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Abstract

We consider a class of one dimensional compressible systems with degenerate diffusion coefficients. We establish the fact that
the solutions remain smooth as long as the diffusion coefficients do not vanish, and give local and global existence results. The
models include the barotropic compressible Navier-Stokes equations, shallow water systems and the lubrication approximation of
slender jets. In all these models the momentum equation is forced by the gradient of a solution-dependent potential: the active
potential. The method of proof uses the Bresch-Desjardins entropy and the analysis of the evolution of the active potential.
© 2019 L’ Association Publications de I’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

We consider a class of compressible fluid models in one space dimension with periodic boundary conditions:

9p + 0y (up) =0, (1.1)
3 (ou) + dx (pu*) = —dx p(p) + 85 (L(p)dxu) + pf, (1.2)
(0, w)li=0 = (po, uo) (1.3)

with constitutive laws given by

p(p)=cpp’, w(p) =cpp®, cp#0, ¢, >0. (1.4)

Among these models are the one-dimensional barotropic compressible Navier-Stokes equations. In this description,
p is the mass density, u is the fluid velocity, and p(p), (o) are the fluid pressure and dynamic viscosity respectively.
These are given by physical equations of state (1.4). For such systems, the specific heat at constant pressure is positive
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¢p > 0 so that p(p) is non-negative. The viscosity is also assumed non-negative ¢, > 0 but may be degenerate in the
sense that it vanishes for p = 0.

Although the eqns. (1.1)—(1.3) describe cases of compressible Navier-Stokes equations, they serve also as models
for a number of other physical systems if the basic variables and constitutive laws are appropriately defined. For
example, a model for viscous incompressible motion of shallow water waves [1,2] reads

dh + 0, (uh) =0, (1.5)
& (hu) + 8, (hu®) + %axhz =403, (hdyu) + hf (1.6)

where

h and u represent respectively the surface height and fluid velocity,
g is gravity,

v > 0 is the kinematic viscosity,

f is the external force.

These equations are a special case of equations (1.1)-(1.2) with
8
p(p)=2p" and  p(p)=4vp.

Equations (1.1)—(1.3) also appear in the theory of drop formation as the slender jet equations [3,4]:

1
Bth+u8xh=—§8xuh, 1.7)

3y (h20,u)

3 g (1.8)

1
Ot + udyu + yax(z) =3v

where

h and u represent respectively the neck radius and velocity of the jet,
y > 0 is the surface tension coefficient,

v > 0 is the kinematic viscosity,

g > 0 is gravity.

These equations arise as a reduction of the axisymmetric incompressible Navier-Stokes equations in two spatial di-
mensions governing a thin liquid thread with a moving boundary. Via the change of variables p = h2, equations
(1.7)-(1.8) become equations (1.1)-(1.2) with

p(p)=—y/p and u(p)=3vp.

Note that here the “pressure” that appears is non-positive in contrast with the Navier-Stokes descriptions.

In all the settings above, the one-dimensional equations (1.1)—(1.3) are approximate models of the underlying
physical processes, whose quality may vary depending on the situation. As models for dissipative molecular fluids,
they are not known to arise as an effective description by a controlled hydrodynamic limit and do not conserve total
energy. See Section A and Appendix B of [5] for an extended discussion. Of course, they could be valid descriptions
of fluid systems in other situations than these, as is the case of the shallow water and slender jet. Moreover, J. Eggers
has argued that the slender jet equations described above become an exact description asymptotically close to drop
pinch—off, justifying the use of the model (1.7), (1.8) in that context.

Four theorems are proved. The first result, Theorem 1.1, provides a blowup criterion for equations (1.1)—(1.3) with
a wide range of constitutive pressure and viscosity laws (1.4). In what follows, we denote by T the interval (0, 1] with
periodic boundary conditions.

Theorem 1.1. Assume any of the following three conditions

@ Cp>0anda>%,y7é1, y>a— 3
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(i1) cp<0and%<ot

%,y<1,0<y§a,
(i) ¢cp>0andy > 1, a > 0.

Let k > 3 and assume further that
feLl*>0,T; HY(T)) forall T >D0.
If (p, u) is a solution of (1.1)-(1.3) on [0, T*) such that
peCO,T; HX(T)), wuecC©,T; HYT))NL*©,T; H**(T)), VT €(0,T") (1.9)

and

inf minp(x,t) >0,
IE[O,T*)xGTp( )

then (p, u) satisfies

Sup ”IOHLOO(O,T;Hk) + Sup ”M”LOC(O,T;Hk) + Sup ||u||L2(01T;Hk+1) <0 (110)
Tel0,T*) Tel0,T*) Te[0,T*)

and can be continued in the class (1.9) past T*.
Theorem 1.1 says that the only possible way for a singularity to form starting from smooth data is if the density
becomes zero somewhere in the domain. This applies in particular to the viscous shallow water wave equations

(1.5)-(1.6). In the slender jet equations (1.7)-(1.8) which model incompressible fluid drop formation, this says that
singularities can only form at the onset of drop break-off. This answers a conjecture of P. Constantin recorded in [3].

Remark 1.2. The conclusions of Theorem 1.1 hold whenever an upper bound on the density of the form (2.22) exists,
possibly dependent on the minimum density p. Under any of the conditions (i), (ii), (iii) of the Theorem, we produce
such a bound. However, it seems unlikely that (i)—(iii) are fundamental restrictions, and the result should hold over
larger range conditions.

Remark 1.3. [6] proved that weak solutions of 1D compressible Navier-Stokes equations with constant viscosity do
not exhibit vacuum states in finite time provided no vacuum states are present initially.

Remark 1.4. Local well-posedness of (1.1)—(1.3) in the class (1.9) is established in Proposition B.1 of the Appendix B
for arbitrary smooth p(p) and smooth non-negative u(p). This covers the special case of power law equations of state
(1.4) in the entire parameters range in Theorem 1.1. Local existence of strong solution for 2D shallow water equations
can be found in [7,8]. We also refer to [9,10] for classical results regarding equations of compressible viscous and
heat-conductive fluids with constant viscosity.

Our next two theorems concern the long-time existence and persistence of regularity. Theorem 1.5 establishes
global existence for arbitrarily large data, within a range of pressure and viscosity of the form (1.4).

Theorem 1.5. Assume
cp>0, ae (%, 1], and y > 2.

Let k > 3 be an integer and let py and uqy belong to H*(T) such that po(x) > 0 for all x € T. Assume further that
fel*>0,T; HY(T)) forall T >D0.

Then there exists a unique global solution (p, u) to (1.1)-(1.3) such that
peC,T; HY(T)), uecC(,T;HYT))nL*0,T; H+'(T))

forall T >0, and p(x,t) >0 forall (x,t) e T x RY.
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This result applies to the viscous shallow water equations (1.5)-(1.6), giving an alternative proof to that of [11]. Let
us note that [11] assumes only H! regularity of initial data. Moreover, Theorem 1.5 allows for more singular density
dependence of the viscosity than in [12], which considers the case of o < % and y > 1. In two dimensions, global
stability of constant solutions to shallow water equations was proved in [13—-15].

For more degenerate viscosity p® allowing o > 1, we prove global existence for a class of large initial data.

Theorem 1.6. Assume that c,, > 0 and either

o> —,
2
a>0, yele,a+1], y>1. (1.12)

yela,a+1], y#1 or (1.11)

Assume further that
[0 =f@) e L*(0,T)) VT >0.
Let k > 4 be an integer and let ug and po belong to Hk('IF) such that py(x) > 0 forall x € T and

duo(x) < Lpo(x)’ "% VxeT. (1.13)
Cu

Then there exists a unique global solution (p, u) to (1.1)-(1.3) such that
peCO.T; HX(T))., ueC,T; H (T))NL*0,T: H*(T))
forall T >0, and p(x,t) >0 forall (x,t) e T x RY.

Remark 1.7. We note that (1.13) does not impose any smallness conditions on the initial data. The unique global
solution in Theorem 1.5 satisfies

Cc
deu(x, 1) < Lp@x, 0’
C

for all (x,t) € T x R*. Moreover, the proof provides a lower bound for the minimum of density p, see (6.12) and
(6.15),

—1

(Pm(o)afy + IZ—Z(J/ - ot)) " when y >a,

min p(x, 1) >
xeT om (0) exp (—ti—l’i) when y =a.

Our last theorem establishes a bound on the time-averaged maximum density for a certain range of parameters
assuming mean zero forcing.

Theorem 1.8. Assume that (p, u) is a sufficiently smooth solution to the system (1.1)—(1.3) on [0, T™*). Assume that
f=0xg (1.14)
for some periodic function g satisfying
geL™0, T L>®(T)), and 0,g,0,g€ L0, T*; L=(T)).
Let us also assume that
a>1/2, yemax{2—a,a},a+1], and cp,c,>0.

Then, we have the following bound

T
1 1
— D) peo(mydt < C1 + =Cs, 1.15
T/np( Mescayds =1+ 2o (L15)
0
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where Cy and Cj are defined in equation (7.6). In particular, Ci depends only on c,, cp, a, v, llpollp1,

-1
10xgllLoo(0,7;L¢), and ||9;gllL>(0,7;L>), whereas Ca depends only on cy, cp, v, &, llpollL=, l1og " llLe, lluollz2,
19xp0ll 12, and || gl Lo (0, T; Ly. Consequently, if T* = oo then

T—o0

T

, 1

hmsup?/||/0(',f)||L°°(T)dt§C3 (1.16)
0

where C3 depends only on cy, cp, o, ¥, lpoll 1, 10xgl L0 (0,00; L), and ||0; gl Lo (0,00 L)

Theorem 1.8 applies for the viscous shallow water wave system (1.5), (1.6) for which global existence is established
by Theorem 1.5. The interpretation of the bound (1.16) with & = p is that long-time average of the maximum surface
height remains bounded, showing that, on average, no extreme events can develop.

Remark 1.9. Modulo technical conditions, Theorems 1.1, 1.5, 1.6 and 1.8 should hold for more general constitutive
laws (o) and p(p) that behave asymptotically when p — 0 as ¢, 0* and cj, p respectively. The high regularity of
initial data in the above Theorems is assumed to apply maximum principles straightforwardly. By appealing to more
refined maximum principles, the regularity of initial data can be reduced.

The proofs are based on use of the Bresch-Desjardins entropy and analysis of the evolution of the active potential
w. This object is the potential in the momentum equation (1.2): its gradient is the force

pDiu = dyw. (1.17)

The potential

w=—p(p) + n(p)oxu

is unknown and combines the viscous stress with the pressure. As w depends on the unknowns and in turn determines
their evolution, we refer to it as an active potential. Remarkably, w satisfies a forced quadratic heat equation with
linear drift and less degenerate diffusion with the new dissipation term M8)%w. The active potential w contains one
derivative of u and no derivative of p. On one hand, energy estimates for the coupled system of p and w allow us to
control all the high Sobolev regularity of p and u as long as p is positive, leading to the proof of Theorem 1.1. On the
other hand, the heat equation for w satisfies a maximum principle which enables us to obtain global regular solutions
for a class of large data when the viscosity is strongly degenerate as in Theorem 1.6.

The fact that the active potential solves a nondegenerate evolution with a maximum principle was observed in [16]
in the context of a 1D Hele Shaw model, where it served a similar role. The effective viscous flux used in [17] and
[18] is an active potential: there it was used by inverting the elliptic (nondegenerate) equation it solves at each fixed
time.

2. A priori estimates: mass, energy and Bresch-Desjardins’s entropy

Assume that (p, 1) is a solution of (1.1)-(1.3) on the time interval [0, 7*) such that
peCO,T;HY, ueCO,T;H>)NL*0,T; HY
forany T < T* and

= inf minp(x,t) > 0. 2.1
pi=, inf  min p(x,1) 2.1)
In what follows we denote by M (-, ---, ) a positive function that is increasing in each argument.

First, from the continuity equation (1.1), total mass is conserved:

loCOlziery = ol (T)- (2.2)

We have the following standard energy balance:
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Lemma 2.1 (Energy balance). Let p > 0, and
I [ p(s)
p(s
e:= 2 plul* +m(p), n(p)=p/s—2ds. 2.3)
o

Then, the balance
(2.4)

d
2 f e(r, )dx = — / w(p)|yul2dx + / foudx
T T T

holds for any t € [0, T*).
Using the equation of state for the density (1.4) and recalling that p > 0 is an arbitrary constant that we are free to

fix, we have an explicit formula for 7 (p) from (2.3)

p o _ .
L 1, p=0 €(0,1), p=o0,
7(p) = cpP/sV—zds T v==ue or ye@©b, p=ca (2.5)
/ cpplog(p) y=1p=1
]
Note that the function 7 satisfies
/
7"(p) = 14 (p).
Lemma 2.2. /. If y € (1, 00) and c, > 0, then w(p) > 0 and
lellpooo,7;01y + ||M(P)|3xp|2||L1(o,T;Ll) = <||e(-, Ol + ”f”iQ(O,T;LOO)||100||L1(']1")) exp(2T) (2.6)
2.Ify € (0,1) and cp # 0, then
c
f I (o)ldx < |- - ‘ / (po + Ddx 2.7)
T
and there exists a positive constant C = C(y, «, cp, ¢,,) such that
(2.8)

Lo Il oo o, 7:21y + () 0x PPl L1 0,71
< (IIPOM%HLI(T) +C(U+ 11720 ) (1 + ||po||L1(1r))) exp(T).

Proof. First, using the mass conservation (2.2) we bound

1 2 1 2
foudx < 3 fop+ Fpu
T T T
1
2 2
<1 B, [ o+ [ 500 2.9)
T T

< 1m0l 1y + / S
T

1.If y € (1, 00) and c), > 0, then we have 7 (p) > 0. It then follows from (2.9) that
(2.10)

T

/ foudx < 1 £ werylp0llL1cr) + / e(x, dx.
T
Ignoring the first term on the right hand side of (2.4), then using (2.10) and Gronwall’s lemma we obtain
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lell e iy = (HeC Ot + 1/ B o 10001 ) €XP(T).

Next, we integrate (2.4) in time and use (2.10), (2.11) together with the fact that e(x, t) > 0 to get
)35 PPl 07521y < e Ozt + 1 F 1120, 7100 10N Lty + Tllell oo,y
< (1eC 0L + 172 7. 120l 1cn) ) (1 + T) exp(T)

< (leC, Ol + 11220 7. 1901 ) ) €XxDCT).
2.If y € (0, 1) then

/Iﬂ(p)ldx <
T

Cfl‘/(p(t)H)dxs

c
_pl‘/(po+l)dx

4 14

151

@2.11)

2.12)

where we used the fact that p” < max{1, p} together with the mass conservation (1.1). Ignoring the first term on the

right hand side of (2.4) and using (2.12), (2.9) we find

t

/%puz(x,t)dx5/%pou%dx—l—/n(po(x))dx—/n(,o(x,t))dx+//f,ou(x,s)dxds
T

T T T 0T

t
1 1
< f S pougdx + Cllpolliery + D + 1L O ey leolliery + f / 5P (x, 5)dxds

T 0T
for some positive constant C = C(y, a, ¢p, ¢, ). Gronwall’s lemma then yields

lou? | oo, 7 1) < (||pou%||L1(T) +C(LH 1 13200 7)) (1 + ||po||L1(T))) exp(T).

Again, we integrate (2.4) in time and use (2.9), (2.13), (2.12) to arrive at

(o) o1 L1 0,711y < (npou%nm) +C(LH 117207 p00)) (1 + ||po||Lu(T>)) exp(2T). O

If either y € (1, 00) and ¢, > 0 or y € (0, 1) and ¢, # 0, it follows from (2.5)-(2.8) that

Ivoull Lo, 7:22) < M(Eo, | fll L2¢0.7: 1) T,
lo20xullz200,7:02) < M(Eo, | fllz200,7: 1), T,
|0l oo (0, 7; Lmaxti.vyy < M (Eo, ||f||L2(0,T;L00), T)

where
Eo = llpougli L1ty + 1103 Il cT) + ool L1y

Lemma 2.3 (Bresch-Desjardins’s entropy [19]). Let

2

P +7(p).

§i==

2
Then, the balance

P

pzp n(p)

u+

d /
& [swntr == [opPue =P+ [ sotu+
T T T

9
;fu(p))dx

holds for any t € [0, T*).

(2.13)

(2.14)
(2.15)
(2.16)

(2.17)

(2.18)

(2.19)

A proof of Lemma 2.3 can be found in [19-21] and is given for completeness in the appendix. The first term on

the right hand side of (2.19) is negative whenever ¢, > 0 and positive whenever ¢, < 0.
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Lemma 2.4. Define

_1
Ei:=Eo+[8:(py Dl2T)- (2.20)
LIfcy>0andy #1, yza—%, ot>%,then
N0, 750000 < M(ET 1 fll 1200,7: 100y T)- (2.21)

2. Ifcp<0and0 <y <a, y<1,ae(%,%], then

1
lollLe©, ;0000 < M(E1, 1 f | L20.7: 100y >’ T). (2.22)

3. Under the conditions of 1. or 2., we have

10x ol oo, 7:22) < M(EL I fll2200,7; 1) % T). (2.23)
4.Ifcp >0,y >1and a > 0 then (2.22) and (2.2_3) hold.
Remark 2.5. The bound for (2.21) is independent of p. This fact will be important in the proof of Theorem 1.5.

Proof. 1. Since ¢, > 0, the first term on the right hand side of (2.19) is negative, and thus

d 0
a/s(x,t)dxf/fp(u%— ;
T T

1 2
55 fpdx +
T

1 1 0x P 2
< IO so(ryllooll 1Ty + / o+ %u«(p)) dx.
T

Zpu«(p))dx

1 dxp
/ o+ pE u(p)) dx (2.24)
T

When y > 1 we have 7 (p) > 0, hence s > 0 and

d 1
d—t/su,r)dxs 5||f(t)||im(T)||po||Ll(T)+/s(x,t)dx.
T T
Gronwall’s lemma then yields
Islz sz = (150, Mpiewy + 1 2 7oy 120l r) ) exp(T). (2.25)
We combine (2.25) with (2.14) and the fact that

_1
150, Il 1y < ol piery + 195 (og )7 20)- (2.26)

In view of (2.15), this implies

_1
19x (0™ 2 oo 0,72 22Ty < M(E1 1 fll 20,75 150y T) (2.27)
with

_1
Ey=Eo+0:(0y Dllz2er)-
On the other hand, when y € (0, 1) we write

d 1 Oy P

2 d 1 Ox P
3ot 2 o) < & [ e+ 1O ool + [ x
T T

p(u+ P 1(p)) dx

M| —

dt ] 2
T
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where we recall from (2.7)

/Iﬂ(p)ldx =<
T

It follows from Gronwall’s lemma that

1 dx p 2
sup /Ep(u—}— x2 //,(p)) (x,t)dx
te[O,T]r]r 1Y

Cp
m— f (po + 1dx. (2.28)

1 0xp 2 2
< / 3P+ () 0+ COU+ 112 ) (1 Io0liry) | exp(T)
T
S M(Ela ”f”Lz(O,T;LOO)’ T)
Combined with (2.14), this implies the bound (2.27) when y € (0, 1).
Next, we recall from (2.16) the bound for [|p” || 1 (T). By the assumption that y > o — %, we obtain
_1
1% 2l oo.7:01y < CA+ 10" I oo 1.1y FRl Lo 0. 7:11)) < M(Eo, | f 207100y T)-

This combined with (2.27) and Nash’s inequality

_1 _1.2/3 _1 1/3 _1
1% 2 0,152 < CIO* 2172 0 711 18 0" D2 o 7. 12y + CHP™ 2 oo,y

leads to
_1
1% 2 oo, mty < MCEL 1 fll 200,72 1), T)-
The stated bound (2.21) then follows by Sobolev embedding H oo,

2. In this case, ¢, < 0 and thus the first term on the right hand side of (2.19) is positive and is equal to

Cc

—Y€pcu / P pltdx < —2y £ / pr ot (|u +cup® Zoxpl” + |u|2) dx

"
T T

Cc
— 2y | pre (s(x, 1) — (o) + p|u|2) dx.
Cu

Note that (2.24) provides the bound

Ox P 1 1 Oxp 2
/fp(u + ;2 w(P))dx < SILF Oy ool +/ ot —;2 1(p)) dx.
T T

In addition, since y € (0, 1), part 2 of Lemma 2.2 provides a bound for 7 (p) and ,ouz. Moreover, note that when
¢p <0and y € (0, 1) we have m(p), s > 0. Using these together with the assumption that y < o we have

d c -
E/s(x,t)dxs—%/c—p/py "(s(x,t)—ﬂ(p)+p|u|2)dx+IIf(t)II%OC(T)IlpollLlar)+/S(x,t)dx.
"
T T T

cp, 1
s—zyc—’](;v “/(s(x,r)—n(p>+p|u|2)dx+||f(r>||iocm||po||m)+/s<x,r>dx.
"
- T T
cp 1 cp 1
= (=22t [swnae -2y Ly [ (<no)+ plul’) ax
Cu P u L
T T
+1LF O oo ey o0l 1 Ty
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cp 1 g 1
= (_ 2y—() + 1) s(x, t)dx + M (Ey, ||f||L2(0,T;L00), = T)
Cu B B
T
+ I F Ol ooy lp0ll 1y
for t < T.By Gronwall’s lemma and (2.26), we deduce that

1
sl oo o, 7:21) < M(Eo + s, OVl ierys 1 f 1220, 7: 1% s T)

1
<SMELNflL20,1; %) o’ T).

Combining this with (2.14) gives

_1 1
19x (0“2 oo (o,7:22) < M(E1, 1f 220,75 15) > T). (2.29)

Since o — % € (0, 1], the mass conservation (2.16) implies

_1
1% 2l oo, ;1) < CA + llpoll L1(Ty)- (2.30)
Combined with (2.29), this yields
_1
p*2 oo, 7: 1y < M(EL 1 f | 220, 7: %) ;, T)

from which (2.22) follows.
3. The bound (2.23) follows from (2.21) & (2.27) and (2.22) & (2.29) respectively.
4. This follows from Propositions 4.5 and 4.6 in [12]. O

3. The active potential

We introduce in this section the active potential w := —p(p) + (p)dsu. This is a good unknown upon which
much of the analysis is based. We first show that w satisfies a forced quadratic heat equation with linear drift.

Proposition 3.1 (w—equation). Let

w = —p(p) + n(p)oyu. (3.1

Then w satisfies

8x / I
Bw = o~ () 2w — (u +u(p)—f)8xw . (pp ), pr'(p) +2M(,0))p(p)> »
Iy n(p) w(p)
_ (pi'(p) +2u(p)) 2 ( p'(p)  (pu'(p) +2u(p))p(p)> 2(0) + 1(0)d, f 32)
n(p) n(p) n(p)

Moreover, the following balance holds

d (1 /
- §|w|2(x,t)dx=—/p_lu(p)|8xw|2dx—/<u+M;p)axp> wd,wdx

T

(P (p) + 1(p)) 5
— B amar=w— ) ) dx
n(p)?

+/ (pp (0) _,(pr'(p) + 1(p))

(o) e )> uldx

f( p'(p)  (pu'(p)+p1(p))
+ [ (p —

wn(p) w(p)? P(P)) p(p)wdx + / w(p)dx fwdx.
T

(3.3)
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Proof. From the definition of w := —p(p) + w(p)dcu given by (3.1), we compute

dyw = (3 ) (=P (p) + 1 (p)dxu) + 11(p)2u. (3.4)

Thus, we have

dw = (9,p)(—p'(p) + 1 (p)du) + p(p)d; xu
= —0x(up)(—p'(p) + ' (p)0xu) + ()0, dxu
= —pdxu(—p'(0) + 1 (P)dxu) — u(@cw — p(p)d7u) + 11(p)d; Dyt (3.5)

The momentum equation (1.2) gives
du = —udeu + p~ 3w+,

p xw—i—,o_lafw—i—fixf.

B0yt = — 0 udyu — ud?
Combining the above results, we find
diw = —pdsu(—p'(p) + 1 (0) 1) — udew + up(p)d>u

d
— (o) (1ul® + udtu) — u(p)x—faxw + 07 w(p)Fw + u(p)dy f

=p ' u(p)dtw + p @) p'(p) — (o' (p) + p(p))|dxul? —(u+u(p) 2 )8 w+ w(p)ox f

P’ (pw (p)+u(p))(w+p(p))z (u+u(p) 2 D Yow + 1 (p)dy f

= (p)d2w + p(w + p(p))

w(p) n(p)?
which, after rearrangement, establishes Eq. (3.2). For the energy, multiplying the equation (3.2) by w yields
<—| | ) x(“ff)waxw) - %”)w wl? —d, (“;"))wax ( + Mm) wd,w

p'(p) (pi'(p) +n(p) ) 2 (e (p) +1(p) 5

+ -2 -

(4 ey PO wor "

n < p'(p)  (pp'(p) +2u(p))p(p)) (o)W + 1(p)0s f10,

wu(p) u(p)

Integrating in space yields the balance. 0O

Let us remark that in (3.2) the new viscosity coefficient is % which is less degenerate than the original viscosity

w(p) for the momentum equation. In particular, when w(p) = ¢, p® with < 1, £2 ) s not degenerate when p goes

to 0. Energy estimates for the coupled system of p and w will allow us to control all the high Sobolev regularity of
p and w as long as p is positive. This leads to the proof of our continuation criterion in Theorem 1.1: no singularity
occurs before vacuum formation.

Furthermore, (3.2) can be regarded as a nonlinear heat equation with variable coefficients. Note that the zero-order
term in (3.2) has the form Ap2?” ~* where A depends only on ¢, and c. It can be readily seen that when the zero-order
term and the forcing term in (3.2) are nonpositive, w remains nonpositive if it is nonpositive initially. This fact will
be exploited as the key ingredient in proving the existence of global solutions in Theorem 1.6 when the viscosity is
strongly degenerate.

4. Proof of Theorem 1.1

Throughout this section, we suppose that
0<p=<px1) tel0,T*), xeT 4.1)

and assume any of the following three conditions
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J/za_%ay?él
(i) cp <Oandew e ($,31,0<y <a,y <1
(iii) ¢y >0anda >0,y > 1.

(1) cp>0andoz>%,

S]]

Under these assumptions, by Lemma 2.4, we have

1
lollLoe,7;L00(Ty) < M(E1, 1 f | 20,71y >’ 1), 4.2)
and
1
10x ol oo, 7:2¢Ty) = M(EL 1 fll 20,7 10) >’ T). 4.3)
Lemma 4.1.

||u)||L00(0’T;L2) + ”8xw”L2(0,T;L2) + ||8xu”L°°(0,T;L2) + ”a)%””LZ(O,T;Lz)

1 (4.4)
< M(E,, ||f||L2(0,T;H1), ;, T),
where Ey = E1 + ||0xuol| 2.

Proof. As a consequence of (4.1), (4.2), and (3.3), there exist ¢ := c(E}, ||f||L2(0’T;L:>O), %, T) >0 and C =
CE1L N fllz200.7: 1) %, T) > 0 such that

d 1 1
= 5|w|2<x,r>dxs—;/|axw|2dx+f<|u|+C|axp|>|waxw|dx
T T T
+C f|w|2dx+f|w|3dx+/|8xf|2dx+1 . (4.5)
T T T
‘We bound

1 2 2 02
/laxwwuldx = oxwl2llwlip2llullLe < Crlldxwll 2wl 2 [lull g1 < 4—C||3xWI|Lz + Cllwlly 2 [l
T

where C; denotes absolute constants throughout this proof. Next, applying Gagliardo-Nirenberg’s inequality and
Young’s inequality implies

1 5 1 10

3 3 3 2 3 3

/le dx < llwll;s < Crlldxwl L lwll;, + wll7,) < %Ilaxwlle +Clwll, + Clwlly,
T

and

/ |dxwwdrpldx < [[dwllz2lwllzelldxpllr2
T

1 1
< Cillaxwl 2 (1wl 2, 1wl 2, + wll2) 19x o1l 2
3 1
< Cilloxwl 2wl 2, 19:pll 2 + Cilldewl 2wl 2192 01 2
1
< Zuaaniz + Clwl2 18:p11, + Cllwli3 s 185112,

Putting together the above bounds, and interpolating, yields the following inequality

1d 1
5 1wI2e + - I0awlge < Clwli L (lwliga + 18:plz: + 1) + Clloe flI72 + C. (4.6)
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In view of (4.3), we have

T
1
/ 1069, ON2dt < MEEL 12020 50T
J )

Furthermore, using the definition of w together with bounds (4.2) & (2.15), we have

1
||w||L2(0,T;L2) <M(Ey, ||f||L2(0,T;LOO), ;, T).

The last two displays, together with Gronwall’s lemma applied to (4.6), yields the bound
lwll oo .7:22¢my) + 195 wllL20,7:£2¢T))

1 1
S M(”wO”LzsCa Cv El’ ||f||L1(O’T;Hl)9 ;1 T) SM(Els ||f||Ll(O’T;Hl)a ;9T)'

Here, we used the fact that
lwoll2, < 2¢2 ol 7% + 262 1 00l13% 1dxuoll2.
The above bound can be used to obtain similar estimates for [|0xu/| ;0 7.72) and ||8§u|| 12(0.7:12) directly from
the definition of w (3.1). O
Lemma 4.2.
192 Pl 00,7 22) + N0xwll oo o,7522) + 197wl 120,712

2 3 1 4.7
+05ull Lo, 7: 22y + 195ull 20,7, 22) < M(E3, | fll 10,7 11y ;, T)

where

E3 = Ex+ 83 poll 2 + 13 uoll 2.
Proof. To prove this lemma, we obtain energy estimates for the mass equation (1.1) and the w—equation (3.2) simul-
taneously. The proof proceeds in 4 steps.
Step 1. Let m > 2 be an arbitrary integer. Differentiating equation (1.1) m times, then multiplying the resulting

equation by 97 p and integrating in space we get

1d
55/|8;"P|2:—/‘8;”(u8xp)8)’6"p—/a}’c”(paxu)aftp
T T T

=—fuaxa;:’pa::1p—/([af,u]axp)a;"p—/([af,p]axu)a;"p—/paf“ua;"p.
T T T T
Using the Kato-Ponce commutator estimate [23] and the inequality
198l ooy < CIO 8N 2y < Culld}gll2ry V=3,
we have
1137, uldxpll 2 < Clldcull o187~ By pll 2 + ClOPull 2 10xpll Lo < AT ull 21107 o1l 2
and
100", p1dxull 2 < Clldxpllze 187 dxuell 2 + CllOY pll 2l Oxull e < CHOTull 12117 01 2

In addition,
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1 1
/uaxafpa;"p =3 /ama;?mz < S0l pli 72 < CIA 219 P12
T T
‘We thus obtain

d
3 107 PNz = CHOTull 2107 oIz + o llLao 197 el 2118 ol 2 (4.8)
Step 2. Recall equation (3.2) with power-law pressure and viscosity

C
dw=cup® 102w — (u + cpp® 20, p)dw + c—” (y =2(a + 1) p¥ “w

"
! 2 4.9)
= @+ Dp w2y = @+ 1) p7 T cup i f.
1 1

Differentiating in space, multiplying the resulting equation by 9, w and integrating by parts in x leads to

1d _ _ c _
sar [ 1wl =—cu [0 100l + [t oo puitn + Ly~ 2@t 1) [ Bl
w

T T T T
C o —
+C—”(y—a>(y—2(a+1>>/wpy g wdyp
w
T

2
- —(oz+1)fp“’w|8xw|2+i(oz+1)[wzaxwaxmf‘"‘1
Cu Cu
T

T
c2
+ i(zy —a)(y — (@ +1)) f PP o wdp —cy / P wds f
T T
7
= —cM/p“*1|a§w|2+ZH,
T j=1

after integrating by parts. By virtue of (4.1) and (4.2), there exists ¢ := c(E1, | fll 120,7: 1) %, T) > 0 such that

_ 1
o [ o2l = - [ 15w

T T

Note, under our assumptions p and 1/p are bounded (see (4.1) and (4.2)). Therefore all coefficients involving L°°
norms of p to some power can be bounded by some constant C = M (E1, || f Il 20,7 1) %, T,y,a). The constant

may change line by line.

e Estimate for H;:

[(u +cup® 20 p) i wdiw| < 192wl 2 18wl 2 lull oo + ClBZw ] 2185wl 21185 oIl oo
T

1
= Toc Wiz + Clocwlgallullgy: + Cldawlz 193 oIz

e Estimate for H»:

/ yw[p? | < Clldcw|?,.
T
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Estimate for Hj:

/ wdywdepp? " <107 T Hisollwll oo |3 wll 22 1 1l 12
T
< Cllwll 218wl 213 pll L2 + Clldxwli? 2 10 o1l 2

Estimate for Hy:

1

2 4
@Wllwlle-i-Cllaxwlle

_ 1
/p “wldwl?| < —fwllldcw]?, <
P
J P
2 4
< Cllwl?, +Cllacwl?,.

e Estimate for Hs:

2 —a—1 1 2
/w dywd pp = Sra 0wl iz loxpl2
J e
< Claywll2llwli, 1 pll 2
< Cllaswl 2 [wll7219xpll 22 + Cllocwll} 2 18xpll 2

Estimate for Hg:

/py—a—laxwaxp < Clloxwl|lz2]l0xpll 2.
T
e Estimate for H7:

1
/p‘xafwaxf < ool + Clo 1.
T

Putting together the above estimates gives

d 1
— [l wll72 + a7 wll3.
d oot (4.10)

= € (NocwlZa Nl + NcwlZ2 192013 + 10cwlifs + 10wl 10,01 2) + G

= L2 Hl X L2 X L2 X L2 X L2 X L
with

G=C(||p||mo||axw||iz+||w||Lz||axw||Lz||axp||Lz+||axw||iz||axp||Lz

HlwliZ + 1wl 2 lwl? 2 18xpll 22 + dcwl 2 19xpll 2 + ||axf||iz).
By virtue of the estimates (4.2), (4.3) and (4.4) we deduce that
1
IG Lo,y = M(E2, | fllz20,7: H1) ;, T).

Step 3. Letting m = 2 in (4.8) and using the embedding H'(T) c L>°(T) we get

d
3 1020172 = Clatull 201031172 + Clloll g 193ull 2110221 2.

Recalling the definition (3.1) w = —cp 0" + ¢, 0% dxu we have



160 P. Constantin et al. / Ann. 1. H. Poincaré — AN 37 (2020) 145-180

03u = 02— + Lpr )

eup®  ocp
92w OxWoy p w82,0 w|8x,0|2
== o — 2« a+1 - z-i-l -|—Ol(0l+ 1) a+2

Cup Cup cup cup
c o c o

+ L —a)do0” T + Ly — )y —a = DIdepl?p? T (4.11)
Cu Cu

Consequently

103ull,2 = € (02wl + 19vwll 218l + w1130 2

Hlwllze 9ol 2 1ol + 107~ loolldfpll 2 + IIpV_“_2IIooII8xp||L2IIBxPIILoo> :

Therefore, we obtain
d
5 19eellg
<C (||a,%u||Lz||a,%p||iz + ol lzwl 21820l 2 + ol g1z wll 218501l 2118 pll L

2 2 2 2
Fllwlgrllollgillogellz2 + lwllzelloliy 19xplizelld; ol 2

ol 02013 + o131 13012,) 4.12)

1
< ToeloRwlg. + ¢ (na,%uanna,%pniz + 1ol 182002, + ol 1wl 211920117

Hlwlgillollg 19701172 + 1wl g1 lol3 1030172 + el g8l + ol ||83p||iz)

1 2 2 2 12
< SoclRwie + Fltel.

with

F=c(l03ullz + 1% + ol 0wl 2

Hlwlgillol g + lwllg ol + ol + ||p||§,1).

Combining the estimates (4.2), (4.3) and (4.4) yields

1
IF N o,y < ME2, 1 f 20, 7: 5 (T))> > T).

Step 4. Adding (4.12) to (4.10) leads to

d 2 2 2 1 2 2 2 2 12 2
g7 oxPlie + loxwllze) + - llrwllze = 1ywllpa B+ 05l (F + Cllowly.) + G 4.13)

< (1. wll72 + 197 pll2)(H + F + Clldcw|7,) + G
with
H =C (Il + 10wl + 1wl 219012 )
satisfying, in virtue of (4.2), (4.3) and (4.4),

1
IH 1 o.7y) < ME2, | fllL20.7: 1Y) >’ T).

Finally, we integrate (4.13) in time, then apply Gronwall’s lemma, the estimates for F, G and H, and the estimate
(4.4) on [[0yw]l12(9,7.12) to obtain



P. Constantin et al. / Ann. 1. H. Poincaré — AN 37 (2020) 145-180

1
2 2
19y ol Loo0,7;12) + 10x Wl poogo,7:22) + - 95wl 20,722

1
= M(E2, 1 fl20,7; 1) >’ T, 1197 poll 12, 19 woll 12)

1
S M(E31 ||f||L2(0’T,H1)a ;9 T)v

where
Ez=E>+182p0ll 2 + 1182uoll 2.

It then follows easily that

1
2 3
||ax“||L0°((),T;L2) + ||axu||L2(0,T;L2) < M(Ej3, ||f||L2(0,T;H1), ;, 7). O

Lemma 4.3. For any k > 2 there exists My depending only on k such that
195 pll oo, 7:22) + 105 wll oo, 72y + 105wl 20.7:122)
N0k ull oo o.7:22) + 105 Ul 120, 7:12) < Mi (Bt I f 220, k19 > T)

where

Eit1=Ex + 195 poll 12 + 18%uoll 2.

161

(4.14)

Proof. The proof proceeds by induction in k. According to Lemma 4.2, (4.14) holds for k = 2. Assuming that (4.14)
holds for k — 1 with k > 3, to obtain it for k we perform H* energy estimate for p and H*~! energy estimate for w.

This follows along the same lines as that of Lemma 4.2. We first apply (4.8) with m = k to have

d 2 2 1
3 102pl72 < Clagull2l10: plI T2 + ol 10y ull 2010 ol 2

1
S Y R 7) (lofull 2108 o113 + 105 ull 2 0%l .2 ).

By differentiating k times the formula

1
u=—wp~* +c,p’™*
Cu
and using the induction hypothesis together with the fact that k > 3 we obtain

185wl 2 < CINIAE, p~*Twll 2 + Cllp ™8 w2 + 118507 =1 12
< Clldep Iz lwll grar + Cllo™ | grllwlizee + Cllp™ I e 35wl 12 + 19507 112
< Clp I lwllgar + Cllo™ e llwll g1 ++Cllo™ g 18X wll 2 + 107 ™ || g

1 k k
<M(Ei. 1/l 20.7: k-2, 3 T) (I8 wliz2 + 195 pllz2 +1).
It then follows from (4.15) that

d 1
anaﬁpniz < M(Ex. 1 f | 20,7 ity > T)[||a§p||§z(||a§u||Lz +1) + 05wl 21195 pll 2 + 1]
1 - 1
< Joc WL + M 120 ey, - T)[105a (195l 2 4+ 1) +1]

where ¢ = c(E1, | fll20,7: 1) %, T) > 0 be a positive number such that

(4.15)

(4.16)
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a—1

p% 1> = V(x,1)eT x [0, T*).

o=

Next, we differentiate equation (4.9) k — 1 times in x, multiply the resulting equation by 8!; ~lw and integrate over T.
We estimate successively each resulting term on the right hand side of (4.9).

1. The dissipation term:

[ o ol e =~ [ a2 o o)k

T T
k—2
:_/p“—waf;wﬁ—fa,’:cheafp“—la)’j—fw
T T =1
1 k—2
< ——llafwlz + Clogwliz Y Celldo® oy w2
=1

1 _
< ——llofwiz, + Clogwlzalloll e (187 wll 2 + wll2)
1 _
< = 135wl + ol (15wl + wil2)
1 1 -
< —ZHE))]fwlliz + M(Ex, | fl 220.7: H%-2) o’ T)(||8)]C‘ lw”i2 +1).

2. The drift term. We have

/8f_1(u8xw —i—cupo‘_zaxpaxw)af_lw =— / 8f_2(u8,cw)8ffw —cp / a§—2(axp—laxw)a§w
o —
T T T
where we adopted the convention ’:T_l =Inp when « = 1. Noting that H*~2(T) is an algebra for k > 3, we then
bound

/ N (udyw + ¢ p®20x pdy w)dtw

T
—1
< Clak k p”
< Cllogwilgzliel gz lwll gamr + Tl 21l = i ] g
—1
<i||akw||2 + C'lull? s lwli? +C’||”a 12, w2
_2OC X L2 Hk=2 Hk-1 ot—l Hk—1 Hk-1

1 1 _
< 2—0C||a!:w||iz + M(Ei, 1 fll 20,7 -2 > TY(195 wll7, + 1).

3. The nonlinearity term:

/aﬁ_l(p_“wz)fi)];_lw = /aﬁ_z(p_“wz)ai‘w
T T
<Cllp™ g2 llw 3 195wl 12

1 _
= Socltwlize + Cllo ™ I lwilis

) B |
=< 2_00”8)510”[,2 + M(Ekv ”f”Lz(O,T;Hk—z), ;’ T).

4. The zero order term:
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—1 2y — —1 2y — —1
/a!; (P35 | < ClLP et 195 w2
T

<M(E L orypar-t
= ( k> ”f”Lz(O,T;Hk*Z)a ,0’ )“ X U)”LZ.

5. The forcing term:

[ eran)st | = | [ 820, )k
T T
< Cllp™ |l g2 18y f | g2l X w12

< 0 wlZy + M(Ee 2oy — T By
~20c L A P H

Putting the estimates 1. through 5. together, we obtain

ld et _ =200k 12 1 k=1, 12
7 qr 1% wlleS§I|3Xw||Lz+M(Ek,||f||L2(o,T;Hk—2),E,T)Ili?x wlly2

1 2
+M(Ekv ||f||L2(0,T;Hk72)7 ;, T)(”f”Hk—l + 1.

Combining this with (4.16) and Gronwall’s lemma leads to

k 112 k—1 2 k 2
||8xlo||LOO(0’T;L2) + ||3x w”LOO(O,T;LZ) + ||8Xw”L2((),T;L2)
= M (000132 + 195 woll2s + 171 20 7. i1y + T) exp (M (1050l 30,712y + T))

where we denoted

1
M = M(Ex, || fll 20.7: 142 o' T)

and used the fact that the L2(0, T; H k) norm of u is controlled by M.
It follows easily from this that ||3*u | L 0,712y and [|9k+1y |2 (0.7 22y can be controlled by the same bound. This
finishes the proof of (4.14). O

In view of Lemmas 4.1, 4.2 and 4.3 we have proved that

sup |lpllpco.r:mxy + sup  Nullpeoo,7.mey +  sup  lullz2,1: gty
T€[0,7%) T€[0,T%) T€[0,7%)
4.17)

1
< Mi (160, 40) st 1207 sty -, %) < 0

for k > 1. Appealing to local existence, established by Proposition B.1, the solution can be extended past 7*.
5. Proof of Theorem 1.5

We assume here that ¢, > 0 and that « € (%, 1], ¥ = 2. By Proposition B.1, there exists a positive time Ty such
that problem (1.1)-(1.3) has a unique solution (p, ©) on [0, Tp] such that

peCO,To; HY), ueC0,To; H)NL* 0, To: H*), k=3, (5.1)
and p > 0 on [0, Tp]. Let T* be the maximal lifetime of the classical solution (p, ), so that, by Theorem 1.1,

inf mi , 1) =0. 5.2
i L 2
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We claim that T* = co. We will argue by contradiction. Let us note that the H k regularity, k > 3, of (p, u) suffices to
justify all the calculations below. Recall from the proof of Lemma 2.3 in Appendix A, that

X=u+ cupo‘*zax,o, (5.3)
defined also in Eq. (A.4), satisfies
c c c
WX +ud X=—yLp" X —u)+ f=—yLp" X +yLp" “u+f (5.4)
Cu Cu Cn

By Lemma 2.4 1., we have

lollLoe,7;L00(Ty) < M(E1 1 f | 1200, 7:1.00ys T)- (5.5)
Since y > 20 > o + % fora € (%, 1], combining the above estimate with (2.14), we have

||Pyiau||L00(o,T;L2(’]1‘)) <M(Eq, ||f||L2(0,T;L°0)7 7). (5.6)
Note also

_ —a—1 _ _3

3 (p? ™ u) = (/POuw)p” " 72 + (y — o) p” T2 (p* 20 p)(/Pu)

Now, estimate (2.27) implies

_3
10" 20 )20, 7:02(Ty) < M(EL 1 fll 20,7100y T)-
Putting together this, (2.14), (2.15), (5.5), and the assumption that y > 2« we deduce that

19x (0" "Wl 20,711 (Ty) < ME1, N f 220,750 T
which combined with (5.6) yields

Ip” = ull 20,7y wrty < M(E1 1 fllL20,7: 000y T)- (5.7

Since (5.4) is a transport equation we then have

c _ c -
1X N, = (IXoll +y 10" wll o,z + 1 o) e (r 10" llioria)
"

Cu
<M(Ey, [ XollLo, 1 fll20,7: 1000 T)-
Recall that X = u + a;;fu(p) =u-+ cup"‘_zaxp, hence Xp? % =up? =% + c,“oy_zax,o. It then follows from (5.5),
(5.7) and (5.8) that
107 20 pll 20,7100 < MCE, X0l ILf 1l 20,73 T)- (59
Using (1.1) and (1.2) we obtain

(5.8)

"(p)d "(0)d
oyt (u — M () TAYI u(p)a)%u _ P(P)dkp
P P

Using the maximum principle (see the argument leading to (6.7) below and a similar argument for the minimum) and
the bound (5.9) gives

+ f=cup® 02U —cpyp” Poip + f. (5.10)

leell Looco,7; 100y < llugll Lo + CpV”PV_ZaxPHLl(o,T;LOO) + 1L, 7: 1)
<M(Er, [(Xo,uo)lloes 1 fll 20,7100y T)-
From the definition of X and (5.8), this yields
18 0%l Lo 0.7:20) < M(Eq, |(Xo, u0)|l 1%, Il fllz20,7: 100> T) (5.12)

when o < 1, and

(5.11)

[10x In ol Loo0,7;L00) < M(ET1, [[(Xo, uo)llLoes | fllL2¢0.7: 0y, T) (5.13)
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when o = 1.
When o < 1, the continuity equation implies
A (p* ™) = —(a = D, (up)p* 2. (5.14)

Integrating this in space and time and using the definition of X leads to

t
/p“‘1<x, T)dx = [ pf dx + (@ — D@ —2) f /(upp“—3axp>(x, 2)dxdz
T 0T

T
t
_ (x—ldx 1 a—2
= 0§ +—@=@-1 (ucyp® "0y p)(x, 2)dxdz (5.15)
T " 0T
t
S/,Og_ldx+C//X2(x,z)dxdz,
T 0T

validfor0 <t <T.
Similarly, when o = 1 we have

t
/lnp(x,t)dx < /lnpodx +c/fx2(x,z)dxdz, 0<tr<T. (5.16)
T 0T

Then by virtue of (5.8), (5.11), (5.12), (5.15), Poincaré-Wirtinger’s inequality and Sobolev embedding we deduce that

_ —1
1% oo, 7: 10y < M(E1, (X0, uo)llzoes 10§~ o, I F I 2.7 ooy T)

ifa<1.
On the other hand, if « = 1, (5.5) combined with (5.16), Poincaré-Wirtinger’s inequality and Sobolev embedding,
yields

[In pllLeo,7:L00) < M(E1, [[(Xo, uo) Lo, 1 poll 1y 1/ 20,7 200)s T)-

Consequently
inf x,t>f(ME, Xo, o)z, 102~ 1 + 110 poll 1, .OC,T)
(x’”eTX[O’T]p( )= (Eo, (X0, uo)llzee, llpg gt + Mnpoll g, 1 f 120, 7; 000y T)
where
1
zo-1 ifa<l1
F()= ’ (5.17)
LZ ifa=1.
Therefore,

inf x,t>]—'(ME, Xo, o)z, 104 1. [0 poll 1 *.oo,T*)>o
(X’I)eTX[O’T*)p( )= (Eo, 1(Xo, uo)lizee, oy Nzt Mnpollprs | fll20, 7%, 00y T7)
which contradicts (5.2).

6. Proof of Theorem 1.6

Recall the assumptions (1.11) and (1.12). Assume that ¢, > 0 and either

1
oz>§, yela,a+1], y#1 or (6.1)
a>0, yela,a+1], y>1. (6.2)
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By Proposition B.1, there exists a positive time Ty such that problem (1.1)-(1.3) has a unique solution (p, u#) on [0, Tp]
such that

p€C0,To; HY), ueC, To; HHN L0, To; HY, k>4, (6.3)

and p > 0 on [0, Tp]. Let T* be the maximal existence time. We claim that 7* = co. Assume by contradiction that 7*
is finite. By Theorem 1.1 we have

inf minp(x,t)=0. 6.4
te[O,T*)xeTp( ) ©4)

From Lemma 3.1, the w equation (3.2) is

C
dw=cup® 102w — (u + ¢, p® 20, p)dw + c—” (y =2+ 1) p¥ %w

w
1 —a, 2 C% 2y—a
——(@+Dpw + = (y —(@+ 1) p77 4 (6.5)
cu cu

Note that the assumption f(x,t) = f () was used to have 9, f = 0. It follows from (6.3) and the equation (6.5) that
weCO,T; H)NL*0,T; HY,  weC(0,T; H) C C(T x [0, T])

Thus, w € Cl(T x [0, T']) and thus the function
wy () = I;lea%w(x, 1) (6.6)

is Lipschitz continuous on [0, 7']. According to the Rademacher theorem, w, is differentiable almost everywhere on
[0, T']. There exists for each ¢ € [0, T*) a point x; such that

wy (1) = w(xg, t).

Let ¢ € (0, T) be a point at which w, is differentiable. We have

wy (1 +h) —wy (1)

0= i,

h
o wxgn, t+h) —w(xg, t)

= lim

h—0+ h

t+h)— t

> lim U)(Xt, + ) U)(Xt, ) :atU)(.Xt,t).

h—0t h

On the other hand,

wpy (t) —wy(t —h)

w), (1) = lim
h—

o+ h
_ llm w(xl’t)_w(xt—/’lvt_h)
h—0t h
1) — ,t—h
< fim W00 Zwn NP
h—0* h

Thus, w;v[ (t) = 9, w(xy, t) if wyy is differentiable at . We deduce from this and equation (6.5) that for almost every
1€(0,7),

dwy < A(Owy + BOwy, + C(1) (6.7)

with
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Aay=?%y—2m+¢»mMV”

"
1
B(t) :=——(a+ Dp(x) ™™
Cu
62
C(t):=-L(y — @+ 1) px,)?r ™,
Cu

where we used the facts that Bfw(x,, t) <0 and 0, w(xs, 1) = 0. Note that B(t) < 0. In addition, the function C
is nonpositive under the conditions (1.11). The condition on the initial data (1.13) is equivalent to wj;(0) < 0. We
deduce that

w(t) <0, vVt < T*. (6.8)
At the point y; where the density attains its minimum value p,, := p (s, 1), Py satisfies

wOr) —¢ Cp y—a+l Cp y—a+tl
—phe — LTt > 2P prmet 6.9)
" " Cu

0rom = —0xu (Y1) pm = —

where we used (6.8). Provided that y # «, this implies the differential inequality

1 _ c
O (om V)= -2 (6.10)
(a@—7y) Cu
Since o < y, we find
_ c
Ilom D=Ly - (6.11)
Cu

which implies
1

Pm(1) = <,0m(0)a_y + tc—p()/ - 01)) ﬁ . Vi<T* (6.12)
Cu

Since ¢p/c; > 0, this implies that
: . o— xCp v
inf minp(x,t) >\ pn(0)* 7V +T"=(y —a) >0 (6.13)
1€[0,7%) xeT Cu

which contradicts the assumption (6.4). We conclude that the solution (p, ) is global in time.
On the other hand, when o = y we have

i lnpy > —2 (6.14)
Cu
and thus
Pm (1) = pm (0) exp <_tc_p) >0 (6.15)
Cu

which again leads to a contradiction with (6.4).

Remark 6.1. With a more refined maximum principle argument, one can relax the regularity requirement of k > 4
which we used to conclude that (6.6) is Lipschitz continuous on [0, T'].

7. Proof of Theorem 1.8

In this section, we give an upper bound for the long-time average maximum density, assuming that the forcing has
zero mean in space. This follows by an application of the Bresch-Desjardins’s entropy and the following elementary
lemma.
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Lemma 7.1. Let m > % If k™ € WHI(T) then we have

1

171 oo Ty < 2018 (R™)II}"

ery H 4RI T (7.1)

Proof of Lemma 7.1. Since h € W!! (T) c CO('[F), we have h € CO(T). In particular, there exists a point xg € T
such that |7 (xg)| < ‘/§”h”L1(T)' For all x € T we have

X

B () = / 3, (W™ (y)dy + h" (x0),

X0

hence
RGOV < [8eh™ | 1) + B GOI™ < 18 B™) 1y + V2RI o
In view of the elementary inequality
(a +b)% §2a% +2b%, a, b, m >0,
we thus obtain (7.1). O
Proof of Theorem 1.8. Recall our assumptions

y €[max{2 —o,a},a+1], a>1/2, and cp,c,>0. (7.2)
Next, by Lemma 2.3, the entropy

2

o
s=% ‘u +ZLuo)| +7(p) (1.3)
P
satisfies
d ! Ox
3 [sena==[aoPu ™ Pax+ [ o S ne)ax 7.4)
T T T

Integrating this in time yields

T
/s(x,T)dx—/s(x,O)dx—i-cpcﬂy/fp“+y*3|8xp|2dxdt
0T

T T
T T
=//fpudxdt+cuf/fp“—1axpdxdt.
0T 0T

Using the assumption (1.14) we calculate

T T T
//fpudxdt:—//gax(pu)dxdtzf/galpdxdt
0T 0T 0T

T
=/(gp)(x,T)dx—/(gp)(x,o)dx—/fpatgdxdt-
T T 0T

This implies
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T
/ f foudxde| < 20gll.7:1) o0l + 1381l 11 0.7: )l ol
0T
<2ligllzco,7;:L)lpollt + TN18: gl oo, 7250 [l po I 1 -
On the other hand, using Cauchy—Schwarz, we have
T

T T
1
cﬂ//f,oa_lax,odxdt < 5¢pc y//p“+y—3|8xp|2dxdt+C//,0“ r+l£24xds
0T 0T

0T

T
1 _
SECpcuyf/p‘”V Yo pPdxds + CT 1+ [l poll DI f 70,7 )-
0T

Here, C is a constant which depends only on ¢, ¢, and y. We have used the assumption (7.2) that y belongs to the
range y € [max{2 — o, o}, + 1] withae > 1/2tohave 0 <o —y +1 < 1.

Note that the allowed range of y and « requires that y > 3/2 always. Since, in particular y > 1 we have w(p) >0
and s > 0. Thus, putting all together, we obtain the bound

T
1
icpcﬂy//pa+y_3|8xp|2dxdt
0T

<2llgllz=.7:2%) ool + T gl Lo.7:2)lpollt + CT (1 + 1l poll ) 10587 oo 0.7 %) +/S(X, 0)dx.
T

We thus obtain

1

3EpCu¥ /p“+y*3|8xp|2dxdt§M1T+M0,

T

St~

. . —1
where M is a constant which depends only on ¢, ¢, ¥, @, [[pollLe, |0y Iz, luoll L2, [19xpoll L2, llgllLoo0,T;L)>
and M a constant which depends only on ¢, ¢p, ¥, 0ol 11, 19: &Il L0, 7; %), 10x &l L0, T: L)

In particular,

T

//|3x(/0%(a+y_1))|2dxdt§M3T—|-M2,
0T

where M; > = %M for i =0, 1. Here, we used the fact thate +y — 1 > 0.

By assumption (7.2) we have that & 4+ y > 2max{1, «} > 2 which implies % < 2. We now apply Lemma 7.1 with
m:= %(a + y — 1). Using the embedding L%(T) c LI(T), we obtain

/II,O( t)IILocdt<2/II3 (,O'")II”’ dr 44T || poll1-

Consequently,

/ IoC. 1) lledr < 2/(||ax(p'")||iz +1)di + 4Tl poll 1 < 2(MaT + Ma) + 2T +4T | poll 1

Hence,
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! 2
?/”P(‘J)”Lwdtf(2M3+2+4||p0||L1)+?M27
0

and the claim follows, with the definition

C| =2M;, Cr:=2M3+2+4+4|pollp1- O
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Appendix A. Bresch-Desjardins’s entropy

For the sake of completeness we present the proof of Lemma 2.3 which essentially follows from [19-21]. From

the continuity equation (1.1), any smooth &(p) satisfies
E(p) = 3 pE'(p) = —0x (up)&'(p) = —uds£(p) — p(du)&' (p)
Using equation (A.1) applied to the function d,&(p), we find the evolution of pd,£(p)):

0t (p0x§(p)) = —0x (pu)dx&(p) + p0:9x&(p)
= —0, (pu)d:&(0) — Py (ud & (p) + p (B u)E"(0))
= —0c(pu)d:&(p) — pdudrE(p) — pudi&(p) — pdy (p(Bx1)€’ (p))
= —0, (pudr&(p)) — pdcud&(p) — pdx (3 u)§' (p))
= — 0, (puds&(p)) — dx (0> (1) (p)).
Then, letting X := u + 9,&(p), combining Eq. (A.2) with the momentum equation (1.2) yields
9 (pX) = —0x(puX) — 35 p(p) + 3 (n(p)dxut) — dx (p*(:w)E (p)) + pf.

We now choose p2&’(p) = i(p), so that the final two terms in (A.3) cancel. Thus with this choice,
0x 0
X=u+— M(p)
P
and, by (A.3), pX satisfies

0 (pX) = —0x(puX) — dx p(p) + pof.

Whence, we obtain

¥ (pX?) = —d, (puX?) —2Xd:p(p) +2pf X.

Integrating in space

d 2 _ Bxp(p) B
55/(”" )(x, 1)dx = / dx /|axp| L
T T

/pu dxr'(p)dx — /|8x:0| w(p)
T

dx~|—/f,0 +—2u(p))

p(p)dX+/f u+—u(p))

(A1)

(A2)

(A3)

(A4)

(A.5)

(A.6)
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d ’ 9
=—E/7T(P)dx—/|3x/0|zl/«(:0)pp(f)dx+/fp(”+ 7 1(0)dx.
T T T

0

The global balance (2.19) for entropy s := %,oX 2 4 72(p) follows.
Appendix B. Local well-posedness

Proposition B.1. Assume that p : RY — R and u : RT — RT are C™ functions away from zero. Let py and ug
belong to H*(T) for an integer k > 1, such that ro := min,cT po > 0. Suppose that for all T > 0

feL*>0,T; H'(T)).

Then, there exists a To > 0 depending only on ||(po, u0) | k(T yx sk (T)> 70 and f, and a unique strong solution (p, u)
to (1.1)-(1.3) on [0, To] with data (pg, ug) such that

p € CO,To; HX(T)), ueC(0,To; H(T) N L0, To; H(T))
and p(x,t) > % forall (x,1) € T x [0, Ty].
Proof. Step 0. (Iteration Scheme) We are going to set up an iteration argument and prove that the iterates converge to

the desired solution. Let us first suppose that the initial data pg, ug are smooth, and let us define rg := min, T po-
Let us initialize our scheme as follows:

(po(x, 1), up(x, 1)) := (po(x), up(x)),
p1(x, 1) = po(x),
and we define u(x, t) so that

n(p1)

1 dx (o)
32uy = —ugdyuo — —dx p(po) + ———dyuo + f,

Oruy —
£0 £0 (B.1)

utli=0 =uo(x,0).

Let now n > 2. Given p,_1, u,—1, we iteratively define p, first, and subsequently u,, as follows

01 pn + Un—10x0n = —Pp—10xUn—1, (B.2)
(on) B 1t (on—1)

Buttn — P 020, = — w1 0cun_g — —— 3, p(ont) + P v+ ) (B.3)
n n—1 n—1

(O ) 1=0 = (p0. o). (B.4)

Let £ > 1 be an integer. We let, for ease of notation,

A= |lpoll gx + lluoll -

We are going to prove, by induction on n, that there exists Ty > 0 such that the following assertions hold.

Step 1: There exists u; € C*°(T x [0, Tp]) satisfying (B.1) and

To
u(p1)
Nl oo o, 7: 1%y < 24, //T(af“ul)zdxdtSSA. (B.5)
0T

Step 2: For n > 2, there exists p, € C(T x [0, Tp]) satisfying (B.2), (B.4), and
pux.)= 2 on T x [0.Tp).
Furthermore,

| onll oo 0, 7p; HE) = 2A.
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Step 3: There exists u, € C*°(T x [0, Ty]) satisfying (B.3), (B.4), and
Ty
u(pon)
lnll oo 0,73 11ty < 24, //p—"(af“un)zdxdt <8A.
n
0T

Step 4: The sequence (o, u,) is Cauchy in the space L°(0, Ty; L?) x (L>(0, To; L?) N L*(0, To; HY)).
Step 5: There exist
u e C(0, To; HY N L0, To; H*)
and
p € C(0, To; HY)

such that (p, u) is a strong solution to the system (1.1)—(1.2) with initial data (o, ©¢). In particular, if k = 3, said
solution is a classical solution.
Step 6: The constructed strong solution is unique.

Let us now turn to the details.

Step 1. This is the base case of the induction. The existence of u1 in the conditions follows from the general theory
of linear parabolic equations, using the fact that pg is bounded from below by r(, and that all functions involved are
smooth. The bound (B.5) is obtained exactly as in Step 3, and we omit the details here.

Step 2. Let n > 2. Let us adopt the following nomenclature:

p::pn’ 77:=/0n71, u::uny v:=un71~

We recall the induction hypotheses:
vl oo 0, 7p: 1%y < 24, 171l oo 0,70 %) < 24,

(B.6)

Ty

// () (@F1v)2dxdr <8A, inf inf n(x.1) > —.
" 1€[0,Tp] xeT 2

0T

Existence up to time 7 and smoothness for p, follow from the method of characteristics.
In what follows, M (-, ..., -) will always denote a positive, continuous function increasing in all its arguments. We
first notice that, due to the mass equation (B.2) and the maximum principle, forallk > 1and 0 < ¢t < Ty,

t
inf (1) 2 inf po / InC.$)dv ()| zeds = inf oo — MOV 200,1:12)- (B.7)
0

Hence, restricting Ty to be small only as a function of A and rg, we have

. . ro
inf inf p(x,t) > —.
te0,Tol xeT ple.1) 2

We have therefore recovered the last induction hypothesis in (B.6).
Let us now differentiate the mass equation (B.2) k-times, multiply it by 8)15,0 and integrate by parts

1
K /(a,’;p)zdx +/a}§p * (wd, p)dx = —/afp o). (B.8)
T T T
If k =1, we obtain

1
Eatnpniz <Cllvl2 101172 + ol 2lnllzel18xv]l 2, (B.9)
1
~0l10xp1172 < ClOZVI 2119201172 + 20105 ol 2 120 L2 185 vl e + 1B oIl L2 Il Lov D7Vl 2 (B.10)

2
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Combining (B.9) and (B.10), integrating and using the induction hypotheses, we obtain, for suitable 7y (depending
only on A and rg)

ol Lo 0,7: 1) < 2A. (B.11)

If £ > 2, in addition to previous estimate (B.9), we also have, for the terms appearing in (B.8),

1
/afp o (v, p)dx| = E/vax(afp)zdx—i—/&)];p([af,v]axp)dx
T T T (B.12)

1
= 5 llox vl ol + ol I10Y, v1depll 2 < Clvllg2llol e + Cllol vl .

Furthermore,

fa"pak(na V| = ol IndE ol 2 + ol e 15, n1dxvll 2

T
EMCOR
wn(n) n

Now, due to our assumptions on u and the induction hypothesis, we have

| (B.13)
2

=Cllpllax + 1l g2 vl e 4 ol g2l e

L> L2

<M(A,ryh,

H m(n) L

where M depends on p and is an increasing function of its arguments.
Upon summation of (B.9) and (B.8), using (B.9) and (B.13),

1
<M>2 8§+1v
n

1

§3tllp||i,k < Cllvllmllpll ¢ T Cllolgelnll gellvll ge + M (A, ry Ylloll g
LZ
We now use the induction hypothesis (B.6) to obtain, for 0 <t < To,

(u(n)) o+,
n
Upon integration, we obtain the following inequality:

o]l g+ < exp (2CAD) <||po||Hk +4CA% + 8AVIM(A, ro—l)) ,

3 (Ilpll e exp (—2C A1) <4CA% + M(A, ;")

L2

It is now straightforward to choose Ty, depending only on A and rg, such that the induction hypothesis

ol oo 0,1 HF) < 24

is recovered for p, in case k > 2.
Step 3. We now turn to the estimates on the momentum equation (B.3). Multiplying such equation by # and
integrating by parts yields

1 2 u(p) .o
T T T

where Gg := —v0yv — l8Xp(17) + Waxv + f.If k > 1, this implies

1 u(p) .
§3zllulliz+f—(3 w)*dx < M(A, rg ol i 19, ull g2 llul| Lo
T (B.15)

+ Cllull 2 0110+ MCA, g YUl el 2 + Il g ol g el g+ 0 12l 2)-
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Here, we used integration by parts and the following Lemma

Lemma B.2. Let f be a smooth function away from 0, and k be a positive integer. Let u € H*(T) N L>®(T), and
suppose that there exists ro > 0 such that u > ro on T. Then, there exists a positive and continuous function M which
depends only on f, k and is increasing in both its arguments such that the following inequality holds:

1 o ull geery < M (Il poorys rg el gecry- (B.16)

Proof of Lemma B.2. The proof of the lemma follows from Theorem 2.87 in [22], §2.8.2, and a straightforward
cutoff argument. 0O

Remark B.3. In what follows, we will always suppress the dependence of M on k and f, since they are fixed at the
beginning of the argument.

Differentiating k-times (k > 1) equation (B.3), multiplying by 8;‘ u, and integrating by parts yields

1
g ftwres— fatunt (425 )ar=- [ @) Guon (B.17)
T T T

Here, we defined

Oy (1)

1
Gy ::Bf_l (_Uaxv_gaxp(n)‘i‘ axv+.f)’ fork > 1.

When k = 1, the previous display (B.17) implies, upon integration by parts, an application of the Cauchy—Schwarz
inequality, the induction hypotheses, Lemma B.2 and the bounds obtained in Step 2, that

n(p) o
—8,||a ull?, + 2/ (2u)*dx </m6%dx
T T (B.18)
—1 4 2 2 2 2
< MA, g YUl + Il + Il vl 219502 + 1A 1172)-

Integrating (B.18) and, subsequently, (B.15), upon restricting Ty to be sufficiently small only as a function of A
and rg, we have, incase k =1,

Ty
lsonen <24, [ ) (22 dvdr < 8.
T 1Y

Let’s focus now on the case k > 2. We have

/(8k )8k <M(P) )dx
—/(a)’;u)ajg“ <M3xu> dox +/(aj§u)a§ (ax <M> axu) dx
J p p
=/¥(8§+1u)2dx+/8f+1 [ak “(p)}(a uydx — /(a"+1 Yok 1<ax (%) Bxu> dx.
T T

(a) (b

We estimate the last two terms in the previous display:
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2
@ )|s—/“(p)(a"+1 Ydx +C/L< ok, “(p)}(a ))
10T J n(p) \L P
< M(Io)(ak+1 )2d + M(A, ro a" M(p)](a )
1011‘ i P L2
< L [P gkry2an 4 ma,rg )( 0. PO okul o+ ol
10T 1% L
55 “/(Op)(ak+1 )2dux +M(A ry )||u||Hk.
T

175

(B.19)
akw

)

Here, M is a continuous and increasing function of its arguments. We used the bounds obtained in Step 2, the Kato—

Ponce commutator estimate, the fact that k > 2 and Lemma B.2 quoted below, applied to the function

Similarly, the following estimate holds true, for k > 2:

1B =15
T

/u(p)(akﬂ P+ M (4,75 llel

Again, M is a positive, continuous and increasing function of its arguments.
We now proceed to estimate the terms contained in the RHS of equation (B.17) (the terms named “G”), in case

k=>2:

0 lu G dx <
/( * ) k 10
T

Due to the bounds on p, we have

e )G%dx<M(A ry )||Gk||%2.

/”“(p)(ak+1 )de+5

—sz
u(p)

u(p)

(B.20)

Let us now define two auxiliary functions / (the thermodynamic enthalpy) and ¢ in such a way that

n(x)= '(x) = , for x > 0.

p'(x) w'(x)
x X

We now estimate:

105 ay)II7, < Cllvlllvl3x < CA*

Furthermore,

—1 ( 9xp(n) _
[k (T) 172 < A (DI < M(A, 15,

where we used Lemma B.2, applied to the function 4.
Finally, we have, since k > 2,

9 2
8)1;_1 ( xl;(’?) axv>

LZ
<M(A, ;).

Hence, for the term Gy, we have

L [ ) -
[0kt Grar| = 55 [EL @ MDA+

T T

= 19:¢ MVl 7ut < C (IE@ e ldxvlizoe + 0]l e 198 ()1 £)

(B.21)
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Putting together estimates (B.14), (B.17), (B.19), (B.20), (B.21), and ignoring the positive integral term in the LHS,
we obtain the inequality
l 2 -1 —1 2
23zIIM||Hk =M(A,rg ) lullge +M (A, rg ") T+ 1 e
Using Gronwall’s inequality, upon restricting 7y to be small depending only on A, ro and f, we deduce that
Nl oo 0,70 ¥y < 2A. (B.22)

We now revisit the same estimates without discarding the positive integral term in the LHS. We obtain, upon restricting
Ty to be smaller, depending only on A and rp and f, that

To

/ / KD ket 2dxdr < 8A. (B.23)
0

0T

We have therefore recovered the induction Hypotheses B.6, and in particular the sequence (p;, u,) is uniformly
bounded in L>(0, Ty; H*(T)) x (L*®(0, To: H*(T)) N L2(0, To; H*T1(T)).

Step 4. We now show that, for some Ty, depending only on A, rg, the sequence (o5, u,) is Cauchy in the space
L°°(0, To: L?) x (L*®(0, Ty; L?) N L%(0, Ty; L?)).

Let’s first consider the equation satisfied by Su,, := up4+1 — uy:

o u) — L0 g2,y O g,
Pn+1 Pn (B24)
1
= 50ty — )+ 0 (h(pn) = h(on—1)) + 028 (0n) it = DL (1) Dettn-1.
Recall that we defined % and ¢ so that the following equalities hold true:
dxp(p) a1 (p)
dxh(p) = "p . = "p :

We now multiply equation (B.24) by §u,, and integrate by parts. We have:

“(Pn+1) 1(on)
/(&/ln) (_7’14—83”;1+1 + —na)%un> dx
5 Pn+1 Pn

= _/(gun)mai(wn)dx—i—/ (M(;On) — ,U«(,On+1)> Biun(Sun)dx.
5 Pn+1 Pn Pn+1

(@) ()

Note that, due to Step 3, there exists ¢ = c(A, rg) such that, up to time Ty, there holds % > ¢ for all integers i > 0.
Hence, for the term in (a), upon integration by parts,

w(on)

n

1 3
= el Gun) 12, = M A, g (1822105 )12, + 021105 5w .2

1
(a) > 0||8x(5un)||iz - E”ax I 218w |l Loo||0x (Sun) |l 12
¢ 2 —1 2
> 5 10c Gun) Iz = M(A, rg ) dunl 7.

Here, we used Lemma B.2, the Gagliardo—Nirenberg—Sobolev inequality and the Young inequality.
We now estimate

1 1
(b) = =M (A, g ) 18onll 2 107unll 12118112 181001 2 -
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Let us now turn to the terms appearing in the RHS of (B.24). We define

/ %ax (2 —u>_)(Suy)dx + f (8145 (h(pn) — h(pp—1))dx
T T

(©) (d)
+ /.((Sun) (0x & (on) Oxttyy — 0x(Pn—1) Oxup—1)dx.
T

(e)

Then, for (c), we have, after integration by parts,

1
()] = M(A)18x Bun)ll g2 16un—1ll 2 < ﬁ”ax(sun)”iz + M(A) |1 117

Concerning the term (d), instead,

1
()| = /axwun)(h(pn)—h(pn_l))dx < Toc 10 GunZ2 + M (A, g D 18pn-1 I72-
T

Again, we used the fact that, due to the uniform bounds on p,, & is Lipschitz of constant depending only on A and ry.
Finally, concerning (e),

()] < / (810)3¢ (o) (Sttn_1 x| + f (816)9 (£ (Pr) — ¢ (on—1)) st 1
T T

< 8unlliLell9xg (Pn) I 21102 (Sun—1)ll 22 + /(C(,On) — §(pn—1))0x ((Bup)dxttp—1)dx
T

1 1
< M(A, r(;l)(naunn 210 Bun) |1 21192 (Bun—1)ll 2 + ||ax<5unfl>||Lz||3un||Lz)
1
+ M(A, g ) U8pn—1 210282t || 2 107200 112, + 18001l 12 1182n [ o< 107240 [ 2)

where 6p,—1 := pn — pn—1. Putting together the estimates on the momentum equation, we have

1 2 1 2
S Oul8unl g2 + S0 19 (Sun) 172
< M(A, g ) I8unll72 + 18un—1 172 + 180n—1172)
1 1
+ M (A, rg ) 180nll 2 105 | 2 18 )25 105 Bun) )2
1 1
+ MA, g ) U8t 12,192 (Sun) 25110 Bttn—1) 1 12 + 1195 (Sl 2 180 12)

1
+M(A, ro_l)(||5pn||L2||3x5un||L2||3anllzz + 1180nll L2 181 | oo 107200 [ .2).-

Upon integration between time s = 0 and s = ¢, using Holder’s inequality and the bounds obtained in Step 1,



178 P. Constantin et al. / Ann. 1. H. Poincaré — AN 37 (2020) 145-180

1 2 1 2
S 1@ GO + 3510 Gun) 120 112,
-1
< M(A, g YUl 720 4.2y + 18ttn-117200 4. 12y + 180n-117 20, 12)
NIt i i
+ MA, g 180 0,10 181001 1.2 196 B2 1 2 g 2
1L 3 3
+ M(Av r() l)t4 ”‘Su}’l ||zw(0,t;L2) ”8)( (5”n) ”12‘2(0’[;[‘2) ”8)6 (SMH—I)HLZ(O’;;LZ)
1
M (A, rg )2 )18y (Sun— 2y 18l oo 0
+M(A, Ty 1) 1 [ 9x (Sur 1)||L2(0‘t,L2)|| unllp 0,1;L2%) (B.25)
+M(A, ”0_ )4 180n—1 ||L°°(0,z;L2) ||8x(8u,,)||Lz(0’,;Lz)
gt
+M(A,r, l)f“ 180n—1 ”L°°(0,t;L2) [0 61y ||L2(0,t;L2)
1.1 1 1
+ M(A, 15 18001 oo,z 18000 7 1.2 106 G 122 g 12,
1 2 15,1 2 2
= E ”ax (au”)”Lz(O,t;Lz) + M(A1 r() )t4 (||5un ”LOO(O,[;LZ) + ”‘Sun—l ||L°°(O,Z;L2)+
1801117 0o 0 1.2y + 18 Gutn—1)17 20 1. 2))-

Let us now calculate the equation satisfied by differences of p,:
07 (8pn) = —up 0x P11 + Up—10x P — PrOxly + Pp—10xUp_1. (B.26)

Multiplying equation (B.26) by 8p,,, we obtain

1
Eat”(sprl”iz = f(apn)(unaxpn+l — Up—10xpp)dx — /((Spn)()onaxun — Pn—10xup—1)dx.
T T

(a) (b)

Considering (a), we have, integrating by parts, using Gagliardo—Nirenberg—Sobolev and Holder’s inequality,

[(a)| < /(5/0n)(5un—1)3x,0n+ldx + ‘/ax(&on)(apn)unfldx
T T

1 1 1
< M(A) 8Pl 2180011 18001117 + 180u 1221102017

On the other hand, (b) yields
b)) < / (80m) (Sm—1)dyitndx| + f (50m) (Btn—1)pu_1x
T T

1
< M(A)(18pull72 + 180n—1 117D 1197115 + M (A) |05 Stun—1) Il 12 118n | 2-
Putting together the estimates on the mass equation yields
1
5 Oulldpnllz2
1 1 1
= M) (1802104 Gt 12 NS0 1, + 180n 22103100 17, ) + M) IS 2 18- 2

1
+ M(A)18pn 17 2 + 80— 117197 unll 2, + M(A) |95 (Sutn—1) | 12180l 12-

Upon integration, the previous display yields
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1 1

%uapn(r, ME2 < MY 1800 10w 01,2219 Bt 111 2 180001 1 112,
+ MY 180012 0 12y + M U802 12y + 10112 0 1 12))
+ MY U8n 12 1) + 180n-112 01 12))
+ M(AYE 18 Bt 120,112 18Pl o0 1:12)

1
< M(A)? (||8pn||§mm,t;u) + 10 Gutn—0 1720512y F 18Un =117 00,1112,

(B.27)

+ (18001 ||ioo(o,t;L2)>'

Combining now (B.25) and (B.27), we obtain, for suitably small # depending only on A and ry,

1 1 1
1800w 00512+ 718N,y + 505 10 G120 112
1,1
< M(A, rg D1 (195 Gutn—1)11 720 1. 2y + 18Un—117 00 0. 12y + 180n-11F 00 g 1:12))-

Upon suitable choice of Ty, this implies that the sequence (p,,u,) is Cauchy in the space L*(0, Tp; L?) x
(L0, To; L) N L*(0, To: H')).
Step 5. Denote

X™ = L0, To; H™) x (L*(0, To; H™) N L*(0, To; H™ 1))

a Banach space with its canonical norm. We have proved in the previous steps that (0,, u,) is bounded in X* and
Cauchy in X k=1 The latter implies that (p,, u,) converges to some (p, u#) in X k=1 The former implies that some sub-
sequence (o, joln j) converges weak-* to some (px, uy) in X k_Since both weak-* convergence in X k and strong con-
vergence in X k-1 imply convergence in the sense of distributions we deduce that (p, u) = (px, ux) € X k Tt can be eas-
ily verified that (p, u) is a strong solution to the system (1.1)—(1.2). Moreover, since p,, — p strongly in L%(0, Ty; L?)
and (p,) is bounded in L*°(0, Ty; H 1 it follows by interpolation that p, — p strongly in L*°(0, Ty; H 3/ 4), and hence
in L°°(0, Tp; L®°). This combined with the fact that p, (x, 1) > %0 for all (x,7) € T x [0, Tp] (see Step 2) yields

ple.)= 2 Vel x[0.Tol.
Step 6. We now establish uniqueness of strong solutions. Consider solutions (p1, #1) and (o2, u2), such that

pi € C(0, To; HX(T)), u; € C(0, To; H*(T)) N L*(0, Tp; H*T(T)), fori =1,2

and let (8p, Su) = (p1 — p2, u1 — uz). We have

38u + Sudcuy + uzdedu = —03;((01) — (p2)) + py "B (W(p1)dru1) — p3 ' 0 (1 (p2)Bcu2), (B.28)
9:6p + 9x (u18p + p28u) =0, (B.29)
(6p, du)|1=0 = (0, 0) (B.30)

We now notice that equation (B.28) is the same as equation (B.24), upon formally substituting » = 1 in the LHS, and
n =2 in the RHS. Similarly, recalling (B.26), we have

01 (80pn) = —Uy Ox Pu1+Up—1 0x Py —PpOxlty + Pr—10xUn_1 .
—— e e
(a) (b) (@) b () )

Formally substituting n = 1 in terms (a), and n = 2 in terms (b), we obtain (B.29). It is then straightforward to see
that the same estimates as in Step 4 yield uniqueness of strong solutions. 0O
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