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Abstract

We consider in this paper the regularity problem for time-optimal trajectories of a single-input control-affine system on a
n-dimensional manifold. We prove that, under generic conditions on the drift and the controlled vector field, any control u as-
sociated with an optimal trajectory is smooth out of a countable set of times. More precisely, there exists an integer K, only
depending on the dimension n, such that the non-smoothness set of u is made of isolated points, accumulations of isolated points,
and so on up to K -th order iterated accumulations.
© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction
1.1. Single-input systems and chattering phenomena

Let M be a smooth,! connected, n-dimensional manifold and denote by Vec(M) the space of smooth vector fields
on M. Consider the (single-input) control-affine system

q=folg)+tufi(q). geM, wuel[-11], fo.f1 € Vec(M). (1.1)

An admissible trajectory of (1.1) is an absolutely continuous curve g : [0, T] - M, T > 0, such that there exists
ue L>®([0,T],[—1,1]) so that ¢(t) = fo(q(t)) + u(t) fi(g(¢)) for almost every ¢ € [0, T'].

For any fixed initial datum gy € M, the time-optimal control problem associated with (1.1) consists into looking for
admissible trajectories g : [0, T] — M, T > 0, that minimize the time needed to steer go to ¢(7") among all admissible
trajectories.
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A necessary (but not sufficient) condition for an admissible trajectory to be time-optimal is provided by the Pon-
tryagin maximum principle (PMP, in short) [21]. Introducing the control-dependent Hamiltonian

H:T*M x[-1,11-> R, H®R,v)=, (fo+vfO@), g=mQ), (1.2)

the PMP states that if a trajectory ¢ (-) associated with the control u(-) is time-optimal, then it is extremal, i.e., there
exists an absolutely continuous curve t — A(t) € Tq*(')M \ {0} such that H(A(¢), u(¢)) maximizes H(A(¢), -) for a.e.

t € [0, T], and such that )'»(t) = ﬁ(k(r), u(t)) a.e. on [0, T']. (For the precise definition of the Hamiltonian vector

field ﬁ and further details see Section 2.) We call the triple (¢ (-), u(-), A(-)) an extremal triple. In particular, the PMP
reduces the problem of finding time-optimal trajectories to the study of extremal ones.

The kind of results we are interested in concern the regularity of time-optimal trajectories, even though our tech-
niques handle in fact the broader class of extremal ones. Observe in any case that this is a hopeless task in full
generality since, as proved by Sussmann in [29], for any given measurable control 7 — u(t), there exist a dynamical
system of the form (1.1) and an initial datum gg € M for which the admissible trajectory driven by u and starting at go
is time-optimal. It makes then sense to look for better answers imposing some genericity conditions on ( fy, f1) (with
respect to the Whitney topology on the space of pairs of smooth vector fields on M). The question we are then lead
to tackle is the following: “What kind of behavior can we expect for time-optimal trajectories of a generic system?”
Such a question corresponds to one of the open problems posed by A. Agrachev in [3].

The problem of the regularity of extremal trajectories for control-affine systems of the form (1.1) is known to be
delicate. In his striking example, Fuller [13] exhibited a polynomial system of the kind studied here, in which controls
associated with optimal trajectories have a converging sequence of isolated discontinuities. Since then the phenomenon
of fast oscillations (or chattering) is also called the Fuller phenomenon, and his presence has important consequences
for example on the study of optimal syntheses [9,11,18,20,28]. Another striking feature of this phenomenon is its
stability: if the dimension of M is sufficiently high, then chattering is structurally stable (i.e., it cannot be destroyed
by a small perturbation of the initial system). The first result in this direction was presented in [16, Theorem 0] starting
from dimension 6, but it was subsequently extensively explored in [31]. It is however worth mentioning the fact that,
to the best of our knowledge, none of these extremal trajectories have yet been proved to be time-optimal, nor it
is known in lower dimensions (already in the 3D case) whether or not the chattering appears for a generic choice
of system (1.1). Finally, we remark that the absence of Fuller phenomena for (1.1) has been proved in dimension
2 for analytic systems and generic smooth systems [17,19,26,27]. A first extensive investigation of the chattering
phenomenon for multi-input affine-control systems has been presented in [32].

1.2. Fuller times along extremals trajectories

Many contributions have been provided to the description of the structure of optimal trajectories around a given
point g € M. The natural setting in which this problem is usually tackled is the study of all possible Lie bracket
configurations between fy and f] at ¢ [4,7,10,15,22,23,25,30]. This approach, although very precise in its answers,
has unfortunately the disadvantage of becoming computationally extremely difficult already for mildly degenerate
situations in dimension 3.

Definition 1. Given an admissible trajectory g : [0, T] — M of (1.1), we denote by O, (or simply O if no ambiguity
is possible) the maximal open subset of [0, 7] such that there exists a control u : [0, T] — [—1, 1], associated with
q(-), which is smooth on O. We also define %, (or ¥ if no ambiguity is possible) by

$=10,T]\ O.

An arc is a connected component of O. An arc w is said to be bang if u can be chosen so that |u| = 1 along w, and
singular otherwise. Two arcs are concatenated if they share one endpoint. The time-instant between two arcs is a
switching time.

The set Oy, defined as above, depends only on the trajectory ¢ in the following sense: as long as f1(g(?)) is
different from zero, the control u(¢) is uniquely identified up to modification on a set of measure zero, while u can be
chosen arbitrarily on {z | f1(g(¢)) = 0}.
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Definition 2 (Fuller times). Let X be the set of isolated points in X and define the Fuller times as the elements of the
set X\ Xg. By recurrence, X is defined as the set of isolated points of X \ (Ul;.;(l)Zj). If t € X then t is a Fuller time
of order k. We say that a Fuller time is of infinite order if it belongs to

Yoo =2\ (Ug>1Zk).

The leading idea of this paper is to characterize the worst stable behavior for generic single-input systems of the
form (1.1), in terms of the maximal order of its Fuller times. The heuristics behind our strategy is the following:
thinking of points in X \ Xy as “accumulations of switchings”, points in X \ (X9 U X1) as “accumulations of accumu-
lations” and so on, then if ¢ is a Fuller time of sufficiently high order, a large number of relations between fo(g(¢))
and f1(q(¢)) can be derived. The existence of such a point g (¢) can then be ruled out by standard arguments based on
Thom’s transversality theorem (see, e.g., [1, Proposition 19.1], which can be used in combination with [14, §1.3.2]
in order to the guarantee that the dense set of “good” systems can be taken open with respect to the Whitney C*°
topology on the space of vector fields). The main result of this paper is the following.

Theorem 3. Let M be a n-dimensional smooth manifold. There exists an open and dense set V C Vec(M) x Vec(M)
such that, if the pair (fo, f1) is in'V, then for every extremal triple (q(-), u(-), A(+)) of the time-optimal control problem

q = folg) +ufi(q), geM, uecl[-1,1],

the trajectory q(-) has at most Fuller times of order (n — 1), i.e.,
Y= ZOU RNV E(n—l)z’

where ¥ and X are defined as in Definition 2.

Remark 4. Since each %;, fori =1,...,(n — 1)2, is discrete, as a consequence of Theorem 3 we deduce that the
control u(-) associated with any extremal triple (g(-), u(-), A(-)) is smooth out of a finite union of discrete sets (in
particular, out of a set of measure zero).

As we already explained, deriving dependence relations directly on fy and f; is extremely complicated. The
PMP naturally suggests to rather search for conditions in the cotangent space T*M, where they are more easily
characterizable, and to subsequently project them down on the level of vector fields. On the other hand, the estimate
(n — 1)? on the maximal order of Fuller points obtained in this way is far from being optimal. The computation of the
sharpest bound on the order of Fuller points is still an open problem.

1.3. Structure of the paper

In Section 2 we introduce the technical tools we need in the rest of the paper and we present a brief survey of
related results. Section 3 is the starting point of the novel contributions of the paper: we prove that at Fuller times of
order larger than zero, i.e., for t € X \ Xy, in addition to the conditions (A(?), f1(g(?))) = (A (?), [ fo, f11(g(?))) =0,
one also has that either (A(¢), [ fo + f1, [ fo, f111(g(¢))) =0 or (A (¢), [ fo — f1, [ fo, f1]1(g(?))) = 0. The computations
leading to this result do not require any genericity assumption. Section 4, which constitutes the technical core of this
work, explains how to derive new conditions at each accumulation step and how to prove their independence. Section 5
concludes the proof of Theorem 3 and, finally, in Section 6, the case of time-optimal trajectories on three dimensional
manifolds is analyzed in greater detail.
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2. Previous results and consequences of Theorem 3
2.1. Notations

Let us introduce some technical notions which will be extensively used throughout the rest of the paper. Consider
the cotangent space 7*M of M, endowed with the canonical symplectic form o. For any Hamiltonian function p :
T*M — R, its Hamiltonian lift 7 € Vec(T*M) is defined using the relation

or (- P) = {drp.-).
For all T > 0 and g9 € M we define the attainable set from gg at time T as
A(T,q0) =1{q()|q :10,T] — M is an admissible trajectory of (1.1) such that g(0) = go}.
The precise content of the PMP, already mentioned at the beginning of Section 1, is then recalled below (see [6,

210).

Theorem 5 (PMP). Let g : [0, T] — M be an admissible trajectory of (1.1), associated with a control u(-), such
that q(T) € 0A(T, qo). Then there exists A : [0, T] — T*M absolutely continuous such that (q(-),u(-), A(-)) is an
extremal triple, i.e., in terms of the control-dependent Hamiltonian H introduced in (1.2),

M) € Tq*(,)M \ {0}, Vrel0,T],
HA®@),u@)) = r{ljl]xl]ﬂ'f()»(t), v), forae.tel0,T], 2.1)

i) = H @), u@t)), forae.tel0,T]. 2.2)

Let (g(-),u(:), A(-)) be an extremal triple. The curve g(-) is in particular said to be an extremal trajectory. We
associate with (g (-), u(-), A(-)) the switching function

hi(2) = (A1), f1(g(@®))).
Differentiating a.e. on [0, T'], it follows from (2.2) that for every smooth vector field X on M

d
E(A(t), X(q@) = (A1), [fo+u®) fi, X1(q(1))), forae.r€[0,T].

In particular, 4 is of class C! and, setting

ho1 (1) = (A1), [ fo, [1l(g(®))), Viel[0,T],
we have fn (t) = ho1(¢) forevery ¢t € [0, T].

Remark 6. The maximality condition (2.1) implies that
HA@), u(®) = (A1), folq@)) + panax v(A(0), f1(g())) = (A1), folq (1)) + [{A (1), f1(q(1)))I.
In particular, u(¢) = sgn(h(t)) € {—1, +1} whenever h(t) # 0.

Repeated differentiation shows that % is smooth when the control is. In particular, in terms of the set O introduced
in Definition 1, 21]|p € C*°(0).

A folklore result on bang and singular arcs is the following. Recall that, for every f € Vec(M), ady : Vec(M) —
Vec(M) denotes the adjoint action defined by adrg =[ £, gl.

Proposition 7. Assume that span{(adl}o L fD@) [k eNy =T, M and span{(ad’}r 7 ID@) | ke N}y =T, M for every
q € M. Fix an extremal triple (q(-), u(-), A(-)) and an arc w C Oy. Then, either hi(t) = 0 for at most finitely many
t € w and the arc is bang, or h1 =0 on w and the arc is singular.
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Proof. Let us set Z ={t € w | h1(t) =0} and F* = {t € w | +h{(r) > 0}. Assume by contradiction that Z has
infinitely many points and that it is different from . We have from Remark 6 that, up to modifying u on a set of
measure zero, u = 1 on F1 and u = —1 on F~. If Z has measure 0, then, by continuity of u|,, u=1oru=—1on
w. In particular, hgk) (1) = (A1), (ad’}oJrf1 f1)(g(?))) or hik) (1) = (A (1), (ad]}(rf1 f1)(g(?))) on w. Since between any
two vanishing points for hik_l) there is a vanishing point for R , we deduce that at every cluster point ¢ € @ for Z
(i.e., the limit of infinitely many distinct points in Z), A(¢) annihilates either (ad’}0 +fi f1)(g(t)) for every k € N or
(adl}of f f1)(g(?)) for every k € N, leading to a contradiction.

In the case where the measure of Z is positive, there exists ¢ € w which is both a cluster point for Z and for either

F* or F~. By continuity of hik) | for every k € N, we deduce that either hik) (1) = (A1), (ad'}o +fi f1)(g(2))) for every

k e N or hgk) ) = (A (D), (ad’}(rf1 f1)(g())) for every k € N and we conclude as above. O

Notice that the assumption that, for every g € M, span{(ad.l;o +h f)(g) | ke N} =T, M and span{(ad’}-o_ 7 )|

k € N} = T; M holds true generically with respect to ( fo, f1) € Vec(M )2. From now on the term generic is used to
express that a property of the pair of vector fields ( fo, f1) holds true on an open and dense subset of Vec(M) x Vec(M).

Definition 8. Let 2 be the alphabet containing the letters {+, —, 0, 1}, and let I = (iy ---ig) € 24 be a word of length
d in . Then we employ the shorthand notation

fI:[ﬁlv"'v[.fl‘d719‘fid]"']s

with the convention that f+ = fy £ fi. Moreover, given an extremal triple (g(-), u(-), A(-)) on [0, T'], we set
hi (@) = (A1), f1(q(1))), t€(0,T]
2.2. Previous results

Sussmann proved in [29] that for every T > 0 and every control u € L°°([0, T], [—1, 1]) there exists a control
system of the type (1.1) and an initial datum g¢ such that the trajectory starting at go and corresponding to u(-) is
time-optimal. In generic situations, however, some further regularity can be expected, as recalled in the following
three results.

Theorem 9 ([S, Theorem 0], [12, Theorem 2.6]). Generically with respect to (fy, f1) € Vec(M )2, for any extremal
triple (q(-),u(-), A(-)) on [0, T] such that hiljo,r1 =0, the set Q = {t € [0, T1| h101(t) # O} is of full measure in
[0, T] and u(t) = —hoo1(¢)/ h101(¢) almost everywhere on Q.

Theorem 10 (/2, Proposition 1]). Let 1(f1) C Lie(fo, f1) denote the ideal generated by f1. If 1,(f1) = TyM for
every q € M, then, for every extremal trajectory q : [0, T] — M, the set Oy is open and dense in [0, T'].

Theorem 11 (/7, Proposition 2]). Assume that span{(ad’}oJrfl (@) | ke N}y =T,M and span{(ad’}o_fl ) | ke
N} =Ty M for every g € M. Consider an extremal trajectory q : [0, T]1 — M such that the union of all bang arcs is
open and dense in [0, T]. Then either ¥ = X or there exists an infinite sequence of concatenated bang arcs.

Theorem 3 can be seen as an extension of Theorem 10 in the sense that it guarantees that, generically with respect
to (fo, f1), the open set O, is not only dense but also of countable complement and hence of full measure in [0, T]
(see Remark 4). A similar observation can be done for Theorem 11, which is generalized by Theorem 3 as follows:
generically, for every k > 0, either ¥ = UIJ?ZOE j or there exists a subinterval  of [0, T'] such that I N ¥y is a converging
sequence.

Concerning Theorem 9, we can strengthen its conclusion as stated in Corollary 12 below. The corollary is a direct
consequence of Proposition 29, which is a step of the proof of Theorem 3 contained in Section 5.



332 F. Boarotto, M. Sigalotti / Ann. 1. H. Poincaré — AN 36 (2019) 327-346

Corollary 12. Generically with respect to the pair (fo, f1) € Vec(M)?, for any extremal triple (q(-), u(-), A(:)) on
[0, T'] such that hy|j0,71 =0, the set Q = {t € [0, T]| h101(t) # 0} has countable complement in [0, T] and u(t) =
—hoo1(t)/ h101(t) almost everywhere on Q.

2.3. Chattering and singular extremals

Classical instances of the chattering phenomenon occur when trying to join singular and bang arcs along time-
optimal trajectories of control systems as in (1.1). Legendre condition [6, Theorem 20.16] holds along singular
extremal triples, and imposes the inequality 4191(¢) > 0. If the inequality is strict, then the control u(¢) is charac-
terized as in Theorem 9, but there are significant examples of mechanical problems in which the third bracket fio;
vanishes identically (e.g. Dubin’s car with acceleration [6, Section 20.6]). This case has been intensively studied in
[31], and the situation that forces the chattering can be essentially summarized as follows.

Theorem 13 ([6, Proposition 20.23]). Assume that the vector fields fo and f) satisfy the identity fi01 =0. Let q :
[0, T] — M be a time-optimal trajectory of system (1.1) which is the projection of a unique (up to a scalar factor)
curve A :[0,T] — T*M such that (q(-),u(-), A(-)) is an extremal triple. Assume moreover that hiooo1(t) # 0 on
[0, T]. Then q(-) cannot contain a singular arc concatenated with a bang arc.

In particular, under the hypotheses of the theorem, the only possibility for an optimal trajectory to exit a singular
arc is through chattering.

3. Annihilation conditions at Fuller times of an extremal trajectory

Let us fix an extremal triple (¢ (-), u(-), A(-)) on [0, T']. The goal of this section is to prove some useful annihilation
conditions of functions of the form %, with I a word in 2 (compare with Definition 8), at Fuller times, i.e., on X\ X.
Since h is (absolutely) continuous and u(¢) = sgn(h1(¢)) for almost every ¢ such that /1 (¢) # 0, then

h |Z =0.
Moreover, between two zeroes of /i, hgl) = ho has at least one zero, which yields
hot ’2\20 =0.

The following proposition states that both hgo; and s1¢; vanish at every ¢+ € ¥ which is at positive distance from

{t 1 h1(r) #0}.

Proposition 14. Let t € X be such that hy is identically equal to zero on a neighborhood of t. Then h1g1(t) = hoo1 () =
0.

Proof. Let V be a neighborhood of ¢ such that /1|y = 0. Therefore, the same is true for kg1|y and

hoo1(t) +u(r)hio1(r) =0 for almostevery r € V. 3.1
Let us first prove that /101 (#) = 0. By contradiction and up to reducing V, we have that h91(7) # O for every
T € V. By (3.1), moreover, u(t) = —% for almost every 7 € V.

Notice that the differential system generated by the smooth autonomous Hamiltonian

(P, foor(m(p)))
H(p)={p, — (P )
(p) = (p. fo((p))) (p,flm(n(p)))(p Si(@(p))

is well-defined on {p € T*M | {p, fi01(;r(p))) # 0} and all its trajectories are smooth. Since, moreover, the absolutely

continuous curve (A(¢), g(t)) satisfies p = ﬁ(p) almost everywhere on V, we deduce that V 51— (A(?),q(t)) is a
solution of the Hamiltonian system generated by H and that the control u is smooth on V, contradicting the fact that
rel.
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Fig. 1. A concatenation of bang arcs.

We conclude by showing that also /o1 () = 0. Following (3.1), we have

lhoo1 (T)] = lu(D)[|h101(T)] < |h101(7)| for almostevery T € V

and then we conclude by continuity of 191 and hgp;. O

Proposition 15. Assume that there exists an infinite sequence of concatenated bang arcs converging to t € [0, T].
Then either h41(t) =0 or h_o1(t) =0.

Proof. First notice thatt € ¥\ Xy. Assume by contradiction that neither /o1 (¢) nor h_g1 () is equal to zero. Consider
a neighborhood I of ¢ in [0, T'] (with respect to the topology induced by R) such that

1
< <|hyo1(®)], |h—01(s)|<C, Vsel,

for some positive constant C > 0.

By assumption, there exists a sequence of concatenated bang arcs in I, whose lengths we denote by {o;};en U
{ti}ien C (0, +00), with the agreement that u = 1 (respectively, u = —1) on the intervals of length o; (respectively,
7;) and that the arc of length o; is concatenated with the arc of length t;, which is concatenated with the arc of length
o;+1 and so on. Without loss of generality, the bang arcs converge towards ¢ from the left, so that we can further
assume that the arc of length o; is concatenated at its right with the arc of length 7; (see Fig. 1).

By convention, let O be the starting time of the sequence in Fig. 1. Taylor’s formula yields that

2h01(0)

— 2
==t 0(a}), 3.2)

where the notation O (012) has the following meaning: using an analogous Taylor expansion for each positive bang arc

2
of length o}, we obtain a reminder pj such that % is uniformly bounded. We deduce from (3.2) that |hg; (0)| = o1,
k

where this notation is used to indicate that

1_ 1o ©F _
c o1 -

for some constant ¢ > 0. Moreover, from the expansion kg1 (o) = ho1(0) + o1h401(0) + 0(012), we get
ho1(1) = —ho1(0) + O (a7).
Combining these two relations we obtain
71 & |ho1 (o1)| * 071.
The same computations also imply that
02~ ho1 (01 4 71) = —ho1(01) + O(7) = h01(0) + O (7).
In particular, the sequence o; satisfies the relation o;j4+1 = 0; + O(O’iz). The contradiction is then a consequence of

Lemma 16 below. O

Lemma 16. Let {t;};cN be a sequence of positive numbers satisfying the relation
i1 =t + 0@?).
Then, ) 72, t; = +00.
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Proof. Let ¢ > 0 be such that
tiv1 >t(1—ct;), VielN. (3.3)

Assume by contradiction that Z?il t; < +oo. In particular, t; — 0.
Up to discarding the first terms of the sequence {¢;};cN, we can assume that 1 — ct; > 0 for all i € N. Iterating (3.3)
we deduce that

i
tiy1>1 l_[(l—cl‘j), VieN.
j=1

Hence, forevery i € N,

i i
logtiy1 >logt +Zlog(1 —ctj) >logt — C’th,
Jj=1 j=1

where ¢’ > 0 is such that log(1 — ct;) > —c't; for all j € N. The contradiction comes by noticing that the left-hand
side goes to —oo as i — 0o, while the right-hand side stays uniformly bounded. O

We say that an arc is bi-concatenated if it is concatenated both at its right and at its left with other arcs.

Proposition 17. Let I be a bang arc compactly contained in (0, T) and which is not bi-concatenated. Then there exists
t € I such that either h01(t) =0 or h_g1(t) = 0.

Proof. Without loss of generality, assume that u =1 on I = (¢1, f) and that [ is not concatenated with any other arc
at tp. In particular, 1, is a cluster point for X N (#, T]. If &1 = 0 on a right neighborhood of 7, then the conclusion
follows from Proposition 14 and the continuity of %41 and h_q.

We can then assume that there exists a sequence of times converging from above to #; and at which /4 is not zero.
Then, necessarily, there exist a sequence of arcs I, converging to ;. Pick, for every n € N a time 7, € I,, such that
ho1(t,) = 0. By construction, the sequence (T )rcN converges to > and, by continuity, we deduce that also hg1(z2) = 0.

Since h(t;) = h1(t2) =0, then by the mean value theorem /h¢; vanishes at an interior point of /, and this in turns
implies that %hm |7 = h4o1]7 also vanishes somewhere on /. O

The main result of the section is the following theorem.
Theorem 18. Let t € X\ Xg. Then h(t) = ho1(t) =0 and, in addition, either h191(t) =0 or h_o1(t) =0.

Proof. We already noticed that 4 vanishes on X and hg; on X\ ¥o. We are going to prove the theorem by showing
that there exists a sequence of points converging to ¢ at which either /&g or h_q; vanishes.

Since t ¢ ¥( and thanks to Proposition 14, we can assume without loss of generality that 4; does not vanish
identically on a neighborhood of 7. Hence, there exists a sequence (7,),en C [0, 7] converging to ¢ such that /11 (z,,) #
0 for every n € N. Each 1, is contained in an arc w,. If the arc is singular, then it contains a nonempty subinterval on
which /1 = 0. Since moreover /1 has either a positive maximum or a negative minimum on ®,, we deduce that there
exists an inflection point of /21 on w,, at which ko or h_g; vanishes.

We can then assume without loss of generality that w,, is a bang arc for every n € N. Let us consider the maximal
concatenation of bang arcs from w, towards ¢. Three possibilities occur: (i) the concatenation is infinite and converges
to a point between 7, and ¢, (ii) the concatenation stops with a bang arc which is not bi-concatenated, and (iii) the
concatenation stops with a bang arc concatenated with a singular one. In each of the three cases, we prove that there
exists a point between w, and ¢ at which either 411 or h_g; vanishes. In cases (i) and (ii) the conclusion follows
from Propositions 15 and 17 respectively. In the case of a bang arc concatenated with a singular one, either /| does
not vanish everywhere on the singular arc, and we deduce as above that there exists an inflection point of 4 on the
singular arc at which /g1 or h_q; vanishes, or ig; = 0 at the junction of the two arcs and then the bang arc contains
an inflection point of /1 at which /o1 or h_o; vanishes. This concludes the analysis in case (iii) and hence the proof
of the theorem. O
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4. High-order Fuller points and genericity results

In this section we look at the new dependence conditions appearing for accumulations of Fuller points of order
higher than one. We start by introducing some useful notation.

Remark 19. For any given word J = (ji, ..., jr) € A", withr >3, j,_; =0, j, =1, and at least one ji in {+, —}, an
easy inductive argument proves that, with the notations of Definition 8, we can decompose f; as

fr=fn+-+fn

where Ji, ..., J; are all words of length r written only with letters in {0, 1}, ending with the string (01) and such that,
if |J;|, counts the number of occurrences of the letter a in J;, then

,,,,,

Moreover, J; and J, are uniquely determined by this requirement.

Definition 20. Let N € N. A function S : 7*M x JNM x J¥ M — R is said to be a simple relation of degree d < N
if there exists a word I € 24 of length d such that § = S;, where

St 3N (o), JY (f) = (s f1(g)), g =7 (). (4.1)

Similarly, we call Q : T*M x JN M x J¥ M — R a polynomial relation if there exist [, d1, ..., d; € N\ {0} and words
I eAd ... I € A% such that

Q0. j (fo). jY (f1)) € RIS Ons jY (fo) Y (S-S O i (fo). i (S, (4.2)

Moreover, we set deg(Q) = max{dy, ..., d;}.

Finally, given two simple relations Sy, Sy, with a slight abuse of notation we say that the Poisson bracket {S;, S;}
between S; and Sy is the simple relation Sy 7, where IJ is defined by concatenation of words. We extend the Poisson
bracket notation to polynomial relations by linearity and the Leibnitz rule.

In the following two lemmas we show how to derive new algebraic conditions on the jets of the vector fields fy
and f1 when increasing the order of the Fuller point.

Lemma 21. Let [, dy, ...,d; € N\ {0} and consider | words I € A I e A4 yith dj < d for every j <1 and
I} = (4+11—1), where we denote by (41;—1) the concatenation of the letter + and the word I;_1. Fix an integer N > d;
and consider the family of simple relations Sj = Sy;, 1 < j <1, using the notation introduced in (4.1). Define the set
BCT*M x JNM x JNM by

B = {(x, WX N ) 1g =7 (), (fo. f1) € Vec(M)?,

Si Y o Y oy = =500 N L Y ) = 0}.

If (q(),u(:), A(-)) is an extremal triple on [0, T] for the time-optimal control problem (1.1) associated with the pair
(fo, f1), and if the sequence {t;}ien C [0, T] is such that

D ), J N (f0)s Ny (f1)) € B for everyi €N,
i) there exists too = lIM; s o0 t;,

then there exists a further simple relation

St41 € {Sc-1_1)» Sc—1» S )
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such that

(Mo0)s Jtray (J0): Jiene) (1)) € BN {S141 =0}

Finally, defining for every g € M the set B'q C Tq*M X JqNM X JéNM by
B, = {(A, J2 (80), J) (1)) | A € T M\ {0}, (g0, 81) € Vec(M)?, go(q) A g1(g) #0,

S10,jY (80)s g (g1) =+ =810, jY (20). ) (1)) =0},
if the codimension ofB’q in Tq*M X JéVM X J(jVM is equal to 1, then
COdimT;MX]‘;VMX]l;VM(‘B; n {S[+] == O}) = l + 1

Proof. Let (q(-),u(-),A(-)) be an extremal triple defined on [0,7] and {#}ien C [0,T] be a sequence of
points satisfying i) and ii) in the statement. Then, since for every word J € {Iy,..., [;} we have that h;(t;) =
(A1), f1(q(#;))) vanishes for every i € N, by continuity the same is also true for % (fx,), which implies that the

point (A(to0), ji\,.., (f0): Ji,..) (/1)) belongs to B.
Now, up to the choice of a suitable subsequence of {#;};cn, we infer the identity

Io
0= lim ha (o) = hy () _ Jim —— /(hoj(t)—i-u(r)hlj(t))dt (4.3)
t

i—00 oo — ti i—00loo — 1

foo

fu(r)dr e[—1,1],

]

=hoy(teo) + h1j(teo), u= lim

i—00 oo — I

which is valid for every J € {I1, ..., I;}. The first of our claims is then proved. Indeed, if # = £1 we use (4.3) with
J = I; to deduce that

(Mtoo), fi£1)(q(1e0))) =0,

so that ;41 is in the form S(+y,), and we are done. If, on the other hand, u € (—1, 1) we apply (4.3) with J = I;_1,
and we deduce that

S -1 Oltoo)s Jidtin) F0)s JNiy (1)) 1= (MlEoo), fon_1) (@ (to0)) + it fii1_1)(q(10))) = 0.
The combination of the relations S(; ;—1) = S; = 0 at the point (A(fx), jﬁlm)(fo), jé\gtm)(fl)) yields
(Atoo)s for_(@(teo))) =0 and  (A(teo), fr11_1)(q(t0))) =0,
which in turn implies that

(AMtoo)s f—1-1)(q(t0))) =0,

so that we conclude by taking S;4+1 = S(—;_)).

To prove the second claim of the statement, it is not restrictive to work within a coordinate neighborhood (U, x) C
R" centered at the origin (identified with ¢), the whole argument being local. Then g;(x) = Z?:] ozij (x)axj on U, for
i=0,1.0n Jév M x Jév M, Jév go and J({V g1 are given in local coordinates respectively by

‘ / i 2xn
(@) ©. Ve 0)..... VN ©.0..... 0 € (Bx B - x &™) and

2xn

0,....0,a(0), Var] (0). ..., VVa] (0))'_, € (R X R X - X R”N)
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Moreover, since go(q) A g1(q) # 0, without loss of generality we can assume that
ap(0)=a}O)=1, aO)=0if j#1, o (0)=0ifj#2.

Let the codimension of 36 in TO*M X JéVM X J(ﬁvM be equal to /, and assume that Sy is of the form S ).
In particular, the degree of S;+; is maximal among {deg(S1), ..., deg(S;+1)}. Following Remark 19, let us write the
decomposition

8hip1 = 8Ly T T 8hg s

where we recall that /;41,1 is uniquely identified by the requirement that it contains the maximal number, say s, of
occurrences of the letter 0. Writing the analogous decomposition for simple relations

S11+1 = SI/+1.1 +--t Sll+l,k’

we see that the coordinate expression of Sy, | at (A, jév (g0), jév (g1)) € Ty M \ {0} x JéVM X JéVM takes the form
— deg(S/-H) s—1 /
0= (A, g1,,,(0) Zx, NEE 10) + Pryy 1, g (80), Jg) (1)),

where Pp,,, is a polynomial expression in the coordinates of A, jév (go) and jév (g1) that does not contain any term

of the form a3, 8deg(sl+]) sl 1(0), for 1 < j < n. By construction, these terms do not appear in any of the other
summands (A, gll 1), fori # 1 neither among all other simple relations Sy, ..., S;. Therefore, as A # 0, we infer the
existence of a further independent relation, and we conclude that

COdimTO*MxJéVMxJéVM(EE) N{Si+1=0Hh=1+1.

The case in which ;41 = S(—,_,) can be tackled similarly. In this situation deg(S;) = deg(S;4+1) > deg(S;) for
every i <l. We may again exploit Remark 19, and isolate the terms gy, |, g1,, and g1, ,, &1, , in the decompositions
of g;, and gy, respectively. Observe that, by definition of /; and I;41, one has g, , = gy, and gj,,,, = —&i,,-
Moreover, 0 appears s times in /; 1, while 1 appears ¢ times in /; 2, and both s and ¢ are maximal among their
corresponding decompositions, so that we can write

0= (1, ,(0)) = (x, g1, (0)) + (A, g1,,(0)) + Pr, (%, jY (80), J§ (g1))

_Z)\ ( deg(Sl) s—1 j(o)+adeg(S1) t— 1 2 0(0))+Q11(A Jév(g()) 7o (gl))

0= <A 81, (0)) = (h, g1, (0)) — (A, 81, (0)) + Py, (hy Y (80), 70 (g1))

_Z)\ ( deg(S1) s—1 1(0) deg(Sz) t— 1 0(0))+Q],+] o it (g()) i (gl))

where Py, Py, Oy, Qy,, are polynomial expressmns in the coordinates of A, j, V(go) and Jo V(g1) that do not

contain any term of the form 9 aﬁfg“’) slgd 1(0) a deg(sl) =1y dx, 0(0) for 1 < j < n. In addition, these two
terms are neither found among all other simple relatlons Sl, ..., 81—1. Thus, as A # 0, the relations (A, g1,(0)) =

and (A, g7,,,(0)) = 0 are mutually independent (since their gradients are not parallel) and also independent from
(A, gr,0)=0,k=1,....,01—1. O

Lemma 22. Let [, dy,...,d; € N\ {0} and consider | words I € AL e AN with dj <dj_1 for every j <
I — 1 and dj—1 = d;. Suppose that there exists j <1 — 1 such that 1,1 = (01;) and I; = (11;). Using the notations
introduced in (4.1) and (4.2), consider the family of polynomial relations Q,, r € N\ {0}, constructed inductively
using the simple relations Sy, ..., Sy, as follows

{SO, S[1} {Sl’SI;} ) 0, =det( {SOa S[1} {Sl’SI;}

Ql:det({so,sz,_l} (1, 5} (S0, Or_1} {Sl,Qr_1}> forrz2.
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Fix h € N, an integer N > dj + h, and define the set B C T*M x JNM x JN M by

Sty O JY Cf), 3 (F) =+ = Sy (h Y (fo). JY (f1)) =0
D01 ) o), B () == 0n s )Y (o), 0 () =0
If (q(-), u(-), A(-)) is an extremal triple on [0, T, and if the sequence {t;}ien C [0, T] is such that

B = {(A, B ). i () g =7 ()

D) (), JN) (f0)s ity (fD)) € B for everyi €N,
i) there exists too = lim; _ o0 1;,

then, setting

i1 =0L), L42=~11I),
either

(Mo0)s Jtray (J0): ey (1)) € BOLSE, # 0V N {Qy1 =0},
or

(Mo0)s Jtray (J): Jien) (1) € BOLS, =0} N {8y, =0},

Finally, defining for every g € M the set B'q C Tq*M X JqNM X JéNM by
B, = {(x, J2(80). j) (gD) | A € T M\ {0}, (g0. 81) € Vec(M)?, go(q) A g1(q) #0,

Sn )Y (o), i (g1)) =-++ =Sy (%, ) (20). J)' (81)) = 0},

if the codimension ofB’q in Tq*M X JéVM X J(;VM is equal to 1, then

COdimTq*MXJ‘;VMXJqNM(B; N {S][+1 =O} N {S[1+2 :0}) :l+2

Proof. The proof of the first part of the statement follows along the same lines of Lemma 21, using equation (4.3)
both on Sy, and on Qy,, with the convention that Q¢ = Sy,_,. We prove in this way that the relations

{So, Sy} +ufS1, S} =0 and  {So, Qn} +u{S1, Qn} =0 (4.4)
hold at (A(ts0), J %w)( fo), J ‘%w)( f1)), where the value u is the same in both identities, since it is computed as the

limit of a common sequence. If Sy, = {S1, §;;} vanishes on the triple (A(f), j'\ftoo)(fo), jﬁtm)(fl)), then so does
S = {So0, Sy, }. From equation (4.4) we also deduce that (1, x) is in the kernel otg

<{So,51,} {51751/})
{So, On} {51, 0n} )°

and therefore that its determinant Q4 vanishes at (A(fx), J %x)( fo), Jj (%m)( fi).

In order to prove the second part of the statement, as in Lemma 22 the idea is to express all relations in local
coordinates around g on the product space T, M x J, [;V MxJ qN M, with the non-restrictive hypothesis that go(0) = 0y,
and g1(0) = dy,. Notice that for what concerns the codimension of By N {Sy,, = 0} N {Sy,,, = 0} we can reason
exactly as in Lemma 22, since we deal in fact only with simple relations. Thus we are left with the task of proving
that, if Sy, # 0, each polynomial relation Q, provides a condition independent from Sy,, ..., Sy, and Oy, ..., Oy 1.

By construction, Q, is a polynomial relation in the variables S(4 5y, where (A B) is the concatenation of a word A
of length at most r with letters in {0, 1} and a word B equal either to [;_; or I;. It is not hard to show, by induction,
that

0 = (=1) (S1.,2)"ad, (S1,_,) + Q) = (— 1) Sy S0y + O
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where adf90 denotes the iterated Poisson bracket with Sp and Q. is a polynomial relation in the same variables as Q,
except for adrSO(S 1,_,)- Following Remark 19, we further decompose fj,_, as fy,_, 1 +---+ f1,_, x, where the letter 0

appears in /;_1 1 the maximal number of times, say s, among the collection {1171,1'}{7: |- In coordinates we then write

n
deg(Sy,_)—s—1 ; . .
ad§, (Sp_) Otoc)) = D A0, ad (0) + Pr, (M Y (80). 1 (81)).

j=1
where P;_, is a polynomial expression in A, jév (go) and jév (g1) that does not contain any term of the form

. deg(Sy_)—s—1 . .
B;I‘H ang =07 a{ (0). Since A # 0 and the above is true for any r € N, we conclude that, as soon as Sj,,, # 0,

each Q, gives a new independent condition, and the claim on the codimension follows. O
4.1. Collinear case

The computation of the codimension of the sets fB/q identified in Lemmas 21 and 22 relies on the linear indepen-
dence at g of fy(q) and f1(g). We study in this section what happens when the condition fy(g) A f1(g) # O fails to
hold.

We associate with the pair (fy, f1) € Vec(M )? the collinearity set

C={qeM]| folg) A fi(g) =0}. (4.5)

Lemma 23. Let u € L*°([0, T],[—1, 1]) and q : [0, T] — M be a trajectory of the control system (1.1) associated
with the control u. Assume that t, € [0, T] is such that q(ts0) € {g € M | f1(q) A [ fo, f11(g) # O} and that there
exists a sequence {t;}icn C [0, T] converging to t~, such that q(t;) € C for every i € N. Then there exists

fo

/u(t)dt el-1,1]

t

u:= lim
i—00 oo — I

and fo(q(te0)) + it f1(q (te0)) = 0.

Proof. First notice that, by continuity, fo(g(fx0)) A f1(q(tx)) = 0. Moreover, since f(q(tx)) and [ fo, f11(q(tx))
are not collinear, the set C is, locally around ¢(#), contained in an embedded (n — 1)-dimensional manifold e
transversal to the vector field f;. This can be seen, for instance, by choosing a local system of coordinates (xi, ..., x,)
such that fj = 0y, near g(tso). Write fo(x) = Z?:l a;(x)dy,. Then C is locally described by the conditions a(x) =
-+ =a,(x) = 0. Furthermore, up to restricting the coordinate chart, the condition fi(g(tx0)) A [ fo, f11(q(t0)) # 0
implies that there exists j € {2,..., n} such that d,,a; is nowhere vanishing. In particular, C is locally contained in

the manifold € = {x | aj(x) =0}, which is transversal to f7.
Let us take any coordinate system around ¢ (f«,). Notice that any converging subsequence of %:q(“) is tangent

ti
to C. Writing

q(t) — q ()

feo — 1;

foo
1
= f (fola(®) +u(@) filg(@))dr,
I

1

we deduce that for every converging subsequence of { tim u(t)dt}ien, its limit & is such that fy(g(teo)) +

loo—t;
u f1(q(t0)) is tangent to C. The proof is concluded by noticing that, by transversality of C and f1, the only vector of
the form fo(q(te0)) + U f1(q(ts0)) € span(f1(q(t=))) which is tangent to C is zero. O

Remark 24. The lemma says in particular that for every (fo, f1) € Vec(M)? and every trajectory g : [0, T] — M of
(1.1), almost everywhere on {t € [0, T] | q(¢) € C, f1(g) A [fo. f11(g) # O} we have ¢ = 0. This result is in the same
spirit as [12, Theorem 2.1], where the multi-input case in considered.
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Definition 25. For any extremal triple (g(-), u(-), A(:)) on [0, T'] of the time-optimal control problem (1.1), we call
Q={te0,T]]q(t)€C, hi(t) =0}. Moreover, we denote by 2 the set of all isolated points in €2, and inductively
we declare €2 to be the set of isolated points in €2\ (Ul;;g) Q).

Theorem 26. Let ( fy, f1) € Vec(M)? and let (g(-),u(-), A(-)) be any extremal trajectory on [0, T'] of the time-optimal
control problem (1.1). Assume that there exist a sequence {t;};cN C [0, T'] and an integer k > 0 such that

a) ; €Q\ (U’;ZO Q) foreveryi €N,
b) there exists too = lim; 0 1; and q(ts0) € {g € M | f1(q) A [fo, f11(q) # O}

Then there exists a € [—1, 1] such that, with the notation s,(A) := (;, (fo + af1)(w(A))), we have

ad! (s1)(M(ta0) =0, forevery 0< j <k +2.

Proof. We proceed by induction on k, and we begin with the case k = 0. First notice that for t € Q both Ap(t) =0
and & (z) = 0. Hence, also s1(A(¢)) = 0. By continuity and by Rolle’s theorem, {sg, s1}(A(¢)) = ho1(¢) = O for every
t € Q\ Qo. Also notice that {sp, s1} = ad,,s1 for every a € [—1, 1]. Moreover, by item b) and Lemma 23, there exists

foo
/u(r)dr e[—1,1]
I

and fo(q(fe0)) + afi1(q(teo)) = 0.
From the identity

a= lim
i—o00 foo — I

Ioo

fdi{So,m}()»(T))df
T

t

1

oo — i

0=

Ioo

1

= /({SO,{SO,S1}}(A(I))+u(t){S1,{SO,S1}}(>»(r)))dr,
t

Ioo

which is valid for every i € N, passing to the limit as i — oo we deduce the further relation adfas 1(A(tx0)) =
ady, {s0, s1}(A(ts0)) = 0.

Assume now that the theorem holds for some k € N, and consider any sequence of points {#;}icny € 2\ (U];i(l) Q)
satisfying items a) and b). Apply Lemma 23 and define a as above. The conclusion comes from noticing that

foo

1 d
0= PR /Eadfjl(ﬂ)(k(r))dr =
oo T U

oo
1
. / (adgoadi T (s1) + u(t)ady ady ™ (s1) (A(T))dT
-k
1

oo
1

— ad*2(s1) (M(10)) as i — 00, D

Inspired by the arguments of [8, Definition 4 and Lemma 4], we are now in the position of deducing quantitative
estimates on the possible accumulations of points of 2 within the collinearity set C.

Lemma 27. Let g € M and N =n — 1. Let us define the following two subsets of JqNM X J;VM.'

L ={G) (fo), j)y (f1)) € TN M x JN M | dim (span{ fo(q), f1(q), Lfo, fil(@)}) <1},
£ ={Ug (o). g (f1)) € Jg'M x JFM | fi(q) #0. 3a € R such that fo(q) =afi(q)

and dim (spanfad’ .., (f)(@) 10 =i =n—1}) <n}.
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Then

. / . "
codlquvaXJqNML =2n-2 and codlquNMXJqNML =n.

Proof. The first assertion is clear. For the second one just notice that for every a € R, the dimension of

span{ad}0+af] (f1)(g) 10 <i <n — 1} is smaller than » if and only if, in coordinates,

det(H) =0,  with H= ( fioeeooadil fl)) .

The latter condition, taking as a the unique scalar such that fy(q) + afi(g) = 0, identifies a set of codimension one
inside
J:N N N N _
D= G o), JY ) € IV M x 1M | £i(@) #0. fol@) A filg) =0}

Summing it up, we deduce that
codim  yy ;3 1 £ = codim yy yy v 1y D + codimo {(j;V(fo), JN) eIV M x I M | det(H) = 0]

=m—-—1+1=n 0O

Corollary 28. Let n > 2. For a generic pair (fo, f1) € Vec(M)? and for every extremal trajectory of the time-optimal
control problem (1.1), we have Q = Qo U ---U Q,,_», where Q and Q  are defined as in Definition 25.

Proof. If along an extremal triple (g (-), u(-), A(-)) there exists t € Q\ (U?;g €2;), which is not isolated in this set

and such that ¢(¢t) € {g € M | f1(q) N fo1(g) # 0}, then by Theorem 26 A(¢) annihilates adffo+af1 (f1) (g (1)) for every
0 <i <n — 1, where a is the proportionality coefficient between — f(¢(¢)) and f1(g(¢)). By Lemma 27 and Thom’s
transversality theorem (see, e.g., [1,14]), for a generic pair (fo, f1) € Vec(M)? this is possible only at isolated points
of M. Equivalently, for a generic pair ( fy, f1) € Vec(M)? the set  is equal to U?;(z) €2;. On the other hand, another
application of Thom’s transversality theorem says that, for a generic choice of (fy, f1), the points g € M such that

Jo(g) A fi(g) =0and f1(g) A fo1(g) = 0 are isolated (since 2n — 2 > n when n > 2). This concludes the proof. O
5. Proof of Theorem 3
Theorem 3 directly follows from Theorem 18 and Proposition 29 below.

Proposition 29. There exists an open and dense set V C Vec(M)? such that, for any pair (fo, f1) € V and for any
extremal triple (q(-), u(-), L(+)) on [0, T] of the time-optimal control problem (1.1), the set

E={t€[0,T1hi(t) =ho1(t) =hi01(t) =0 or hi(t) = ho1(t) = h—o1(¢) = 0}
satisfies &= E1U---UE,_)y2, where E| denotes the set of isolated points of E and Ej1 denotes the set of isolated

points of B\ Ul.]:1 g; for j > 1.

Proof. Let k € N, (fo, f1) € Vec(M)? and (¢(-), u(-), A(-)) be a time-extremal trajectory of the time-optimal control

problem (1.1). Lett € E \ (U];=1 E;) and assume for now that fo(q(t)) A f1(q(t)) # 0. Owing to the fact that ¢ is

an accumulation point for & \ (U];;% E;) and reasoning iteratively, we identify a set {,,

n, € N} such that

n lr=1,...k ny,...,

.....

lim 1, =1,
np—oo
Lm g0 =tayne_ s forr=2,...,kandny,...,n,_1 €N,
ny—00
k—r
tay,on, €8\ Ej, forr=2,...,kandny,...,n, €N,

tay,...n € 8, forny,...,n; e N.
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Using repeatedly Lemmas 21 and 22 and exploiting the fact that each application of one of the two lemmas yields a
finite number of alternatives, we deduce from a diagonal extraction argument that, up to taking suitable subsequences,

i) There exist k + 1 sets B, ..., By C T*M x JH20 % JR*2 01 such that

(@), Jy 5 (fo)s a7 (1)) € By

and

k42 k42
Altny,ecn s Jgr: oy (O g (1) € Brr

foreveryr=1,...,k,ny,...,n, eN.
ii) Forevery 0 <r <k, B, is defined by the vanishing of, say, /, simple relations and m, polynomial relations (using
the terminology of Definition 20). Moreover, denoting B, (q) = B, N T M x qu‘"ZM x J (;‘+2M , we have

codim. .. k42 005 k2, Br(q (1)) = I + my
Tququ(t) MX‘/q(t) M ’
COdimT* M g2 M k2 MB]‘—’ (qtny,...n,) = lk—r +my—_r,
q(tnl AAAAA ny) t](/nl,.“,nr) Ci(tnl ,,,,, ny)
foreveryr=1,...,k,ny,...,n, eN.

By construction, the set By (g) is homogeneous with respect to the first component. To prove the proposition in the set
{g e M| fo(g) A f1(g) # 0} it is then sufficient to show that there exists K < (n — 1)2 such that if k > K, then there

exists r € {0, ..., k} such that the codimension lx_, + mg—, of By_.(q(tn,,...n,)) in T;(t )M X 158_2 )M X
sy nr Yy nr
k+2

oy )M is strictly larger than 2n — 1. Indeed, if this were true, then denoting by 7 : T*M x JRFIM o JR M
ny,...np

J*T2M x J**+2M the canonical projection, we would conclude by standard transversality arguments [14] combined
with the inequality

COdikaJrz M g2 T (3k—r(51(ln1,...,n,)))
lI(’n| ) ‘i(fnl ,,,,, ny)
= COdimT* M x k2 Mx Jkt+2 MAkar(q(tnl ,,,,, nr)) —-n+1> n,
‘I(tnl,.“,ny) q(fnl ..... nr) q(fnl,.“,nr)

where the term +1 is due to the homogeneity of By_,(q) with respect to the first component.
We introduce now a discrete dynamics on N2, which describes the admissible patterns of r +— (I, m,). Define
three mappings Fy, F1, F> : N> - N? by

Fo(x1,x2) = (x1,x2) +(1,0),  Fi(xy,x2) =(x1,x2) +(0,1), Fa(x1,x2) = (x1,0) + (2,0).

We say that an admissible curve y of length p € N for this dynamical system is a map y : {0, ..., p} — N? such that

) y0)=(@3,0),
ii) there exists j € {1,..., p} such that y (i) = Fo(y(i — 1)) fori =1,...,j and y (i) = F;,(y (i — 1)), with 0; €
(1,2}, fori=j+1,...,p.

Observe that the initial condition fixed in i) reflects the definition of &, Fy describes the creation of a new simple
relation (Lemma 21), while F| and F> encode the occurrence of, respectively, a new polynomial relation and two new
simple relations (Lemma 22).

We are going to compute the minimal K so that, for K > K, any admissible curve y of length k exits the region
T :={(x1,x2) € N2 | x1 + x2 <2n — 1}. It is not difficult to see that the longest admissible curve y staying in T is as
indicated in Fig. 2, that is, we apply once Fy, then 2n — 5 times F}, then once F3, then 2n — 7 times F, once F, and
so on. The length of such curve y is equal to

length(y)=1+2n—-5+14+Cn-7+14+---+2n—-2n—-1)=m—-2)(n — 1),
which implies that K =1+ (n — 2)(n — 1).
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\ 1 +x20=2n—1

(3,0) (4,0)

Fig. 2. The longest admissible curve y.

It just remains to explain what can happen inside the collinearity set € introduced in (4.5): for a generic choice of
(fo, f1), along any extremal trajectory the points of €2 can accumulate at most n — 2 times according to Corollary 28.
On the other hand any point of € is itself an element of & \ (Uf= | &) at worst, which implies that the order of the
Fuller points can increase at most by n — 2 within €. This concludes the proof of Proposition 29 since K +n —2 =
l+(n—=2(n—1)+n-2=@n—-D% O

6. Time-optimal trajectories in dimension n =3

We devote this section to a more careful analysis of Fuller times for time-optimal (and not only extremal) trajec-
tories, in the case of a three dimensional manifold M = M?3. In fact, for a time-optimal trajectory there are powerful
second-order techniques [5] that permit us to be a bit sharper in our estimate on the maximal order of Fuller points, at
least if we just focus on this smaller class of curves. By Theorem 3, we already know the upper bound (3 — 1)> = 4.
The main result of this section is the following.

Theorem 30. For a generic pair (fo, f1) € Vec(M)?, none of the time-optimal trajectories of the control system (1.1)
has Fuller times of order greater than two.

For the rest of this section we adopt the following convention: for any subset ® C [0, T'], we denote by ¢(®) its
image along the trajectory ¢ (-).
Let us fix then a time-optimal trajectory. We collect previous results from [7,15,24] in the following statement.

Proposition 31. Let (fy, f1) € Vec(M)? and q(-) be any time-optimal trajectory of the control system (1.1). Let us
consider, with the notations of Definition 8, the subsets

Ar={q e M |fi(@) A for(q) A fro1(q) # 0, f1(q) A for(g) A f-o1(q) # 0},

Ar={q e M |f1(g) A for(g@) A f+o1(q9) =0, fi(g) A for(g) A f++01(q) #0,
J1(@) A foi(g) A f-01(q) # 0},

A3 ={q e M |fi1(g) A for(@) A f-01(q¢) =0, fi(g) A for(g) A f——01(q) #0,
J1(@) A foi(g) A fro1(q) # 0},

Ay ={q e M| fi(q) A for(@) A fro1(q) =0, fi(g) A for(g) A fr+o1(q) =0,
J1@ A fo1(@) A fr++01(q) #0, f1(q) A for(g) A f-o1(q) # 0},
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As={q e M |fi(@) A for(@) A f-01(q) =0, fi(q) A foi(q) A f——01(g) =0,
J1(@) A for(@) A f———01(q) #0, f1(q) A foi(q) A fro1(q) # O},

A ={q € M | f1(g) A fo1(g) =0, fi(g) A f+o1(q) A f-01(q) #O0,
J1(@) A fro1(g) A fr+01(q@) #0, fi(g) A f-o1(g) A f——01(q) # O}

Ifqe) e\ S, A, thent ¢ T\ Zo.
Define now the set

W={qeM]| fi(@) A for(@) A fro1(q) =0, fi(@) A for(q@) A f-01(q) =0, fi(g) A fo1(q) #O0}.

As a consequence of Proposition 31, we can infer the following result.

Lemma 32. For a generic pair (fo, f1) € Vec(M)? and for every time-optimal trajectory q(-) of the control system
(1.1), g(2\ Zo) \ W is made of isolated points only.

Proof. The result is proved by using the same computational approach based on transversality theory as in the proof
of Lemma 21. Instead of working in 7*M as in Lemma 21, it is actually sufficient to prove that

6

i=1

where A, ..., Ag and W are the subsets of J¥M x JN M defined implicitly by the relations

Ai={g e M) (fo). i) () €A}, i=1,...,6, W={geMI|U) (fo), j; (f1)) e W}.

Pick then any point g € W€ that satisfies f1(g) A fo1(¢) =0. Then WN JqN M x JqN M is already a set of codimension

twoin J, év MxJ ;V M. Moreover, if ¢ € A, then necessarily the jets of fo, f1 at ¢ satisfy another nontrivial dependence
relation, and we can conclude.

On the other hand, suppose that g € ﬁ?zlAf and that f1(g) A fo1(g) A fro1(qg) # 0, the remaining case being
identical. Then since ¢ € A{ we infer the relation f1(g) A fo1(q) A f-01(g) = 0. We pass now to the condition
q € A5, and we see that this obliges f1(g) A fo1(g) A f——o1(1) = 0. Finally, the relation g € A§ forces f1(q) A
fo1(@) A f———_o1(g) = 0, which in turn provides us with a third dependence relation at g, and therefore once again
we conclude. O

Proof of Theorem 30. Lemma 32 states, in particular, that for a generic choice of the pair (fy, f1) and for every
time-optimal trajectory g (-) we have that g(X \ Xo) \ W C g¢(Z1), or equivalently that

gEN(ZoUZ))CW.
We are left to prove that the density points of g(X \ (£o U X1)) =¢g (X \ (Zo U 1)) N W are isolated.
We have already shown that along any time-extremal (g (-), u(-), A(-)), whenever t € X \ ¥ the relations
hi(A()) = (A1), f1(q(®)) =0 and ho1(A(t)) = (A @), fo1(g())) =0
hold true. Since, by definition, for every point g € W both f101(g) and f_o1(q) belong to the two-dimensional space
span{ f1(q), fo1(g)}, then for every r € ¥\ (X0 U £1) also ki1 (A(t)) = h—_o1(A(¢)) = 0. If 15 is an accumulation
point of ¥ \ (X9 U X1), then, by Lemma 22 and using the Jacobi identity, either ko191 (fo0) = O or ho101(f0) 7 0 and
10001 (fo0) 1101 (fso) — 0101 (fo0)* = 0. (6.1)

When K101 (to0) = 0, we conclude by transversality, noticing that

f0101(q (10)) € Mioo) ™ = span{ f1(q (1)), fo1(q (1))}

provides a third independent condition on the jet of the pair ( fo, f1) at g (fs). In the case ko101 (foo) # 0, let us define
in a neighborhood of ¢(fx,) a system of coordinates (xp, x2, x3) so that (dxi, dx;,dx3) is dual to (f1, for, fo101)-



F. Boarotto, M. Sigalotti / Ann. I. H. Poincaré — AN 36 (2019) 327-346 345

Then (6.1) says that the product of the third components of fooo1(g(fx0)) and f1101(¢ (fx0)) is equal to one, which
corresponds to a third independent condition on the jet of the pair (fo, f1) at ¢(tx0). O
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