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Abstract

We consider in this paper the regularity problem for time-optimal trajectories of a single-input control-affine system on a 
n-dimensional manifold. We prove that, under generic conditions on the drift and the controlled vector field, any control u as-
sociated with an optimal trajectory is smooth out of a countable set of times. More precisely, there exists an integer K , only 
depending on the dimension n, such that the non-smoothness set of u is made of isolated points, accumulations of isolated points, 
and so on up to K-th order iterated accumulations.
© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction

1.1. Single-input systems and chattering phenomena

Let M be a smooth,1 connected, n-dimensional manifold and denote by Vec(M) the space of smooth vector fields 
on M . Consider the (single-input) control-affine system

q̇ = f0(q) + uf1(q), q ∈ M, u ∈ [−1,1], f0, f1 ∈ Vec(M). (1.1)

An admissible trajectory of (1.1) is an absolutely continuous curve q : [0, T ] → M , T > 0, such that there exists 
u ∈ L∞([0, T ], [−1, 1]) so that q̇(t) = f0(q(t)) + u(t)f1(q(t)) for almost every t ∈ [0, T ].

For any fixed initial datum q0 ∈ M , the time-optimal control problem associated with (1.1) consists into looking for 
admissible trajectories q : [0, T ] → M , T > 0, that minimize the time needed to steer q0 to q(T ) among all admissible 
trajectories.
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A necessary (but not sufficient) condition for an admissible trajectory to be time-optimal is provided by the Pon-
tryagin maximum principle (PMP, in short) [21]. Introducing the control-dependent Hamiltonian

H : T ∗M × [−1,1] → R, H(λ, v) = 〈λ, (f0 + vf1)(q)〉, q = π(λ), (1.2)

the PMP states that if a trajectory q(·) associated with the control u(·) is time-optimal, then it is extremal, i.e., there 
exists an absolutely continuous curve t �→ λ(t) ∈ T ∗

q(·)M \ {0} such that H(λ(t), u(t)) maximizes H(λ(t), ·) for a.e. 

t ∈ [0, T ], and such that λ̇(t) = −→
H (λ(t), u(t)) a.e. on [0, T ]. (For the precise definition of the Hamiltonian vector 

field 
−→
H and further details see Section 2.) We call the triple (q(·), u(·), λ(·)) an extremal triple. In particular, the PMP 

reduces the problem of finding time-optimal trajectories to the study of extremal ones.
The kind of results we are interested in concern the regularity of time-optimal trajectories, even though our tech-

niques handle in fact the broader class of extremal ones. Observe in any case that this is a hopeless task in full 
generality since, as proved by Sussmann in [29], for any given measurable control t �→ u(t), there exist a dynamical 
system of the form (1.1) and an initial datum q0 ∈ M for which the admissible trajectory driven by u and starting at q0
is time-optimal. It makes then sense to look for better answers imposing some genericity conditions on (f0, f1) (with 
respect to the Whitney topology on the space of pairs of smooth vector fields on M). The question we are then lead 
to tackle is the following: “What kind of behavior can we expect for time-optimal trajectories of a generic system?” 
Such a question corresponds to one of the open problems posed by A. Agrachev in [3].

The problem of the regularity of extremal trajectories for control-affine systems of the form (1.1) is known to be 
delicate. In his striking example, Fuller [13] exhibited a polynomial system of the kind studied here, in which controls 
associated with optimal trajectories have a converging sequence of isolated discontinuities. Since then the phenomenon 
of fast oscillations (or chattering) is also called the Fuller phenomenon, and his presence has important consequences 
for example on the study of optimal syntheses [9,11,18,20,28]. Another striking feature of this phenomenon is its 
stability: if the dimension of M is sufficiently high, then chattering is structurally stable (i.e., it cannot be destroyed 
by a small perturbation of the initial system). The first result in this direction was presented in [16, Theorem 0] starting 
from dimension 6, but it was subsequently extensively explored in [31]. It is however worth mentioning the fact that, 
to the best of our knowledge, none of these extremal trajectories have yet been proved to be time-optimal, nor it 
is known in lower dimensions (already in the 3D case) whether or not the chattering appears for a generic choice 
of system (1.1). Finally, we remark that the absence of Fuller phenomena for (1.1) has been proved in dimension 
2 for analytic systems and generic smooth systems [17,19,26,27]. A first extensive investigation of the chattering 
phenomenon for multi-input affine-control systems has been presented in [32].

1.2. Fuller times along extremals trajectories

Many contributions have been provided to the description of the structure of optimal trajectories around a given 
point q ∈ M . The natural setting in which this problem is usually tackled is the study of all possible Lie bracket 
configurations between f0 and f1 at q [4,7,10,15,22,23,25,30]. This approach, although very precise in its answers, 
has unfortunately the disadvantage of becoming computationally extremely difficult already for mildly degenerate 
situations in dimension 3.

Definition 1. Given an admissible trajectory q : [0, T ] → M of (1.1), we denote by Oq (or simply O if no ambiguity 
is possible) the maximal open subset of [0, T ] such that there exists a control u : [0, T ] → [−1, 1], associated with 
q(·), which is smooth on O . We also define �q (or � if no ambiguity is possible) by

� = [0, T ] \ O.

An arc is a connected component of O . An arc ω is said to be bang if u can be chosen so that |u| ≡ 1 along ω, and 
singular otherwise. Two arcs are concatenated if they share one endpoint. The time-instant between two arcs is a 
switching time.

The set Oq , defined as above, depends only on the trajectory q in the following sense: as long as f1(q(t)) is 
different from zero, the control u(t) is uniquely identified up to modification on a set of measure zero, while u can be 
chosen arbitrarily on {t | f1(q(t)) = 0}.
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Definition 2 (Fuller times). Let �0 be the set of isolated points in � and define the Fuller times as the elements of the 
set � \�0. By recurrence, �k is defined as the set of isolated points of � \ (∪k−1

j=0�j). If t ∈ �k then t is a Fuller time 
of order k. We say that a Fuller time is of infinite order if it belongs to

�∞ = � \ (∪k≥1�k).

The leading idea of this paper is to characterize the worst stable behavior for generic single-input systems of the 
form (1.1), in terms of the maximal order of its Fuller times. The heuristics behind our strategy is the following: 
thinking of points in � \�0 as “accumulations of switchings”, points in � \ (�0 ∪�1) as “accumulations of accumu-
lations” and so on, then if t is a Fuller time of sufficiently high order, a large number of relations between f0(q(t))

and f1(q(t)) can be derived. The existence of such a point q(t) can then be ruled out by standard arguments based on 
Thom’s transversality theorem (see, e.g., [1, Proposition 19.1], which can be used in combination with [14, §1.3.2]
in order to the guarantee that the dense set of “good” systems can be taken open with respect to the Whitney C∞
topology on the space of vector fields). The main result of this paper is the following.

Theorem 3. Let M be a n-dimensional smooth manifold. There exists an open and dense set V ⊂ Vec(M) × Vec(M)

such that, if the pair (f0, f1) is in V, then for every extremal triple (q(·), u(·), λ(·)) of the time-optimal control problem

q̇ = f0(q) + uf1(q), q ∈ M, u ∈ [−1,1],
the trajectory q(·) has at most Fuller times of order (n − 1)2, i.e.,

� = �0 ∪ · · · ∪ �(n−1)2 ,

where � and �j are defined as in Definition 2.

Remark 4. Since each �i , for i = 1, . . . , (n − 1)2, is discrete, as a consequence of Theorem 3 we deduce that the 
control u(·) associated with any extremal triple (q(·), u(·), λ(·)) is smooth out of a finite union of discrete sets (in 
particular, out of a set of measure zero).

As we already explained, deriving dependence relations directly on f0 and f1 is extremely complicated. The 
PMP naturally suggests to rather search for conditions in the cotangent space T ∗M , where they are more easily 
characterizable, and to subsequently project them down on the level of vector fields. On the other hand, the estimate 
(n − 1)2 on the maximal order of Fuller points obtained in this way is far from being optimal. The computation of the 
sharpest bound on the order of Fuller points is still an open problem.

1.3. Structure of the paper

In Section 2 we introduce the technical tools we need in the rest of the paper and we present a brief survey of 
related results. Section 3 is the starting point of the novel contributions of the paper: we prove that at Fuller times of 
order larger than zero, i.e., for t ∈ � \ �0, in addition to the conditions 〈λ(t), f1(q(t))〉 = 〈λ(t), [f0, f1](q(t))〉 = 0, 
one also has that either 〈λ(t), [f0 + f1, [f0, f1]](q(t))〉 = 0 or 〈λ(t), [f0 − f1, [f0, f1]](q(t))〉 = 0. The computations 
leading to this result do not require any genericity assumption. Section 4, which constitutes the technical core of this 
work, explains how to derive new conditions at each accumulation step and how to prove their independence. Section 5
concludes the proof of Theorem 3 and, finally, in Section 6, the case of time-optimal trajectories on three dimensional 
manifolds is analyzed in greater detail.
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2. Previous results and consequences of Theorem 3

2.1. Notations

Let us introduce some technical notions which will be extensively used throughout the rest of the paper. Consider 
the cotangent space T ∗M of M , endowed with the canonical symplectic form σ . For any Hamiltonian function p :
T ∗M →R, its Hamiltonian lift −→p ∈ Vec(T ∗M) is defined using the relation

σλ(·,−→p ) = 〈dλp, ·〉.
For all T > 0 and q0 ∈ M we define the attainable set from q0 at time T as

A(T ,q0) = {q(t) | q : [0, T ] → M is an admissible trajectory of (1.1) such that q(0) = q0}.
The precise content of the PMP, already mentioned at the beginning of Section 1, is then recalled below (see [6,

21]).

Theorem 5 (PMP). Let q : [0, T ] → M be an admissible trajectory of (1.1), associated with a control u(·), such 
that q(T ) ∈ ∂A(T , q0). Then there exists λ : [0, T ] → T ∗M absolutely continuous such that (q(·), u(·), λ(·)) is an
extremal triple, i.e., in terms of the control-dependent Hamiltonian H introduced in (1.2),

λ(t) ∈ T ∗
q(t)M \ {0}, ∀t ∈ [0, T ],

H(λ(t), u(t)) = max
v∈[−1,1]H(λ(t), v), for a.e. t ∈ [0, T ], (2.1)

λ̇(t) = −→
H (λ(t), u(t)), for a.e. t ∈ [0, T ]. (2.2)

Let (q(·), u(·), λ(·)) be an extremal triple. The curve q(·) is in particular said to be an extremal trajectory. We 
associate with (q(·), u(·), λ(·)) the switching function

h1(t) = 〈λ(t), f1(q(t))〉.
Differentiating a.e. on [0, T ], it follows from (2.2) that for every smooth vector field X on M

d

dt
〈λ(t),X(q(t))〉 = 〈λ(t), [f0 + u(t)f1,X](q(t))〉, for a.e. t ∈ [0, T ].

In particular, h1 is of class C1 and, setting

h01(t) = 〈λ(t), [f0, f1](q(t))〉, ∀t ∈ [0, T ],
we have ḣ1(t) = h01(t) for every t ∈ [0, T ].

Remark 6. The maximality condition (2.1) implies that

H(λ(t), u(t)) = 〈λ(t), f0(q(t))〉 + max
v∈[−1,1]v〈λ(t), f1(q(t))〉 = 〈λ(t), f0(q(t))〉 + |〈λ(t), f1(q(t))〉|.

In particular, u(t) = sgn(h1(t)) ∈ {−1, +1} whenever h1(t) �= 0.

Repeated differentiation shows that h1 is smooth when the control is. In particular, in terms of the set O introduced 
in Definition 1, h1|O ∈ C∞(O).

A folklore result on bang and singular arcs is the following. Recall that, for every f ∈ Vec(M), adf : Vec(M) →
Vec(M) denotes the adjoint action defined by adf g = [f, g].

Proposition 7. Assume that span{(adk
f0+f1

f1)(q) | k ∈N} = TqM and span{(adk
f0−f1

f1)(q) | k ∈N} = TqM for every 
q ∈ M . Fix an extremal triple (q(·), u(·), λ(·)) and an arc ω ⊂ Oq . Then, either h1(t) = 0 for at most finitely many 
t ∈ ω and the arc is bang, or h1 ≡ 0 on ω and the arc is singular.
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Proof. Let us set Z = {τ ∈ ω | h1(τ ) = 0} and F± = {τ ∈ ω | ±h1(τ ) > 0}. Assume by contradiction that Z has 
infinitely many points and that it is different from ω. We have from Remark 6 that, up to modifying u on a set of 
measure zero, u ≡ 1 on F+ and u ≡ −1 on F−. If Z has measure 0, then, by continuity of u|ω, u ≡ 1 or u ≡ −1 on 
ω. In particular, h(k)

1 (t) = 〈λ(t), (adk
f0+f1

f1)(q(t))〉 or h(k)
1 (t) = 〈λ(t), (adk

f0−f1
f1)(q(t))〉 on ω. Since between any 

two vanishing points for h(k−1)
1 there is a vanishing point for h(k)

1 , we deduce that at every cluster point t ∈ ω̄ for Z
(i.e., the limit of infinitely many distinct points in Z), λ(t) annihilates either (adk

f0+f1
f1)(q(t)) for every k ∈ N or 

(adk
f0−f1

f1)(q(t)) for every k ∈N, leading to a contradiction.
In the case where the measure of Z is positive, there exists t ∈ ω which is both a cluster point for Z and for either 

F+ or F−. By continuity of h(k)
1 |ω for every k ∈N, we deduce that either h(k)

1 (t) = 〈λ(t), (adk
f0+f1

f1)(q(t))〉 for every 

k ∈N or h(k)
1 (t) = 〈λ(t), (adk

f0−f1
f1)(q(t))〉 for every k ∈ N and we conclude as above. �

Notice that the assumption that, for every q ∈ M , span{(adk
f0+f1

f1)(q) | k ∈ N} = TqM and span{(adk
f0−f1

f1)(q) |
k ∈ N} = TqM holds true generically with respect to (f0, f1) ∈ Vec(M)2. From now on the term generic is used to 
express that a property of the pair of vector fields (f0, f1) holds true on an open and dense subset of Vec(M) ×Vec(M).

Definition 8. Let A be the alphabet containing the letters {+, −, 0, 1}, and let I = (i1 · · · id ) ∈ Ad be a word of length 
d in A. Then we employ the shorthand notation

fI = [fi1, . . . , [fid−1 , fid ] . . . ],
with the convention that f± = f0 ± f1. Moreover, given an extremal triple (q(·), u(·), λ(·)) on [0, T ], we set

hI (t) = 〈λ(t), fI (q(t))〉, t ∈ [0, T ].

2.2. Previous results

Sussmann proved in [29] that for every T > 0 and every control u ∈ L∞([0, T ], [−1, 1]) there exists a control 
system of the type (1.1) and an initial datum q0 such that the trajectory starting at q0 and corresponding to u(·) is 
time-optimal. In generic situations, however, some further regularity can be expected, as recalled in the following 
three results.

Theorem 9 ([8, Theorem 0], [12, Theorem 2.6]). Generically with respect to (f0, f1) ∈ Vec(M)2, for any extremal 
triple (q(·), u(·), λ(·)) on [0, T ] such that h1|[0,T ] ≡ 0, the set 	 = {t ∈ [0, T ] | h101(t) �= 0} is of full measure in 
[0, T ] and u(t) = −h001(t)/h101(t) almost everywhere on 	.

Theorem 10 ([2, Proposition 1]). Let I (f1) ⊂ Lie(f0, f1) denote the ideal generated by f1. If Iq(f1) = TqM for 
every q ∈ M , then, for every extremal trajectory q : [0, T ] → M , the set Oq is open and dense in [0, T ].

Theorem 11 ([7, Proposition 2]). Assume that span{(adk
f0+f1

f1)(q) | k ∈ N} = TqM and span{(adk
f0−f1

f1)(q) | k ∈
N} = TqM for every q ∈ M . Consider an extremal trajectory q : [0, T ] → M such that the union of all bang arcs is 
open and dense in [0, T ]. Then either � = �0 or there exists an infinite sequence of concatenated bang arcs.

Theorem 3 can be seen as an extension of Theorem 10 in the sense that it guarantees that, generically with respect 
to (f0, f1), the open set Oq is not only dense but also of countable complement and hence of full measure in [0, T ]
(see Remark 4). A similar observation can be done for Theorem 11, which is generalized by Theorem 3 as follows: 
generically, for every k ≥ 0, either � = ∪k

j=0�j or there exists a subinterval I of [0, T ] such that I ∩�k is a converging 
sequence.

Concerning Theorem 9, we can strengthen its conclusion as stated in Corollary 12 below. The corollary is a direct 
consequence of Proposition 29, which is a step of the proof of Theorem 3 contained in Section 5.
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Corollary 12. Generically with respect to the pair (f0, f1) ∈ Vec(M)2, for any extremal triple (q(·), u(·), λ(·)) on 
[0, T ] such that h1|[0,T ] ≡ 0, the set 	 = {t ∈ [0, T ] | h101(t) �= 0} has countable complement in [0, T ] and u(t) =
−h001(t)/h101(t) almost everywhere on 	.

2.3. Chattering and singular extremals

Classical instances of the chattering phenomenon occur when trying to join singular and bang arcs along time-
optimal trajectories of control systems as in (1.1). Legendre condition [6, Theorem 20.16] holds along singular 
extremal triples, and imposes the inequality h101(t) ≥ 0. If the inequality is strict, then the control u(t) is charac-
terized as in Theorem 9, but there are significant examples of mechanical problems in which the third bracket f101
vanishes identically (e.g. Dubin’s car with acceleration [6, Section 20.6]). This case has been intensively studied in 
[31], and the situation that forces the chattering can be essentially summarized as follows.

Theorem 13 ([6, Proposition 20.23]). Assume that the vector fields f0 and f1 satisfy the identity f101 ≡ 0. Let q :
[0, T ] → M be a time-optimal trajectory of system (1.1) which is the projection of a unique (up to a scalar factor) 
curve λ : [0, T ] → T ∗M such that (q(·), u(·), λ(·)) is an extremal triple. Assume moreover that h10001(t) �= 0 on 
[0, T ]. Then q(·) cannot contain a singular arc concatenated with a bang arc.

In particular, under the hypotheses of the theorem, the only possibility for an optimal trajectory to exit a singular 
arc is through chattering.

3. Annihilation conditions at Fuller times of an extremal trajectory

Let us fix an extremal triple (q(·), u(·), λ(·)) on [0, T ]. The goal of this section is to prove some useful annihilation 
conditions of functions of the form hI , with I a word in A (compare with Definition 8), at Fuller times, i.e., on � \�0.

Since h1 is (absolutely) continuous and u(t) = sgn(h1(t)) for almost every t such that h1(t) �= 0, then

h1
∣∣
�

≡ 0.

Moreover, between two zeroes of h1, h(1)
1 = h01 has at least one zero, which yields

h01
∣∣
�\�0

≡ 0.

The following proposition states that both h001 and h101 vanish at every t ∈ � which is at positive distance from 
{t | h1(t) �= 0}.

Proposition 14. Let t ∈ � be such that h1 is identically equal to zero on a neighborhood of t . Then h101(t) = h001(t) =
0.

Proof. Let V be a neighborhood of t such that h1|V ≡ 0. Therefore, the same is true for h01|V and

h001(τ ) + u(τ)h101(τ ) = 0 for almost every τ ∈ V. (3.1)

Let us first prove that h101(t) = 0. By contradiction and up to reducing V , we have that h101(τ ) �= 0 for every 
τ ∈ V . By (3.1), moreover, u(τ) = −h001(τ )

h101(τ )
for almost every τ ∈ V .

Notice that the differential system generated by the smooth autonomous Hamiltonian

H(p) = 〈p,f0(π(p))〉 − 〈p,f001(π(p))〉
〈p,f101(π(p))〉 〈p,f1(π(p))〉,

is well-defined on {p ∈ T ∗M | 〈p, f101(π(p))〉 �= 0} and all its trajectories are smooth. Since, moreover, the absolutely 
continuous curve (λ(t), q(t)) satisfies ṗ = −→

H (p) almost everywhere on V , we deduce that V � t �→ (λ(t), q(t)) is a 
solution of the Hamiltonian system generated by H and that the control u is smooth on V , contradicting the fact that 
t ∈ �.
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Fig. 1. A concatenation of bang arcs.

We conclude by showing that also h001(t) = 0. Following (3.1), we have

|h001(τ )| = |u(τ)||h101(τ )| ≤ |h101(τ )| for almost every τ ∈ V

and then we conclude by continuity of h101 and h001. �
Proposition 15. Assume that there exists an infinite sequence of concatenated bang arcs converging to t ∈ [0, T ]. 
Then either h+01(t) = 0 or h−01(t) = 0.

Proof. First notice that t ∈ � \�0. Assume by contradiction that neither h+01(t) nor h−01(t) is equal to zero. Consider 
a neighborhood I of t in [0, T ] (with respect to the topology induced by R) such that

1

C
≤ |h+01(s)|, |h−01(s)| ≤ C, ∀ s ∈ I,

for some positive constant C > 0.
By assumption, there exists a sequence of concatenated bang arcs in I , whose lengths we denote by {σi}i∈N ∪

{τi}i∈N ⊂ (0, +∞), with the agreement that u ≡ 1 (respectively, u ≡ −1) on the intervals of length σi (respectively, 
τi ) and that the arc of length σi is concatenated with the arc of length τi , which is concatenated with the arc of length 
σi+1 and so on. Without loss of generality, the bang arcs converge towards t from the left, so that we can further 
assume that the arc of length σi is concatenated at its right with the arc of length τi (see Fig. 1).

By convention, let 0 be the starting time of the sequence in Fig. 1. Taylor’s formula yields that

σ1 = − 2h01(0)

h+01(0)
+ O(σ 2

1 ), (3.2)

where the notation O(σ 2
1 ) has the following meaning: using an analogous Taylor expansion for each positive bang arc 

of length σk , we obtain a reminder ρk such that 
ρ2

k

σ 2
k

is uniformly bounded. We deduce from (3.2) that |h01(0)| ≈ σ1, 

where this notation is used to indicate that
1

c
≤ |h01(0)|

σ1
≤ c

for some constant c > 0. Moreover, from the expansion h01(σ1) = h01(0) + σ1h+01(0) + O(σ 2
1 ), we get

h01(σ1) = −h01(0) + O(σ 2
1 ).

Combining these two relations we obtain

τ1 ≈ |h01(σ1)| ≈ σ1.

The same computations also imply that

σ2 ≈ h01(σ1 + τ1) = −h01(σ1) + O(τ 2
1 ) = h01(0) + O(σ 2

1 ).

In particular, the sequence σi satisfies the relation σi+1 = σi + O(σ 2
i ). The contradiction is then a consequence of 

Lemma 16 below. �
Lemma 16. Let {ti}i∈N be a sequence of positive numbers satisfying the relation

ti+1 = ti + O(t2
i ).

Then, 
∑∞

i=1 ti = +∞.



334 F. Boarotto, M. Sigalotti / Ann. I. H. Poincaré – AN 36 (2019) 327–346
Proof. Let c > 0 be such that

ti+1 ≥ ti (1 − cti), ∀ i ∈ N. (3.3)

Assume by contradiction that 
∑∞

i=1 ti < +∞. In particular, ti → 0.
Up to discarding the first terms of the sequence {ti}i∈N, we can assume that 1 − cti > 0 for all i ∈N. Iterating (3.3)

we deduce that

ti+1 ≥ t1

i∏
j=1

(1 − ctj ), ∀ i ∈N.

Hence, for every i ∈N,

log ti+1 ≥ log t1 +
i∑

j=1

log(1 − ctj ) ≥ log t1 − c′
i∑

j=1

tj ,

where c′ > 0 is such that log(1 − ctj ) ≥ −c′tj for all j ∈ N. The contradiction comes by noticing that the left-hand 
side goes to −∞ as i → ∞, while the right-hand side stays uniformly bounded. �

We say that an arc is bi-concatenated if it is concatenated both at its right and at its left with other arcs.

Proposition 17. Let I be a bang arc compactly contained in (0, T ) and which is not bi-concatenated. Then there exists 
t ∈ Ī such that either h+01(t) = 0 or h−01(t) = 0.

Proof. Without loss of generality, assume that u ≡ 1 on I = (t1, t2) and that I is not concatenated with any other arc 
at t2. In particular, t2 is a cluster point for � ∩ (t2, T ]. If h1 ≡ 0 on a right neighborhood of t2, then the conclusion 
follows from Proposition 14 and the continuity of h+01 and h−01.

We can then assume that there exists a sequence of times converging from above to t2 and at which h1 is not zero. 
Then, necessarily, there exist a sequence of arcs In converging to t2. Pick, for every n ∈ N a time τn ∈ In such that 
h01(τn) = 0. By construction, the sequence (τk)k∈N converges to t2 and, by continuity, we deduce that also h01(t2) = 0.

Since h1(t1) = h1(t2) = 0, then by the mean value theorem h01 vanishes at an interior point of I , and this in turns 
implies that d

dt
h01|I = h+01|I also vanishes somewhere on I . �

The main result of the section is the following theorem.

Theorem 18. Let t ∈ � \ �0. Then h1(t) = h01(t) = 0 and, in addition, either h+01(t) = 0 or h−01(t) = 0.

Proof. We already noticed that h1 vanishes on � and h01 on � \ �0. We are going to prove the theorem by showing 
that there exists a sequence of points converging to t at which either h+01 or h−01 vanishes.

Since t /∈ �0 and thanks to Proposition 14, we can assume without loss of generality that h1 does not vanish 
identically on a neighborhood of t . Hence, there exists a sequence (τn)n∈N ⊂ [0, T ] converging to t such that h1(τn) �=
0 for every n ∈ N. Each τn is contained in an arc ωn. If the arc is singular, then it contains a nonempty subinterval on 
which h1 ≡ 0. Since moreover h1 has either a positive maximum or a negative minimum on ωn, we deduce that there 
exists an inflection point of h1 on ωn at which h+01 or h−01 vanishes.

We can then assume without loss of generality that ωn is a bang arc for every n ∈N. Let us consider the maximal 
concatenation of bang arcs from ωn towards t . Three possibilities occur: (i) the concatenation is infinite and converges 
to a point between τn and t , (ii) the concatenation stops with a bang arc which is not bi-concatenated, and (iii) the 
concatenation stops with a bang arc concatenated with a singular one. In each of the three cases, we prove that there 
exists a point between ωn and t at which either h+01 or h−01 vanishes. In cases (i) and (ii) the conclusion follows 
from Propositions 15 and 17 respectively. In the case of a bang arc concatenated with a singular one, either h1 does 
not vanish everywhere on the singular arc, and we deduce as above that there exists an inflection point of h1 on the 
singular arc at which h+01 or h−01 vanishes, or h01 = 0 at the junction of the two arcs and then the bang arc contains 
an inflection point of h1 at which h+01 or h−01 vanishes. This concludes the analysis in case (iii) and hence the proof 
of the theorem. �
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4. High-order Fuller points and genericity results

In this section we look at the new dependence conditions appearing for accumulations of Fuller points of order 
higher than one. We start by introducing some useful notation.

Remark 19. For any given word J = (j1, . . . , jr ) ∈ Ar , with r ≥ 3, jr−1 = 0, jr = 1, and at least one jk in {+, −}, an 
easy inductive argument proves that, with the notations of Definition 8, we can decompose fJ as

fJ = fJ1 + · · · + fJl
,

where J1, . . . , Jl are all words of length r written only with letters in {0, 1}, ending with the string (01) and such that, 
if |Ji |a counts the number of occurrences of the letter a in Ji , then

|J1|0 = max
i=1,...,l

|Ji |0, and |J2|1 = max
i=1,...,l

|Ji |1.

Moreover, J1 and J2 are uniquely determined by this requirement.

Definition 20. Let N ∈ N. A function S : T ∗M × JNM × JNM → R is said to be a simple relation of degree d ≤ N

if there exists a word I ∈ Ad of length d such that S = SI , where

SI (λ, jN
q (f0), j

N
q (f1)) = 〈λ,fI (q)〉, q = π(λ). (4.1)

Similarly, we call Q : T ∗M ×JNM ×JNM → R a polynomial relation if there exist l, d1, . . . , dl ∈N \ {0} and words 
I1 ∈Ad1 , . . . , Il ∈Adl such that

Q(λ, jN
q (f0), j

N
q (f1)) ∈R[SI1(λ, jN

q (f0), j
N
q (f1)), . . . , SIl

(λ, jN
q (f0), j

N
q (f1))]. (4.2)

Moreover, we set deg(Q) = max{d1, . . . , dl}.
Finally, given two simple relations SI , SJ , with a slight abuse of notation we say that the Poisson bracket {SI , SJ }

between SI and SJ is the simple relation SIJ , where IJ is defined by concatenation of words. We extend the Poisson 
bracket notation to polynomial relations by linearity and the Leibnitz rule.

In the following two lemmas we show how to derive new algebraic conditions on the jets of the vector fields f0
and f1 when increasing the order of the Fuller point.

Lemma 21. Let l, d1, . . . , dl ∈ N \ {0} and consider l words I1 ∈ Ad1 , . . . , Il ∈ Adl with dj < dl for every j < l and 
Il = (+Il−1), where we denote by (+Il−1) the concatenation of the letter + and the word Il−1. Fix an integer N > dl

and consider the family of simple relations Sj = SIj
, 1 ≤ j ≤ l, using the notation introduced in (4.1). Define the set 

B ⊂ T ∗M × JNM × JNM by

B =
{
(λ, jN

q (f0), j
N
q (f1)) | q = π(λ), (f0, f1) ∈ Vec(M)2,

S1(λ, jN
q (f0), j

N
q (f1)) = · · · = Sl(λ, jN

q (f0), j
N
q (f1)) = 0

}
.

If (q(·), u(·), λ(·)) is an extremal triple on [0, T ] for the time-optimal control problem (1.1) associated with the pair 
(f0, f1), and if the sequence {ti}i∈N ⊂ [0, T ] is such that

i) (λ(ti), jN
q(ti )

(f0), jN
q(ti )

(f1)) ∈ B for every i ∈ N,
ii) there exists t∞ = limi→∞ ti ,

then there exists a further simple relation

Sl+1 ∈ {
S(−Il−1), S(−Il ), S(+Il )

}
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such that

(λ(t∞), jN
q(t∞)(f0), j

N
q(t∞)(f1)) ∈B∩ {Sl+1 = 0}.

Finally, defining for every q ∈ M the set B′
q ⊂ T ∗

q M × JN
q M × JN

q M by

B′
q =

{
(λ, jN

q (g0), j
N
q (g1)) | λ ∈ T ∗

q M \ {0}, (g0, g1) ∈ Vec(M)2, g0(q) ∧ g1(q) �= 0,

S1(λ, jN
q (g0), j

N
q (g1)) = · · · = Sl(λ, jN

q (g0), j
N
q (g1)) = 0

}
,

if the codimension of B′
q in T ∗

q M × JN
q M × JN

q M is equal to l, then

codimT ∗
q M×JN

q M×JN
q M(B′

q ∩ {Sl+1 = 0}) = l + 1.

Proof. Let (q(·), u(·), λ(·)) be an extremal triple defined on [0, T ] and {ti}i∈N ⊂ [0, T ] be a sequence of 
points satisfying i) and ii) in the statement. Then, since for every word J ∈ {I1, . . . , Il} we have that hJ (ti) =
〈λ(ti), fJ (q(ti))〉 vanishes for every i ∈ N, by continuity the same is also true for hJ (t∞), which implies that the 
point (λ(t∞), jN

q(t∞)
(f0), jN

q(t∞)
(f1)) belongs to B.

Now, up to the choice of a suitable subsequence of {ti}i∈N, we infer the identity

0 = lim
i→∞

hJ (t∞) − hJ (ti)

t∞ − ti
= lim

i→∞
1

t∞ − ti

t∞∫
ti

(h0J (τ ) + u(τ)h1J (τ ))dτ (4.3)

= h0J (t∞) + ūh1J (t∞), ū = lim
i→∞

1

t∞ − ti

t∞∫
ti

u(τ )dτ ∈ [−1,1],

which is valid for every J ∈ {I1, . . . , Il}. The first of our claims is then proved. Indeed, if ū = ±1 we use (4.3) with 
J = Il to deduce that

〈λ(t∞), f(±Il )(q(t∞))〉 = 0,

so that Sl+1 is in the form S(±Il), and we are done. If, on the other hand, ū ∈ (−1, 1) we apply (4.3) with J = Il−1, 
and we deduce that

S(ū,l−1)(λ(t∞), jN
q(t∞)(f0), j

N
q(t∞)(f1)) := 〈λ(t∞), f(0Il−1)(q(t∞)) + ūf(1Il−1)(q(t∞))〉 = 0.

The combination of the relations S(ū,l−1) = Sl = 0 at the point (λ(t∞), jN
q(t∞)(f0), jN

q(t∞)(f1)) yields

〈λ(t∞), f(0Il−1)(q(t∞))〉 = 0 and 〈λ(t∞), f(1Il−1)(q(t∞))〉 = 0,

which in turn implies that

〈λ(t∞), f(−Il−1)(q(t∞))〉 = 0,

so that we conclude by taking Sl+1 = S(−Il−1).
To prove the second claim of the statement, it is not restrictive to work within a coordinate neighborhood (U, x) ⊂

R
n centered at the origin (identified with q), the whole argument being local. Then gi(x) = ∑n

j=1 α
j
i (x)∂xj

on U , for 
i = 0, 1. On JN

0 M × JN
0 M , JN

0 g0 and JN
0 g1 are given in local coordinates respectively by

(α
j
0 (0),∇α

j
0 (0), . . . ,∇(N)α

j
0 (0),0, . . . ,0)nj=1 ∈

(
R×R

n × · · · ×R
nN

)2×n

and

(0, . . . ,0, α
j
1 (0),∇α

j
1 (0), . . . ,∇(N)α

j
1 (0))nj=1 ∈

(
R×R

n × · · · ×R
nN

)2×n

.
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Moreover, since g0(q) ∧ g1(q) �= 0, without loss of generality we can assume that

α1
0(0) = α2

1(0) = 1, α
j
0 (0) = 0 if j �= 1, α

j
1 (0) = 0 if j �= 2.

Let the codimension of B′
0 in T ∗

0 M × JN
0 M × JN

0 M be equal to l, and assume that Sl+1 is of the form S(±Il). 
In particular, the degree of Sl+1 is maximal among {deg(S1), . . . , deg(Sl+1)}. Following Remark 19, let us write the 
decomposition

gIl+1 = gIl+1,1 + · · · + gIl+1,k
,

where we recall that Il+1,1 is uniquely identified by the requirement that it contains the maximal number, say s, of 
occurrences of the letter 0. Writing the analogous decomposition for simple relations

SIl+1 = SIl+1,1 + · · · + SIl+1,k
,

we see that the coordinate expression of SIl+1,1 at (λ, jN
0 (g0), jN

0 (g1)) ∈ T ∗
0 M \ {0} × JN

0 M × JN
0 M takes the form

0 = 〈λ,gIl+1,1(0)〉 =
n∑

j=1

λj∂
s
x1

∂
deg(Sl+1)−s−1
x2 α

j

1 (0) + PIl+1,1(λ, jN
0 (g0), j

N
0 (g1)),

where PIl+1,1 is a polynomial expression in the coordinates of λ, jN
0 (g0) and jN

0 (g1) that does not contain any term 

of the form ∂s
x1

∂
deg(Sl+1)−s−1
x2 α

j
1 (0), for 1 ≤ j ≤ n. By construction, these terms do not appear in any of the other 

summands 〈λ, gIl+1,i
〉, for i �= 1, neither among all other simple relations S1, . . . , Sl . Therefore, as λ �= 0, we infer the 

existence of a further independent relation, and we conclude that

codimT ∗
0 M×JN

0 M×JN
0 M(B′

0 ∩ {Sl+1 = 0}) = l + 1.

The case in which Sl+1 = S(−Il−1) can be tackled similarly. In this situation deg(Sl) = deg(Sl+1) > deg(Si) for 
every i < l. We may again exploit Remark 19, and isolate the terms gIl,1, gIl,2 and gIl+1,1 , gIl+1,2 in the decompositions 
of gIl

and gIl+1 respectively. Observe that, by definition of Il and Il+1, one has gIl+1,1 = gIl,1 and gIl+1,2 = −gIl,2 . 
Moreover, 0 appears s times in Il,1, while 1 appears t times in Il,2, and both s and t are maximal among their 
corresponding decompositions, so that we can write

0 = 〈λ,gIl
(0)〉 = 〈λ,gIl,1(0)〉 + 〈λ,gIl,2(0)〉 + PIl

(λ, jN
0 (g0), j

N
0 (g1))

=
n∑

j=1

λj

(
∂s
x1

∂
deg(Sl)−s−1
x2 α

j

1 (0) + ∂
deg(Sl)−t−1
x1 ∂t

x2
α

j

0 (0)
)

+ QIl
(λ, jN

0 (g0), j
N
0 (g1)),

0 = 〈λ,gIl+1(0)〉 = 〈λ,gIl,1(0)〉 − 〈λ,gIl,2(0)〉 + PIl+1(λ, jN
0 (g0), j

N
0 (g1))

=
n∑

j=1

λj

(
∂s
x1

∂
deg(Sl)−s−1
x2 α

j
1 (0) − ∂

deg(Sl)−t−1
x1 ∂t

x2
α

j
0 (0)

)
+ QIl+1(λ, jN

0 (g0), j
N
0 (g1)),

where PIl
, PIl+1 , QIl

, QIl+1 are polynomial expressions in the coordinates of λ, jN
0 (g0) and jN

0 (g1) that do not 

contain any term of the form ∂s
x1

∂
deg(Sl)−s−1
x2 α

j
1 (0) and ∂deg(Sl)−t−1

x1 ∂t
x2

α
j
0 (0), for 1 ≤ j ≤ n. In addition, these two 

terms are neither found among all other simple relations S1, . . . , Sl−1. Thus, as λ �= 0, the relations 〈λ, gIl
(0)〉 = 0

and 〈λ, gIl+1(0)〉 = 0 are mutually independent (since their gradients are not parallel) and also independent from 
〈λ, gIk

(0)〉 = 0, k = 1, . . . , l − 1. �
Lemma 22. Let l, d1, . . . , dl ∈ N \ {0} and consider l words I1 ∈ Ad1 , . . . , Il ∈ Adl with dj < dl−1 for every j <

l − 1 and dl−1 = dl . Suppose that there exists j < l − 1 such that Il−1 = (0 Ij ) and Il = (1 Ij ). Using the notations 
introduced in (4.1) and (4.2), consider the family of polynomial relations Qr , r ∈ N \ {0}, constructed inductively 
using the simple relations SI1, . . . , SIl

as follows

Q1 = det

( {S0, SIl
} {S1, SIl

}
{S0, SIl−1} {S1, SIl−1}

)
, Qr = det

( {S0, SIl
} {S1, SIl

}
{S0,Qr−1} {S1,Qr−1}

)
for r ≥ 2.
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Fix h ∈N, an integer N > dl + h, and define the set B ⊂ T ∗M × JNM × JNM by

B=
{

(λ, jN
q (f0), j

N
q (f1))

∣∣∣∣∣q = π(λ),
SI1(λ, jN

q (f0), j
N
q (f1)) = · · · = SIl

(λ, jN
q (f0), j

N
q (f1)) = 0

Q1(λ, jN
q (f0), j

N
q (f1)) = · · · = Qh(λ, jN

q (f0), j
N
q (f1)) = 0

}
.

If (q(·), u(·), λ(·)) is an extremal triple on [0, T ], and if the sequence {ti}i∈N ⊂ [0, T ] is such that

i) (λ(ti), jN
q(ti )

(f0), jN
q(ti )

(f1)) ∈ B for every i ∈ N,
ii) there exists t∞ = limi→∞ ti ,

then, setting

Il+1 = (0Il), Il+2 = (1Il),

either

(λ(t∞), jN
q(t∞)(f0), j

N
q(t∞)(f1)) ∈B∩ {SIl+2 �= 0} ∩ {Qh+1 = 0},

or

(λ(t∞), jN
q(t∞)(f0), j

N
q(t∞)(f1)) ∈B∩ {SIl+1 = 0} ∩ {SIl+2 = 0}.

Finally, defining for every q ∈ M the set B′
q ⊂ T ∗

q M × JN
q M × JN

q M by

B′
q =

{
(λ, jN

q (g0), j
N
q (g1)) | λ ∈ T ∗

q M \ {0}, (g0, g1) ∈ Vec(M)2, g0(q) ∧ g1(q) �= 0,

SI1(λ, jN
q (g0), j

N
q (g1)) = · · · = SIl

(λ, jN
q (g0), j

N
q (g1)) = 0

}
,

if the codimension of B′
q in T ∗

q M × JN
q M × JN

q M is equal to l, then

codimT ∗
q M×JN

q M×JN
q M(B′

q ∩ {SIl+2 �= 0} ∩ {Q1 = 0} ∩ · · · ∩ {Qh+1 = 0}) = l + h + 1,

codimT ∗
q M×JN

q M×JN
q M(B′

q ∩ {SIl+1 = 0} ∩ {SIl+2 = 0}) = l + 2.

Proof. The proof of the first part of the statement follows along the same lines of Lemma 21, using equation (4.3)
both on SIl

and on Qh, with the convention that Q0 = SIl−1 . We prove in this way that the relations

{S0, SIl
} + ū{S1, SIl

} = 0 and {S0,Qh} + ū{S1,Qh} = 0 (4.4)

hold at (λ(t∞), jN
q(t∞)(f0), jN

q(t∞)(f1)), where the value ū is the same in both identities, since it is computed as the 

limit of a common sequence. If SIl+2 = {S1, SIl
} vanishes on the triple (λ(t∞), jN

q(t∞)(f0), jN
q(t∞)(f1)), then so does 

SIl+1 = {S0, SIl
}. From equation (4.4) we also deduce that (1, ū) is in the kernel of( {S0, SIl
} {S1, SIl

}
{S0,Qh} {S1,Qh}

)
,

and therefore that its determinant Qh+1 vanishes at (λ(t∞), jN
q(t∞)(f0), jN

q(t∞)(f1)).
In order to prove the second part of the statement, as in Lemma 22 the idea is to express all relations in local 

coordinates around q on the product space T ∗
q M ×JN

q M ×JN
q M , with the non-restrictive hypothesis that g0(0) = ∂x1

and g1(0) = ∂x2 . Notice that for what concerns the codimension of B′
q ∩ {SIl+1 = 0} ∩ {SIl+2 = 0} we can reason 

exactly as in Lemma 22, since we deal in fact only with simple relations. Thus we are left with the task of proving 
that, if SIl+2 �= 0, each polynomial relation Qr provides a condition independent from SI1, . . . , SIl

and Q1, . . . , Qr−1.
By construction, Qr is a polynomial relation in the variables S(AB), where (AB) is the concatenation of a word A

of length at most r with letters in {0, 1} and a word B equal either to Il−1 or Il . It is not hard to show, by induction, 
that

Qr = (−1)r (SIl+2)
radr

S (SIl−1) + Q′
r = (−1)rSr

(1I )S(0···0Il−1) + Q′
r ,
0 l
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where adr
S0

denotes the iterated Poisson bracket with S0 and Q′
r is a polynomial relation in the same variables as Qr

except for adr
S0

(SIl−1). Following Remark 19, we further decompose fIl−1 as fIl−1,1 + · · · + fIl−1,k , where the letter 0
appears in Il−1,1 the maximal number of times, say s, among the collection {Il−1,i}ki=1. In coordinates we then write

adr
S0

(SIl−1)(λ(t∞)) =
n∑

j=1

λj∂
r+s
x1

∂
deg(SIl−1 )−s−1
x2 α

j
1 (0) + PIl−1(λ, jN

0 (g0), j
N
0 (g1)),

where PIl−1 is a polynomial expression in λ, jN
0 (g0) and jN

0 (g1) that does not contain any term of the form 

∂r+s
x1

∂
deg(SIl−1 )−s−1
x2 α

j

1 (0). Since λ �= 0 and the above is true for any r ∈ N, we conclude that, as soon as SIl+2 �= 0, 
each Qr gives a new independent condition, and the claim on the codimension follows. �
4.1. Collinear case

The computation of the codimension of the sets B′
q identified in Lemmas 21 and 22 relies on the linear indepen-

dence at q of f0(q) and f1(q). We study in this section what happens when the condition f0(q) ∧ f1(q) �= 0 fails to 
hold.

We associate with the pair (f0, f1) ∈ Vec(M)2 the collinearity set

C = {q ∈ M | f0(q) ∧ f1(q) = 0}. (4.5)

Lemma 23. Let u ∈ L∞([0, T ], [−1, 1]) and q : [0, T ] → M be a trajectory of the control system (1.1) associated 
with the control u. Assume that t∞ ∈ [0, T ] is such that q(t∞) ∈ {q ∈ M | f1(q) ∧ [f0, f1](q) �= 0} and that there 
exists a sequence {ti}i∈N ⊂ [0, T ] converging to t∞ such that q(ti) ∈ C for every i ∈N. Then there exists

ū := lim
i→∞

1

t∞ − ti

t∞∫
ti

u(τ )dτ ∈ [−1,1]

and f0(q(t∞)) + ūf1(q(t∞)) = 0.

Proof. First notice that, by continuity, f0(q(t∞)) ∧ f1(q(t∞)) = 0. Moreover, since f1(q(t∞)) and [f0, f1](q(t∞))

are not collinear, the set C is, locally around q(t∞), contained in an embedded (n − 1)-dimensional manifold Ĉ
transversal to the vector field f1. This can be seen, for instance, by choosing a local system of coordinates (x1, . . . , xn)

such that f1 = ∂x1 near q(t∞). Write f0(x) = ∑n
i=1 ai(x)∂xi

. Then C is locally described by the conditions a2(x) =
· · · = an(x) = 0. Furthermore, up to restricting the coordinate chart, the condition f1(q(t∞)) ∧ [f0, f1](q(t∞)) �= 0
implies that there exists j ∈ {2, . . . , n} such that ∂x1aj is nowhere vanishing. In particular, C is locally contained in 
the manifold Ĉ= {x | aj (x) = 0}, which is transversal to f1.

Let us take any coordinate system around q(t∞). Notice that any converging subsequence of q(t∞)−q(ti )
t∞−ti

is tangent 

to Ĉ. Writing

q(t∞) − q(ti)

t∞ − ti
= 1

t∞ − ti

t∞∫
ti

(f0(q(τ )) + u(τ)f1(q(τ )))dτ,

we deduce that for every converging subsequence of { 1
t∞−ti

∫ t∞
ti

u(τ )dτ }i∈N, its limit ũ is such that f0(q(t∞)) +
ũf1(q(t∞)) is tangent to Ĉ. The proof is concluded by noticing that, by transversality of Ĉ and f1, the only vector of 
the form f0(q(t∞)) + ũf1(q(t∞)) ∈ span(f1(q(t∞))) which is tangent to Ĉ is zero. �
Remark 24. The lemma says in particular that for every (f0, f1) ∈ Vec(M)2 and every trajectory q : [0, T ] → M of 
(1.1), almost everywhere on {t ∈ [0, T ] | q(t) ∈ C, f1(q) ∧ [f0, f1](q) �= 0} we have q̇ = 0. This result is in the same 
spirit as [12, Theorem 2.1], where the multi-input case in considered.
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Definition 25. For any extremal triple (q(·), u(·), λ(·)) on [0, T ] of the time-optimal control problem (1.1), we call 
	 = {t ∈ [0, T ] | q(t) ∈ C, h1(t) = 0}. Moreover, we denote by 	0 the set of all isolated points in 	, and inductively 
we declare 	k to be the set of isolated points in 	 \ (

⋃k−1
j=0 	j).

Theorem 26. Let (f0, f1) ∈ Vec(M)2 and let (q(·), u(·), λ(·)) be any extremal trajectory on [0, T ] of the time-optimal 
control problem (1.1). Assume that there exist a sequence {ti}i∈N ⊂ [0, T ] and an integer k ≥ 0 such that

a) ti ∈ 	 \ (
⋃k

j=0 	j) for every i ∈ N,
b) there exists t∞ = limi→∞ ti and q(t∞) ∈ {q ∈ M | f1(q) ∧ [f0, f1](q) �= 0}.

Then there exists a ∈ [−1, 1] such that, with the notation sa(λ) := 〈λ, (f0 + af1)(π(λ))〉, we have

adj
sa (s1)(λ(t∞)) = 0, for every 0 ≤ j ≤ k + 2.

Proof. We proceed by induction on k, and we begin with the case k = 0. First notice that for t ∈ 	 both h0(t) = 0
and h1(t) = 0. Hence, also s1(λ(t)) = 0. By continuity and by Rolle’s theorem, {s0, s1}(λ(t)) = h01(t) = 0 for every 
t ∈ 	 \ 	0. Also notice that {s0, s1} = adsa s1 for every a ∈ [−1, 1]. Moreover, by item b) and Lemma 23, there exists

a = lim
i→∞

1

t∞ − ti

t∞∫
ti

u(τ )dτ ∈ [−1,1]

and f0(q(t∞)) + af1(q(t∞)) = 0.
From the identity

0 = 1

t∞ − ti

t∞∫
ti

d

dτ
{s0, s1}(λ(τ))dτ

= 1

t∞ − ti

t∞∫
ti

({s0, {s0, s1}}(λ(τ)) + u(τ){s1, {s0, s1}}(λ(τ))) dτ,

which is valid for every i ∈ N, passing to the limit as i → ∞ we deduce the further relation ad2
sa

s1(λ(t∞)) =
adsa {s0, s1}(λ(t∞)) = 0.

Assume now that the theorem holds for some k ∈ N, and consider any sequence of points {ti}i∈N ∈ 	 \ (
⋃k+1

j=0 	j)

satisfying items a) and b). Apply Lemma 23 and define a as above. The conclusion comes from noticing that

0 = 1

t∞ − ti

t∞∫
ti

d

dτ
adk+1

sa
(s1)(λ(τ))dτ = 1

t∞ − ti

t∞∫
ti

(ads0adk+1
sa

(s1) + u(τ)ads1adk+1
sa

(s1))(λ(τ ))dτ

→ adk+2
sa

(s1)(λ(t∞)) as i → ∞. �
Inspired by the arguments of [8, Definition 4 and Lemma 4], we are now in the position of deducing quantitative 

estimates on the possible accumulations of points of 	 within the collinearity set C.

Lemma 27. Let q ∈ M and N = n − 1. Let us define the following two subsets of J N
q M × JN

q M:

L′ = {
(jN

q (f0), j
N
q (f1)) ∈ JN

q M × JN
q M | dim (span{f0(q), f1(q), [f0, f1](q)}) ≤ 1

}
,

L′′ = {
(jN

q (f0), j
N
q (f1)) ∈ JN

q M × JN
q M | f1(q) �= 0, ∃a ∈ R such that f0(q) = af1(q)

and dim
(

span{adi
f0+af1

(f1)(q) | 0 ≤ i ≤ n − 1}
)

< n
}
.



F. Boarotto, M. Sigalotti / Ann. I. H. Poincaré – AN 36 (2019) 327–346 341
Then

codimJN
q M×JN

q ML′ = 2n − 2 and codimJN
q M×JN

q ML′′ = n.

Proof. The first assertion is clear. For the second one just notice that for every a ∈ R, the dimension of 
span{adi

f0+af1
(f1)(q) | 0 ≤ i ≤ n − 1} is smaller than n if and only if, in coordinates,

det(H) = 0, with H =
(
f1, . . . , adn−1

f0+af1
(f1)

)
.

The latter condition, taking as a the unique scalar such that f0(q) + af1(q) = 0, identifies a set of codimension one 
inside

D :=
{
(jN

q (f0), j
N
q (f1)) ∈ JN

q M × JN
q M | f1(q) �= 0, f0(q) ∧ f1(q) = 0

}
.

Summing it up, we deduce that

codimJN
q M×JN

q ML′′ = codimJN
q M×JN

q MD+ codimD

{
(jN

q (f0), j
N
q (f1)) ∈ JN

q M × JN
q M | det(H) = 0

}
= (n − 1) + 1 = n. �

Corollary 28. Let n ≥ 2. For a generic pair (f0, f1) ∈ Vec(M)2 and for every extremal trajectory of the time-optimal 
control problem (1.1), we have 	 = 	0 ∪ · · · ∪ 	n−2, where 	 and 	j are defined as in Definition 25.

Proof. If along an extremal triple (q(·), u(·), λ(·)) there exists t ∈ 	 \ (
⋃n−3

j=0 	j), which is not isolated in this set 

and such that q(t) ∈ {q ∈ M | f1(q) ∧ f01(q) �= 0}, then by Theorem 26 λ(t) annihilates adi
f0+af1

(f1)(q(t)) for every 
0 ≤ i ≤ n − 1, where a is the proportionality coefficient between −f0(q(t)) and f1(q(t)). By Lemma 27 and Thom’s 
transversality theorem (see, e.g., [1,14]), for a generic pair (f0, f1) ∈ Vec(M)2 this is possible only at isolated points 
of M . Equivalently, for a generic pair (f0, f1) ∈ Vec(M)2 the set 	 is equal to 

⋃n−2
j=0 	j . On the other hand, another 

application of Thom’s transversality theorem says that, for a generic choice of (f0, f1), the points q ∈ M such that 
f0(q) ∧ f1(q) = 0 and f1(q) ∧ f01(q) = 0 are isolated (since 2n − 2 ≥ n when n ≥ 2). This concludes the proof. �
5. Proof of Theorem 3

Theorem 3 directly follows from Theorem 18 and Proposition 29 below.

Proposition 29. There exists an open and dense set V ⊂ Vec(M)2 such that, for any pair (f0, f1) ∈ V and for any 
extremal triple (q(·), u(·), λ(·)) on [0, T ] of the time-optimal control problem (1.1), the set

� = {t ∈ [0, T ] | h1(t) = h01(t) = h+01(t) = 0 or h1(t) = h01(t) = h−01(t) = 0}
satisfies � = �1 ∪ · · ·∪�(n−1)2 , where �1 denotes the set of isolated points of � and �j+1 denotes the set of isolated 

points of � \ ∪j
i=1�i for j ≥ 1.

Proof. Let k ∈ N, (f0, f1) ∈ Vec(M)2 and (q(·), u(·), λ(·)) be a time-extremal trajectory of the time-optimal control 
problem (1.1). Let t ∈ � \ (

⋃k
j=1 �j) and assume for now that f0(q(t)) ∧ f1(q(t)) �= 0. Owing to the fact that t is 

an accumulation point for � \ (
⋃k−1

j=1 �j) and reasoning iteratively, we identify a set {tn1,...,nr | r = 1, . . . , k, n1, . . . ,
nr ∈N} such that

lim
n1→∞ tn1 = t,

lim
nr→∞ tn1,...,nr = tn1,...,nr−1 , for r = 2, . . . , k and n1, . . . , nr−1 ∈ N,

tn1,...,nr ∈ � \
k−r⋃
j=1

�j , for r = 2, . . . , k and n1, . . . , nr ∈ N,

tn1,...,nk
∈ �, for n1, . . . , nk ∈ N.
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Using repeatedly Lemmas 21 and 22 and exploiting the fact that each application of one of the two lemmas yields a 
finite number of alternatives, we deduce from a diagonal extraction argument that, up to taking suitable subsequences,

i) There exist k + 1 sets B0, . . . , Bk ⊂ T ∗M × J k+2M × J k+2M such that

(λ(t), j k+2
q(t)

(f0), j
k+2
q(t)

(f1)) ∈Bk

and

(λ(tn1,...,nr ), j
k+2
q(tn1,...,nr )(f0), j

k+2
q(tn1,...,nr )(f1)) ∈ Bk−r

for every r = 1, . . . , k, n1, . . . , nr ∈N.
ii) For every 0 ≤ r ≤ k, Br is defined by the vanishing of, say, lr simple relations and mr polynomial relations (using 

the terminology of Definition 20). Moreover, denoting Br (q) = Br ∩ T ∗
q M × J k+2

q M × J k+2
q M , we have

codim
T ∗

q(t)
M×J k+2

q(t)
M×J k+2

q(t)
M
Bk(q(t)) = lk + mk,

codim
T ∗

q(tn1,...,nr )
M×J k+2

q(tn1,...,nr )
M×J k+2

q(tn1,...,nr )
M
Bk−r (q(tn1,...,nr )) = lk−r + mk−r ,

for every r = 1, . . . , k, n1, . . . , nr ∈N.

By construction, the set Bk(q) is homogeneous with respect to the first component. To prove the proposition in the set 
{q ∈ M | f0(q) ∧ f1(q) �= 0} it is then sufficient to show that there exists K ≤ (n − 1)2 such that if k ≥ K , then there 
exists r ∈ {0, . . . , k} such that the codimension lk−r + mk−r of Bk−r (q(tn1,...,nr )) in T ∗

q(tn1,...,nr )M × J k+2
q(tn1,...,nr )M ×

J k+2
q(tn1,...,nr )M is strictly larger than 2n − 1. Indeed, if this were true, then denoting by π : T ∗M ×J k+2M ×J k+2M →

J k+2M × J k+2M the canonical projection, we would conclude by standard transversality arguments [14] combined 
with the inequality

codim
J k+2
q(tn1,...,nr )

M×J k+2
q(tn1,...,nr )

M
π

(
Bk−r (q(tn1,...,nr ))

)
≥ codim

T ∗
q(tn1,...,nr )

M×J k+2
q(tn1,...,nr )

M×J k+2
q(tn1,...,nr )

M
Bk−r (q(tn1,...,nr )) − n + 1 > n,

where the term +1 is due to the homogeneity of Bk−r(q) with respect to the first component.
We introduce now a discrete dynamics on N2, which describes the admissible patterns of r �→ (lr , mr). Define 

three mappings F0, F1, F2 :N2 → N
2 by

F0(x1, x2) = (x1, x2) + (1,0), F1(x1, x2) = (x1, x2) + (0,1), F2(x1, x2) = (x1,0) + (2,0).

We say that an admissible curve γ of length p ∈N for this dynamical system is a map γ : {0, . . . , p} → N
2 such that

i) γ (0) = (3, 0),
ii) there exists j ∈ {1, . . . , p} such that γ (i) = F0(γ (i − 1)) for i = 1, . . . , j and γ (i) = Fσi

(γ (i − 1)), with σi ∈
{1, 2}, for i = j + 1, . . . , p.

Observe that the initial condition fixed in i) reflects the definition of �, F0 describes the creation of a new simple 
relation (Lemma 21), while F1 and F2 encode the occurrence of, respectively, a new polynomial relation and two new 
simple relations (Lemma 22).

We are going to compute the minimal K so that, for k ≥ K , any admissible curve γ of length k exits the region 
T := {(x1, x2) ∈ N

2 | x1 + x2 ≤ 2n − 1}. It is not difficult to see that the longest admissible curve γ staying in T is as 
indicated in Fig. 2, that is, we apply once F0, then 2n − 5 times F1, then once F2, then 2n − 7 times F1, once F2, and 
so on. The length of such curve γ is equal to

length(γ ) = 1 + (2n − 5) + 1 + (2n − 7) + 1 + · · · + (2n − (2n − 1)) = (n − 2)(n − 1),

which implies that K = 1 + (n − 2)(n − 1).
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Fig. 2. The longest admissible curve γ .

It just remains to explain what can happen inside the collinearity set C introduced in (4.5): for a generic choice of 
(f0, f1), along any extremal trajectory the points of 	 can accumulate at most n − 2 times according to Corollary 28. 
On the other hand any point of 	 is itself an element of � \ (

⋃K
j=1 �j) at worst, which implies that the order of the 

Fuller points can increase at most by n − 2 within C. This concludes the proof of Proposition 29 since K + n − 2 =
1 + (n − 2)(n − 1) + n − 2 = (n − 1)2. �
6. Time-optimal trajectories in dimension n = 3

We devote this section to a more careful analysis of Fuller times for time-optimal (and not only extremal) trajec-
tories, in the case of a three dimensional manifold M = M3. In fact, for a time-optimal trajectory there are powerful 
second-order techniques [5] that permit us to be a bit sharper in our estimate on the maximal order of Fuller points, at 
least if we just focus on this smaller class of curves. By Theorem 3, we already know the upper bound (3 − 1)2 = 4. 
The main result of this section is the following.

Theorem 30. For a generic pair (f0, f1) ∈ Vec(M)2, none of the time-optimal trajectories of the control system (1.1)
has Fuller times of order greater than two.

For the rest of this section we adopt the following convention: for any subset � ⊂ [0, T ], we denote by q(�) its 
image along the trajectory q(·).

Let us fix then a time-optimal trajectory. We collect previous results from [7,15,24] in the following statement.

Proposition 31. Let (f0, f1) ∈ Vec(M)2 and q(·) be any time-optimal trajectory of the control system (1.1). Let us 
consider, with the notations of Definition 8, the subsets

A1 = {q ∈ M |f1(q) ∧ f01(q) ∧ f+01(q) �= 0, f1(q) ∧ f01(q) ∧ f−01(q) �= 0},
A2 = {q ∈ M |f1(q) ∧ f01(q) ∧ f+01(q) = 0, f1(q) ∧ f01(q) ∧ f++01(q) �= 0,

f1(q) ∧ f01(q) ∧ f−01(q) �= 0},
A3 = {q ∈ M |f1(q) ∧ f01(q) ∧ f−01(q) = 0, f1(q) ∧ f01(q) ∧ f−−01(q) �= 0,

f1(q) ∧ f01(q) ∧ f+01(q) �= 0},
A4 = {q ∈ M |f1(q) ∧ f01(q) ∧ f+01(q) = 0, f1(q) ∧ f01(q) ∧ f++01(q) = 0,

f1(q) ∧ f01(q) ∧ f+++01(q) �= 0, f1(q) ∧ f01(q) ∧ f−01(q) �= 0},
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A5 = {q ∈ M |f1(q) ∧ f01(q) ∧ f−01(q) = 0, f1(q) ∧ f01(q) ∧ f−−01(q) = 0,

f1(q) ∧ f01(q) ∧ f−−−01(q) �= 0, f1(q) ∧ f01(q) ∧ f+01(q) �= 0},
A6 = {q ∈ M |f1(q) ∧ f01(q) = 0, f1(q) ∧ f+01(q) ∧ f−01(q) �= 0,

f1(q) ∧ f+01(q) ∧ f++01(q) �= 0, f1(q) ∧ f−01(q) ∧ f−−01(q) �= 0}.
If q(t) ∈ ⋃6

i=1 Ai , then t /∈ � \ �0.

Define now the set

W = {q ∈ M | f1(q) ∧ f01(q) ∧ f+01(q) = 0, f1(q) ∧ f01(q) ∧ f−01(q) = 0, f1(q) ∧ f01(q) �= 0}.
As a consequence of Proposition 31, we can infer the following result.

Lemma 32. For a generic pair (f0, f1) ∈ Vec(M)2 and for every time-optimal trajectory q(·) of the control system 
(1.1), q(� \ �0) \ W is made of isolated points only.

Proof. The result is proved by using the same computational approach based on transversality theory as in the proof 
of Lemma 21. Instead of working in T ∗M as in Lemma 21, it is actually sufficient to prove that

codimJN
q M×JN

q M

(
6⋂

i=1

Ac
i ∩Wc

)
≥ 3, q ∈ M,

where A1, . . . , A6 and W are the subsets of JNM × JNM defined implicitly by the relations

Ai = {q ∈ M | (jN
q (f0), j

N
q (f1)) ∈ Ai}, i = 1, . . . ,6, W = {q ∈ M | (jN

q (f0), j
N
q (f1)) ∈W}.

Pick then any point q ∈ Wc that satisfies f1(q) ∧f01(q) = 0. Then W ∩JN
q M ×JN

q M is already a set of codimension 
two in JN

q M ×JN
q M . Moreover, if q ∈ Ac

6, then necessarily the jets of f0, f1 at q satisfy another nontrivial dependence 
relation, and we can conclude.

On the other hand, suppose that q ∈ ∩6
i=1A

c
i and that f1(q) ∧ f01(q) ∧ f+01(q) �= 0, the remaining case being 

identical. Then since q ∈ Ac
1 we infer the relation f1(q) ∧ f01(q) ∧ f−01(q) = 0. We pass now to the condition 

q ∈ Ac
3, and we see that this obliges f1(q) ∧ f01(q) ∧ f−−01(1) = 0. Finally, the relation q ∈ Ac

5 forces f1(q) ∧
f01(q) ∧ f−−−01(q) = 0, which in turn provides us with a third dependence relation at q , and therefore once again 
we conclude. �
Proof of Theorem 30. Lemma 32 states, in particular, that for a generic choice of the pair (f0, f1) and for every 
time-optimal trajectory q(·) we have that q(� \ �0) \ W ⊂ q(�1), or equivalently that

q(� \ (�0 ∪ �1)) ⊂ W.

We are left to prove that the density points of q(� \ (�0 ∪ �1)) = q(� \ (�0 ∪ �1)) ∩ W are isolated.
We have already shown that along any time-extremal (q(·), u(·), λ(·)), whenever t ∈ � \ �0 the relations

h1(λ(t)) = 〈λ(t), f1(q(t))〉 = 0 and h01(λ(t)) = 〈λ(t), f01(q(t))〉 = 0

hold true. Since, by definition, for every point q ∈ W both f+01(q) and f−01(q) belong to the two-dimensional space 
span{f1(q), f01(q)}, then for every t ∈ � \ (�0 ∪ �1) also h+01(λ(t)) = h−01(λ(t)) = 0. If t∞ is an accumulation 
point of � \ (�0 ∪ �1), then, by Lemma 22 and using the Jacobi identity, either h0101(t∞) = 0 or h0101(t∞) �= 0 and

h0001(t∞)h1101(t∞) − h0101(t∞)2 = 0. (6.1)

When h0101(t∞) = 0, we conclude by transversality, noticing that

f0101(q(t∞)) ∈ λ(t∞)⊥ = span{f1(q(t∞)), f01(q(t∞))}
provides a third independent condition on the jet of the pair (f0, f1) at q(t∞). In the case h0101(t∞) �= 0, let us define 
in a neighborhood of q(t∞) a system of coordinates (x1, x2, x3) so that (dx1, dx2, dx3) is dual to (f1, f01, f0101). 
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Then (6.1) says that the product of the third components of f0001(q(t∞)) and f1101(q(t∞)) is equal to one, which 
corresponds to a third independent condition on the jet of the pair (f0, f1) at q(t∞). �
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