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Abstract

We study the three-dimensional irrotational flow for gas dynamics in thermal nonequilibrium. The global existence and large 
time behavior of the classical solution to the Cauchy problem are established when the initial data are near the equilibrium state 
with an additional L1-norm bound. We mention that the uniform bound on derivatives of the entropy is obtained by using the a 
priori decay-in-time estimate on the velocity.
© 2019 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we study the three-dimensional vibrational nonequilibrium flow, where the motion of the gas is 
described by the following equations, cf. [11,19],⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuu�) + ∇p = 0,

(ρE)t + ∇ · (ρEu + pu) = 0,

(ρq)t + ∇ · (ρqu) = ρ
Q − q

τ
.

(1.1)

Here ρ, u = (u1, u2, u3)
�, p, E, q, Q an τ are the gas density, velocity, pressure, specific total energy, specific vibra-

tional energy, local equilibrium value of specific vibrational energy and local relaxation time, respectively. The first 
three equations of (1.1) are the conservation of mass, momentum and energy, while the last one describes the relax-
ation of the nonequilibrium vibrational mode to its local equilibrium value. The total energy E consists of internal 
energy and kinetic energy:
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E = e + 1

2
|u|2, |u|2 =

3∑
j=1

u2
j ,

where since we assume that the flow is everywhere in both instantaneous translational and rotational equilibrium, the 
internal energy e is further divided into the equilibrium energy e1 and the non-equilibrium energy q:

e = e1 + q.

For gas flow with several thermal nonequilibrium modes, which is described by a hyperbolic system with several 
relaxation equations, we refer to [18].

The thermodynamic equations read as

de1 = T1ds1 − pdv, dq = T2ds2, (1.2)

where v = 1/ρ is the specific volume, T1, s1 are the equilibrium temperature and entropy while T2, s2 are the non-
equilibrium temperature and entropy. Note that the vibrational energy q is volume independent and for a nonequilib-
rium state it holds that T1 �= T2. Then we arrive at the thermodynamics law for gas flow in vibrational nonequilibrium

de = T1ds + (T2 − T1)ds2 − pdv,

where s = s1 + s2 is the total entropy. (1.2) yields that among v, p, e1, T1 and s1 only two thermodynamic variables 
are independent, while among q, T2 and s2 any one variable determines the others. Particularly, both Q and τ are 
given functions of v and e1, i.e.,

Q = Q(v, e1), τ = τ(v, e1).

To be more specific, Q is the local equilibrium value of q . Q = q holds if and only if the gas is in equilibrium with 
local temperature T1 = T2. Let

q = ω(T2)

for some known increasing function ω, which implies

Q = Q(v, e1) = ω(T1). (1.3)

We remark that when all relaxation processes within the gas take place infinitely rapidly as the internal structure of the 
molecules is negligible, that is τ → 0, it is necessary to have q(t, x) = Q(t, x) in the equilibrium flow. On the other 
hand, when all relaxation processes take place infinitely slow, the model of frozen flow implies that q(t, x) = q(0, x)

as τ → ∞. In both limiting cases, the system (1.1) is reduced to the compressible Euler equations governing the 
motion of gas in local thermodynamic equilibrium, but with different equations of state, cf. [17].

Global existence and large time behavior of solutions for general hyperbolic systems with relaxation or other 
lower order dissipations under certain assumptions on the strong coupling of the inhomogeneous terms and the flux 
functions, e.g., the Shizuta-Kawashima condition [9], have been extensively studied, for instance, see [1,3,5,6,10,
12–15] and references therein. However, the physical model (1.1) of gas dynamics in thermal nonequilibrium is a 
relaxation system of composite type. Precisely, the dissipation induced by the right-hand side of the fourth equation 
of (1.1) is too weak to have effect on all variables. This is due to the lack of coupling this term with certain part of 
the flux function, see (1.15) below. Compared with the results for dissipative systems mentioned above, the failure to 
satisfy the dissipative criterion makes it difficult to prove the global existence and investigating the behavior of the 
solution for (1.1). It should be noted that the global existence of smooth solution to compressible Euler equations 
with a lower order dissipation, frictional damping, was established in [7,16] with vacuum states where the system is 
degenerate. However, the mechanism for the global existence and decay of the solution is quite different from that for 
system (1.1).

In one-dimensional case, the Cauchy problem with smooth and small data was studied in [17] where the global 
existence and large time behavior of smooth solution in the pointwise sense are obtained while in the presence of 
physical boundaries, the initial boundary value problem was studied in [2]. We mention that in three space dimensions 
and the system is linearized around an equilibrium constant state, the pointwise description of the Green’s functions 
reveals that compared with the one-dimensional flow, not only does the entropy wave not decay, but the velocity also 



Y. Huang, T. Luo / Ann. I. H. Poincaré – AN 37 (2020) 225–238 227
contains a non-decaying part, which is strongly coupled with its decaying one, cf. [19]. Precisely, after extracting the 
entropy wave, which is represented by the non-decaying δ-function δ(x) along the particle path, the resulting Green’s 
function still contains a non-decaying part

(
I3×3 − �−1∇∇�)

δ(x), (1.4)

corresponding to the “incompressible part” of the velocity u. (1.4) has no contradiction to the one-dimensional case, 
where the double Riesz transform �−1∇∇�δ(x) reduced to δ(x) such that the non-decaying term disappears.

Throughout this paper, we consider the irrotational flow, that is

∇ × u ≡ 0. (1.5)

Precisely, (1.5) implies u = �−1∇∇ · u by using the Hodge’s decomposition

u = �−1∇∇ · u − �−1∇ × ∇ × u. (1.6)

For instance, (1.5) holds for spherically symmetric flow, i.e.,

(ρ, e1, q)(t, x) = (ρ, e1, q)(t, |x|), u(x, t) = u(t, |x|) x

|x| ; (1.7)

denoted by � := (arctan(x2/x1) + kx3), k ∈R, (1.5) also holds for

(ρ, e1, q)(t, x) = (ρ, e1, q)(t, �), u(x, t) = u(t, �)∇�. (1.8)

It is proved that the wave patterns of the three-dimensional irrotational flow are similar to the one-dimensional flow, 
based on the structure of the Green’s function of the Cauchy problem for the linearized system, see Section 2.2 below.

System (1.1) is closed by appropriate equations of state. We take, cf. [2],

e1 = α

2
pv = αR

2
T1, Q = αf

2
pv = αf R

2
T1, q = αf R

2
T2,

s1 = R(lnv + α

2
ln e1), s2 = αf R

2
lnq,

(1.9)

by assuming α degrees of freedom adjust instantaneously and a further αf degrees of freedom take longer to relax. 
R > 0 is the gas constant. The physical assumptions (1.9) satisfy the thermodynamics law (1.2), which also implies

p = 2

α
v−γ exp(

2

αR
s1) = 2

α
v−γ exp(

2

αR
s)(

αf

2
pv − χ)−

αf
α ,

s1 = s − αf R

2
ln(

αf

2
pv − χ), s2 = αf R

2
ln(

αf

2
pv − χ),

T1 = 1

R
pv, T2 = 1

R
(pv − 2

αf

χ), γ := 2

α
+ 1.

Since we discuss the problem for some fixed relaxation parameter τ > 0, for simplicity, we set τ = 1 and write the 
system (1.1) as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρt + u · ∇ρ + ρ∇ · u = 0,

ut + u · ∇u + 1

ρ
∇p = 0,

e1t + u · ∇e1 + p

ρ
∇ · u = −χ,

qt + u · ∇q = χ,

(1.10)

where and in the following,

χ := Q − q = αf R

2
(T1 − T2). (1.11)

Using (1.2), it is equivalent to consider the system for p, u, χ and s:
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pt + u · ∇p + ρc2
f ∇ · u = −pe1χ,

ut + u · ∇u + v∇p = 0,

χt + u · ∇χ + a∇ · u = −ζχ,

st + u · ∇s = (
1

T2
− 1

T1
)χ,

(1.12)

where by (1.9) it holds that

c2
f := pρ(ρ, s1) = v2(ppe1 − pv) = γpv, pe1 = 2

αv
,

a := v(pQe1 − Qv) = ω′(T1)vT1pe1 = αf

α
pv, ζ := 1 + Qe1 = 1 + αf

α
.

(1.13)

We note that cf is the frozen speed of sound. The equilibrium speed of sound c is given by c2 = pρ(ρ, s) = c2
f /(1 +b)

where

b := pe1v

(1 + Qe1)c
2
f /a − pe1v

= γ − 1

c2
f /a + 1

,
c2
f

a
= 2 + α

αf

. (1.14)

We will use both (1.10) and (1.12) at our convenience. From (1.12) it is easy to see that the dissipation induced by the 
relaxation term has no effect on the entropy s. Precisely,

(
1

T2
− 1

T1
)χ = 2

αf R

χ2

T1T2
> 0 (1.15)

implies that the entropy increases along the particle path.
In this paper, we are interested in the global existence and large time behavior of irrotational flow for gas dynamics 

in thermal nonequilibrium. We consider the initial value problem of the system (1.10) in R3 with irrotational initial 
data

(ρ,u, e1, q)(0, x) = (ρ0, u0, e1,0, q0)(x), ∇ × u0 = 0, (1.16)

which is a small perturbation of an equilibrium state (ρ̄, ū, ē1, q̄), ρ̄, ē1, q̄ > 0 satisfying

q̄ = Q̄, or T̄1 = T̄2. (1.17)

Without loss of generality we take ū = 0. Here we use ̄ to denote the constant state and

Q̄ = αf

α
ē1, T̄2 = 2

αf R
q̄, etc.

Before stating the main result, we introduce some notations for later use. A � B means that there is a generic constant 
C > 0 such that A ≤ CB . ∇k, k ≥ 1 denotes all derivatives of order k and for multi-index β = (β1, β2, β3),

∂β = ∂β1
x1

∂β2
x2

∂β3
x3

, |β| =
3∑

j=1

βj .

Then ‖ · ‖Hk denotes the norms in the Sobolev space Hk(R3) and ‖ · ‖Lp , p ≥ 1 denotes the norms in Lp(R3). For 
convenience, for k = 0 we use 〈·, ·〉 and ‖ · ‖ to denote the inner product and norm in L2(R3) respectively.

Theorem 1.1. Let ρ̄, ē1, q̄ be positive constants such that (1.17) holds, the irrotational initial data (ρ0, u0, e1,0, q0)

be such that ‖ρ0 − ρ̄, u0, e1,0 − ē1, q0 − q̄‖H 3 is sufficiently small and ‖p0 − p̄, u0, χ0‖L1 is bounded. Then a unique 
global solution (ρ, u, e1, q) satisfying the irrotational condition ∇ × u = 0 with ρ, e1, q > 0 to the Cauchy problem 
of (1.10) and (1.16) exists and satisfies

(ρ − ρ̄, u, e1 − ē1, q − q̄) ∈ C0([0,∞);H 3(R3)
) ∩ C1([0,∞);H 2(R3)

)
. (1.18)

Moreover, it holds



Y. Huang, T. Luo / Ann. I. H. Poincaré – AN 37 (2020) 225–238 229
‖(ρ − ρ̄, u, e1 − ē1, q − q̄)‖2 + ‖∇(p,u,χ, s)‖2
H 2 +

t∫

0

(‖χ‖2
H 3 + ‖(∇p,∇ · u)‖2

H 2

)
dτ

� ‖(ρ0 − ρ̄, u0, e1,0 − ē1, q0 − q̄)‖2 + ‖∇(p0, u0, χ0)‖2
H 2 + exp{‖(p0 − p̄, u0, χ0)‖L1∩H 3}‖∇s0‖2

H 2 .

(1.19)

And the solution (p, u, χ) has the following decay property

‖χ(t)‖H 3 + ‖∇(
p,u

)
(t)‖H 2 � (1 + t)−

5
4 ‖(p0 − p̄, u0, χ0)‖L1∩H 3, ∀ t ≥ 0. (1.20)

Remark. The above theorem says that if the flow is irrotational, then it exists globally. In particular, if the initial data 
are spherically symmetric, then there exists a globally defined spherically symmetric solution. This can be seen by a 
simple uniqueness argument and the invariance of the equations for the rotational coordinates transformation, t ′ = t , 
x′ = Sx for S ∈ SO(3). Another example of irrotational flow is given by (1.8).

We give some remarks on the proof of Theorem 1.1. We prove the global existence and large time behavior of 
the solution to the Cauchy problem when the initial data are a small perturbation of an equilibrium constant state 
with an additional bound of the L1-norm. If we study the spherically symmetric solution (1.7) on the exterior domain 
|x| = r > r0 for some constant r0 > 0. We can introduce the Lagrangian mass coordinate

η(r, τ ) =
r∫

1

s2ρ(t, s)ds, τ = t,

and the equations (1.12) are reduced to
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

pt + γp

v
(r2u)η = − 2

αv
χ,

ut + r2pη = 0,

χt + αf

α
p(r2u)η = −(1 + αf

α
)χ,

st = (
1

T2
− 1

T1
)χ.

(1.21)

Imposed with the boundary condition u(r0, t) = 0, the global existence and large time behavior of smooth solution for 
(1.21) on an exterior domain can be obtained following the argument in [2]. However, the entropy increase dictated 
by physics for any irreversible process makes it challenging to establish the global existence of irrotational Eulerian 
flow. Compared with the one-dimensional flow, cf. [17], using a standard energy method is not sufficient for proving 
the global a priori estimates, see (2.10). It is worth pointing out that we use the spectral method to obtain the large 
time behavior of the solution for the nonlinear system. Then we are able to show that the entropy increases but stays 
bounded. This framework has been applied in [4] to study the compressible Navier-Stokes equations.

2. Proof of Theorem 1.1

Theorem 1.1 follows from the standard continuity argument by the a priori estimates and the local existence result, 
which is standard for the system (1.1), e.g., see [8] and references therein. Thus it is sufficient to prove Proposition 2.1.

Proposition 2.1 (A priori estimate). Let ρ̄, ē1, q̄ be positive constants such that (1.17) holds and (ρ0 − ρ̄, u0, e1,0 −
ē1, q0 − q̄) ∈ H 3(R3). Suppose (ρ, u, e1, q)(t, x) is an irrotational solution of the Cauchy problem (1.10) and (1.16)
in the time interval [0, T ], T > 0, satisfying

(ρ − ρ̄, u, e1 − ē1, q − q̄) ∈ C0([0, T ];H 3(R3)
) ∩ C1([0, T ];H 2(R3)

)
,

∇p,∇ · u ∈ L2([0, T ];H 2(R3)
)
, χ ∈ L2([0, T ];H 3(R3)

)
.

(2.1)

There exists some constant δ > 0 sufficiently small, which is independent of T such that if
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sup
0≤t≤T

‖ρ − ρ̄, u, e1 − ē1, q − q̄‖H 3 ≤ δ, (2.2)

and we further assume

(p0 − p̄, u0, χ0) ∈ L1(R3), (2.3)

then it holds

‖(ρ − ρ̄, u, e1 − ē1, q − q̄)‖2 + ‖∇(p,u,χ, s)‖2
H 2 +

t∫

0

(‖χ‖2
H 3 + ‖(∇p,∇ · u)‖2

H 2

)
dτ

� ‖(ρ0 − ρ̄, u0, e1,0 − ē1, q0 − q̄)‖2 + ‖∇(p0, u0, χ0)‖2
H 2 + exp{‖(p0 − p̄, u0, χ0)‖L1∩H 3}‖∇s0‖2

H 2 .

(2.4)

Particularly, the solution (p, u, χ) has the following decay property

‖χ(t)‖H 3 + ‖∇(
p,u

)
(t)‖H 2 � (1 + t)−

5
4 ‖(p0 − p̄, u0, χ0)‖L1∩H 3, ∀ t ∈ [0, T ]. (2.5)

Proof. Proposition 2.1 is a consequence of the energy estimates in Proposition 2.2 and the decay estimates of (p, u, χ)

in Proposition 2.3.
Particularly, we use the a priori decay-in-time estimate on the velocity to obtain the uniform bound of the deriva-

tives of entropy. Precisely, together with the decay property (2.36) of ∇u in Proposition 2.3, it follows from the energy 
estimate (2.10) of ∇s in Proposition 2.2 by using the Gronwall’s inequality that

‖∇s‖2
H 2 � exp{

t∫

0

‖∇(∇ · u)‖H 1dτ }(‖∇s0‖2
H 2 + δ

t∫

0

‖∇χ‖2
H 2dτ

)

� exp{‖(p0 − p̄, u0, χ0)‖L1∩H 3}(‖∇s0‖2
H 2 + δ

t∫

0

‖∇χ‖2
H 2dτ

)
.

(2.6)

Integrate (2.9) in Proposition 2.2 over [0, t], t ≤ T , under the smallness assumption (2.2), (2.4) follows directly from 
the summation of the result inequality and (2.6). �
2.1. Energy estimates

For later use, we review some Sobolev inequalities.

Lemma 2.1. For w ∈ Hk(R3), ∇w ∈ L∞(R3) and v ∈ Hk−1(R3) ∩ L∞(R3),
∑

1≤|β|≤k

‖[∂β,w]v‖ ≤ Ck

(‖∇w‖L∞‖∇k−1v‖ + ‖v‖L∞‖∇kw‖).

Particularly, for w, v ∈ Hk(R3) ∩ L∞(R3),
∑
|β|≤k

‖∂β(wv)‖ ≤ Ck

(‖w‖L∞‖∇kv‖ + ‖v‖L∞‖∇kw‖),

where

‖w‖L∞ � ‖∇w‖1/2‖∇2w‖1/2 � ‖∇w‖H 1, ∀ w ∈ H 2(R3).

In this subsection, we will prove the following energy estimates.

Proposition 2.2. Suppose that (ρ, u, e1, q) is an irrotational solution of the system (1.10) for t ∈ [0, T ], T > 0. 
Assume all conditions of Proposition 2.1 hold. Under the assumption
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sup
0≤t≤T

‖ρ − ρ̄, u, e1 − ē1, q − q̄‖H 3 ≤ δ, (2.7)

where δ > 0 is sufficiently small, the following energy estimates hold.

d

dt

(‖∇(p,u)‖2
H 2 + ‖χ‖2

H 3

) + ‖χ‖2
H 3 + ‖∇2p‖2

H 1 + ‖∇(∇ · u)‖2
H 1 � ‖∇(p,u)‖2, (2.8)

d

dt

(‖(ρ − ρ̄, u, e1 − ē1, q − q̄)‖2 + ‖∇(p,u,χ)‖2
H 2

) + ‖χ‖2
H 3 + ‖∇p‖2

H 2 + ‖∇ · u‖2
H 2 ≤ 0, (2.9)

d

dt
‖∇s‖2

H 2 � ‖∇(∇ · u)‖H 1‖∇s‖2
H 2 + δ‖∇χ‖2

H 2 . (2.10)

Proof. Firstly, we study the basic energy estimates of (1.10). Multiplying (1.10)3 by ρ/e1 gives

d

dt
(ρ ln e1) + ∇ · (ρu ln e1) + 2

α
ρ∇ · u = − 1

e1
ρχ,

where we used (1.10)1 and (1.9). Together with (1.10)1 and

d

dt
(ρe1) + ∇ · (ρue1) + p∇ · u = −ρχ,

we can claim that

d

dt

(
q̄ρ(

e1

q̄
− ln[(αf

α

e1

q̄
)

α
αf ] − α

αf

)
)

+ ∇ · (q̄ρu(
e1

q̄
− ln[(αf

α

e1

q̄
)

α
αf ] − α

αf

)
) + (p − 2

αf

q̄ρ)∇ · u = (
q̄

Q
− 1)ρχ.

(2.11)

Similarly, it follows from (1.10)1 and (1.10)4 respectively that

d

dt

(
ρ(

ρ̄

ρ
− ln

ρ̄

ρ
− 1)

) − ∇ · (ρu(ln
ρ̄

ρ
+ 1)

) + ρ∇ · u = 0, (2.12)

d

dt

(
q̄ρ(

q

q̄
− ln

q

q̄
− 1)

) + ∇ · (ρu(q − q̄ ln
q

q̄
− q̄)

) = (1 − q̄

q
)ρχ. (2.13)

Finally, multiplying (1.10)2 by ρu� yields that

1

2

d

dt
(ρ|u|2) + 1

2
∇ · (ρu|u|2) + u · ∇p = 0. (2.14)

The summation of (2.11) + 2q̄(2.12)/α + (2.13) + (2.14) gives

d

dt

( 2q̄

αf

ρ(
ρ̄

ρ
− ln

ρ̄

ρ
− 1) + 1

2
ρ|u|2 + q̄ρ(

e1

q̄
− ln[(αf

α

e1

q̄
)

α
αf ] − α

αf

+ q

q̄
− ln

q

q̄
− 1)

)

+ ∇ · (q̄ρ
(e1 + q

q̄
− ln[q

q̄
(
ρ̄

ρ
)

2
αf (

αf

α

e1

q̄
)

α
αf ] − c2

f

a
− 1

)
u + 1

2
ρ|u|2u + pu

)

= q̄(
1

Q
− 1

q
)ρχ.

(2.15)

Then under the smallness assumption (2.7), it follows from (2.15) that

d

dt
‖(ρ − ρ̄, u, e1 − ē1, q − q̄)‖2 + c0‖χ‖2 ≤ 0, (2.16)

using

q̄(
1

q
− 1

Q
)ρχ ≥ c0χ

2,

for some constant c0 > 0 independent of t . Particularly, we multiply (1.12)3 by χ and integrate the result equation 
over R3. Using the Cauchy-Schwarz inequality we have
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d

dt
‖χ‖2 + ‖χ‖2 � ‖∇ · u‖2. (2.17)

Then we consider the higher order energy estimates by using the thermodynamics properties of (1.12) as follows. 
Notice that the symmetrization procedure of (1.12) is motivated by choosing the positive definite matrix

S =

⎛
⎜⎜⎝

1 + b 0 − c2
f

a
bρ

0 γρp 0

− c2
f

a
bρ 0 (

c2
f

a
ρ)2b

⎞
⎟⎟⎠ , (2.18)

where the constants c2
f /a, b > 0 are given in (1.14). For some multi-index β with 1 ≤ |β| ≤ 3, using (2.18), applying 

∂β to (1.12) gives⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂βp)t + u · ∇∂βp = − 2

α
∂β(ρχ) − γ ∂β(p∇ · u) − [∂β,u · ∇]p,

(∂βu)t + u · ∇∂βu = −∂β(v∇p) − [∂β,u · ∇]u,

(∂βp − c2
f

a
ρ∂βχ)t + u · ∇(∂βp − c2

f

a
ρ∂βχ) − (

c2
f

a
+ 1)ρ∂βχ

= c2
f

a
ρ∇ · u∂βχ − [∂β,u · ∇]p + c2

f

a
ρ[∂β,u · ∇]χ + γρ[∂β, v](p∇ · u) − 2

α
[∂β,ρ]χ,

(2.19)

and

(∂βs)t + u · ∇∂βs = 2

αf R
∂β(

χ2

T1T2
) − [∂β,u · ∇]s. (2.20)

We multiply (2.19) by 
(
∂βp, c2

f ρ2∂βu, b(∂βp − c2
f /aρ∂βχ)

)� to obtain that

1

2

d

dt

(|∂βp|2 + γρp|∂βu|2 + b|∂βp − c2
f

a
ρ∂βχ |2) + 2α

c2
f

a
|ρ∂βχ |2

+ 1

2
∇ · (u(|∂βp|2 + γρp|∂βu|2 + b|∂βp − c2

f

a
ρ∂βχ |2) + 2γp∂βu∂βp

)

= 1

2
∇ · u(

(1 + b)|∂βp|2 − ρp|γ ∂βu|2 − b|c
2
f

a
ρ∂βχ |2) + γ (∇p · ∂βu∂βp − χ

α
|ρ∂βu|2)

− (
(1 + b)∂βp − b

c2
f

a
ρ∂βχ

)
([∂β,u · ∇]p + 2

α
[∂β,ρ]χ)

+ bρ(∂βp − c2
f

a
ρ∂βχ)

(c2
f

a
[∂β,u · ∇]χ + γ [∂β, v](p∇ · u)

)

− γ ∂βp[∂β,p](∇ · u) − γpρ∂βu([∂β,u · ∇]u + [∂β, v]∇p).

(2.21)

Under the assumption (2.2), by straightforward calculations we arrive that

d

dt
‖∇(p,u,χ)‖2

H 2 + ‖∇χ‖2
H 2 � δ‖∇(p,u)‖2

H 2, (2.22)

where for instance we use the Sobolev inequalities in Lemma 2.1 to show that∑
1≤|β|≤3

‖[∂β, v](p∇ · u)‖ � ‖∇v‖L∞
(‖p‖L∞‖∇2(∇ · u)‖ + ‖∇ · u‖L∞‖∇2p‖) + ‖(p∇ · u)‖L∞‖∇3v‖

� δ(1 + δ)‖∇ · u‖H 2,

and ∑
1≤|β|≤3

‖[∂β
x , ρ]χ‖ � ‖∇ρ‖L∞‖∇2χ‖ + ‖χ‖L∞‖∇3ρ‖ � δ‖∇χ‖H 1 .
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The remained terms can be treated similarly.
Next, we apply ∂β ′

, |β ′| ≤ 2 to (1.12)3 and multiply the obtained equation by ∂β ′
(∇ · u). Using (1.12)2 it holds 

that
αf

α
pv|∂β ′

(∇ · u)|2 = αf

α
∂β ′

(∇ · u)
(
∂β ′

(pv∇ · u) − [∂β ′
,pv](∇ · u)

)

= − d

dt

(
∂β ′

χ∂β ′
(∇ · u)

) + ∇ · (∂β ′
χ∂β ′

ut )

− ∂β ′
(u · ∇u + v∇p) · ∇∂β ′

χ

− (
ζ∂β ′

χ + ∂β ′
(u · ∇χ) + αf

α
[∂β ′

,pv](∇ · u)
)
∂β ′

(∇ · u).

(2.23)

Similarly we use (1.12)1 and (1.12)2 to obtain that

v|∇∂β ′
p|2 = − d

dt
(∂β ′

u · ∇∂β ′
p) + ∇ · (∂β ′

u∂β ′
pt )

+ ∂β ′(
u · ∇p + γp∇ · u + 2

α
ρχ

)
∂β ′

(∇ · u) − (
∂β ′

(u · ∇u) + [∂β ′
, v]∇p

) · ∇∂β ′
p.

(2.24)

Since ∇ × u = 0, using (1.6) it is straightforward to verify that

‖∇u(t, ·)‖2
Hk = ‖∇ · u(t, ·)‖2

Hk .

Then it follows from (2.23) by using the Cauchy-Scharwz inequality that

∑
1≤|β ′|≤2

d

dt
〈∂β ′

χ, ∂β ′
(∇ · u)〉 + ‖∇(∇ · u)‖2

H 1 � Cε‖∇χ‖2
H 2 + (δ + ε)‖∇2p‖2

H 1, (2.25)

where the constant Cε depends on the sufficiently small constant ε > 0. Using (2.24) it also holds that

∑
1≤|β ′|≤2

d

dt
〈∂β ′

u,∇∂β ′
p〉 + ‖∇2p‖2

H 1 � ‖∇(∇u,χ)‖2
H 1 . (2.26)

A suitable summation of (2.22), (2.25) and (2.26) gives

d

dt
‖∇(p,u,χ)‖2

H 2 + ‖∇χ‖2
H 2 + ‖∇2p‖2

H 1 + ‖∇(∇ · u)‖2
H 1 � δ‖∇(p,u)‖2, (2.27)

together with (2.17), which leads to (2.8). Particularly, for β ′ = 0 we have

d

dt

(〈χ,∇ · u〉, 〈u,∇p〉) + ‖(∇p,∇ · u)‖2 � ‖χ‖H 1 . (2.28)

Then (2.9) follows by using (2.16), (2.27) and (2.28).
Finally, multiplying (2.20) by ∂βs yields that

1

2

d

dt
|∂βs|2 + 1

2
∇ · (u|∂βs|2) = 1

2
∇ · u|∂βs|2 + ∂βs(

2

αf R
∂β(

χ2

T1T2
) − [∂β,u · ∇]s).

Using Lemma 2.1 again we can claim

∑
1≤|β|≤3

‖∂β(
χ2

T1T2
)‖ � ‖χ2‖L∞‖∇3(

1

T1T2
)‖ + ‖ 1

T1T2
‖L∞‖∇3(χ2)‖

� (1 + δ)‖∇χ‖2
H 2,∑

1≤|β|≤3

‖[∂β,u · ∇]s‖ � ‖∇u‖L∞‖∇3s‖ + ‖∇3u‖L∞‖∇s‖L∞

� ‖∇2u‖H 1‖∇2s‖H 1 � ‖∇(∇ · u)‖H 1‖∇s‖H 2,

which leads to (2.10). �
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2.2. Optimal decay estimates

In this subsection we study the time-decay estimates of (p, u, χ) of the system (1.12). Derived from the spectral 
analysis of the linearized system, the large time decay estimate of u in Proposition 2.3 plays a key role in obtaining 
the global a priori estimate of ∇s, see (2.10).

Recall that the solution of (1.12) is a small perturbation around the equilibrium constant state (p̄, 0, 0, ̄s). The 
linearized system of (1.12) around (p̄, 0, 0, ̄s) can be decoupled into a system of V = V (t, x) = (p − p̄, u, χ)�(t, x)

as

Vt =AV, A = −
⎛
⎝ 0 γ p̄∇· 2/(αv̄)

v̄∇ 0 0
0 ā∇· ζ

⎞
⎠ ∈R5×5, (2.29)

and the linearized entropy equation

st = 0. (2.30)

Here v̄ is the value of v at the constant equilibrium state, ā = αf p̄v̄/α. This subsection is devoted to studying the 
Cauchy problem of (2.29) with initial data

V0 = V (0, x) = (p − p̄, u,χ)(0, x) = (p0 − p̄, u0, χ0)(x), (2.31)

satisfying the compatibility condition

∇ × u0 = 0. (2.32)

Then by Duhamel’s principle, we have

(
p − p̄, u,χ

)�
(t) = etA(x)(p0 − p̄, u0, χ0)

� +
t∫

0

e(t−τ)A(x)
(
g0,g, g4

)�
(τ )dτ, g = (g1, g2, g3), (2.33)

where the decay estimates on semigroup etA(x) will be given in Proposition 2.4 and the nonlinear terms gi, i =
0, · · · , 4,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g0 = −u · ∇p − γ (p − p̄)∇ · u − 2

α
(

1

v
− 1

v̄
)χ,

g = −u · ∇u − (v − v̄)∇p,

g4 = −u · ∇χ − αf

α
(pv − p̄v̄)∇ · u,

(2.34)

satisfy the compatibility condition (2.32).

Proposition 2.3. Suppose that (ρ, u, e1, q) is an irrotational solution of the system (1.10) for t ∈ [0, T ], T > 0. 
Assume all conditions of Proposition 2.1 hold. If we further assume

(p0 − p̄, u0, χ0) ∈ L1(R3), (2.35)

then the solution admits the following decay property

‖χ(t)‖H 3 + ‖∇(
p,u

)
(t)‖H 2 � (1 + t)−

5
4 ‖(p0 − p̄, u0, χ0)‖L1∩H 3 . (2.36)

Proof. Firstly we study the a priori decay-in-time estimates of (p, u) on the right-hand side of (2.8). Based on the 
decay properties of the linear system in Proposition 2.4, which will be proved later, it follows from (2.33) that

‖∇(p,u)‖ � (1 + t)−
5
4 ‖(p0 − p̄, u0, χ0)‖L1

⋂
H 1 +

t∫

0

(1 + t − τ)−
5
4 ‖(g0,g)(τ )‖L1

⋂
H 1dτ

� (1 + t)−
5
4 ‖(p0 − p̄, u0, χ0)‖L1

⋂
H 1 + δ

t∫
(1 + t − τ)−

5
4 ‖(χ,∇p,∇ · u)

(τ )‖H 1dτ,

(2.37)
0
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where it is straightforward to verify that

‖(g0,g
)
(t)‖L1 � δ‖(χ,∇p,∇u

)
(t)‖, ‖(g0,g

)
(t)‖H 1 � δ‖(χ,∇p,∇u

)
(t)‖H 1 .

Set

M(t) = sup
0≤τ≤t

(1 + τ)
5
2
(‖χ(τ)‖2

H 3 + ‖∇(p,u)(τ )‖2
H 2

)
.

Adding ‖∇(p, u)‖2 to both sides of (2.8) gives

d

dt

(‖∇(p,u)‖2
H 2 + ‖χ‖2

H 3

) + ‖χ‖2
H 3 + ‖∇(p,u)‖2

H 2 � ‖∇(p,u)‖2. (2.38)

Then it follows from (2.38) by using the Gronwall’s inequality and (2.37) that

‖χ(t)‖2
H 3 + ‖∇(p,u)(t)‖2

H 2 � e−t
(‖χ0‖2

H 3 + ‖∇(p0, u0)‖2
H 2

)

+
t∫

0

e−(t−τ)(1 + τ)−
5
2 ‖(p0 − p̄, u0, χ0)‖2

L1
⋂

H 1dτ

+ δ2M(t)
( t∫

0

(1 + t − τ)−
5
4 (1 + τ)−

5
4 dτ

)2

� (1 + t)−
5
2
(‖(p0 − p̄, u0, χ0)‖2

L1
⋂

H 3 + δ2M(t)
)
.

Since M(t) is non-decreasing and δ > 0 is small enough, we can claim

M(t) � ‖(p0 − p̄, u0, χ0)‖2
L1

⋂
H 3, ∀ t ∈ [0, T ], (2.39)

which gives (2.36). �
It remains to prove the decay properties of the solution for the linearized system (2.29). In order to combine the 

constraint (2.32), we define the pseudo-differential operator P r , r ∈ R, as

Prf =F−1{|ξ |r f̂ (ξ)},
where F−1{·} denotes the inverse of the Fourier transform F{·} with respect to x,

F{f } = f̂ (·, ξ) =
∫

R3

f (·, x)e−ix·ξ dx.

Then we introduce

w =P−1(∇ · u), i.e. ŵ = iξ

|ξ | · û. (2.40)

By (1.6) it also holds that

u = −F−1{|ξ |−2(iξ(iξ · û) − iξ × iξ × û
)} = −F−1{|ξ |−1(iξŵ)} = −P−1{∇w}. (2.41)

Denoted by U = U(t, x) = (ϑ, w, χ)�(t, x) where ϑ := p − p̄, the system (2.29), (2.31) and (2.32) can be rewritten 
as

Ut = BU, U(0, x) = U0, t ≥ 0, (2.42)

where U0 = (ϑ, w, χ)�(0, x) and B is given by

B = −
⎛
⎝ 0 γ p̄P 2/(αv̄)

−v̄P 0 0
0 āP ζ

⎞
⎠ ∈R3×3,
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by noticing �ϑ = −P2ϑ . Taking the Fourier transform of (2.42) we have

Ût =EÛ , Û (0, ξ) = Û0, t ≥ 0,

where Û = Û (t, ξ) = (
ϑ̂, ŵ, χ̂

)�
(t, ξ) and

E =E(|ξ |) = −
⎛
⎝ 0 γ p̄|ξ | 2/(αv̄)

−v̄|ξ | 0 0
0 ā|ξ | ζ

⎞
⎠ . (2.43)

The characteristic equation of E is

det(λI −E) = λ3 + ζλ2 + c̄2
f |ξ |2λ + ζ c̄2|ξ |2,

which is the same as the one-dimensional flow. We point out that the matrix E admits three simple eigenvalues λ±(|ξ |)
and λd(|ξ |), which do not coincide on the complex plane except for a finite number of exceptional points. Obviously 
it holds that

λ+ + λ− + λd = −ζ, λ+λ− + λd(λ+ + λ−) = c̄2
f |ξ |2, λ+λ−λd = −ζ c̄2|ξ |2. (2.44)

The functions λσ = λσ (z), σ = ±, d , are holomorphic in each simply connected domain containing no exceptional 
points while continuous at the exceptional point, which can be a branch point or a regular point with eigenvalue 
splitting, cf. [17,19].

Lemma 2.2 (Lemma 3.2. [19]). The functions λσ (z), σ = ±, d , are analytic at the origin and have at most a simple 
pole at the infinity. Precisely, for all z �= 0 it holds that

Re{λσ (z)} < 0, σ = ±, d. (2.45)

Particularly, for |z| � 1,

λ±(z) = −μ(r)z2 + λR(z4) ± iz
(
c̄ + λI (z

2)
)
, λd(z) = −ζ + 2μ(r)z2 − 2λR(z4), (2.46)

and for |z| → +∞,

λ±(z) = −μ(1) + λ̃R(z−2) ± iz
(
c̄f + λ̃I (z

−2)
)
, λd = −μ(2) − λ̃R(z−2), (2.47)

where

μ(r) = c̄2
f − c̄2

2ζ
= α

(α + αf )2 ā, μ(1) = 1

2
(1 − c̄2

c̄2
f

)ζ 2 = αf

α(2 + α)
, μ(2) = c̄2

c̄2
f

ζ = 1 + αf

2 + α
,

and λR(z4) = O(z4), λI (z
2) = O(z2) are analytic of z2 while λ̃R(z−2) = O(z−2), λ̃I (z

−2) = O(z−2) are analytic 
of z−2, which are all with real coefficients in their Taylor expansions.

Corresponding to the eigenvalue λσ , σ = ±, d , the right eigenvector rσ and the left eigenvector lσ are

rσ = (
λσ , v̄|ξ |,−αv̄(λ2

σ + c̄2
f |ξ |2)/2

)�
, lσ = (

v̄|ξ |2/λσ , |ξ |,−2|ξ |2/[αλσ (λσ + ζ )]).
Direct calculations by using (2.44) show that the eigenprojection

Pσ = Pσ (|ξ |) = [(l�σ lσ )−1rσ l�σ ](|ξ |), σ = ±, d,

corresponding to the eigenvalue λσ of E is given by

Pσ = (
2λσ (λσ + ζ ) + λ2

σ + c̄2
f |ξ |2)−1

⎛
⎝ λσ (λσ + ζ ) λ2

σ (λσ + ζ )(v̄|ξ |)−1 −2λσ /(αv̄)

v̄(λσ + ζ )|ξ | λσ (λσ + ζ ) −2|ξ |/α
−v̄ā|ξ |2 −λσ ā|ξ | λ2

σ + c̄2
f |ξ |2

⎞
⎠ . (2.48)

The long time behavior of the Green’s function G = G(t, x) = etB(x) depends on the expansions of the Fourier 
transform Ĝ(t, ξ) expressing as
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Ĝ(t, ξ) =: etE(ξ) = etλ+(|ξ |)P+(ξ) + etλ−|ξ |P−(ξ) + etλd |ξ |Pd(ξ), (2.49)

in low frequency while the local behavior depends on those in high frequency. To derive the large time decay rate of 
the solution for (2.29), naturally we divide the integral in the inverse transform into three parts: over |ξ | < ε, |ξ | > R

and ε ≤ |ξ | ≤ R for some small constant ε and some large constant R.
Firstly, we study the asymptotic expansion of Ĝ(t, ξ) for small |ξ |. To achieve some cancelation, we pair the first 

two terms on the right-hand side of (2.49) to obtain that

|etλ+P+ + etλ−P−| = |etReλ±[cos(tImλ±)(P+ + P−) + i sin(tImλ±)(P+ − P−)]|

� e−μ(r)|ξ |2t
⎛
⎝ 1 1 1

1 1 1
|ξ | |ξ | |ξ |

⎞
⎠ ,

by using (2.46)1 and (2.48). And it follows from (2.46)2 that

|etλd Pd | � e−ζ t

⎛
⎝ |ξ |2 |ξ | 1

|ξ |3 |ξ |2 |ξ |
|ξ |2 |ξ | 1

⎞
⎠ .

Then for some given ε > 0 sufficiently small we have

|Ĝ(t, ξ)| � e−μ(r)|ξ |2t
⎛
⎝ 1 1 1

1 1 1
|ξ | |ξ | |ξ |

⎞
⎠ +

⎛
⎝ 0 0 0

0 0 0
0 0 e−ζ t

⎞
⎠ , |ξ | < ε. (2.50)

Similarly, using (2.47), by direct calculations we can claim that for |ξ | → ∞,

|Ĝ(t, ξ)| � e−μ(1)t

⎛
⎝ 1 1 |ξ |−1

1 1 |ξ |−1

1 1 |ξ |−1

⎞
⎠ + e−μ(2)t

⎛
⎝ |ξ |−2 |ξ |−3 |ξ |−2

|ξ |−1 |ξ |−2 |ξ |−1

1 |ξ |−1 1

⎞
⎠ .

Together with (2.45), it holds that

|Ĝ(t, ξ)| � e−rεt

⎛
⎝ 1 1 1

1 1 1
1 1 1

⎞
⎠ , |ξ | ≥ ε, (2.51)

where the constant rε > 0 depends only on ε. Here for simplicity, |Ĝ| means the matrix corresponding to Ĝ with each 
element taken the absolute value.

With the help of the asymptotic analysis for the Green’s function in Fourier space, we are able to establish the 
L2-time decay rate of the global solution to the Cauchy problem for the linear system (2.29), (2.31)-(2.32). It should 
be noted that the decay rates obtained below are optimal.

Proposition 2.4. Assume (p0 − p̄, u0, χ0) ∈ L1(R3) ∩ H 3(R3). Then (p, u, χ) solves the Cauchy problem (2.29), 
(2.31)-(2.32) for all t > 0, x ∈R3. For k ≤ 3 it holds that

‖∇k(p − p̄, u)(t)‖ � (1 + t)−
3
4 − k

2 ‖(p0 − p̄, u0, χ0)‖2
L1∩Hk , (2.52)

‖∇kχ(t)‖ � (1 + t)−
5
4 − k

2 ‖(p0 − p̄, u0, χ0)‖2
L1∩Hk . (2.53)

Proof. It is equivalent to consider the linear system (2.42). We use the pointwise estimates (2.50) and (2.51) on the 
Fourier transforms Ĝ(t, ξ) to derive time decay properties of solution (p, u, χ) for (2.29) as follows. For k ≥ 0 we 
can claim

‖∇kϑ(t, x)‖2 =
∫

|ξ |2k|ϑ̂(t, ξ)|2dξ +
∫

|ξ |2k|ϑ̂(t, ξ)|2dξ
|ξ |≤ε |ξ |≥ε
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�
∫

|ξ |≤ε

e−μ(r)|ξ |2t |ξ |2k
(|ϑ̂ |2 + |ŵ|2 + |χ̂ |2)dξ + e−rεt

∫

|ξ |≥ε

|ξ |2k
(|ϑ̂ |2 + |ŵ|2 + |χ̂ |2)dξ

� (1 + t)−
3
2 −k‖(ϑ0, u0, χ0)‖2

L1
⋂

Hk ,

by using the relation (2.41) between u and w such that

‖|ξ |kŵ‖ = ‖∇ku‖, ‖ŵ‖L∞ ≤ ‖û‖L∞ ≤ ‖u‖L1 .

Similarly, it holds that

‖∇ku(t, x)‖ � (1 + t)−
3
4 − k

2 ‖(ϑ0, u0, χ0)‖L1
⋂

Hk ,

‖∇kχ(t, x)‖ � (1 + t)−
5
4 − k

2 ‖(ϑ0, u0, χ0)‖L1
⋂

Hk ,

which completed the proof of Proposition 2.4. �
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