Available online at www.sciencedirect.com

ScienceDirect

Check for
updates

ANNALES
DE LINSTITUT
HENRI
POINCARE

ANALYSE
NON LINEAIRE

ELSEVIER Ann. I. H. Poincaré — AN 37 (2020) 281-307

www.elsevier.com/locate/anihpc

Global classical solutions to quadratic systems with mass control
in arbitrary dimensions

Klemens Fellner*, Jeff Morgan °, Bao Quoc Tang **

4 Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstrasse 36, 8010 Graz, Austria
b Department of Mathematics, University of Houston, Houston, TX 77204, USA

Received 26 February 2019; received in revised form 11 August 2019; accepted 26 September 2019
Available online 4 October 2019

Abstract

The global existence of classical solutions to reaction-diffusion systems in arbitrary space dimensions is studied. The nonlinear-
ities are assumed to be quasi-positive, to have (slightly super-) quadratic growth, and to possess a mass control, which includes
the important cases of mass conservation and mass dissipation. Under these assumptions, the local classical solution is shown to
be global, and in the case of mass conservation or mass dissipation, to have the L°°-norm growing at most polynomially in time.
Applications include skew-symmetric Lotka-Volterra systems and quadratic reversible chemical reactions.
© 2019 L’ Association Publications de I’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction and main results

In this paper, we study the global existence of classical solutions to a class of semilinear reaction-diffusion systems.
Let @ C R",n > 1, be abounded domain,and u; : Q7 :=Qx (0,T) - R,i =1,..., N be the i-th concentration den-
sity. Denote by u = (u1, ..., uy) the vector of concentration densities. We consider the following reaction-diffusion
system

i —di Au; = fi(u), (x,1) € Qr,

qul“V:O, (x,t)ef)QX(O, T)’ (1)
u;i(x,0) = u;o(x), X €Q,

where d; > 0 are the diffusion coefficients, and the domain, the initial data and the nonlinearities satisfy the following
assumptions:
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(A1) (Smooth Domain) Either 2 = R" or Q2 C R" is a bounded domain with smooth boundary 92 (i.e. 32 is of C*°
class), such that 2 lies locally on one side of 9. !

(A2) (Bounded, Nonnegative Initial Data) Foralli =1...N:u;p € LY(Q) N L®(2) and ujo(x) > 0 for a.e. x € Q.

(A3) (Mass Control) There exist Ko > 0, K; € R such that

N N
> fiw) <Ko+ K1Y u, forall ueRY :=[0,00)".
i=1 i=1

(A4) (Local Lipschitz and Quasi-positivity) Foralli =1,..., N, f;: RN - Ris locally Lipschitz and
fi(u) =0, forall ue Rﬁ satisfying u; =0.

(AS) ((Super)-quadratic Growth) There exist € > 0 and K > 0 such that
|fiw)| < K+ u?*®),  foralli=1,...,N, ueR",

The mass control assumption (A3) is a generalisation to the condition of mass conservation

N
Y fiw=0 (A3)
i=1

and to the condition of mass dissipation
N
> fiw <0. (A3”)
i=1

Definition 1.1. We call a function u = (u1,...,uy) a classical solution to (1) on (0, T) if Vp > n we have u; €

C([0,T); LP(2) N L*®(2)) N C12((0, T) x Q) and u satisfies each equation in (1) pointwise, cf. [28].
The main result of this paper is the following theorem.

Theorem 1.1 (Global existence of classical solutions).
Assume the assumptions (A1)—(A4). Then there exists € > 0 depending on 2, n, N, d;, Ky such that if (AS) is satisfied,
(1) possesses a unique global classical solution. Moreover,

(i) if K1 <0in (A3), then the solution grows at most polynomially in time, i.e.
lle; () || Loo() < Lo(1 + ts) forall t>0 andforall i=1,...,N,

where Lo, & depend only on Q2,n, N,d;, K, Ko, € and |ujoll L= (),
(ii) and if Ko =0 and K1 < 0 in (A3), the global solution decays to zero exponentially as t — 00, i.e.

||Mj(t)||LOO(Q)SL167Mt forall t>0, and i=1,...,N,

where Ly, i depend only on Q2,n, N,d;, K, K1, & and ||u;o|| L)
Remark 1.1 (Generalisations).

(i) The results of Theorem 1.1 can be directly generalised to the case where (A3) is replaced by the assumption:
There exists («;) € (0, 00)" such that

N N
Zaiﬁ(M)SKo+Klzu,-, forall ueRY. 2)
i=1 i=1

1 Naturally, the zero-flux boundary condition is only considered in case of a bounded domain.
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(i) (Boundary conditions) The results in Theorem 1.1 are proved for homogeneous Neumann boundary conditions,
but the same results can also be obtained for homogeneous Dirichlet boundary conditions. Note that the proof of
Theorem 1.1 doesn’t apply directly to mixed boundary conditions.

The question of global existence for reaction-diffusion systems is a classical topic, yet still poses a lot of open
and challenging problems. A main difficulty in studying global existence for reaction-diffusion systems is the lack of
maximum principle estimates or invariant regions, i.e. a structural inapplicability of techniques from scalar equations.
Let us mention some classical results from e.g. Rothe [33], Amann [1], Hollis, Martin and Pierre [15] or Morgan [23].
Most of these works assume some technical assumptions on the nonlinearities. Since the work of Pierre and Schmidt
[30], more attention has been paid by mathematicians to study systems satisfying the only natural assumptions of
mass control (A3) (or mass dissipation (A3”")) and positivity preservation (A4).

It was already pointed out in [30] that these two assumptions alone are not enough to prevent blow up (in
L*°-norm), and therefore, some growth restrictions on the nonlinearities are necessary. In particular, the case of
quadratic nonlinearities is of interest due to its relevance in many applications, such as chemical reactions or Lotka-
Volterra type systems (see Section 5 for more details). Under (A1)-(AS5), [6] showed the global existence of weak
solutions. More generally, [29] showed the existence of global weak solutions as long as f;(u) € L'(Qr) for all
i=1,...,N. The global existence of classical (or strong) solutions to (1) usually requires additional assumptions
to (A1)—(AS5). Such assumptions are, for instance, small space dimensions (n = 1,2) (see [13,31,37]), or quasi-
uniform diffusion coefficients (see [3,11]), or the close-to-equilibrium regimes (see [2,36]). We refer the interested
reader also to the excellent review [26]. Interestingly, global existence of classical solution to (1) under Assumptions
(A2)-(A37)-(A4)-(AS5) in the case 2 = R" was already solved in [16], but it went almost unnoticed until recently. Our
main Theorem 1.1 extends the results of [16] to the case of mass control and bounded domains, and moreover gives
polynomial bounds for the growth-in-time of the L°°-norm of solutions in case K| = 0, and exponential decay in case
Ko=0and K; <O.

Finally, we remark two recent related results of global classical solutions to nonlinear reaction-diffusion equations.
Firstly, Caputo, Goudon and Vasseur [4] used De Giorgi’s methods to prove global classical solutions when 2 = R”
under assumptions (A2)-(A3)-(A4)-(AS5), by additionally assuming the entropy inequality

N
> fiw)logu; 0. 3)
i=1
Secondly, and more recently, Souplet presented in [34] the existence of global smooth solutions for at most quadratic
nonlinear systems under the mass dissipation (A3”") instead of (A3"), with the entropy dissipation assumption (3) and
a simplified proof.

Both our paper and [34] utilise ideas from [16]. In [34], the author used the entropy inequality (3) to compensate for
the lack of mass conservation (A3’). Although this entropic structure appears naturally in many applications, it is not
always satisfied, for example, in the case of skew-symmetric Lotka-Volterra systems (see Section 5). This inequality
seems ‘“marginal”, but it plays a crucial role in the analysis of [34] (and also [4]). Our paper removes the assumption
(3) completely and allows the more general assumption (A3). Moreover, we give better control on bounds of solutions
in time, which helps to determine their long time behaviour.

Let us now describe the main ideas in proving Theorem 1.1. The proof of Theorem 1.1 crucially utilises the
following lemma.

Lemma 1.1 (Regularity Interpolation).
For some constant d > 0, let u be the solution to the inhomogeneous linear heat equation

uy —dAu=¢(x,t), (x,t) e 0T,
Veu -v =0, (x,1) e x (0, T) @
u(x,0) =up(x), x € Q.

Assume that
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(i) there exists a Holder exponent y € [0, 1) such that for all x,x' € Q, and all t € (0, T),

u(x, 1) —u(x’, 0] < Hjx = x'7, )
(ii) the inhomogeneity satisfies

sup ¢ (x,1)| < F. (6)

or

Then, the following uniform gradient estimate follows:

1 1=y
Veu(x, 0| < Clluoller gy + BH™ F=7 . forall (x,1) € O,

where B > 0 and C > 0 are constants depending only on 2, n, d and y.

At first glance, Lemma 1.1 seems unrelated to the problem of global classical solutions to systems (1) under
Assumptions (A1)—(A5). In fact, a crucial difficulty in showing global classical solutions to (1) is the failure of
comparison principles (except in some special cases) and thus the lack of sufficiently strong a-priori estimates. How-
ever, maximum principle, and thus L°° a-priori estimates, are well known for the scalar equation (4). So how could
Lemma 1.1 contribute to showing global classical solutions to system (1)?

In this work, we first consider the case of “equality” and K1 =0 in (A3), i.e.

N
> filw) =Ko (A3eq)
i=1
Under this assumption, we follow closely ideas of Kanel [16], who considered the case 2 =R", in which Lemma 1.1
plays an essential role. We extend his approach to the case of a bounded domain with smooth boundary. In partic-
ular, our approach requires careful Holder regularity estimates up to the boundary for some parabolic equation of
non-divergence form in bounded domains (see Lemma 3.5), since the De Giorgi’s technique usually gives only local
Holder continuity. As another refinement to [16], our proof keeps track of the involved constants and shows that the
L°°-norm of the solution grows at most polynomially in time.

Such algebraic growth estimates are very useful in interpolation arguments, and allow us, for instance, to prove ex-
ponential decay to zero of solutions in case Ko =0 and K; < 0. Another example for useful interpolation arguments
with algebraic a-priori estimates are systems, which feature exponential L'-convergence to equilibrium. This is true,
for instance for complex balanced chemical reaction networks, see e.g. [9,10,7]. Indeed, for such systems, interpo-
lation of slowly (i.e. algebraically) growing a-priori L*-estimates with exponential L'-convergence to equilibrium
yields equilibration estimates in any L”-norm for p € [1, o0) as well as uniform-in-time bounds, see e.g. [5,12].

After proving Theorem 1.1 in the case of (A3eq), the general case of (A3) follows from suitable transformations.
See Step 2 below.

In the following, we provide a detailed outline of the proof of Theorem 1.1. In particular, we sketch how to manip-
ulate system (1) under Assumptions (A1)—(AS5) such that Lemma 1.1 can be applied.

1.1. Outline of the proof of Theorem 1.1

The proof is divided in two main steps:

Step 1: The case of condition (A3eq). We consider first the case in which the nonlinearities satisfy (A3eq).

(1) The existence of local in time, classical, non-negative solutions # = (u1, ..., uy) on some time interval [0, T)
follows from classical references, thanks to Assumptions (A1), (A2) and (A4), see e.g. [28,33,27] and Proposi-
tion 3.1 below. The same references also imply global existence of classical solutions provided that for all 7 > 0

sup lu; (-, )|lpo@) <+oo, forall i=1,...,N,
1€(0,T)

which is our aim in the following.
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(2) For a constant d > max;—1,.._ny{d;}, let v; be the solution to

.....

v —dAv; =u;, (x,1) € 07,
Vo -v=0, (x,1) €99 x (0, T), 7)
v;i(x,0) =0, xeq.

Since 0 < u; € C®((0,T) x Q) N C([0, T); L () N L>®()) for some p > n, the existence, uniqueness and
nonnegativity of v; follows from classical results. Note that the solutions v; can be seen as mollified versions of

the u;. Moreover, by taking the sum over alli =1, ..., N of (7), we calculate
N N N
D @i —diAv) =AY (d —di)vi =) _u;. ®)
i=1 i=1 i=1
=:z =ivq

(3) Concerning the function z, direct calculations (see Lemma 3.1) using assumption (A3eq) and (7) show that z
satisfies the linear equation

0z —dAz = Ky, (x,1) € Or,
Vez v =0, (x,1) €02 x (0, T), 9)
2(x,0) = 2L uio(x), xeQ,
and therefore the following comparison principle estimate holds
N
suplz| <Y lluiollL=@) + KoT. (10)
or i=1
(4) Secondly, it follows from the definition of vy in (8) that (see Lemma 3.2)
t t N
va(x, 1) :d/z(x, syds — | Y diu;(x, s)ds, a1
0 o =1
=7 =u

where the function Z solves the following heat equation (see Lemma 3.3)
9,z —dAZ=1z(0) + Kot,
Viz-v=0, 2(0)=0

and is therefore Holder continuous.
(5) Next follows the crucial observation of the Holder continuity of the function % defined in (11), which solves (see
Lemma 3.4)

{b ot — A=Y, uio + Kot
Vi -v=0, u(0)=0,

where the coefficient in front of the time derivative

Sic) (% 1)

SN diui(x, 1)

is uniformly bounded due to its definition and the non-negativity of the u;:

b(x,t) :=

=b(x,1) = — )

max{d;} min{d;}
The boundedness of b permits us to apply a classical result to prove Holder continuity of %, see Lemma 3.5 and
its proof in the Appendix. Therefore, by (11) it follows (see Lemma 3.6) that v, is Holder continuous with an
exponent § € (0, 1).

forall (x,t)e Qr.
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The two final steps prove boundedness of
|U|:=sup max |u;] (12)
or i=1,....N

by estimating the right hand side of (8) in terms of regularity estimates of the left hand side terms. This strategy
requires, in particular, to control sup,, |Avg/| in terms of |U]|. First, we observe that vy satisfies (see Lemma 3.9)

8tvd—dAvd=ZlN=1(d—di)u,' =:uy, (13)
vad'l)zoa vd(0)=09
which allows us to apply Lemma 1.1. At this point, when contemplating why the presented approach is able

to succeed, we recall that the lack of maximum principle estimates for (1) stems from the different diffusion
coefficients d;. Note then, that u, constitutes the difference between a d-weighted sum (or equally average) of the
u; and a d;-weighted sum (or average). Accordingly, the function vy has the same interpretation in terms of the
v;, i.e. mollified versions of the u;. The key observation is that the function v, satisfies with (13) a nice parabolic
equation (rather than a parabolic system). Consequentially, the following estimates on u; and vy show that the
difference between d-weighted and d;-weighted sums satisfy the required regularity estimates in terms of |U |
(and without a closeness condition between d and the d; as exploited in [3]).

More precisely, Lemma 1.1 implies for vy as a §-Holder continuous solution of (13) that (see Lemma 3.7)

|Veval < Cr suplug| = < Cr|U| 5, (14)
or
where the constant C7 depends at most polynomially on T for any existence interval [0, T').
Analog, from the equations 0;u; — d; Au; = f;(u) and assumption (AS5), Lemma 1.1 with y = 0 yields (see
Lemma 3.8)

N
Veual < C Y [Vewi] <Cr(1+ U sup max | fi(w)|'/?)
or i=1,...N

i=1 15)
<Cr (1 e (1 + |U|1+%)) <Cy (1 + |U|3¥) .
To estimate Avg, we use a second order estimate of the heat semigroup e'2 to obtain” (see Lemma 3.9)
sup |Avg| < Cr sup(|val + [ Veval)'/2 sup(lual + |Veual)'/?
Or or or
s\ 1/2 3e 1/2
=cr(1+1017) 7 (14 v1F) (16)

<Cr (1+U)Hitae).

Note that in the case 2 = R", one can obtain (16) by differentiating (13) and directly apply Lemma 1.1 to the
equation of dy; vg with y =0.
Finally, from (8), (10) and (16), it follows

Ul=Cr (14U)iFtams)
and therefore, since % + fT + ﬁ < 1 for ¢ sufficiently small,

Ul =Cr, forall (x,1)€ Qr,

which implies that the solutions u; can be extended globally as bounded, and therefore smooth solutions, see e.g.
[28,33].

2 This idea was used in [34].
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One important observation here is that the results of Step I are still true, except for the fact that the L°°-norm in
this case might grow faster than polynomial, if we replace the constant K¢ by a function Ky(¢) which is continuous
on [0, o). This fact will be helpful in Step 2.

Step 2: The case of condition (A3). The general assumption (A3) can be transformed into condition (A3eq) (where
Ky is replaced by a continuous function K(t)) by the help of rescaling and the addition of an appropriate equation to
the system:

(1) By defining
wi(x, 1) =e Ky;(x,t) orequivalently u;(x, 1) =X w;(x,1)
we obtain (see Section 4) the following system for w = (wy, ..., wy)

orw; —diAw; = gi(w), (x,t)eQr for i=1,...,N,
Vew; v =0, (x,t) €92 x (0,7), (17)
w; (x, 0) = u;o(x), x €

where the nonlinearities g; (w) = e‘K"(f,- (u(w)) — K1eX1'w;). It is obvious that nonlinearities gi (w) satisfy the

assumptions (A4)—(A5), while (A3) is changed to

N
> gi(w) < Koe X1, (18)

i=1
(2) To obtain (A3eq) from (18), we introduce an (N + 1)-th equation for wy 1 as

N
dwnt1 — Awn1 =gn41(w) = Koe K1 =) " gi(w),
i=1

together with boundary condition Vywy 41 - v =0 and initial data wy41(x, 0) = 0. It is immediate that gy 41 (w)
satisfies the conditions (A4) and (A5). We then obtain a new, enlarged system for w = (w1, ..., wy+1)

dw; —diAw; =g (W) :=gi(w), x,nHeQr for i=1,...,N+1,

Vew; -v =0, x,t)edx (0, 7), i=1,...,N+1, (19)
w; (x,0) = u;p(x), xeQ, i=1,...,N,
wy41(x,0) =0, xX€EQ

in which the nonlinearities now satisfy

N+1

> i) = Koe X!

i=1

and the problem is thus reduced to Step 1., taking into account that last remark therein that Ko could be a con-
tinuous function of ¢. Note that if Ky =0 and K| < O then @ has at most polynomial growth in time. Thus, from
ui(x,1) = eK1tw; (x, 1) we get for K1 < 0 that u; decays exponentially to zero.

A direct application of Theorem 1.1 proves global classical solutions in all space dimensions to nonlinear, skew-
symmetric Lotka-Volterra systems with diffusion of the form

Opui —di Au; = (—ti + Z?’zl aijuj) ui =: fi(w), (x,1)€Qr,
Veui-v =0, (x,1) €3 x (0,T), (20)
ui(x,0) =ujo(x), xeqQ,
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where A = (q;;) € RN*N g skew-symmetric, i.e. AT+ A=0and r = (11, ..., ty) € RY. Note that such Lotka-
Volterra systems do not satisfy an entropy structure as required by [4,34]. We will show that (20) has a unique global
classical solution in all dimensions, and moreover, if 7; > 0 for all i = 1, ..., N, then the solution decays to zero

exponentially (see Section 5).

The organisation of the paper is as follows: In Section 2, we prove the crucial Lemma 1.1. In Section 3, we first
present the proof of Theorem 1.1 with condition (A3eq), while the proof of Theorem 1.1 for general condition (A3)
is presented in Section 4. Section 5 is devoted to some applications of the main results. Finally, a technical proof of
Holder continuity for 7 is presented in the Appendix A.

Notations:
R4 = [0, 00), RY =10, co)V.

The usual norm of L”(2) is denoted by || - [|z»() forany 1 < p < oo.
For T > 0, we denote Q7 =2 x (0, T), and forany 1 < p < +o00

1/p
N fllLrcor) = / | f1Pdxdt o W SfllLeor) =esssupg, | 1.
or
e The generic constant C;, i =1, ..., 12 depends only on the data 2, N, n, d;, K, Ko, K1, € and |u;o||L>@). In

particular, C; does not depend on T > 0.
2. Proof of key Lemma 1.1

In case Q2 is a bounded domain, we denote by G(x,t) the Green function of the heat equation o;u — dAu =0

subject to a homogeneous Neumann boundary condition. When 2 =R"”, let G(x, t) be the fundamental solution, i.e.
_ 1

Gx.0) = Gryme

later. We rewrite (4) as

2 . . . . .
—IxI7/4dt 1 et k > 0 be a constant which serves as a kind of interpolation parameter, to be specified

ou —dAu+ku=a¢(x,t)+ku,
and use the representation formula to have
t
u(x, 1) =e M(x, 1) +/e—’“<f—é‘> f G(x —y,t — )Py, s) +ku(y, s)ldyds Q1)
0 Q
where %(x, t) is the solution to
U —dAu =0,
Vil -v=0, u(x,0) =ug(x).

Using the property of the heat semigroup, see e.g. [22, Eq. (2.39)] we have

sup sup |Vxﬁ(x, t)| < C”I/l()”(jl(Q) (22)
t>0xeQ

By differentiating (21) in the spatial variables and using fQ ViG(x —y,t —s)u(x, s)dy = 0 thanks to the Neumann
boundary condition, we have

t
Veu(x, 1) = e MV (x 1) + / k=) / VeG(x = v, = )by, ) +ku(y, 8) — uCx, $)ldyds. (23)
0 Q
It follows from (23) and (22) that
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t

|%u@¢»scwmkmn+/?*““]\%Gu—yJ—nm¢@Jn+mw»n—uaJm@us
0
t

§C||u0||C1(Q)+F/e_k(’_s)f|VxG(x—y,t—s)|dyds
0

t
+kH/e_k(’_s)f|VxG(x —y,t —9)||lx — y|Vdyds (24)

where we have used the assumptions (5) and (6) in the last step.
We now distinguish the two cases, when €2 is a bounded domain and Q2 = R”.

Case 1: Let Q2 be a bounded domain with smooth boundary. In this case use the following point-wise gradient estimate
on the Green function (see e.g. [21,38] or [8,22]),

le—y[?

IVeG(x —y. 1 —$)| < cnlt —s)" T e~ s

where positive constants ¢, and «,, depend only on the dimension 7, the domain 2 and the diffusion coefficients
d. Using this bound, we can estimate further

e k=) ey
Iqu(x,t)|§C||uo||Cl(Q)~|—an/.7n+1 e "= dyds
o U=9 7 g
(25)
e —k(t—s)
+cnkH/( ) /|x—y|7’ P dyds
t—s)

We denote by (I) and (I) the second and last terms on the right hand side of (25). By the change of variables
7=/ (y — x), we have for any § > 0

e =yl t—s 2 t—s 1.2
/|x—y|“e fon 22 dy:< ) / 2P dz5< ) /|Z|se 1P g
K K
Q n n Rn

25 (Q2=x) (26)

+5 "5‘5

t_

= o=t (n >< s) ,
2 Kn

where w,,_1 is the surface area of the n — 1-dimensional unit sphere and I" is the Gamma function. Therefore

t
—k(t—s) ﬁ B|F
D <c /cfn/zF/ eids/e_lz‘zdz <euiey"PET()2) Y2 = 2L 27
(D =< cukn — < Cnkn (/)ﬁ N (27)
0 R~
where
B = ¢k "I (n/2) /7.
For (IT), we have
) —k(t—s) e kt—9)
D) < ek, T kH/ ds/ 2|7 e~ 1! dz<B2kH/ (28)
(t—s) = (t—s) =
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where

1
B2 = Cnpkp (ﬂ+y)/2r(n7+ )2/ + )
The last term on the right hand side of (28) is estimated using the change of variable t = /k(t — s),

Vkt
(29)

) < BoH(Wk)'™ / e~ tVdr < ByH(kK)'Y
0

with
y+1
By=B r( )
3= D2 )
From (25), (27) and (29), we have

B F _
|Veu(x, 1)] < Clluollc1 (g + T + BsH(Wk)'77.

By choosing
1
B F v
[t ]
BsH(1—vy)

we obtain the desired estimate

Iy 1
Veu(x, )| < Clluollcr () + BF 7 HT7

with
; y=1 1 ]J L
=[<1—y>2—v+(1— )5 } BB .
Case 2: Q =R". In this case, we use the explicit representation of the fundamental solution to obtain

1 — lx—y|?
y X T 4d(t—s)

Vi G(x _y’t_s) = (4md(t _s))n/2 2d(t —s)

and consequently get from (24) that

—k(t—s)
gy / x — yle™ ”dyds

(30)

_k(t—s) . ey 2

_ Y o ddi—s)

+RH 2d(4ﬁd)"/2/(t $)n/2+1 /'x yI e dyds.
R~

Denote by (IIT) and (IV) the second and the last term on the right hand side of (30), respectively. We estimate

these two terms similarly as in Case 1 to have

B4F W1 n—+1
m) < 242 here By = ( )
D=~ where Ba= g\ 2
and
1 1
Lor- ld—r( +")r(”+ +V).
2 2

(V) < BsH(k)'™",  where Bs= n/z

Hence
By F _
[V, O] < Clluo i eny +~72= + BsH(Vk)'™7,
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and therefore
y 1

1—
|Veu(x, )| < Clluollcrrny + BF > H>7
with

1 y—1 Iy 1
B= [(1 -y + (11— y)w} B, "B,
3. Proof of Theorem 1.1 with condition (A3eq)

Proposition 3.1 (Local existence).

Assume (A1), (A2) and (A4). Then, there exists an interval [0, T) (which can be chosen maximal) and a corresponding
unique nonnegative classical solution u to (1) on (0, T). Moreover, in order to extend the solution globally, it is
sufficient to prove for all T > 0

11Tr¥||u,-(z)||Lm(Q)<+oo Vi=1,...,N, = T =+o0. 31)
t

Proof. Since u;p € L°°(2) and the nonlinearities are locally Lipschitz, the local existence follows from classical
results (see e.g. [28,33,1]). The quasi-positivity of the nonlinearity (A4) implies propagation of non-negativity of
initial data, e.g. [27,26]. O

Remark 3.1 (Weaker blow-up criteria).

The continuation criteria (31) is standard for semilinear reaction-diffusion systems. For the systems considered here,
it can be weakened. For instance, with assumptions (A3eq) and (A4), by applying improved duality estimates as in
[3], global classical solutions can be shown from the existence of an exponent p > (1 + €)(1 + n/2) such that

limsup [|u;|Lrg,) <+oo forall i=1,...,N, = T = +o0.
T

Remark 3.2 (Smooth initial data).

Thanks to Definition 1.1 and the smoothing effect of the heat semigroup, it is well-known that the local solutions of
Proposition 3.1 are smooth for positive times, i.e. that for all 0 <7y < T, u;(tp) € C%(Q) foralli=1,...,N. This
allows us to shift the initial time to ¢y and therefore consider system (1) with smooth initial data in C 2(Q). Note that all
parabolic compatibility conditions are satisfied at 7y > 0. Consequentially, from now onwards, we weaken (w.l.0.g.)
Assumption (A2) by only considering smooth initial data u;o € C*° () satisfying a homogeneous Neumann boundary
condition for all i = 1, ..., N. Consequently, we have u; € C12([0, T) x Q).

From now on, because of Remark 3.2, we assume instead of (A2) that the initial data satisfy
(A2’) (Smooth Nonnegative Initial Data) Forall i = 1,...N: 0 < u;o € C*(Q).
Moreover, we assume

(A6) (Diffusion Coefficient d in (7)) Throughout this section, we fix the diffusion coefficient d > max;—; . n{d;}.
Moreover, let v; be the unique solution to (7) on Qr.

Lemma 3.1. Let z be defined in (8). Then, 7 is the solution to (9) and

N
suplz| < M+ KoT ==Y ujoll (o) + KoT.
Or i=1

Proof. First, we show that z solves (9), and the rest follows from the comparison principle. Indeed, by using definition
(8), we calculate
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N N
dz—dAz =20, ( > @vi — dj Av,-)) —dA ( > @i - d,~Av,~)>
i=1 i=1

N
[0 (v — dAv) —di A (Bpv; —dAv)] =Y (Bui —diAu;)  (using (7))

i=1

Il
M =

—

fiy =Ko (using (A3eq)).

-

i=1

Moreover, on €2, we have Viu; - v = V,v; - v =0 and 9;v; — dAv; = u;, implying V; (Av;) - v = 0. Therefore, the
boundary condition V, z-v = 0 follows from the definition z = Z,N:1 (0;v; —d; Av;). For initial data, since v; (x,0) =0,
we have

N N N N
2(x,0) =Y (0vi(x,0) —d; Av; (x,0) = > (Bvi(x,0) —dAvi(x,00) = Y "ui(x,0)= Y ujo(x). O
i=1 i=1 i=1 i=1
Lemma 3.2. The function vq defined in (8) satisfies
vg=dz—u
withZ and W as defined in (11).

Proof. Integrating (7) over (0, ¢) and using v; (x, 0) = 0 yields

t t

v,-(x,t)—dA/vi(x,s)ds=/u,-(x,s)ds.

0 0
Hence
N 1N I N
vd(x,t):Z(d—di)vi(x,t)zde(d—di)Avi(x,s)ds+fZ(d—d,~)u,~(x,s)ds
i=1 o i=l o i=l
! N N 1N
=d/ |:dA vl-(x,s)—l—z(x,s)—Zasvi(x,s)] ds—i—/Z(d—d,-)ui(x,s)ds
b i=1 i=1 n i=1
t N t
:d/ |:z(x,s)—Zu,-(x,s):| ds—i—/Z(d—di)u,'(x,s)ds
0 i=1 0 i=1
t t N
=d/z(x,s)ds—/Zdiui(x,s)ds=d’f—ﬁ. O
0 o =l
Lemma 3.3. Define

'
2(x, 1) 1=/z(x,s)ds.
0
Then, Z solves

N
0T —dAT= Zuio + Kot in Qr, ViZov=00ndQx 0, T), Z2(x,00=0 inQ
i=1
and consequently 7 is Holder continuous in Q1 with an exponent 8 € (0, 1) depending on , Ko, and d.
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Proof. The boundary condition and initial data of Z are obvious. Integrating the equation (9) of z over (0, t), we have
t
z(x,t) — dA/z(x, s)ds = z(x,0) + Kot
0

and hence

N
)T —dAT=z(x,0) = Zu,-o + Kot.
i=1
The comparison principle implies

N

sup[z] < (M + KoT)T, recalling M := Z luioll oo (@)- (32)
or i=1

Therefore, Holder continuity of Z follows from classical parabolic theory (see e.g. [24] for = R” or [20, Theorem
4.8] for bounded domains). More precisely, there exists g € (0, 1) and C; depending only on €2, n, N and M such
that

20, 0) =2, ) < CLA+TH(x —x'1P + 1t —¢1P%) forall (x,1), (',1)) € Or.

The term 1 + 72 on the right hand side is because of the L* bound of Zin (32). O

Lemma 3.4. Define as in (11)

LN

U(x, 1) :=deiui(x,s)ds. (33)
o i=l
Then, u solves
N
bt — AT =Y ujo+ Kot Vii-v=0,  u(x,0)=0, (34)
i=1
where
N
N oui(x,t
b(x,z)z—ZNl—lu'(x )
D oimidiui(x, 1)
satisfies the bound
<b(x,t) < —, 1l .t ) 35
max{d;} — (. 1) = min{d;} fora (.1 €07 (35)

Proof. Summing all equations in (1) and using assumption (A3eq) leads to

N N
at Zui — AZdiui = K().
i=1 i=1

Integrating this equation over (0, ¢) yields

N N

D uile.0) = A=) uio(x) + Kot

i=1 i=l1

which implies (34) since 9,4 = ZlN: 1 diu;. The bounds of b(x,?) in (35) follows easily from the non-negativity of
uij. 0O
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Lemma 3.5. The function u defined in (33) is bounded in Q. More precisely ||| Lo,y < d(M + KoT)T. Moreover,
u is Holder continuous with some exponent o € (0, 1), i.e.

[, 1) —a(x', 1) < Co(1+ T (Ix —x'|* + |t — '|%/?) forall (x,1),(x',t) e Qr, (36)
where Cy and o depend on 2, M, n, Ky and d;.

Remark 3.3. The local Holder continuity of % follows from a well-known result in [17] since # also solves the
following parabolic equation of non-divergence form

1 . 1
8,u — EAM: Z;uio—}— EKOI.

The results in [17] are based on a probabilistic approach. Here, we provide an alternative proof using [18] and [25]. A
similar result was presented in [4, Proposition 3.1], in which the authors proved Holder continuity for a homogeneous
equation.

Proof of Lemma 3.5. Since v; >0andd >d; foralli =1,..., N, we use vy =dZ — i to get
0<u=dz—vy <dz.
Therefore, thanks to Lemma 3.3,

sup [u] <dsup[z] <d(M + KoT)T. (37)
or or

The proof of Holder continuity is technical and lengthy, and therefore, we postpone it to Appendix A. O
Lemma 3.6. The function vg = d7Z — u as defined in (8) is Holder continuous in Qr, i.e. there exists Cs > 0 such that
va(x, 1) = va(x', i) < Cs(A+ T2 (x —x'1° + [t = 1) forall  (x,1),(x',1") € Qr, (38)

where the Holder exponent § € (0, 1) depends on the parameters 2, n, N, d;, Ko of the problem.

Proof. The Holder continuity follows clearly from the Lemmas 3.3 and 3.5. In the following, we provided explicit
estimates for the constants. First, for |x — x’|, |t — | < 1, we estimate

lva(x, 1) —va(x', )| <d[2(x, 1) = 2(x", )| + [u(x, 1) —a(x’, 1)

39
<max{dCy, Co}(1 + T?)(Ix —x'° + |t — 1'"/?), &

where § = min{a, 8} with 8 and « as in Lemmas 3.3 and 3.5. When |x — x’| > 1 or |t — /| > 1, we estimate
va(x, 1) = va (&', 1)) < 20vallecop (1x = 217 + 1t = 11°/%) “0)

<2d(M + KoT)T (Ix = x'|* + |t = '|°/%)
since [[vgllzo(or) < dliZliLeoor) + lullLe(or) < 2d(M + KoT)T. From (39) and (40), we get (38) with § =
minf{e, 8}. O

Lemma 3.7. Let |U| = SUpg, Max;=1,.. N |ui|. Then, there exists a constant Cg > 0 such that

.....

sup [Vyvg| < Co (1 + T2)75 [U |75, A1)

Or

9

where § € (0, 1) is the Holder exponent introduced in Lemma 3.6.

Proof. From Lemma 3.6, we know that vy is Holder continuous. In particular

lva(x, 1) —vg(x', )| < Cs (1 + TH|x —x'|°, forall (x,1),(x',1) € Or.
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By the initial data v;(x,0) =0 and supy, |u;| < [U] (i.e. by the definition of |U]), we can apply Lemma 1.1 to (7)
and obtain

sup | Vvl < B(Cs (14 T2)75|U| 55,
or

9

1
whence (41) with Cg = BCSZ"S. O

Lemma 3.8. There exists a constant C7 > 0 such that

sup Vgl = € (1+1U1F°),
or

where ¢ is given in growth assumption (AS).

Proof. Firstly by the definition of u4 in (13) it follows

N

sup|Veug| <Y (d — d;) sup | Veui .
or i=1 or
In order to apply Lemma 1.1 to equation of u; we first observe that

lui (x, 1) — ui(x', )] < 2sup u;| <2|U|]x —x|°, forall (x,1), (x",1) € Or.
or

The right hand sides in (1) can be estimated by using the growth assumption (A5)

sup | f; )| < K (14 supu**) < KN***(1 4+ |[U]**).
or or
Now we can apply Lemma 1.1 to the equation of u; with the exponent y = 0 to obtain

172
sup |Veats| = Cluioll 1y + BIUD' (KN (1 +U*+))

or
3 ,¢
< Clluiollcrgy +Cs (1+1U133)

where Cg depends on B, K and N. Hence

N 3+¢

sup | Veta| < max{d;} Y sup Vewi| = C7 (14 U] F),

Or i=1 Oor
which is the claim of Lemma 3.8 where C7 depends on ||ui0||cl(9), di, Nand Cg. O
Lemma 3.9. There exists a constant Cy > 0 such that

34e, 1-8

sup [Avg| = Co(1+7) (14 U]+ )

Or
where ¢ is given in growth assumption (AS) and § € (0, 1) in Lemma 3.6.

Proof. By definition v = Z,N:1(d —d;)v;, we have

N N N
dvg —dAvg = & Z(d —di)v; —dA Z(d —di)v; = Z(d —d)(3v; — dAv;)

i=1 i=1 i=1

N
=) (d—d)ui=uq.
i=1
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Let k > 0 to be chosen later, and define n(x, ) = eX vy (x, 1). Tt follows from the equation of vy that
8m—dA77:ekt(kvd+ud), Vin-v=0, n(x,0) =v4(x,0)=0. (42)
By Duhamel’s formula
t
nix,t) = / eU™4AKS (fy 1 (x, 8) 4 ug(x, 5))ds.
0
Changing back to vy we get
t
va(x,t) = /eik(’ﬂ')e(’ﬂ)dA (kvg(x, s) + ug(x, s))ds.
0
We now apply the second order semigroup estimate, see e.g. [22, Eq. (2.39)]

e iz < Ct721I fllerqy.  for te(0,T] )

to have
'

sup [Avg| <C sup Jlva()llc2q) < C / e KDt — )T 2 kg ()l e1 gy + llua ()l o1 gy s,
or te(0,T) o

where in this proof we always denote by C a generic constant depending on €2, n, and d, but independent of T. We
estimate

1 t

fe—"”—”(t —5) "2k |va(s)llc1(qyds < sup ||vd(s)||C1(Q)k/e_k(t_s)(t—s)_l/zds
5€(0,T)
0 0

o0
< Csup(ugl + [Vual) V& / 51265 ds
or
0

< Csup(Jval + |Vva)Vk

or
and similarly
t
/ e KD — )2 lug(s)ll o1 qyds < € s5p<|ud| + |Vual)
0 T

R
7

By choosing Vk = supg, (lual + [Vug|)!/? supg, (lval + |Vua])~1/2, we obtain from (43)
sup|Avg| < C sup(lugl + |Vual)'/? sup(Jval + | Vval) /2.

Or or or

Therefore, by using Lemma 3.6, i.e. Supg, |vg| <2d(M + KoT)T and Lemmas 3.7, 3.8, we finally get

30\ 1/2 5 oL 112
suplAvd|§C<|U|+1+|U| : ) (1+T +(+T )z—s|U|z—a)
or

3+

e 18
5C(1+T)(1+|U|4 2(2—»). O

Remark 3.4. In the case 2 = R", we can apply Lemma 1.1 to the equation of dy; vy to obtain Lemma 3.9 immediately.
This argument seems to not directly work in the case of a bounded domain since the Neumann boundary condition is
not satisfied by 9, ;d-
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We are now ready to prove Theorem 1.1 with (A3eq).

Proof of Theorem 1.1 with (A3eq). From (8) we have

N
U|l= max suplu;| < sup |u;| <su + |Avgl).
Ul'=, max, suplus] =3 suplus| < sup(e] +|Aval)

i—1 9r or
By using Lemmas 3.1 and 3.9, it follows
3o, 18
Ul < (M + KoT) + Co(1+T) (14U %+
3+ 1-6 (44)
Stey -0
sCull+T+A+DUI ¥ 0],
where Cy1 depends only on N, Cg9 and M. We choose ¢ small enough such that

34+ 1-6 : 8
= + <1 orequivalently &< ——.
4 22-9)

2-94
By using Young’s inequality we have

U N 1
CL+ DU < % + (1= D@CI)TE( +T) T

A

and therefore it follows from (44)
U <2C1 [1+T1+2(1 = H@ACI) T (1 + T) ™ < Cip(1+TT7),
where C1y depends only on C11, ¢ and 8. The uniqueness follows immediately thanks to the L°°-bound and the local

Lipschitz continuity of the nonlinearities. O

Remark 3.5. It’s straightforward that all the arguments of this section are still valid in case Ky is replaced by a function
Ko(¢) which is continuous on [0, 00), except that the L°°-norm of the solution might grow faster than polynomial.

4. Proof of Theorem 1.1 with condition (A3)

Proof of Theorem 1.1 with (A3). Our main idea is that with a suitable change of unknowns, and especially adding
one more appropriate equation, we can transform a system with the mass control condition (A3) into a system with
condition (A3eq), that keeps the essential features (A4) and (A5).

We define

K

wi(x, 1) =e K1'y;j(x,1) orequivalently u;(x, 1) =X w;(x, 1)

and w = (wy, ..., wy). Direct computations give
dw; =e K Bu; — Kyuy)
=e X (d; Au; + f;(u) — Kyu;)
=d; Aw; + g;i(w)
where
gi(w) = e KN (fi) — KieX1'wy). (45)
Note that

N N
Y eiw)y=e KN (fitw) — Kiup) <e KKy

i=1 i=1
due to the assumption (A3).
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Introduce a new unknown wy 1 : 2 X (0, Thax) = R4 which solves

N
w11 — Awyyr = Koe K1 =3 gi(w) =i gn1(w) = 0 (46)

i=1

with homogeneous Neumann boundary condition Vwy 41 - v = 0 and zero initial data wy1(x,0) = wy41,0(x) =0
for x € . With a slight abuse of notation we write the new vector of concentrations w = (wy, ..., wy, wyy) and
the nonlinearities g; () := g; (w1, ..., wy) foralli =1,..., N while gy, (i) = Kge K17 — Z,N:l gi(w). We have
arrived at the following system

al‘wl_dlAwlZgl(m)’ (xﬂt)GQX(OvaaX)7 i=15"'5N+19
Vw; -v=0, (x,0) €02 x (0, Tmax), i=1,...,N+1, @7
w; (x,0) =u;o(x), xeQ, i=1,...,N,
wy+1(x,0) =wy41,0x) =0, xe.
It’s obvious to check that the nonlinearities g;,i = 1,..., N + 1 satisfy the assumption (A4). Moreover, due to the

definition w; (x, t) = e ~X1"u; (x, t), it follows from (AS5) and (45) the growth control

lgi (@)| < e K17 fi )| + K151 Jwy])
< e KUK A+ ul*) + KK Jw; ) (48)
< Ce(l+£)K1Tmax(1 + |w|2+8).

Moreover, the nonlinearities of (47) satisfies the condition (A3eq) (with K¢ replaced by a continuous function in ¢),
i.e.

N+1
> i) = Koe X (49)
i=1

thanks to (46).

Now we can apply the results in Section 3 (Remark 3.5) to get that (47) has a global classical solution w. Changing
back to the original unknowns u;(x,t) = Kty (x,1) fori =1,..., N, we obtain finally the global existence of
classical solution to (1).

Moreover, in case Ko =0 and K| < 0, the growth condition (48) can be estimated further as

|gi ()] < C(1 + |]*+)
and (49) becomes

N+1

> i) =0.
i=1

Therefore, from Section 3, we know that the solution w to (47) grows at most polynomially in time, i.e. for all
i=1,....,N+1

lwi ()]l Loy < C( +1°)
for some C, ¢ > 0. Therefore, if Ky =0 and K| < 0 we get
llui ()l Lo (@) = X1 lwi () Lo @) < C(1+ 51718 <C (1 +e7H)

for some K| < —u < 0, which completes the proof of Theorem 1.1. O
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5. Applications
5.1. Quadratic reversible reactions

We consider the reversible chemical reaction
Al +Ar S A3+ Ay

and denote by u;(x, t) the concentrations of the substances A; at x € Q and ¢ > 0. Using the mass-action law, we
obtain the following reaction-diffusion system

Oy —dyAuy = —uyup + usug =: f1(u), (x,1) € Or,

Oiup — dr Auy = —uup +uzug =: fo(u), (x,1) € Or,

Oruz — dzAuz = +ujup — uzug =: f3(u), (x,1) € Or, (50)
Orutg — dyAug = Hujuy — usug =: fa(u), (x,1) € Or,

Viui -v =0, (x,1) €3 x (0, T),

ui(x,0) = uio(x), x e,

where we have normalised the forward and backward reaction rate constants for the sake of simplicity. We assume
positive diffusion coefficients d; > 0. System (50) was studied extensively in the literature: Weak solutions were shown
in all dimensions [6] while the global strong (classical) solutions were shown in [13] or [3] in one or two dimensions.
In higher dimensions, [3] showed global classical solutions under the assumption that the diffusion coefficients are
sufficiently close to each other (depending on the space dimension). The question of global classical without restriction
on diffusion coefficients was solved in [16] for the case 2 = R” and recently reproved in [4] and [34]. We remark that
besides satisfying Assumptions (A3), (A4) and (A5), the nonlinearities of (50) have an additional feature, that is an
entropy inequality, i.e.
4

> fitwylogu; <0 forall ueRY, (51)

i=1
which plays an important role in the analysis of [4,34]. This entropy property is also a key in studying the convergence
to chemical equilibrium for (50). Due to the homogeneous Neumann boundary condition, system (50) possesses
precisely three linear independent conservation laws for all # > 0

/[ul(x,t) +uz(x,t)]dx =/[u1o(x) +uzo(x)]dx =: M3,
Q Q

/[uz(x, 1) +us(x,)]dx = /[uzo(x) + uzo(x)]dx =: M3,
Q Q

f[uz(x, 1) +ug(x,t)]dx = /[uzo(x) + ug0(x)]dx =: Mpg.
Q Q

Denote by M = (M3, M3, M24) the initial mass vector. By straightforward computations, for any fixed positive
initial mass vector M € Ri, there exists a unique positive constant equilibrium s, = (U100, Y200, U300, Udco) € Ri
satisfying

UlooU2oo = U3ooUdoo, Uloo + U3oo = M13, U2 + U300 = M3, U200 + Udoo = M24.

Note that the equilibrium is determined only by the initial mass vector rather than the precise initial data. It was
proved in several works, e.g. [5,9,10,32], that any solution (renormalised, weak or strong) to (50) with initial mass M
converges exponentially in L'-norm to the equilibrium u, defined above, i.e.

4
D i) = uicoll 1) < Ce ™, forall ¢>0, (52)
i=1

where C > 0, A > 0 are constants which can be computed explicitly. By applying Theorem 1.1, we have
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Theorem 5.1. Let 2 be a bounded domain with smooth boundary 0X2. Fix a positive initial mass vector M € Ri.

Then, for any non-negative initial data ug = (4;0)i=1..4 € L®(Q)* having the initial mass vector M, there exists
a unique global non-negative classical solution u = (u1, uz, us, ua) of (50) which converges exponentially to equilib-
rium in L°°-norm, i.e.

4
D i (6) = ticol o) < Coe™,  forall t>0, (53)

i=1

where Co > 0, Ag > 0 are positive constants which can be computed explicitly.

Remark 5.1. The global existence of classical solution to (50) on the whole space R" was proved in [16] and recently
reproved in [4,34]. However, it seems that the results therein do not provide a priori estimates in time for solutions,
thus such convergence in L*°-norm (53) does not follow immediately from their results.

Remark 5.2. Results similar to Theorem 5.1 are also valid for complex balanced networks of chemical reactions of
substances Ay, ..., Ag with quadratic nonlinearities, which means that each complex of the networks is of the form
A; +Aj with i, j =1,...,S. The global existence and uniqueness of classical solution follows immediately from
Theorem 1.1 with (2) replacing (A3), see Remark 1.1. For the exponential convergence we need either the detailed or
complex balanced condition, and the absence of boundary equilibria, see [2] and [36] for more details.

Proof of Theorem 5.1. From Theorem 1.1, we have that the L°°-norm,
lui (T)llLe@) < Cr,\ forall T >0,

grows at most polynomially in 7. Now using (52) and the interpolation inequality

(p—D/p 1/p
Il < I 1A,
for all p € (1, c0), we have

-1 1 -1 —
i (T) = wicollLri@y < i (T) = wioo s o) " i (T) = wicol /i, = CFF /P PP .

< Cpe—xpT

for some explicit constants C,, > 0 and 0 < A, < A/p. It follows that for each p € (1, 00) there exists M), > 0 such
that

sup [lu; ()| Lr) < Mp, forall i=1,...,4.
t>0

Let S;(r) = €% be the heat semigroup with Neumann boundary condition. We use the L? — L™ estimate

18:(t) fll Loy < Ct P fllr (),
the Duhamel formula
1

uit+1)=SDu) + / S(L =) fi(u(t+s))ds,
0
and the quadratic growth | f; ()| < C|u/|?, to estimate
1
lui (¢ + Dl o) < Cllui (D) + C / (1= )P u(t + 9117 2y gy ds

0
1

<CM,+CM;, /(1 —5)""CPds.
0
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By choosing p > n/2 which leads to fol (1 —5)""/P ds < C, we get a uniform in time bound of the L>-norm,

lu; ()| Lo @) < Mo, foral >0 and i=1,...,4.

To prove exponential convergence in the L°°-norm, we observe that the equilibrium u, also solves the system (50).
Therefore, repeating the previous argument, we get

1
i (1) — wivoll Lo (@) < Cllui () — tivollLr (@) + C / (1 =)™ CP)|| fi(u(t + ) — fi(uoo)llLr(@ds.
0

It follows from the uniform in time bound of L°°-norm that

Il fi ) — fi(uoo)llLr@) < Cllu —usollLr(e)-
Hence
1

i (£) — tiooll Lo (@) < Cllui (t) — tivollLr(@) + C / (1 =) CPlu(t +5) — uoollLr@)ds
0
1

<CCpe ™' +CC, / (1 — )™/ e=pH5) g g
0

1
<Ce ™! 1+/(1 —s)~/@p)
0

<Ce™r,

where we choose p > n/2 at the last steps. This finishes the proof of Theorem 5.1. O

Remark 5.3. The convergence in L*-norm in Theorem 5.1 can be obtained alternatively by showing that a higher
order norm grows polynomially. Indeed, by using the estimate of the Neumann semigroup S(¢) (see e.g. [39, Lemma
1.3]) forany 1 < p < oo,

1 n
IVS@) fliLr@) <C (1 +t_7+5> | fllLo@ forall >0,

the Duhamel formula u; () = S; (t)ug + fol Si(t — s) fi(u(s))ds, and polynomial growth of the L°°-norm, we obtain
forany 1 < p < oo,

lui (D lwirq < CA1 + 1)
for some 7, > 0. From choosing p > n and using Gagliardo-Nirenberg interpolation inequality

i (1) — ttiooll o) < Claei (6) = wioo 131, I1ts (1) — oo 78,

for some « > 0, follows the exponential convergence to equilibrium in L°°(£2)-norm.
5.2. Skew-symmetric Lotka-Volterra systems

A general Lotka-Volterra system with diffusion is of the form (20), i.e.

Oui —di Au; = (_Ti + Z?’zl Clijl/ij) ui =: fi(w), (x,t)€Qr,
Veui v =0, (x,1) € x (0, T),
ui(x,0) =ujo(x), x e,
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where A = (a;;) € RY*N and t = (74, ..., tn) € RY. The system is called skew-symmetric when the matrix A is
skew-symmetric, i.e.

AT +A=0.

Lotka-Volterra systems of the form (20) have been extensively investigated in the literature due to their wide appli-
cation in biology, see e.g. [14,33,19,35]. In the case of skew-symmetric Lotka-Volterra systems, all existing results
concern either weak solutions in all space dimensions or classical solutions in small (one and two) space dimensions.
The results of our work imply classical solutions in all space dimensions. By the skew-symmetry of A, we obtain
easily

N N
Y fiwy ==Y Tu,
i=1 i=1

thus Assumption (A3) holds. It is straightforward that Assumptions (A4) and (AS5) are also satisfied. We remark that
(20) does not possess an entropy inequality like (51), and therefore the results of [4] or [34] are not applicable in this
case. By applying Theorem 1.1, we have

Theorem 5.2. Assume that 2 is a bounded domain with smooth boundary 0S2. Assume moreover that the system (20)
is skew-symmetric, i.e. AT + A = 0. Then, for any non-negative initial data u;y € L> (), there exists a unique global
classical solution to (20). Moreover, if t; > 0 foralli =1, ..., N, we have

llui (1) || oo < Ce M

for some p > 0.

Remark 5.4. Obviously, Theorem 5.2 is also applicable in the case of “sub-skew-symmetric” system, i.e. for A +
AT <0 in the sense that all elements of A + A are non-positive.

Proof. The global existence and uniqueness of classical solution follows from Theorem 1.1. If t; > O for all i =
1,..., N, wecantake K| = —min{ty, ..., Ty} < 0 which implies

N N N
Yoy ==) nui<Ki) u
i=1 i=1 i=1
and therefore Theorem 1.1 directly applies yielding the exponential decay to zero. O
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Appendix A. Proof of Holder continuity for #
In order to show Holder continuity of % in Lemma 3.5, we follow the approach from [18, Chapter 2]. We remark
that this approach gives only local Holder continuity which is only sufficient in the case 2 = R”. In the case of

bounded domains 2 C R”, we need to also prove boundary regularity. This will be done by reflection techniques,
which was used e.g. in [25] for elliptic equations.
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A.l. Local Holder continuity

We fix (xo, o) € Q7 and denote
By, ={xeQ:|x —xo| <0}

and
00, 1)=By x(to—1,t0) ={(x,t) :x € By, fo — T <t <1}

Lemma A.1 (Local Hélder continuity). R
For any ty > 0 and Q CC 2, there exists po > 0 with d($2,0R) > po, and a constant o € (0, 1), such that for some
constant C > 0

@, 1) — (', 1) < Clallzoeop(x — X' |¥+ 1t —11%%),  forall (x,1),(x',t') € x [ty, T).

Proof. According to [18, Chapter 2, Section 7], the Holder continuity of # follows from the boundedness
[zl L(or) < CT and the energy estimate of the following Lemma A.2. O

Remark A.1. As an alternative proof of local Holder continuity, note that the energy estimates (55) are sufficient to
repeat the arguments in the proof of [4, Proposition 3.1].

Lemma A.2 (Local energy estimates).

Forany k >0, any 0 <1 <11 <1and 0 < 03 <01 < 1 such that Q(o1, t1) C Qr, the following energy estimate
holds

fo

-~ 2 ~ 2

sup | — k)|l + f I — k)| ds

thy—Ta <t <ty Lz(BQZ) . HI(BQZ)
0—m2

<C | (01 =) 2+ @ =) W@ =0+1720000, 1)) + / X@=-rdxds | . (55)
O(e1,m)

Proof. Let & : Q7 — [0, 1] be a smooth cut-off function such that

1 if  (x,1) € Q(02, ™)

é—‘(x,t)Z{O if  (x,1) ¢ Q(o1, 11)-

For simplicity we denote by u® = (@ — k). By multiplying equation (34) with u® &2 and integrating over By, X
(to — 11, 1), 19 — T2 <t < tp and by integration by parts, we calculate

t t
/ / bo, e dxds + / / IVeu® 2E2d xds

10—71 By, 10—T1 By,

t t
=-2 / / (Veu® . v £)uPedxds + / / [uo + Koslu®E2dxds (56)

10—11 By, 10—11 By,

where we denote by ug := vazl u;o. Since 8, = ZlNzl d;u; > 0, due to (33), and thus
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Therefore, with v = we estimate

1
max d; °

t t
/ /batﬁu(k)ézdxdszvf /8tﬁu(k)§2dxds

10—71 By, 10—71 By,

t
= % / w®@)2e@)?dx — v / f w®)2£9,6dxds

Bg1 th—11 Bg1 (57)
t
zg/|u(k)(t)|2dx—v f /(u(k))zgatédxds
By, 10—71 By,
= / 1 (1) 2dx — v / u® Pt dxds,
By, 0(o1,71)

where we used £(-, fo — 71) = 0 at second step and &|p(p,,7,) = 1 at the third step. By applying Cauchy-Schwarz’s
inequality, we get

t
/ /(qu Ve E)uk )deds<— / /qu(k)|§2dxds~|—2/ /|u(k)|2|Vx§|2dxds

f0—71 By, zo 71 By, f0—71 By, 58)
< / / IVeu®2€2dxds +2 / [u® |V, £ |*dxds.
to T1 By, 0(o1,71)
Denoting by x@-«} the characteristic function of the set {(x, ¢) : u(x, 1) > k}, we can estimate
t
/ (o + Koslu®E2dxds
f0—71 By,
t
= / /[uo + Kos]u(k)ézx{ﬁ>k}dxds
0 By, (59)
<- / / lu®P2e2dxds + - / / luo + Kos|*2 x(@a=rkydxds
to 71 By, zo 71 By,
< max {1/2; luoll3 (e + K312 / (16O + x@-r)) ds.
Q(o1,71)

where we have used |£| < 1 in the last step. We now insert the estimates (57), (58) and (59) into (56) to get for all
t € (to — 12, 10)

v
2” (t)”LZ(B ) / /|V u(k)l Ezdxds

lo 71 By,

<max{v; 2; [[uol| 7o) + Kot7} f (|u<k>|2(|vx5|2+|a,s|+1)+xm>k})dxds. (60)
0O(o1,71)
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By adding the inequality %fzgfn fBQl lu®2&2dxds < %IQ(Ql,n) |u® |2dxds and taking the supremum over ¢ € (1) —
12, 1), we have with 7, < 11

Io
min{V, 1} (k) 2 / ®) 112
—_— su u™(t + u ds
2 tof‘(2<€<to ” ( )”LZ(BQZ) ” ”Hl(Bgz)
0—12
<max{v; 2; [luoll 7o (g + Ko1°} f (|u<k>|2(|vxs|2+ 19,£ | + 1)+xm>k}) ds ©1)
O(o1,71)

Finally, due to the definition of the cut-off function &, there exists a constant C > 1 independent of g; and 7; such that
Vi€l < Cl(o1 — Qz)_l and |0,&| < C(11 — )L Noting also 1 < (71 — 1)~ ! since 71, 72 € (0, 1), we get from (61)
the energy estimate (55). O

A.2. Boundary Holder continuity

For this part, we only need 92 to be Lipschitz continuous. The proof in this part follows from [25], where the
author applied it to elliptic equations. For any z € 92, we can find an orthogonal matrix O and a Lipschitz continuous
function v : R*~! — R and

G:={(y,¥(y)+s):yeBO,r),se(—rr)}
such that
OQ—2NG={,v(y)+s):ye B@O,r),s €(,r)}.

Without loss of generality, we can assume that z = 0 and O = I;. Define the mapping T : B(0,r) x (=r,r) —> G
by T(y,s) = (y,¥(y) + s), then T is bi-Lipschitz continuous. Using the mapping S : G — G with S(T(y,s)) =
T (y, —s) we can define the reflection mapping of any function w: (D C G) x (0, T) — R by

w(x,t) ifxeGN,

w(x,t):= _
1) w(Sx,t) ifxeG\Q.

Lemma A.3 (Holder continuity at boundary).
Let u solve equation (34). Then U :=u is the weak solution to

bd, i — div(A(x) Vi) = i + Kot (62)

where A(x) € R™" is uniformly bounded and positive definite for all x€G, e |[AW|=C and there exists A > 0
such that € T A(x)& > AE|* forall x € G and & € R". Therefore, il € C*(G x [tg, T1) foranytg € (0,T) and G cC G.
Moreover,

”"Z||C“(6><[ZO,T]) =< C(S”ﬁ”L"O(QT)
where Cg depends on § = dist(é, 0G). Consequently,
151l ce @nexin. Ty = ColliwllLocor)-
Proof. The validity of (62) can be directly verified using properties of refection functions provided in [25, Lemmas

3.3 and 3.5]. Note that b always satisfies the bound (35). Therefore, we can repeat the arguments in Subsection A.1 to
get the desired local Holder continuity of i, which in turn implies the local Holder continuity of 7 at the boundary. O
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A.3. Hélder continuity of

Proof of Holder continuity in Lemma 3.5. If Q@ = R”, then the Holder continuity of u follows directly from
Lemma A.1.

When @ C R” bounded with Lipschitz boundary d£2, Holder continuity (36) up to boundary for u follows from
Lemmas A.1 and A.3, thanks to the fact that 92 is compact and can be covered by finitely many balls with radius pg
(where pg is in Lemma A.1). O
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