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Abstract

In this paper, we give a geometric criterion ensuring the recurrence of the vertical flow on Zd -covers of compact translation 
surfaces (d ≥ 2). We prove that the linear flow in the wind-tree model is recurrent for every pair of parameters and almost every 
direction.
© 2017 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Very little is known on the dynamics of the linear flows on non-compact translation surfaces. Some results exist for 
classes of examples. “Periodic” translation surfaces form a natural class actively studied. In this paper, we consider 
a translation surface X̂ which is a ramified cover over a compact translation surface X, the covering group being Zd

(d ≥ 1).1 Let � be the finite set of branched points. Since the intersection form is non-degenerate between H1(X, �, Z)

and H1(X\�, Z), every cover is defined by a d-tuple of independent elements � = (γ1, . . . , γd) in the group of relative 
homology H1(X, �, Z). The d-tuple � is called the cocycle defining the covering X̂. The holonomy of an element of 
H1(X, �, Z) is 

∫
γ

ω where ω is the holomorphic 1-form defining the translation surface X. A necessary condition for 
recurrence is the so called no drift condition

hol(γi) = 0, for i = 1 . . . d.

The Lebesgue measure is invariant by the linear flow on X̂, it is an infinite measure. For d = 1 under the no drift 
condition, recurrence of the linear flow is a consequence of general principles: ergodicity of the flow on X implies 
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1 The reader interested only in the wind-tree model may ignore everything concerning ramification and, in particular, assume that the cover is 
defined by a sublattice in the absolute homology.
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recurrence on X̂. This is not true in dimension d ≥ 2. For translation surfaces, the first counter example is due to 
Delecroix [3].

In this paper, we give a geometric criterion ensuring recurrence for the linear flow on a Z2-cover of a compact 
translation surface (see sections 3 and 4). We apply this criterion to periodic versions of the wind-tree model introduced 
by Ehrenfest in 1912 ([5]). The model is the following: a point moves in the plane and collides with rectangular 
scatterers with the usual law of reflexion. The scatterers are identical rectangular obstacles located periodically along 
a square lattice on the plane, one obstacle centered at each point of Z2. The scatterers are rectangles of size (a, b), with 
0 < a < 1, 0 < b < 1. We call the subset of the plane obtained by removing the obstacles the billiard table T (a, b). 
Polygonal billiard is one of the main motivation to develop the theory of translation surfaces. Thus, it is important to 
understand the dynamics in this situation. The phase space splits into a family of invariant surfaces since the angles at 
the boundary of T (a, b) are integer multiples of π/2. We prove

Theorem 1. For every (a, b) ∈ (0, 1) × (0, 1), the billiard flow in the table Ta,b is recurrent for almost every direc-
tion θ .

Using the Katok–Zemliakov’s construction, we replace the billiard flow in T (a, b) by the linear flow on a non-
compact translation surface X∞

a,b. The surface X∞
a,b is a cover of a translation surface Xa,b of genus 5 (see [4] for 

details). That’s why we can apply the geometric criterion proven in section 4. Theorem 1 is a generalization of a result 
in [12]. Our result is optimal for two different reasons. For all rational parameters (a, b) there exists a set of positive 
Hausdorff dimension of non-recurrent directions on X∞

a,b (see [3]). Moreover ergodicity is false by a result of Frączek 
and Ulcigrai (see [10]).

1.1. Outline of the paper

In section 3, we prove a general criterion for recurrence for linear flows on Z2-covers of compact translation 
surfaces. In section 4, we derive a geometric criterion for recurrence. In section 5, we check this criterion for the 
wind-tree model for generic parameters. This relies on a careful analysis of the existence of “good” cylinders. A crucial 
fact is that the surface Xa,b is a cover of an L-shaped surface La,b. In section 6, we prove that the result is in fact true 
for every parameter. A key point is McMullen’s classification of SL(2, R) invariant measures in the stratum H(2) (see 
[15]).

2. Background

For general references on translation surfaces we refer the reader to the survey of A. Zorich [18] or the course of 
M. Viana [17].

A translation surface is a surface which can be obtained by edge-to-edge gluing of polygons in the plane using 
translations only. Such a surface is endowed with a flat metric (the one inherited from R2) and with a choice of a 
canonical direction. There is a one to one correspondence between translation surfaces and compact Riemann surfaces 
equipped with a non-zero holomorphic 1-form. There is a canonical vertical direction in each translation surface and 
we refer to the flow in this direction as the vertical flow.

A cylinder on a translation surface is a maximal open annulus filled by homotopic simple closed geodesics. The 
direction of a cylinder is the direction of these geodesics. A cylinder is isometric to the product of an open interval and 
a circle. The core curve of a cylinder C, denoted by m(C), is the geodesic projecting to the middle of the interval. By 
convention, we puncture all the zeroes and the marked points. In particular, a maximal flat cylinder never has zeroes 
nor marked points inside it.

The moduli space of translation surfaces of genus g is stratified according to the degrees of zeros of the corre-
sponding 1-forms. If α = (α1, ..., αs) is a partition of the even number 2g − 2, H(α) denotes the stratum consisting 
of 1-forms with zeros of degrees α1, ..., αs , on a Riemann surface of genus g. We denote by H(1)(α) ⊂ H(α) the 
codimension 1 subspace which consists of area 1 translation surfaces.

There is a natural action of SL(2, R) on strata H(α) coming from the linear action of SL(2, R) on R2. The Teich-

müller geodesic flow on Hg is the action of the diagonal matrices gt =
(

et 0
0 e−t

)
. We denote by Mg the moduli 
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Fig. 1. The surface La,b : opposite sides are identified.

space Mg of closed compact Riemann surfaces of genus g. The image of the orbits (gt · (X, ω))t in Mg are geodesic 
with respect to the Teichmüller metric. Each stratum Hg(α) carries a natural Lebesgue measure, invariant under the 
action of SL(2, R). Moreover, this action preserves the area and hence H(1)(α). H. Masur [13] and independently 
W. Veech [16] proved that on each component of a normalized stratum H(1)(α) the total mass of the Lebesgue mea-
sure is finite and the geodesic flow acts ergodically with respect to this measure. Another important one parameter 

flow on H(α) is the horocycle flow given by the action of hs =
(

1 s

0 1

)
.

Stabilizers for the action of SL(2, R) in the stratum H(α), called Veech groups, are discrete subgroups of SL(2, R). 
In exceptional cases Veech groups are lattices (i.e. finite-covolume subgroups) in SL(2, R) (see [16]), though they 
are never cocompact. Closed compact translation surfaces with a lattice Veech group are exactly those whose 
SL(2, R)-orbit is closed in the corresponding stratum. They are called Veech surfaces. Their orbits project to Te-
ichmüller curves in the moduli space Mg .

The stratum H(2) is connected and is the best understood in higher genus. It was proven that the Teichmüller 
curves are generated by L-shaped surfaces of the form L(a, b) (see Fig. 1).

In his fundamental work, C. McMullen [15] proved a complete classification theorem for SL(2, R)-invariant mea-
sures and closed invariant sets in the stratum H(2). The only SL(2, R)-invariant irreducible closed subsets of H(2)

are the Teichmüller curves and the whole stratum. The only ergodic SL(2, R)-invariant probability measures are the 
Haar measure carried by Teichmüller curves and the Lebesgue measure on the stratum. Following McMullen, these 
measures will be called Euclidean measures.

Let g ≥ 2. The Hodge bundle Eg is the real vector bundle of dimension 2g over Mg where the fiber over X ∈ Mg

is the real cohomology H 1(X; R). Each fiber H 1(X; R) has a natural lattice H 1(X; Z) which allows identification of 
nearby fibers and definition of the Gauss–Manin (flat) connection. Since branched Zd -covers are defined by relative 
cycles, we will also consider the extended Hodge bundle with fiber H1(X, �, R). The holonomy along the Teichmüller 
geodesic flow provides a cocycle called the Kontsevich–Zorich cocycle. Given a Teichmüller geodesic starting from 
a translation surface X and γ ∈ H1(X, �, Z) we denote by Gt(γ ) ∈ H1(gt (X), �, Z) the value of the Kontsevich–
Zorich cocycle after time t . When � = (γ1, . . . , γd) is a vector with coordinates in H1(X, �, Z), Gt(�) is the vector 
(Gt (γ1), . . . , Gt(γd)). In the sequel, we will only work in local coordinates, thus homology (resp. cohomology) can 
be locally identified. Given a simply connected small open set U in a stratum, the Kontsevich–Zorich cocycle tells us 
how a cycle has been modified when a Teichmüller geodesics comes back to U .

Given X a compact translation surface, consider X̂ a Zd -cover of X ramified over a finite set of points �. An 
isomorphism class of Zd -cover is defined by the kernel of an homomorphism φ from π1(X \ �) to Zd . As Zd is an 
abelian group, the morphism φ factors through homology. It induces a morphism

ψ : H1(X \ �,Z) → Z
d .

As the intersection form ι : H1(X \ �, Z) × H1(X, �, Z) → Z is non-degenerate, by Poincaré duality, there exists 
� = (γ1, · · · , γd) ∈ H1(X, �, Z) such that for every γ ∈ H1(X \ �, Z),

ψ(γ ) = (ι(γ, γ1), · · · ι(γ, γd)).

Since X̂ is a Zd -cover of X, � = (γ1, · · · , γd) is a family of independent cycles, thus � is a sublattice in H1(X, �, Z). 
In the sequel, we will denote by X� the cover of X associated to �.

A necessary condition for the vertical flow on X� to be recurrent (see [11] for a proof) is

�(hol(γ1)) = · · · = �(hol(γd)) = 0.
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Fig. 2. A C-recurrent rectangle in the vertical direction. The horizontal sides are identified together.

This is called the no drift condition for �(ω) where ω is the holomorphic 1-form defining X. A necessary condition 
to get recurrence of the linear flow in two (or more) directions on X� is

hol(γ1) = · · · = hol(γd) = 0.

This is called the no drift condition.

3. Recurrence criterion

Definition 1. Let X be a compact translation surface, � a cocycle, X� the Zd -cover of X associated to � and φ̂t the 
vertical flow on X�. Given a positive number C we say that X� is C-recurrent if there is an embedded rectangle 
R = I × [0, L) in X of measure larger than 1/C with L > 1/C such that if x ∈ R then for every preimage x̂ ∈ X� we 
have:

• x̂ ∈ X� and φ̂L(x̂) belong to the same horizontal leaf
• the distance dH along the horizontal leaf between x̂ and φ̂L(x̂) satisfies

dH (x̂, φ̂L(x̂)) < C.

Remark 1. An example of a C-recurrent X� is depicted in Fig. 2.
To avoid overloading the definition, only one constant C is introduced. Nevertheless, the hypothesis on the area 

of R, its height and the distance between x̂ and φ̂L(x̂) are independent.

Proposition 1. Let X be a compact translation surface of area 1, � a cocycle and C > 0. Assume that there exists a 
sequence of real numbers (tn) tending to infinity such that gtn(X)�n is C-recurrent for every n where �n = Gtn(�). 
Then if the flow φt is ergodic on X, the vertical flow φ̂t is recurrent on X�.

Proof. We denote by R̃n the rectangle which is C-recurrent for �n on gtn(X) and by Rn its preimage by gtn . Te-
ichmüller flow in backward direction contracts horizontals and expands verticals. Thus, the height Ln of Rn, i.e. the 
length Ln of the vertical side of Rn, is at least etn/C and its width is at most e−tn . Therefore, if x ∈ X belongs to Rn, 
we have dH (x̂, φ̂Ln(x̂)) < Ce−tn . Thus the vertical trajectory of a point which belongs to Rn for infinitely many n is 
recurrent.

Lemma 1. Almost every point x ∈ X belongs to Rn for infinitely many n.

Proof. The width of the rectangle Rn is at most e−tn/C. We consider a subsequence of real numbers (still denoted by 

(tn)) such that 
∞∑

n=0

e−tn is finite.

Denote by

� = {x ∈ X such that, for infinitely many n, x ∈ Rn}.
We have λ(�) ≥ 1/C since λ(Rn) = λ(R) > C. Let us prove that � is φt invariant mod 0 for every t > 0. This will 
prove that λ(�) = 1. For t > 0 fixed, the t -top of Rn is the set An = I × [etnLn − 2t, etnLn) where Ln is the length 
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Fig. 3. A cylinder in the deformed surface and the associated C-recurrent rectangle.

of R̃n. This set is defined for n large enough. As 
∞∑

n=0

e−tn is finite, by Borel–Cantelli Lemma, almost every x ∈ X

belongs to a finite number of t -top of the rectangles Rn. Take x ∈ � and in this set of full measure. Consequently, 
for infinitely many n, x belongs to Rn \ An. Thus φt (x) belongs to infinitely many rectangles Rn which means that 
φt (x) ∈ �. This ends the proof of the lemma. �

The proof of Proposition 1 is now complete. �
Remark 2. This proposition is an avatar of Masur’s criterion for unique ergodicity of the vertical flow on a compact 
translation surface [14].

4. Geometric criterion for recurrence

Through this section, L will be a closed gt invariant locus and B a flat continuous linear subbundle of the extended 
Hodge bundle over L.

Remark 3. Since L is gt -invariant and B is flat, B is invariant under the Kontsevich–Zorich cocycle.

Definition 2. Fix X ∈ L. A cylinder C ⊂ X is said to be B-good if i(m(C), γ ) = 0 for all γ ∈ BX .

It immediately follows from Definition 2 that if a cylinder C on a flat surface X from the family L is B-good, then 
for any � ⊂ BX ∩ H1(X, �, Z) the pullback to the (branched) cover X� is a union of disjoint cylinders isometric to C. 
(Recall that by convention the cylinder may not contain any branching points of the cover.)

Now we give a strong relation between the existence of good cylinders and the C-recurrence property.

Lemma 2. Let X in L with a vertical B-good cylinder. There exists a neighborhood U ⊂ L of X and a C > 0 such 
that every surface Y ∈ U is C-recurrent for every � with coordinates in BY ∩ H1(Y, �, Z).

Proof. Assume that X has area 1 and contains a B-good vertical cylinder of area at least 2/C and width at most 
2/C. Cylinders are stable under small perturbations in the strata of abelian differentials. Thus, in a neighborhood of 
X, there is a metric cylinder whose core curve is homologous to m(C) and direction close to be vertical. In a nearby 
direction, this cylinder contains a rectangle which takes up an arbitrary large proportion of the cylinder (see Fig. 3).

We fix U a neighborhood of X small enough so that this cylinder contains a rectangle whose sides are horizontal 
and vertical, area is at least 1/C and height L at least 1/C. Let Y ∈ U and � with coordinates in BY . The previous 
part of the argument provides on Y a cylinder C(Y ) and a rectangle R(Y ). Note that C(Y ) is B-good, so the lift of the 
cylinder C(Y ) in the cover Y� is a union of cylinders isometric to C(Y ). Moreover, the width w of the rectangle R(Y )

satisfies w ≤ C since L > 1/C. Thus, if x̂ ∈R(Y ), then d(x̂, φ̂L(x̂)) < C. �
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Fig. 4. The genus 5 surface obtained from the wind-tree model. Identifications are indicated by Greek and Latin letters.

Proposition 2. Let X in L with a vertical B-good cylinder. Let Y ∈ L and � be a d-tuple of elements in BY ∩
H1(Y, �, Z). If the positive gt -orbit of Y accumulates on X then the vertical flow is recurrent on Y�.

Proof. Denote by (tn) the subsequence such that gtn(Y ) tends to X and let �n = Gtn(�). By Masur’s criterion, the 
vertical flow on Y is ergodic. Since gtn(Y ) tends to X and B is invariant by the Kontsevich–Zorich cocycle, by 
Lemma 2, for n large enough, gtn(Y ) is C-recurrent and then by Proposition 1 the vertical flow is recurrent on Y�. �
5. Recurrence for the wind-tree model: almost everywhere statement

In this section, we apply our method to the wind-tree model. We check the geometric criterion for the 
SL(2, R)-invariant locus responsible for the dynamics of the wind-tree model.

5.1. Summary of results on the wind-tree model

We recall here results from [4]. The billiard flow is described by the linear flow on a non-compact translation 
surface X∞

a,b . The surface X∞
a,b is a Z2-cover of a genus 5 surface Xa,b which is itself a non-ramified cover of degree 

4 of an L-shaped surface La,b in the stratum H(2). This covering construction can be done for every surface in H(2). 
We denote by L the locus of these covers which is isomorphic to H(2).

The Klein group K acts on Xa,b by translations (see Fig. 4). This action induces a splitting of H1(Xa,b, Z) which 
is SL(2, R) invariant.

Denote by τh, τv and τhτv the non-trivial elements of K . τh (resp. τv) permutes the fundamental domains horizon-
tally (resp. vertically).

We have:

H1(Xa,b,R) = E++ ⊕ (E+− ⊕ E−+) ⊕ E−−

where E++ is the vector space invariant by τh and τv , E+−(Z) the vector space invariant by τh and anti-invariant 
by τv , etc. This decomposition is SL(2, R) equivariant. The coordinates of the Z2 cocycle defining X∞

a,b belong to 
E+− ⊕ E−+. The invariant vector space by τhτv is E++ ⊕ E−−. The quotient surface Xa,b/τhτv is a hyperelliptic 
surface (it belongs to the hyperelliptic locus of the non-hyperelliptic component of the stratum H(2, 2)).

On the surface La,b two Weierstrass points are distinguished by the cocycle defining X∞
a,b and are denoted by E

and F (see Fig. 5). In geometric terms, E is uniquely defined by the condition that the horizontal trajectory through 
the Weierstrass point E hits the singularity; F is uniquely defined by the condition that the vertical trajectory through 
the Weierstrass point F hits the singularity.
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Fig. 5. Weierstrass points on La,b .

Fig. 6. Weierstrass points on the surface Xa,b/τhτv . The identification are indicated by the letters a, b, c, d, e, f, g, h. The singularities are Weier-
strass points.

5.2. Good cylinders in the wind-tree model

We now give a refined version of Lemma 10 of [12] in the adequate language for our purpose.

Lemma 3. The lift to Xa,b of a cylinder in La,b whose core curve contains E and F is the union of two cylinders 
which are homologous. The homology class of the core curve of each cylinder belongs to E++.

Proof. Since E and F are Weierstrass points on La,b, every trajectory from E to F closes up in La,b. The length 
of the closed curve γ is twice the length of the segment EF . In [12] Lemma 10 a symmetry argument shows that γ
lifts in X∞

a,b to the core of a cylinder whose length is twice the length of γ . The proof is explained in the language of 
billiards. The symmetry argument shows that in the billiard table Ta,b, the trajectory is symmetric with respect to a 
lattice point. It contains two preimages of E (and F ) with opposite vector. We now translate this argument in Xa,b. 
Let γ̂ be a preimage of γ in Xa,b containing Ê a preimage of E. The previous argument means that γ̂ contains Ê and 
τhτv(Ê). This implies that the homology class of γ̂ is τhτv-invariant. Thus, it belongs to E++ ⊕ E−−. The same is 
true for the other preimage of γ denoted by γ̂ ′. The vector space E++ ⊕ E−− is identified with H1(Xa,b/τhτv, R) (it 
is the τhτv-invariant part of H1(Xa,b, R)). Denote by γ̂ and γ̂ ′ the projections of γ̂ and γ̂ ′ in Xa,b/τhτv .

We now prove that γ̂ and γ̂ ′ are equal in H1(Xa,b/τhτv, R). A simple calculation shows that the Weierstrass points 
in Xa,b/τhτv are the preimages of the Weierstrass points A, B , C, D in La,b (see Fig. 6).

In La,b the curve γ contains the two Weierstrass points E and F thus it does not contain any other Weierstrass 
point. Therefore γ̂ and γ̂ ′ are not fixed by the hyperelliptic involution ι in Xa,b/τhτv . Thus, we have ι(γ̂ ) = −γ̂ ′. This 
implies that γ̂ and γ̂ ′ are homologous in Xa,b/τhτv . Consequently γ̂ and γ̂ ′ are homologous in Xa,b. We also have

γ̂ ′ = τh(γ̂ ) = τv(γ̂ ).

This yields that the homology class of γ̂ is τh and τv invariant thus it belongs to E++. �
Corollary 1. Any lift to Xa,b of a cylinder in La,b whose core curve contains E and F is a E+− ⊕ E−+ ⊕ E−− good 
cylinder.

Proof. Lemma 3 shows that the core curve of such a cylinder belongs to E++ which is the symplectic orthocomple-
ment of E+− ⊕ E−+ ⊕ E−−. This means that this cylinder is E+− ⊕ E−+ ⊕ E−− good on Xa,b. �
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Fig. 7. Orbit from E to F .

5.3. Almost everywhere statement

We now apply the geometric criterion to prove an intermediate statement. We prove recurrence of the cocycle for 
almost every surface in L with respect to any SL(2, R) ergodic invariant probability measure.

Proposition 3. Let C be a connected closed invariant subspace of L, μ be its Euclidean measure and let X be in C. 
Let U be a neighborhood in C of X. Denote by � a cocycle with values in E+− ⊕ E+− ⊕ E−−. For μ almost every 
Y ∈ U the vertical flow is recurrent in Y�.

Remark 4. This applies to the wind-tree model since the cocycle defining it belongs to E+− ⊕ E+−.

We need the following lemma.

Lemma 4. On every L-shaped surface there is a cylinder with Weierstrass points E and F in its core curve.

Proof. We take coordinates on the L-shaped surface as in Fig. 7. We denote by R the rectangle D0D1D
′
1D

′
0. We 

unfold this rectangle along the vertical side containing D1 and F1. We obtain points F1, . . . , Fn with the same 
y-coordinate in the complex plane. In the horizontal strip ending at the vertical segment D0D

′
0, there is no singu-

larity except on the horizontal boundaries. We now consider the cone bounded by the lines ED0 and ED1. As the 
slope of ED0 is larger than the slope of ED1, every point in R has a preimage in the strip contained in the cone. Thus 
there is a segment joining E to each point of R and thus to F . �
Proof of Proposition 3. Fix μ a SL(2, R) ergodic invariant probability measure on L and Y a generic surface for μ. 
By McMullen’s classification, the support of every ergodic measure in H(2) contains a L-shaped surface. Thus the 
support of μ contains a surface Xa,b for some (a, b) ∈ (0, 1)2. By Corollary 1 and Lemma 4, the surface Xa,b contains 
a E+− ⊕ E−+ ⊕ E−− good cylinder. As Y is a generic point, its orbit under the geodesic flow accumulates to Xa,b. 
Thus by Proposition 2, the vertical flow is recurrent on Y . �
6. Everywhere statement

The result of this section is an easy consequence of the work of Eskin, Mirzakhani and Mohammadi (see [8] and 
[9]). It can also be deduced from [2]. We give a direct proof in this elementary situation.

First fix some notations. Our convention for subgroups and elements in SL(2, R) is the following: the rotation 
of angle θ is denoted by rθ , the subgroup P is the group of upper triangular matrices K is the orthogonal group 

SO(2, R). We recall that the geodesic flow is the one parameter flow gt =
(

et 0
0 e−t

)
, t ∈ R, the horocycle flow is 

the one parameter flow hs =
(

1 s

0 1

)
, s ∈R.
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Let L be the locus defined in § 5.1, let X be a translation surface belonging to L and � be a set of positive measure 
of the unit circle. We denote by ν the normalized Lebesgue measure on � . X considered as a subset of K . X. We 
first prove some useful lemmas.

Lemma 5. Every limit point ν∞ of the family of probability measure

1

T

T∫
0

gtν

is a probability measure which is P invariant.

Proof. Every limit of gtν is a probability measure in L. This is a direct consequence of the results of Eskin–Masur 
[6] and Athreya [1]. No mass can escape to infinity.

Claim 1. Any limit μ of gtν is hs invariant.

The proof of the claim is an adaptation of Eskin–Marklof–Morris Lemma 7.3 (see [7]). We fix a sequence ti such 
that gti ν tends to μ. Fix s ∈ R, a matrix calculation proves that there exists a sequence (θj ) tending to zero such that 
gti rθj

g−1
ti

tends to hs . Let us prove that

gti rθj
g−1

ti
gti ν − gti ν

tends to zero as j tends to infinity. Passing to the limit this will prove that μ is hs invariant. We use the fact that 
ν is absolutely continuous with respect to Lebesgue measure on the circle. This means that there is a non-negative
measurable function φ such that

dν = φdθ and
∫

S1

φdθ = 1.

Let f be a bounded continuous function on L and let

�j =
∫
L

f (M)gti rθj
g−1

ti
gti ν −

∫
L

f (M)gti ν =
∫
L

f (M)gti (rθj
dν − dν) =

∫
L

f (g−1
ti

M)(φ ◦ rθj
− φ)dθ.

Thus

|�j | ≤ ||f ||∞||φ ◦ rθj
− φ||1

where || ||∞ is the sup norm on bounded continuous functions on L and || ||1 is L1 norm in the unit circle with respect 
to Lebesgue measure. For every φ ∈ L1, ||φ ◦ rθj

− φ||1 tends to zero as j tends to infinity. Consequently (�j ) tends 
to zero as j tends to infinity which proves the claim.

Now ν∞ is obtained as a Cesaro mean. Thus it is gt invariant. Moreover, by the claim, it is a convex combination 
of hs invariant measures. Since the set of hs invariant measures is a convex set, ν∞ is hs invariant. This means that it 
is P invariant. �

Consequently the support � of ν∞ is P invariant.

Lemma 6. The set K� is SL(2, R) invariant. The set � contains a Teichmüller curve.

Proof. A direct calculation shows that the set K� is SL(2, R) invariant since the set � is P invariant. By McMullen 
classification, K� contains a Teichmüller curve M. Thus � ∩ M is a closed P invariant set and contained in the 
homogeneous space M. Thus, by Ratner’s theorem, � ∩M =M. �

We now prove that:
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Lemma 7. For every surface X in the locus L, for almost every θ , the set of limit points of gtrθX contains a Teich-
müller curve.

Proof. Assume by contraction that there is a set of positive Lebesgue measure �1 contained in the circle which does 
not satisfy the conclusion of the lemma. For every Teichmüller curve M, fix a point xM with dense gt -orbit in M. 
By hypothesis, this point xM does not belong to the omega-limit set of gtrθX for θ in �1 (otherwise this limit set 
would contain a Teichmüller curve since it is a closed set).

For each k, denote by Vk(xM) a neighborhood of xM of diameter 1/k. For every θ ∈ �1 there is k and a tθ such 
that

Vk(xM) ∩ {gt rθX, t ≥ tθ } = ∅.

Consequently, there exists κ(M) and a set of positive measure �2 ⊂ �1 such that, for every θ ∈ �2, there is a tθ with

Vκ(M)(xM) ∩ {gt rθX, t ≥ tθ } = ∅.

Let U be the open subset of L defined by

U =
⋃
M

Vκ(M)(xM).

For every θ ∈ �2, gt rθX does not enter U for t large enough. Restricting �2 further, there is a set of positive measure 
�3 ⊂ �2 and a T such that for t ≥ T , gt rθX does not enter U .

We perform the same construction as in Lemma 5 replacing � by �3. We fix a limiting measure ν′∞ obtained 
by this process. By construction of ν′∞, ν′∞U = 0. This is a contradiction with Lemma 6 since U intersects every 
Teichmüller curve. �

We now complete the proof of Theorem 1. Let X = Xa,b be a surface obtained by the wind-tree construction for 
some parameters (a, b). By Lemma 7, for almost every θ , the limit points of gtrθX contains a Teichmüller curve. By 
McMullen classification of Teichmüller curves in genus 2 every Teichmüller curve is generated by a L-shaped polygon 
L. Thus L is a limit point of gtrθX. Moreover L contains a E+− ⊕ E−+ ⊕ E−− good cylinder by Corollary 1. As it 
is explained in § 5.1 the flow in X∞

a,b is defined by a cocycle over Xa,b with coordinates in E+− ⊕ E−+. Therefore 
by Proposition 2, the flow on X∞

a,b is recurrent for almost every θ . This ends the proof of Theorem 1.
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