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Abstract

In this paper, we give a geometric criterion ensuring the recurrence of the vertical flow on 74 covers of compact translation
surfaces (d > 2). We prove that the linear flow in the wind-tree model is recurrent for every pair of parameters and almost every
direction.
© 2017 L’ Association Publications de 1’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

MSC: primary 37C15; secondary 37B10

Keywords: Polygonal billiards; Periodic translation surfaces; Recurrence

1. Introduction

Very little is known on the dynamics of the linear flows on non-compact translation surfaces. Some results exist for
classes of examples. “Periodic” translation surfaces form a natural class actively studied. In this paper, we consider
a translation surface X which is a ramified cover over a compact translation surface X, the covering group being Z¢
(d > 1)." Let X be the finite set of branched points. Since the intersection form is non-degenerate between H; (X, X, Z)
and H{ (X \ X, Z), every cover is defined by a d-tuple of independent elements I' = (yy, ..., ¥4) in the group of relative
homology Hi (X, X, Z). The d-tuple I is called the cocycle defining the covering X. The holonomy of an element of
Hi(X,%,Z)is [, o where o is the holomorphic 1-form defining the translation surface X. A necessary condition for
recurrence is the so called no drift condition

hol(y;) =0, fori=1...d.

The Lebesgue measure is invariant by the linear flow on X, it is an infinite measure. For d = 1 under the no drift
condition, recurrence of the linear flow is a consequence of general principles: ergodicity of the flow on X implies
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recurrence on X. This is not true in dimension d > 2. For translation surfaces, the first counter example is due to
Delecroix [3].

In this paper, we give a geometric criterion ensuring recurrence for the linear flow on a Z?-cover of a compact
translation surface (see sections 3 and 4). We apply this criterion to periodic versions of the wind-tree model introduced
by Ehrenfest in 1912 ([5]). The model is the following: a point moves in the plane and collides with rectangular
scatterers with the usual law of reflexion. The scatterers are identical rectangular obstacles located periodically along
a square lattice on the plane, one obstacle centered at each point of Z2. The scatterers are rectangles of size (a, b), with
0<a<1,0<b< 1. Wecall the subset of the plane obtained by removing the obstacles the billiard table T (a, b).
Polygonal billiard is one of the main motivation to develop the theory of translation surfaces. Thus, it is important to
understand the dynamics in this situation. The phase space splits into a family of invariant surfaces since the angles at
the boundary of T (a, b) are integer multiples of 7 /2. We prove

Theorem 1. For every (a, b) € (0, 1) x (0, 1), the billiard flow in the table T, , is recurrent for almost every direc-
tion 6.

Using the Katok—Zemliakov’s construction, we replace the billiard flow in T (a, b) by the linear flow on a non-
compact translation surface X;’f’b. The surface ng’b is a cover of a translation surface X, ;, of genus 5 (see [4] for
details). That’s why we can apply the geometric criterion proven in section 4. Theorem 1 is a generalization of a result
in [12]. Our result is optimal for two different reasons. For all rational parameters (a, b) there exists a set of positive
Hausdorff dimension of non-recurrent directions on Xg‘fb (see [3]). Moreover ergodicity is false by a result of Fraczek
and Ulcigrai (see [10]).

1.1. Outline of the paper

In section 3, we prove a general criterion for recurrence for linear flows on Z2-covers of compact translation
surfaces. In section 4, we derive a geometric criterion for recurrence. In section 5, we check this criterion for the
wind-tree model for generic parameters. This relies on a careful analysis of the existence of “good” cylinders. A crucial
fact is that the surface X, p is a cover of an L-shaped surface L, . In section 6, we prove that the result is in fact true
for every parameter. A key point is McMullen’s classification of SL(2, R) invariant measures in the stratum #(2) (see

[15]).
2. Background

For general references on translation surfaces we refer the reader to the survey of A. Zorich [18] or the course of
M. Viana [17].

A translation surface is a surface which can be obtained by edge-to-edge gluing of polygons in the plane using
translations only. Such a surface is endowed with a flat metric (the one inherited from R2) and with a choice of a
canonical direction. There is a one to one correspondence between translation surfaces and compact Riemann surfaces
equipped with a non-zero holomorphic 1-form. There is a canonical vertical direction in each translation surface and
we refer to the flow in this direction as the vertical flow.

A cylinder on a translation surface is a maximal open annulus filled by homotopic simple closed geodesics. The
direction of a cylinder is the direction of these geodesics. A cylinder is isometric to the product of an open interval and
a circle. The core curve of a cylinder C, denoted by m(C), is the geodesic projecting to the middle of the interval. By
convention, we puncture all the zeroes and the marked points. In particular, a maximal flat cylinder never has zeroes
nor marked points inside it.

The moduli space of translation surfaces of genus g is stratified according to the degrees of zeros of the corre-
sponding 1-forms. If « = (&, ..., &5) is a partition of the even number 2g — 2, H () denotes the stratum consisting
of 1-forms with zeros of degrees 1, ..., &y, on a Riemann surface of genus g. We denote by HV(a) C H(«) the
codimension 1 subspace which consists of area 1 translation surfaces.

There is a natural action of SL(2, R) on strata (o) coming from the linear action of SL(2, R) on R2. The Teich-

t
e 0 > We denote by M, the moduli

miiller geodesic flow on Hy is the action of the diagonal matrices g, = ( 0 ot
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Fig. 1. The surface L, ;: opposite sides are identified.

space M, of closed compact Riemann surfaces of genus g. The image of the orbits (g; - (X, ®)); in M, are geodesic
with respect to the Teichmiiller metric. Each stratum Hg (o) carries a natural Lebesgue measure, invariant under the
action of SL(2, R). Moreover, this action preserves the area and hence HD (). H. Masur [13] and independently
W. Veech [16] proved that on each component of a normalized stratum HD () the total mass of the Lebesgue mea-
sure is finite and the geodesic flow acts ergodically with respect to this measure. Another important one parameter
J

0 1

Stabilizers for the action of SL(2, R) in the stratum H(«), called Veech groups, are discrete subgroups of SL(2, R).
In exceptional cases Veech groups are lattices (i.e. finite-covolume subgroups) in SL(2, R) (see [16]), though they
are never cocompact. Closed compact translation surfaces with a lattice Veech group are exactly those whose
SL(2, R)-orbit is closed in the corresponding stratum. They are called Veech surfaces. Their orbits project to Te-
ichmiiller curves in the moduli space M.

The stratum #(2) is connected and is the best understood in higher genus. It was proven that the Teichmiiller
curves are generated by L-shaped surfaces of the form L(a, b) (see Fig. 1).

In his fundamental work, C. McMullen [15] proved a complete classification theorem for SL(2, R)-invariant mea-
sures and closed invariant sets in the stratum 7{(2). The only SL(2, R)-invariant irreducible closed subsets of H(2)
are the Teichmiiller curves and the whole stratum. The only ergodic SL(2, R)-invariant probability measures are the
Haar measure carried by Teichmiiller curves and the Lebesgue measure on the stratum. Following McMullen, these
measures will be called Euclidean measures.

Let g > 2. The Hodge bundle E, is the real vector bundle of dimension 2g over M, where the fiber over X € M,
is the real cohomology H 1(X: R). Each fiber H!(X; R) has a natural lattice H'(X; Z) which allows identification of
nearby fibers and definition of the Gauss—Manin (flat) connection. Since branched 74 -covers are defined by relative
cycles, we will also consider the extended Hodge bundle with fiber H; (X, X, R). The holonomy along the Teichmiiller
geodesic flow provides a cocycle called the Kontsevich—Zorich cocycle. Given a Teichmiiller geodesic starting from
a translation surface X and y € H{(X, ¥, Z) we denote by G,(y) € H{(g:(X), £, 7Z) the value of the Kontsevich—
Zorich cocycle after time . When I' = (y1, ..., y4) is a vector with coordinates in H| (X, X, Z), G,(I") is the vector
(Gi(y1), ..., G (¥q)). In the sequel, we will only work in local coordinates, thus homology (resp. cohomology) can
be locally identified. Given a simply connected small open set U in a stratum, the Kontsevich—Zorich cocycle tells us
how a cycle has been modified when a Teichmiiller geodesics comes back to U'.

Given X a compact translation surface, consider X a Z4-cover of X ramified over a finite set of points X. An
isomorphism class of Z¢-cover is defined by the kernel of an homomorphism ¢ from 71(X \ £) to Z¢. As Z¢ is an
abelian group, the morphism ¢ factors through homology. It induces a morphism

flow on H () is the horocycle flow given by the action of h; =

v H(X\2,Z) - Z°.
As the intersection form ¢ : H{(X \ X,7Z) x H{(X, ¥, Z) — Z is non-degenerate, by Poincaré duality, there exists
L=, -,y € H(X, X, Z) such that for every y € H|(X \ £, Z),

V() =@y, ), 1y, va)-

Since X is a Z%-cover of X , I'=(y1,---,ya) is a family of independent cycles, thus I' is a sublattice in H| (X, ¥, Z).
In the sequel, we will denote by X the cover of X associated to I'.
A necessary condition for the vertical flow on Xt to be recurrent (see [11] for a proof) is

NR(hol(y1)) =---=N(hol(ya)) =0.
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Fig. 2. A C-recurrent rectangle in the vertical direction. The horizontal sides are identified together.

This is called the no drift condition for 9% (w) where w is the holomorphic 1-form defining X. A necessary condition
to get recurrence of the linear flow in two (or more) directions on X is

hol(y1) =---=hol(yq) = 0.

This is called the no drift condition.
3. Recurrence criterion

Definition 1. Let X be a compact translation surface, I' a cocycle, X the 74 _cover of X associated to I' and ¢A>, the
vertical flow on Xr. Given a positive number C we say that Xr is C-recurrent if there is an embedded rectangle
R =1 x[0, L) in X of measure larger than 1/C with L > 1/C such that if x € R then for every preimage X € Xr we
have:

e £ Xrand ¢ (%) belong to the same horizontal leaf
e the distance dy along the horizontal leaf between x and ¢y (x) satisfies

dy (%, ¢L(®)) < C.

Remark 1. An example of a C-recurrent X is depicted in Fig. 2.
To avoid overloading the definition, only one constant C is introduced. Nevertheless, the hypothesis on the area
of R, its height and the distance between x and ¢ (X) are independent.

Proposition 1. Let X be a compact translation surface of area 1, T a cocycle and C > 0. Assume that there exists a
sequence of real numbers (t,) tending to infinity such that g, (X)r, is C-recurrent for every n where I'y = G, ().
Then if the flow ¢; is ergodic on X, the vertical flow ¢; is recurrent on Xr.

Proof. We denote by R, the rectangle which is C-recurrent for I';, on g; (X) and by R, its preimage by g;, . Te-
ichmiiller flow in backward direction contracts horizontals and expands verticals. Thus, the height L, of Ry, i.e. the
length L, of the vertical side of R, is at least ¢” /C and its width is at most e"n. Therefore, if x € X belongs to R,,
we have dy (%, ¢A>Ln (%)) < Ce ™. Thus the vertical trajectory of a point which belongs to R, for infinitely many # is
recurrent.

Lemma 1. Almost every point x € X belongs to R, for infinitely many n.

Proof. The width of the rectangle R, is at most e ™ /C. We consider a subsequence of real numbers (still denoted by

o0
(t,)) such that Z e ™ is finite.

n=0
Denote by

Q = {x € X such that, for infinitely many n, x € R, }.

We have A(2) > 1/C since A(R,) = A(R) > C. Let us prove that Q2 is ¢, invariant mod 0 for every ¢ > 0. This will
prove that A(2) = 1. For ¢ > 0 fixed, the z-top of R, is the set A, = I x [¢!"L, — 2t, e L,) where L, is the length
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Fig. 3. A cylinder in the deformed surface and the associated C-recurrent rectangle.

(e.¢]
of 15,1. This set is defined for n large enough. As Ze_t" is finite, by Borel-Cantelli Lemma, almost every x € X
n=0
belongs to a finite number of ¢-top of the rectangles R,. Take x € Q and in this set of full measure. Consequently,
for infinitely many n, x belongs to R, \ A,. Thus ¢, (x) belongs to infinitely many rectangles R,, which means that

¢:(x) € Q. This ends the proof of the lemma. O
The proof of Proposition 1 is now complete. O

Remark 2. This proposition is an avatar of Masur’s criterion for unique ergodicity of the vertical flow on a compact
translation surface [14].

4. Geometric criterion for recurrence

Through this section, £ will be a closed g; invariant locus and B a flat continuous linear subbundle of the extended
Hodge bundle over L.

Remark 3. Since L is g;-invariant and B is flat, 3 is invariant under the Kontsevich—Zorich cocycle.
Definition 2. Fix X € £. A cylinder C C X is said to be B-good if i (m(C), y) =0 for all y € By.

It immediately follows from Definition 2 that if a cylinder C on a flat surface X from the family £ is 5-good, then
forany I' C Bx N H (X, X, Z) the pullback to the (branched) cover XT is a union of disjoint cylinders isometric to C.
(Recall that by convention the cylinder may not contain any branching points of the cover.)

Now we give a strong relation between the existence of good cylinders and the C-recurrence property.

Lemma 2. Let X in L with a vertical B-good cylinder. There exists a neighborhood U C L of X and a C > 0 such
that every surface Y € U is C-recurrent for every I' with coordinates in By N Hi (Y, X, Z).

Proof. Assume that X has area 1 and contains a B-good vertical cylinder of area at least 2/C and width at most
2/C. Cylinders are stable under small perturbations in the strata of abelian differentials. Thus, in a neighborhood of
X, there is a metric cylinder whose core curve is homologous to m(C) and direction close to be vertical. In a nearby
direction, this cylinder contains a rectangle which takes up an arbitrary large proportion of the cylinder (see Fig. 3).

We fix U a neighborhood of X small enough so that this cylinder contains a rectangle whose sides are horizontal
and vertical, area is at least 1/C and height L at least 1/C. Let Y € U and I" with coordinates in By. The previous
part of the argument provides on Y a cylinder C(Y) and a rectangle R(Y'). Note that C(Y) is B-good, so the lift of the
cylinder C(Y) in the cover YT is a union of cylinders isometric to C(Y). Moreover, the width w of the rectangle R(Y)
satisfies w < C since L > 1/C. Thus, if £ € R(Y), then d(%, ¢1. (%)) <C. O
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Fig. 4. The genus 5 surface obtained from the wind-tree model. Identifications are indicated by Greek and Latin letters.

Proposition 2. Let X in L with a vertical B-good cylinder. Let Y € L and T be a d-tuple of elements in By N
H\ (Y, X, Z). If the positive g;-orbit of Y accumulates on X then the vertical flow is recurrent on Yr.

Proof. Denote by (#,) the subsequence such that g, (¥) tends to X and let I, = G,, (I"). By Masur’s criterion, the
vertical flow on Y is ergodic. Since g, (¥) tends to X and B is invariant by the Kontsevich-Zorich cocycle, by
Lemma 2, for n large enough, g;, (¥) is C-recurrent and then by Proposition 1 the vertical flow is recurrent on Y. O

5. Recurrence for the wind-tree model: almost everywhere statement

In this section, we apply our method to the wind-tree model. We check the geometric criterion for the
SL(2, R)-invariant locus responsible for the dynamics of the wind-tree model.

5.1. Summary of results on the wind-tree model

We recall here results from [4]. The billiard flow is described by the linear flow on a non-compact translation
surface X7, . The surface X%, is a 7Z?*-cover of a genus 5 surface X, ;, which is itself a non-ramified cover of degree
4 of an L- shaped surface La b 1n the stratum 7 (2). This covering construction can be done for every surface in H(2).
We denote by L the locus of these covers which is isomorphic to 7 (2).

The Klein group K acts on X, ; by translations (see Fig. 4). This action induces a splitting of H(X, », Z) which
is SL(2, R) invariant.

Denote by 1, T, and 75,7, the non-trivial elements of K. 7, (resp. t,) permutes the fundamental domains horizon-
tally (resp. vertically).

We have:

Hi(Xap, )=E"T"®(ET~@E HSE "

where E*T is the vector space invariant by t; and t,, E*(Z) the vector space invariant by 7;, and anti-invariant
by 1y, etc. This decomposition is SL(2, R) equivariant. The coordinates of the Z> cocycle defining X7, belong to
ET~ @ E~T. The invariant vector space by 7,7, is EYT & E~~. The quotient surface X, /7,7, is a hyperelhptlc
surface (it belongs to the hyperelliptic locus of the non-hyperelliptic component of the stratum #H(2, 2)).

On the surface L, two Weierstrass points are distinguished by the cocycle defining X7, and are denoted by E
and F (see Fig. 5). In geometric terms, E is uniquely defined by the condition that the horlzontal trajectory through
the Weierstrass point E hits the singularity; F' is uniquely defined by the condition that the vertical trajectory through
the Weierstrass point F' hits the singularity.
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Fig. 6. Weierstrass points on the surface X, 5/t 7y. The identification are indicated by the letters a, b, ¢, d, e, f, g, h. The singularities are Weier-
strass points.

5.2. Good cylinders in the wind-tree model
We now give a refined version of Lemma 10 of [12] in the adequate language for our purpose.

Lemma 3. The lift to X, of a cylinder in L, , whose core curve contains E and F is the union of two cylinders
which are homologous. The homology class of the core curve of each cylinder belongs to E™™.

Proof. Since E and F are Weierstrass points on L, p, every trajectory from E to F closes up in L, 5. The length
of the closed curve y is twice the length of the segment E F. In [12] Lemma 10 a symmetry argument shows that y
lifts in X9 a.p to the core of a cylinder whose length is twice the length of . The proof is explained in the language of
billiards. The symmetry argument shows that in the billiard table 7, ;, the trajectory is symmetric with respect to a
lattice point. It contains two preimages of E (and F) with opposite vector. We now translate this argument in X, j,.
Let  be a preimage of y in X, , containing Ea preimage of E. The previous argument means that 7 contains E and
T tU(E). This implies that the homology class of  is tj7,-invariant. Thus, it belongs to ET+ @ E~~. The same is
true for the other preimage of y denoted by );/ . The vector space ET @ E~~ is identified with H; Xa.p/thty, R) (it
is the 75, 7,-invariant part of H;(X, 5, R)). Denote by 7 and );’ the projections of y and );’ in Xy p/thty.

We now prove that y and );/ are equal in H1(X4,5/th Ty, R). A simple calculation shows that the Weierstrass points
in X4.»/th Ty are the preimages of the Weierstrass points A, B, C, D in L, (see Fig. 6).

In L, the curve y contains the two Weierstrass points £ and F thus it does not contain any other Weierstrass
point. Therefore y and y are not fixed by the hyperelliptic involution ¢ in Xu »/ThTy. Thus, we have ((7) = —y This
implies that y and y are homologous in X, 5/, Ty. Consequently y and y are homologous in X, ;. We also have

V' =) =1().

This yields that the homology class of 7 is 7, and T, invariant thus it belongs to ET. O

Corollary 1. Any lift to X, of a cylinder in L, , whose core curve contains E and F isa EY~ ® E~T ® E~~ good
cylinder:

Proof. Lemma 3 shows that the core curve of such a cylinder belongs to E™" which is the symplectic orthocomple-
ment of EY~ @ E~1 @ E~. This means that this cylinderis EY- ®@ E~T@® E~~ goodon X, . O
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Fig. 7. Orbit from E to F.

5.3. Almost everywhere statement

We now apply the geometric criterion to prove an intermediate statement. We prove recurrence of the cocycle for
almost every surface in £ with respect to any SL(2, R) ergodic invariant probability measure.

Proposition 3. Let C be a connected closed invariant subspace of L, ju be its Euclidean measure and let X be in C.
Let U be a neighborhood in C of X. Denote by T' a cocycle with values in EY~ @ ET~ @ E~~. For i1 almost every
Y € U the vertical flow is recurrent in Yr.

Remark 4. This applies to the wind-tree model since the cocycle defining it belongs to EY~ @ E*~.
We need the following lemma.
Lemma 4. On every L-shaped surface there is a cylinder with Weierstrass points E and F in its core curve.

Proof. We take coordinates on the L-shaped surface as in Fig. 7. We denote by R the rectangle DoD;D}Dj,. We
unfold this rectangle along the vertical side containing Dj and F;. We obtain points F1, ..., F, with the same
y-coordinate in the complex plane. In the horizontal strip ending at the vertical segment DoD, there is no singu-
larity except on the horizontal boundaries. We now consider the cone bounded by the lines £ Dy and E D;. As the
slope of E Dy is larger than the slope of E D1, every point in R has a preimage in the strip contained in the cone. Thus
there is a segment joining E to each point of R and thusto F. O

Proof of Proposition 3. Fix p a SL(2, R) ergodic invariant probability measure on £ and Y a generic surface for .
By McMullen’s classification, the support of every ergodic measure in H(2) contains a L-shaped surface. Thus the
support of & contains a surface X, for some (a, b) € (0, 2. By Corollary | and Lemma 4, the surface X, ; contains
aET" @ E~1 ® E~ good cylinder. As Y is a generic point, its orbit under the geodesic flow accumulates to X p.
Thus by Proposition 2, the vertical flow is recurrenton Y. O

6. Everywhere statement

The result of this section is an easy consequence of the work of Eskin, Mirzakhani and Mohammadi (see [8] and
[9]). It can also be deduced from [2]. We give a direct proof in this elementary situation.

First fix some notations. Our convention for subgroups and elements in SL(2, R) is the following: the rotation
of angle 6 is denoted by ry, the subgroup P is the group of upper triangular matrices K is the orthogonal group

t
SO(2, R). We recall that the geodesic flow is the one parameter flow g; = (g 0

0 e_,), t € R, the horocycle flow is

the one parameter flow i = <(1) i), s eR.
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Let £ be the locus defined in § 5.1, let X be a translation surface belonging to £ and 2 be a set of positive measure
of the unit circle. We denote by v the normalized Lebesgue measure on 2 . X considered as a subset of K . X. We
first prove some useful lemmas.

Lemma 5. Every limit point v of the family of probability measure

T
2l
— v
T 8t
0
is a probability measure which is P invariant.

Proof. Every limit of g;v is a probability measure in £. This is a direct consequence of the results of Eskin-Masur
[6] and Athreya [1]. No mass can escape to infinity.

Claim 1. Any limit u of g:v is hg invariant.

The proof of the claim is an adaptation of Eskin—-Marklof—-Morris Lemma 7.3 (see [7]). We fix a sequence #; such
that g, v tends to w. Fix s € R, a matrix calculation proves that there exists a sequence (6;) tending to zero such that

870,81 ! tends to hy. Let us prove that
gt,-re,-g{lgt,-v — &,V
tends to zero as j tends to infinity. Passing to the limit this will prove that u is &g invariant. We use the fact that
v is absolutely continuous with respect to Lebesgue measure on the circle. This means that there is a non-negative
measurable function ¢ such that
dv = ¢dO and /¢>d0 =1.
SI

Let f be a bounded continuous function on £ and let

8= [ rongn g e = [ ongr= [ 00g0odv—av = [ 1 3000 om, ~ 9)do.
L L L L

Thus
A < fllcll@p o, — Plli

where || ||oo is the sup norm on bounded continuous functions on £ and || || is L' norm in the unit circle with respect
to Lebesgue measure. For every ¢ € L' ||¢po ro; — @11 tends to zero as j tends to infinity. Consequently (A ) tends
to zero as j tends to infinity which proves the claim.

Now v is obtained as a Cesaro mean. Thus it is g; invariant. Moreover, by the claim, it is a convex combination
of hg invariant measures. Since the set of /i invariant measures is a convex set, Vo 18 /i, invariant. This means that it
is P invariant. 0O

Consequently the support X of vy is P invariant.

Lemma 6. The set KX is SL(2, R) invariant. The set ¥ contains a Teichmiiller curve.
Proof. A direct calculation shows that the set K ¥ is SL(2, R) invariant since the set X is P invariant. By McMullen
classification, K ¥ contains a Teichmiiller curve M. Thus ¥ N M is a closed P invariant set and contained in the

homogeneous space M. Thus, by Ratner’s theorem, SN M =M. 0O

We now prove that:
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Lemma 7. For every surface X in the locus L, for almost every 0, the set of limit points of g;ro X contains a Teich-
miiller curve.

Proof. Assume by contraction that there is a set of positive Lebesgue measure 21 contained in the circle which does
not satisty the conclusion of the lemma. For every Teichmiiller curve M, fix a point x o4 with dense g;-orbit in M.
By hypothesis, this point x 54 does not belong to the omega-limit set of g;r9 X for 6 in ©; (otherwise this limit set
would contain a Teichmiiller curve since it is a closed set).

For each k, denote by Vi (x) a neighborhood of x4 of diameter 1/k. For every 6 € Q2 there is k and a #g such
that

Vicxam) N{giro X, t > 19} = 0.

Consequently, there exists k (M) and a set of positive measure 2o C €2 such that, for every 0 € Q», there is a ty with
Ve ea) N{girg X, t = 19} = 0.

Let U be the open subset of £ defined by

U ={J Ve a0
M

For every 6 € Q3, g:r9 X does not enter U for ¢ large enough. Restricting 2; further, there is a set of positive measure
Q3 C Qp and a T such that fort > T, g;rg X does not enter U.

We perform the same construction as in Lemma 5 replacing Q by 3. We fix a limiting measure v/ obtained
by this process. By construction of v/, v, U = 0. This is a contradiction with Lemma 6 since U intersects every
Teichmiiller curve. O

We now complete the proof of Theorem 1. Let X = X, ; be a surface obtained by the wind-tree construction for
some parameters (a, b). By Lemma 7, for almost every 6, the limit points of g,rg X contains a Teichmiiller curve. By
McMullen classification of Teichmiiller curves in genus 2 every Teichmiiller curve is generated by a L-shaped polygon
L. Thus L is a limit point of g;79 X. Moreover L contains a EY~ @ E~ @& E~~ good cylinder by Corollary 1. As it
is explained in § 5.1 the flow in Xf;f’b is defined by a cocycle over X, ; with coordinates in E = @ E~T. Therefore
by Proposition 2, the flow on X;"fb is recurrent for almost every 6. This ends the proof of Theorem 1.
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