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Abstract

We consider a class of one dimensional compressible systems with degenerate diffusion coefficients. We establish the fact that 
the solutions remain smooth as long as the diffusion coefficients do not vanish, and give local and global existence results. The 
models include the barotropic compressible Navier-Stokes equations, shallow water systems and the lubrication approximation of 
slender jets. In all these models the momentum equation is forced by the gradient of a solution-dependent potential: the active 
potential. The method of proof uses the Bresch-Desjardins entropy and the analysis of the evolution of the active potential.
© 2019 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

We consider a class of compressible fluid models in one space dimension with periodic boundary conditions:

∂tρ + ∂x(uρ) = 0, (1.1)

∂t (ρu) + ∂x(ρu2) = −∂xp(ρ) + ∂x(μ(ρ)∂xu) + ρf, (1.2)

(ρ,u)|t=0 = (ρ0, u0) (1.3)

with constitutive laws given by

p(ρ) = cpργ , μ(ρ) = cμρα, cp �= 0, cμ > 0. (1.4)

Among these models are the one-dimensional barotropic compressible Navier-Stokes equations. In this description, 
ρ is the mass density, u is the fluid velocity, and p(ρ), μ(ρ) are the fluid pressure and dynamic viscosity respectively. 
These are given by physical equations of state (1.4). For such systems, the specific heat at constant pressure is positive 
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cp > 0 so that p(ρ) is non-negative. The viscosity is also assumed non-negative cμ > 0 but may be degenerate in the 
sense that it vanishes for ρ = 0.

Although the eqns. (1.1)–(1.3) describe cases of compressible Navier-Stokes equations, they serve also as models 
for a number of other physical systems if the basic variables and constitutive laws are appropriately defined. For 
example, a model for viscous incompressible motion of shallow water waves [1,2] reads

∂th + ∂x(uh) = 0, (1.5)

∂t (hu) + ∂x(hu2) + g

2
∂xh

2 = 4ν∂x(h∂xu) + hf (1.6)

where

• h and u represent respectively the surface height and fluid velocity,
• g is gravity,
• ν > 0 is the kinematic viscosity,
• f is the external force.

These equations are a special case of equations (1.1)-(1.2) with

p(ρ) = g

2
ρ2 and μ(ρ) = 4νρ.

Equations (1.1)–(1.3) also appear in the theory of drop formation as the slender jet equations [3,4]:

∂th + u∂xh = −1

2
∂xuh, (1.7)

∂tu + u∂xu + γ ∂x(
1

h
) = 3ν

∂x(h
2∂xu)

h2 − g, (1.8)

where

• h and u represent respectively the neck radius and velocity of the jet,
• γ > 0 is the surface tension coefficient,
• ν > 0 is the kinematic viscosity,
• g > 0 is gravity.

These equations arise as a reduction of the axisymmetric incompressible Navier-Stokes equations in two spatial di-
mensions governing a thin liquid thread with a moving boundary. Via the change of variables ρ = h2, equations 
(1.7)-(1.8) become equations (1.1)-(1.2) with

p(ρ) = −γ
√

ρ and μ(ρ) = 3νρ.

Note that here the “pressure” that appears is non-positive in contrast with the Navier-Stokes descriptions.
In all the settings above, the one-dimensional equations (1.1)–(1.3) are approximate models of the underlying 

physical processes, whose quality may vary depending on the situation. As models for dissipative molecular fluids, 
they are not known to arise as an effective description by a controlled hydrodynamic limit and do not conserve total 
energy. See Section A and Appendix B of [5] for an extended discussion. Of course, they could be valid descriptions 
of fluid systems in other situations than these, as is the case of the shallow water and slender jet. Moreover, J. Eggers 
has argued that the slender jet equations described above become an exact description asymptotically close to drop 
pinch–off, justifying the use of the model (1.7), (1.8) in that context.

Four theorems are proved. The first result, Theorem 1.1, provides a blowup criterion for equations (1.1)–(1.3) with 
a wide range of constitutive pressure and viscosity laws (1.4). In what follows, we denote by T the interval (0, 1] with 
periodic boundary conditions.

Theorem 1.1. Assume any of the following three conditions

(i) cp > 0 and α > 1 , γ �= 1, γ ≥ α − 1 ,
2 2
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(ii) cp < 0 and 1
2 < α ≤ 3

2 , γ < 1, 0 < γ ≤ α,
(iii) cp > 0 and γ > 1, α ≥ 0.

Let k ≥ 3 and assume further that

f ∈ L2(0, T ;Hk−1(T )) for all T > 0.

If (ρ, u) is a solution of (1.1)-(1.3) on [0, T ∗) such that

ρ ∈ C(0, T ;Hk(T )), u ∈ C(0, T ;Hk(T )) ∩ L2(0, T ;Hk+1(T )), ∀T ∈ (0, T ∗) (1.9)

and

inf
t∈[0,T ∗)

min
x∈T

ρ(x, t) > 0,

then (ρ, u) satisfies

sup
T ∈[0,T ∗)

‖ρ‖L∞(0,T ;Hk) + sup
T ∈[0,T ∗)

‖u‖L∞(0,T ;Hk) + sup
T ∈[0,T ∗)

‖u‖L2(0,T ;Hk+1) < ∞ (1.10)

and can be continued in the class (1.9) past T ∗.

Theorem 1.1 says that the only possible way for a singularity to form starting from smooth data is if the density 
becomes zero somewhere in the domain. This applies in particular to the viscous shallow water wave equations 
(1.5)-(1.6). In the slender jet equations (1.7)-(1.8) which model incompressible fluid drop formation, this says that 
singularities can only form at the onset of drop break-off. This answers a conjecture of P. Constantin recorded in [3].

Remark 1.2. The conclusions of Theorem 1.1 hold whenever an upper bound on the density of the form (2.22) exists, 
possibly dependent on the minimum density ρ. Under any of the conditions (i), (ii), (iii) of the Theorem, we produce 
such a bound. However, it seems unlikely that (i)–(iii) are fundamental restrictions, and the result should hold over 
larger range conditions.

Remark 1.3. [6] proved that weak solutions of 1D compressible Navier-Stokes equations with constant viscosity do 
not exhibit vacuum states in finite time provided no vacuum states are present initially.

Remark 1.4. Local well-posedness of (1.1)–(1.3) in the class (1.9) is established in Proposition B.1 of the Appendix B
for arbitrary smooth p(ρ) and smooth non-negative μ(ρ). This covers the special case of power law equations of state 
(1.4) in the entire parameters range in Theorem 1.1. Local existence of strong solution for 2D shallow water equations 
can be found in [7,8]. We also refer to [9,10] for classical results regarding equations of compressible viscous and 
heat-conductive fluids with constant viscosity.

Our next two theorems concern the long-time existence and persistence of regularity. Theorem 1.5 establishes 
global existence for arbitrarily large data, within a range of pressure and viscosity of the form (1.4).

Theorem 1.5. Assume

cp > 0, α ∈ (
1

2
,1], and γ ≥ 2α.

Let k ≥ 3 be an integer and let ρ0 and u0 belong to Hk(T ) such that ρ0(x) > 0 for all x ∈ T . Assume further that

f ∈ L2(0, T ;Hk−1(T )) for all T > 0.

Then there exists a unique global solution (ρ, u) to (1.1)-(1.3) such that

ρ ∈ C(0, T ;Hk(T )), u ∈ C(0, T ;Hk(T )) ∩ L2(0, T ;Hk+1(T ))

for all T > 0, and ρ(x, t) > 0 for all (x, t) ∈T ×R+.
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This result applies to the viscous shallow water equations (1.5)-(1.6), giving an alternative proof to that of [11]. Let 
us note that [11] assumes only H 1 regularity of initial data. Moreover, Theorem 1.5 allows for more singular density 
dependence of the viscosity than in [12], which considers the case of α < 1

2 and γ > 1. In two dimensions, global 
stability of constant solutions to shallow water equations was proved in [13–15].

For more degenerate viscosity ρα allowing α > 1, we prove global existence for a class of large initial data.

Theorem 1.6. Assume that cp > 0 and either

α >
1

2
, γ ∈ [α,α + 1], γ �= 1 or (1.11)

α ≥ 0, γ ∈ [α,α + 1], γ > 1. (1.12)

Assume further that

f (x, t) = f (t) ∈ L2((0, T )) ∀T > 0.

Let k ≥ 4 be an integer and let u0 and ρ0 belong to Hk(T ) such that ρ0(x) > 0 for all x ∈T and

∂xu0(x) ≤ cp

cμ

ρ0(x)γ−α ∀x ∈T . (1.13)

Then there exists a unique global solution (ρ, u) to (1.1)-(1.3) such that

ρ ∈ C(0, T ;Hk(T )), u ∈ C(0, T ;Hk(T )) ∩ L2(0, T ;Hk+1(T ))

for all T > 0, and ρ(x, t) > 0 for all (x, t) ∈T ×R+.

Remark 1.7. We note that (1.13) does not impose any smallness conditions on the initial data. The unique global 
solution in Theorem 1.5 satisfies

∂xu(x, t) ≤ cp

cμ

ρ(x, t)γ−α

for all (x, t) ∈ T × R+. Moreover, the proof provides a lower bound for the minimum of density ρ, see (6.12) and 
(6.15),

min
x∈T

ρ(x, t) ≥

⎧⎪⎨
⎪⎩

(
ρm(0)α−γ + t

cp

cμ
(γ − α)

) −1
γ−α

when γ > α,

ρm(0) exp
(
−t

cp

cμ

)
when γ = α.

Our last theorem establishes a bound on the time-averaged maximum density for a certain range of parameters 
assuming mean zero forcing.

Theorem 1.8. Assume that (ρ, u) is a sufficiently smooth solution to the system (1.1)–(1.3) on [0, T ∗). Assume that

f = ∂xg (1.14)

for some periodic function g satisfying

g ∈ L∞(0, T ∗;L∞(T )), and ∂xg, ∂tg ∈ L∞(0, T ∗;L∞(T )).

Let us also assume that

α ≥ 1/2, γ ∈ [max{2 − α,α}, α + 1], and cp, cμ > 0.

Then, we have the following bound

1

T

T∫
‖ρ(·, t)‖L∞(T )dt ≤ C1 + 1

T
C2, (1.15)
0
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where C1 and C2 are defined in equation (7.6). In particular, C1 depends only on cμ, cp , α, γ , ‖ρ0‖L1 , 
‖∂xg‖L∞(0,T ;L∞), and ‖∂tg‖L∞(0,T ;L∞), whereas C2 depends only on cμ, cp , γ , α, ‖ρ0‖L∞ , ‖ρ−1

0 ‖L∞ , ‖u0‖L2 , 
‖∂xρ0‖L2 , and ‖g‖L∞(0,T ;L∞). Consequently, if T ∗ = ∞ then

lim sup
T →∞

1

T

T∫
0

‖ρ(·, t)‖L∞(T )dt ≤ C3 (1.16)

where C3 depends only on cμ, cp , α, γ , ‖ρ0‖L1 , ‖∂xg‖L∞(0,∞;L∞), and ‖∂tg‖L∞(0,∞;L∞).

Theorem 1.8 applies for the viscous shallow water wave system (1.5), (1.6) for which global existence is established 
by Theorem 1.5. The interpretation of the bound (1.16) with h ≡ ρ is that long-time average of the maximum surface 
height remains bounded, showing that, on average, no extreme events can develop.

Remark 1.9. Modulo technical conditions, Theorems 1.1, 1.5, 1.6 and 1.8 should hold for more general constitutive 
laws μ(ρ) and p(ρ) that behave asymptotically when ρ → 0 as cμρα and cpργ respectively. The high regularity of 
initial data in the above Theorems is assumed to apply maximum principles straightforwardly. By appealing to more 
refined maximum principles, the regularity of initial data can be reduced.

The proofs are based on use of the Bresch-Desjardins entropy and analysis of the evolution of the active potential 
w. This object is the potential in the momentum equation (1.2): its gradient is the force

ρDtu = ∂xw. (1.17)

The potential

w = −p(ρ) + μ(ρ)∂xu

is unknown and combines the viscous stress with the pressure. As w depends on the unknowns and in turn determines 
their evolution, we refer to it as an active potential. Remarkably, w satisfies a forced quadratic heat equation with 
linear drift and less degenerate diffusion with the new dissipation term μ(ρ)

ρ
∂2
xw. The active potential w contains one 

derivative of u and no derivative of ρ. On one hand, energy estimates for the coupled system of ρ and w allow us to 
control all the high Sobolev regularity of ρ and u as long as ρ is positive, leading to the proof of Theorem 1.1. On the 
other hand, the heat equation for w satisfies a maximum principle which enables us to obtain global regular solutions 
for a class of large data when the viscosity is strongly degenerate as in Theorem 1.6.

The fact that the active potential solves a nondegenerate evolution with a maximum principle was observed in [16]
in the context of a 1D Hele Shaw model, where it served a similar role. The effective viscous flux used in [17] and 
[18] is an active potential: there it was used by inverting the elliptic (nondegenerate) equation it solves at each fixed 
time.

2. A priori estimates: mass, energy and Bresch-Desjardins’s entropy

Assume that (ρ, u) is a solution of (1.1)-(1.3) on the time interval [0, T ∗) such that

ρ ∈ C(0, T ;H 3), u ∈ C(0, T ;H 3) ∩ L2(0, T ;H 4)

for any T < T ∗ and

ρ := inf
t∈[0,T ∗)

min
x∈T

ρ(x, t) > 0. (2.1)

In what follows we denote by M(·, · · · , ·) a positive function that is increasing in each argument.
First, from the continuity equation (1.1), total mass is conserved:

‖ρ(·, t)‖L1(T ) = ‖ρ0‖L1(T ). (2.2)

We have the following standard energy balance:
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Lemma 2.1 (Energy balance). Let ρ̄ ≥ 0, and

e := 1

2
ρ|u|2 + π(ρ), π(ρ) = ρ

ρ∫
ρ̄

p(s)

s2 ds. (2.3)

Then, the balance

d

dt

∫
T

e(x, t)dx = −
∫
T

μ(ρ)|∂xu|2dx +
∫
T

fρudx (2.4)

holds for any t ∈ [0, T ∗).

Using the equation of state for the density (1.4) and recalling that ρ̄ ≥ 0 is an arbitrary constant that we are free to 
fix, we have an explicit formula for π(ρ) from (2.3)

π(ρ) = cpρ

ρ∫
ρ̄

sγ−2ds =
{

cp

γ−1ργ γ > 1, ρ̄ = 0 or γ ∈ (0,1), ρ̄ = ∞,

cpρ log(ρ) γ = 1, ρ̄ = 1.
(2.5)

Note that the function π satisfies

π ′′(ρ) = p′(ρ)

ρ
.

Lemma 2.2. 1. If γ ∈ (1, ∞) and cp > 0, then π(ρ) ≥ 0 and

‖e‖L∞(0,T ;L1) + ‖μ(ρ)|∂xρ|2‖L1(0,T ;L1) ≤
(
‖e(·,0)‖L1 + ‖f ‖2

L2(0,T ;L∞)
‖ρ0‖L1(T )

)
exp(2T ). (2.6)

2. If γ ∈ (0, 1) and cp �= 0, then∫
T

|π(ρ)|dx ≤
∣∣∣∣ cp

γ − 1

∣∣∣∣
∫

(ρ0 + 1)dx (2.7)

and there exists a positive constant C = C(γ, α, cp, cμ) such that

‖ρu2‖L∞(0,T ;L1) + ‖μ(ρ)|∂xρ|2‖L1(0,T ;L1)

≤
(
‖ρ0u

2
0‖L1(T ) + C

(
1 + ‖f ‖2

L2(0,T ;L∞)

)(
1 + ‖ρ0‖L1(T )

))
exp(T ).

(2.8)

Proof. First, using the mass conservation (2.2) we bound∫
T

fρudx ≤ 1

2

∫
T

f 2ρ +
∫
T

1

2
ρu2

≤ ‖f ‖2
L∞(T )

∫
T

ρ +
∫
T

1

2
ρu2

≤ ‖f ‖2
L∞(T )‖ρ0‖L1(T ) +

∫
T

1

2
ρu2.

(2.9)

1. If γ ∈ (1, ∞) and cp > 0, then we have π(ρ) ≥ 0. It then follows from (2.9) that∫
T

fρudx ≤ ‖f ‖2
L∞(T )‖ρ0‖L1(T ) +

∫
T

e(x, t)dx. (2.10)

Ignoring the first term on the right hand side of (2.4), then using (2.10) and Grönwall’s lemma we obtain
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‖e‖L∞(0,T ;L1) ≤
(
‖e(·,0)‖L1 + ‖f ‖2

L2(0,T ;L∞)
‖ρ0‖L1(T )

)
exp(T ). (2.11)

Next, we integrate (2.4) in time and use (2.10), (2.11) together with the fact that e(x, t) ≥ 0 to get

‖μ(ρ)|∂xρ|2‖L1(0,T ;L1) ≤ ‖e(·,0)‖L1 + ‖f ‖2
L2(0,T ;L∞)

‖ρ0‖L1(T ) + T ‖e‖L∞(0,T ;L1)

≤
(
‖e(·,0)‖L1 + ‖f ‖2

L2(0,T ;L∞)
‖ρ0‖L1(T )

)
(1 + T ) exp(T )

≤
(
‖e(·,0)‖L1 + ‖f ‖2

L2(0,T ;L∞)
‖ρ0‖L1(T )

)
exp(2T ).

2. If γ ∈ (0, 1) then∫
T

|π(ρ)|dx ≤
∣∣∣∣ cp

γ − 1

∣∣∣∣
∫

(ρ(t) + 1)dx ≤
∣∣∣∣ cp

γ − 1

∣∣∣∣
∫

(ρ0 + 1)dx (2.12)

where we used the fact that ργ ≤ max{1, ρ} together with the mass conservation (1.1). Ignoring the first term on the 
right hand side of (2.4) and using (2.12), (2.9) we find

∫
T

1

2
ρu2(x, t)dx ≤

∫
T

1

2
ρ0u

2
0dx +

∫
T

π(ρ0(x))dx −
∫
T

π(ρ(x, t))dx +
t∫

0

∫
T

fρu(x, s)dxds

≤
∫
T

1

2
ρ0u

2
0dx + C(‖ρ0‖L1(T ) + 1) + ‖f (t)‖2

L∞(T )‖ρ0‖L1(T ) +
t∫

0

∫
T

1

2
ρu2(x, s)dxds

for some positive constant C = C(γ, α, cp, cμ). Grönwall’s lemma then yields

‖ρu2‖L∞(0,T ;L1) ≤
(
‖ρ0u

2
0‖L1(T ) + C

(
1 + ‖f ‖2

L2(0,T ;L∞)

)(
1 + ‖ρ0‖L1(T )

))
exp(T ). (2.13)

Again, we integrate (2.4) in time and use (2.9), (2.13), (2.12) to arrive at

‖μ(ρ)|∂xρ|2‖L1(0,T ;L1) ≤
(
‖ρ0u

2
0‖L1(T ) + C

(
1 + ‖f ‖2

L2(0,T ;L∞)

)(
1 + ‖ρ0‖L1(T )

))
exp(2T ). �

If either γ ∈ (1, ∞) and cp > 0 or γ ∈ (0, 1) and cp �= 0, it follows from (2.5)-(2.8) that

‖√ρu‖L∞(0,T ;L2) ≤ M(E0,‖f ‖L2(0,T ;L∞), T ), (2.14)

‖ρ α
2 ∂xu‖L2(0,T ;L2) ≤ M(E0,‖f ‖L2(0,T ;L∞), T ), (2.15)

‖ρ‖L∞(0,T ;Lmax{1,γ }) ≤ M(E0,‖f ‖L2(0,T ;L∞), T ) (2.16)

where

E0 := ‖ρ0u
2
0‖L1(T ) + ‖ργ

0 ‖L1(T ) + ‖ρ0‖L1(T ). (2.17)

Lemma 2.3 (Bresch-Desjardins’s entropy [19]). Let

s := ρ

2

∣∣∣∣u + ∂xρ

ρ2 μ(ρ)

∣∣∣∣2

+ π(ρ). (2.18)

Then, the balance

d

dt

∫
T

s(x, t)dx = −
∫
T

|∂xρ|2μ(ρ)
p′(ρ)

ρ2 dx +
∫
T

fρ
(
u + ∂xρ

ρ2 μ(ρ)
)
dx (2.19)

holds for any t ∈ [0, T ∗).

A proof of Lemma 2.3 can be found in [19–21] and is given for completeness in the appendix. The first term on 
the right hand side of (2.19) is negative whenever cp > 0 and positive whenever cp < 0.
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Lemma 2.4. Define

E1 := E0 + ‖∂x(ρ
α− 1

2
0 )‖L2(T ). (2.20)

1. If cp > 0 and γ �= 1, γ ≥ α − 1
2 , α > 1

2 , then

‖ρ‖L∞(0,T ;L∞) ≤ M(E1,‖f ‖L2(0,T ;L∞), T ). (2.21)

2. If cp < 0 and 0 < γ ≤ α, γ < 1, α ∈ ( 1
2 , 32 ], then

‖ρ‖L∞(0,T ;L∞) ≤ M(E1,‖f ‖L2(0,T ;L∞),
1

ρ
,T ). (2.22)

3. Under the conditions of 1. or 2., we have

‖∂xρ‖L∞(0,T ;L2) ≤ M(E1,‖f ‖L2(0,T ;L∞),
1

ρ
,T ). (2.23)

4. If cp > 0, γ > 1 and α ≥ 0 then (2.22) and (2.23) hold.

Remark 2.5. The bound for (2.21) is independent of ρ. This fact will be important in the proof of Theorem 1.5.

Proof. 1. Since cp > 0, the first term on the right hand side of (2.19) is negative, and thus

d

dt

∫
T

s(x, t)dx ≤
∫
T

fρ
(
u + ∂xρ

ρ2 μ(ρ)
)
dx

≤ 1

2

∫
T

f 2ρdx +
∫
T

1

2
ρ
(
u + ∂xρ

ρ2 μ(ρ)
)2dx

≤ 1

2
‖f (t)‖2

L∞(T )‖ρ0‖L1(T ) +
∫
T

1

2
ρ
(
u + ∂xρ

ρ2 μ(ρ)
)2dx.

(2.24)

When γ > 1 we have π(ρ) ≥ 0, hence s > 0 and

d

dt

∫
T

s(x, t)dx ≤ 1

2
‖f (t)‖2

L∞(T )‖ρ0‖L1(T ) +
∫
T

s(x, t)dx.

Grönwall’s lemma then yields

‖s‖L∞(0,T ;L1) ≤
(
‖s(0, ·)‖L1(T ) + ‖f ‖2

L2(0,T ;L∞)
‖ρ0‖L1(T )

)
exp(T ). (2.25)

We combine (2.25) with (2.14) and the fact that

‖s(0, ·)‖L1(T ) ≤ ‖ρ0u
2
0‖L1(T ) + ‖∂x(ρ

α− 1
2

0 )‖2
L2(T )

. (2.26)

In view of (2.15), this implies

‖∂x(ρ
α− 1

2 )‖L∞(0,T ;L2(T )) ≤ M(E1,‖f ‖L2(0,T ;L∞), T ) (2.27)

with

E1 = E0 + ‖∂x(ρ
α− 1

2
0 )‖L2(T ).

On the other hand, when γ ∈ (0, 1) we write

d

dt

∫
1

2
ρ
(
u + ∂xρ

ρ2 μ(ρ)
)2dx ≤ d

dt

∫
π(ρ(x, t))dx + 1

2
‖f (t)‖2

L∞(T )‖ρ0‖L1(T ) +
∫

1

2
ρ
(
u + ∂xρ

ρ2 μ(ρ)
)2dx
T T T
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where we recall from (2.7)∫
T

|π(ρ)|dx ≤
∣∣∣∣ cp

γ − 1

∣∣∣∣
∫

(ρ0 + 1)dx. (2.28)

It follows from Grönwall’s lemma that

sup
t∈[0,T ]

∫
T

1

2
ρ
(
u + ∂xρ

ρ2 μ(ρ)
)2

(x, t)dx

≤
⎛
⎝∫
T

1

2
ρ
(
u + ∂xρ

ρ2 μ(ρ)
)2

(x,0)dx + C(1 + ‖f ‖2
L2(0,T ;L∞)

)(
1 + ‖ρ0‖L1(T )

)⎞⎠ exp(T )

≤ M(E1,‖f ‖L2(0,T ;L∞), T ).

Combined with (2.14), this implies the bound (2.27) when γ ∈ (0, 1).
Next, we recall from (2.16) the bound for ‖ργ ‖L1(T ). By the assumption that γ ≥ α − 1

2 , we obtain

‖ρα− 1
2 ‖L∞(0,T ;L1) ≤ C(1 + ‖ργ ‖L∞(0,T ;L1)+‖ρ‖L∞(0,T ;L1)) ≤ M(E0,‖f ‖L2(0,T ;L∞), T ).

This combined with (2.27) and Nash’s inequality

‖ρα− 1
2 ‖L∞(0,T ;L2) ≤ C‖ρα− 1

2 ‖2/3
L∞(0,T ;L1)

‖∂x(ρ
α− 1

2 )‖1/3
L∞(0,T ;L2)

+ C‖ρα− 1
2 ‖L∞(0,T ;L1)

leads to

‖ρα− 1
2 ‖L∞(0,T ;H 1) ≤ M(E1,‖f ‖L2(0,T ;L∞), T ).

The stated bound (2.21) then follows by Sobolev embedding H 1 ⊆ L∞.

2. In this case, cp < 0 and thus the first term on the right hand side of (2.19) is positive and is equal to

−γ cpcμ

∫
T

|ρ(γ+α−3)/2∂xρ|2dx ≤ −2γ
cp

cμ

∫
T

ργ−α+1
(
|u + cμρα−2∂xρ|2 + |u|2

)
dx

= −2γ
cp

cμ

∫
T

ργ−α
(
s(x, t) − π(ρ) + ρ|u|2

)
dx.

Note that (2.24) provides the bound∫
T

fρ
(
u + ∂xρ

ρ2 μ(ρ)
)
dx ≤ 1

2
‖f (t)‖2

L∞(T )‖ρ0‖L1(T ) +
∫
T

1

2
ρ
(
u + ∂xρ

ρ2 μ(ρ)
)2dx.

In addition, since γ ∈ (0, 1), part 2 of Lemma 2.2 provides a bound for π(ρ) and ρu2. Moreover, note that when 
cp < 0 and γ ∈ (0, 1) we have π(ρ), s ≥ 0. Using these together with the assumption that γ ≤ α we have

d

dt

∫
T

s(x, t)dx ≤ −2γ
cp

cμ

∫
T

ργ−α
(
s(x, t) − π(ρ) + ρ|u|2

)
dx + ‖f (t)‖2

L∞(T )‖ρ0‖L1(T ) +
∫
T

s(x, t)dx.

≤ −2γ
cp

cμ

(
1

ρ
)γ−α

∫
T

(
s(x, t) − π(ρ) + ρ|u|2

)
dx + ‖f (t)‖2

L∞(T )‖ρ0‖L1(T ) +
∫
T

s(x, t)dx.

≤
(

− 2γ
cp

cμ

(
1

ρ
)γ−α + 1

)∫
T

s(x, t)dx − 2γ
cp

cμ

(
1

ρ
)γ−α

∫
T

(
−π(ρ) + ρ|u|2

)
dx

+ ‖f (t)‖2 ∞ ‖ρ0‖L1(T )
L (T )
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≤
(

− 2γ
cp

cμ

(
1

ρ
)γ−α + 1

)∫
T

s(x, t)dx + M(E0,‖f ‖L2(0,T ;L∞),
1

ρ
,T )

+ ‖f (t)‖2
L∞(T )‖ρ0‖L1(T )

for t ≤ T . By Grönwall’s lemma and (2.26), we deduce that

‖s‖L∞(0,T ;L1) ≤ M(E0 + ‖s(·,0)‖L1(T ),‖f ‖L2(0,T ;L∞),
1

ρ
,T )

≤ M(E1,‖f ‖L2(0,T ;L∞),
1

ρ
,T ).

Combining this with (2.14) gives

‖∂x(ρ
α− 1

2 )‖L∞(0,T ;L2) ≤ M(E1,‖f ‖L2(0,T ;L∞),
1

ρ
,T ). (2.29)

Since α − 1
2 ∈ (0, 1], the mass conservation (2.16) implies

‖ρα− 1
2 ‖L∞(0,T ;L1) ≤ C(1 + ‖ρ0‖L1(T )). (2.30)

Combined with (2.29), this yields

‖ρα− 1
2 ‖L∞(0,T ;H 1) ≤ M(E1,‖f ‖L2(0,T ;L∞),

1

ρ
,T )

from which (2.22) follows.

3. The bound (2.23) follows from (2.21) & (2.27) and (2.22) & (2.29) respectively.

4. This follows from Propositions 4.5 and 4.6 in [12]. �
3. The active potential

We introduce in this section the active potential w := −p(ρ) + μ(ρ)∂xu. This is a good unknown upon which 
much of the analysis is based. We first show that w satisfies a forced quadratic heat equation with linear drift.

Proposition 3.1 (w–equation). Let

w := −p(ρ) + μ(ρ)∂xu. (3.1)

Then w satisfies

∂tw = ρ−1μ(ρ)∂2
xw − (u + μ(ρ)

∂xρ

ρ2 )∂xw +
(

ρ
p′(ρ)

μ(ρ)
− 2

(ρμ′(ρ) + μ(ρ))

μ(ρ)2 p(ρ)

)
w

− (ρμ′(ρ) + μ(ρ))

μ(ρ)2 w2 +
(

ρ
p′(ρ)

μ(ρ)
− (ρμ′(ρ) + μ(ρ))

μ(ρ)2 p(ρ)

)
p(ρ) + μ(ρ)∂xf. (3.2)

Moreover, the following balance holds

d

dt

∫
T

1

2
|w|2(x, t)dx = −

∫
T

ρ−1μ(ρ)|∂xw|2dx −
∫
T

(
u + μ′(ρ)

ρ
∂xρ

)
w∂xwdx

+
∫
T

(
ρ

p′(ρ)

μ(ρ)
− 2

(ρμ′(ρ) + μ(ρ))

μ(ρ)2 p(ρ)

)
|w|2dx −

∫
T

(ρμ′(ρ) + μ(ρ))

μ(ρ)2 w3dx

+
∫
T

(
ρ

p′(ρ)

μ(ρ)
− (ρμ′(ρ) + μ(ρ))

μ(ρ)2 p(ρ)

)
p(ρ)wdx +

∫
T

μ(ρ)∂xf wdx.

(3.3)
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Proof. From the definition of w := −p(ρ) + μ(ρ)∂xu given by (3.1), we compute

∂xw = (∂xρ)(−p′(ρ) + μ′(ρ)∂xu) + μ(ρ)∂2
xu. (3.4)

Thus, we have

∂tw = (∂tρ)(−p′(ρ) + μ′(ρ)∂xu) + μ(ρ)∂t ∂xu

= −∂x(uρ)(−p′(ρ) + μ′(ρ)∂xu) + μ(ρ)∂t ∂xu

= −ρ∂xu(−p′(ρ) + μ′(ρ)∂xu) − u(∂xw − μ(ρ)∂2
xu) + μ(ρ)∂t ∂xu. (3.5)

The momentum equation (1.2) gives

∂tu = −u∂xu + ρ−1∂xw+f ,

∂t ∂xu = −∂xu∂xu − u∂2
xu − ∂xρ

ρ2 ∂xw + ρ−1∂2
xw + ∂xf.

Combining the above results, we find

∂tw = −ρ∂xu(−p′(ρ) + μ′(ρ)∂xu) − u∂xw + uμ(ρ)∂2
xu

− μ(ρ)(|∂xu|2 + u∂2
xu) − μ(ρ)

∂xρ

ρ2 ∂xw + ρ−1μ(ρ)∂2
xw + μ(ρ)∂xf

= ρ−1μ(ρ)∂2
xw + ρ(∂xu)p′(ρ) − (ρμ′(ρ) + μ(ρ))|∂xu|2 − (u + μ(ρ)

∂xρ

ρ2 )∂xw + μ(ρ)∂xf

= ρ−1μ(ρ)∂2
xw + ρ(w + p(ρ))

p′(ρ)

μ(ρ)
− (ρμ′(ρ) + μ(ρ))

μ(ρ)2 (w + p(ρ))2 − (u + μ(ρ)
∂xρ

ρ2 )∂xw + μ(ρ)∂xf

which, after rearrangement, establishes Eq. (3.2). For the energy, multiplying the equation (3.2) by w yields

∂t

(
1

2
|w|2

)
= ∂x

(μ(ρ)

ρ
w∂xw

) − μ(ρ)

ρ
|∂xw|2 − ∂x

(μ(ρ)

ρ

)
w∂xw −

(
u + μ(ρ)

ρ2 ∂xρ

)
w∂xw

+
(

ρ
p′(ρ)

μ(ρ)
− 2

(ρμ′(ρ) + μ(ρ))

μ(ρ)2 p(ρ)

)
|w|2 − (ρμ′(ρ) + μ(ρ))

μ(ρ)2 w3

+
(

ρ
p′(ρ)

μ(ρ)
− (ρμ′(ρ) + μ(ρ))

μ(ρ)2 p(ρ)

)
p(ρ)w + μ(ρ)∂xf w.

Integrating in space yields the balance. �
Let us remark that in (3.2) the new viscosity coefficient is μ(ρ)

ρ
which is less degenerate than the original viscosity 

μ(ρ) for the momentum equation. In particular, when μ(ρ) = cμρα with α ≤ 1, μ(ρ)
ρ

is not degenerate when ρ goes 
to 0. Energy estimates for the coupled system of ρ and w will allow us to control all the high Sobolev regularity of 
ρ and w as long as ρ is positive. This leads to the proof of our continuation criterion in Theorem 1.1: no singularity 
occurs before vacuum formation.

Furthermore, (3.2) can be regarded as a nonlinear heat equation with variable coefficients. Note that the zero-order 
term in (3.2) has the form λρ2γ−α where λ depends only on cμ and cp . It can be readily seen that when the zero-order 
term and the forcing term in (3.2) are nonpositive, w remains nonpositive if it is nonpositive initially. This fact will 
be exploited as the key ingredient in proving the existence of global solutions in Theorem 1.6 when the viscosity is 
strongly degenerate.

4. Proof of Theorem 1.1

Throughout this section, we suppose that

0 < ρ ≤ ρ(x, t) t ∈ [0, T ∗), x ∈T (4.1)

and assume any of the following three conditions
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(i) cp > 0 and α > 1
2 , γ ≥ α − 1

2 , γ �= 1
(ii) cp < 0 and α ∈ ( 1

2 , 32 ], 0 < γ ≤ α, γ < 1
(iii) cp > 0 and α ≥ 0, γ > 1.

Under these assumptions, by Lemma 2.4, we have

‖ρ‖L∞(0,T ;L∞(T )) ≤ M(E1,‖f ‖L2(0,T ;L∞),
1

ρ
,T ), (4.2)

and

‖∂xρ‖L∞(0,T ;L2(T )) ≤ M(E1,‖f ‖L2(0,T ;L∞),
1

ρ
,T ). (4.3)

Lemma 4.1.

‖w‖L∞(0,T ;L2) + ‖∂xw‖L2(0,T ;L2) + ‖∂xu‖L∞(0,T ;L2) + ‖∂2
xu‖L2(0,T ;L2)

≤ M(E2,‖f ‖L2(0,T ;H 1),
1

ρ
,T ),

(4.4)

where E2 = E1 + ‖∂xu0‖L2 .

Proof. As a consequence of (4.1), (4.2), and (3.3), there exist c := c(E1, ‖f ‖L2(0,T ;L∞), 
1
ρ
, T ) > 0 and C :=

C(E1, ‖f ‖L2(0,T ;L∞), 
1
ρ
, T ) > 0 such that

d

dt

∫
T

1

2
|w|2(x, t)dx ≤ −1

c

∫
T

|∂xw|2dx +
∫
T

(|u| + C|∂xρ|) |w∂xw|dx

+ C

⎛
⎝∫
T

|w|2dx +
∫
T

|w|3dx +
∫
T

|∂xf |2dx + 1

⎞
⎠ . (4.5)

We bound∫
T

|∂xwwu|dx ≤ ‖∂xw‖L2‖w‖L2‖u‖L∞ ≤ C1‖∂xw‖L2‖w‖L2‖u‖H 1 ≤ 1

4c
‖∂xw‖2

L2 + C‖w‖2
L2‖u‖2

H 1

where C1 denotes absolute constants throughout this proof. Next, applying Gagliardo-Nirenberg’s inequality and 
Young’s inequality implies∫

T

|w|3 dx ≤ ‖w‖3
L3 ≤ C1(‖∂xw‖

1
2
L2‖w‖

5
2
L2 + ‖w‖3

L2) ≤ 1

4c
‖∂xw‖2

L2 + C‖w‖
10
3

L2 + C‖w‖3
L2

and ∫
T

|∂xww∂xρ|dx ≤ ‖∂xw‖L2‖w‖L∞‖∂xρ‖L2

≤ C1‖∂xw‖L2(‖∂xw‖
1
2
L2‖w‖

1
2
L2 + ‖w‖L2)‖∂xρ‖L2

≤ C1‖∂xw‖
3
2
L2‖w‖

1
2
L2‖∂xρ‖L2 + C1‖∂xw‖L2‖w‖L2‖∂xρ‖L2

≤ 1

4c
‖∂xw‖2

L2 + C‖w‖2
L2‖∂xρ‖4

L2 + C‖w‖2
L2‖∂xρ‖2

L2 .

Putting together the above bounds, and interpolating, yields the following inequality

1 d ‖w‖2
L2 + 1 ‖∂xw‖2

L2 ≤ C‖w‖2
L2(‖w‖2

L2 + ‖∂xρ‖4
L2 + 1) + C‖∂xf ‖2

L2 + C. (4.6)

2 dt 4c
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In view of (4.3), we have

T∫
0

‖∂xρ(·, t)‖4
L2dt ≤ M(E1,‖f ‖L2(0,T ;L∞),

1

ρ
,T ).

Furthermore, using the definition of w together with bounds (4.2) & (2.15), we have

‖w‖L2(0,T ;L2) ≤ M(E1,‖f ‖L2(0,T ;L∞),
1

ρ
,T ).

The last two displays, together with Grönwall’s lemma applied to (4.6), yields the bound

‖w‖L∞(0,T ;L2(T )) + ‖∂xw‖L2(0,T ;L2(T ))

≤ M(‖w0‖L2, c,C,E1,‖f ‖L1(0,T ;H 1),
1

ρ
,T ) ≤ M(E1,‖f ‖L1(0,T ;H 1),

1

ρ
,T ).

Here, we used the fact that

‖w0‖2
L2 ≤ 2c2

p‖ρ0‖2γ

L∞ + 2c2
μ‖ρ0‖2α

L∞‖∂xu0‖2
L2 .

The above bound can be used to obtain similar estimates for ‖∂xu‖L∞(0,T ;L2) and ‖∂2
xu‖L2(0,T ;L2) directly from 

the definition of w (3.1). �
Lemma 4.2.

‖∂2
xρ‖L∞(0,T ;L2) + ‖∂xw‖L∞(0,T ;L2) + ‖∂2

xw‖L2(0,T ;L2)

+ ‖∂2
xu‖L∞(0,T ;L2) + ‖∂3

xu‖L2(0,T ;L2) ≤ M(E3,‖f ‖L1(0,T ;H 1),
1

ρ
,T )

(4.7)

where

E3 = E2 + ‖∂2
xρ0‖L2 + ‖∂2

xu0‖L2 .

Proof. To prove this lemma, we obtain energy estimates for the mass equation (1.1) and the w–equation (3.2) simul-
taneously. The proof proceeds in 4 steps.

Step 1. Let m ≥ 2 be an arbitrary integer. Differentiating equation (1.1) m times, then multiplying the resulting 
equation by ∂m

x ρ and integrating in space we get

1

2

d

dt

∫
T

|∂m
x ρ|2 = −

∫
T

∂m
x (u∂xρ)∂m

x ρ −
∫
T

∂m
x (ρ∂xu)∂m

x ρ

= −
∫
T

u∂x∂
m
x ρ∂m

x ρ −
∫
T

([∂m
x ,u]∂xρ

)
∂m
x ρ −

∫
T

([∂m
x ,ρ]∂xu

)
∂m
x ρ −

∫
T

ρ∂m+1
x u∂m

x ρ.

Using the Kato-Ponce commutator estimate [23] and the inequality

‖∂xg‖L∞(T ) ≤ C‖∂2
xg‖L2(T ) ≤ Cn‖∂n

x g‖L2(T ) ∀n ≥ 3,

we have

‖[∂m
x ,u]∂xρ‖L2 ≤ C‖∂xu‖L∞‖∂m−1

x ∂xρ‖L2 + C‖∂m
x u‖L2‖∂xρ‖L∞ ≤ C‖∂m

x u‖L2‖∂m
x ρ‖L2

and

‖[∂m
x ,ρ]∂xu‖L2 ≤ C‖∂xρ‖L∞‖∂m−1

x ∂xu‖L2 + C‖∂m
x ρ‖L2‖∂xu‖L∞ ≤ C‖∂m

x u‖L2‖∂m
x ρ‖L2 .

In addition,
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∣∣∣∣∣∣
∫
T

u∂x∂
m
x ρ∂m

x ρ

∣∣∣∣∣∣ = 1

2

∣∣∣∣∣∣
∫
T

∂xu|∂m
x ρ|2

∣∣∣∣∣∣ ≤ 1

2
‖∂xu‖L∞‖∂m

x ρ‖2
L2 ≤ C‖∂m

x u‖L2‖∂m
x ρ‖2

L2 .

We thus obtain
d

dt
‖∂m

x ρ‖2
L2 ≤ C‖∂m

x u‖L2‖∂m
x ρ‖2

L2 + ‖ρ‖L∞‖∂m+1
x u‖L2‖∂m

x ρ‖L2 . (4.8)

Step 2. Recall equation (3.2) with power-law pressure and viscosity

∂tw = cμρα−1∂2
xw − (u + cμρα−2∂xρ)∂xw + cp

cμ

(γ − 2(α + 1)) ργ−αw

− 1

cμ

(α + 1)ρ−αw2 + c2
p

cμ

(γ − (α + 1)) ρ2γ−α + cμρα∂xf.

(4.9)

Differentiating in space, multiplying the resulting equation by ∂xw and integrating by parts in x leads to

1

2

d

dt

∫
T

|∂xw|2 = −cμ

∫
T

ρα−1|∂2
xw|2 +

∫
T

(u + cμρα−2∂xρ)∂xw∂2
xw + cp

cμ

(γ − 2(α + 1))

∫
T

|∂xw|2ργ−α

+ cp

cμ

(γ − α) (γ − 2(α + 1))

∫
T

wργ−α−1∂xw∂xρ

− 2

cμ

(α + 1)

∫
T

ρ−αw|∂xw|2 + α

cμ

(α + 1)

∫
T

w2∂xw∂xρρ−α−1

+ c2
p

cμ

(2γ − α) (γ − (α + 1))

∫
T

ρ2γ−α−1∂xw∂xρ − cμ

∫
T

ρα∂2
xw∂xf

=: −cμ

∫
T

ρα−1|∂2
xw|2 +

7∑
j=1

Hj

after integrating by parts. By virtue of (4.1) and (4.2), there exists c := c(E1, ‖f ‖L2(0,T ;L∞), 
1
ρ
, T ) > 0 such that

cμ

∫
T

ρα−1|∂2
xw|2 ≥ 1

c

∫
T

|∂2
xw|2.

Note, under our assumptions ρ and 1/ρ are bounded (see (4.1) and (4.2)). Therefore all coefficients involving L∞
norms of ρ to some power can be bounded by some constant C = M(E1, ‖f ‖L2(0,T ;L∞), 

1
ρ
, T , γ, α). The constant 

may change line by line.

• Estimate for H1:∣∣∣∣∣∣
∫
T

(u + cμρα−2∂xρ)∂xw∂2
xw

∣∣∣∣∣∣ ≤ ‖∂2
xw‖L2‖∂xw‖L2‖u‖L∞ + C‖∂2

xw‖L2‖∂xw‖L2‖∂xρ‖L∞

≤ 1

10c
‖∂2

xw‖2
L2 + C‖∂xw‖2

L2‖u‖2
H 1 + C‖∂xw‖2

L2‖∂2
xρ‖2

L2 .

• Estimate for H2:∣∣∣∣∣∣
∫
T

|∂xw|2ργ−α

∣∣∣∣∣∣ ≤ C‖∂xw‖2
L2 .
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• Estimate for H3:∣∣∣∣∣∣
∫
T

w∂xw∂xρργ−α−1

∣∣∣∣∣∣ ≤ ‖ργ−α−1‖∞‖w‖L∞‖∂xw‖L2‖∂xρ‖L2

≤ C‖w‖L2‖∂xw‖L2‖∂xρ‖L2 + C‖∂xw‖2
L2‖∂xρ‖L2 .

• Estimate for H4:∣∣∣∣∣∣
∫
T

ρ−αw|∂xw|2
∣∣∣∣∣∣ ≤ 1

ρα
‖w‖L∞‖∂xw‖2

L2 ≤ 1

4ρ2α
‖w‖2

L∞ + C‖∂xw‖4
L2

≤ C‖w‖2
H 1 + C‖∂xw‖4

L2 .

• Estimate for H5:∣∣∣∣∣∣
∫
T

w2∂xw∂xρρ−α−1

∣∣∣∣∣∣ ≤ 1

ρ1+α
‖∂xw‖L2‖w‖2

L∞‖∂xρ‖L2

≤ C‖∂xw‖L2‖w‖2
H 1‖∂xρ‖L2

≤ C‖∂xw‖L2‖w‖2
L2‖∂xρ‖L2 + C‖∂xw‖3

L2‖∂xρ‖L2 .

• Estimate for H6:∣∣∣∣∣∣
∫
T

ργ−α−1∂xw∂xρ

∣∣∣∣∣∣ ≤ C‖∂xw‖L2‖∂xρ‖L2 .

• Estimate for H7:∣∣∣∣∣∣
∫
T

ρα∂2
xw∂xf

∣∣∣∣∣∣ ≤ 1

10c
‖∂2

xw‖2
L2 + C‖∂xf ‖2

L2 .

Putting together the above estimates gives

d

dt
‖∂xw‖2

L2 + 1

2c
‖∂2

xw‖2
L2

≤ C
(
‖∂xw‖2

L2‖u‖2
H 1 + ‖∂xw‖2

L2‖∂2
xρ‖2

L2 + ‖∂xw‖4
L2 + ‖∂xw‖3

L2‖∂xρ‖L2

)
+ G

(4.10)

with

G = C
(
‖ρ‖L∞‖∂xw‖2

L2 + ‖w‖L2‖∂xw‖L2‖∂xρ‖L2 + ‖∂xw‖2
L2‖∂xρ‖L2

+‖w‖2
H 1 + ‖∂xw‖L2‖w‖2

L2‖∂xρ‖L2 + ‖∂xw‖L2‖∂xρ‖L2 + ‖∂xf ‖2
L2

)
.

By virtue of the estimates (4.2), (4.3) and (4.4) we deduce that

‖G‖L1((0,T )) ≤ M(E2,‖f ‖L2(0,T ;H 1),
1

ρ
,T ).

Step 3. Letting m = 2 in (4.8) and using the embedding H 1(T ) ⊂ L∞(T ) we get

d

dt
‖∂2

xρ‖2
L2 ≤ C‖∂2

xu‖L2‖∂2
xρ‖2

L2 + C‖ρ‖H 1‖∂3
xu‖L2‖∂2

xρ‖L2 .

Recalling the definition (3.1) w = −cpργ + cμρα∂xu we have
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∂3
xu = ∂2

x (
w

cμρα
+ cp

cμ

ργ−α)

= ∂2
xw

cμρα
− 2α

∂xw∂xρ

cμρα+1 − α
w∂2

xρ

cμρα+1 + α(α + 1)
w|∂xρ|2
cμρα+2

+ cp

cμ

(γ − α)∂2
xρργ−α−1 + cp

cμ

(γ − α)(γ − α − 1)|∂xρ|2ργ−α−2. (4.11)

Consequently

‖∂3
xu‖L2 ≤ C

(
‖∂2

xw‖L2 + ‖∂xw‖L2‖∂xρ‖L∞ + ‖w‖H 1‖∂2
xρ‖L2

+‖w‖L∞‖∂xρ‖L2‖∂xρ‖L∞ + ‖ργ−α−1‖∞‖∂2
xρ‖L2 + ‖ργ−α−2‖∞‖∂xρ‖L2‖∂xρ‖L∞

)
.

Therefore, we obtain

d

dt
‖∂2

xρ‖2
L2

≤ C
(
‖∂2

xu‖L2‖∂2
xρ‖2

L2 + ‖ρ‖H 1‖∂2
xw‖L2‖∂2

xρ‖L2 + ‖ρ‖H 1‖∂xw‖L2‖∂2
xρ‖L2‖∂xρ‖L∞

+ ‖w‖H 1‖ρ‖H 1‖∂2
xρ‖2

L2 + ‖w‖L∞‖ρ‖2
H 1‖∂xρ‖L∞‖∂2

xρ‖L2

+‖ρ‖H 1‖∂2
xρ‖2

L2 + ‖ρ‖2
H 1‖∂2

xρ‖2
L2

)
≤ 1

10c
‖∂2

xw‖2
L2 + C

(
‖∂2

xu‖L2‖∂2
xρ‖2

L2 + ‖ρ‖2
H 1‖∂2

xρ‖2
L2 + ‖ρ‖H 1‖∂xw‖L2‖∂2

xρ‖2
L2

+‖w‖H 1‖ρ‖H 1‖∂2
xρ‖2

L2 + ‖w‖H 1‖ρ‖2
H 1‖∂2

xρ‖2
L2 + ‖ρ‖H 1‖∂2

xρ‖2
L2 + ‖ρ‖2

H 1‖∂2
xρ‖2

L2

)
≤ 1

10c
‖∂2

xw‖2
L2 + F‖∂2

xρ‖2
L2,

(4.12)

with

F = C
(
‖∂2

xu‖L2 + ‖ρ‖2
H 1 + ‖ρ‖H 1‖∂xw‖L2

+‖w‖H 1‖ρ‖H 1 + ‖w‖H 1‖ρ‖2
H 1 + ‖ρ‖H 1 + ‖ρ‖2

H 1

)
.

Combining the estimates (4.2), (4.3) and (4.4) yields

‖F‖L1((0,T )) ≤ M(E2,‖f ‖L2(0,T ;H 1(T )),
1

ρ
,T ).

Step 4. Adding (4.12) to (4.10) leads to

d

dt
(‖∂2

xρ‖2
L2 + ‖∂xw‖2

L2) + 1

4c
‖∂2

xw‖2
L2 ≤ ‖∂xw‖2

L2H + ‖∂2
xρ‖2

L2(F + C‖∂xw‖2
L2) + G

≤ (‖∂xw‖2
L2 + ‖∂2

xρ‖L2)(H + F + C‖∂xw‖2
L2) + G

(4.13)

with

H = C
(
‖u‖2

H 1 + ‖∂xw‖2
L2 + ‖∂xw‖L2‖∂xρ‖L2

)
satisfying, in virtue of (4.2), (4.3) and (4.4),

‖H‖L1((0,T )) ≤ M(E2,‖f ‖L2(0,T ;H 1),
1

ρ
,T ).

Finally, we integrate (4.13) in time, then apply Grönwall’s lemma, the estimates for F , G and H , and the estimate 
(4.4) on ‖∂xw‖L2(0,T ;L2) to obtain
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‖∂2
xρ‖L∞(0,T ;L2) + ‖∂xw‖L∞(0,T ;L2) + 1

c
‖∂2

xw‖L2(0,T ;L2)

≤ M(E2,‖f ‖L2(0,T ;H 1),
1

ρ
,T ,‖∂2

xρ0‖L2,‖∂xw0‖L2)

≤ M(E3,‖f ‖L2(0,T ;H 1),
1

ρ
,T ),

where

E3 = E2 + ‖∂2
xρ0‖L2 + ‖∂2

xu0‖L2 .

It then follows easily that

‖∂2
xu‖L∞(0,T ;L2) + ‖∂3

xu‖L2(0,T ;L2) ≤ M(E3,‖f ‖L2(0,T ;H 1),
1

ρ
,T ). �

Lemma 4.3. For any k ≥ 2 there exists Mk depending only on k such that

‖∂k
xρ‖L∞(0,T ;L2) + ‖∂k−1

x w‖L∞(0,T ;L2) + ‖∂k
xw‖L2(0,T ;L2)

+ ‖∂k
xu‖L∞(0,T ;L2) + ‖∂k+1

x u‖L2(0,T ;L2) ≤ Mk

(
Ek+1,‖f ‖L2(0,T ;Hk−1),

1

ρ
,T

) (4.14)

where

Ek+1 = Ek + ‖∂k
xρ0‖L2 + ‖∂k

xu0‖L2 .

Proof. The proof proceeds by induction in k. According to Lemma 4.2, (4.14) holds for k = 2. Assuming that (4.14)
holds for k − 1 with k ≥ 3, to obtain it for k we perform Hk energy estimate for ρ and Hk−1 energy estimate for w. 
This follows along the same lines as that of Lemma 4.2. We first apply (4.8) with m = k to have

d

dt
‖∂k

xρ‖2
L2 ≤ C‖∂k

xu‖L2‖∂k
xρ‖2

L2 + ‖ρ‖L∞‖∂k+1
x u‖L2‖∂k

xρ‖L2

≤ M
(
Ek,‖f ‖L2(0,T ;Hk−2),

1

ρ
,T

)(‖∂k
xu‖L2‖∂k

xρ‖2
L2 + ‖∂k+1

x u‖L2‖∂k
xρ‖L2

)
.

(4.15)

By differentiating k times the formula

∂xu = 1

cμ

wρ−α + cpργ−α

and using the induction hypothesis together with the fact that k ≥ 3 we obtain

‖∂k+1
x u‖L2 ≤ C‖[∂k

x , ρ−α]w‖L2 + C‖ρ−α∂k
xw‖L2 + ‖∂k

xργ−α‖L2

≤ C‖∂xρ
−α‖L∞‖w‖Hk−1 + C‖ρ−α‖Hk‖w‖L∞ + C‖ρ−α‖L∞‖∂k

xw‖L2 + ‖∂k
xργ−α‖L2

≤ C‖ρ−α‖H 2‖w‖Hk−1 + C‖ρ−α‖Hk‖w‖H 1 + +C‖ρ−α‖H 1‖∂k
xw‖L2 + ‖ργ−α‖Hk

≤ M
(
Ek,‖f ‖L2(0,T ;Hk−2),

1

ρ
,T

)(‖∂k
xw‖L2 + ‖∂k

xρ‖L2 + 1
)
.

It then follows from (4.15) that

d

dt
‖∂k

xρ‖2
L2 ≤ M

(
Ek,‖f ‖L2(0,T ;Hk−2),

1

ρ
,T

)[‖∂k
xρ‖2

L2

(‖∂k
xu‖L2 + 1

) + ‖∂k
xw‖L2‖∂k

xρ‖L2 + 1
]

≤ 1

10c
‖∂k

xw‖2
L2 + M

(
Ek,‖f ‖L2(0,T ;Hk−2),

1

ρ
,T

)[‖∂k
xρ‖2

L2

(‖∂k
xu‖L2 + 1

) + 1
] (4.16)

where c = c(E1, ‖f ‖L2(0,T ;L∞), 
1
ρ
, T ) > 0 be a positive number such that
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ρα−1 ≥ 1

c
∀(x, t) ∈ T × [0, T ∗).

Next, we differentiate equation (4.9) k − 1 times in x, multiply the resulting equation by ∂k−1
x w and integrate over T . 

We estimate successively each resulting term on the right hand side of (4.9).

1. The dissipation term:∫
T

∂k−1
x

(
ρα−1∂2

xw
)
∂k−1
x w = −

∫
T

∂k−2
x

(
ρα−1∂2

xw
)
∂k
xw

= −
∫
T

ρα−1|∂k
xw|2 −

∫
T

∂k
xw

k−2∑
	=1

C	∂
	
xρα−1∂k−	

x w

≤ −1

c
‖∂k

xw‖2
L2 + C‖∂k

xw‖L2

k−2∑
	=1

C	‖∂	
xρα−1‖L∞‖∂k−	

x w‖L2

≤ −1

c
‖∂k

xw‖2
L2 + C‖∂k

xw‖L2‖ρ‖Hk−1

(‖∂k−1
x w‖L2 + ‖w‖L2

)
≤ − 1

2c
‖∂k

xw‖2
L2 + C′‖ρ‖2

Hk−1

(‖∂k−1
x w‖2

L2 + ‖w‖2
L2

)
≤ − 1

2c
‖∂k

xw‖2
L2 + M

(
Ek,‖f ‖L2(0,T ;Hk−2),

1

ρ
,T

)(‖∂k−1
x w‖2

L2 + 1
)
.

2. The drift term. We have∫
T

∂k−1
x

(
u∂xw + cμρα−2∂xρ∂xw

)
∂k−1
x w = −

∫
T

∂k−2
x

(
u∂xw

)
∂k
xw − cμ

∫
T

∂k−2
x

(
∂x

ρα−1

α − 1
∂xw

)
∂k
xw

where we adopted the convention ρα−1

α−1 = lnρ when α = 1. Noting that Hk−2(T ) is an algebra for k ≥ 3, we then 
bound∣∣∣∣∣∣

∫
T

∂k−1
x

(
u∂xw + cμρα−2∂xρ∂xw

)
∂k−1
x w

∣∣∣∣∣∣
≤ C‖∂k

xw‖L2‖u‖Hk−2‖w‖Hk−1 + C‖∂k
xw‖L2‖ ρα−1

α − 1
‖Hk−1‖w‖Hk−1

≤ 1

20c
‖∂k

xw‖2
L2 + C′‖u‖2

Hk−2‖w‖2
Hk−1 + C′‖ ρα−1

α − 1
‖2
Hk−1‖w‖2

Hk−1

≤ 1

20c
‖∂k

xw‖2
L2 + M

(
Ek,‖f ‖L2(0,T ;Hk−2),

1

ρ
,T

)(‖∂k−1
x w‖2

L2 + 1
)
.

3. The nonlinearity term:∣∣∣∣∣∣
∫
T

∂k−1
x

(
ρ−αw2)∂k−1

x w

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
T

∂k−2
x

(
ρ−αw2)∂k

xw

∣∣∣∣∣∣
≤ C‖ρ−α‖Hk−2‖w‖2

Hk−2‖∂k
xw‖L2

≤ 1

20c
‖∂k

xw‖L2 + C′‖ρ−α‖2
Hk−2‖w‖4

Hk−2

≤ 1

20c
‖∂k

xw‖L2 + M
(
Ek,‖f ‖L2(0,T ;Hk−2),

1

ρ
,T

)
.

4. The zero order term:
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∣∣∣∣∣∣
∫
T

∂k−1
x (ρ2γ−α)∂k−1

x w

∣∣∣∣∣∣ ≤ C‖ρ2γ−α‖Hk−1‖∂k−1
x w‖L2

≤ M
(
Ek,‖f ‖L2(0,T ;Hk−2),

1

ρ
,T

)‖∂k−1
x w‖L2 .

5. The forcing term:∣∣∣∣∣∣
∫
T

∂k−1
x

(
ρα∂xf

)
∂k−1
x w

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
T

∂k−2
x

(
ρα∂xf

)
∂k
xw

∣∣∣∣∣∣
≤ C‖ρα‖Hk−2‖∂xf ‖Hk−2‖∂k

xw‖L2

≤ 1

20c
‖∂k

xw‖2
L2 + M

(
Ek,‖f ‖L2(0,T ;Hk−2),

1

ρ
,T

)‖f ‖2
Hk−1 .

Putting the estimates 1. through 5. together, we obtain

1

2

d

dt
‖∂k−1

x w‖2
L2 ≤ −2

5c
‖∂k

xw‖2
L2 + M

(
Ek,‖f ‖L2(0,T ;Hk−2),

1

ρ
,T

)‖∂k−1
x w‖2

L2

+ M
(
Ek,‖f ‖L2(0,T ;Hk−2),

1

ρ
,T

)(‖f ‖2
Hk−1 + 1).

Combining this with (4.16) and Grönwall’s lemma leads to

‖∂k
xρ‖2

L∞(0,T ;L2)
+ ‖∂k−1

x w‖2
L∞(0,T ;L2)

+ ‖∂k
xw‖2

L2(0,T ;L2)

≤ M
(
‖∂k

xρ0‖2
L2 + ‖∂k−1

x w0‖2
L2 + ‖f ‖2

L2(0,T ;Hk−1)
+ T

)
exp

(
M

(‖∂k
xu‖L1(0,T ;L2) + T

))
where we denoted

M ≡ M
(
Ek,‖f ‖L2(0,T ;Hk−2),

1

ρ
,T

)
and used the fact that the L2(0, T ; Hk) norm of u is controlled by M .

It follows easily from this that ‖∂k
xu‖L∞(0,T ;L2) and ‖∂k+1

x u‖L2(0,T ;L2) can be controlled by the same bound. This 
finishes the proof of (4.14). �

In view of Lemmas 4.1, 4.2 and 4.3 we have proved that

sup
T ∈[0,T ∗)

‖ρ‖L∞(0,T ;Hk) + sup
T ∈[0,T ∗)

‖u‖L∞(0,T ;Hk) + sup
T ∈[0,T ∗)

‖u‖L2(0,T ;Hk+1)

≤ Mk

(
‖(ρ0, u0)‖Hk×Hk ,‖f ‖L2(0,T ∗;Hmax{k−1,1}),

1

ρ
,T ∗) < ∞

(4.17)

for k ≥ 1. Appealing to local existence, established by Proposition B.1, the solution can be extended past T ∗.

5. Proof of Theorem 1.5

We assume here that cp > 0 and that α ∈ ( 1
2 , 1], γ ≥ 2α. By Proposition B.1, there exists a positive time T0 such 

that problem (1.1)-(1.3) has a unique solution (ρ, u) on [0, T0] such that

ρ ∈ C(0, T0;Hk), u ∈ C(0, T0;Hk) ∩ L2(0, T0;Hk+1), k ≥ 3, (5.1)

and ρ > 0 on [0, T0]. Let T ∗ be the maximal lifetime of the classical solution (ρ, u), so that, by Theorem 1.1,

inf ∗ min ρ(x, t) = 0. (5.2)

t∈(0,T ) x∈T
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We claim that T ∗ = ∞. We will argue by contradiction. Let us note that the Hk regularity, k ≥ 3, of (ρ, u) suffices to 
justify all the calculations below. Recall from the proof of Lemma 2.3 in Appendix A, that

X = u + cμρα−2∂xρ, (5.3)

defined also in Eq. (A.4), satisfies

∂tX + u∂xX = −γ
cp

cμ

ργ−α(X − u) + f = −γ
cp

cμ

ργ−αX + γ
cp

cμ

ργ−αu + f. (5.4)

By Lemma 2.4 1., we have

‖ρ‖L∞(0,T ;L∞(T )) ≤ M(E1,‖f ‖L2(0,T ;L∞), T ). (5.5)

Since γ ≥ 2α ≥ α + 1
2 for α ∈ ( 1

2 , 1], combining the above estimate with (2.14), we have

‖ργ−αu‖L∞(0,T ;L2(T )) ≤ M(E1,‖f ‖L2(0,T ;L∞), T ). (5.6)

Note also

∂x(ρ
γ−αu) = (

√
ρ∂xu)ργ−α− 1

2 + (γ − α)ργ−2α(ρα− 3
2 ∂xρ)(

√
ρu)

Now, estimate (2.27) implies

‖(ρα− 3
2 ∂xρ)‖L2(0,T ;L2(T )) ≤ M(E1,‖f ‖L2(0,T ;L∞), T ).

Putting together this, (2.14), (2.15), (5.5), and the assumption that γ ≥ 2α we deduce that

‖∂x(ρ
γ−αu)‖L2(0,T ;L1(T )) ≤ M(E1,‖f ‖L2(0,T ;L∞), T ),

which combined with (5.6) yields

‖ργ−αu‖L2(0,T ;W 1,1) ≤ M(E1,‖f ‖L2(0,T ;L∞), T ). (5.7)

Since (5.4) is a transport equation we then have

‖X‖L∞(0,T ;L∞) ≤ (‖X0‖L∞ + γ
cp

cμ

‖ργ−αu‖L1(0,T ;L∞) + ‖f ‖L1(0,T ;L∞)

)
exp

(
γ

cp

cμ

‖ργ−α‖L1(0,T ;L∞)

)
≤ M(E1,‖X0‖L∞,‖f ‖L2(0,T ;L∞), T ).

(5.8)

Recall that X = u + ∂xρ

ρ2 μ(ρ) = u + cμρα−2∂xρ, hence Xργ−α = uργ−α + cμργ−2∂xρ. It then follows from (5.5), 
(5.7) and (5.8) that

‖ργ−2∂xρ‖L2(0,T ;L∞) ≤ M(E1,‖X0‖L∞,‖f ‖L2(0,T ;L∞), T ). (5.9)

Using (1.1) and (1.2) we obtain

∂tu + (u − μ′(ρ)∂xρ

ρ
)∂xu = μ(ρ)

ρ
∂2
xu − p′(ρ)∂xρ

ρ
+ f = cμρα−1∂2

xu − cpγργ−2∂xρ + f. (5.10)

Using the maximum principle (see the argument leading to (6.7) below and a similar argument for the minimum) and 
the bound (5.9) gives

‖u‖L∞(0,T ;L∞) ≤ ‖u0‖L∞ + cpγ ‖ργ−2∂xρ‖L1(0,T ;L∞) + ‖f ‖L1(0,T ;L∞)

≤ M(E1,‖(X0, u0)‖L∞ ,‖f ‖L2(0,T ;L∞), T ).
(5.11)

From the definition of X and (5.8), this yields

‖∂xρ
α−1‖L∞(0,T ;L∞) ≤ M(E1,‖(X0, u0)‖L∞ ,‖f ‖L2(0,T ;L∞), T ) (5.12)

when α < 1, and

‖∂x lnρ‖L∞(0,T ;L∞) ≤ M(E1,‖(X0, u0)‖L∞ ,‖f ‖L2(0,T ;L∞), T ) (5.13)
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when α = 1.
When α < 1, the continuity equation implies

∂t (ρ
α−1) = −(α − 1)∂x(uρ)ρα−2. (5.14)

Integrating this in space and time and using the definition of X leads to

∫
T

ρα−1(x, T )dx =
∫
T

ρα−1
0 dx + (α − 1)(α − 2)

t∫
0

∫
T

(uρρα−3∂xρ)(x, z)dxdz

=
∫
T

ρα−1
0 dx + 1

cμ

(α − 2)(α − 1)

t∫
0

∫
T

(ucμρα−2∂xρ)(x, z)dxdz

≤
∫
T

ρα−1
0 dx + C

t∫
0

∫
T

X2(x, z)dxdz,

(5.15)

valid for 0 ≤ t ≤ T .
Similarly, when α = 1 we have∣∣∣∣∣∣

∫
T

lnρ(x, t)dx

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
T

lnρ0dx

∣∣∣∣∣∣ + C

t∫
0

∫
T

X2(x, z)dxdz, 0 ≤ t ≤ T . (5.16)

Then by virtue of (5.8), (5.11), (5.12), (5.15), Poincaré-Wirtinger’s inequality and Sobolev embedding we deduce that

‖ρα−1‖L∞(0,T ;L∞) ≤ M(E1,‖(X0, u0)‖L∞ ,‖ρα−1
0 ‖L1,‖f ‖L2(0,T ;L∞), T )

if α < 1.
On the other hand, if α = 1, (5.5) combined with (5.16), Poincaré-Wirtinger’s inequality and Sobolev embedding, 

yields

‖ lnρ‖L∞(0,T ;L∞) ≤ M(E1,‖(X0, u0)‖L∞,‖ lnρ0‖L1,‖f ‖L2(0,T ;L∞), T ).

Consequently

inf
(x,t)∈T×[0,T ]

ρ(x, t) ≥ F
(
M(E0,‖(X0, u0)‖L∞ ,‖ρα−1

0 ‖L1 + ‖ lnρ0‖L1,‖f ‖L2(0,T ;L∞), T )
)

where

F(z) =
{

z
1

α−1 if α < 1,

e−z if α = 1.
(5.17)

Therefore,

inf
(x,t)∈T×[0,T ∗)

ρ(x, t) ≥ F
(
M(E0,‖(X0, u0)‖L∞ ,‖ρα−1

0 ‖L1 ,‖ lnρ0‖L1 ,‖f ‖L2(0,T ∗;L∞), T
∗)

)
> 0

which contradicts (5.2).

6. Proof of Theorem 1.6

Recall the assumptions (1.11) and (1.12). Assume that cp > 0 and either

α >
1

2
, γ ∈ [α,α + 1], γ �= 1 or (6.1)

α ≥ 0, γ ∈ [α,α + 1], γ > 1. (6.2)
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By Proposition B.1, there exists a positive time T0 such that problem (1.1)-(1.3) has a unique solution (ρ, u) on [0, T0]
such that

ρ ∈ C(0, T0;Hk), u ∈ C(0, T0;Hk) ∩ L2(0, T0;Hk+1), k ≥ 4, (6.3)

and ρ > 0 on [0, T0]. Let T ∗ be the maximal existence time. We claim that T ∗ = ∞. Assume by contradiction that T ∗
is finite. By Theorem 1.1 we have

inf
t∈[0,T ∗)

min
x∈T

ρ(x, t) = 0. (6.4)

From Lemma 3.1, the w equation (3.2) is

∂tw = cμρα−1∂2
xw − (u + cμρα−2∂xρ)∂xw + cp

cμ

(γ − 2(α + 1)) ργ−αw

− 1

cμ

(α + 1)ρ−αw2 + c2
p

cμ

(γ − (α + 1)) ρ2γ−α. (6.5)

Note that the assumption f (x, t) = f (t) was used to have ∂xf = 0. It follows from (6.3) and the equation (6.5) that

w ∈ C(0, T ;H 3) ∩ L2(0, T ;H 4), ∂tw ∈ C(0, T ;H 1) ⊂ C(T × [0, T ])
Thus, w ∈ C1(T × [0, T ]) and thus the function

wM(t) := max
x∈T

w(x, t) (6.6)

is Lipschitz continuous on [0, T ]. According to the Rademacher theorem, wM is differentiable almost everywhere on 
[0, T ]. There exists for each t ∈ [0, T ∗) a point xt such that

wM(t) = w(xt , t).

Let t ∈ (0, T ) be a point at which wM is differentiable. We have

w′
M(t) = lim

h→0+
wM(t + h) − wM(t)

h

= lim
h→0+

w(xt+h, t + h) − w(xt , t)

h

≥ lim
h→0+

w(xt , t + h) − w(xt , t)

h
= ∂tw(xt , t).

On the other hand,

w′
M(t) = lim

h→0+
wM(t) − wM(t − h)

h

= lim
h→0+

w(xt , t) − w(xt−h, t − h)

h

≤ lim
h→0+

w(xt , t) − w(xt , t − h)

h
= ∂tw(xt , t).

Thus, w′
M(t) = ∂tw(xt , t) if wM is differentiable at t . We deduce from this and equation (6.5) that for almost every 

t ∈ (0, T ),

∂twM ≤ A(t)wM + B(t)w2
M + C(t) (6.7)

with
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A(t) := cp

cμ

(γ − 2(α + 1)) ρ(xt )
γ−α

B(t) := − 1

cμ

(α + 1)ρ(xt )
−α

C(t) := c2
p

cμ

(γ − (α + 1)) ρ(xt )
2γ−α,

where we used the facts that ∂2
xw(xt , t) ≤ 0 and ∂xw(xt , t) = 0. Note that B(t) ≤ 0. In addition, the function C

is nonpositive under the conditions (1.11). The condition on the initial data (1.13) is equivalent to wM(0) ≤ 0. We 
deduce that

w(t) ≤ 0, ∀t < T ∗. (6.8)

At the point yt where the density attains its minimum value ρm := ρ(yt , t), ρm satisfies

∂tρm = −∂xu(yt )ρm = −w(yt )

cμ

ρ1−α
m − cp

cμ

ρ
γ−α+1
m ≥ − cp

cμ

ρ
γ−α+1
m (6.9)

where we used (6.8). Provided that γ �= α, this implies the differential inequality

1

(α − γ )
∂t (ρ

α−γ
m ) ≥ − cp

cμ

. (6.10)

Since α < γ , we find

∂t (ρ
α−γ
m ) ≤ cp

cμ

(γ − α) (6.11)

which implies

ρm(t) ≥
(

ρm(0)α−γ + t
cp

cμ

(γ − α)

) 1
α−γ

, ∀t < T ∗ (6.12)

Since cp/cμ > 0, this implies that

inf
t∈[0,T ∗)

min
x∈T

ρ(x, t) ≥
(

ρm(0)α−γ + T ∗ cp

cμ

(γ − α)

) 1
α−γ

> 0 (6.13)

which contradicts the assumption (6.4). We conclude that the solution (ρ, u) is global in time.
On the other hand, when α = γ we have

∂t lnρm ≥ − cp

cμ

(6.14)

and thus

ρm(t) ≥ ρm(0) exp

(
−t

cp

cμ

)
> 0 (6.15)

which again leads to a contradiction with (6.4).

Remark 6.1. With a more refined maximum principle argument, one can relax the regularity requirement of k ≥ 4
which we used to conclude that (6.6) is Lipschitz continuous on [0, T ].

7. Proof of Theorem 1.8

In this section, we give an upper bound for the long-time average maximum density, assuming that the forcing has 
zero mean in space. This follows by an application of the Bresch-Desjardins’s entropy and the following elementary 
lemma.
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Lemma 7.1. Let m ≥ 1
2 . If hm ∈ W 1,1(T ) then we have

‖h‖L∞(T ) ≤ 2‖∂x(h
m)‖

1
m

L1(T )
+ 4‖h‖L1(T ). (7.1)

Proof of Lemma 7.1. Since h ∈ W 1,1(T ) ⊂ C0(T ), we have h ∈ C0(T ). In particular, there exists a point x0 ∈ T
such that |h(x0)| ≤

√
2‖h‖L1(T ). For all x ∈ T we have

hm(x) =
x∫

x0

∂y(h
m(y))dy + hm(x0),

hence

|h(x)|m ≤ ‖∂xh
m‖L1(T ) + |h(x0)|m ≤ ‖∂x(h

m)‖L1(T ) + √
2‖h‖m

L1(T )
.

In view of the elementary inequality

(a + b)
1
m ≤ 2a

1
m + 2b

1
m , a, b, m > 0,

we thus obtain (7.1). �
Proof of Theorem 1.8. Recall our assumptions

γ ∈ [max{2 − α,α}, α + 1], α ≥ 1/2, and cp, cμ > 0. (7.2)

Next, by Lemma 2.3, the entropy

s = ρ

2

∣∣∣∣u + ∂xρ

ρ2 μ(ρ)

∣∣∣∣2

+ π(ρ) (7.3)

satisfies

d

dt

∫
T

s(x, t)dx = −
∫
T

|∂xρ|2μ(ρ)
p′(ρ)

ρ2 dx +
∫
T

fρ
(
u + ∂xρ

ρ2 μ(ρ)
)
dx. (7.4)

Integrating this in time yields

∫
T

s(x,T )dx −
∫
T

s(x,0)dx+cpcμγ

T∫
0

∫
T

ρα+γ−3|∂xρ|2dxdt

=
T∫

0

∫
T

fρudxdt + cμ

T∫
0

∫
T

fρα−1∂xρ dxdt.

Using the assumption (1.14) we calculate

T∫
0

∫
T

fρudxdt = −
T∫

0

∫
T

g∂x(ρu)dxdt =
T∫

0

∫
T

g∂tρ dxdt

=
∫
T

(gρ)(x,T )dx −
∫
T

(gρ)(x,0)dx −
T∫

0

∫
T

ρ∂tg dxdt.

This implies
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∣∣∣∣∣∣
T∫

0

∫
T

fρudxdt

∣∣∣∣∣∣ ≤ 2‖g‖L∞(0,T ;L∞)‖ρ0‖1 + ‖∂tg‖L1(0,T ;L∞)‖ρ0‖1

≤ 2‖g‖L∞(0,T ;L∞)‖ρ0‖1 + T ‖∂tg‖L∞(0,T ;L∞)‖ρ0‖1.

On the other hand, using Cauchy–Schwarz, we have∣∣∣∣∣∣cμ

T∫
0

∫
T

fρα−1∂xρ dxdt

∣∣∣∣∣∣ ≤ 1

2
cpcμγ

T∫
0

∫
T

ρα+γ−3|∂xρ|2dxdt + C

T∫
0

∫
T

ρα−γ+1f 2dxdt

≤ 1

2
cpcμγ

T∫
0

∫
T

ρα+γ−3|∂xρ|2dxdt + CT (1 + ‖ρ0‖1)‖f ‖2
L∞(0,T ;L∞).

Here, C is a constant which depends only on cγ , cp and γ . We have used the assumption (7.2) that γ belongs to the 
range γ ∈ [max{2 − α, α}, α + 1] with α ≥ 1/2 to have 0 ≤ α − γ + 1 ≤ 1.

Note that the allowed range of γ and α requires that γ ≥ 3/2 always. Since, in particular γ > 1 we have π(ρ) ≥ 0
and s ≥ 0. Thus, putting all together, we obtain the bound

1

2
cpcμγ

T∫
0

∫
T

ρα+γ−3|∂xρ|2dxdt

≤ 2‖g‖L∞(0,T ;L∞)‖ρ0‖1 + T ‖∂tg‖L∞(0,T ;L∞)‖ρ0‖1 + CT (1 + ‖ρ0‖1)‖∂xg‖2
L∞(0,T ;L∞) +

∫
T

s(x,0)dx.

We thus obtain

1

2
cpcμγ

T∫
0

∫
T

ρα+γ−3|∂xρ|2dxdt ≤ M1T + M0,

where M0 is a constant which depends only on cμ, cp , γ , α, ‖ρ0‖L∞ , ‖ρ−1
0 ‖L∞ , ‖u0‖L2 , ‖∂xρ0‖L2 , ‖g‖L∞(0,T ;L∞), 

and M1 a constant which depends only on cμ, cp , γ , ‖ρ0‖L1 , ‖∂tg‖L∞(0,T ;L∞), ‖∂xg‖L∞(0,T ;L∞).
In particular,

T∫
0

∫
T

|∂x(ρ
1
2 (α+γ−1))|2dxdt ≤ M3T + M2,

where Mi+2 = (α+γ−1)2

2cpcμγ
Mi , for i = 0, 1. Here, we used the fact that α + γ − 1 > 0.

By assumption (7.2) we have that α + γ ≥ 2 max{1, α} ≥ 2 which implies 1
m

≤ 2. We now apply Lemma 7.1 with 
m := 1

2 (α + γ − 1). Using the embedding L2(T ) ⊂ L1(T ), we obtain

T∫
0

‖ρ(·, t)‖L∞dt ≤ 2

T∫
0

‖∂x(ρ
m)‖

1
m

L2 dt + 4T ‖ρ0‖L1 .

Consequently,

T∫
0

‖ρ(·, t)‖L∞dt ≤ 2

T∫
0

(‖∂x(ρ
m)‖2

L2 + 1)dt + 4T ‖ρ0‖L1 ≤ 2(M3T + M2) + 2T + 4T ‖ρ0‖L1 .

Hence,
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1

T

T∫
0

‖ρ(·, t)‖L∞dt ≤ (2M3 + 2 + 4‖ρ0‖L1) + 2

T
M2, (7.5)

and the claim follows, with the definition

C1 = 2M2, C2 := 2M3 + 2 + 4‖ρ0‖L1 . � (7.6)
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Appendix A. Bresch-Desjardins’s entropy

For the sake of completeness we present the proof of Lemma 2.3 which essentially follows from [19–21]. From 
the continuity equation (1.1), any smooth ξ(ρ) satisfies

∂t ξ(ρ) = ∂tρξ ′(ρ) = −∂x(uρ)ξ ′(ρ) = −u∂xξ(ρ) − ρ(∂xu)ξ ′(ρ) (A.1)

Using equation (A.1) applied to the function ∂xξ(ρ), we find the evolution of ρ∂xξ(ρ)):

∂t (ρ∂xξ(ρ)) = −∂x(ρu)∂xξ(ρ) + ρ∂t∂xξ(ρ)

= −∂x(ρu)∂xξ(ρ) − ρ∂x(u∂xξ(ρ) + ρ(∂xu)ξ ′(ρ))

= −∂x(ρu)∂xξ(ρ) − ρ∂xu∂xξ(ρ) − ρu∂2
x ξ(ρ) − ρ∂x(ρ(∂xu)ξ ′(ρ))

= −∂x(ρu∂xξ(ρ)) − ρ∂xu∂xξ(ρ) − ρ∂x(ρ(∂xu)ξ ′(ρ))

= −∂x(ρu∂xξ(ρ)) − ∂x(ρ
2(∂xu)ξ ′(ρ)).

(A.2)

Then, letting X := u + ∂xξ(ρ), combining Eq. (A.2) with the momentum equation (1.2) yields

∂t (ρX) = −∂x(ρuX) − ∂xp(ρ) + ∂x(μ(ρ)∂xu) − ∂x(ρ
2(∂xu)ξ ′(ρ)) + ρf. (A.3)

We now choose ρ2ξ ′(ρ) = μ(ρ), so that the final two terms in (A.3) cancel. Thus with this choice,

X = u + ∂xρ

ρ2 μ(ρ) (A.4)

and, by (A.3), ρX satisfies

∂t (ρX) = −∂x(ρuX) − ∂xp(ρ) + ρf. (A.5)

Whence, we obtain

∂t (ρX2) = −∂x(ρuX2) − 2X∂xp(ρ) + 2ρf X. (A.6)

Integrating in space

1

2

d

dt

∫
T

(ρX2)(x, t)dx = −
∫
T

ρu
∂xp(ρ)

ρ
dx −

∫
T

|∂xρ|2μ(ρ)
p′(ρ)

ρ2 dx +
∫
T

fρ
(
u + ∂xρ

ρ2 μ(ρ)
)
dx

= −
∫

ρu ∂xπ
′(ρ)dx −

∫
|∂xρ|2μ(ρ)

p′(ρ)

ρ2 dx +
∫

fρ
(
u + ∂xρ

ρ2 μ(ρ)
)
dx
T T T
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= − d

dt

∫
T

π(ρ)dx −
∫
T

|∂xρ|2μ(ρ)
p′(ρ)

ρ2 dx +
∫
T

fρ
(
u + ∂xρ

ρ2 μ(ρ)
)
dx.

The global balance (2.19) for entropy s := 1
2ρX2 + π(ρ) follows.

Appendix B. Local well-posedness

Proposition B.1. Assume that p : R+ → R and μ : R+ → R+ are C∞ functions away from zero. Let ρ0 and u0
belong to Hk(T ) for an integer k ≥ 1, such that r0 := minx∈T ρ0 > 0. Suppose that for all T > 0

f ∈ L2(0, T ;Hk−1(T )).

Then, there exists a T0 > 0 depending only on ‖(ρ0, u0)‖Hk(T )×Hk(T ), r0 and f , and a unique strong solution (ρ, u)

to (1.1)-(1.3) on [0, T0] with data (ρ0, u0) such that

ρ ∈ C(0, T0;Hk(T )), u ∈ C(0, T0;Hk(T )) ∩ L2(0, T0;Hk+1(T ))

and ρ(x, t) > r0
2 for all (x, t) ∈T × [0, T0].

Proof. Step 0. (Iteration Scheme) We are going to set up an iteration argument and prove that the iterates converge to 
the desired solution. Let us first suppose that the initial data ρ0, u0 are smooth, and let us define r0 := minx∈T ρ0.

Let us initialize our scheme as follows:

(ρ0(x, t), u0(x, t)) := (ρ0(x), u0(x)),

ρ1(x, t) = ρ0(x),

and we define u1(x, t) so that

∂tu1 − μ(ρ1)

ρ1
∂2
xu1 = −u0∂xu0 − 1

ρ0
∂xp(ρ0) + ∂xμ(ρ0)

ρ0
∂xu0 + f,

u1|t=0 = u0(x,0).

(B.1)

Let now n ≥ 2. Given ρn−1, un−1, we iteratively define ρn first, and subsequently un as follows

∂tρn + un−1∂xρn = −ρn−1∂xun−1, (B.2)

∂tun − μ(ρn)

ρn

∂2
xun = −un−1∂xun−1 − 1

ρn−1
∂xp(ρn−1) + ∂xμ(ρn−1)

ρn−1
∂xun−1 + f, (B.3)

(ρn,un)|t=0 = (ρ0, u0). (B.4)

Let k ≥ 1 be an integer. We let, for ease of notation,

A := ‖ρ0‖Hk + ‖u0‖Hk .

We are going to prove, by induction on n, that there exists T0 > 0 such that the following assertions hold.

Step 1: There exists u1 ∈ C∞(T × [0, T0]) satisfying (B.1) and

‖u1‖L∞(0,T0;Hk) ≤ 2A,

T0∫
0

∫
T

μ(ρ1)

ρ1
(∂k+1

x u1)
2dxdt ≤ 8A. (B.5)

Step 2: For n ≥ 2, there exists ρn ∈ C∞(T × [0, T0]) satisfying (B.2), (B.4), and

ρn(x, t) ≥ r0

2
on T × [0, T0].

Furthermore,

‖ρn‖L∞(0,T0;Hk) ≤ 2A.
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Step 3: There exists un ∈ C∞(T × [0, T0]) satisfying (B.3), (B.4), and

‖un‖L∞(0,T0;Hk) ≤ 2A,

T0∫
0

∫
T

μ(ρn)

ρn

(∂k+1
x un)

2dxdt ≤ 8A.

Step 4: The sequence (ρn, un) is Cauchy in the space L∞(0, T0; L2) × (
L∞(0, T0; L2) ∩ L2(0, T0; H 1)

)
.

Step 5: There exist

u ∈ C(0, T0;Hk) ∩ L2(0, T0;Hk+1)

and

ρ ∈ C(0, T0;Hk)

such that (ρ, u) is a strong solution to the system (1.1)–(1.2) with initial data (ρ0, u0). In particular, if k = 3, said 
solution is a classical solution.

Step 6: The constructed strong solution is unique.

Let us now turn to the details.
Step 1. This is the base case of the induction. The existence of u1 in the conditions follows from the general theory 

of linear parabolic equations, using the fact that ρ0 is bounded from below by r0, and that all functions involved are 
smooth. The bound (B.5) is obtained exactly as in Step 3, and we omit the details here.

Step 2. Let n ≥ 2. Let us adopt the following nomenclature:

ρ := ρn, η := ρn−1, u := un, v := un−1.

We recall the induction hypotheses:

‖v‖L∞(0,T0;Hk) ≤ 2A, ‖η‖L∞(0,T0;Hk) ≤ 2A,

T0∫
0

∫
T

μ(η)

η
(∂k+1

x v)2dxdt ≤ 8A, inf
t∈[0,T0]

inf
x∈T

η(x, t) ≥ r0

2
.

(B.6)

Existence up to time T0 and smoothness for ρn follow from the method of characteristics.
In what follows, M(·, . . . , ·) will always denote a positive, continuous function increasing in all its arguments. We 

first notice that, due to the mass equation (B.2) and the maximum principle, for all k ≥ 1 and 0 ≤ t ≤ T0,

inf
T

ρ(·, t) ≥ inf
T

ρ0 −
t∫

0

‖η(·, s)∂xv(·, s)‖L∞ds ≥ inf
T

ρ0 − M(A)
√

t‖∂2
xv‖L2(0,t;L2). (B.7)

Hence, restricting T0 to be small only as a function of A and r0, we have

inf
t∈[0,T0]

inf
x∈T

ρ(x, t) ≥ r0

2
.

We have therefore recovered the last induction hypothesis in (B.6).
Let us now differentiate the mass equation (B.2) k-times, multiply it by ∂k

xρ and integrate by parts

1

2
∂t

∫
T

(∂k
xρ)2dx +

∫
T

∂k
xρ ∂k

x (v∂xρ)dx = −
∫
T

∂k
xρ ∂k

x (η∂xv). (B.8)

If k = 1, we obtain

1

2
∂t‖ρ‖2

L2 ≤ C‖∂2
x v‖L2‖ρ‖2

L2 + ‖ρ‖L2‖η‖L∞‖∂xv‖L2, (B.9)

1

2
∂t‖∂xρ‖2

L2 ≤ C‖∂2
xv‖L2‖∂xρ‖2

L2 + 2‖∂xρ‖L2‖∂xη‖L2‖∂xv‖L∞ + ‖∂xρ‖L2‖η‖L∞‖∂2
xv‖L2 . (B.10)
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Combining (B.9) and (B.10), integrating and using the induction hypotheses, we obtain, for suitable T0 (depending 
only on A and r0)

‖ρ‖L∞(0,T0;H 1) ≤ 2A. (B.11)

If k ≥ 2, in addition to previous estimate (B.9), we also have, for the terms appearing in (B.8),∣∣∣∣∣∣
∫
T

∂k
xρ ∂k

x (v∂xρ)dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1

2

∫
T

v∂x(∂
k
xρ)2dx +

∫
T

∂k
xρ ([∂k

x , v]∂xρ)dx

∣∣∣∣∣∣
≤ 1

2
‖∂xv‖L∞‖ρ‖2

Hk + ‖ρ‖Hk‖[∂k
x , v]∂xρ‖L2 ≤ C‖v‖H 2‖ρ‖2

Hk + C‖ρ‖2
Hk‖v‖Hk .

(B.12)

Furthermore,∣∣∣∣∣∣
∫
T

∂k
xρ ∂k

x (η∂xv)

∣∣∣∣∣∣ ≤ ‖ρ‖Hk‖η∂k+1
x v‖L2 + ‖ρ‖Hk‖[∂k

x , η]∂xv‖L2

≤ C‖ρ‖Hk

⎛
⎝∥∥∥∥ η3

μ(η)

∥∥∥∥
1
2

L∞

∥∥∥∥∥
(

μ(η)

η

) 1
2

∂k+1
x v

∥∥∥∥∥
L2

+ ‖η‖H 2‖v‖Hk + ‖v‖H 2‖η‖Hk

⎞
⎠ .

(B.13)

Now, due to our assumptions on μ and the induction hypothesis, we have∥∥∥∥ η3

μ(η)

∥∥∥∥
1
2

L∞
≤ M(A, r−1

0 ),

where M depends on μ and is an increasing function of its arguments.
Upon summation of (B.9) and (B.8), using (B.9) and (B.13),

1

2
∂t‖ρ‖2

Hk ≤ C‖v‖Hk‖ρ‖2
Hk + C‖ρ‖Hk‖η‖Hk‖v‖Hk + M(A, r−1

0 )‖ρ‖Hk

∥∥∥∥∥
(

μ(η)

η

) 1
2

∂k+1
x v

∥∥∥∥∥
L2

.

We now use the induction hypothesis (B.6) to obtain, for 0 ≤ t ≤ T0,

∂t

(‖ρ‖Hk exp (−2CAt)
) ≤ 4CA2 + M(A, r−1

0 )

∥∥∥∥∥
(

μ(η)

η

) 1
2

∂k+1
x v

∥∥∥∥∥
L2

.

Upon integration, we obtain the following inequality:

‖ρ‖Hk ≤ exp (2CAt)
(
‖ρ0‖Hk + 4CA2t + 8A

√
tM(A, r−1

0 )
)

.

It is now straightforward to choose T0, depending only on A and r0, such that the induction hypothesis

‖ρ‖L∞(0,T0;Hk) ≤ 2A

is recovered for ρ, in case k ≥ 2.
Step 3. We now turn to the estimates on the momentum equation (B.3). Multiplying such equation by u and 

integrating by parts yields

1

2
∂t

∫
T

u2dx −
∫
T

μ(ρ)

ρ
u∂2

xudx =
∫
T

u · G0 dx, (B.14)

where G0 := −v∂xv − 1
η
∂xp(η) + ∂xμ(η)

η
∂xv + f . If k ≥ 1, this implies

1

2
∂t‖u‖2

L2 +
∫
T

μ(ρ)

ρ
(∂xu)2dx ≤ M(A, r−1

0 )‖ρ‖H 1‖∂xu‖L2‖u‖L∞

+ C‖u‖ 2‖v‖2 + M(A, r−1)(‖η‖ 1‖u‖ 2 + ‖η‖ 1‖v‖ 1‖u‖ 1 + ‖f ‖ 2‖u‖ 2).

(B.15)
L H 1 0 H L H H H L L
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Here, we used integration by parts and the following Lemma

Lemma B.2. Let f be a smooth function away from 0, and k be a positive integer. Let u ∈ Hk(T ) ∩ L∞(T ), and 
suppose that there exists r0 > 0 such that u ≥ r0 on T . Then, there exists a positive and continuous function M which 
depends only on f , k and is increasing in both its arguments such that the following inequality holds:

‖f ◦ u‖Hk(T ) ≤ M
(‖u‖L∞(T ), r

−1
0

)‖u‖Hk(T ). (B.16)

Proof of Lemma B.2. The proof of the lemma follows from Theorem 2.87 in [22], §2.8.2, and a straightforward 
cutoff argument. �
Remark B.3. In what follows, we will always suppress the dependence of M on k and f , since they are fixed at the 
beginning of the argument.

Differentiating k-times (k ≥ 1) equation (B.3), multiplying by ∂k
xu, and integrating by parts yields

1

2
∂t

∫
T

(∂k
xu)2dx −

∫
T

(∂k
xu)∂k

x

(
μ(ρ)

ρ
∂2
xu

)
dx = −

∫
T

(∂k+1
x u) · Gk dx. (B.17)

Here, we defined

Gk := ∂k−1
x

(
−v∂xv − 1

η
∂xp(η) + ∂xμ(η)

η
∂xv + f

)
, for k ≥ 1.

When k = 1, the previous display (B.17) implies, upon integration by parts, an application of the Cauchy–Schwarz 
inequality, the induction hypotheses, Lemma B.2 and the bounds obtained in Step 2, that

1

2
∂t‖∂xu‖2

L2 + 1

2

∫
T

μ(ρ)

ρ
(∂2

xu)2dx ≤
∫
T

ρ

μ(ρ)
G2

1dx

≤ M(A, r−1
0 )(‖v‖4

H 1 + ‖η‖2
H 1 + ‖η‖2

H 1‖∂xv‖L2‖∂2
xv‖L2 + ‖f ‖2

L2).

(B.18)

Integrating (B.18) and, subsequently, (B.15), upon restricting T0 to be sufficiently small only as a function of A
and r0, we have, in case k = 1,

‖u‖L∞(0,T0;H 1) ≤ 2A,

T0∫
0

μ(ρ)

ρ
(∂2

xu)2dxdt ≤ 8A.

Let’s focus now on the case k ≥ 2. We have

−
∫
T

(∂k
xu)∂k

x

(
μ(ρ)

ρ
∂2
xu

)
dx

= −
∫
T

(∂k
xu)∂k+1

x

(
μ(ρ)

ρ
∂xu

)
dx +

∫
T

(∂k
xu)∂k

x

(
∂x

(
μ(ρ)

ρ

)
∂xu

)
dx

=
∫
T

μ(ρ)

ρ
(∂k+1

x u)2dx +
∫
T

∂k+1
x u

[
∂k
x ,

μ(ρ)

ρ

]
(∂xu)dx

︸ ︷︷ ︸
(a)

−
∫
T

(∂k+1
x u)∂k−1

x

(
∂x

(
μ(ρ)

ρ

)
∂xu

)
dx

︸ ︷︷ ︸
(b)

.

We estimate the last two terms in the previous display:
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|(a)| ≤ 1

10

∫
T

μ(ρ)

ρ
(∂k+1

x u)2dx + C

∫
T

ρ

μ(ρ)

([
∂k
x ,

μ(ρ)

ρ

]
(∂xu)

)2

dx

≤ 1

10

∫
T

μ(ρ)

ρ
(∂k+1

x u)2dx + M(A, r−1
0 )

∥∥∥∥
[
∂k
x ,

μ(ρ)

ρ

]
(∂xu)

∥∥∥∥
L2

≤ 1

10

∫
T

μ(ρ)

ρ
(∂k+1

x u)2dx + M(A, r−1
0 )

(∥∥∥∥∂x

μ(ρ)

ρ

∥∥∥∥
L∞

‖∂k
xu‖L2 + ‖∂xu‖L∞

∥∥∥∥∂k
x

μ(ρ)

ρ

∥∥∥∥
L2

)

≤ 1

10

∫
T

μ(ρ)

ρ
(∂k+1

x u)2dx + M
(
A, r−1

0

)
‖u‖Hk .

(B.19)

Here, M is a continuous and increasing function of its arguments. We used the bounds obtained in Step 2, the Kato–
Ponce commutator estimate, the fact that k ≥ 2 and Lemma B.2 quoted below, applied to the function μ(ρ)

ρ
.

Similarly, the following estimate holds true, for k ≥ 2:

|(b)| ≤ 1

10

∫
T

μ(ρ)

ρ
(∂k+1

x u)2dx + M
(
A, r−1

0

)
‖u‖Hk . (B.20)

Again, M is a positive, continuous and increasing function of its arguments.
We now proceed to estimate the terms contained in the RHS of equation (B.17) (the terms named “G”), in case 

k ≥ 2:∣∣∣∣∣∣
∫
T

(∂k+1
x u) · Gk dx

∣∣∣∣∣∣ ≤ 1

10

∫
T

μ(ρ)

ρ
(∂k+1

x u)2dx + 5
∫
T

ρ

μ(ρ)
G2

kdx.

Due to the bounds on ρ, we have∫
T

ρ

μ(ρ)
G2

kdx ≤ M
(
A, r−1

0

)
‖Gk‖2

L2 .

Let us now define two auxiliary functions h (the thermodynamic enthalpy) and ζ in such a way that

h′(x) = p′(x)

x
, ζ ′(x) = μ′(x)

x
, for x > 0.

We now estimate:

‖∂k−1
x (v∂xv)‖2

L2 ≤ C‖v‖2
H 2‖v‖2

Hk ≤ CA4.

Furthermore,

‖∂k−1
x

(
∂xp(η)

η

)
‖2
L2 ≤ ‖h(η)‖2

Hk ≤ M(A, r−1
0 ),

where we used Lemma B.2, applied to the function h.
Finally, we have, since k ≥ 2,∥∥∥∥∂k−1

x

(
∂xμ(η)

η
∂xv

)∥∥∥∥2

L2
= ‖∂xζ(η)∂xv‖2

Hk−1 ≤ C
(‖ζ(η)‖Hk‖∂xv‖L∞ + ‖v‖Hk‖∂xζ(η)‖L∞

)
≤ M(A, r−1

0 ).

Hence, for the term Gk , we have∣∣∣∣∣∣
∫

(∂k+1
x u) · Gk dx

∣∣∣∣∣∣ ≤ 1

10

∫
μ(ρ)

ρ
(∂k+1

x u)2dx + M(A, r−1
0 )(1 + ‖f ‖2

Hk−1). (B.21)
T T
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Putting together estimates (B.14), (B.17), (B.19), (B.20), (B.21), and ignoring the positive integral term in the LHS, 
we obtain the inequality

1

2
∂t‖u‖2

Hk ≤ M
(
A, r−1

0

)
‖u‖Hk + M

(
A, r−1

0

)
(1 + ‖f ‖2

Hk−1).

Using Grönwall’s inequality, upon restricting T0 to be small depending only on A, r0 and f , we deduce that

‖u‖L∞(0,T0;Hk) ≤ 2A. (B.22)

We now revisit the same estimates without discarding the positive integral term in the LHS. We obtain, upon restricting 
T0 to be smaller, depending only on A and r0 and f , that

T0∫
0

∫
T

μ(ρ)

ρ
(∂k+1

x u)2dxdt ≤ 8A. (B.23)

We have therefore recovered the induction Hypotheses B.6, and in particular the sequence (ρn, un) is uniformly 
bounded in L∞(0, T0; Hk(T )) × (L∞(0, T0; Hk(T )) ∩ L2(0, T0; Hk+1(T )).

Step 4. We now show that, for some T0, depending only on A, r0, the sequence (ρn, un) is Cauchy in the space 
L∞(0, T0; L2) × (L∞(0, T0; L2) ∩ L2(0, T0; L2)).

Let’s first consider the equation satisfied by δun := un+1 − un:

∂t (δun) − μ(ρn+1)

ρn+1
∂2
xun+1 + μ(ρn)

ρn

∂2
xun

= 1

2
∂x(u

2
n − u2

n−1) + ∂x(h(ρn) − h(ρn−1)) + ∂xζ(ρn) ∂xun − ∂xζ(ρn−1) ∂xun−1.

(B.24)

Recall that we defined h and ζ so that the following equalities hold true:

∂xh(ρ) = ∂xp(ρ)

ρ
, ζ(ρ) = ∂xμ(ρ)

ρ
.

We now multiply equation (B.24) by δun and integrate by parts. We have:∫
T

(δun)

(
−μ(ρn+1)

ρn+1
∂2
xun+1 + μ(ρn)

ρn

∂2
xun

)
dx

= −
∫
T

(δun)
μ(ρn+1)

ρn+1
∂2
x (δun)dx

︸ ︷︷ ︸
(a)

+
∫
T

(
μ(ρn)

ρn

− μ(ρn+1)

ρn+1

)
∂2
xun(δun)dx

︸ ︷︷ ︸
(b)

.

Note that, due to Step 3, there exists c = c(A, r0) such that, up to time T0, there holds μ(ρi)
ρi

≥ c for all integers i ≥ 0.
Hence, for the term in (a), upon integration by parts,

(a) ≥ c‖∂x(δun)‖2
L2 − 1

c
‖∂x

μ(ρn)

ρn

‖L2‖δun‖L∞‖∂x(δun)‖L2

≥ c‖∂x(δun)‖2
L2 − M(A, r−1

0 )
(
‖δun‖

1
2
L2‖∂x(δun)‖

3
2
L2 + ‖δun‖L2‖∂x(δun)‖L2

)
≥ c

2
‖∂x(δun)‖2

L2 − M(A, r−1
0 )‖δun‖2

L2 .

Here, we used Lemma B.2, the Gagliardo–Nirenberg–Sobolev inequality and the Young inequality.
We now estimate

(b) ≥ −M(A, r−1)‖δρn‖ 2‖∂2un‖ 2‖δun‖
1
2 ‖δun‖

1
2 .
0 L x L L2 H 1
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Let us now turn to the terms appearing in the RHS of (B.24). We define

∫
T

1

2
∂x(u

2
n − u2

n−1)(δun)dx

︸ ︷︷ ︸
(c)

+
∫
T

(δun)∂x(h(ρn) − h(ρn−1))dx

︸ ︷︷ ︸
(d)

+
∫
T

(δun) (∂xζ(ρn) ∂xun − ∂xζ(ρn−1) ∂xun−1)dx

︸ ︷︷ ︸
(e)

.

Then, for (c), we have, after integration by parts,

|(c)| ≤ M(A)‖∂x(δun)‖L2‖δun−1‖L2 ≤ 1

10c
‖∂x(δun)‖2

L2 + M(A)‖δun−1‖2
L2 .

Concerning the term (d), instead,

|(d)| =
∣∣∣∣∣∣
∫
T

∂x(δun) (h(ρn) − h(ρn−1))dx

∣∣∣∣∣∣ ≤ 1

10c
‖∂x(δun)‖2

L2 + M(A, r−1
0 )‖δρn−1‖2

L2 .

Again, we used the fact that, due to the uniform bounds on ρn, h is Lipschitz of constant depending only on A and r0.
Finally, concerning (e),

|(e)| ≤
∣∣∣∣∣∣
∫
T

(δun)∂xζ(ρn)∂x(δun−1)dx

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫
T

(δun)∂x(ζ(ρn) − ζ(ρn−1))∂xun−1dx

∣∣∣∣∣∣
≤ ‖δun‖L∞‖∂xζ(ρn)‖L2‖∂x(δun−1)‖L2 +

∣∣∣∣∣∣
∫
T

(ζ(ρn) − ζ(ρn−1))∂x((δun)∂xun−1)dx

∣∣∣∣∣∣
≤ M(A, r−1

0 )
(
‖δun‖

1
2
L2‖∂x(δun)‖

1
2
L2‖∂x(δun−1)‖L2 + ‖∂x(δun−1)‖L2‖δun‖L2

)
+ M(A, r−1

0 )(‖δρn−1‖L2‖∂xδun‖L2‖∂2
xun‖

1
2
L2 + ‖δρn−1‖L2‖δun‖L∞‖∂2

xun‖L2)

where δρn−1 := ρn − ρn−1. Putting together the estimates on the momentum equation, we have

1

2
∂t‖δun‖2

L2 + 1

10c
‖∂x(δun)‖2

L2

≤ M(A, r−1
0 )(‖δun‖2

L2 + ‖δun−1‖2
L2 + ‖δρn−1‖2

L2)

+ M(A, r−1
0 )‖δρn‖L2‖∂2

xun‖L2‖δun‖
1
2
L2‖∂x(δun)‖

1
2
L2

+ M(A, r−1
0 )(‖δun‖

1
2
L2‖∂x(δun)‖

1
2
L2‖∂x(δun−1)‖L2 + ‖∂x(δun−1)‖L2‖δun‖L2)

+ M(A, r−1
0 )(‖δρn‖L2‖∂xδun‖L2‖∂2

xun‖
1
2
L2 + ‖δρn‖L2‖δun‖L∞‖∂2

xun‖L2).

Upon integration between time s = 0 and s = t , using Hölder’s inequality and the bounds obtained in Step 1,
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1

2
‖(δun)(·, t)‖2

L2 + 1

10c
‖∂x(δun)‖2

L2(0,t;L2)

≤ M(A, r−1
0 )(‖δun‖2

L2(0,t;L2)
+ ‖δun−1‖2

L2(0,t;L2)
+ ‖δρn−1‖2

L2(0,t;L2)
)

+ M(A, r−1
0 )t

1
4 ‖δρn‖L∞(0,t;L2)‖δun‖

1
2
L∞(0,t;L2)

‖∂x(δun)‖
1
2
L2(0,t;L2)

+ M(A, r−1
0 )t

1
4 ‖δun‖

1
2
L∞(0,t;L2)

‖∂x(δun)‖
1
2
L2(0,t;L2)

‖∂x(δun−1)‖L2(0,t;L2)

+ M(A, r−1
0 )t

1
2 ‖∂x(δun−1)‖L2(0,t;L2)‖δun‖L∞(0,t;L2)

+ M(A, r−1
0 )t

1
4 ‖δρn−1‖L∞(0,t;L2)‖∂x(δun)‖L2(0,t;L2)

+ M(A, r−1
0 )t

1
4 ‖δρn−1‖L∞(0,t;L2)‖∂xδun‖L2(0,t;L2)

+ M(A, r−1
0 )t

1
4 ‖δρn−1‖L∞(0,t;L2)‖δun‖

1
2
L∞(0,t;L2)

‖∂x(δun)‖
1
2
L2(0,t;L2)

≤ 1

20c
‖∂x(δun)‖2

L2(0,t;L2)
+ M(A, r−1

0 )t
1
4 (‖δun‖2

L∞(0,t;L2)
+ ‖δun−1‖2

L∞(0,t;L2)
+

‖δρn−1‖2
L∞(0,t;L2)

+ ‖∂x(δun−1)‖2
L2(0,t;L2)

).

(B.25)

Let us now calculate the equation satisfied by differences of ρn:

∂t (δρn) = −un∂xρn+1 + un−1∂xρn − ρn∂xun + ρn−1∂xun−1. (B.26)

Multiplying equation (B.26) by δρn, we obtain

1

2
∂t‖δρn‖2

L2 = −
∫
T

(δρn)(un∂xρn+1 − un−1∂xρn)dx

︸ ︷︷ ︸
(a)

−
∫
T

(δρn)(ρn∂xun − ρn−1∂xun−1)dx

︸ ︷︷ ︸
(b)

.

Considering (a), we have, integrating by parts, using Gagliardo–Nirenberg–Sobolev and Hölder’s inequality,

|(a)| ≤
∣∣∣∣∣∣
∫
T

(δρn)(δun−1)∂xρn+1dx

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫
T

∂x(δρn)(δρn)un−1dx

∣∣∣∣∣∣
≤ M(A)(‖δρn‖L2‖δun−1‖

1
2
H 1‖δun−1‖

1
2
L2 + ‖δρn‖2

L2‖∂2
xun‖

1
2
L2).

On the other hand, (b) yields

|(b)| ≤
∣∣∣∣∣∣
∫
T

(δρn)(δρn−1)∂xundx

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫
T

(δρn)∂x(δun−1)ρn−1dx

∣∣∣∣∣∣
≤ M(A)(‖δρn‖2

L2 + ‖δρn−1‖2
L2)‖∂2

xun‖
1
2
L2 + M(A)‖∂x(δun−1)‖L2‖δρn‖L2 .

Putting together the estimates on the mass equation yields

1

2
∂t‖δρn‖2

L2

≤ M(A)
(
‖δρn‖L2‖∂x(δun−1)‖

1
2
L2‖δun−1‖

1
2
L2 + ‖δρn‖2

L2‖∂2
xun‖

1
2
L2

)
+ M(A)‖δρn‖L2‖δun−1‖L2

+ M(A)(‖δρn‖2
L2 + ‖δρn−1‖2

L2)‖∂2
xun‖

1
2
L2 + M(A)‖∂x(δun−1)‖L2‖δρn‖L2 .

Upon integration, the previous display yields
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1

2
‖δρn(t, ·)‖2

L2 ≤ M(A)t
3
4 ‖δρn‖L∞(0,t;L2)‖∂x(δun−1)‖

1
2
L2(0,t;L2)

‖δun−1‖
1
2
L∞(0,t;L2)

+ M(A)t
3
4 ‖δρn‖2

L∞(0,t;L2)
+ M(A)t (‖δρn‖2

L∞(0,t;L2)
+ ‖δun−1‖2

L∞(0,t;L2)
)

+ M(A)t
3
4 (‖δρn‖2

L∞(0,t;L2)
+ ‖δρn−1‖2

L∞(0,t;L2)
)

+ M(A)t
1
2 ‖∂x(δun−1)‖L2(0,t;L2)‖δρn‖L∞(0,t;L2)

≤ M(A)t
1
2

(
‖δρn‖2

L∞(0,t;L2)
+ ‖∂x(δun−1)‖2

L2(0,t;L2)
+ ‖δun−1‖2

L∞(0,t;L2)

+ ‖δρn−1‖2
L∞(0,t;L2)

)
.

(B.27)

Combining now (B.25) and (B.27), we obtain, for suitably small t depending only on A and r0,

1

4
‖δρn‖2

L∞(0,t;L2)
+ 1

4
‖δun‖2

L∞(0,t;L2)
+ 1

20c
‖∂x(δun)‖2

L2(0,t;L2)

≤ M(A, r−1
0 )t

1
4 (‖∂x(δun−1)‖2

L2(0,t;L2)
+ ‖δun−1‖2

L∞(0,t;L2)
+ ‖δρn−1‖2

L∞(0,t;L2)
).

Upon suitable choice of T0, this implies that the sequence (ρn, un) is Cauchy in the space L∞(0, T0; L2) ×
(L∞(0, T0; L2) ∩ L2(0, T0; H 1)).

Step 5. Denote

Xm = L∞(0, T0;Hm) × (
L∞(0, T0;Hm) ∩ L2(0, T0;Hm+1)

)
a Banach space with its canonical norm. We have proved in the previous steps that (ρn, un) is bounded in Xk and 
Cauchy in Xk−1. The latter implies that (ρn, un) converges to some (ρ, u) in Xk−1. The former implies that some sub-
sequence (ρnj

, unj
) converges weak-* to some (ρ∗, u∗) in Xk . Since both weak-* convergence in Xk and strong con-

vergence in Xk−1 imply convergence in the sense of distributions we deduce that (ρ, u) = (ρ∗, u∗) ∈ Xk . It can be eas-
ily verified that (ρ, u) is a strong solution to the system (1.1)–(1.2). Moreover, since ρn → ρ strongly in L2(0, T0; L2)

and (ρn) is bounded in L∞(0, T0; H 1) it follows by interpolation that ρn → ρ strongly in L∞(0, T0; H 3/4), and hence 
in L∞(0, T0; L∞). This combined with the fact that ρn(x, t) ≥ r0

2 for all (x, t) ∈ T × [0, T0] (see Step 2) yields

ρ(x, t) ≥ r0

2
∀(x, t) ∈ T × [0, T0].

Step 6. We now establish uniqueness of strong solutions. Consider solutions (ρ1, u1) and (ρ2, u2), such that

ρi ∈ C(0, T0;Hk(T )), ui ∈ C(0, T0;Hk(T )) ∩ L2(0, T0;Hk+1(T )), for i = 1,2

and let (δρ, δu) = (ρ1 − ρ2, u1 − u2). We have

∂t δu + δu∂xu1 + u2∂xδu = −∂x((ρ1) − (ρ2)) + ρ−1
1 ∂x(μ(ρ1)∂xu1) − ρ−1

2 ∂x(μ(ρ2)∂xu2), (B.28)

∂t δρ + ∂x(u1δρ + ρ2δu) = 0, (B.29)

(δρ, δu)|t=0 = (0,0) (B.30)

We now notice that equation (B.28) is the same as equation (B.24), upon formally substituting n = 1 in the LHS, and 
n = 2 in the RHS. Similarly, recalling (B.26), we have

∂t (δρn)︸ ︷︷ ︸
(a)

= −un︸︷︷︸
(b)

∂xρn+1︸ ︷︷ ︸
(a)

+un−1︸︷︷︸
(b)

∂xρn︸︷︷︸
(a)

−ρn∂xun + ρn−1∂xun−1︸ ︷︷ ︸
(b)

.

Formally substituting n = 1 in terms (a), and n = 2 in terms (b), we obtain (B.29). It is then straightforward to see 
that the same estimates as in Step 4 yield uniqueness of strong solutions. �
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