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Abstract

We study the three-dimensional irrotational flow for gas dynamics in thermal nonequilibrium. The global existence and large
time behavior of the classical solution to the Cauchy problem are established when the initial data are near the equilibrium state
with an additional L!-norm bound. We mention that the uniform bound on derivatives of the entropy is obtained by using the a
priori decay-in-time estimate on the velocity.
© 2019 L’ Association Publications de 1’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we study the three-dimensional vibrational nonequilibrium flow, where the motion of the gas is
described by the following equations, cf. [11,19],

ot + V- (ou)=0,
(pu); + V- (puu')y +Vp =0,
(PE) + V- (pEu + pu) =0, (1.1

(0q): +V-(pqu)=pQT.

Here p,u = (uy, us, u3)T, p,E,q, Q an t are the gas density, velocity, pressure, specific total energy, specific vibra-
tional energy, local equilibrium value of specific vibrational energy and local relaxation time, respectively. The first
three equations of (1.1) are the conservation of mass, momentum and energy, while the last one describes the relax-
ation of the nonequilibrium vibrational mode to its local equilibrium value. The total energy £ consists of internal
energy and kinetic energy:
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where since we assume that the flow is everywhere in both instantaneous translational and rotational equilibrium, the
internal energy e is further divided into the equilibrium energy e; and the non-equilibrium energy ¢q:
e=¢e|+gq.

For gas flow with several thermal nonequilibrium modes, which is described by a hyperbolic system with several
relaxation equations, we refer to [18].
The thermodynamic equations read as

dey =Tids) — pdv, dq=Tdss, (1.2)

where v = 1/p is the specific volume, 77, s are the equilibrium temperature and entropy while 73, s> are the non-
equilibrium temperature and entropy. Note that the vibrational energy ¢ is volume independent and for a nonequilib-
rium state it holds that 77 # T>. Then we arrive at the thermodynamics law for gas flow in vibrational nonequilibrium

de=Tids + (T, — T1)ds> — pdv,

where s = 51 + 57 is the total entropy. (1.2) yields that among v, p, e1, T1 and s1 only two thermodynamic variables
are independent, while among ¢, 7> and s> any one variable determines the others. Particularly, both Q and 7 are
given functions of v and e, i.e.,

0=0(,e), t=1(v,8]).

To be more specific, Q is the local equilibrium value of g. Q = g holds if and only if the gas is in equilibrium with
local temperature 771 = T». Let

g =w(T)
for some known increasing function w, which implies
0=0(,e)) =w(T). (1.3)

We remark that when all relaxation processes within the gas take place infinitely rapidly as the internal structure of the
molecules is negligible, that is T — 0, it is necessary to have g (¢, x) = Q(¢, x) in the equilibrium flow. On the other
hand, when all relaxation processes take place infinitely slow, the model of frozen flow implies that ¢ (¢, x) = g (0, x)
as T — oo. In both limiting cases, the system (1.1) is reduced to the compressible Euler equations governing the
motion of gas in local thermodynamic equilibrium, but with different equations of state, cf. [17].

Global existence and large time behavior of solutions for general hyperbolic systems with relaxation or other
lower order dissipations under certain assumptions on the strong coupling of the inhomogeneous terms and the flux
functions, e.g., the Shizuta-Kawashima condition [9], have been extensively studied, for instance, see [1,3,5,6,10,
12—-15] and references therein. However, the physical model (1.1) of gas dynamics in thermal nonequilibrium is a
relaxation system of composite type. Precisely, the dissipation induced by the right-hand side of the fourth equation
of (1.1) is too weak to have effect on all variables. This is due to the lack of coupling this term with certain part of
the flux function, see (1.15) below. Compared with the results for dissipative systems mentioned above, the failure to
satisfy the dissipative criterion makes it difficult to prove the global existence and investigating the behavior of the
solution for (1.1). It should be noted that the global existence of smooth solution to compressible Euler equations
with a lower order dissipation, frictional damping, was established in [7,16] with vacuum states where the system is
degenerate. However, the mechanism for the global existence and decay of the solution is quite different from that for
system (1.1).

In one-dimensional case, the Cauchy problem with smooth and small data was studied in [17] where the global
existence and large time behavior of smooth solution in the pointwise sense are obtained while in the presence of
physical boundaries, the initial boundary value problem was studied in [2]. We mention that in three space dimensions
and the system is linearized around an equilibrium constant state, the pointwise description of the Green’s functions
reveals that compared with the one-dimensional flow, not only does the entropy wave not decay, but the velocity also
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contains a non-decaying part, which is strongly coupled with its decaying one, cf. [19]. Precisely, after extracting the
entropy wave, which is represented by the non-decaying §-function §(x) along the particle path, the resulting Green’s
function still contains a non-decaying part

(ixs — AT'VVT)8(x), (1.4)

corresponding to the “incompressible part” of the velocity u. (1.4) has no contradiction to the one-dimensional case,
where the double Riesz transform A~!VV T §(x) reduced to 8(x) such that the non-decaying term disappears.
Throughout this paper, we consider the irrotational flow, that is

V xu=0. (1.5)
Precisely, (1.5) implies u = A~!VV - u by using the Hodge’s decomposition

u=A"'VV.u—AT'VxV xu. (1.6)
For instance, (1.5) holds for spherically symmetric flow, i.e.,

(p.e1,q)(t,x) = (p,e1, ), [x]), ulx,t) =ult, IXI);—|; (1.7)
denoted by p := (arctan(x»/x1) 4+ kx3), k € R, (1.5) also holds for

(p.e1,q)(t,x) = (p,e1.q)(t,0), ulx,1)=u(,0)Vo. (1.8)

It is proved that the wave patterns of the three-dimensional irrotational flow are similar to the one-dimensional flow,
based on the structure of the Green’s function of the Cauchy problem for the linearized system, see Section 2.2 below.
System (1.1) is closed by appropriate equations of state. We take, cf. [2],

o R af afR arR
er=-pv=—-"T, Q=—-pv=—-T1, q=—"—"—0D,
2 2 2 2 2 (1.9)
o arR ’
s1=R(nv + Elnel), §y = Tlnq,

by assuming « degrees of freedom adjust instantaneously and a further « s degrees of freedom take longer to relax.
R > 0 is the gas constant. The physical assumptions (1.9) satisfy the thermodynamics law (1.2), which also implies

2 2 2 2 ay oy
_Z-y I ) (—Lpv—y)" &
p= vV exp(—ms) = v exp(—s) (S py =) @

orR R 3
S1=s—%ln(a7fpv—x), sz=alen(a7fpv—x),
T 1 T 1( 2 ) 2+1

= —pv, = — - — s = .
1=5P 2= 5 (pv afx vi=y

Since we discuss the problem for some fixed relaxation parameter t > 0, for simplicity, we set T = 1 and write the
system (1.1) as

or+u-Vo+pV-u=0,

1
us+u-Vu+—-Vp=0,
0

» (1.10)
eir+u-Ver+—=V-u=—y,
P
g +u-Vg=x,
where and in the following,
arR
X1=Q—61=T(T1—T2). (1.11)

Using (1.2), it is equivalent to consider the system for p, u, x and s:
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prtu-Vp+pciV u=—pex,
u;+u-Vu+vVp=0,

Xe+u-Vx+aV-u=-¢y, (1.12)
uVs=( 1 1 )
St +u-Vs=(=—=)x,
t T X
where by (1.9) it holds that
2 2 2
¢ =pp(p,51) =v7(ppe; — Pv) =YDV, Pey = —,
v (1.13)

/ af or
a:=v(pQe¢ — Ov) = (T)vT1 pe, = o P i=14+Q0, =1+ o

We note that c s is the frozen speed of sound. The equilibrium speed of sound c is given by 2= Po(p,s)= c? /(1+Db)
where

De, U y—1 C?_2+a

b= = s =
(1+Qe1)C§c/a—pelv C?/a+1 a of

(1.14)

We will use both (1.10) and (1.12) at our convenience. From (1.12) it is easy to see that the dissipation induced by the
relaxation term has no effect on the entropy s. Precisely,
11 2 x?
(—— —yy=——2%X_ -9 (1.15)
T, T arRT\T,
implies that the entropy increases along the particle path.
In this paper, we are interested in the global existence and large time behavior of irrotational flow for gas dynamics
in thermal nonequilibrium. We consider the initial value problem of the system (1.10) in R3 with irrotational initial
data

(o, u,e1,9)(0,x) = (po, uo, 1,0, 90)(x), V xug=0, (1.16)

which is a small perturbation of an equilibrium state (p, u, e, g), 0, €1, g > 0 satisfying

g=0, or Ti="T. (1.17)
Without loss of generality we take u = 0. Here we use ~ to denote the constant state and
- af_ - 2 _
Q=—¢, Th=——q, et
o arR

Before stating the main result, we introduce some notations for later use. A < B means that there is a generic constant
C > O such that A < CB. V¥, k > 1 denotes all derivatives of order k and for multi-index B8 = (B1, B2, B3),

3
of =oftol20l, 181=) _B;.
j=1

Then || - || zx denotes the norms in the Sobolev space H¥R3) and || - ||z», p > 1 denotes the norms in L?(R3). For
convenience, for k =0 we use (-, -) and || - || to denote the inner product and norm in L2(R?) respectively.

Theorem 1.1. Let p, €1, g be positive constants such that (1.17) holds, the irrotational initial data (po, ug, €1,0, o)
be such that || po — p, uo, €1,0 — €1, qo — ql| g3 is sufficiently small and ||po — p. uo, xoll ;1 is bounded. Then a unique
global solution (p, u, ey, q) satisfying the irrotational condition V x u = 0 with p, ey, q > 0 to the Cauchy problem
of (1.10) and (1.16) exists and satisfies

(p = p.u,e1 — 1,4 — ) € C°([0, 00); H>(R)) N C' ([0, 00); H*(RY)). (1.18)

Moreover, it holds
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t

o = pouer —e1,.qg —DI* + IV (p.u, x. )3 + / (Ix 135 + 1(Vp. V- wll3,.)dT

1.19
J (1.19)
<Moo — f. uo. €10 = 1..q0 — P + 1V (po. uo. x0) 132 + exp{ll(po — - 0. x0) | L1n g3 I Vsoll,2-

And the solution (p, u, x) has the following decay property
_3 -
Ix Oz + 1V (P, w) Ol g2 S L+ 073 (po — pr o, x) L1z, Y1 =0, (1.20)

Remark. The above theorem says that if the flow is irrotational, then it exists globally. In particular, if the initial data
are spherically symmetric, then there exists a globally defined spherically symmetric solution. This can be seen by a
simple uniqueness argument and the invariance of the equations for the rotational coordinates transformation, 1’ = ¢,
x" = Sx for S € SO(3). Another example of irrotational flow is given by (1.8).

We give some remarks on the proof of Theorem 1.1. We prove the global existence and large time behavior of
the solution to the Cauchy problem when the initial data are a small perturbation of an equilibrium constant state
with an additional bound of the L'-norm. If we study the spherically symmetric solution (1.7) on the exterior domain
|x| =r > ro for some constant ry > 0. We can introduce the Lagrangian mass coordinate

-
n(r, T)=/S2,0(t,s)ds, T=t,
1

and the equations (1.12) are reduced to

144 2
Pt = (Pu)y = ——x,
v Qv

u+r’py =0,
o o (1.21)
X+ ;f,,(rzu)n =—(1+ f)x,

(1 ])
st=(———)x.
t T T1X

Imposed with the boundary condition u (g, ) = 0, the global existence and large time behavior of smooth solution for
(1.21) on an exterior domain can be obtained following the argument in [2]. However, the entropy increase dictated
by physics for any irreversible process makes it challenging to establish the global existence of irrotational Eulerian
flow. Compared with the one-dimensional flow, cf. [17], using a standard energy method is not sufficient for proving
the global a priori estimates, see (2.10). It is worth pointing out that we use the spectral method to obtain the large
time behavior of the solution for the nonlinear system. Then we are able to show that the entropy increases but stays
bounded. This framework has been applied in [4] to study the compressible Navier-Stokes equations.

2. Proof of Theorem 1.1

Theorem 1.1 follows from the standard continuity argument by the a priori estimates and the local existence result,
which is standard for the system (1.1), e.g., see [8] and references therein. Thus it is sufficient to prove Proposition 2.1.

Proposition 2.1 (A priori estimate). Let p, e, q be positive constants such that (1.17) holds and (po — p, uo, e1,0 —
e1,q0—q) € H3(R3). Suppose (p,u, e1,q)(t, x) is an irrotational solution of the Cauchy problem (1.10) and (1.16)
in the time interval [0, T], T > 0, satisfying

(p—p.u,er —é1,q— ) € CO[0, T); H*(R?)) nC' ([0, T1; H*(RY)), o
Vp,V-ueL?([0,T]; H*R?), x e L*([0,T]; H>(RY)). '

There exists some constant § > 0 sufficiently small, which is independent of T such that if
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Sup ||p_ﬁ7u’el_é17q_6”H3 58’ (22)
0<t<T

and we further assume

(po — p.uo. x0) € L'(RY), 2.3)
then it holds

t
o = pouer —e1,qg —DI*+ IV (p.u, x. )3 + / (Ix 135 + 1(Vp. V- w)3,.)dT

24
J @4)
S lpo = p.uo, €10 — &1,.q0 — DI + 1V (po. o, x0) 152 + exp{ll(po — B uo. x0)ll L1 w31 V501132
Particularly, the solution (p, u, x) has the following decay property
_5 -
Ix Oz + 1V (P, ) Ol g2 S (L) 3 (po — P o, x0) | z1pgs, V1 €10, T (2.5)

Proof. Proposition 2.1 is a consequence of the energy estimates in Proposition 2.2 and the decay estimates of (p, u, x)
in Proposition 2.3.

Particularly, we use the a priori decay-in-time estimate on the velocity to obtain the uniform bound of the deriva-
tives of entropy. Precisely, together with the decay property (2.36) of Vu in Proposition 2.3, it follows from the energy
estimate (2.10) of Vs in Proposition 2.2 by using the Gronwall’s inequality that

t t
1VsI2,s sexp{/ ||V(v~u)||H1dr}(||Vso||§12+8/ IV xI2,d7)
0 0
. (2.6)
Sexp{ll(po — p.uo. X0l Linms} (V501132 +8f IV I13d7).
0

Integrate (2.9) in Proposition 2.2 over [0, t], ¢ < T, under the smallness assumption (2.2), (2.4) follows directly from
the summation of the result inequality and (2.6). O

2.1. Energy estimates
For later use, we review some Sobolev inequalities.

Lemma 2.1. For w € H*(R3), Vw € L®(R?) and v € H*1(R?) N L®(R?),

> P wivl < C(IVwlze IV vl + vl [ VEw]).
1=<|Bl=k

Particularly, for w,v € H*(R3) N L®(R?),

> 18P @)l < Cr(llwllo IVl + o]z [VFwl)).
|BI<k

where

lwlize S IVw IV Y2 S IVwllg, ¥ we HX®Y).
In this subsection, we will prove the following energy estimates.

Proposition 2.2. Suppose that (p,u, ey, q) is an irrotational solution of the system (1.10) for t € [0,T], T > 0.
Assume all conditions of Proposition 2.1 hold. Under the assumption
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Sup ||,0_,5,1/l,€1 _élvq _QHH3 58’
0<t<T

where § > 0 is sufficiently small, the following energy estimates hold.
d
(V01 + 1X135) + s + 1V Pl + IV w30 STV (w1,
d ~ = V112 2 2 2 2
—(II(P —pouser —e, g —PI*+ IV(pu, Ol52) + x5 + 1Vplge + 1V - ully. <0,
—IIVSIIHz SIVO Wl V8132 + 81V X112

Proof. Firstly, we study the basic energy estimates of (1.10). Multiplying (1.10)3 by p/e; gives

d 2 1
—(plne)) +V - (pulne)) + —pV-u=——px,
dt o el

where we used (1.10); and (1.9). Together with (1.10); and

d
E(Pel)'i‘v'(puel)—l—pv'u =—pXx,

we can claim that
d

o (qp(— — ln[(——w 1- E))
_ are; x 2
+V-(qpu( —In[(—~ _) f]— ))+(p——qp)V u—(——l)px-
of of 0

Similarly, it follows from (1.10); and (1.10)4 respectively that

d o B

dt( (——1 ——1)) (pu(ln;+l))+pv~u—0,

d 4 N é

P (qp(— —1n— — 1)+ V- (pu(q —qlnc—j -9)=( q)px-

Finally, multiplying (1.10)2 by pu' yields that

L o) + 29 - ouluP) +u-vp =0
5, Pl 3 oulu u-Vp=0.

The summation of (2.11) 4+ 2g(2. l2)/oz + (2.13) 4 (2.14) gives

d 2q p ferd. a g q
e = ——1)+ plu? Hap(G —mICLDT = 2ot )
dt Olf 2 q (;(f q q
_ 2
_ et p.x e, L€
+ V- (@ L Oy LT -y SpluPut pu)
q p o q a
AL
=4(= — —)pPX
0 ¢

Then under the smallness assumption (2.7), it follows from (2.15) that
d _ _ _
o =p.uer—er,q =PI +eollxl* <0,

using

12— Lypx = cox?
q(— — —)pX = CoX
9 0

231

2.7)

(2.8)
(2.9)

(2.10)

@2.11)

2.12)

(2.13)

(2.14)

(2.15)

(2.16)

for some constant cp > 0 independent of ¢. Particularly, we multiply (1.12); by x and integrate the result equation

over R3. Using the Cauchy-Schwarz inequality we have



232 Y. Huang, T. Luo / Ann. I. H. Poincaré — AN 37 (2020) 225-238

d
E||x||2+||x||2§||v'u||2. (2.17)

Then we consider the higher order energy estimates by using the thermodynamics properties of (1.12) as follows.
Notice that the symmetrization procedure of (1.12) is motivated by choosing the positive definite matrix

2
1+b 0 —Lbp
S= 0 ypp 0 , (2.18)

C2 C2
f f )2
~Lbp 0 (Lp)?
where the constants c% /a,b > 0 are given in (1.14). For some multi-index 8 with 1 <|B| < 3, using (2.18), applying
8% to (1.12) gives

2
@Pp) +u-volp= —aaﬂ(px) —y3P(pV -u) — [P, u - Vip,

@Pu) +u-vofu=—-0PVp)— 0%, u-Vu,

2 2 2
c c c (2.19)
@ p—Lpd )i +u- V@ p—Lpof ) — (L4 1)p0 x
<} <} 2
=—pV: udfx — (9%, u-Vip+ ;p[aﬂ, u-Vix +ypld? vI(pV -u) — ;[8'3,/9])(,
and
(0Ps), +u-vaP 2 ah( X y—[08,u- V] (2.20)
) u- §=— —_—) — ,u-Vis. .
' afR° T

We multiply (2.19) by (87 p, ¢} p*8u, b(3 p — % JapdP X))T to obtain that

2 2
C C
(10 pP + ypp|®ul® + 613" p — L 00 x?) + 200100 x?

| =
Q.lg_‘

t
2

1 C
+ 5V (18 pP* + yopla®ul® + b1 p — ;fpaf‘xﬁ) +2ypdfud® p)
1 % X
=5V u((+b)0P pI* = pplydul® = bl—pdP x|?) + y (Vp - 0Pud’ p — £ 109 ul?)

(2.21)
2
B b B NP 2 o
— (A +b)"p —b—-p0d x) (3P, u-Vip+ 107010
i i
+bp(@F p = =3P ) (=107, - Vix +y 197, vI(pV - w))
—y 3 pld”, pI(V - w) — yppd’u((9”, u - Viu + 87, vV p).
Under the assumption (2.2), by straightforward calculations we arrive that

d
IV @ 01 + 19X S8V (. 0, (2.22)

where for instance we use the Sobolev inequalities in Lemma 2.1 to show that

D 01V - SVl (Ipllse V(Y - ) | + IV -l [V pll) + 1PV - w) [ < |V 0]
1=|p|=3
S8A+OIV - ull e,

and

> L pIx N S IVl IVl + Ix e IV oll S 81V g
1<|B1<3
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The remained terms can be treated similarly.

233

Next, we apply 3P, |8’ <2 to (1.12); and multiply the obtained equation by AP (V - u). Using (1.12), it holds

that
o / o / / /
L puld (V- = Lo (Vw0 (poV 1) ~ [0 pul(V -w)
d ! ’ / /
—E(aﬁ X3P (V-u) + V- (3F x8P uy)

— 3% (u-Vu+vVp) - vafy
’ / o ’ /
— (P x+ 0% - Vi) + ;f[af’ , pul(V 1) P (V- u).

Similarly we use (1.12); and (1.12), to obtain that

’ d / ’ / /
v|VoP p|? = —E(af’ u-VoPf py+v -0 ud? p,)

/ 2 / / / ’
+3F (- Vp+ypV-u+=px)d? (V-u)— (8 (u-vu)+ 37 ,v1Vp)-vdf p
o

Since V x u =0, using (1.6) it is straightforward to verify that
IVudt, )5 = IV - ut, ).
Then it follows from (2.23) by using the Cauchy-Scharwz inequality that

d ’ /
Y @ PV )+ IV w1 S Cell VG + G+ o)Vl
1=<|p1=2

where the constant C, depends on the sufficiently small constant ¢ > 0. Using (2.24) it also holds that

d g P )
Yo @7 u VP p) + IV Pl SNV, 0l
1=|g'1=2

A suitable summation of (2.22), (2.25) and (2.26) gives

d
IV, u, O3 H VX2, + IV, + IVY w3, S8IV(p. w2,

together with (2.17), which leads to (2.8). Particularly, for 8’ = 0 we have

d
dt((x Veu), w,Vp) +1(Vp, V) S lixlpn

Then (2.9) follows by using (2.16), (2.27) and (2.28).
Finally, multiplying (2.20) by 85 yields that

1
T |aﬂ 1>+ = 5V u|9Ps)?) = —v uldPs)? + af’s( aﬂ(—) — 08, u - V]s).
Using Lemma 2.1 again we can claim

> ||aﬁ<ﬁ)u < llx ||Loo||v3(—>|| + ||—||Loo||v3<x2)||

1=|Bl<3
SA+HIVXI3.,

> M0F - Visl S IVallLe V351 + V30 Lo [ Vsl oo
1=|p|=3

SIVull g 1Vl gt SUVY )l g1 Vsl g2,
which leads to (2.10). O

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)



234 Y. Huang, T. Luo / Ann. I. H. Poincaré — AN 37 (2020) 225-238

2.2. Optimal decay estimates

In this subsection we study the time-decay estimates of (p, u, x) of the system (1.12). Derived from the spectral
analysis of the linearized system, the large time decay estimate of u in Proposition 2.3 plays a key role in obtaining
the global a priori estimate of Vs, see (2.10).

Recall that the solution of (1.12) is a small perturbation around the equilibrium constant state (p, 0,0, 5). The
linearized system of (1.12) around (p, 0, 0, 5) can be decoupled into a system of V=V (¢,x) = (p — p, u, X)T(t, X)
as

0 ypV- 2/(av)

Vi=AV, A=—|av 0 0 e R, (2.29)
0 aVv. ¢
and the linearized entropy equation
5= 0. (2.30)

Here v is the value of v at the constant equilibrium state, a = oy pv/a. This subsection is devoted to studying the
Cauchy problem of (2.29) with initial data

Vo=V (0,x)=(p— p,u, x)(0,x) = (po — p, uo, xo)(x), (2.31)
satisfying the compatibility condition
V xuy=0. (2.32)

Then by Duhamel’s principle, we have
t
(p—pru, x) (1) =D (po — p,uo, x0) " + / DA (g 8 g (D)dT, g=(21,82.83),  (233)
0
where the decay estimates on semigroup ¢/ will be given in Proposition 2.4 and the nonlinear terms g;, i =
0,---,4,
1

g=—u-Vu—(v—1v)Vp, (2.34)
ar __
ga=—u-Vx ——=(pv—pu)V-u,

o
satisfy the compatibility condition (2.32).

Proposition 2.3. Suppose that (p,u, ey, q) is an irrotational solution of the system (1.10) for t € [0,T], T > 0.
Assume all conditions of Proposition 2.1 hold. If we further assume

(po— p.uo, xo0) € L'(RY), (2.35)
then the solution admits the following decay property
_3 —
lx gz + 1V (P, w) Ol g2 S (L + )7 F[(po — P, w0, x0) | L10m3- (2.36)

Proof. Firstly we study the a priori decay-in-time estimates of (p, u) on the right-hand side of (2.8). Based on the
decay properties of the linear system in Proposition 2.4, which will be proved later, it follows from (2.33) that
1
_3 - _s
IV(p, Il < X+ 07 3[(po — P, uo, xo)llp1 A g1 +/(1 +1—1) 4(g0, (D)1 rdr
0 (2.37)

t
_5 _ _5
SU+07H(po — pouo x0) 1 +a/<1 +1 =07 H(x, Vp, V) (D) i,
0
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where it is straightforward to verify that

(0. 8) NIzt S3I(x, Vo, Vu)Oll,  11(g0. &)l S8NI(x. V., Vi) (@)l g1+
Set

5 2 2
M@) = sup (1+D)2([lx (D5 + IV, w)(@D)52)-

0o<t<t

Adding ||V (p, u)||? to both sides of (2.8) gives

d
(V01 + 1X135) + Lxllgs + 1V (w7 S IV (P, w1 (2.38)
Then it follows from (2.38) by using the Gronwall’s inequality and (2.37) that

IO + 1V (w132 S e (Ixoll7s + 1V (po. uo)17,2)

t

—({— _3 _
+/e D402 (po — pouo 102
0

t
+82M(t)(/(1 +t—1) i (l+1)idr)’
0

_3 -
S A+073(I(po — B0, X071 [ 3 + 8 MD)).
Since M(¢) is non-decreasing and § > 0 is small enough, we can claim
M@ S o= pouo. xo)I 71 pae V€0 TI, (2.39)
which gives (2.36). O

It remains to prove the decay properties of the solution for the linearized system (2.29). In order to combine the
constraint (2.32), we define the pseudo-differential operator P", r € R, as

P f=F el fe&),

where F~!{-} denotes the inverse of the Fourier transform F{-} with respect to x,
Fifl=Fe.o = [ feneiar
R3

Then we introduce

w=P N (V-u, ie w=-—-i. (2.40)
By (1.6) it also holds that

w=—F g7 (i£GE - ) —i& xiE x 4)} = —F &7 (&d)} = —P {Vw). (2.41)

Denoted by U = U (z, x) = (9, w, x) ' (¢, x) where 9 := p — p, the system (2.29), (2.31) and (2.32) can be rewritten
as

U =BU, UQO,x)=Uy, t=>0, (2.42)
where Ug = (9, w, X)T(O, x) and B is given by

0  ypP 2/(ab)
B=—| -3P 0 0 |eR¥™,
0 arP ¢
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by noticing A1 = —P?19. Taking the Fourier transform of (2.42) we have
U,=EU, U0,&)=0), >0,
where U = U (1,£) = (9,1, )A()T(f, §) and

0 yplgl 2/(av)
E=E(§h=—| —vl§l 0 0 : (2.43)

0 alg| ¢
The characteristic equation of [ is
det(\] — E) =37 + ¢A% + &5 [€ %0 + ¢l

which is the same as the one-dimensional flow. We point out that the matrix E admits three simple eigenvalues A+ (|£])
and A4(]€]), which do not coincide on the complex plane except for a finite number of exceptional points. Obviously
it holds that

Ay Ao dda=—C Ao +raOy +A0) =HEP,  Apd_dg=—CE (2.44)

The functions A, = As(2), 0 = %, d, are holomorphic in each simply connected domain containing no exceptional
points while continuous at the exceptional point, which can be a branch point or a regular point with eigenvalue
splitting, cf. [17,19].

Lemma 2.2 (Lemma 3.2. [19]). The functions ,,(z), 0 = %, d, are analytic at the origin and have at most a simple
pole at the infinity. Precisely, for all z # 0 it holds that

Re{i,(2)} <0, o=x=+.d. (2.45)
Particularly, for |7] < 1,

ri(@) =—pnO2 +ar@ £iz(E+21(@D),  ra(@) =—¢ +212% - 2xp(2Y), (2.46)
and for |z| — 400,

ri(@=—pu W+ Ar@E D £iz(6r + A1), ra=—u? —kr@), (2.47)
where

) - « - ,o_ly & of @_ & 14+ 2
= = a, =-(1-5)0"=—"—, =¢=1+-—"
H 2c (@+ar)? # 2( Ei)g aC+a)y M E}C 2+«

and Ag(z*) = 0(zY), r1(z%) = 0(z?) are analytic of z* while Ag(z2) = 0(z2), A;(z72) = O(z~2) are analytic
of 272, which are all with real coefficients in their Taylor expansions.

Corresponding to the eigenvalue A,, o = %, d, the right eigenvector r, and the left eigenvector /, are
_ - - T -
ro = (Ao, DIEL —aB(AZ +E51E1)/2) . Lo = (BIE1* /2o, [E]. —20E1*/[otho (Ao + O)]).
Direct calculations by using (2.44) show that the eigenprojection
Po =Po(1§) = (g lo) ™' roly (1D, o ==.d,

corresponding to the eigenvalue A, of EE is given by

[ Folo +D) W06 +DEIEDT 220 /(@)
Py = (2ho (ho +0) + 4o +37IEP) T | 006 + )& Ao (ho +0) —2[&|/a . (2.48)
—valg|? —hoal§| Ay + 3P

The long time behavior of the Green’s function G = G (7, x) = B depends on the expansions of the Fourier
transform G (¢, £) expressing as
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é(t, £) = SEE) — ef)~+(|$\)p+(§) +e-lElp_ &) + e”»dlé\})d(é)’ (2.49)

in low frequency while the local behavior depends on those in high frequency. To derive the large time decay rate of
the solution for (2.29), naturally we divide the integral in the inverse transform into three parts: over |§| < ¢, |§| > R
and ¢ < |&] < R for some small constant ¢ and some large constant R.

Firstly, we study the asymptotic expansion of G, &) for small |&|. To achieve some cancelation, we pair the first
two terms on the right-hand side of (2.49) to obtain that

le+ P, + e P_| = |'R** [cos(rImAs ) (P4 + P_) + isin(sImi4 ) (P4 — P_)]|

1 1 1
< el IEP 1 1 ,
1€l 181 1§
by using (2.46); and (2.48). And it follows from (2.46), that
. E> 15l 1
e Pal S e IER 1B ]
§> gl 1
Then for some given ¢ > 0 sufficiently small we have
o 1 1 1 00 O
G, &) <e ™ L1 1 1 J+]l0 0 0 |, |&l<e. (2.50)
&1 151 1§ 0 0 ¢
Similarly, using (2.47), by direct calculations we can claim that for |£| — oo,
A o €1~ o (B2
Ge.olSe ™™ L1 1 gt e g 1517 jel!
Loojg! Lot o

Together with (2.45), it holds that

1 1 1
G &) Se ™ ([ 1 1 1], |gl=e, (2.51)
1 1 1

where the constant r, > 0 depends only on ¢. Here for simplicity, |G| means the matrix corresponding to G with each
element taken the absolute value.

With the help of the asymptotic analysis for the Green’s function in Fourier space, we are able to establish the
L2-time decay rate of the global solution to the Cauchy problem for the linear system (2.29), (2.31)-(2.32). It should
be noted that the decay rates obtained below are optimal.

Proposition 2.4. Assume (py — p, uo, xo0) € LY R3) N H3(R3). Then (p,u, x) solves the Cauchy problem (2.29),
(2.31)-(2.32) forall t > 0, x € R3. For k <3 it holds that

_ _3_k _
IV¥(p = p.w)OI S A+ 2](po — . 0. X0 171 g (2.52)
_5_k _
IV OIS A+ 07572 (po = puos X071 ¢ (2.53)
Proof. It is equivalent to consider the linear system (2.42). We use the pointwise estimates (2.50) and (2.51) on the

Fourier transforms G (7, &) to derive time decay properties of solution (p, u, x) for (2.29) as follows. For k > 0 we
can claim

IVE® (2, )12 = f 1&1%19 (1, €)17dE + / E1%K19 (1, £)|*dg
[&]<e |&E|>e
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r 2 ~ ~ ~ _ ~ ~ ~
S f e VPG PR (D2 4 [ + 17 7)dE + e / §17% (19 2 + 11 +17217)dg
[El<e [&]>e
< -3k 2
S A+ @0, w0, x0) 171 A e
by using the relation (2.41) between u and w such that
HEPF Dl =1V ull, Dl < il < llullp1.

Similarly, it holds that
_3_k
IV U, ) S (L4 07472 [P0, w0, x0) 21

k _5_k
IVEx (@, 01l S (L4+ 0737 2][(So, uo, x0) 21 ( ¥
which completed the proof of Proposition 2.4. O
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