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Abstract

The global existence of classical solutions to reaction-diffusion systems in arbitrary space dimensions is studied. The nonlinear-
ities are assumed to be quasi-positive, to have (slightly super-) quadratic growth, and to possess a mass control, which includes 
the important cases of mass conservation and mass dissipation. Under these assumptions, the local classical solution is shown to 
be global, and in the case of mass conservation or mass dissipation, to have the L∞-norm growing at most polynomially in time. 
Applications include skew-symmetric Lotka-Volterra systems and quadratic reversible chemical reactions.
© 2019 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction and main results

In this paper, we study the global existence of classical solutions to a class of semilinear reaction-diffusion systems. 
Let � ⊂Rn, n ≥ 1, be a bounded domain, and ui : QT := � ×(0, T ) → R, i = 1, . . . , N be the i-th concentration den-
sity. Denote by u = (u1, . . . , uN) the vector of concentration densities. We consider the following reaction-diffusion 
system⎧⎪⎨⎪⎩

∂tui − di�ui = fi(u), (x, t) ∈ QT ,

∇xui · ν = 0, (x, t) ∈ ∂� × (0, T ),

ui(x,0) = ui0(x), x ∈ �,

(1)

where di > 0 are the diffusion coefficients, and the domain, the initial data and the nonlinearities satisfy the following 
assumptions:
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(A1) (Smooth Domain) Either � =Rn or � ⊂Rn is a bounded domain with smooth boundary ∂� (i.e. ∂� is of C∞
class), such that � lies locally on one side of ∂�.1

(A2) (Bounded, Nonnegative Initial Data) For all i = 1 . . .N : ui0 ∈ L1(�) ∩ L∞(�) and ui0(x) ≥ 0 for a.e. x ∈ �.
(A3) (Mass Control) There exist K0 ≥ 0, K1 ∈ R such that

N∑
i=1

fi(u) ≤ K0 + K1

N∑
i=1

ui, for all u ∈ RN+ := [0,∞)N .

(A4) (Local Lipschitz and Quasi-positivity) For all i = 1, . . . , N , fi :RN → R is locally Lipschitz and

fi(u) ≥ 0, for all u ∈ RN+ satisfying ui = 0.

(A5) ((Super)-quadratic Growth) There exist ε > 0 and K > 0 such that

|fi(u)| ≤ K(1 + |u|2+ε), for all i = 1, . . . ,N, u ∈RN.

The mass control assumption (A3) is a generalisation to the condition of mass conservation

N∑
i=1

fi(u) = 0 (A3’)

and to the condition of mass dissipation

N∑
i=1

fi(u) ≤ 0. (A3”)

Definition 1.1. We call a function u = (u1, . . . , uN) a classical solution to (1) on (0, T ) if ∀p > n we have ui ∈
C([0, T ); Lp(�) ∩ L∞(�)) ∩ C1,2((0, T ) × �) and u satisfies each equation in (1) pointwise, cf. [28].

The main result of this paper is the following theorem.

Theorem 1.1 (Global existence of classical solutions).
Assume the assumptions (A1)–(A4). Then there exists ε > 0 depending on �, n, N, di, K0 such that if (A5) is satisfied, 
(1) possesses a unique global classical solution. Moreover,

(i) if K1 ≤ 0 in (A3), then the solution grows at most polynomially in time, i.e.

‖ui(t)‖L∞(�) ≤ L0(1 + tξ ) for all t ≥ 0 and for all i = 1, . . . ,N,

where L0, ξ depend only on �, n, N, di, K, K0, ε and ‖ui0‖L∞(�),
(ii) and if K0 = 0 and K1 < 0 in (A3), the global solution decays to zero exponentially as t → ∞, i.e.

‖ui(t)‖L∞(�) ≤ L1e
−μt for all t ≥ 0, and i = 1, . . . ,N,

where L1, μ depend only on �, n, N, di, K, K1, ε and ‖ui0‖L∞(�).

Remark 1.1 (Generalisations).

(i) The results of Theorem 1.1 can be directly generalised to the case where (A3) is replaced by the assumption: 
There exists (αi) ∈ (0, ∞)N such that

N∑
i=1

αifi(u) ≤ K0 + K1

N∑
i=1

ui, for all u ∈ RN+ . (2)

1 Naturally, the zero-flux boundary condition is only considered in case of a bounded domain.
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(ii) (Boundary conditions) The results in Theorem 1.1 are proved for homogeneous Neumann boundary conditions, 
but the same results can also be obtained for homogeneous Dirichlet boundary conditions. Note that the proof of 
Theorem 1.1 doesn’t apply directly to mixed boundary conditions.

The question of global existence for reaction-diffusion systems is a classical topic, yet still poses a lot of open 
and challenging problems. A main difficulty in studying global existence for reaction-diffusion systems is the lack of 
maximum principle estimates or invariant regions, i.e. a structural inapplicability of techniques from scalar equations. 
Let us mention some classical results from e.g. Rothe [33], Amann [1], Hollis, Martin and Pierre [15] or Morgan [23]. 
Most of these works assume some technical assumptions on the nonlinearities. Since the work of Pierre and Schmidt 
[30], more attention has been paid by mathematicians to study systems satisfying the only natural assumptions of 
mass control (A3) (or mass dissipation (A3”)) and positivity preservation (A4).

It was already pointed out in [30] that these two assumptions alone are not enough to prevent blow up (in 
L∞-norm), and therefore, some growth restrictions on the nonlinearities are necessary. In particular, the case of 
quadratic nonlinearities is of interest due to its relevance in many applications, such as chemical reactions or Lotka-
Volterra type systems (see Section 5 for more details). Under (A1)–(A5), [6] showed the global existence of weak 
solutions. More generally, [29] showed the existence of global weak solutions as long as fi(u) ∈ L1(QT ) for all 
i = 1, . . . , N . The global existence of classical (or strong) solutions to (1) usually requires additional assumptions 
to (A1)–(A5). Such assumptions are, for instance, small space dimensions (n = 1, 2) (see [13,31,37]), or quasi-
uniform diffusion coefficients (see [3,11]), or the close-to-equilibrium regimes (see [2,36]). We refer the interested 
reader also to the excellent review [26]. Interestingly, global existence of classical solution to (1) under Assumptions 
(A2)-(A3’)-(A4)-(A5) in the case � =Rn was already solved in [16], but it went almost unnoticed until recently. Our 
main Theorem 1.1 extends the results of [16] to the case of mass control and bounded domains, and moreover gives 
polynomial bounds for the growth-in-time of the L∞-norm of solutions in case K1 = 0, and exponential decay in case 
K0 = 0 and K1 < 0.

Finally, we remark two recent related results of global classical solutions to nonlinear reaction-diffusion equations. 
Firstly, Caputo, Goudon and Vasseur [4] used De Giorgi’s methods to prove global classical solutions when � = Rn

under assumptions (A2)-(A3’)-(A4)-(A5), by additionally assuming the entropy inequality

N∑
i=1

fi(u) logui ≤ 0. (3)

Secondly, and more recently, Souplet presented in [34] the existence of global smooth solutions for at most quadratic 
nonlinear systems under the mass dissipation (A3”) instead of (A3’), with the entropy dissipation assumption (3) and 
a simplified proof.

Both our paper and [34] utilise ideas from [16]. In [34], the author used the entropy inequality (3) to compensate for 
the lack of mass conservation (A3’). Although this entropic structure appears naturally in many applications, it is not 
always satisfied, for example, in the case of skew-symmetric Lotka-Volterra systems (see Section 5). This inequality 
seems “marginal”, but it plays a crucial role in the analysis of [34] (and also [4]). Our paper removes the assumption 
(3) completely and allows the more general assumption (A3). Moreover, we give better control on bounds of solutions 
in time, which helps to determine their long time behaviour.

Let us now describe the main ideas in proving Theorem 1.1. The proof of Theorem 1.1 crucially utilises the 
following lemma.

Lemma 1.1 (Regularity Interpolation).
For some constant d > 0, let u be the solution to the inhomogeneous linear heat equation⎧⎪⎨⎪⎩

ut − d�u = φ(x, t), (x, t) ∈ QT ,

∇xu · ν = 0, (x, t) ∈ ∂� × (0, T )

u(x,0) = u0(x), x ∈ �.

(4)

Assume that
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(i) there exists a Hölder exponent γ ∈ [0, 1) such that for all x, x′ ∈ �, and all t ∈ (0, T ),

|u(x, t) − u(x′, t)| ≤ H |x − x′|γ , (5)

(ii) the inhomogeneity satisfies

sup
QT

|φ(x, t)| ≤ F. (6)

Then, the following uniform gradient estimate follows:

|∇xu(x, t)| ≤ C‖u0‖C1(�) + BH
1

2−γ F
1−γ
2−γ , for all (x, t) ∈ QT ,

where B > 0 and C > 0 are constants depending only on �, n, d and γ .

At first glance, Lemma 1.1 seems unrelated to the problem of global classical solutions to systems (1) under 
Assumptions (A1)–(A5). In fact, a crucial difficulty in showing global classical solutions to (1) is the failure of 
comparison principles (except in some special cases) and thus the lack of sufficiently strong a-priori estimates. How-
ever, maximum principle, and thus L∞ a-priori estimates, are well known for the scalar equation (4). So how could 
Lemma 1.1 contribute to showing global classical solutions to system (1)?

In this work, we first consider the case of “equality” and K1 = 0 in (A3), i.e.

N∑
i=1

fi(u) = K0. (A3eq)

Under this assumption, we follow closely ideas of Kanel [16], who considered the case � =Rn, in which Lemma 1.1
plays an essential role. We extend his approach to the case of a bounded domain with smooth boundary. In partic-
ular, our approach requires careful Hölder regularity estimates up to the boundary for some parabolic equation of 
non-divergence form in bounded domains (see Lemma 3.5), since the De Giorgi’s technique usually gives only local 
Hölder continuity. As another refinement to [16], our proof keeps track of the involved constants and shows that the 
L∞-norm of the solution grows at most polynomially in time.

Such algebraic growth estimates are very useful in interpolation arguments, and allow us, for instance, to prove ex-
ponential decay to zero of solutions in case K0 = 0 and K1 < 0. Another example for useful interpolation arguments 
with algebraic a-priori estimates are systems, which feature exponential L1-convergence to equilibrium. This is true, 
for instance for complex balanced chemical reaction networks, see e.g. [9,10,7]. Indeed, for such systems, interpo-
lation of slowly (i.e. algebraically) growing a-priori L∞-estimates with exponential L1-convergence to equilibrium 
yields equilibration estimates in any Lp-norm for p ∈ [1, ∞) as well as uniform-in-time bounds, see e.g. [5,12].

After proving Theorem 1.1 in the case of (A3eq), the general case of (A3) follows from suitable transformations. 
See Step 2 below.

In the following, we provide a detailed outline of the proof of Theorem 1.1. In particular, we sketch how to manip-
ulate system (1) under Assumptions (A1)–(A5) such that Lemma 1.1 can be applied.

1.1. Outline of the proof of Theorem 1.1

The proof is divided in two main steps:

Step 1: The case of condition (A3eq). We consider first the case in which the nonlinearities satisfy (A3eq).

(1) The existence of local in time, classical, non-negative solutions u = (u1, . . . , uN) on some time interval [0, T )

follows from classical references, thanks to Assumptions (A1), (A2) and (A4), see e.g. [28,33,27] and Proposi-
tion 3.1 below. The same references also imply global existence of classical solutions provided that for all T > 0

sup
t∈(0,T )

‖ui(·, t)‖L∞(�) < +∞, for all i = 1, . . . ,N,

which is our aim in the following.
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(2) For a constant d > maxi=1,...,N {di}, let vi be the solution to⎧⎪⎨⎪⎩
∂tvi − d�vi = ui, (x, t) ∈ QT ,

∇xvi · ν = 0, (x, t) ∈ ∂� × (0, T ),

vi(x,0) = 0, x ∈ �.

(7)

Since 0 ≤ ui ∈ C∞((0, T ) × �) ∩ C([0, T ); Lp(�) ∩ L∞(�)) for some p > n, the existence, uniqueness and 
nonnegativity of vi follows from classical results. Note that the solutions vi can be seen as mollified versions of 
the ui . Moreover, by taking the sum over all i = 1, . . . , N of (7), we calculate

N∑
i=1

(∂t vi − di�vi)︸ ︷︷ ︸
=: z

−�

N∑
i=1

(d − di)vi︸ ︷︷ ︸
=: vd

=
N∑

i=1

ui. (8)

(3) Concerning the function z, direct calculations (see Lemma 3.1) using assumption (A3eq) and (7) show that z
satisfies the linear equation⎧⎪⎨⎪⎩

∂t z − d�z = K0, (x, t) ∈ QT ,

∇xz · ν = 0, (x, t) ∈ ∂� × (0, T ),

z(x,0) = ∑N
i=1 ui0(x), x ∈ �,

(9)

and therefore the following comparison principle estimate holds

sup
QT

|z| ≤
N∑

i=1

‖ui0‖L∞(�) + K0T . (10)

(4) Secondly, it follows from the definition of vd in (8) that (see Lemma 3.2)

vd(x, t) = d

t∫
0

z(x, s)ds

︸ ︷︷ ︸
=: ẑ

−
t∫

0

N∑
i=1

diui(x, s)ds

︸ ︷︷ ︸
=: û

, (11)

where the function ̂z solves the following heat equation (see Lemma 3.3){
∂t ẑ − d�̂z = z(0) + K0t,

∇x ẑ · ν = 0, ẑ(0) = 0

and is therefore Hölder continuous.
(5) Next follows the crucial observation of the Hölder continuity of the function ̂u defined in (11), which solves (see 

Lemma 3.4){
b ∂t û − �û = ∑N

i=1 ui0 + K0t,

∇xû · ν = 0, û(0) = 0,

where the coefficient in front of the time derivative

b(x, t) :=
∑N

i=1 ui(x, t)∑N
i=1 diui(x, t)

is uniformly bounded due to its definition and the non-negativity of the ui:

1

max{di} ≤ b(x, t) ≤ 1

min{di} , for all (x, t) ∈ QT .

The boundedness of b permits us to apply a classical result to prove Hölder continuity of ̂u, see Lemma 3.5 and 
its proof in the Appendix. Therefore, by (11) it follows (see Lemma 3.6) that vd is Hölder continuous with an 
exponent δ ∈ (0, 1).
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(6) The two final steps prove boundedness of

|U | := sup
QT

max
i=1,...,N

|ui | (12)

by estimating the right hand side of (8) in terms of regularity estimates of the left hand side terms. This strategy 
requires, in particular, to control supQT

|�vd | in terms of |U |. First, we observe that vd satisfies (see Lemma 3.9){
∂tvd − d�vd = ∑N

i=1(d − di)ui =: ud,

∇xvd · ν = 0, vd(0) = 0,
(13)

which allows us to apply Lemma 1.1. At this point, when contemplating why the presented approach is able 
to succeed, we recall that the lack of maximum principle estimates for (1) stems from the different diffusion 
coefficients di . Note then, that ud constitutes the difference between a d-weighted sum (or equally average) of the 
ui and a di -weighted sum (or average). Accordingly, the function vd has the same interpretation in terms of the 
vi , i.e. mollified versions of the ui . The key observation is that the function vd satisfies with (13) a nice parabolic 
equation (rather than a parabolic system). Consequentially, the following estimates on ud and vd show that the 
difference between d-weighted and di-weighted sums satisfy the required regularity estimates in terms of |U |
(and without a closeness condition between d and the di as exploited in [3]).
More precisely, Lemma 1.1 implies for vd as a δ-Hölder continuous solution of (13) that (see Lemma 3.7)

|∇xvd | ≤ CT sup
QT

|ud | 1−δ
2−δ ≤ CT |U | 1−δ

2−δ , (14)

where the constant CT depends at most polynomially on T for any existence interval [0, T ).
Analog, from the equations ∂tui − di�ui = fi(u) and assumption (A5), Lemma 1.1 with γ = 0 yields (see 
Lemma 3.8)

|∇xud | ≤ C

N∑
i=1

|∇xui | ≤ CT (1 + |U |1/2 sup
QT

max
i=1,...,N

|fi(u)|1/2)

≤ CT

(
1 + |U |1/2

(
1 + |U |1+ ε

2

))
≤ CT

(
1 + |U | 3+ε

2

)
.

(15)

To estimate �vd , we use a second order estimate of the heat semigroup et� to obtain2 (see Lemma 3.9)

sup
QT

|�vd | ≤ CT sup
QT

(|vd | + |∇xvd |)1/2 sup
QT

(|ud | + |∇xud |)1/2

≤ CT

(
1 + |U | 1−δ

2−δ

)1/2 (
1 + |U | 3+ε

2

)1/2

≤ CT

(
1 + |U | 3

4 + ε
4 + 1−δ

2(2−δ)

)
.

(16)

Note that in the case � = Rn, one can obtain (16) by differentiating (13) and directly apply Lemma 1.1 to the 
equation of ∂xj

vd with γ = 0.
(7) Finally, from (8), (10) and (16), it follows

|U | ≤ CT

(
1 + |U | 3

4 + ε
4 + 1−δ

2(2−δ)

)
and therefore, since 3

4 + ε
4 + 1−δ

2(2−δ)
< 1 for ε sufficiently small,

|U | ≤ CT , for all (x, t) ∈ QT ,

which implies that the solutions ui can be extended globally as bounded, and therefore smooth solutions, see e.g. 
[28,33].

2 This idea was used in [34].
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One important observation here is that the results of Step 1 are still true, except for the fact that the L∞-norm in 
this case might grow faster than polynomial, if we replace the constant K0 by a function K0(t) which is continuous 
on [0, ∞). This fact will be helpful in Step 2.

Step 2: The case of condition (A3). The general assumption (A3) can be transformed into condition (A3eq) (where 
K0 is replaced by a continuous function K0(t)) by the help of rescaling and the addition of an appropriate equation to 
the system:

(1) By defining

wi(x, t) = e−K1t ui(x, t) or equivalently ui(x, t) = eK1twi(x, t)

we obtain (see Section 4) the following system for w = (w1, . . . , wN)⎧⎪⎨⎪⎩
∂twi − di�wi = gi(w), (x, t) ∈ QT for i = 1, . . . ,N,

∇xwi · ν = 0, (x, t) ∈ ∂� × (0, T ),

wi(x,0) = ui0(x), x ∈ �

(17)

where the nonlinearities gi(w) = e−K1t (fi(u(w)) − K1e
K1twi). It is obvious that nonlinearities gi(w) satisfy the 

assumptions (A4)–(A5), while (A3) is changed to

N∑
i=1

gi(w) ≤ K0e
−K1t . (18)

(2) To obtain (A3eq) from (18), we introduce an (N + 1)-th equation for wN+1 as

∂twN+1 − �wN+1 = gN+1(w) := K0e
−K1t −

N∑
i=1

gi(w),

together with boundary condition ∇xwN+1 · ν = 0 and initial data wN+1(x, 0) = 0. It is immediate that gN+1(w)

satisfies the conditions (A4) and (A5). We then obtain a new, enlarged system for w̃ = (w1, . . . , wN+1)⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂twi − di�wi = gi(w̃) := gi(w), (x, t) ∈ QT for i = 1, . . . ,N + 1,

∇xwi · ν = 0, (x, t) ∈ ∂� × (0, T ), i = 1, . . . ,N + 1,

wi(x,0) = ui0(x), x ∈ �, i = 1, . . . ,N,

wN+1(x,0) = 0, x ∈ �

(19)

in which the nonlinearities now satisfy

N+1∑
i=1

gi(w̃) = K0e
−K1t

and the problem is thus reduced to Step 1., taking into account that last remark therein that K0 could be a con-
tinuous function of t . Note that if K0 = 0 and K1 < 0 then w̃ has at most polynomial growth in time. Thus, from 
ui(x, t) = eK1twi(x, t) we get for K1 < 0 that ui decays exponentially to zero.

A direct application of Theorem 1.1 proves global classical solutions in all space dimensions to nonlinear, skew-
symmetric Lotka-Volterra systems with diffusion of the form⎧⎪⎪⎨⎪⎪⎩

∂tui − di�ui =
(
−τi +∑N

j=1 aijuj

)
ui =: fi(u), (x, t) ∈ QT ,

∇xui · ν = 0, (x, t) ∈ ∂� × (0, T ),

ui(x,0) = ui0(x), x ∈ �,

(20)
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where A = (aij ) ∈ RN×N is skew-symmetric, i.e. A� + A = 0 and τ = (τ1, . . . , τN) ∈ RN . Note that such Lotka-
Volterra systems do not satisfy an entropy structure as required by [4,34]. We will show that (20) has a unique global 
classical solution in all dimensions, and moreover, if τi > 0 for all i = 1, . . . , N , then the solution decays to zero 
exponentially (see Section 5).

The organisation of the paper is as follows: In Section 2, we prove the crucial Lemma 1.1. In Section 3, we first 
present the proof of Theorem 1.1 with condition (A3eq), while the proof of Theorem 1.1 for general condition (A3)
is presented in Section 4. Section 5 is devoted to some applications of the main results. Finally, a technical proof of 
Hölder continuity for ̂u is presented in the Appendix A.

Notations:

• R+ = [0, ∞), RN+ = [0, ∞)N .
• The usual norm of Lp(�) is denoted by ‖ · ‖Lp(�) for any 1 ≤ p ≤ ∞.
• For T > 0, we denote QT = � × (0, T ), and for any 1 ≤ p < +∞

‖f ‖Lp(QT ) =
⎡⎢⎣∫
QT

|f |pdxdt

⎤⎥⎦
1/p

, ‖f ‖L∞(QT ) = ess supQT
|f |.

• The generic constant Ci , i = 1, . . . , 12 depends only on the data �, N , n, di , K , K0, K1, ε and ‖ui0‖L∞(�). In 
particular, Ci does not depend on T > 0.

2. Proof of key Lemma 1.1

In case � is a bounded domain, we denote by G(x, t) the Green function of the heat equation ∂tu − d�u = 0
subject to a homogeneous Neumann boundary condition. When � =Rn, let G(x, t) be the fundamental solution, i.e. 
G(x, t) = 1

(4dπt)n/2 e−|x|2/4dt . Let k > 0 be a constant which serves as a kind of interpolation parameter, to be specified 
later. We rewrite (4) as

∂tu − d�u + ku = φ(x, t) + ku,

and use the representation formula to have

u(x, t) = e−kt ũ(x, t) +
t∫

0

e−k(t−s)

∫
�

G(x − y, t − s)[φ(y, s) + ku(y, s)]dyds (21)

where ̃u(x, t) is the solution to{
∂t ũ − d�ũ = 0,

∇xũ · ν = 0, ũ(x,0) = u0(x).

Using the property of the heat semigroup, see e.g. [22, Eq. (2.39)] we have

sup
t>0

sup
x∈�

|∇xũ(x, t)| ≤ C‖u0‖C1(�). (22)

By differentiating (21) in the spatial variables and using 
∫
�

∇xG(x − y, t − s)u(x, s)dy = 0 thanks to the Neumann 
boundary condition, we have

∇xu(x, t) = e−kt∇xũ(x, t) +
t∫

0

e−k(t−s)

∫
�

∇xG(x − y, t − s)[φ(y, s) + k(u(y, s) − u(x, s)]dyds. (23)

It follows from (23) and (22) that
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|∇xu(x, t)| ≤ C‖u0‖C1(�) +
t∫

0

e−k(t−s)

∫
�

|∇xG(x − y, t − s)|[|φ(y, s)| + k|u(y, s) − u(x, s)|]dyds

≤ C‖u0‖C1(�) + F

t∫
0

e−k(t−s)

∫
�

|∇xG(x − y, t − s)|dyds

+ kH

t∫
0

e−k(t−s)

∫
�

|∇xG(x − y, t − s)||x − y|γ dyds (24)

where we have used the assumptions (5) and (6) in the last step.
We now distinguish the two cases, when � is a bounded domain and � =Rn.

Case 1: Let � be a bounded domain with smooth boundary. In this case use the following point-wise gradient estimate 
on the Green function (see e.g. [21,38] or [8,22]),

|∇xG(x − y, t − s)| ≤ cn(t − s)−
n+1

2 e−κn
|x−y|2

t−s

where positive constants cn and κn depend only on the dimension n, the domain � and the diffusion coefficients 
d . Using this bound, we can estimate further

|∇xu(x, t)| ≤ C‖u0‖C1(�) + cnF

t∫
0

e−k(t−s)

(t − s)
n+1

2

∫
�

e−κn
|x−y|2

t−s dyds

+ cnkH

t∫
0

e−k(t−s)

(t − s)
n+1

2

∫
�

|x − y|γ e−κn
|x−y|2

t−s dyds.

(25)

We denote by (I) and (II) the second and last terms on the right hand side of (25). By the change of variables 

z =
√

κn

t−s
(y − x), we have for any δ ≥ 0

∫
�

|x − y|δe−κn
|x−y|2

t−s dy =
(

t − s

κn

) n+δ
2

∫
√

κn
t−s

(�−x)

|z|δe−|z|2dz ≤
(

t − s

κn

) n+δ
2

∫
Rn

|z|δe−|z|2dz

≤ ωn−1�

(
n + δ

2

)(
t − s

κn

) n+δ
2

,

(26)

where ωn−1 is the surface area of the n − 1-dimensional unit sphere and � is the Gamma function. Therefore

(I) ≤ cnκ
−n/2
n F

t∫
0

e−k(t−s)

√
t − s

ds

∫
Rn

e−|z|2dz ≤ cnκ
−n/2
n F �(n/2)

√
π√
k

=: B1F√
k

(27)

where

B1 = cnκ
−n/2�(n/2)

√
π.

For (II), we have

(II) ≤ cnκ
−(n+γ )/2
n kH

t∫
e−k(t−s)

(t − s)
1−γ

2

ds

∫
n

|z|γ e−|z|2dz ≤ B2kH

t∫
e−k(t−s)

(t − s)
1−γ

2

ds (28)
0 R 0
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where

B2 = cnκ
−(n+γ )/2
n �

(n + γ + 1

2

)
.

The last term on the right hand side of (28) is estimated using the change of variable τ = √
k(t − s),

(II) ≤ B2H(
√

k)1−γ

√
kt∫

0

e−τ2
τγ dτ ≤ B3H(

√
k)1−γ (29)

with

B3 = B2�
(γ + 1

2

)
.

From (25), (27) and (29), we have

|∇xu(x, t)| ≤ C‖u0‖C1(�) + B1F√
k

+ B3H(
√

k)1−γ .

By choosing

√
k =

[
B1F

B3H(1 − γ )

] 1
2−γ

,

we obtain the desired estimate

|∇xu(x, t)| ≤ C‖u0‖C1(�) + BF
1−γ
2−γ H

1
2−γ

with

B =
[
(1 − γ )

1
2−γ + (1 − γ )

γ−1
2−γ

]
B

1−γ
2−γ

1 B
1

2−γ

3 .

Case 2: � =Rn. In this case, we use the explicit representation of the fundamental solution to obtain

∇xG(x − y, t − s) = 1

(4πd(t − s))n/2

y − x

2d(t − s)
e
− |x−y|2

4d(t−s)

and consequently get from (24) that

|∇xu(x, t)| ≤ C‖u0‖C1(Rn) + F
1

2d(4πd)n/2

t∫
0

e−k(t−s)

(t − s)n/2+1

∫
Rn

|x − y|e− |x−y|2
4d(t−s) dyds

+ kH
1

2d(4πd)n/2

t∫
0

e−k(t−s)

(t − s)n/2+1

∫
Rn

|x − y|1+γ e
− |x−y|2

4d(t−s) dyds.

(30)

Denote by (III) and (IV) the second and the last term on the right hand side of (30), respectively. We estimate 
these two terms similarly as in Case 1 to have

(III) ≤ B4F√
k

, where B4 = ωn−1

π(n−1)/2
√

d
�
(n + 1

2

)
and

(IV) ≤ B5H(
√

k)1−γ , where B5 = ωn−1

πn/2 2γ−1d
γ−1

2 �
(1 + γ

2

)
�
(n + 1 + γ

2

)
.

Hence

|∇xu(x, t)| ≤ C‖u0‖C1(Rn) + B4F√ + B5H(
√

k)1−γ ,

k
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and therefore

|∇xu(x, t)| ≤ C‖u0‖C1(Rn) + BF
1−γ
2−γ H

1
2−γ

with

B =
[
(1 − γ )

1
2−γ + (1 − γ )

γ−1
2−γ

]
B

1−γ
2−γ

4 B
1

2−γ

5 .

3. Proof of Theorem 1.1 with condition (A3eq)

Proposition 3.1 (Local existence).
Assume (A1), (A2) and (A4). Then, there exists an interval [0, T ) (which can be chosen maximal) and a corresponding 
unique nonnegative classical solution u to (1) on (0, T ). Moreover, in order to extend the solution globally, it is 
sufficient to prove for all T > 0

lim
t↑T

‖ui(t)‖L∞(�) < +∞ ∀i = 1, . . . ,N, ⇒ T = +∞. (31)

Proof. Since ui0 ∈ L∞(�) and the nonlinearities are locally Lipschitz, the local existence follows from classical 
results (see e.g. [28,33,1]). The quasi-positivity of the nonlinearity (A4) implies propagation of non-negativity of 
initial data, e.g. [27,26]. �
Remark 3.1 (Weaker blow-up criteria).
The continuation criteria (31) is standard for semilinear reaction-diffusion systems. For the systems considered here, 
it can be weakened. For instance, with assumptions (A3eq) and (A4), by applying improved duality estimates as in 
[3], global classical solutions can be shown from the existence of an exponent p > (1 + ε)(1 + n/2) such that

lim sup
t↑T

‖ui‖Lp(Qt ) < +∞ for all i = 1, . . . ,N, ⇒ T = +∞.

Remark 3.2 (Smooth initial data).
Thanks to Definition 1.1 and the smoothing effect of the heat semigroup, it is well-known that the local solutions of 
Proposition 3.1 are smooth for positive times, i.e. that for all 0 < t0 < T , ui(t0) ∈ C2(�) for all i = 1, . . . , N . This 
allows us to shift the initial time to t0 and therefore consider system (1) with smooth initial data in C2(�). Note that all 
parabolic compatibility conditions are satisfied at t0 > 0. Consequentially, from now onwards, we weaken (w.l.o.g.) 
Assumption (A2) by only considering smooth initial data ui0 ∈ C∞(�) satisfying a homogeneous Neumann boundary 
condition for all i = 1, . . . , N . Consequently, we have ui ∈ C1,2([0, T ) × �).

From now on, because of Remark 3.2, we assume instead of (A2) that the initial data satisfy

(A2’) (Smooth Nonnegative Initial Data) For all i = 1, . . .N : 0 ≤ ui0 ∈ C2(�).

Moreover, we assume

(A6) (Diffusion Coefficient d in (7)) Throughout this section, we fix the diffusion coefficient d > maxi=1,...,N {di}. 
Moreover, let vi be the unique solution to (7) on QT .

Lemma 3.1. Let z be defined in (8). Then, z is the solution to (9) and

sup
QT

|z| ≤ M + K0T :=
N∑

i=1

‖ui0‖L∞(�) + K0T .

Proof. First, we show that z solves (9), and the rest follows from the comparison principle. Indeed, by using definition 
(8), we calculate
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∂t z − d�z = ∂t

( N∑
i=1

(∂tvi − di�vi)

)
− d�

( N∑
i=1

(∂tvi − di�vi)

)

=
N∑

i=1

[∂t (∂t vi − d�vi) − di�(∂tvi − d�vi)] =
N∑

i=1

(∂tui − di�ui) (using (7))

=
N∑

i=1

fi(u) = K0 (using (A3eq)).

Moreover, on ∂�, we have ∇xui · ν = ∇xvi · ν = 0 and ∂tvi − d�vi = ui , implying ∇x(�vi) · ν = 0. Therefore, the 
boundary condition ∇xz ·ν = 0 follows from the definition z = ∑N

i=1(∂tvi −di�vi). For initial data, since vi(x, 0) = 0, 
we have

z(x,0) =
N∑

i=1

(∂tvi(x,0) − di�vi(x,0)) =
N∑

i=1

(∂tvi(x,0) − d�vi(x,0)) =
N∑

i=1

ui(x,0) =
N∑

i=1

ui0(x). �

Lemma 3.2. The function vd defined in (8) satisfies

vd = dẑ − û

with ̂z and ̂u as defined in (11).

Proof. Integrating (7) over (0, t) and using vi(x, 0) = 0 yields

vi(x, t) − d�

t∫
0

vi(x, s)ds =
t∫

0

ui(x, s)ds.

Hence

vd(x, t) =
N∑

i=1

(d − di)vi(x, t) = d

t∫
0

N∑
i=1

(d − di)�vi(x, s)ds +
t∫

0

N∑
i=1

(d − di)ui(x, s)ds

= d

t∫
0

[
d�

N∑
i=1

vi(x, s) + z(x, s) −
N∑

i=1

∂svi(x, s)

]
ds +

t∫
0

N∑
i=1

(d − di)ui(x, s)ds

= d

t∫
0

[
z(x, s) −

N∑
i=1

ui(x, s)

]
ds +

t∫
0

N∑
i=1

(d − di)ui(x, s)ds

= d

t∫
0

z(x, s)ds −
t∫

0

N∑
i=1

diui(x, s)ds = dẑ − û. �

Lemma 3.3. Define

ẑ(x, t) :=
t∫

0

z(x, s)ds.

Then, ̂z solves

∂t ẑ − d�̂z =
N∑

i=1

ui0 + K0t in QT , ∇x ẑ · ν = 0 on ∂� × (0, T ), ẑ(x,0) = 0 in �

and consequently ̂z is Hölder continuous in QT with an exponent β ∈ (0, 1) depending on �, K0, and d .
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Proof. The boundary condition and initial data of ̂z are obvious. Integrating the equation (9) of z over (0, t), we have

z(x, t) − d�

t∫
0

z(x, s)ds = z(x,0) + K0t

and hence

∂t ẑ − d�̂z = z(x,0) =
N∑

i=1

ui0 + K0t.

The comparison principle implies

sup
QT

|̂z| ≤ (M + K0T )T , recalling M :=
N∑

i=1

‖ui0‖L∞(�). (32)

Therefore, Hölder continuity of ̂z follows from classical parabolic theory (see e.g. [24] for � = Rn or [20, Theorem 
4.8] for bounded domains). More precisely, there exists β ∈ (0, 1) and C1 depending only on �, n, N and M such 
that

|̂z(x, t) − ẑ(x′, t ′)| ≤ C1(1 + T 2)(|x − x′|β + |t − t ′|β/2) for all (x, t), (x′, t ′) ∈ QT .

The term 1 + T 2 on the right hand side is because of the L∞ bound of ̂z in (32). �
Lemma 3.4. Define as in (11)

û(x, t) :=
t∫

0

N∑
i=1

diui(x, s)ds. (33)

Then, ̂u solves

b∂t û − �û =
N∑

i=1

ui0 + K0t, ∇xû · ν = 0, û(x,0) = 0, (34)

where

b(x, t) =
∑N

i=1 ui(x, t)∑N
i=1 diui(x, t)

satisfies the bound

1

max{di} ≤ b(x, t) ≤ 1

min{di} , for all (x, t) ∈ QT . (35)

Proof. Summing all equations in (1) and using assumption (A3eq) leads to

∂t

N∑
i=1

ui − �

N∑
i=1

diui = K0.

Integrating this equation over (0, t) yields

N∑
i=1

ui(x, t) − �û =
N∑

i=1

ui0(x) + K0t

which implies (34) since ∂t û = ∑N
i=1 diui . The bounds of b(x, t) in (35) follows easily from the non-negativity of 

ui . �
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Lemma 3.5. The function ̂u defined in (33) is bounded in QT . More precisely ‖û‖L∞(QT ) ≤ d(M +K0T )T . Moreover, 
û is Hölder continuous with some exponent α ∈ (0, 1), i.e.

|̂u(x, t) − û(x′, t ′)| ≤ C2(1 + T 2)(|x − x′|α + |t − t ′|α/2) for all (x, t), (x′, t ′) ∈ QT , (36)

where C2 and α depend on �, M , n, K0 and di .

Remark 3.3. The local Hölder continuity of û follows from a well-known result in [17] since û also solves the 
following parabolic equation of non-divergence form

∂t û − 1

b
�û = 1

b

N∑
i=1

ui0 + 1

b
K0t.

The results in [17] are based on a probabilistic approach. Here, we provide an alternative proof using [18] and [25]. A 
similar result was presented in [4, Proposition 3.1], in which the authors proved Hölder continuity for a homogeneous 
equation.

Proof of Lemma 3.5. Since vi ≥ 0 and d ≥ di for all i = 1, . . . , N , we use vd = dẑ − û to get

0 ≤ û = dẑ − vd ≤ dẑ.

Therefore, thanks to Lemma 3.3,

sup
QT

|̂u| ≤ d sup
QT

|̂z| ≤ d(M + K0T )T . (37)

The proof of Hölder continuity is technical and lengthy, and therefore, we postpone it to Appendix A. �
Lemma 3.6. The function vd = dẑ − û as defined in (8) is Hölder continuous in QT , i.e. there exists C5 > 0 such that

|vd(x, t) − vd(x′, t ′)| ≤ C5(1 + T 2)(|x − x′|δ + |t − t ′|δ/2) for all (x, t), (x′, t ′) ∈ QT , (38)

where the Hölder exponent δ ∈ (0, 1) depends on the parameters �, n, N, di, K0 of the problem.

Proof. The Hölder continuity follows clearly from the Lemmas 3.3 and 3.5. In the following, we provided explicit 
estimates for the constants. First, for |x − x ′|, |t − t ′| ≤ 1, we estimate

|vd(x, t) − vd(x′, t ′)| ≤ d |̂z(x, t) − ẑ(x′, t ′)| + |̂u(x, t) − û(x′, t ′)|
≤ max{dC1,C2}(1 + T 2)(|x − x′|δ + |t − t ′|δ/2),

(39)

where δ = min{α, β} with β and α as in Lemmas 3.3 and 3.5. When |x − x′| ≥ 1 or |t − t ′| ≥ 1, we estimate

|vd(x, t) − vd(x′, t ′)| ≤ 2‖vd‖L∞(QT )(|x − x′|δ + |t − t ′|δ/2)

≤ 2d(M + K0T )T (|x − x′|δ + |t − t ′|δ/2)
(40)

since ‖vd‖L∞(QT ) ≤ d ‖̂z‖L∞(QT ) + ‖û‖L∞(QT ) ≤ 2d(M + K0T )T . From (39) and (40), we get (38) with δ =
min{α, β}. �
Lemma 3.7. Let |U | = supQT

maxi=1,...,N |ui |. Then, there exists a constant C6 > 0 such that

sup
QT

|∇xvd | ≤ C6 (1 + T 2)
1

2−δ |U | 1−δ
2−δ , (41)

where δ ∈ (0, 1) is the Hölder exponent introduced in Lemma 3.6.

Proof. From Lemma 3.6, we know that vd is Hölder continuous. In particular

|vd(x, t) − vd(x′, t)| ≤ C5 (1 + T 2)|x − x′|δ, for all (x, t), (x′, t) ∈ QT .
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By the initial data vi(x, 0) = 0 and supQT
|ui | ≤ |U | (i.e. by the definition of |U |), we can apply Lemma 1.1 to (7)

and obtain

sup
QT

|∇xvd | ≤ B(C5 (1 + T 2))
1

2−δ |U | 1−δ
2−δ ,

whence (41) with C6 = BC
1

2−δ

5 . �
Lemma 3.8. There exists a constant C7 > 0 such that

sup
QT

|∇xud | ≤ C7

(
1 + |U | 3+ε

2

)
,

where ε is given in growth assumption (A5).

Proof. Firstly by the definition of ud in (13) it follows

sup
QT

|∇xud | ≤
N∑

i=1

(d − di) sup
QT

|∇xui |.

In order to apply Lemma 1.1 to equation of ui we first observe that

|ui(x, t) − ui(x
′, t)| ≤ 2 sup

QT

|ui | ≤ 2|U ||x − x′|0, for all (x, t), (x′, t) ∈ QT .

The right hand sides in (1) can be estimated by using the growth assumption (A5)

sup
QT

|fi(u)| ≤ K(1 + sup
QT

|u|2+ε) ≤ KN2+ε(1 + |U |2+ε).

Now we can apply Lemma 1.1 to the equation of ui with the exponent γ = 0 to obtain

sup
QT

|∇xui | ≤ C‖ui0‖C1(�) + B(2|U |)1/2
(
KN2+ε(1 + |U |2+ε)

)1/2

≤ C‖ui0‖C1(�) + C8

(
1 + |U | 3

2 + ε
2

)
where C8 depends on B, K and N . Hence

sup
QT

|∇xud | ≤ max{di}
N∑

i=1

sup
QT

|∇xui | ≤ C7

(
1 + |U | 3+ε

2

)
,

which is the claim of Lemma 3.8 where C7 depends on ‖ui0‖C1(�), di , N and C8. �
Lemma 3.9. There exists a constant C9 > 0 such that

sup
QT

|�vd | ≤ C9(1 + T )
(

1 + |U | 3+ε
4 + 1−δ

2(2−δ)

)
,

where ε is given in growth assumption (A5) and δ ∈ (0, 1) in Lemma 3.6.

Proof. By definition vd = ∑N
i=1(d − di)vi , we have

∂tvd − d�vd = ∂t

N∑
i=1

(d − di)vi − d�

N∑
i=1

(d − di)vi =
N∑

i=1

(d − di)(∂t vi − d�vi)

=
N∑

(d − di)ui = ud.
i=1
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Let k > 0 to be chosen later, and define η(x, t) = ekt vd(x, t). It follows from the equation of vd that

∂tη − d�η = ekt (kvd + ud), ∇xη · ν = 0, η(x,0) = vd(x,0) = 0. (42)

By Duhamel’s formula

η(x, t) =
t∫

0

e(t−s)d�eks(kvd(x, s) + ud(x, s))ds.

Changing back to vd we get

vd(x, t) =
t∫

0

e−k(t−s)e(t−s)d�(kvd(x, s) + ud(x, s))ds.

We now apply the second order semigroup estimate, see e.g. [22, Eq. (2.39)]

‖etd�f ‖C2(�) ≤ Ct−1/2‖f ‖C1(�), for t ∈ (0, T ] (43)

to have

sup
QT

|�vd | ≤ C sup
t∈(0,T )

‖vd(t)‖C2(�) ≤ C

t∫
0

e−k(t−s)(t − s)−1/2[k‖vd(s)‖C1(�) + ‖ud(s)‖C1(�)]ds,

where in this proof we always denote by C a generic constant depending on �, n, and d , but independent of T . We 
estimate

t∫
0

e−k(t−s)(t − s)−1/2k‖vd(s)‖C1(�)ds ≤ sup
s∈(0,T )

‖vd(s)‖C1(�)k

t∫
0

e−k(t−s)(t − s)−1/2ds

≤ C sup
QT

(|vd | + |∇vd |)√k

∞∫
0

s−1/2e−sds

≤ C sup
QT

(|vd | + |∇vd |)√k

and similarly

t∫
0

e−k(t−s)(t − s)−1/2‖ud(s)‖C1(�)ds ≤ C sup
QT

(|ud | + |∇ud |) 1√
k
.

By choosing 
√

k = supQT
(|ud | + |∇ud |)1/2 supQT

(|vd | + |∇vd |)−1/2, we obtain from (43)

sup
QT

|�vd | ≤ C sup
QT

(|ud | + |∇ud |)1/2 sup
QT

(|vd | + |∇vd |)1/2.

Therefore, by using Lemma 3.6, i.e. supQT
|vd | ≤ 2d(M + K0T )T and Lemmas 3.7, 3.8, we finally get

sup
QT

|�vd | ≤ C
(
|U | + 1 + |U | 3+ε

2

)1/2 (
1 + T 2 + (1 + T 2)

1
2−δ |U | 1−δ

2−δ

)1/2

≤ C(1 + T )
(

1 + |U | 3+ε
4 + 1−δ

2(2−δ)

)
. �

Remark 3.4. In the case � =Rn, we can apply Lemma 1.1 to the equation of ∂xj
vd to obtain Lemma 3.9 immediately. 

This argument seems to not directly work in the case of a bounded domain since the Neumann boundary condition is 
not satisfied by ∂xj

vd .
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We are now ready to prove Theorem 1.1 with (A3eq).

Proof of Theorem 1.1 with (A3eq). From (8) we have

|U | = max
i=1,...,N

sup
QT

|ui | ≤
N∑

i=1

sup
QT

|ui | ≤ sup
QT

(|z| + |�vd |).

By using Lemmas 3.1 and 3.9, it follows

|U | ≤ (M + K0T ) + C9(1 + T )
(

1 + |U | 3+ε
4 + 1−δ

2(2−δ)

)
≤ C11

[
1 + T + (1 + T )|U | 3+ε

4 + 1−δ
2(2−δ)

]
,

(44)

where C11 depends only on N , C9 and M . We choose ε small enough such that

λ := 3 + ε

4
+ 1 − δ

2(2 − δ)
< 1 or equivalently ε <

δ

2 − δ
.

By using Young’s inequality we have

C11(1 + T )|U |λ ≤ |U |
2

+ (1 − λ)(2λC11)
λ

1−λ (1 + T )
1

1−λ

and therefore it follows from (44)

|U | ≤ 2C11 [1 + T ] + 2(1 − λ)(2λC11)
λ

1−λ (1 + T )
1

1−λ ≤ C12(1 + T
1

1−λ ),

where C12 depends only on C11, ε and δ. The uniqueness follows immediately thanks to the L∞-bound and the local 
Lipschitz continuity of the nonlinearities. �
Remark 3.5. It’s straightforward that all the arguments of this section are still valid in case K0 is replaced by a function 
K0(t) which is continuous on [0, ∞), except that the L∞-norm of the solution might grow faster than polynomial.

4. Proof of Theorem 1.1 with condition (A3)

Proof of Theorem 1.1 with (A3). Our main idea is that with a suitable change of unknowns, and especially adding 
one more appropriate equation, we can transform a system with the mass control condition (A3) into a system with 
condition (A3eq), that keeps the essential features (A4) and (A5).

We define

wi(x, t) = e−K1t ui(x, t) or equivalently ui(x, t) = eK1twi(x, t)

and w = (w1, . . . , wN). Direct computations give

∂twi = e−K1t (∂tui − K1ui)

= e−K1t (di�ui + fi(u) − K1ui)

= di�wi + gi(w)

where

gi(w) = e−K1t (fi(u) − K1e
K1twi). (45)

Note that

N∑
i=1

gi(w) = e−K1t
N∑

i=1

(fi(u) − K1ui) ≤ e−K1tK0

due to the assumption (A3).
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Introduce a new unknown wN+1 : � × (0, Tmax) → R+ which solves

∂twN+1 − �wN+1 = K0e
−K1t −

N∑
i=1

gi(w) =: gN+1(w) ≥ 0 (46)

with homogeneous Neumann boundary condition ∇wN+1 · ν = 0 and zero initial data wN+1(x, 0) = wN+1,0(x) = 0
for x ∈ �. With a slight abuse of notation we write the new vector of concentrations w̃ = (w1, . . . , wN, wN+1) and 
the nonlinearities gi(w̃) := gi(w1, . . . , wN) for all i = 1, . . . , N while gN+1(w̃) = K0e

−K1t − ∑N
i=1 gi(w). We have 

arrived at the following system⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂twi − di�wi = gi(w̃), (x, t) ∈ � × (0, Tmax), i = 1, . . . ,N + 1,

∇wi · ν = 0, (x, t) ∈ ∂� × (0, Tmax), i = 1, . . . ,N + 1,

wi(x,0) = ui,0(x), x ∈ �, i = 1, . . . ,N,

wN+1(x,0) = wN+1,0(x) = 0, x ∈ �.

(47)

It’s obvious to check that the nonlinearities gi, i = 1, . . . , N + 1 satisfy the assumption (A4). Moreover, due to the 
definition wi(x, t) = e−K1t ui(x, t), it follows from (A5) and (45) the growth control

|gi(w̃)| ≤ e−K1t (|fi(u)| + K1e
K1t |wi |)

≤ e−K1t (K(1 + |u|2+ε) + K1e
K1t |wi |)

≤ Ce(1+ε)K1Tmax(1 + |w̃|2+ε).

(48)

Moreover, the nonlinearities of (47) satisfies the condition (A3eq) (with K0 replaced by a continuous function in t ), 
i.e.

N+1∑
i=1

gi(w̃) = K0e
−K1t (49)

thanks to (46).
Now we can apply the results in Section 3 (Remark 3.5) to get that (47) has a global classical solution w̃. Changing 

back to the original unknowns ui(x, t) = eK1twi(x, t) for i = 1, . . . , N , we obtain finally the global existence of 
classical solution to (1).

Moreover, in case K0 = 0 and K1 < 0, the growth condition (48) can be estimated further as

|gi(w̃)| ≤ C(1 + |w̃|2+ε)

and (49) becomes

N+1∑
i=1

gi(w̃) = 0.

Therefore, from Section 3, we know that the solution w̃ to (47) grows at most polynomially in time, i.e. for all 
i = 1, . . . , N + 1

‖wi(t)‖L∞(�) ≤ C(1 + tζ )

for some C, ζ > 0. Therefore, if K0 = 0 and K1 < 0 we get

‖ui(t)‖L∞(�) = eK1t‖wi(t)‖L∞(�) ≤ C(1 + eK1t t ζ ) ≤ C(1 + e−μt )

for some K1 < −μ < 0, which completes the proof of Theorem 1.1. �
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5. Applications

5.1. Quadratic reversible reactions

We consider the reversible chemical reaction

A1 + A2 � A3 + A4

and denote by ui(x, t) the concentrations of the substances Ai at x ∈ � and t > 0. Using the mass-action law, we 
obtain the following reaction-diffusion system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu1 − d1�u1 = −u1u2 + u3u4 =: f1(u), (x, t) ∈ QT ,

∂tu2 − d2�u2 = −u1u2 + u3u4 =: f2(u), (x, t) ∈ QT ,

∂tu3 − d3�u3 = +u1u2 − u3u4 =: f3(u), (x, t) ∈ QT ,

∂tu4 − d4�u4 = +u1u2 − u3u4 =: f4(u), (x, t) ∈ QT ,

∇xui · ν = 0, (x, t) ∈ ∂� × (0, T ),

ui(x,0) = ui0(x), x ∈ �,

(50)

where we have normalised the forward and backward reaction rate constants for the sake of simplicity. We assume 
positive diffusion coefficients di > 0. System (50) was studied extensively in the literature: Weak solutions were shown 
in all dimensions [6] while the global strong (classical) solutions were shown in [13] or [3] in one or two dimensions. 
In higher dimensions, [3] showed global classical solutions under the assumption that the diffusion coefficients are 
sufficiently close to each other (depending on the space dimension). The question of global classical without restriction 
on diffusion coefficients was solved in [16] for the case � =Rn and recently reproved in [4] and [34]. We remark that 
besides satisfying Assumptions (A3), (A4) and (A5), the nonlinearities of (50) have an additional feature, that is an 
entropy inequality, i.e.

4∑
i=1

fi(u) logui ≤ 0 for all u ∈R4+, (51)

which plays an important role in the analysis of [4,34]. This entropy property is also a key in studying the convergence 
to chemical equilibrium for (50). Due to the homogeneous Neumann boundary condition, system (50) possesses 
precisely three linear independent conservation laws for all t > 0∫

�

[u1(x, t) + u3(x, t)]dx =
∫
�

[u10(x) + u30(x)]dx =: M13,∫
�

[u2(x, t) + u3(x, t)]dx =
∫
�

[u20(x) + u30(x)]dx =: M23,∫
�

[u2(x, t) + u4(x, t)]dx =
∫
�

[u20(x) + u40(x)]dx =: M24.

Denote by M = (M13, M23, M24) the initial mass vector. By straightforward computations, for any fixed positive 
initial mass vector M ∈ R3+, there exists a unique positive constant equilibrium u∞ = (u1∞, u2∞, u3∞, u4∞) ∈ R4+
satisfying

u1∞u2∞ = u3∞u4∞, u1∞ + u3∞ = M13, u2∞ + u3∞ = M23, u2∞ + u4∞ = M24.

Note that the equilibrium is determined only by the initial mass vector rather than the precise initial data. It was 
proved in several works, e.g. [5,9,10,32], that any solution (renormalised, weak or strong) to (50) with initial mass M
converges exponentially in L1-norm to the equilibrium u∞ defined above, i.e.

4∑
i=1

‖ui(t) − ui∞‖L1(�) ≤ Ce−λt , for all t ≥ 0, (52)

where C > 0, λ > 0 are constants which can be computed explicitly. By applying Theorem 1.1, we have
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Theorem 5.1. Let � be a bounded domain with smooth boundary ∂�. Fix a positive initial mass vector M ∈R3+.
Then, for any non-negative initial data u0 = (ui0)i=1...4 ∈ L∞(�)4 having the initial mass vector M , there exists 

a unique global non-negative classical solution u = (u1, u2, u3, u4) of (50) which converges exponentially to equilib-
rium in L∞-norm, i.e.

4∑
i=1

‖ui(t) − ui∞‖L∞(�) ≤ C0e
−λ0t , for all t ≥ 0, (53)

where C0 > 0, λ0 > 0 are positive constants which can be computed explicitly.

Remark 5.1. The global existence of classical solution to (50) on the whole space Rn was proved in [16] and recently 
reproved in [4,34]. However, it seems that the results therein do not provide a priori estimates in time for solutions, 
thus such convergence in L∞-norm (53) does not follow immediately from their results.

Remark 5.2. Results similar to Theorem 5.1 are also valid for complex balanced networks of chemical reactions of 
substances A1, . . . , AS with quadratic nonlinearities, which means that each complex of the networks is of the form 
Ai + Aj with i, j = 1, . . . , S. The global existence and uniqueness of classical solution follows immediately from 
Theorem 1.1 with (2) replacing (A3), see Remark 1.1. For the exponential convergence we need either the detailed or 
complex balanced condition, and the absence of boundary equilibria, see [2] and [36] for more details.

Proof of Theorem 5.1. From Theorem 1.1, we have that the L∞-norm,

‖ui(T )‖L∞(�) ≤ CT , for all T > 0,

grows at most polynomially in T . Now using (52) and the interpolation inequality

‖f ‖Lp(�) ≤ ‖f ‖(p−1)/p

L∞(�) ‖f ‖1/p

L1(�)

for all p ∈ (1, ∞), we have

‖ui(T ) − ui∞‖Lp(�) ≤ ‖ui(T ) − ui∞‖(p−1)/p

L∞(�) ‖ui(T ) − ui∞‖1/p

L1(�)
≤ C

(p−1)/p
T C1/pe−(λ/p)t

≤ Cpe−λpT
(54)

for some explicit constants Cp > 0 and 0 < λp < λ/p. It follows that for each p ∈ (1, ∞) there exists Mp > 0 such 
that

sup
t>0

‖ui(t)‖Lp(�) ≤ Mp, for all i = 1, . . . ,4.

Let Si(t) = edi�t be the heat semigroup with Neumann boundary condition. We use the Lp − L∞ estimate

‖Si(t)f ‖L∞(�) ≤ Ct−n/(2p)‖f ‖Lp(�),

the Duhamel formula

ui(t + 1) = S(1)u(t) +
1∫

0

S(1 − s)fi(u(t + s))ds,

and the quadratic growth |fi(u)| ≤ C|u|2, to estimate

‖ui(t + 1)‖L∞(�) ≤ C‖ui(t)‖Lp(�) + C

1∫
0

(1 − s)−n/(2p)‖u(t + s)‖2
L2p(�)

ds

≤ CMp + CM2
2p

1∫
(1 − s)−n/(2p)ds.
0
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By choosing p > n/2 which leads to 
∫ 1

0 (1 − s)−n/(2p)ds ≤ C, we get a uniform in time bound of the L∞-norm,

‖ui(t)‖L∞(�) ≤ M∞, for all t > 0 and i = 1, . . . ,4.

To prove exponential convergence in the L∞-norm, we observe that the equilibrium u∞ also solves the system (50). 
Therefore, repeating the previous argument, we get

‖ui(t) − ui∞‖L∞(�) ≤ C‖ui(t) − ui∞‖Lp(�) + C

1∫
0

(1 − s)−n/(2p)‖fi(u(t + s)) − fi(u∞)‖Lp(�)ds.

It follows from the uniform in time bound of L∞-norm that

‖fi(u) − fi(u∞)‖Lp(�) ≤ C‖u − u∞‖Lp(�).

Hence

‖ui(t) − ui∞‖L∞(�) ≤ C‖ui(t) − ui∞‖Lp(�) + C

1∫
0

(1 − s)−n/(2p)‖u(t + s) − u∞‖Lp(�)ds

≤ CCpe−λpt + CCp

1∫
0

(1 − s)−n/(2p)e−λp(t+s)ds

≤ Ce−λpt

⎡⎣1 +
1∫

0

(1 − s)−n/(2p)

⎤⎦
≤ Ce−λpt ,

where we choose p > n/2 at the last steps. This finishes the proof of Theorem 5.1. �
Remark 5.3. The convergence in L∞-norm in Theorem 5.1 can be obtained alternatively by showing that a higher 
order norm grows polynomially. Indeed, by using the estimate of the Neumann semigroup S(t) (see e.g. [39, Lemma 
1.3]) for any 1 ≤ p ≤ ∞,

‖∇S(t)f ‖Lp(�) ≤ C
(

1 + t
− 1

2 + n
2p

)
‖f ‖L∞(�) for all t > 0,

the Duhamel formula ui(t) = Si(t)u0 + ∫ t

0 Si(t − s)fi(u(s))ds, and polynomial growth of the L∞-norm, we obtain 
for any 1 ≤ p < ∞,

‖ui(t)‖W 1,p(�) ≤ C(1 + tηp )

for some ηp > 0. From choosing p > n and using Gagliardo-Nirenberg interpolation inequality

‖ui(t) − ui∞‖L∞(�) ≤ C‖ui(t) − ui∞‖α
W 1,p(�)

‖ui(t) − ui∞‖1−α

L1(�)

for some α > 0, follows the exponential convergence to equilibrium in L∞(�)-norm.

5.2. Skew-symmetric Lotka-Volterra systems

A general Lotka-Volterra system with diffusion is of the form (20), i.e.⎧⎪⎪⎨⎪⎪⎩
∂tui − di�ui =

(
−τi +∑N

j=1 aijuj

)
ui =: fi(u), (x, t) ∈ QT ,

∇xui · ν = 0, (x, t) ∈ ∂� × (0, T ),

ui(x,0) = ui0(x), x ∈ �,
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where A = (aij ) ∈ RN×N and τ = (τ1, . . . , τN) ∈ RN . The system is called skew-symmetric when the matrix A is 
skew-symmetric, i.e.

A� + A = 0.

Lotka-Volterra systems of the form (20) have been extensively investigated in the literature due to their wide appli-
cation in biology, see e.g. [14,33,19,35]. In the case of skew-symmetric Lotka-Volterra systems, all existing results 
concern either weak solutions in all space dimensions or classical solutions in small (one and two) space dimensions. 
The results of our work imply classical solutions in all space dimensions. By the skew-symmetry of A, we obtain 
easily

N∑
i=1

fi(u) = −
N∑

i=1

τiui,

thus Assumption (A3) holds. It is straightforward that Assumptions (A4) and (A5) are also satisfied. We remark that 
(20) does not possess an entropy inequality like (51), and therefore the results of [4] or [34] are not applicable in this 
case. By applying Theorem 1.1, we have

Theorem 5.2. Assume that � is a bounded domain with smooth boundary ∂�. Assume moreover that the system (20)
is skew-symmetric, i.e. A� +A = 0. Then, for any non-negative initial data ui0 ∈ L∞(�), there exists a unique global 
classical solution to (20). Moreover, if τi > 0 for all i = 1, . . . , N , we have

‖ui(t)‖L∞(�) ≤ Ce−μt

for some μ > 0.

Remark 5.4. Obviously, Theorem 5.2 is also applicable in the case of “sub-skew-symmetric” system, i.e. for A +
A� ≤ 0 in the sense that all elements of A + A� are non-positive.

Proof. The global existence and uniqueness of classical solution follows from Theorem 1.1. If τi > 0 for all i =
1, . . . , N , we can take K1 = − min{τ1, . . . , τN } < 0 which implies

N∑
i=1

fi(u) = −
N∑

i=1

τiui ≤ K1

N∑
i=1

ui

and therefore Theorem 1.1 directly applies yielding the exponential decay to zero. �
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Appendix A. Proof of Hölder continuity for ̂u

In order to show Hölder continuity of ̂u in Lemma 3.5, we follow the approach from [18, Chapter 2]. We remark 
that this approach gives only local Hölder continuity which is only sufficient in the case � = Rn. In the case of 
bounded domains � ⊂ Rn, we need to also prove boundary regularity. This will be done by reflection techniques, 
which was used e.g. in [25] for elliptic equations.
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A.1. Local Hölder continuity

We fix (x0, t0) ∈ QT and denote

B� = {x ∈ � : |x − x0| < �}
and

Q(�, τ) = B� × (t0 − τ, t0) = {(x, t) : x ∈ B�, t0 − τ < t < t0}.

Lemma A.1 (Local Hölder continuity).
For any t0 > 0 and �̂ ⊂⊂ �, there exists ρ0 > 0 with d(�̂, ∂�) ≥ ρ0, and a constant α ∈ (0, 1), such that for some 
constant C > 0

|̂u(x, t) − û(x′, t ′)| ≤ C‖û‖L∞(QT )(|x − x′|α + |t − t ′|α/2), for all (x, t), (x′, t ′) ∈ �̂ × [t0, T ].

Proof. According to [18, Chapter 2, Section 7], the Hölder continuity of û follows from the boundedness 
‖û‖L∞(QT ) ≤ CT and the energy estimate of the following Lemma A.2. �
Remark A.1. As an alternative proof of local Hölder continuity, note that the energy estimates (55) are sufficient to 
repeat the arguments in the proof of [4, Proposition 3.1].

Lemma A.2 (Local energy estimates).
For any k > 0, any 0 < τ2 < τ1 < 1 and 0 < �2 < �1 < 1 such that Q(�1, τ1) ⊂ QT , the following energy estimate 
holds

sup
t0−τ2<t<t0

‖(̂u − k)+‖2
L2(B�2 )

+
t0∫

t0−τ2

‖(̂u − k)+‖2
H 1(B�2 )

ds

≤ C

⎡⎢⎣((�1 − ρ2)
−2 + (τ1 − τ2)

−1)‖(̂u − k)+‖2
L2(Q(�1,τ1))

+
∫

Q(�1,τ1)

χ{̂u>k}dxds

⎤⎥⎦ . (55)

Proof. Let ξ : QT → [0, 1] be a smooth cut-off function such that

ξ(x, t) =
{

1 if (x, t) ∈ Q(�2, τ2)

0 if (x, t) /∈ Q(�1, τ1).

For simplicity we denote by u(k) = (̂u − k)+. By multiplying equation (34) with u(k)ξ2 and integrating over B�1 ×
(t0 − τ1, t), t0 − τ2 < t < t0 and by integration by parts, we calculate

t∫
t0−τ1

∫
B�1

b∂t ûu(k)ξ2dxds +
t∫

t0−τ1

∫
B�1

|∇xu
(k)|2ξ2dxds

= −2

t∫
t0−τ1

∫
B�1

(∇xu
(k) · ∇xξ)u(k)ξdxds +

t∫
t0−τ1

∫
B�1

[u0 + K0s]u(k)ξ2dxds (56)

where we denote by u0 := ∑N
i=1 ui0. Since ∂t û = ∑N

i=1 diui ≥ 0, due to (33), and thus

1
∂t û ≤ b∂t û ≤ 1

∂t û.

maxdi mindi
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Therefore, with ν = 1
max di

, we estimate

t∫
t0−τ1

∫
B�1

b∂t ûu(k)ξ2dxds ≥ ν

t∫
t0−τ1

∫
B�1

∂t ûu(k)ξ2dxds

= ν

2

∫
B�1

(u(k)(t))2ξ(t)2dx − ν

t∫
t0−τ1

∫
B�1

(u(k))2ξ∂t ξdxds

≥ ν

2

∫
B�2

|u(k)(t)|2dx − ν

t∫
t0−τ1

∫
B�1

(u(k))2ξ∂t ξdxds

≥ ν

2

∫
B�2

|u(k)(t)|2dx − ν

∫
Q(�1,τ1)

|u(k)|2|ξt |dxds,

(57)

where we used ξ(·, t0 − τ1) = 0 at second step and ξ |Q(ρ2,τ2) ≡ 1 at the third step. By applying Cauchy-Schwarz’s 
inequality, we get

−2

t∫
t0−τ1

∫
B�1

(∇xu
(k) · ∇xξ)u(k)ξdxds ≤ 1

2

t∫
t0−τ1

∫
B�1

|∇xu
(k)|2ξ2dxds + 2

t∫
t0−τ1

∫
B�1

|u(k)|2|∇xξ |2dxds

≤ 1

2

t∫
t0−τ1

∫
B�1

|∇xu
(k)|2ξ2dxds + 2

∫
Q(�1,τ1)

|u(k)|2|∇xξ |2dxds.

(58)

Denoting by χ{̂u>k} the characteristic function of the set {(x, t) : û(x, t) > k}, we can estimate

t∫
t0−τ1

∫
B�1

[u0 + K0s]u(k)ξ2dxds

=
t∫

t0−τ1

∫
B�1

[u0 + K0s]u(k)ξ2χ{̂u>k}dxds

≤ 1

2

t∫
t0−τ1

∫
B�1

|u(k)|2ξ2dxds + 1

2

t∫
t0−τ1

∫
B�1

|u0 + K0s|2ξ2χ{̂u>k}dxds

≤ max
{

1/2; ‖u0‖2
L∞(�) + K2

0 t2
} ∫
Q(�1,τ1)

(
|u(k)|2 + χ{̂u>k}

)
ds,

(59)

where we have used |ξ | ≤ 1 in the last step. We now insert the estimates (57), (58) and (59) into (56) to get for all 
t ∈ (t0 − τ2, t0)

ν

2
‖u(k)(t)‖2

L2(B�2 )
+ 1

2

t∫
t0−τ1

∫
B�1

|∇xu
(k)|2ξ2dxds

≤ max{ν;2; ‖u0‖2
L∞(�) + K2

0 t2}
⎡⎢⎣ ∫
Q(� ,τ )

(
|u(k)|2(|∇xξ |2 + |∂t ξ | + 1) + χ{̂u>k}

)
dxds

⎤⎥⎦ . (60)
1 1
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By adding the inequality 1
2

∫ t

t0−τ1

∫
B�1

|u(k)|2ξ2dxds ≤ 1
2

∫
Q(�1,τ1)

|u(k)|2dxds and taking the supremum over t ∈ (t0 −
τ2, t0), we have with τ2 < τ1

min{ν,1}
2

⎛⎝ sup
t0−τ2<t<t0

‖u(k)(t)‖2
L2(B�2 )

+
t0∫

t0−τ2

‖u(k)‖2
H 1(B�2 )

ds

⎞⎠

≤ max{ν;2; ‖u0‖2
L∞(�) + K2

0 t2}
⎡⎢⎣ ∫
Q(�1,τ1)

(
|u(k)|2(|∇xξ |2 + |∂t ξ | + 1) + χ{̂u>k}

)
ds

⎤⎥⎦ (61)

Finally, due to the definition of the cut-off function ξ , there exists a constant C ≥ 1 independent of �i and τi such that 
|∇xξ | ≤ C(�1 − �2)

−1 and |∂t ξ | ≤ C(τ1 − τ2)
−1. Noting also 1 ≤ (τ1 − τ2)

−1 since τ1, τ2 ∈ (0, 1), we get from (61)
the energy estimate (55). �
A.2. Boundary Hölder continuity

For this part, we only need ∂� to be Lipschitz continuous. The proof in this part follows from [25], where the 
author applied it to elliptic equations. For any z ∈ ∂�, we can find an orthogonal matrix O and a Lipschitz continuous 
function ψ : Rn−1 → R and

G := {(y,ψ(y) + s) : y ∈ B(0, r), s ∈ (−r, r)}
such that

O(� − z) ∩ G = {(y,ψ(y) + s) : y ∈ B(0, r), s ∈ (0, r)}.
Without loss of generality, we can assume that z = 0 and O = Id . Define the mapping T : B(0, r) × (−r, r) �→ G

by T (y, s) = (y, ψ(y) + s), then T is bi-Lipschitz continuous. Using the mapping S : G �→ G with S(T (y, s)) =
T (y, −s) we can define the reflection mapping of any function w : (D ⊂ G) × (0, T ) �→ R by

w̃(x, t) :=
{

w(x, t) if x ∈ G ∩ �,

w(Sx, t) if x ∈ G \ �.

Lemma A.3 (Hölder continuity at boundary).
Let ̂u solve equation (34). Then ̃u := ˜̂u is the weak solution to

b̃∂t ũ − div(A(x)∇ũ) = ũ0 + K0t (62)

where A(x) ∈ Rn×n is uniformly bounded and positive definite for all x ∈ G, i.e. ‖A(x)‖ ≤ C and there exists λ > 0
such that ξ�A(x)ξ ≥ λ|ξ |2 for all x ∈ G and ξ ∈ Rn. Therefore, ̃u ∈ Cα(Ĝ×[t0, T ]) for any t0 ∈ (0, T ) and Ĝ ⊂⊂ G. 
Moreover,

‖ũ‖Cα(Ĝ×[t0,T ]) ≤ Cδ‖û‖L∞(QT )

where Cδ depends on δ = dist(G̃, ∂G). Consequently,

‖û‖Cα(Ĝ∩�×[t0,T ]) ≤ Cδ‖û‖L∞(QT ).

Proof. The validity of (62) can be directly verified using properties of refection functions provided in [25, Lemmas 
3.3 and 3.5]. Note that ̃b always satisfies the bound (35). Therefore, we can repeat the arguments in Subsection A.1 to 
get the desired local Hölder continuity of ̃u, which in turn implies the local Hölder continuity of ̂u at the boundary. �
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A.3. Hölder continuity of ̂u

Proof of Hölder continuity in Lemma 3.5. If � = Rn, then the Hölder continuity of û follows directly from 
Lemma A.1.

When � ⊂ Rn bounded with Lipschitz boundary ∂�, Hölder continuity (36) up to boundary for û follows from 
Lemmas A.1 and A.3, thanks to the fact that ∂� is compact and can be covered by finitely many balls with radius ρ0
(where ρ0 is in Lemma A.1). �
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