζ : suppν → R ∪ {−∞},

ζ(y) := sup

{
k∑

i=0

[cL(x′
i , y

′
i ) − cL(x′

i+1, y
′
i )] + cL(x′

k+1, y)

}
,

where the supremum is taken over all k ∈N and sequences

{(x′
i , y

′
i )}0≤i≤k+1 ∈ suppρ with y′

k+1 = y and (x′
0, y

′
0) = (x0, y0).
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Then one has ψ(x) = supy{ζ(y) − cL(x, y)}, i.e. ψ is cL-convex. It follows, like in step 3 of the proof of [28, 
Theorem 5.10 (i)] that

ψcL(y) − ψ(x) = cL(x, y)

for ρ-almost all (x, y) ∈ M × M . Since ψcL(y) − ψ(x) ≤ cL(x, y) everywhere one obtains equality π -almost every-
where for any optimal coupling π of μ and ν. This finishes the proof of Theorem 2.8.

4.2. Proof of Theorem 2.12(i)

Let � be a dynamical optimal coupling between μ and ν and ψ : M → R ∪ {∞} be a solution to the DKP for 
(μ, ν). The proof is carried out via contradiction, i.e. one assumes that

�(�0) > 0

or equivalently �|�0 �= 0.
One has (ev0)��|�0 ≤ μ and therefore

(ev0)��|�0 � LH .

The goal is to find a set V with positive measure relative to μ such that ψ |V ≡ −∞, i.e. contradicting the definition 
of a solution to the DKP for (μ, ν).

Since the problem is local one can assume that suppμ and suppν are compact. The Borel measurable map � →
T M , γ 
→ γ̇ (0) induces a measure on ∂C via the push forward of �|�0 .

Since μ and ν have disjoint compact support there exists a lower bound ε0 > 0 on the distance between points 
in the supports. In order to illuminate the construction one can, by diminishing ε0 and considering an intermediate 
transport, assume that

(1) there exists a submanifold chart U →Rm of H ∼=Rm−1 × {0} such that ∂m ∈ intC everywhere and

suppμ ∪ suppν ⊂ B3ε0(0) ⊂Rm ∼= U,

(2) the Riemannian metric is induced by the euclidian metric on a convex neighborhood of suppμ ∪ suppν and
(3) expL is a diffeomorphism from an open set in TRm onto B1(0) × B1(0).

In order to justify these assumptions one has to show that the intermediate transport has a solution to the DKP for 
the transported measures.

Lemma 4.1. Let (μ, ν) ∈ P+
τ (M) such that the DKP for (μ, ν) has a solution and let � be a dynamical optimal 

coupling of μ and ν. Further let σ1, σ2 : � → [0, 1] be measurable with σ1 ≤ σ2. Then there exists a solution of the 
DKP for the intermediate transport between (ev◦σ1)�� and (ev◦σ2)��.

Proof. (i) First consider the special case σ1 ≡ 0. The assertion then claims that for σ : � → [0, 1] the DKP has a 
solution for the martingales μ and νσ := (ev◦σ)��.

Set π := (ev0, ev1)�� and let ψ : M →R ∪ {∞} be a solution of the DKP, i.e. ψ |supp μ �≡ ∞ and

ψcL(y) − ψ(x) = cL(x, y), π-almost everywhere. (1)

Choose a set � ⊂ suppπ of full π -measure where (1) is satisfied. Then � is concentrated on �� := (ev0, ev1)
−1(�). 

By definition of ψcL one has

ψcL(y) − ψ(x) ≤ cL(x, y), for all x, y ∈ M.

Assume that there exists γ ∈ �� and t ∈ [0, 1] such that

ψcL(γ (t)) − ψ(γ (0)) < cL(γ (0), γ (t)).

Then there exists x ∈ M with
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ψ(x) + cL(x, γ (t)) < ψ(γ (0)) + cL(γ (0), γ (t))

by the definition of the cL-transform ψcL . Adding cL(γ (t), γ (1)) to both sides and applying the triangle inequality, 
which is an equality on the right hand side, one obtains

ψcL(γ (1)) ≤ ψ(x) + cL(x, γ (1)) < ψ(γ (0)) + cL(γ (0), γ (1)),

which implies

ψcL(γ (1)) − ψ(γ (0)) < cL(γ (0), γ (1)),

a contradiction. Therefore one has

ψcL(γ (t)) − ψ(γ (0)) = cL(γ (0), γ (t))

for all γ ∈ �� and the lemma in the special case σ1 ≡ 0 is proved.
(ii) Second consider the case σ1 ≡ 0. By definition ψcL is a cL-concave function and since ψ is cL-convex one has, 

cf. [28],

ψ(x) = sup{ψcL(y) − cL(x, y)| y ∈ M} = (ψcL)cL(x)

for all x ∈ M . This implies that the transport problem between μ and ν has a solution of the DKP if and only if there 
exists a cL-concave function ϕ : M →R ∪ {−∞} with

ϕ(y) − ϕcL(x) = cL(x, y), π-almost everywhere

for all optimal coupling π of μ and ν. With an analogous argument as in case (i) one obtains

ϕ(γ (1)) − ϕcL(γ (t)) = cL(γ (t), γ (1))

for all γ ∈ �� and t ∈ [0, 1] with the notation of the special case. Setting ϕ = ψcL yields the assertion.
(iii) To complete the proof consider the succession of first the intermediate transport between σ ′

1 ≡ 0 and σ ′
2 ≡ σ

and second the intermediate transport between σ ′′
1 ≡ σ1 and σ ′′

2 ≡ 1. �
For v ∈ TRm ∼= T U denote with vH the projection of v along ∂m onto span{∂1, . . . , ∂m−1}. Further let γv be the 

unique �-orbit with γ̇v(0) = v for v ∈ C.

Lemma 4.2. For ε0 > 0 sufficiently small there exists C0 < ∞ and ϕ0 > 0 such that for all v ∈ ∂C ∩ T 1B3ε0(0) and 
t > 0 such that

dist(γv(0), γv(t)) ∈ [ε0,6ε0]
the intersection

Pv,t := ∂J−(γv(t)) ∩ ({γv(0)} +Rm−1 × {0})
is a smooth hypersurface in {γv(0)} +Rm−1 × {0} with

(a) the norm of the second fundamental form bounded by C0 and
(b) � (vH , T Pv,t ) > ϕ0.

Proof. Consider for ε > 0 the map

rε : B1(0) → Bε(0), x 
→ εx.

The Lagrangians Lε := 1
ε2 r∗

εL converge uniformly to L0 := L(0) on every compact subset of T B1(0) for ε → 0

in every Ck-topology. The Euler-Lagrange flow of Lε then converges uniformly on compact subsets in every 
Ck-topology to the Euler-Lagrange flow of L0. Note that the Euler-Lagrange equation for L0 is ẍ = 0. Thus one 
has expL0

x (C0) = x + C0 and therefore the assertion (a) and (b) hold for L0. Since the Riemannian metric h is euclid-
ian on B1(0) one has 1

2 r∗
ε h = h. This together with the fact that
ε
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expLε
x (Vε,x ∩ ∂Cε,x) = ∂J+

ε (x) ⊂ B1(0)

for some neighborhood Vε,x of 0x in TxB1(0) one obtains the lemma for ε > 0 sufficiently small. �
Statement (b) is equivalent to requiring

� (vH ,Nv,t ) ≤ π

2
− ϕ0

where � (v, w) denotes the euclidian angle between v and w and Nv,t denotes the inward pointing unit normal to Pv,t . 
Property (a) implies that for ε1 := 1√

C0
> 0 one has

Bε1(γv(0) + ε1Nv,t ) ∩ ({γv(0)} +Rm−1 × {0}) ⊂ J−(γv(t)) ∩ ({γv(0)} +Rm−1 × {0}).
This and (b) then imply that

{γv(0)} + Cone
(
v,

ϕ0

2
, ε2

)
⊂ J−(γv(t)) ∩ ({γv(0)} +Rm−1 × {0})

where

Cone(v,ϕ, ε) := {w ∈Rm−1 × {0}|� (vH ,w) < ϕ, |w| < ε}
and

ε2 := 2ε1 sin
ϕ0

2
.

Now for p ∈ B3ε0(0), v ∈ ∂Cp , q ∈ {p} − Cone(v, ϕ0
4 , ε2) and w ∈ ∂Cq with � (wH , vH ) < ϕ0

4 one has

Bdist(p,q) sin
ϕ0
4
(p) ∩ ({γv(0)} +Rm−1 × {0}) ⊂ J−(γw(t))

for dist(q, γw(t)) ∈ [ε0, 3ε0].
Abbreviate

A := supp[(ev0)�(�|�0)].
Define a map

T : supp(�|�0) → Sm−2, γ 
→ γ̇ (0)H .

Since (πT M ◦ T )��|�0 = μ|A and μ(A) �= 0 one has

T�(�|�0) �= 0

where πT M : T M → M denotes the canonical projection. Choose v0 ∈ Sm−2 such that

T�(�|�0)(Bϕ0
4
(v0)) > 0.

Then A′ := πT M(Bϕ0
4
(v0)) has positive measure with respect to LH , since μ|A � LH . Let p be a Lebesgue point of 

A′, i.e.

limδ↓0
LH (A′ ∩ Bδ(p))

LH (Bδ(p))
= 1.

Then there exist ε3, ε4 > 0 such that for the unique v ∈ ∂C with vH = v0

LH

(
A′ ∩ B2ε3(p) \ Bε3(p) ∩

(
{p} − Cone

(
v,

ϕ0

4
, ε2

)))
≥ ε4.

Choose polar coordinates (r, θ1, . . . , θm−2) on B2ε3(p)) ⊂ Rm−1 ×{0} centered at p. By Fubini’s Theorem there exists 
(η1, . . . , ηm−2) such that

2ε3∫
χA′(r, η1, . . . , ηm−2)rdr ≥ ε4.
ε3
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Thus the 1-dimensional Lebesgue measure

L1(A
′ ∩ {r ∈ (ε3,2ε3), θ1 = η1, . . . , θm−2 = ηm−2}) ≥ ε4

2ε3
.

Recall Lemma 3.3:

Lemma. Let [a, b] ⊂R, ε > 0 and B ⊂ [a, b] Borel measurable be given with L1(B) ≥ ε(b − a). Then for all n ∈N
there exists {ti}1≤i≤n ⊂ B with t1 < . . . < tn and ti+1 − ti ≥ ε

2n
.

Applying Lemma 3.3 to

B := A′ ∩ {r ∈ (ε3,2ε3), θ1 = η1, . . . , θm−2 = ηm−2}
yields for every n ∈N points

x1, . . . xn ∈ A′ ∩ {r ∈ (ε3,2ε3), θ1 = η1, . . . , θm−2 = ηm−2}
and y1, . . . , yn ∈ M such that (xi, yi) ∈ suppπ for the optimal coupling π induced by �, xi+1 ∈ J−(yi), 
dist(xi, xi+1) ≥ ε4

4nε3
and Bε3 sin

ϕ0
4
(p) ⊂ J−(yn). Using the exponential map of L one sees that there exists C > 0

such that cL(xi+1, yi) ≤ − C√
n

. Then one has for every point x ′ ∈ Bε3 sin
ϕ0
4
(p)

ψ(x′) ≤ ψ(x1) +
∑

cL(xi+1, yi) ≤ ψ(x1) − (n − 1)
C√
n

≤ ψ(x1) − C

2

√
n

for all n ∈N where ψ denotes the solution to the DKP for (μ, ν). Thus

ψ |B
ε3 sin

ϕ0
4

(p) ≡ −∞
therefore contradicting that ψ is cL-convex.

4.3. Proof of Theorem 2.12(ii)

One can prove Theorem 2.12(ii) in the same fashion as Theorem 2.12(i), but for the sake of avoiding repetition 
Theorem 2.12(ii) is reduced to Theorem 2.12(i).

Let fμ ∈ L1(L) be the density of μ with respect to the Lebesgue measure L on M . If �(�0) > 0 there exists a chart 
U → Rm of M such that U is foliated by spacelike hypersurfaces {Hs = Rm−1 × {s}}s∈R and (ev0)��|�0(U) > 0. 
By [27, Corollary 3.5] one can then assume that suppμ is contained in U . By Fubini’s Theorem the restriction of fμ

to Hs is integrable with respect to the Lebesgue measure Lm−1 on Rm−1 for almost all s ∈ R. For (xm)�μ-almost all 
s ∈ R one has

ms :=
∫
Hs

fμdLm−1 > 0

where xm denotes the m-th coordinate function on Rm. For s with ms ∈ (0, ∞) define μs by

μs(A) := 1

ms

∫
A∩Hs

fμdLm−1.

Note that μs is a probability measure on Hs . Consider the disintegration {�s}s∈R of � along Xm := xm ◦ev0 : � → R. 
Then one has (ev0)��s = μs for μm-almost all s. This can be seen as follows: Obviously one has (Xm)�� = μm since 
(ev0)�� = μ. It follows that for all Borel measurable B ⊂ M one has:∫

R

(ev0)��s(B)dμm =
∫
R

�s(ev−1
0 (B))dμm

=
∫
R

�s(ev−1
0 (B))d(Xm)�� = �(ev−1

0 (B)) = μ(B)
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Thus one has

μ(.) =
∫
R

(ev0)��s(.)dμm

and the claim follows from the uniqueness part of the Disintegration Theorem. Finally define νs := (ev1)��s .

Lemma 4.3. �s is an optimal dynamical coupling of μs and νs for μm := (xm)�μ-almost all s ∈R. Further ψ solves 
the DKP for (μs, νs) for μm-almost all s.

Proof. The first assertion follows from the second since the pair (ψ, ψcL) is admissible (see Section 2). Define 
πs := (ev0, ev1)��s . Assume that ψ does not solve the DKP for (μs, νs) for s in a set B ⊂R of positive μm-measure, 
i.e. ∫

M×M

cL(x, y)dπs >

∫
M

ψcL(y)dνs −
∫
M

ψ(x)dμs

for all s ∈ B . Then for some δ > 0 one has∫
M×M

cL(x, y)dπs − δ >

∫
M

ψcL(y)dνs −
∫
M

ψ(x)dμs

for s in a smaller but μm-non-negligible set Bδ ⊂R. This implies that∫
M×M

cL(x, y)dπ − δ

∫
Bδ

msdμm >

∫
M

ψcL(y)dν −
∫
M

ψ(x)dμ

since cL(x, y) ≥ ψcL(y) − ψ(x) for all (x, y). Note that 
∫
Aε

msdμm > 0 since Bδ is μm-non-negligible. This contra-
dicts the assumption that ψ is a solution to the dual problem for (μ, ν) since π is minimal. �

Theorem 2.12(i) then yields that for almost all s ∈R one has �s(�0) = 0. Since

�(�0) =
∫
R

ms�s(�0)ds

the claim follows. The last equation follows from the respective statement about μs , i.e.

μ(A) =
∫
R

msμs(A)ds

for all measurable A ⊂Rm.

4.4. Proof of Theorem 2.14

The proof of Theorem 2.14 relies on ideas of [11], see also [17,12,18]. Note, however, there is no unique equivalent 
to the assumption of achronality resp. acausality of the support of the second measure. Indeed, the Monge problem 
is in general highly non-unique. However, the proof in the non-relativistic as well as the relativistic setting relies 
essentially on the following two properties: Geodesics with endpoints in a given set are non-branching (Lemma 4.8) 
and that there is a weak form of the measure contraction property (Lemma 4.6). The latter holds due to differentiability 
of the time function and the exponential map.

For the proof it suffices to consider the case that both suppμ and suppν are compact and disjoint. This follows 
from the observation that absolute continuity is equivalent to absolute continuity on every compact subset.

Recall that

�L : U ⊂R× T M → T M
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denotes the Euler-Lagrange flow of L. Set

{1} ×V := ({1} × T M) ∩U .

By [27, Proposition 3.14] the map

expL : V → M × M, v 
→ (πT M(v),πT M ◦ �L(1, v))

is a C1-diffeomorphism of a neighborhood of the zero section onto its image and smooth outside T 0M . Here

πT M : T M → M

denotes the canonical projection. Set

expx : V ∩ T Mx → M, v 
→ πT M ◦ �L(1, v).

Further since ∂t (πT M ◦ �L(t, v)) = �L(t, v) and �L(1, tv) = �L(t, v) one has

d(expx)0 = ∂v(πT M ◦ �L(1, v))|v=0 = idT M (2)

via the canonical identification T Mx
∼= T (T Mx)0.

Proposition 4.4. Let v ∈ Cp := C ∩ T Mp such that

d(expp)v : T (T Mp)v → T MexpLp (v)

is singular. Then for every T > 1 the geodesic

ηv : [0, T ] → M, t 
→ expp(tv)

is not A-minimizing between its endpoints.

Proof. In the case of v ∈ intC the claim follows mutatis mutandis as in [2, Proposition 7.4.1.], since C1-small varia-
tions of timelike curves remain timelike.

The case v ∈ ∂C is the subject of [1, Proposition 6.8]. Note that the definition of Lorentz-Finsler metrics therein is 
equivalent to the presently used by virtue of [24]. �
Corollary 4.5. Let K ⊂ M be compact. Consider the set K of A-minimal causal L-geodesics η : [0, 1] → M , i.e. 
η(t) = expη(0)(t η̇(0)) and A(η) = cL(η(0), η(1)), with η(0), η(1) ∈ K . Then there exists a continuous function 
e : (0, 1) → R>0 with

‖d(expη(0))
−1
t η̇(0)‖ ≤ e(t)

for all η ∈ K and t ∈ [0, 1). Further one has limt→0 e(t) = 1.

Proof. For a single A-minimal geodesic η : [0, 1] → M the claim follows directly from Proposition 4.4. Further by 
(2) one has e(t) → 1 for t → 0.

Since K is compact the corollary follows from the continuity of the differential of the exponential map. �
For v ∈ C consider the unique time affinely parameterized local A-minimizer γv : R → M with γ̇v(0) = v. Accord-

ing to [27, Section 3.5] γv is an orbit of a flow on C \ T 0M . Define the map

expτ : C → M, v 
→ γv(1).

Denote with expτ
p the restriction of expτ to C ∩ T Mp . The map satisfies expτ (tv) = γv(t) which implies

d(expτ
p)v → idT Mp (3)

for v → 0 and

d(expτ
p)v(v) = γ̇v(1). (4)
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Further by [27, Proposition 3.5] there exists a smooth map

s : C \ T 0M → [0,∞)

such that expτ (v) = exp(s(v)v) for all v ∈ C \ T 0M . One has

d(expτ
p)v = d(expp)s(v)v(dsv ⊗ v + s(v) · idT Mp). (5)

The following lemma is at the heart of the proof of Theorem 2.14. It is an easy consequence of differentiability of 
the time function τ and the exponential map.

Lemma 4.6 (weak measure contraction property). Let K ⊂ M be compact. Then there exists a function f : (0, 1) →
(0, 1) with limt→0 f (t) = 1 such that for all y ∈ K and all measurable A ⊂ K ∩ J−(y) it holds

L(At,y) ≥ f (t)L(A)

where At,y = {evtγ | γ ∈ (ev0, ev1)
−1(A × {y})}.

Proof. From (4) and (5) follows that d(expτ
p)v is singular if and only if d(expp)v is singular. By Corollary 4.5 and 

continuity of both d expτ
p and d expp there exists a function eτ : (0, 1) → R>0 with

‖d(expτ
γ (0))

−1
t γ̇ (0)‖ ≤ eτ (t) (6)

for any γ ∈ (ev0, ev1)
−1(K × {y}). Now consider

TK,y := {v ∈ C| ∃γ ∈ (ev0, ev1)
−1(K × {y}) with γ̇ (0) = v}.

It follows that

At,y = expτ (t (TK,y ∩ (πT M)−1(A))).

By equation (6) there exists a function f : (0, 1) → (0, 1) independent of A with

L(At,y) ≥ f (t)L(A)

for all t ∈ (0, 1). With property (3) one concludes f (t) → 1 for t → 0. �
For the following proposition observe that due to the fact that geodesics γ with (τ ◦ γ )′ ≡ const are uniquely 

defined by their initial velocity one knows that the image of such a geodesic is a one-dimensional rectifiable curve. 
In particular, it has zero measure with respect to the Lebesgue measure L on M . This implies that for distinct points 
x, y ∈ M the set

Bx,y := {z ∈ J−(y) ∩ J−(x) | cL(z, y) = cL(z, x) + cL(x, y)

or cL(z, x) = cL(z, y) + cL(y, x)}
has vanishing L-measure. In particular,

L(At,x ∩ At,y) = 0

for x �= y. Note that if x and y are not causally related then At,x ∩ At,y =∅.
A more general statement of this form was obtained by the second author in [27].

Lemma 4.7. Let B be a closed achronal set. Then the set⋃
x �=y∈B

Bx,y

has vanishing L-measure.
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Proof. For z ∈ ∪x �=y∈BBx,y there exist x, y ∈ B with z ∈ Bx,y . Especially one has cL(z, x), cL(z, y) < ∞. By the 
definition of Bx,y one concludes that cL(x, y) < ∞ or cL(y, x) < ∞.

Now let �B ⊂ � be the subspace of minimizers which intersect B at least twice. By [27, Proposition 3.22] the set⋃
γ∈�B

γ (R) ∩ {τ = r}

has vanishing Lebesgue measure in {τ = r} for all r ∈ R. Thus⋃
γ∈�B

γ (R)

has vanishing Lebesgue measure in M . Since⋃
x �=y∈B

Bx,y ⊂
⋃

γ∈�B

γ (R)

the claim follows. �
For a map σ : � → [0, 1] and a geodesic γ ∈ � one writes γσ = γ (σ (γ )). Let S ⊂ � be a subset of the space of 

minimizing geodesics. Then for s, t ∈ [0, 1] one defines

St,s := (evs , evt )(S) ⊂ M × M,

St := evt (S) and Sσ := {γσ }γ∈S ⊂ M .

Lemma 4.8. Let S ⊂ � be such that S0,1 is cL-cyclically monotone. If S1 is achronal then for all Borel-measurable 
maps σ : S → (0, 1) one has

L(S(1)
σ ∩ S(2)

σ ) = 0

for all Borel-measurable S(1), S(2) ⊂ S with S(1)
1 ∩ S

(2)
1 =∅.

Remark 4.9. If S1 is additionally acausal, e.g. S1 is contained in a time-slice {τ = τ0}, then one even has S1
σ ∩S2

σ =∅.

Proof. Let z ∈ S1
σ ∩ S2

σ . Then there exist γ1 ∈ S(1) and γ2 ∈ S(2) such that

cL(xi, yi) = cL(xi, z) + cL(z, yi)

for i = 1, 2, xi := γi(0) and yi := γi(1).
Since S0,1 is cL-cyclically monotone one has

cL(x1, y1) + cL(x2, y2) ≤ cL(x2, y1) + cL(x1, y2)

≤ (cL(x2, z) + cL(z, y1)) + (cL(x1, z) + cL(z, y2))

= cL(x1, y1) + cL(x2, y2).

This shows that there is a minimizing geodesic connecting x1 with y2 and passing through z. As geodesics are locally 
unique, either y1 is on the geodesic connecting z and y2 or y2 is on the geodesic connecting z and y1. Thus z ∈ By1,y2

with y1 �= y2.
In particular,

S1
σ ∩ S2

σ ⊂
⋃

y �=y′∈S1

By,y′ .

Since S1 is achronal it follows that

L(S1
σ ∩ S2

σ ) = 0

by Lemma 4.7. �
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Now one combines Lemma 4.8 with the weak measure contraction property to obtain the following.

Proposition 4.10. Assume that

A × {y, z} ⊂ suppμ × suppν

is cL-cyclically monotone for an achronal two-point set {y, z} and some measurable set A. Then A has vanishing 
Lebesgue measure.

Proof. By inner regularity of L one may assume A is compact so that for a fixed ε > 0 and t sufficiently close to 0 it 
holds

At,y ∪ At,z ⊂ Aε

where Aε is the ε-neighborhood of A with respect to the distance dist. Lemma 4.8 implies that

L(At,y ∩ At,z) = 0 for all t ∈ [0,1).

Then the weak measure contraction property yields

L(A) = lim
ε→0

L(Aε)

≥ lim sup
t→0

L(At,y ∪ At,z)

= lim sup
t→0

L(At,y) +L(At,z)

≥ 2 lim sup
t→0

f (t)L(A) = 2L(A)

which can hold only if A has zero measure. �
Lemma 4.8 can be used to prove an interpolation inequality in form of the weak measure contraction property 

between any absolutely continuous measure and a causally related achronal discrete measure. In order to prove such 
an interpolation inequality for general achronal target measures one needs to approximate the target measures via finite 
measures which satisfy the achronality assumption. As such an approximation seems difficult, one proceeds in two 
steps: As measures supported in a time slice can be easily approximated one first proves the interpolation inequality 
for those measures. In a second step one uses this fact together with the strong non-branching property implied by 
Lemma 4.8 to approximate general achronal target measures.

Given a subset C ⊂ M × M and s, t ∈ (0, 1) define

Cs,t = {(evs γ, evt γ ) |γ ∈ (ev0, ev1)
−1(C)}

and Ct = p1(Ct,t ).

Lemma 4.11. Assume π is an optimal coupling with compact support between an absolutely continuous measure 
μ and a measure ν with support in a time-slice {τ = τ0}. Then there is a sequence νn = ∑Nn

i=1 λn
i δxn

i
such that 

suppνn ⊂ {τ = τ0} and the optimal couplings πn of (μ, νn) converge weakly to an optimal coupling π ′ of (μ, ν).

Proof. Let X ∈ �(T M) be a vector field with L(X) < 0 and dτ(X) = 1 everywhere and denote with ϕt the flow of 
X. The coupling

π ′
ε := (id, ϕε)�π

is supported in {cL < 0}. Recall that by [27, Proposition 3.10] there exists a Borel map S : J+ → C0([0, 1], M)

with S(x, y) ∈ �x→y . The push forward �′
ε := S�π

′
ε is then a dynamical coupling. Consider the subset �t0 ⊂ � of 

minimizers γ with τ ◦ γ (0) ≤ t0 and τ ◦ γ (1) ≥ t0 + ε. The maps

T0 : �t0 → [0,1], γ 
→ T0(γ )
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such that τ(γ (T0(γ ))) = t0 and

R : �t0 → �t0, γ 
→ [t 
→ γ (T0(γ )t)]
are continuous. Define

�ε := R�(�
′
ε) and πε := (ev0, ev1)��ε.

It then follows that suppπε ⊂ {cL < 0} and supp(p2)�πε ⊂ {τ = τ0}. Furthermore, the Prokhorov distance between 
νε := (p2)�πε and ν tends to zero for ε → 0.

Observe that for any approximation by finite measures (νn,ε) of νε the CL-cost between μ and νn,ε is eventually 
finite and the distance between ν and νn is eventually less than 2ε. One may also assume that (νn,ε) has support in 
{τ = τ0}.

Denote by πn,ε the cL-optimal coupling of (μ, νn,ε). Then

lim inf
n→∞

∫
cLdπn,ε ≤

∫
cLdπε.

To conclude just observe that for a diagonal sequence π(k) = π
nk,

1
k

one has π(k) ⇀ π̃ satisfying∫
cLdπ̃ ≤ lim inf

k→∞

∫
cLdπ(k) ≤

∫
cLdπ.

Since π is optimal the π̃ must be optimal as well. �
Remark 4.12. If an optimal coupling π is supported in the interior of J+ then it is possible to obtain an approximation 
πn with finite target measures which have support in supp

(
(p2)�π

)
. Thus it follows that it is possible to keep the 

target approximation νn in a fixed achronal set B . Note, however, such an approximation for purely lightlike optimal 
couplings is not always possible. It even seems difficult to prove Lemma 4.11 under the assumption that suppν is 
achronal.

Proposition 4.13. Let (μ, ν) ∈ P+
τ (M) with μ being absolutely continuous and suppν ⊂ {τ = τ0}. Then there is an 

optimal coupling π of (μ, ν) such that for all cL-cyclically monotone sets C ⊂ suppπ with π(C) = 1 it holds

L(Ct ) ≥ f (t)L(C0).

Proof. First note if ν is a finite measure then the support C = suppπ of any cL-cyclically monotone coupling π
satisfies the assumption. Indeed, the set of points x ∈ C0 such that (x, y), (x, y′) ∈ C for distinct y, y′ ∈ C1 has zero 
L-measure, i.e. L(Ai

t,yi
∩ A

j
t,yj

) = 0 for i �= j and t ∈ [0, 1) where {yi}ni=1 = C1 and Ai = p1((p2)
−1(yi)). Observe 

now

L(Ct ) =
n∑

i=1

L(Ai
t,yi

) ≥
n∑

i=1

f (t)L(Ai) = L(C0)

For more general ν let π be the weak limit of a sequence πn with (p2)�πn finite as given by Lemma 4.11. Note by 
restricting the first marginal of πn slightly one can assume that the support of πn converges in the Hausdorff metric to 
the support of π . Note that since πn converges weakly to π one must have μ(Cn

0 ) → 1 where Cn = suppπn.

If C = suppπ is cL-cyclically monotone then for all ε > 0 and for sufficiently large n ∈N it holds (C(n)
t ) ⊂ (Ct )ε . 

Since Ct is compact and C(n)
0 = C0 one obtains

L(Ct ) = lim
ε→0

L((Ct )ε)

= lim sup
n→∞

L(C
(n)
t )

≥ lim sup
n→∞

f (t)L(C(n)t )

= f (t)L(C0).
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If the support of π is not cL-cyclically monotone, one may find a cL-cyclically monotone subset C ⊂ suppπ of 
full π -measure and compact sets Ck ⊂ C such that π(Ck) → π(C) and L(Ck

0) → L(C0).
Denote by πk the coupling obtained by restricting π to Ck and renormalizing. Note that each πk is supported in 

Ck and is given as a weak limit of an appropriate restriction of the approximating sequence πn. In particular, one sees 
that the claim of the proposition holds for Ck so that one concludes with the following chain of inequalities

L(Ct ) ≥ lim sup
k→∞

L(Ck
t )

≥ lim sup
k→∞

f (t)L(Ck
0 ) = f (t)L(C0). �

Combining the results above one obtains the existence and uniqueness of optimal transport maps if the target is 
supported in a time-slice.

Proposition 4.14. Between any absolutely continuous probability measure μ and any probability measure ν supported 
in a time-slice {τ = τ0} such that (μ, ν) ∈ P+

τ (M) there exists a unique cL-optimal coupling π and this coupling is 
induced by a transport map.

Proof. Let π be an optimal coupling for (μ, ν) and choose a cL-cyclically monotone measurable set C ⊂ suppπ of 
full π -measure.

We claim π is induced by a transport map. Note that this implies that π is unique.
Suppose the statement was wrong. Then the Selection Dichotomy in [18, Theorem 2.3] gives couplings π1, π2 � π

which are supported on disjoint sets K ×A1 and K ×A2 and their first marginals are equal to μK = 1
μ(K)

μ
∣∣
K

, where 

K ⊂ M is compact. Since μ is absolutely continuous one can additionally assume μK and L
∣∣
K

are mutually absolutely 
continuous.

It is easy to see that all three measures π1, π2 and 1
2 (π1 + π2) are optimal. Thus by Proposition 4.13 there are 

optimal couplings π̃i between (μK, (p2)�πi) such that the couplings π̃i are concentrated on disjoint cL-cyclically 
monotone sets Ci satisfying

L(Ci
t ) ≥ f (t)L(Ci).

Let ε > 1. Then Ci
t ⊂ Kε for sufficiently small t where Kε denotes the ε-neighborhood of K . Since the sets C1

0
and C2

0 are disjoint by Lemma 4.8 the sets C1
t and C2

t are disjoint as well so that one obtains

L(K) = lim
ε→0

L(Kε)

≥ lim sup
t→0

L(C1
t ∪̇C2

t )

= lim sup
t→0

L(C1
t ) +L(C2

t )

≥ 2 lim sup
t→0

f (t)L(C0),

which is a contradiction as μK(K) = μK(C0) = 1 and μK and L
∣∣
K

are mutually absolutely continuous. �
Using Lemma 4.8 one can extend the proposition to general achronal target measures.

Proposition 4.15. The previous preposition also holds for probability measures ν supported in an achronal set. 
Furthermore, for the unique dynamical optimal coupling � and any cL-cyclically monotone set C ⊂ suppπ with 
π(C) = 1 where π = (ev0, ev1)�� it holds

L(Ct ) ≥ f (t)L(C0).

Proof. Assume π is a cL-optimal coupling for (μ, ν) and choose a cL-cyclically monotone measurable set C ⊂
suppπ of full π -measure.
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Set C0 = � ∩ C and C>0 = C\� where � is the diagonal in M × M . The intersection C0
0 ∩ C>0

0 is μ-negligible.
Indeed, all points in the intersection C0

0 ∩ C>0
0 would have a minimizer passing through that point which in-

tersects two (necessarily distinct) points in C0
0 and C>0

1 . Hence the set must be L-negligible which also shows 
μ(C0

0 ∩ C>0
0 ) = 0.

Observe that the claim implies that π is induced by a transport map if and only if π restricted to C>0 is induced 
by a transport map. If either of the cases holds then π must be unique.

So without loss of generality one can assume that π is concentrated away from the diagonal �. In this case π must 
be concentrated on 

⋃
τ0∈Q,n∈N �τ0,n where

�τ0,n =
{
τ ≤ τ0 − 1

n

}
×

{
τ ≥ τ0 + 1

n

}
.

Furthermore, π is induced by a transport map if and only if for each τ0 ∈ Q and n ∈ N , π |�τ0,n is either the zero 
measure or induced by a transport map. Thus one may assume that π is supported in �τ0,n for some τ0 ∈ Q and 
n ∈N .

Let σ : � → (0, 1) be measurable with τ(γσ ) = τ0 whenever γ (0) ≤ τ0 ≤ γ (1). Then given an optimal dynamical 
coupling � one obtains an intermediate measure μσ which is supported in the time-slice {τ = τ0}. By Proposition 4.14
for any � there is a unique optimal coupling πσ between μ and μσ and a measurable map Tσ such that πσ =
(id⊗Tσ )�μ.

We claim that � is unique among the dynamical couplings representing π . Assume μ′
σ , π ′

σ and T ′
σ are obtained 

from a distinct optimal dynamical coupling �′. In this case the maps Tσ and T ′
σ do not agree on a set of positive 

μ-measure. By construction the measure 1
2 (πσ + π ′

σ ) is the unique optimal coupling between μ and 1
2 (μσ + μ′

σ )

which is induced by a transport map. However, this is only possible if Tσ and T ′
σ agree μ-almost everywhere. This is 

a contradiction and shows that the dynamical coupling � representing π is unique.
Note that for π -almost all (x, y) ∈ M × M the point Tσ (x) is on a geodesic connecting x and y. Since the value 

of Tσ is unique almost everywhere and geodesics are non-branching, for μ-almost all x ∈ M there can be at most one 
geodesics γ with γ0 = x and γσ = Tσ (x). In particular, for μ-almost all x ∈ M there is a unique (x, y) ∈ suppπ . But 
then π is induced by a transport map and hence the unique optimal coupling between μ and ν.

It remains to show that the interpolation inequality holds as well: Let � be the unique dynamical optimal coupling 
and π be the unique induced optimal coupling.

Let χ : � → (1 − ε, 1] be a measurable map such that for a set �′ of full � measure the set τ ◦ χ(�′) is countable 
and whenever γ (1) = η(1) then τ(γχ ) = τ(ηχ ).

Let μχ be the intermediate measures obtained from χ . Then μχ is concentrated in countably many time-slices 
{τ = τk}k∈N . Observe that the interpolation property holds when we restrict the coupling to M × {τk}. Since the 
endpoints for two different time-slices are disjoint Lemma 4.8 implies that the interpolated points never intersect. 
Thus if C is a cL-cyclically monotone subset of suppπ of full π -measure then the set

Cχ = {(γ0, γχ ) |γ ∈ (ev0, ev1)
−1(C)}

is cL-cyclically monotone and has full (ev0, evχ )��-measure and it holds

L(C
χ
t ) ≥ f (t)L(C0).

Via approximation it suffices to show the interpolation property assuming C is compact. Observe now that for 
compact C and all δ > 0 it holds

C
χ
t ⊂ (Ct )δ

for ε > 0 sufficiently small. Thus

L(Ct ) = lim
δ→0

L((Ct )δ)

≥ lim sup
ε→0

L(C
χ
t ) ≥ f (t)L(C0). �
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Proof of Theorem 2.14. The only thing that is left is to show that the intermediate measures μt = (evt )�� are abso-
lutely continuous. For this let C = suppπ and assume μt was not absolutely continuous. Then there is a compact set 
C̃ ⊂ C such that μ(C̃0) = μt(C̃t ) > 0 and L(C̃t ) = 0. In particular, L(C̃0) > 0. However, the interpolation property 
shows 0 = L(C̃t ) ≥ f (t)L(C̃0) which is clearly a contradiction and thus proving that μt is absolutely continuous. �

The following corollary turns out to be useful in the next section.

Corollary 4.16 (Self-intersection lemma). If μ and ν are causally related, μ is absolutely continuous and ν is sup-
ported on an achronal set then for all sets A of full μ-measure there is a t0 � 1 such that the intermediate measures 
μt , t ∈ (0, t0) satisfy μt(A) > 0. In particular, μ and μt cannot be mutually singular.

Proof. By restricting μ we may assume μ has density by M . Then uniqueness of μt implies that the density of μt

is bounded by M · f (t)−1, see [18, 5.15]. Since f (t) → 1 as t → 0 we see that the densities of μt for sufficiently 
small t can be uniformly bounded. Now the claim follows directly from the Self-Intersection Lemma in [18, Lemma 
6.4]. �
Remark 4.17. The argument shows that for μ = gL and μt = gtL one has the estimate

gt (γt ) ≤ 1

f (t)
g(γ0)

for �-almost all γ ∈ � where � is the unique optimal dynamical coupling between μ and ν.

4.5. Proof of Theorem 2.16

The goal is to reduce the problem to the 1-dimensional case and then construct a map from that solution. The 
proof is very similar to the proof of Bianchini–Cavalletti [9] for general non-branching geodesic spaces, see also [10]. 
However, the lack of a natural parametrization of lightlike geodesics prevents a direct application of their proof. One 
of the features of the proof will be to show how the time function τ and time-affinely parametrized geodesics can be 
used to overcome this obstacle and give a complete solution to the Monge problem in the relativistic setting.

Note that the proof shows that the optimal coupling is in general non-unique without assuming some relative 
form of achronality. Indeed, in order to prove uniqueness using the reduction to the 1-dimensional setting on a set 
of full measure there must be an almost everywhere defined injective map from the set of transport rays to M which 
corresponds to the target of the transport.

By [27, Proposition 2.7] one knows that the any optimal coupling is concentrated on a measurable cL-cyclically 
monotone set C.

Definition 4.18 (Maximal cL-cyclically monotone set). A set A ⊂ M × M is maximal cL-cyclically monotone in a set 
� ⊂ {cL ≤ 0} if it is cL-cyclically monotone and is maximal with respect to inclusion among subsets of �.

It is not difficult to see that a maximal cL-cyclically monotone set A must be closed if � is closed. One calls any 
maximal element Amax of a cL-cyclically monotone set A a maximal hull. Note that the maximal hull is in general 
not unique.

Lemma 4.19. Every cL-cyclically monotone set A ⊂ {cL ≤ 0} is contained in a maximal cL-cyclically monotone set 
Amax ⊂ {cL ≤ 0}. In particular, if (μ, ν) ∈P+

τ (M), then any optimal coupling is supported in a maximal cL-cyclically 
monotone set Amax ⊂ {cL ≤ 0}.

Proof. Just observe that if {Ai}i∈I is a chain of cL-cyclically monotone sets in the closed set {cL ≤ 0} then

Ã =
⋃
i∈I

Ai

is maximal in {cL ≤ 0} and cL-cyclically monotone. Thus Zorn’s Lemma gives the existence of a maximal element 
Amax with
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A ⊂ Amax ⊂ {cL ≤ 0}.
The last statement follows by observing that a coupling with finite cost must have support in {cL ≤ 0}. �

Let Amax be a maximal cL-cyclically monotone hull of the support of an optimal coupling π of μ and ν in J+. 
Further let � be a dynamical optimal coupling of (μ, ν).

Lemma 4.20. For any point (x, y) ∈ Amax and any point z ∈ γ ∈ �x→y one has (x, z), (z, y) ∈ Amax .

Proof. Let {(xi, yi)}1≤i≤N ⊂ Amax . Then one has

cL(x, z) + cL(z, y) +
N∑

i=1

cL(xi, yi) = cL(x, y) +
N∑

i=1

cL(xi, yi)

≤ cL(x, y1) +
n−1∑
i=1

cL(xi, yi+1) + cL(xN, y)

≤ cL(x, y1) +
n−1∑
i=1

cL(xi, yi+1) + cL(xN, z) + cL(z, y)

where the next to last inequality follows from the cyclic monotonicity and the last inequality is the triangle inequality 
for cL. This implies that (x, z) ∈ Amax . The other case is analogous. Note that cL(x, y) < ∞ since (x, y) ∈ J+ and 
thus cL(x, z), cL(z, y) < ∞. �

Consider the relation R ⊂ M × M with

(x, y) ∈ R :⇔ (x, y) ∈ Amax or (y, x) ∈ Amax.

Set R>1 := {(x, y) ∈ R| ∃z �= x : (x, z) ∈ R}. Then one can assume without loss of generality that R>1 has full 
measure relative to any optimal coupling. This follows from the observation that on R \R>1 all optimal transports are 
constant. It is assumed from here on that R = R>1.

Next define the following two sets:

A+ := {x ∈ M| ∃z �= w ∈ M : (x, z), (x,w) ∈ Amax and (z,w) /∈ R}
and

A− := {y ∈ M| ∃x �= z ∈ M : (x, y), (z, y) ∈ Amax and (x, z) /∈ R}.
Assume the disintegration of π with respect to the first projection is given by

π = μ ⊗ πx.

Lemma 4.21. For μ-almost all x ∈ A+ the measures πx are supported in {(x, x)}.

Proof. If A+ is μ-negligible there is nothing to prove. Therefore one can assume by [27, Corollary 3.12] that 
μ(A+) = 1. After possibly further restricting the transport problem one can suppose that

suppπ ⊂ {τ ≤ τ0 − ε} × {τ ≥ τ0 + ε}
for a sufficiently small ε > 0. Let now

�τ0 := {γ ∈ �| τ(γ (0)) ≤ τ0 ≤ τ(γ (1))}
and σ : �τ0 → [0, 1] be the map defined by τ(ev(γ, σ(γ )) := τ0. Note that � is supported in �τ0 under the above 
assumptions. Then

μσ := (ev◦(id, σ ))��
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is an intermediate measure of μ and ν which is supported in the time-slice {τ = τ0}. Thus by Proposition 4.14 there 
is a unique coupling which, in addition, is induced by a transport map Tσ . The assumption shows that for μ-almost 
all x ∈ A+ the (unique) geodesics connecting x and Tσ (x) never intersects A+. Thus μσ,t (A

+) = 0 for the any 
intermediate measure μσ,t between μ and μσ . This, however, violates Corollary 4.16. �
Remark 4.22. Under the assumptions of Theorem 2.16 it is even possible to show L(A+) = 0. For this one needs to 
know whether any coupling π̃ concentrated in Amax ∩(A+×{τ = τ0}) is induced by a transport map. By Theorem 2.14
a sufficient condition would be that π̃ is optimal.

If πx = δx ⊗ δx for all x in a measurable set A ⊂ M then π
∣∣
A×M

= (id× id)�μ
∣∣
A

. Thus in the following one will 
always assume that πx �= δx ⊗ δx for μ-almost all x ∈ M . In particular, the measures μ and (p1)�(π

∣∣
M×M\�) are 

mutually absolutely continuous. In combination with Lemma 4.21 one concludes that μ(A+) = 0.
Given a symmetric relation R ⊂ M × M let the domain of R be defined by

dom(R) := p1(R).

In the following one will use the following short hand notation to define a new symmetric relations R′ ⊂ R: R′ is 
given by dom(R′) = A for a subset A ⊂ domR if

R′ = A × A ∩ R.

One easily verifies that domR′ is indeed equal to A. Furthermore, if A is (Borel) measurable then R′ is (Borel) 
measurable or analytic if R is (Borel) measurable or analytic, respectively.

Let Rred be obtained by requiring dom(Rred) = dom(R) \ A+ ∪ A−. Then one may verify that Rred is an equiva-
lence relation.

Decompose μ into two measures μ1 and μ2 such that μ1 is concentrated dom(Rred) and μ2 on A−. Choose 
an optimal coupling π along the same decomposition μ = μ1 + μ2. Denote the second marginals by ν1 and ν2, 
respectively. By the definition of A− one sees that π2 is concentrated on the diagonal. Thus if one finds an optimal 
coupling π̃1 between μ1 and ν1 which is induced by a transport map then π̃ = π̃1 +π2 is an optimal coupling between 
μ1 and ν1 which is induced by transport maps. Thus one may assume μ(A±) = 0.

Lemma 4.23. There exists a measurable projection T : dom(Rred) → dom(Rred) with (x, T (x)) ∈ Rred .

Proof. Choose an enumeration {qn}n∈N of Q. Define inductively disjoint relations {Rn}n∈N as follows: Set R̃0 :=
Rred . Assume that Rk for k ≤ n has been constructed. Define Rn+1 by

(x, z) ∈ Rn+1 :⇔ (x, z) ∈ R̃n ∧ ∃y, y′ ∈ {τ = qn+1} : (x, y), (z, y′) ∈ R̃n.

Rn+1 is an equivalence relation since it is the intersection of two equivalence relations. Thus R̃n+1 := R̃n \ Rn+1 is 
an equivalence relation. Continuing one obtains a measurable partition {Rn}n∈N of Rred . This follows from the initial 
assumption that all minimizer are non-constant.

For all r ∈R there exists a measurable selection

Sr : p1(Rred ∩ (M × {τ = r})) → dom(Rred) ∩ {τ = r}.
Define the map

T : domRred → domRred, x 
→ Sqn(x) for x ∈ Rn. �
Disintegrate μ along T , i.e. for μred := (T )�μ let {tx}x∈dom(Rred ) be the almost everywhere defined family of 

probability measures on T (dom(Rred)) such that

μ = μred ⊗ tx .

Lemma 4.24. For μred -almost all x ∈ M is the measure t̄x = τ#(tx) is non-atomic.
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Proof. By the assumptions the statement holds for π if it holds for π restricted to M × M\�. In particular, one can 
assume that for π -almost all (x, y) ∈ M × M one has τ(x) < τ(y).

Assume now for a set A of positive μred -measure the measure t̄x has atoms for all x ∈ A. Then there is a compact 
set K ⊂ M of positive μ-measure such that the map

K → P(R), x 
→ t̄x

is weakly continuous. Thus the function

F : K ×R→ [0,1], F (x, r) = t̄x ({r})
is upper semi-continuous. In particular, the set

C = F−1((0,1])
is a Borel set and for each (x, r) ∈ C the point r is an atom of t̄x . Applying the Selection Theorem [16, Section 423]
to C yields a measurable selection T : p1(C) → C such that (x, T (x)) ∈ C for all x ∈ p1(C). In particular, μred

∣∣
K

⊗
δT (x) is non-trivial. Since tx is atomic for all x ∈ K one also has

μred

∣∣
K

⊗ δT (x) � μred ⊗ t̄x .

Translating back to the coupling π one sees that there exists a measurable map S : M → M and a set K̃ of positive 
μ-measure such that

π ′ := 1

μ(K)
(id⊗S)�μ

∣∣
K

� π

and for all x �= y ∈ K̃ one has (x, T (y)) /∈ Rred and τ(x) < τ(T (x)).
This implies that for any σ : � → (0, 1) the intermediate measures μ′

σ of (p1)�π
′ and (p2)�π

′ would be mutually 
singular with respect to (p1)�π

′. However, as in the proof of Lemma 4.21, this yields a contradiction. �
Remark 4.25. A more involved proof shows that t̄x is absolutely continuous. As this strengthened statement is not 
needed the details are left to the interested reader.

Disintegrating an optimal coupling π along T ◦ p1 yields a family of probability measures {sx} such that

π = μred ⊗ sx,

where sx is a probability measure on

(Rx ∩ dom(Rred)) × Rx with Rx := p2(({x} × M) ∩ R).

Lemma 4.26. For all x ∈ T (dom(Rred)) the set Rx is diffeomorphic to an interval and the time function τ is injective 
on Rx .

Proof. From Lemma 4.20 and x ∈ Rx one sees that Rx is formed by the image of geodesics which contain x and meet 
at most at their endpoints. As x ∈ Rx is not in A+ or A−, it must be in the interior of Rx . Thus, because geodesics 
are non-branching and the time function τ is strictly increasing along causal curves one sees that Rx is the image of 
precisely one geodesic. �

Define for x ∈ T (dom(Rred)) the measures rx := (p2)�(sx), i.e.

ν = μred ⊗ rx.

Next one constructs a transport map for the optimal couplings between tx and rx . By the previous Lemma the 
measures tx and rx are concentrated on a single geodesic such that the time function τ give a uniquely defined 
parametrization. Thus it suffices to solve the one-dimensional optimal transport problem between tx and rx . First 
observe the following.
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Lemma 4.27. Let γ ∈ � and μ, ν be causally related probability measures on γ . Then any causal coupling πγ is 
optimal.

Proof. Choose a monotone reparameterization [0, 1] → [0, 1] of γ to an affine parameter. The cost function for 
s, t ∈ [0, 1] then is

cL(s, t) =
{

c(t − s), if s ≤ t,

∞ else

for some constant c = c(γ ) ≤ 0. It is now easy to see that any causal coupling is cyclically monotone, i.e. optimal. �
By Lusin’s Theorem one can assume that x 
→ (tx, rx) is continuous. Set

m(x,a) := tx(τ
−1(−∞, a])

and

n(x, b) := rx(τ
−1(−∞, b]).

With this define ϕ(x, a) = b if b = argmin{m(x, a) ≤ n(x, b)}. Observe that ϕ is measurable and (T , τ) is injective on 
dom(Rred) so that there is a measurable map ψ : dom(Rred) → M such that ψ(y) = ϕ(T (y), τ(y)) for μred -almost 
all y ∈ dom(Rred).

Again by Lusin’s Theorem one may assume ψ is continuous. Define a set T ⊂ M × M as follows

T = {(y, z) | (y, z) ∈ R,ψ(y) = τ(z)}.
Note that T is analytic and for each x ∈ dom(Rred) there is exactly one (x, y) ∈ T . Thus T agrees on dom(Rred) ×M

with the graph of a measurable function � : dom(Rred) → M .
The choice of ϕ implies ��tx = rx . Thus (id×�)�μ is a coupling of μ and ν. Since � transports monotonously 

along each Rx one sees that � is an optimal transport map between tx and rx . As the initial coupling was optimal, we 
see that along each transport ray the cost is not change In particular, the coupling (id×�)�μ is optimal between μ
and ν. This finishes the proof of Theorem 2.16.
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