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ABSTRACT

In this article we construct many examples of properly convex irreducible domains divided by Zariski dense
relatively hyperbolic groups in every dimension at least 3. This answers a question of Benoist. Relative hyperbolicity and
non-strict convexity are captured by a family of properly embedded cones (convex hulls of points and ellipsoids) in the
domain. Our construction is most flexible in dimension 3 where we give a purely topological criterion for the existence
of a large deformation space of geometrically controlled convex projective structures with totally geodesic boundary on a
compact 3-manifold.
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1. Introduction

In this article we construct properly convex open subsets 2 C RP divided by
subgroups I' < PSL,; ;R with special geometric properties in arbitrary dimension d > 3.

A properly convex subset  C RP” is an open subset contained in some affine chart
of R? where it is convex and bounded. It comes with a group of projective symmetries

Aut(Q) := {A € PSL,1 (R)| A(Q) = @}

and an Aut(€2)-invariant Finsler metric called the Hilbert metric.
Discrete and torsion-free subgroups I' < Aut(£2) give rise to quotient projective
d-manifolds

M:=Q/T.

Among these groups I', of special interest are those such that M = /T is compact. If
such discrete subgroup exists, then the convex set €2 1s said divisible and the group I' divides
Q2. Divisible convex sets are a rich source of geometry, dynamics, and group theory (see
[11]).

Basic examples are
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— The hyperbolic space, the symmetric space of POy (d, 1)

H' ={[x] eRP| ] + - +x, — x},, <0}.

— The projective model of the symmetric space of SL,R
SL,R/SO(n) = PSym: = {[S] € P(Symn(R)) S is positive deﬁnite},

where Sym, (R) is the space of symmetric square matrices of size n.
— A projective model of the symmetric space R?

A ={[x] e RP|x, ..., 2041 > 0}.

(The Hilbert metrics do not necessarily agree with the Riemannian ones.)
The study of divisible convex sets, initiated by Benzécri [14] and vastly expanded
by Benoist [7-10], branches into two major subjects:

— Existence: Construct examples beyond symmetric ones (see Table 1).
— Classification: Describe the structure of divisible convex sets, of the groups dividing
them, and of the quotient projective manifolds.

We are going to come back to this in Section 1.1.

The purpose of this article is to contribute to the first goal by exhibiting new ex-
amples of divisible convex sets with novel geometric and group theoretic features. First
we answer a question of Benoist [13, Prob. 10] (see also Marquis [49, Open Q. 3]).

Theorem 1.1, — For every d > 3 there exists a divisible convex set @ C RP? divided by a
Zariski dense group I' < SLyy 1 (R) such that 2 s not strictly convex, w.e. 9S2 contains non-
trivial line segments.

We will give a more precise version of Theorem 1.1 later on (see Theorem 1.3),
which gives a description similar to a result of Benoist [10, Th. 1.1] on the structure of
divisible convex sets in dimension 3 (see also [36, 37, 70]). Let us remark the following.

— Recall that a subgroup I' < PSL,; 1 (R) is {ariski dense if every polynomial in the
matrix entries that vanishes on I' also vanishes on PSL,,;(R).

— Non-strict convexity comes from properly embedded cones in €2, 1.e. convex hulls in
Q2 of a (d — 2)-dimensional ellipsoid H C 9€2 (the base of the cone) and a point
p € 0K2 (the vertex), whose relative boundary is contained in 0€2. In dimension at
least 4, the presence of these cones is also a novelty.

— Our construction allows a good amount of flexibility. For instance, if d > 5,
then we can produce infinitely many different commensurability classes of pro-
jective manifolds with the properties stated in the theorem. Recall that two
groups I', I'" are commensurable if they contain isomorphic finite index subgroups
G<I''G <TI".
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In particular, for each d > 5 there exist infinitely many different non-
strictly convex divisible convex sets divided by a Zariski dense group.
—  will be constructed by gluing compact convex projective manifolds with totally
geodesic boundary, like the ones in the next result.

Our second result is specific to dimension 3, where geometry and topology are
strictly tied by breakthroughs of Thurston [62]. We provide a purely topological condi-
tion for the existence of (deformation spaces of) convex projective structures with totally
geodesic boundary on a large class of compact 3-manifolds with toroidal boundary, ad-
dressing a question of Ballas, Danciger, and Lee [2] (see Question 1.6).

Theorem 1.2. — Consider:

— A compact, onientable, irreducible and atoroidal 3-manifold M with non-empty connected
boundary.
— A doubly incompressible separating simple closed curve & C OM.

Then for all a > 1 close enoughto 1, b > 3 and 1 < ¢ < —2+ b*/2, the complement N = DM ~. U
of an open tubular neighborhood U of o in the double DM admats a convex projective structure with totally

geodesic boundary isomorphic to a projective torus with holonomy generated by A = diag(a,a™", 1, 1)
and B = diag(b_l, b7', be, b V).

We will later state Theorem 1.7, a more precise version of Theorem 1.2, which
allows more boundary components in dM. We will then recall classical results on the
topology of 3-manifolds.

— Recall that M irreducible (resp. atoroidal) means that it does not contain es-
sential spheres (resp. tori), and o doubly incompressible means that it intersects
every properly embedded essential disk, Mébius band, and annulus.

— Curves o C dM that satisfy the assumptions of Theorem 1.2 exist and are abun-
dant in a precise sense (by work of Lecuire [45]).

— Given (M, o), (M', &) as in Theorem 1.2, the control on the boundary holon-
omy gives us a homeomorphism f : N — 9N’ such that the closed manifold
N Uy N’ can be endowed with a convex projective structure. In particular, the
double DN has a convex projective structure.

The remainder of the introduction is structured as follows:

(a) In Section 1.1 we put our work into context by briefly surveying the classifica-
tion of divisible convex sets and the known methods to produce examples.

(b) In Section 1.3 we give and comment a more precise statement (T'heorem 1.3) of
Theorem 1.1. In particular we give more details on properly embedded cones
and their stabilizers. Theorem 1.3 will be deduced from Theorem 1.5, stated
in Section 1.3, which gives compact convex projective manifolds with totally
geodesic boundary (which are convex-cocompact in the sense of [30]).
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TasLE 1. — Classification of irreducible divisible convex sets €. The last row surveys some of the known examples

symmetric non-symmetric

Aut(£2) semisimple Lie group Aut(2) < PSL,y; (R) Zariski dense

Aut(£2) ~ Q transitive Aut(2) ~ Q properly discontinuous

[43, 66, 67] [6, 7]

R-rank > 2 R-rank =1 strictly convex non-strictly convex

SL,(R)/SO(n) H’ Q Q

[22] [60] [26, 38—40] [2, 10, 28, 47]
He CH(H1 %)

F1G. 1. — Irreducible and reducible examples

(c) In Section 1.4 we give a more precise version (Theorem 1.7) of Theorem 1.2,
and we put this result into context by briefly surveying classical result in 3-
dimensional topology.

1.1. Classification and known examples. — Before describing our new examples and
their novel features, let us briefly survey the classes of examples known so far in order to
provide an adequate context.

To this purpose, it is convenient to briefly recall the general classification scheme
(see Table 1 and Figure 1) of divisible convex sets.

Classification. — Let us comment on some features in Table 1:
Reducible and irreducible. If T'; divides £2; C RPY for 7=1,2,then I} x I'y X Z divides
the convex hull of the two

CH(2,, Q) C RP?

with d = d, + dy + 1 and where RP? = P(R*! @ R%*!). Such examples are called
reducible. If a divisible convex domain is not of this form, it is ureducible. Vey proved [65]
that if I' divides €2 then €2 is irreducible if and only if T" is strongly irreducible (does not
preserve any finite union of subspaces of R*""). As we saw in Theorem 1.1, reducible
divisible domains come up naturally in our constructions in the form of cones, that is,
convex hulls of ellipsoids and points.
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Symmetric and non-symmetric. As hinted in Table 1, the dichotomy between the
symmetric and non-symmetric cases is the result of the combination of the works
[7, 43, 66, 67].

Regularity of 92 and geometry. Strict convexity can be seen as an avatar of negative
curvature: Benoist proves in [8, Th. 1.1] that if I' divides €2 then the following are equiv-
alent:

— 2 is strictly convex.
— I' 1s Gromov hyperbolic.
— Qs C.

Recall that Gromov hyperbolicity is a group theoretic abstraction of the geometric prop-
erties of fundamental groups of closed hyperbolic manifolds and free groups (see Defini-
tion 6.7 and Remark 6.8).

In the same direction, Islam [35, Th. 1.6] showed that a larger class of divisible
convex sets possesses a weak form of negative curvature: If I' divides a non-symmetric
irreducible €2, then T is acylindrically hyperbolic (in the sense of Osin [53]).

Dimensions 2 and 3. As a consequence of Benzécri’s work [14], every divisible convex
set of dimension 2 is either a triangle (hence reducible) or strictly convex. Benoist gave
in [10] a beautiful geometric description of all irreducible non-symmetric non-strictly
convex divisible convex domains of dimension 3, similar to that in Theorem 1.3. He also
gave examples, as mentioned later on.

Geometric rank-one and Higher rank rigidity. As in the non-positively curved Riemannian
setting there 1s a notion of geometric rank-one of a convex projective manifold M = 2/ TI'" in-
troduced by Islam [35]. Zimmer proved in [75] a higher rank rigidity result for projective
manifolds (analogous to Ballmann [4] and Burns and Spatzier [24]): If €2 is irreducible
and not symmetric then it has geometric rank-one.

Examples. — We are now ready to describe the classes of examples known so far
according to the methods used to produce them.

Polyhedral tilings in dimension d < 6 and local-to-global convexity: One way of constructing
groups dividing properly convex domains is to consider Coxeter groups I' generated by
the reflections along the codimension 1 faces of a polyhedron P € RP?. Under suitable
combinatorial and geometric assumptions on P, a local-to-global convexity argument
asserts that the domain € = I" - P is properly convex and tiled by copies of P. This method,
that goes back to Poincaré, has been extensively used by Kac and Vinberg [39], Benoist
[10], and Marquis [47] to produce irreducible divisible domains in dimension d < 6
which are non-symmetric.

Anithmetic methods. A classical theorem of Borel [22] shows that every semisimple Lie
group G admits a so-called uniform arithmetic lattice I", which is a discrete subgroup I' < G
acting cocompactly on the symmetric space G/K. This implies that every irreducible
symmetric properly convex domain is divisible. In the case of the hyperbolic space H?,
the first examples are due to Siegel [60].
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Bending and Bulging. An amalgamated product I' =T"; x5 I'y < PSL,;;(R) can be
algebraically deformed by performing a very general procedure called bending (a similar
discussion applies when I' is a HNN extension). Let (B;), C PSLy4 1 (R) be a path of el-
ements starting at the identity, that commute with A. One can deform the inclusion of
t:I' = PSL,;1 (R) to representations p, which are the identity on I'} and send y, € I'y to
B,y,B; . By work of Koszul [44] and Benoist [9], if I" divides some €2, then the represen-
tations p, are injective and p,(I') divides a properly convex domain €2,. Furthermore, by
the Ehresmann—Thurston principle [61, Ch. 3], the quotients £2,/p,(I") are diffeomor-
phic to /T.

The construction applies in particular to hyperbolic d-manifolds M = H?/T" con-
taining a codimension 1 submanifold ¥ = H"'/A separating M into two connected
components M \ X = M, U M, (such manifolds can be constructed using the arith-
metic techniques mentioned above). By Seifert-van Kampen Theorem, we can write
I' =T %5 I'y where I'; = 7, (M;). The bending obtained using elements B that fix H !
and its orthogonal for the Lorentzian form is called bulging. These deformations have
been extensively studied by Johnson and Millson [38]. They allow to produce irreducible
non-symmetric strictly divisible convex domains in arbitrary dimension (see [11, §8.2]).

Note that, by Margulis’ Superrigidity (see [73, Ch. 16]) divisible symmetric prop-
erly convex domains with R-rank at least 2 cannot be deformed.

Using a bulging construction, Kapovich [40] showed that certain manifolds con-
structed by Gromov and Thurston [34] admit convex projective structures. These man-
ifolds have the property that they admit metrics of pinched negative curvature, but no
purely hyperbolic one (i.e. with constant curvature). In particular, the examples are strictly
convex and not deformations of symmetric ones.

Other works that used a bulging construction in a convex projective context include
[1, 20, 48].

Surfaces. Generalizing classical Fenchel-Nielsen coordinates for hyperbolic surfaces,
Choi and Goldman [26] developed a gluing construction of convex projective surfaces
starting from projective pairs of pants with totally geodesic boundary. They showed that
their construction parametrizes all Hitchin representations p : m,(S,) — PSL3(R), which
are continuous deformations of the holonomy p, : 7, (S,) — PSOy(2, 1) of a hyperbolic
structure on a closed orientable surface S, of genus g > 2.

3-Mamifolds and Dehn fillings. Thanks to Thurston’s breakthroughs, in dimension 3
we have several techniques to produce closed hyperbolic 3-manifolds. Among those there
is the celebrated Hyperbolic Dehn Filling Theorem (see [61, Ch. 4]), which allows to
deform a non-compact complete finite volume hyperbolic 3-manifold into many closed
hyperbolic ones. Inspired by ideas from Thurston’s theory, Ballas, Danciger, and Lee [2]
gave many examples of convex projective 3-manifolds with a non-trivial JSJ decomposi-
tion. In a different direction, in combination with some Coxeter theory, Choi, Lee, and
Marquis [28] produced examples of irreducible non-symmetric domains in dimension
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d < 6 divided by groups which are relatively hyperbolic with respect to a collection of Z*
subgroups. (See also the work of Lee, Marquis, and Riolo [46].)

Note that there is actually a lot of interactions between these methods. Likewise,
our construction owes to these previous works. Indeed, to prove Theorem 1.1, we will:

Construct via arithmetic methods a particular hyperbolic manifold with codi-
mension 2 cone-singularities, which is the double of a hyperbolic manifold with
totally geodesic boundary and corners.

Deform it into a projective cone-manifold M via bulging along totally geodesic
hypersurfaces adjacent to the singularities.

Use ideas from polyhedral tilings to show that the complement of the singulari-
ties in M is properly convex.

Blow up the singularities of M to totally geodesic boundaries.

The closed convex projective examples of Theorem 1.1 are actually doubles DM
of the above construction.

Let us now state refined versions of our main theorems.

1.2. Duvisible convex sets with properly embedded cones.

Theorem 1.3. — For every d > 3 there exists a divisible convex set @ C RP* divided by a
discrete and Lariski dense subgroup I' < PSL, 41 (R) with the following properties:

(1) 2 contains a T -invariant famuly C of properly embedded cones with pairwise disjoint closures

such that C | T is finite.

(2) The stabilizer T of each cone C. € C acts cocompactly on it, and has the form Z x O,

where O acts properly cocompactly on the base He, of C while the Z factor acts trivially
on it, so that C/ T¢, is diffeomorphic to He/ O¢ x S

(3) The group T is relatively hyperbolic with respect to {T'c}cec, and its Bowditch

boundary naturally identifies with 02/ ~, where p ~ q if p, ¢ € C_for some C € C.

(4) Every point of 92 . |_|gee C is extremal and C'.

Let us remark the following:

Relative hyperbolicity is a group theoretic abstraction of geometric properties of fun-

damental groups of finite volume hyperbolic manifolds. It comes with a notion

of Bowditch boundary (see Definition 6.7).

Note that I'c = Z x ®¢ is abelian only for d = 3, since O is conjugate to a

uniform lattice of SO(d — 2, 1). The existence of €2 (non-strictly convex) divided

by a group which is hyperbolic relative to non-abelian subgroups is a novelty.
The answer to the following is still unknown:

Question 1.4, — I there for every d > 6 an irreducible divisible convex set @ C RP”
which 15 non-symmetric and non-strictly convex and such that T" s relatwely hyperbolic with
respect to a collection of abelian subgroups?



106 PIERRE-LOUIS BLAYAC, GABRIELE VIAGGI

— Given the description of the structure of the properly convex set £2 and its prop-
erly embedded cones, parts (3) and (4) of the above result can be deduced from
[70, Th. 1.16] or [37, Th. 1.3-6]. We will give a similar but different proof that
applies to a different set of examples (see Theorem 1.5).

— Each component of (2 \ (g C)/ ' admits an incomplete hyperbolic metric
whose completion is a hyperbolic cone-manifold.

— In general it is an open question whether a divisible convex set admits an invari-
ant non-positively curved Riemannian metric or even just a CAT(0) metric. By
a construction of Schroeder [56], the manifolds produced by Theorem 1.3 do
admit an analytic non-positively curved Riemannian metric for which the prop-
erly embedded cones are totally geodesic and isometric to (a suitable rescaling
of) H? x R.

Let us now state formally the construction of the manifold whose double is the
non-strictly convex closed convex projective manifold €2/ I" in Theorem 1.3.

1.3. Convex-cocompact manifolds with totally geodesic boundary. — The notion of convex-
cocompactness in projective spaces was introduced by Danciger, Guéritaud, and Kas-
sel [30]. It is inspired by (and generalizes) the corresponding definition of convex-
cocompactness for Kleinian groups (see for example [25, Ch 3]) and it is linked to the
concept of Anosov subgroups of higher rank Lie groups (see for example [25, Ch. 7]).

Let  C RP? be open and properly convex. Let I' < Aut(2) be a discrete sub-
group. Consider the full orbital limit set A C 9€2 consisting of the accumulation points on
9% of every orbit I' - 0 with 0 € Q (i.e. A = U,eql'0N 3RQ) and let CH(A) be the convex
hull in € of A. We say that I' acts convex-cocompactly on Q it CH(A)/ T (the convex core) is
compact.

Compared to divisibility, convex-cocompactness is far more relaxed and flexible,
and examples are abundant (see for example [30, 31]). Their study is an area of very
active research (see for example [18, 19, 36, 37, 70]).

As mentioned, we will construct the closed convex projective manifolds of Theo-
rem 1.1 by gluing compact convex projective manifolds with totally geodesic boundary
given by the following.

Theorem 1.5. — For every d > 3 there exist properly convex open sels 21, Q2 C RP and
discrete groups I'y, I'y < PSL,11 (R), preserving respectively 21, 29, with the following properties. Let
A; C 02 be the full orbital limit set with convex hull CH,; in ;. Then

(1) T acts properly and cocompactly on C—’H] N A

(2) The connected components of ICH; ~ A;j = | |, e C form a collection C; of cones (convex
hulls of ellipsoids and points) with parrwise disjoint closures.

(3) The group T; is relatively hyperbolic with respect to the family {Uc}cec; of stabilizers
of cones C € C;, with Bowditch boundary 0CH,/ -, where p ~ q if p, q € C for some
CeC(,.
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(4) Every point of A; ~ |l <, C is an extremal and C" point of d ;.
(5) Ty acts convex-cocompactly on 2y and C; is a_famaly of properly embedded cones.

(6) T'y does not act convex-cocompactly on any properly convex open set, and Cy is the famuly
of codimension 1 faces of 02y (and 2y = CH,).

Some remarks:

— We have I'c =Z x O, where O acts properly cocompactly on the base of the
cone while the Z factor acts trivially on it.

— The quotients M; = (C_’Hj N\ A;)/T; are compact convex projective manifolds
with totally geodesic boundary

OM;=(CH;~ A)/T;= | | C/Tc.
[CleC;/ T

— The double DM, is a closed convex projective manifold. Its universal cover €2, C
RP is the properly divisible convex set of Theorem 1.1.

— As in Theorem 1.3, one can use work of Weisman [70] and Islam and Zimmer
[37] to simplify our proof of (3) and (4) n the convex-cocompact case (j = 1).

— In the non-convex-cocompact case () = 2): If ¢ = 3 then int(My) = €2,/ 'y is a 3-
manifold with generalized cusps of type 2 in the sense of [3]. If d > 3, then int(M,) =
29/ I'y is not a manifold with generalized cusps (in the sense of [3]), although it
is the interior of a compact d-manifold with boundary. The fundamental group
of the boundary components have similar features to generalized cusp groups of
type d — 1 but are not solvable.

— The inclusions I'; < PSL,. (R) are extended geometrically finite on the (partial) flag
variety of points and hyperplanes in the sense of Weisman [71, Def. 1.3]. For
J =1 thisis due to Weisman [72, Th. 1.2], for j = 2 this is proved in Section 6.6.

1.4. Geometrization in dimension 3. — Theorem 1.2 is a geometrization theorem that
turns topological information into geometric structure. Before we state a refined version
of it, let us describe a few structural results from 3-dimensional topology.

By Alexander’s Theorem (see [50, Th 9.2.10]) every convex projective 3-manifold
M = Q/T is urreducible that is, it does not contain essential spheres. From the work of
Jaco, Shalen, and Johannson (see [50, Th 11.5.1]), M can be split along an essentially
canonical collection S C M of tori and Klein bottles into pieces

M~S=M,u---uM,

that are either aforoidal (not containing essential tori and Klein bottles), or Seyfert fibered
(fibrations in circles over 2-dimensional orbifolds). The decomposition is called the 757
decomposition of M.
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Thanks to the major breakthough given by Thurston’s Geometrization Conjecture
[62], whose proof has been completed by Perelman, we know that every piece of the
JSJ decomposition of M admits a homogeneous Riemannian metric locally modeled on
one of 8 geometries (see [50, Ch. 12]), among which hyperbolic geometry occupies a
prominent role. By Thurston’s Hyperbolization for Haken manifolds (see [41, Th. 1.43]),
each atoroidal piece N; with dN; # () admits a complete finite volume hyperbolic metric.

Convex projective geometry fits well into this picture: Benoist proved [10, Prop.
3.2] that the JSJ decomposition of M only contains atoroidal pieces and it is realized
geometrically, meaning that S C M can be chosen to be totally geodesic (the lifts to 2 are
the intersection of € with projective 2-planes). Therefore, each piece of M \'S is the
interior of a convex projective manifold with totally geodesic boundary:

Question 1.6 (Ballas, Danciger, and Lee [2]). — Suppose a closed orientable irreducible 3-
manifold has a JSF decomposition containing only atoroidal pieces. Does 1t also admit a convex projective
structure?

In the positive direction, Ballas, Danciger, and Lee [2] provide an infinite family
of examples. Our second contribution consists of a large flexible class of controlled de-
formation families of convex projective structures on 3-manifolds with totally geodesic
boundary.

Theorem 1.7. — Let M be a compact orientable vrreducible atoroidal 3-manifold with non-
empty boundary OM =2, U---UZ,. Let o := o U - - - Ua, be a doubly incompressible multicurve
where o 15 a separating simple closed curve of X;. Consider the manifold

N:=DM~ U, U---UU,

obtained by removing from the double DM of M an open tubular neighborhood U; U --- U U, of
a)U---Ua,.
Then there exists € = € (M, a) > 0 such that for every (a;, by, ¢;) in

P:={(ab,c)e (1,146 x (3,00 x (1,00)|c < —2+5/2}
there exists a convex projective structure with totally geodesic boundary on N, such that the boundary 9U;
is 1somorphic to A JZA; @ ZB; where A; = diag(a;, aj-_l, 1,1),B, = diag(bj_l, bj-_l, bic;, bjcj_l)
and A = A(ey, eq, e3) C {xy = 0} 15 the standard simplex.
Double incompressibility was introduced by Thurston (see [63]) in the study of de-

formations of geometrically finite hyperbolic structures on int(M) with prescribed cusps.
Let us remark that:

— These convex projective structures on N are convex-cocompact in the sense of

[30] (See Section 1.3).
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— The convex projective structures on N vary continuously with the parameters
{(aja bj’ Cj) € P}jfn-

— Multicurves o C dM that satisty the assumptions of Theorem 1.2 exist and are
abundant in a precise sense (by work of Lecuire [45]).

— Given (M, @), (M, @) as in Theorem 1.2 and a pairing {S; C IN < S]/- -
0N'};<, of boundary components, the control on the boundary holonomy gives
us homeomorphisms f; : S; — S’ such that the gluing N Uy,...,; N, can be en-
dowed with a convex projective structure with totally geodesic boundary (which
is empty if the pairing involves all connected components of dN and dN’).

— In particular, the double DN of N is a closed orientable 3-manifold with a convex
projective structure.

— The manifold N admits on its interior int(N) a complete finite volume hyper-
bolic metric which is itself a double of a complete finite volume hyperbolic metric
with totally geodesic boundary on M \ «. In particular, it contains dM \ « as a
totally geodesic embedded subsurface.

— The class that we construct is transverse to the one of Ballas, Danciger, and
Lee [2]: Since the hyperbolic manifold N contains a totally geodesic subsurface
OM \ « it 1s not wmfinitesimally projectively rigid relative to the boundary as they need in
their work.

— N is a projective manifold with generalized cusps of type 3 in the sense of [3].
Allowing ¢; = 1, one obtains projective manifolds with generalized cusps of type
2 (the formulae for the holonomy would change though). One should also be
able to allow ¢; = 1 to obtain cusps of type 1 and O (the finite volume hyperbolic
metric on N), but the above parametrization might not be well-suited for that.
In fact one should retrieve constructions in [1, 20, 48].

1.5. Hyperbolic manifolds with totally geodesic boundary and corners. — As mentioned at
the end of Section 1.1, the building blocks for our constructions of the examples of all
the previous theorems are convex compact hyperbolic manifolds with totally geodesic
boundary and corners. If ¢ = 3 then the manifolds we need are provided by work of
Bonahon and Otal [21]. For the general case we construct arithmetic manifolds similar
to the ones considered by Gromov and Thurston [34] and Kapovich [40]. More precisely
we prove:

Theorem 1.8. — For every k > 3 there exist:

(@) A closed orientable hyperbolic d-manifold M with closed connected totally geodesic hypersur-
Jaces Ny, ..., N, C M wntersecting along a connected totally geodesic (d — 2)-submanifold
C(=N,; NN; for i # ) with angles ZcN;N;y = 7w /k. Moreover, C is fixed by a cyclic
wometry p of M with p(N;) = Njy.

(b) A compact convex hyperbolic d-manifold M with totally geodesic boundary and corners such
that each corner has angle 7 [k and the graph of the boundary s bipartite.
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The vertices of the graph of the boundary are the totally geodesic pieces of the
boundary, and its edges are the corners. For our bulging construction to work, it is crucial
that this graph is bipartite, so that we can “alternate between huge and small bulging
parameters” (see Section 2). Corner angles less than 7 /4 would allow one to work with a
tripartite assumption instead.

The existence of (b) follows from (a) as the completion of every connected compo-
nent of M~ (N, U - - UNy) satisfies all the requirements of (b).

Outline. — The article is organized as follows.

— Section 2: Ingredients of the proofs. We discuss the ideas and ingredients of the proofs
first in dimension 2 and then in general.

— Section 3: Preliminaries. We recall classical notions from convex projective geom-
etry.

— Section 4: Tubes, cone-manifolds, and totally geodesic blowup. We define and classify
tubes, define cone-manifolds, and describe the totally geodesic blowup of cone-
manifolds whose singularities satisty (2.1).

— Section 5: Tessellations of convex domains. We expose the local-to-global convexity
argument that guarantees that a given collection of convex sets tiles a convex
domain €2, and then describe the regularity of 9€2.

— Section 6: Convex-cocompaciness and relative hyperbolicity. We work with compact con-
vex projective manifolds M with totally geodesic boundary. We give sufficient
conditions for M to be convex-cocompact, for 7r; (M) to be hyperbolic relatively
to its boundary components, and for 7, (M) to be extended geometrically finite
in the sense of Weisman [71].

— Section 7: Projective gluings. We define projective gluings of projective manifolds
with totally geodesic boundary and corners, and explain how to bulge those glu-
ings with respect to polars. We check that projective gluings are cone-manifolds.
Then we translate into the language of projective gluings the results obtained in
Sections 5 and 6.

— Section 8: Hyperbolic building blocks. We construct the convex compact hyperbolic
manifolds with totally geodesic boundary and corners which will be projectively
glued and bulged to prove the main theorems. In particular, we prove Theo-
rem 1.8.

— Section 9: Hyperbolic doubles. We apply the results of Section 7 to the particular
case of the bulged double gluing of a single convex compact hyperbolic mani-

folds with totally geodesic boundary and corners, and then prove Theorems 1.1,
1.2, 1.3, 1.5 and 1.7.
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F1G. 2. — Double of a hyperbolic manifold with corners

2. Ingredients of the proofs

In this section we discuss the ideas and ingredients of the proofs of this paper. In
Section 2.1 we investigate the special case where the dimension d equals 2, before turning
to the general case in Section 2.2.

The proofs involve projective cone-manifolds obtained by gluing projective mani-
folds with totally geodesic and corners. We explain how the singularities of certain projec-
tive cone-manifolds can be blown up to a totally geodesic boundary, and how to describe
the geometry of certain gluings of projective manifolds with totally geodesic and corners.

Finally, in Section 2.3 we discuss the hyperbolic building blocks needed for our
construction: In dimension 3, such objects are classified by work of Bonahon and Otal
[21]. In higher dimension, we construct them using arithmetic techniques (Theorem 1.8).

2.1. A guiding example in dimension 2. — As mentioned before, the compact convex
projective manifolds with totally geodesic boundary in Theorems 1.5 and 1.7 are ob-
tained by sufficiently bulging a hyperbolic cone-manifold along totally geodesic hypersur-
faces adjacent to the cone-singularities. This hyperbolic cone-manifold is in fact obtained
by taking the double of a convex compact hyperbolic manifold N with totally geodesic
boundaries X, £’ C dN and codimension 2 corners € C dN, see Figure 2. (X, X', € are not
necessarily connected.)

In this section we explain this bulging construction in the easier but already inter-
esting case where d = 2. In this case one can pick for N a compact quadrilateral of the
hyperbolic plane with vertex angles less than 7 /2 (in dimension at least 3 the construction
of a suitable N is not as obvious).

We discuss two prototypical examples in order to explain two different problems
of the proof of Theorem 1.5, namely otally geodesic blowup and global convexity.
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20

FiG. 3. — Hyperbolic cone: Double of a sector

2.1.1. Local model. — The first example is a hyperbolic sector & C H? of angle
0 <0 < m/2 bounded by two geodesic rays £;, £y issuing from the vertex v.

The double S = DX is a hyperbolic cone with vertex v and angle 26, see Figure 3.
The complement of the cone point S' =S — {v} is a punctured plane with an incomplete
hyperbolic metric.

Let us see the universal cover S as a fan of sectors {Z;};cz lifting the sectors of S/,

and consider the hyperbolic developing map devy : ' — H? sending ¥, onto . If y is
the simple curve that winds once clockwise around the vertex, then its holonomy is given
by the rotation Ryy € SO(2, 1) of angle 26 around the vertex v. Moreover, devy(%;) =
Rjs X for every ;.

We deform projectively the hyperbolic structure on S" by performing independent
bendings along each of the sides £, £, C S'. Recall that these bendings are bulgings, i.e. of
the following form. Every line ¢ C H? has a dual point £* € RP* — H?. For every > 0
the “bulging” transformation By, € SL3;(R) is the homothety by 1/ on the 2-plane
L C R? representing £ and is the homothety by u? on the line L+ C R? representing £*.

We describe the (bulged) projective structure on S’ via the developing map dev that
sends % onto X. We have dev(X,) = By, ,, devo(2;) and dev(X_,) =B, ,,, devo(X_)),
the bulged holonomy of y (which sends dev(X_;) on dev(X;)) changes as

Rog ~ p := By, ,,Rop By,

Ly’
and dev(Zy)) = 0% and dev(Xgiy1) = ijZQMR@Z for every j.

The idea is that, under suitable geometric and dynamical assumptions on p the
projective structure on S’ is convex and one can “blow up” the singularity v of the pro-
jective cone-manifold S into a totally geodesic circle, a boundary for S'.

The heuristic picture is the following (see Figure 4). Note that v is an eigenvector
of p with eigenvalue p,/py. Assume that

(2.1) p is diagonalizable with eigenvalues p;/py < p < ',

and denote by ¢, ¢ the eigenlines of w, w'. (This holds e.g. if < 7/2 and py and u; " are
large.)

The image 2 = dev(S’) does not intersect the two lines through v that contain
respectively ¢ and ¢'. The sectors dev(X;) accumulate onto the segment [v, ¢'] for j — 00
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(& v

= T o=p ()
T

F16. 4. — Image of the new developing map dev

and to the vertex v for j = —00. The properly convex subset U (v, ¢) is a p-invariant
convex set where p acts properly discontinuously. This gives the desired totally geodesic
blowup

S:=S'U ((v,e’)/p) = (52 U (v, e’))/p

of the deformed cone S' = Q/p.

The non-convex-cocompact case of Theorem 1.5 corresponds to = " and p
acting as a parabolic transformation on the dual line to v. Then convexity and totally
geodesic blowup work the same way, except that £ = ¢’ and v is a C' point of 9.

2.1.2. Global convexity. — The second prototypical example is a hyperbolic con-
vex quadrilateral Q = Q(a, b, ¢, d) C H? with angles 0 < «, B, y, 8 < /2 at the vertices
a,b,c,d.

The double S = DQ) is a sphere with a singular hyperbolic metric with four cone
points of angle 2«, 28, 2y, 26 corresponding to the vertices a, b, ¢, d of Q. The comple-
ment of the cone points S" =S \ {a, b, ¢, d} is an incomplete hyperbolic sphere with four
punctures.

Let us bulge S" along each of the sides £, €, £.4, €4 of the quadrilateral with
parameters [y, Moy Moads Hda- SUPPOSE Uy, M;,_L-I» eds ,u{;ll are large, so that the holonomies
Pas Pis> Pes Pq Of the curves around q, b, ¢, d satisty (2.1).

By Section 2.1.1, S admits a projective totally geodesic blowup

S=S'uU(s,us,us!uUs))

where each cone point v € {a, b, ¢, d} is replaced by a totally geodesic boundary circle S!.
Let us now explain why S is convex.

One way to describe combinatorially the universal cover S’ of § is to identify it
with H? via another hyperbolic metric on S’ which is complete finite volume. The two
copies of Q \ {a, b, ¢, d} lift to an ideal tessellation F of H? whose dual graph is a regular
4-valent tree (see Figure 5). We now describe the image €2 of the (bulged) developing map

dev:S — RP.
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d_ _c
/ 24 2y

K - 2a 28

F16. 5. — Universal covering of §’

By the local model, for each vertex at infinity of the tessellation of g’, the fan of quadrilat-
erals adjacent to it develops into an open convex subset of a quadrant of RP? — (£ U £')
where £, £" are suitable lines. A local-to-global argument inspired by work of Vinberg [68]
and revisited by Benoist [12] (see Proposition 5.1) guarantees that the image €2 = dev(S')
is a properly convex domain tiled by the images of the quadrilaterals in the tessellation.

2.2. A generalization of the guiding example. — The ideas presented in Section 2.1 ap-
ply more generally to gluings of the hyperbolic manifolds with totally geodesic boundary
and corners. We will in fact develop these ideas in a much more general framework,
which includes:

— Totally geodesic blowups of projective cone-manifolds.
— Alocal-to-global convexity result for general unions of convex sets.

The reason why we work in such a general setting is threefold: First, as we use glu-
ings twice with different building blocks, it is convenient to work in an abstract setup that
encompasses both constructions. Second, we think that within that general framework
some of the arguments are natural. Last, we hope that our techniques could be well-
suited to produce many new interesting projective manifolds (for example, as the ones in
Questions 1.4 and 1.6).

We briefly describe the main steps.

Tubes and cone-manifolds. — We define a suitable class of projective manifolds with cone-
singularities (M, C), slightly more general than the previous notions in [5, 29, 46]. The
most important feature is that every singularity € € C has a neighborhood U locally
modeled on a tube.

We work in 8¢ the sphere of R? (a double cover of RP?). Consider a sector ¥ C 8¢
bounded by two half-spheres H;, Hy containing $/72. Glue H, and H, via o € G the
group of transformations of $* fixing 82, The quotient S = ¥/« is a projective manifold
with a singularity 8= C S. We call it fube and think of it as a projective cone with angle a € G,
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analogous to a Ayperbolic cone of angle smaller than 27 . As in the hyperbolic setting, we will
allow angles larger than 27 by modifying the above picture, taking o € G in the universal
cover of G.

Generalizing Section 2.1.1, the totally geodesic blowup that we introduce is a local
construction for standard tubes whose angle satisfies (2.1) (and “have angle less than 7).
It replaces each singularity € C M with a totally geodesic boundary component of the
(topological) form € x S'.

Periodic tessellations of convex domains. — As in Section 2.1.2, consider a collection of
convex sets (tiles) that satisfies a local convexity property (ensured among other things by
considerations like those in Section 2.1.1).

A'local-to-global convexity argument ensures that this collection tessellates a prop-
erly convex domain 2. Then we describe under additional assumptions the boundary of
€2 and its regularity, with roughly three kinds of points.

The codimension 1 faces of the tiles that lie inside €2 are called walls. First, for any
tile D, the complement of closures of walls in dD is contained in 9€2, and its points have
the same regularity in D and in 9€2.

The remaining part of the boundary 0€2 consists of cells at infinity, which are Haus-
dorft limits of sequences of tiles. By periodicity of the tiling (a finite number of tiles up to
isometry), there will be essentially two cases to consider:

(1) A telescope of consecutive tiles {D,},en with empty global intersection. The cor-
responding cell at infinity is reduced to an extremal point of 9€2.

(2) A fan of tiles {D,},cz sharing a codimension 2 face H C 92, with yD; = D,
for some y € Aut(2) satisfying (2.1). The two corresponding cells at infinity
are H and a codimension 1 face CH(H, y,) C 922 where y™ € 9Q ~ H is the
attracting fixed point of y (as in Figure 4).

In addition to these ideas of totally geodesic blowup and periodic tessellations
(which generalize Section 2.1) and to the constructions presented in Section 2.3, the proof
of the main theorems will use classical arguments from the theory of convergence actions
and geometrically finite actions to prove the statements about relative hyperbolicity, as in
[36, 37, 70].

We now discuss how to produce hyperbolic manifolds with totally geodesic bound-
ary and pleated along codimension 2 corners in arbitrary dimension.

2.3. Hyperbolic building blocks. — Convex compact hyperbolic manifolds with totally
geodesic boundary and corners that look like the one in Figure 2 exist in every dimension.

2.3.1. Dimension d = 3. — This is a special case, where we have the following
complete topological classification thanks to work of Bonahon and Otal [21]. Simple
closed curves oy U --- U C M and angles 0 < 60,,...,0, < m appear as pleating (or
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bending) locus and pleating angles of the boundary of a hyperbolic metric on M with
totally geodesic boundary and corners if and only if

= 2« bl 9A) > 0 for every properly embedded essential annulus or Mébius
band (A, 0A) C (M, 0M).

- Zisk 0;i(atj, dD) > 27 for every properly embedded essential disk (D, dD) C
(M, 0M).

Such collections «;, 6; are abundant (for example by [45]). Note that the 6;’s are
pleating angles and not corner angles, which are the m — 6;’s.

Furthermore, we also have control on the lengths £(e;) of the geodesic corners
a; C M by work of Choi and Series [27].

Fact 2.1 (Bonahon—Otal [21, Th. 2-3], Choi—Series [27, Th. A]). — Let M be a compact
orientable vrreducible atoroidal 3-manifold with non-empty boundary OM =%, U --- U X,. Let o0 1=
o U---Ua, be a doubly incompressible multicurve where a; is a separating simple closed curve of Z;.
Then for € > O small enough, to any lengths €1, ..., L, < € can be associated a hyperbolic metric on
M with totally geodesic boundary and corners, whose corners are the o;’s, with length £; and angle at
most 7 /4.

See Section 8.1 for more details.

2.3.2. Dimension d > 4. — In the general case our hyperbolic building blocks are
provided by Theorem 1.8, which is proved via arithmetic methods. Let us discuss the
construction of the manifold M from point (a) of this theorem in the case £ = 4 (where M
contains 4 totally geodesic closed hypersurfaces intersecting along a single codimension
2 closed submanifold).

The manifold M is H’/G where G is a suitable finite index subgroup of

Go=SO( + -+ — V2, ) N SLy (Z[V2])

By classical facts (see Benoist [12, Ex. 5 §2.1]), Gy is discrete and H?/Gy is com-
pact. Consider the hyperplane H = {x; = 0}, the codimension 2 plane V = {x; = xy = 0},
and the 7 /4-rotation around V

V2/2 —2/2
p=1+2/2 2/2 GSLd+l(Q(‘/§))~
I,

We exploit a ping-pong system adapted to the configuration of four hyperplanes H; =
©'H and their stabilizers in Gy for j < 4 to find a subgroup Q < Gg with the following
properties:

(1) Q is convex-cocompact.
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(ii) The hyperplanes H; project to embedded compact hypersurfaces N; ¢ H/Q
that pairwise intersect only along the projection of V which is a codimension 2
totally geodesic embedded submanifold.

Given (i) and (i1), strong subgroups separability properties of G (relatively to Q) due to
Bergeron, Haglund, and Wise [15] allow us to embed N; UN,; UN3; UNj, in a finite cover
M=H‘/G — H"/G,.

3. Convex projective geometry

In this section we review two notions that will be needed throughout the paper:
We first recall the basic structure of convex sets in projective spaces. Then we discuss
geometric structure, or (G, X)-structure, introducing (convex) projective manifolds with
totally geodesic boundary and corners.

3.1. Convex domains. — We start with some basic notions and terminology about
convex subsets of §¢, the sphere of rays in R

Definition 3.1 (Properly Convex). — A convex subset K C S? is the image of a convex cone of
R, The convex set K is properly convex if its closure does not contain two antipodal points, that
s, the closure of K is contained in an affine chart R* C S°.

Note that intersections of (properly) convex subsets is again (properly) convex. Thus
one can always define the smallest closed convex subset and the smallest linear subspace
containing a given properly convex set.

Definition 3.2 (Convex Hull). — If A C S is contained in some properly convex subset K C
S, then we can define the convex hull CH(A) of A in K as the intersection of all the closed convex
subsets of K containing A. Note that CH(A) also depends on K, which is not included in the notation
to make 1t lighter.

Definition 3.3 (Span and Dimension). — The span S(A) C 8¢ of a set A is the smallest
linear subspace containing A. We call dim(S(A)) the dimension of A. Compact one-dimensional
properly convex subsets of S* are called segments.

Observe that any two non-antipodal points x, y € 8¢ are contained in a unique
minimal (properly convex) segment denoted by [x, y].

3.1.1. Topology. — The span S(K) of the convex set K C 8¢ has the property that

K has non-empty interior in it.

Defination 3.4 (Interior and Boundary). — We call intgk)(K) and 0sx)K the relative in-
terior and relative boundary of K respectively.
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Topologically, the pair (intgk,(K) U dgxk)K, 9sx)K) is always homeomorphic to
(D, 9D) where D is an Euclidean disk of dimension dim(K).

3.1.2. Structure of the boundary. — The relative boundary of a properly convex set
K has a stratified structure.

Defination 3.5 (Supporting Hyperplanes). — A supporting hyperplane of a convex subset
K C S? with non-empty interior is a hyperplane whose intersection with the closure of K is contained in
oK.

For every point & € dK there always exists a supporting hyperplane passing
through &, however it is not necessarily unique.

Definition 3.6 (C'-point). — A point & € K admitting a unique supporting hyperplane, de-
noted by T¢0K, is called a C'-point.

The following criterion will be sometimes useful.

Fact 3.7. — Suppose K spans S°. Consider two subspaces S(V), S(W) C S? whose union
spans S? such that S(V) N S(W) antersects the interior of K. If x € S(V) N S(W) N K then x is
C' in 0K if and only if it is C" in both 9K N S(V) and 9K N S(W).

Definition 3.8 (Faces). — Let K C S? be a convex set with non-empty interior and let € € 9K
be a boundary point. The convex subset

Fg@¢)=Kn ()| H

H supporting at &

is the closed face of & in K (its relative interior is the open face of £). Note that it is contained in
dK. Every face has a dimension dim(Fg (§)) and a codimension codim(Fk (§)) = dim(K) —

dim(Fx (§)).

Defination 3.9 (Extremal Points and Strict Convexity). — If ¥ (&) is reduced to a point, then
& 15 said to be extremal. If every boundary pownt is extremal, o1, equivalently, there are no non-trivial
segments in 0K, then K is said to be strictly convex.

3.1.3. Symmetries. — The group SL,.1(R) acts on the sphere of rays §? by linear
isomorphisms. Given a properly convex subset K C $?, we define the following natural
group of symmetries:

Definition 3.10 (Automorphisms). — Let K C S? be an open properly convex subset. The group
of projective automorphisms of K s

Aut(K) := {A € SLiy (R)| A(K) =K}
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We will measure the size of Aut(£2) in terms of its Zariski closure:

Defination 3.11 (ariski Dense). — The Zariski topology on SLyy(R) s the topology
whose closed subsets are the intersections of zero loct of polynomuals in the matrix entries. In other words,
it is the coarsest topology on SLy41 (R) so all polynomials in the matrix entries are continuous.

In this topology a subset T' < SLyy1 (R) s Zariski dense if every polynomial in the matrix
entries that vanishes on the elements of I vanishes on all matrices in SL;1 (R). In other words, " is
dense_for the ariski topology.

Notice that the Zariski closure of a subgroup I' < SL,;; (R) is always a Lie sub-
group. Similar to the concept of lattices in Lie groups, we have the following:

Definition 3.12 (Divisible). — An open properly convex subset K C 8% is divisible if Aut(K)
contains a subgroup I' acting properly discontinuously, freely, and cocompactly on K.

Our goal is to construct examples of domains K with special geometric properties
where K is divisible and I', the group dividing it, is as large as possible in the sense that it
1s Zariski dense.

3.1.4. Hilbert metric. — Every properly convex set K C 8¢ comes equipped with a
natural Aut(K)-invariant metric, called the Hilbert metric, whose geometric features are
strictly tied to the regularity of the boundary oK.

Defination 3.13 (Hilbert Metric). — The Hilbert metric on K is defined as follows: Consider
x,p € K. Let a, b be the intersections of the projective line spanned by x, y with 9K where a lies on the
side of x and b lies on the side of y. One sets

1
dx (x,9) == §log([a, X, ), b]),

where [a, x, p, b] denotes the cross-ratio on the projective line spanned by x,y normalized so that
[0,1,¢,00] =1.

It is a classical fact that dx (e, @) defines a metric inducing the standard topology
and such that metric balls are compact (see [32]). As a consequence, as the group of
projective automorphisms preserves the Hilbert metric, the action Aut(K) ~ K is proper.

There are a couple of useful general properties of the Hilbert metric that we will
exploit several times. First, notice that dx (e, ®) is monotone decreasing under inclusion,
that is, if K C K’, then dk (x, ) > dx/(x, ) for all x,» € K C K. Secondly, dx can always
be extended to a lower semi-continuous function dg (e, ) on K x K by setting

— dg(x,y) = o0 if x and y are in different faces.
— dg(x, ) = dp(x, p) if x and y share the same open face F.
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3.2. Geometric structures. — We now introduce the second crucial notion of the pa-
per, namely the one of geometric structure and, in particular, projective structures with
totally geodesic boundary and corners.

Let G be a Lie group. Let G »~ X be a transitive and analytic action on a manifold
X. Effective means that if g, g € G agree on some open set of X, then they are equal.

Defination 3.14 (G, X)-structure). — A (G, X)-structure on a topological space M s an
atlas of charts

A={¢;: U CM -V, CX}yq

such that every change of charts ¢i¢/_1 is a restrictions of a transformation g; € G.
Via a standard process of analytic continuation of the local charts, every (G, X)-structure on M
has an associated developing map

dev:M — X,
where M is the universal cover of M, and a holonomy representation
p:m (M) — G.

The developing map is a local homeomorphism which s p-equivariant with respect to the deck group
action w1 (M) ~ M.

Defiation 3.15 (Uniformizability and Completeness). — A (G, X)-manifold M is uni-
formizable in X if the developing map dev : M — X is an embedding. In this case, we identify
M with the quotient dev(M) /p (@ (M)), where p : 1, (M) — G s the holonomy representation.

If M s uniformizable and dev(M) = X we say that M s complete.

We refer to [61, Ch. 3] for more on the subject.

3.2.1. Projective structures. — Projective structures correspond to the pair
(SLs1 (R), 8. We will consider also projective structures locally modeled on pieces
of §* like hemispheres and half-hemispheres. They are defined as follows.

Definition 3.16 (Projective structures). — A projective structure with totally geodesic
boundary and corners on M is a maximal atlas of charts into S* N {x;, x, > 0} with change of
charts induced by restrictions of elements of SLy41 (R).

The atlas of charts induces a compatible structure of d-manifold with boundary and corners on
M where

— The interior int(M) consists of those point mapped to S N {x, xo > 0} by some (hence
every) local chart.

— The boundary OM s the set of points mapped to S* N {x; = 0} U S N {x, = 0} by some
(hence every) local chart.
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— The union of corners G C dM is given by the set of points mapped to S* N {x; = x, = 0}
by some (hence every) local chart.
— A wall is a connected component of OM . C and a corner s a connected component of C.

In order to ease the terminology, throughout the paper we will write b-manifold
(resp. be-manifold) instead of projective manifold with totally geodesic boundary (resp. pro-
Jective manifold with totally geodesic boundary and corners).

Let dev: M — 8 be the developing map of a be-manifold M.

Defination 3.17 (Convex Projective Manifolds). — A be-manyfold is said to be convex (resp.
properly convex) if the developing map is an embedding (uniformizable in S®) and its image is convex
(resp. properly convex) in S°.

In Section 7, we will explain a procedure to assemble several convex bc-manifolds
in a single singular object, a projective manifold with cone-singularities. We formally
define and analyze such objects in the next section (Section 4) where we also explain
why they are very useful for our purposes: Under suitable (local) geometric conditions,
one can remove from a projective cone-manifold the singularities and replace them with
totally geodesic boundaries.

3.2.2. Hyperbolic structures. — A particularly flexible and rich class of projective
structures 1s provided by hyperbolic manifolds. We will use them in the proofs of our
main theorems as building blocks for our constructions.

Defination 3.18 (Hyperbolic Space). — Let (o, ®) denote the quadratic form
(0,0) =]+ 45— 1),
on R, The hyperbolic d-space H® can be described as
H' = {x e 8(x,x) <0, x4 > 0}.

Note that H” is a properly convex subset of 7.

Its symmetry group is SOg(d, 1) < SLs1,(R), the (identity component of the)
group of linear isometries of the quadratic form. Its Hilbert metric comes from a com-
plete SOy(d, 1)-invariant Riemannian metric defined at a point x € H? by the (positive
definite) restriction of the quadratic form (e, ) to the tangent space T, H? = x*.

Totally geodesic subspaces of H? are exactly those of the form S(V) N HY where
V C R’ is a linear subspace. Thus, in H? the notion of being geodesically convex with

respect to the Riemannian metric coincides with the notion of being convex in §¢.

Defination 3.19 (Convex Hyperbolic Manifolds). — A convex hyperbolic manifold us a
quotient M = C/ T of a convex subset C C H by a discrete torsion free subgroup T < SOq(d, 1)
preserving C.
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We will also exploit the following useful criterion:

Fact 3.20. — Let I' < SO(d, 1) be a finitely generated discrete subgroup. The following are
equivalent:

— The orbit To of a point 0 € H? is a quasi-convex subset of H’.
— There exists a T -invariant convex subset C C H such that C/ T is compact.

We recall that a subset S C H? is quasi-convex if there exists a constant R > 0
such that for every x,y € S the geodesic segment [x,y] C H? is contained in the R-
neighborhood of S.

Definition 3.21 (Totally Geodesic Boundary and Corners). — A convex hyperbolic manifold
M =C/T has totally geodesic boundary and corners if the boundary OM decomposes as a

union of totally geodesic codimension 1 submanifolds intersecting along totally geodesic codimension 2

submanzfolds.

Note that a convex hyperbolic manifold with totally geodesic boundary and cor-
ners 1s also a convex projective manifold with boundary and corners according to Defi-
nition 3.16.

4. Tubes, cone-manifolds, and totally geodesic blowup

The goal of this section is to generalize the notion of cone-manifolds (with sin-
gularities of codimension 2 only) from the hyperbolic setting to the projective setting.
Projective cone-manifolds have been considered in [5, 29, 46, 55]. Note that Riolo-Seppi
[53, Def. 5.3] allow for singularities of any codimension, although they have other kinds
of restrictions.

Our presentation is most similar to that of [46, Def. 2.1], but we will be slightly
more general. Indeed, while in [46] projective singularities are (essentially) determined
by a projective structures on a circle (equivalently, a conjugacy class in the universal cover
of SIyR), in our case they can be (roughly) parametrized by conjugacy classes in the
universal cover of the stabilizer of §/~% in §¢.

Depending on the type of this conjugacy class, we show that the corresponding
singularity admits a totally geodesic blowup. This is the main result of this section.

4.1. Tubes and cone-manifolds. — We start by studying the local model of a singular-
ity of a projective cone-manifold, that we call a tube.

We identify R‘"! with a subspace of R**!, §=2 with the corresponding subspace
of §7, and S' with S(R”™! /R?™") the set of half-hyperspheres that contain $~2. Note that

we have a natural map

sd ~ Sd—2 N Sl — S(Rd-H/Rd—l)
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sending a point x € 87 \. 8§72 to the unique half-hypersphere passing through x and §/72.

Definition 4.1 (Unwversal Branched Cover). — Consider
B={(H,x)eS x (887 xen(H)),

where 7T+ 8" — 8! is the universal cover of S'. The universal branched cover of 8¢ along $**
is the space (endowed with the quotient topology)

BUS"?={(H,xeS x8§: xex(H)}/-,

where (H, x) ~ (H', x) forallH,H' € S! and x € 872,

Note that B is the fiber product of the universal covering of §' and the map S \
S/~2 — 8! defined above. Moreover the natural projection B — $7 \ 8§~ is a (universal)
covering.

Definition 4.2 (Structure Group). — There is natural group Aut(B) defined by the following
pull-back diagram

Aut(B) — StabSLdiJrl(R) (Sd_Q)

| |

SLE(R) SLE(R).

acting on B and B LIS, More explicitly, Aut(B) consists of transformations of B US> of the form

—1
Cper (MTA C
g(H, x) = (/’L(d 1)/2BH, ( 0 M(d_l)/QB) x)

where:

- pu>0.

— BeSLy(R).

— B s the projection of B to SLE(R).
~ AeSL; (R).

— CeMaty_»(R).

With a slight abuse of notation, later we use the following matrix representation of an element

g € Aut(B)
WA C
g§= 0 ,u(d—l)/QE .
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The product of g, g is done as a standard matrix multiplication with the convention that C -
B :=C"-B foral B € SLQi (R) and C" € Mat,_; o(R) where B' € SL;E (R) s the projection of
B.

Observe that the projection B — S! s equivariant with respect to the actions of
Aut(B) and SLy(R) and the projection Aut(B) — SLy(R).
Using this projection we define sectors and walls:

Defination 4.3 (Sector and Wall). — A sector of B is the preimage by B — S! of an interval.
A sector of B U S"2 is the union of S*~* with a sector of B. The walls of a sector are the preimages of

the endpoints of the corresponding interval of S'.
We are now ready to define tubes:

Definition 4.4 (Tubes). — A tube is a space obtained by identifying the walls of a compact
sector of B U S*™2 via an element of Aut(B) of the form

. JVa VI C N
g— 0 M{[EIB .

The singular locus of the tube is the image of S*™2 in the quotient, and the smooth locus is the
complement of the singular locus.

A meridian is a generator of the fundamental group of the smooth locus of the tube. Note that its
holonomy is g or g

The SLQ—angle of the tube 1s the GNLQ—cmy'ugacy class of B.

Notice that the smooth locus of a tube T naturally fibers over a projective circle
T— C,

whose holonomy is given by the SNLQ (R)-angle of the tube. The fibers of this bundle are
the hyperplanes passing through the singular locus.
We have the following natural notion of equivalence between tubes:

Definition 4.5 (Isomorphisms of Tubes). — Let T'U S*=% and T' U 8“2 be tubes with corre-
sponding fibrations of the smooth loct T — N and 1" — N'. An isomorphism between the tubes is a
homeomorphism T U 8=2 — T" U 8?2 that induces a diagram

T —T

L

N — N

where the horizontal arrows are projective isomorphisms.
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An automorphism of a tube T U S™? is an isomorphism T US> — T U S ™2, We denote
the group of automorphisms by Aut(T).

We are now ready to give the definition of projective cone-manifolds. We will see
examples in Section 7.1.2, where we show that any gluing of projective manifold with
totally geodesic boundary and corners is a projective cone-manifold.

Defination 4.6 (Projective Cone Manifold). — A cone-manifold consists of the following data:

— A topological manifold M.

— A codimension 2 submanifold € C M (the singular locus).

— A choice of a tube U, for each connected component C: C €.

— An atlas of charts {P.}ent such that if x is in the smooth locus M . € then ¢, : U, C
M\ €< S and if x € C C € then ¢, : U, — T¢ such that U, C M \ (€ \ Q)
and 71 (STH =U,NC.

— IfU.NU, # @, then either x, y € C C € for some C. and the transition map ¢, o ¢ " is
the restriction of an automorphism of Tc, or U, N'U, C M\ € and ¢, 0 ¢ is projective.

Note that the singular locus of a cone-manifold has a natural projective structure.
We now classify tubes in terms of their holonomy.

4.2. Unmformizability and completeness. — Note that in general the projective struc-
ture of the smooth locus of a tube is not uniformizable in §¢. However it is uniformizable
in the universal cover of 8¢ \. $772. This is a consequence of the fact that closed projective
manifolds of dimension 1 are uniformizable in the universal cover of S', as explained in
[5, §3.3.1], where all projective structures on S' are described.

Proposition 4.7. — Let TUS?™? be a tube, such that the smooth locus T fibers over the projective
cirele N. Then:

(1) T and N are umiformizable in B and S! respectively. Choose developing maps with images
TCBadNCS' and holonomy generated by g € Aut(B) fixing S2, Then TUS™?
is the quotient by gZ. of the sector T LS~ of B L S*~2,

(2) We have a one-to-one correspondence

Z < FiXAm(B) (Sd

{Tubes}/isom. = { with non-trivial angle

} / Aut(B) -conj.

[T] = [4Z].
Moreover, there are two disjoint cases.

— T is complete in B: N=8'andT=B.
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— T is uniformizable in $¢ . $72: N C §! projects injectively onto an interval 1 C S!
between two fixed pownts of the non-elliptic SLo-angle h € SLy(R) (that has positive trace).
If h is hyperbolic then 1 is properly convex. If h is parabolic then it is a half-circle.

Remark 4.8 (Barbot—Bonsante—Schlenker [5, §3.5.1]). — In the setting of Proposi-

tion 4.7, let he SLZ(R) be the SLQ -angle of g with projection % € SLy(R). Then the
following is classical.

— If £ 1s elliptic, 1.e. =2 < tr(h) < 2 or h = %Iy, then h acts freely, properly, and
cocompactly on S1 hence T 1s complete in B.
— Iftr(h) < —2 with 2 # —I, then £ acts freely, properly, and cocompactly on S1
hence T is complete in B.
- If tr(k) > 2 with £ # Iy, then it has exactly one lift ;lo € S~I,2 (R) with fixed points
inS'.
~Ifh= /zo then / acts freely, properly, and cocompactly on any interval of S1
between two fixed points, which projects injectively onto an interval of 8!, s
T is uniformizable in 87 \ §772.

— Otherwise £ acts freely, properly, and cocompactly on S! , hence T is complete
in B.

Proof of Proposition 4.7. — Property (1). The developing maps of T and N fit into
the following diagram, which is a morphism of bundles.

:

Z:<——

n:

|

In other words, the map T — B is an embedding on each fiber (which is a half-
hypersphere of S%). Thus, uniformizability or completeness of TinB follows from that
of N in S, For the same reasons, uniformizability or completeness of T in 87 \ §72
follows from that of N in S'. The latter is always uniformizable in S! since any local
homeomorphism from R to R is injective.

The dichotomy at the end of Proposition 4.7 is an immediate consequence of Re-
mark 4.8 and the fact that uniformizability or completeness of T follows from that of
N.

Property (2). Finally, let us check the one-to-one correspondence.

Claim 1. — The map WV that associates to the isomorphism class of T the conju-
gacy class of gZ is well-defined.
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Proof of the claim. — By definition, if two tubes T U 872, T" U 8§72 are equivalent,
then the isomorphism between them determines projective isomorphisms T C B — T C
Band N CS' — N’ CS' that fit into the commutative diagram

/
.

-~ =2

Zi<—

.Z\z

Such isomorphism extends to an automorphism of the bundle B — S': Let us work
locally. On a sufficiently small sector, the projective isomorphism ¢ : T — T” descends to
a projective isomorphism between sectors of S¢ centered at $7~2. On 8¢ any projective
isomorphism between open subsets is the restriction of a global projective transformation.
In our case, the unique extension of the projective isomorphism between sectors has to
fix §72. Hence it lifts to an automorphism of B that agrees with ¢ on the small sector. By
analytic continuation, they agree everywhere. This implies that the holonomies of T, T’
are conjugate in Aut(B). O

Claim 2. — The map W is bijective.

Proof of the clavm. — We construct an inverse. Let gZ < FixAut(B) (Sd_g) be an infinite
cyclic subgroup generated by an element g with non-trivial angle / € SL, R).

Consider the interval I = [«x, }zx] C S! where x is not a fixed point of h (see Remark
4.8). Let S C B be the corresponding sector. Then the tube T = S/g is mapped to gZ by
W. It is not hard to check that the isomorphism class of T' does not depend on the choice
of the representative of Z in the conjugacy class, the generator g € Z, and the point x. [

This concludes the proof of the proposition. U

We will need later on (proof of Theorem 9.1, Section 9.2.2) the following technical
characterization of tubes that are uniformizable in 8¢ \ §/72.

Lemma 4.9. — In the setting of Proposition 4.7 and Remark 4.8, T is uniformizable in
S\ S ifand only if h# Ly, tr(h) = 2, and [x, hx] C N projects onto a properly convex segment
of S' for some x € N.

Progf — Remark 4.8 implies that if T is uniformizable in § \. $*72 then tr(k) > 2
and / # I, and any segment of N projects onto a properly convex segment of S'.
Conversely, suppose tr(k) > 2 and & # I,. Identify S! with R so that the preimage
of a rotation of SLy(R) of angle 6 acts on R asa translation of the form 7927 (x) =
x + 0 + 2nm for some integer n. Then h =7 hy with n integer and hy from Remark 4.8.
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Up to conjugation, we may assume ;zo fixes every multiple of 7 in R (if / is hy-
perbolic then hy has more fixed points), and preserves every interval in between two
consecutive multiples of 7.

If T is not uniformizable in $Y \. 872, then n # 0. Say n > 1. Consider x € R, say
i [mm, (m~+ 1)m]. Then ;z(x) > ;z(mrr) = (m+ 2n)7™ > x + 7 so the projection in S' of
[, ;zx] 1s not properly convex. U

4.3. Totally geodesic blowup. — Our goal is to replace the singularities of a projective
cone-manifold with totally geodesic boundary components. This is not always possible.
We describe a family of tubes for which this process can be carried out.

Defination 4.10 (Special Tubes). — Consider a tube with holonomy in Aut(B) generated by

. 7 C
g§= 0 M(d—l)/?fg

with w > 1. Let B € SLy(R) be the projection of B € SLo(R).
The tube 1s called special if

— It is uniformizable in S° (which implies B is hyperbolic or parabolic).

— All eigenvalues of 1'“~"/*B are greater than ="

The latter ts equivalent to
(4.1) u = 2B 4+ 1> 0.

Note that the above implies that ; > 1. Hence, among the two generators of the
holonomy of the tube only one satisfies this property. We call such generator the special
Zenerator.

Before going on, let us make the following simple observation.

Remark 4.11. — Notice that for any g € Aut(B), if g preserve a sector S of B, then
it preserves each of its walls. In other words, the endpoints of the interval I in S! defining
the sector are fixed points of g.

If the sector S is small enough, more precisely, if I projects (injectively) to a convex
proper interval of $' (we allow half-circles), then g acts properly discontinuously on the
interior of I, hence one of the endpoints H is attracting in 1 (¢"H — H™ for any H € I and
n — 00) and the other is repelling in 1 (¢"H — H™ for any H € I and n — —o0). Note that
if T is a half-circle then H' is not an attracting fixed point in S'.

We use the same terminology for the corresponding walls.

The next proposition describes the blowup of a special tube.
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Proposition 4.12. — Consider a special tube T L S~ with smooth locus T and special gener-
ator g, with the notation_from Definition 4.10. By Proposition 4.7, T U S*™2 is a quotient by gZ of a
sector T 1L S~2 C 8. ~

Let H, H™ be the g-invariant attracting and repelling walls of T (see Remark 4.11). Note that
H™" contains a fixed point x* € S? of g, corresponding to the highest eigenvalue of g. Then:

(1) gZ acts freely and properly discontinuously on
T =T (H (82U {v']).

(2) The quotient T is a compact projective manifold with totally geodesic boundary with interior
wsomorphic to the smooth locus ‘T, such that the isomorphism extends to a continuous onto
map T — T U S=2. More precisely, the restriction d'T* — S*=2 is the quotient of the
map AT — S2 that sends every interval (x, x*) C T 1o x.

(3) Every isomorphism of tubes T LU S*=% — S U S*=2 extends to an isomorphism of projective
manifolds with totally geodesic boundary T" — S

Progf. — Property (1). Notice that the assumption on the holonomy of a special
tube implies that there is a change of basis fixing R~ where g is represented by a matrix
of the form

T VA
g= w2y or
MGEY

w ',
p@=v2

M(a’*l)/Q

where A > 1/A > 1/u or u > 1. The first case occurs when B is hyperbolic while the
second case occurs when B is parabolic. Note that x* = [¢,] and H" is a half-hypersphere
in Span{e, ..., ¢}

We now show that the action is properly discontinuous on T

In the case B is hyperbolic, it is an elementary computation to show that the action
of g on the space 8¢ \. (S(Span{ey, ..., es_1, es11}) U {Z[es]}) is properly discontinuous.

We give a more general argument that works also in the parabolic case: Consider a
sequence x, € T converging to x € T’ and a sequence of integers £, going to £ = 00. We
have to prove that g'x, leaves every compact set of T?. There are four cases, depending
whether £ = 400 or —00, and whether x lies in T or in HT.

Let H, € S' be the projection of x,, seen as half-hyperspheres containing $*~2, that
converge to H. Let C C 8¢ be the g-invariant 1-sphere complementary to $7~2.

(1) If k= 0o and x € H" then one checks that g"H, converges to H and g x,
accumulates on HT N C = {x*}.
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(2) If k=00 and x € T then g"x, converges to xT.

(3) If k= —o0 and x € HT then g, converges to the stereographic projection of
x on 877 seen from x*.

(4) If k= —o0 and x € T then g"H, converges to H™ and g"x, accumulates on
H™.

This ends the proof of properness of the action.

Property (2). The projection T® — T L §/? is constructed by descending the
map T? — T L 872 that sends every x € H to its stereographic projection on S7~2
seen from x7. To see that the resulting map is continuous, one may check that for every
sequence x, € T converging to x € HT ~ (872 U {x*}), with projection H, € 8!, the
sequence of integers &, such that g brings back x, in a compact fundamental domain of
TuS 2 converges to —00, and then apply point (3) above.

Property (3). Finally, consider an isomorphism of tubes T LI $72 — T’ Ly 872,
As we saw in the proof of Proposition 4.7, the induced projective isomorphism TCB—
T’ C Biis the restriction of an element ¢ € Aut(B). To conclude, it is not difficult to check
that ¢ maps the attracting wall of T to the attracting wall of T U

Defination 4.13 (Totally Geodesic Blowup). — Using the notation_from Proposition 4.12, 1 :
T? — T U S is called the totally geodesic blowup of T U 872,

The totally geodesic blowup of a cone-manifold with special singularities is obtained by
locally blowing-up each component of the singular locus in charts in tubes such that the change of charts
are automorphisms of tubes. This process is independent of the chart by ivariance of the blowup under
automorphisms in Proposition 4.12.

5. Tessellations of convex domains

The key result of this section is Proposition 5.1. It provides conditions which imply
uniformizability and convexity for a union of convex tiles.

We will see in Section 7.1 that this result can be used to establish uniformizability
and convexity for gluings of properly convex projective manifolds. The reason is that the
universal cover of a gluing of properly convex projective manifolds can be described as a
gluing of universal covers of these convex projective manifolds.

This phenomenon is illustrated in Section 2 and Figures 5 and 6.

3.1. A local-to-global convexity statement. — Let us now state the key result of this
section, which 1s based on an idea of Vinberg [68, §3], revisited by Benoist [12, §1.5].

Proposition 5.1, — Let G be a connected graph with vertex set )V and edge set E . Suppose that to
each vertex v € V is associated a closed convex subset D, C 8¢ with non-empty interior. Assume that:
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\/7

4\

(A) No bulging. (B) Moderate bulging. (c) Large bulging.

F1G. 6. — Developing 52 tiles with different bulging parameters. The last picture is convex

(1) ¥,:=D,ND, is a codimension 1 face of D, and D, for any edge e = [v, w] € &, such
that every point of F, is contained in the boundary of a half-space of S® which contains
D, UD,.

(2) Forany path p = (vy, ve, ..., v,) CG suchthat ¥, :=D, N---ND,, is a codimension
2 face of D, for every i, there exists a half-space of S¢ which contains D, U---UD,, and
whose boundary contains ¥,

Let ~ be the smallest equivalence relation on |_|, v Dy X {v} such that (x, v) ~ (y, w) whenever v
and w are adjacent and x = y. Denote by X the quotient space. Then the natural projection map

T:X— 8
is injective with convex image.
The proof of Proposition 5.1 is postponed to Section 5.2.

Corollary 5.2. — In the setting of Proposition 5.1, the graph G is a tree.

Proof: — Suppose by contradiction that there is a non-trivial loop (v, ..., v,) CG
with v, = v;. Let G’ be the graph with vertices 1, ..., n and with an edge from 7 to 7 + 1
for every 1 < < n. Associate to every vertex ¢ the convex set D; := D,,. One checks that
G’ satisfies again the assumptions of Proposition 5.1. However, | |, _,_, D; x {i{}/~ — S is
clearly not injective since any x in int(D,) = int(D,) is the image of both (x, 1) and (x, n,
which are not equivalent for ~. O

Definition 5.3 (Gluing Kit). — The data of (G, (Dy)vey) satisfying Conditions 1 and 2 of
Proposition 5.1 is called a gluing kit. To ease the notation, we will identify X =| |, ., Dy X {v}/~



132 PIERRE-LOUIS BLAYAC, GABRIELE VIAGGI

with its image under 7w . Moreover, Proposition 5.1 implies that the gluing kit ts determined by the family
of convex sets {D, }yey. As a consequence, we will identifies each vertex v € V with its associated convex
set D,,.

Definition 5.4 (Cells, Walls, Strata). — The convex sets of the form D, with v € V (resp.
D, N D, with v, w € V adjacent, resp. NyeaD, with A C 'V with size at least 2) are called cells
(resp. walls, resp. strata). A stratum with codimension 2 s called a corner.

Remark 5.5. — In the proof of Proposition 5.1, it will be proved that for any
geodesic (Dy,...,D,) C G and any pair (x,») € D; x D,, there is a segment [, y] that
goes successwely through Dy, ..., D,, in the sense that there exists xy, ..., x,_; € [x, ] in this
order such that x; € D,N Dy, forany 1 <:<n.

Remark 5.6. — Note that Proposition 5.1 has the following corollary. Consider
two closed convex sets D, D’ C §¢ that intersect on a codimension 1 face F=D ND'.
Then D UD’ is convex if and only if every point of 9F is contained in the boundary of a
half-space of §¢ which contains DUD'.

3.2. The proof of Proposition 5.1. — In this section we explain the argument of Vin-
berg that, informally speaking, local convexity along codimension 1 and codimension 2
faces are enough to show the convexity of a union of convex tiles.

Proof of Proposition 5.1. — Let us call segment a subset s C X such that the restriction
of 7 to s is injective and 7 (s) is a segment of $°. In order to prove that 7 is injective
with convex image, it is enough to show that every pair of points of X can be joined by a
segment.

Forall v € V and x € D, (resp. A C D,), let us denote by x|v (resp. A|v) the projec-
tion in X of (x, v) (resp. A x {v}).

Let X' C X be the projection of | |, int(D,) x {v} U] |, cint(F,) x e If X is
endowed with the quotient topology, then

Fact 5.7. — 1 s a continuous map, X' is an open subset, and the restriction of w to X' is a
local homeomorphism.

Denote F, :=D,, N---ND,, for any path p = (v, vy, ..., v,) CG.

Fix a path p = (v;, vy, ..., v,) CG and set D; := D, for every i. Denote by S, the
set of pairs of points (x, ) € D; x D, such that x|v; and y|v, can be joined by a segment
of X going successively through D, vy, Do|vy, ..., D,|v, (see Remark 5.5).

Fact 5.8. — S, 15 a closed subset of Dy x D,.

Denote by G, the set of pairs of points (x, y) € int(D;) x int(D,) such that x # —y
and Span(x, ») N F, = ¥ for any subpath ¢ C p such that F, has codimension at least 3.
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Fact 5.9. — Gy, is an open, dense and connected subset of mt(D) x int(D,).

Now comes the main ingredient, which makes use of the assumptions (1) and (2).
Denote F; =D, N Dy, forany 1 <i<n.

Lemma 5.10. — For any (x,9) € G, any segment of X from x|v| to y|v, and going succes-
swely through Dy vy, ..., D,|v, is contained in

int(D))[v; Uint(F))|v; Uint(Dy)|vg U - - - Uint(F,_;)|v,_; Uint(D,)|v,.

Proof. — Let s be a segment from x|v; to y|v, and going successively through
D, |U1, ey Dnlvn Pick z; |U1, cee s Zn—1 |Un_1 € s in this order such that Zilvi = zl-lvz-H € Fi|vi
for any 1 <17 < n. Itis enough to show that z; € int(F;) for any 1 <7 < n. Let us assume by
contradiction that z; € dF; for some . We may assume that z; € int(F;) forany 1 <; <.
Pick a €]z;—1, z[C int(D;), where we may need the notation z, := x. Set also z, := .

If z; # 211, then by Assumption (1) we may find a closed half-space H C S¢ which
contains D; U D;y, and whose boundary contains z,. We have z;;; € H and « € int(H)
since a € int(D,). Hence z €]a, z,41[C int(H), which is a contradiction.

Therefore z; = zi41. Let : + 1 <j < n be such that z; = z;,, = -+ = 7| # %
Set ¢ = (Vj, Vit1,...,V—1) C p. By definition, z; € F,, which has codimension 2 since
(x,7) € G,. By Assumption (2), there exists a closed half-space H C 8¢ which contains
D;U---UD,_; and whose boundary contains z;. We have z; € D;,_; C Hand a € int(D;) C
int(H), hence z; €]a, z;[C int(H), which is a contradiction. ]

Facts 5.7, 5.8 and 5.9, and Lemma 5.10 have the following consequence.
Corollary 5.11. — G, NS, is clopen in G,,. Thus, 1f it is non-empty then S, = Dy X D,,.

Let us prove that if G, NS, is non-empty, then so is G, N S, for any extension
q=(p, V,41) such that v, # v,_;.

Set F, := D, ND,4,. For dimensions reasons, we can find (x, ») € int(D;) x int(F,)
such that x # —y and Span(x, ) N F, = ¢ for any subpath ¢ C ¢ such that I, has codi-
mension at least 3, and Span(x, y) is transverse to I,. Then any segment from x|v, to y|v,

going successively through D, |vy, ..., D,|v, (it exists by Corollary 5.11) may be extended
to a point y'|v,41 € int(D,;1)|v,41 such that x # —)’. One checks that (x,)") € S, N G,,
which is therefore non-empty. UJ

5.3. The geometry of X. — Let us fix for the whole section a gluing kit G = (V, £)
with X = [ Jpep, D.

We now describe the geometry of the convex set X. In particular, we relate the
stratification of the boundary to the shape of the cells. As it turns out, we have three
distinct types of faces:
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(1) Some faces of the tiles are also faces of X.
(i) Limits of fans of tiles sharing a common codimension 2 face.
(i11) Limits of telescopes of tiles containing infinitely many pairwise disjoint walls.

We will define them later on in this section and we will analyze in detail the last two types
under additional assumptions of periodicity, satisfied for example if the tiling is preserved
by a group I" acting cocompactly on X.

5.3.1. The wterior of X. — Let us start with the interior of X.

Proposition 3.12. — The interior of X 15

|Jint®@,) U Jinu®,).

veV ec€

Progf. — Tt is clear if G is finite. In the general case write G as the union of
an increasing sequence of finite subgraphs G,, and set X, := [ J,¢y, D, for each n. As
int(X) = |, int(X,), this finishes the proof. O

Corollary 5.13. — Any segment of X that intersects non-trivially a wall has to be contained in
it.

Progf: — Consider a segment s intersecting non-trivially a closed wall W. It is clear
that s C Span(W). By Proposition 5.12, dW C 9X so Span(W) N X =W, hence s C
W. O

We now turn to the boundary 9X.

5.3.2. The boundary of the cells in 9X. — We first show that some of the faces of X
correspond to faces of the tiles.

Lemma 5.14. — Consider a cell D € V. Then

— FND is a closed face of D for any closed face F of X.
— If ¥ is aclosed face of D that does not intersect any closed wall, then it 1s also a closed face of

X.

Proof. — The first statement is clear.

Consider a closed face F of D that does not intersect any closed wall. Let F' be the
closed face of X containing F. Note that F' N D = F. Suppose by contradiction that there
is x € ' U F. Pick p € int(D). By Proposition 5.12, [p, x[ meets dD in the relative interior
of some closed wall W of D. The non-empty subset A C I consisting of points y such
that [p, ] meets W is clearly closed and disjoint from F. By connectedness of I, in order
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to finish the proof it is enough to check that A is open. In particular, it suffices to check
that [p, y] meets int(W) for any y € A. If this was not the case then [p, y] would meet 0W
at y itself by Proposition 5.12, but then y would lie in D and, hence, in W N I which is
absurd. O

Corollary 5.15. — Consuder two distinct adjacent cells D, D’ € V.

— If x 15 an extremal point of 0D outside closed walls then it is also extremal in 9X.
— Ifxe DN D' is an extremal point of D U D" outside closed strata then it is also extremal in
0X.

Proof. — The first statement is a direct application of Lemma 5.14.

The second statement is an application of the first one. Indeed the tree G’ obtained
as a quotient of G by replacing D and D’ by the single vertex D U D’ also yields a gluing
kit, for which D N D’ is not a wall. O

Finally in order to detect C' points of X . X, we can use the following,

Fact 5.16. — Consider two distinct adjacent cells D, D" € V.

~ IfxisaC" point of 9D outside closed walls then it is also C' in 9X.
— IfxeDND isaC' point of (D UDY) then it is also C' in 9X.

Proof — This is an immediate consequence of the well-known observation that for
any two nested properly convex open sets 2 C ' and x € 32N IR if xis C' in 32 then
itis also C' in 9€2". 0

5.3.3. The complement in X of the boundary of the cells. — Next, we consider the
portion of the boundary that does not come from faces of the tiles. It naturally comes
from accumulation points of sequences of tiles which we conveniently organize as points
on the boundary at infinity of the graph G.

Recall that G is a tree, so it has a natural boundary at infinity d5V: The set of
rays up to equivalence, two rays being equivalent if they agree after some time. We set
V1=V U dxV, a space on which we have a natural topology and notion of convexity.

Each point & € 0,V corresponds to a cell at infinity.

Lemma 5.17. — Consider a ray € = {D,},,en € 000 V. Then the sequences of compact convex
sets D, and D, N D,y both converge to the same closed convex subset D(§) C 0X, called a cell at
infinity.

Proof. — Let K be the set of accumulation points of sequences x, € D,. We need to
check that any point of K is also the limit of a sequence y, € D, N D, ;. Consider x € K,
limit of x; where x; € int(D,,) with n; increasing. Consider for each £ the intersection
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points y,,, ..., ¥, —1 of the segment [x;, x;41] with successively D,, ND,, 4, ..., D, 1N
D,,.,. The sequence y, converges to x, as required. 0

Remark 5.18. — As a warning:

— Itis possible that D(§) C X.
— Itis possible that D(§) = D(n) for different &, n € 9, V.
— Itis also possible that D(§) is not a face of X.

Proposition 3.19. — We have:

(1) For every point x € X\ X there exists a unique & € 3V such that x € D(£).
(2) Consider a geodesic rap & = {D,}n € N € 05V, then there exists N such that

DE)NX = ﬂD,,.

n>N

Moreover D(§) N X s a closed face of D(§).

Proof — Property (1). Fix D € V. Pick x € X \ X and a countable basis of (de-
creasing) properly convex neighborhoods U, of x in §¢. For each n let V, C V be the set
of all vertices that intersect U,. Since U, is properly convex, V, is a convex subset of V.
Let D, be the shortest point projection in G of D on V,. Since V, is non-increasing, D,
must lie on a geodesic ray of G starting at D. Choose x, € D, N U, for each n. Then x,
tends to x. The fact that x ¢ X implies that D, is not constant after some time and, hence,
the geodesic ray containing D, is infinite and represents some & € 95, whose cell D(§)
contains x. Moreover, if D accumulates on x then D), € V,, for some diverging sequence
i, and Dj converges to &.

Property (2). The sequence of sets [),. D, is non-decreasing for inclusion and
constant after some time. Hence, it suffices to check that any x € D(§) N X liesin (1) .x D,
for some N. Pick D € V containing x and x, € D, converging to x. There is N such that
D,, lies on the geodesic segment from D to D, for every n > m > N. For all n > m > N
pick »,., € [x, x,] N D,,. Observe that y,,, € D,, converges to x for every m, so x € D,,.

Suppose by contradiction that D(§) N X is not a face of D(§), 1.e. that there are
x,y € D(§) N\ X and z €]x,y[ND, for some n. Pick p € int(D,). By Remark 5.5, [p, ¢]
meets D, N D, for any ¢ € | J,_, D;. Passing to the limit, [p, x] (resp. [p, y]) meets D, N
D,y at ¥’ # x (vesp. )y’ # ). By Proposition 5.12, these two intersection points lie in the
relative interior of D, N D,1,. The span of D, N D, intersects the plane spanned by

b, x,y Into a line which contains x’, ¥/, z. But these three points are not collinear, which is
a contradiction. O

As we have already observed, sequences of tiles can essentially be grouped into two
different types: Fans of tiles and telescopes of tiles. We now analyze in detail both cases.
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5.4. Fan of tiles. — Informally speaking, a fan of tiles is an infinite sequence of con-
secutive tiles sharing a common codimension 2 face. We will work under the assumption
that the sequence is periodic under some special projective transformation and describe
for such a fan of tiles the corresponding cell at infinity. See Figure 4.

5.4.1. Condition 2 revisited. — First, we discuss a convexity criterion for a periodic
fan of tiles. In order to do so, we investigate the Condition (2) in Proposition 5.1 in this
special setting,

Proposition 5.20. — Let (D,,) ez be a sequence of closed convex subsets of S with non-empty
intertor such that:

(@) They all share a codimension 2_face E. spanning S*2 C S,

(b) Any two consecutive domains D,, and D, 1, wntersect along a codimension 1 face ¥, with

Fn 7é Fn—l-

Consider for every n the projections D!, of D, to the circle SR /Ry = 8. Then "2 is contained
i the boundary of a half-space of 8! containing | J, D, if and only if Q :=\J D! is contained in a
half-circle.

Assume now that there exists g € GLy31 (R) and T > 0 such that gD,.v = D, _for every n.
Let g € GLR™! /R*™Y) be the induced transformation on S'. Then S is contained in a half-circle if
and only if

(i) |det(g)|""%¢ # Iy and tr(| det(g)]|~%g) = 2.
(i) DyU---UD!_, does not intersect any eigenline of g'.

Proof — The fact that $72 is contained in the boundary of a half-space of S§¢
containing ( J, D, if and only if Q" := (], D/ is contained in a half-circle is clear.

Assume that €' is contained in a half-circle (it is a proper, open and convex subset
of §Y).

Let us prove properties (1)+(ii). As €' is g-invariant and no transformation
h € SLy(R) with tr(h) < 2 preserves a proper convex subset of S', we must have
tr(ldet(¢)|"%¢) = 2. As ¢D), = D/, we also have |det(g)|™"?¢ # I, and €' does
not contain fixed the points of ¢, that is, its eigenline(s).

Assume now that properties (1), (i1) hold.

Let us prove that Q' is contained in a half-circle. As tr(|det(g)|~/%g") > 2, the
eigenlines of ¢’ determine either a half-circle or a unique convex segment. As ' does not
intersect any eigenline of ¢’ and is connected, it must be contained in one the components
of S! minus the eigenline(s) of g'. U

Remark 5.21. — In the setting of Proposition 5.20, if €2 is contained in a half-circle
then:
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— If tr(| det(g)|"/%¢’) = 2, then  is one of the two half-circles delimited by the
unique eigenline of ¢'.

— If tr(J det(g’)|~'/2g") > 2, then  is one of the four quadrants delimited by the
two eigenlines of g'.

5.4.2. The cell at infinity of a fan of tiles. — Let G = (V, E) be a gluing kit with

X =Upey D-
Pick u > 1 and A > 1 and set, depending whether A > l or A =1,

w 0 0 JVa VIR 0 0
o= 0 AT 0 or 0 w1
0 0 AluT 0 0 w7

The following describes the cell at infinity of a fan of tiles:

Proposition 5.22. — Let S be a corner. Suppose that:

- Scs
— The set of D €V such that S C D is a bi-infinite path (D,) ez
— gD, =D, for any n, for some m > 0.

Set & :={D,},en € 00 V. Then there exists a, B € {E1} such that:

(1) D(&) us the convex hull of S with ave,R .
(2) If X 1s properly convex or & > 1, then D(&) s a closed face of X.
(3) If & > 1 then X is contained in the convex hull of D(§) and Bes1R..

Proof. — Property (1). For any generic x € 8, the sequence g"x tends to ¢,R or
—¢,R ;. We may assume that the limit is ¢,R ;. for some x € int(Dy). This implies that the
convex hull of § with ¢,R is contained in D(§), and hence that $~! is a supporting
hyperplane for X containing D(§).

By Part (2) of Proposition 5.19, S C $72 is a closed face of D(§). Hence §72 C
S’! is a supporting hyperplane of D(£), which lies in the closed half-space H of §¢~!
delimited by S~ that contains ¢;R

For any x € D(¢) \ {¢,R,}, the limit y of g™"x is in SN D) =S (as D(&) is
clearly g-invariant), and x € [y, ¢;R]. Therefore D(§) is the convex hull of § with ¢,R .

Property (2). Suppose that there exists x € 87! . D(&), lying in some cell
D) with v € VAN {§}. Let us show that X is not properly convex and A = 1. Set
N ={D_,}.en € 05V and X" :=J, D,, so that X' =X UD()UD(®). Pick y € int(S).

We may assume that x € X'. Indeed, if it not the case then consider the shortest
point projection D; of v on {D,},cz in 1_}, and a geodesic path (v,)o<u<m from D; to v in
V, with M € N U {oo}. Then the last point of [y, x] in D; lies in D, N D(v;), which does
not intersect D(§). We may then consider this last point instead of x.
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By Proposition 5.12, x does not lie in 872, Moreover, x does not lie in int(H),
otherwise [x, y] would intersect D(§) . X, which is not possible since the complementary
of D(§) \. X in X is convex.

Hence g"x tends to —¢;R,, which hence belongs to X' since this last set is g-
invariant. Thus X is not properly convex. Moreover A = 1 by Proposition 5.20.

Property (3). Finally, we may assume that X is contained in the half-space of 87
delimited by $~! and containing ¢,, ;R . Let us prove that, under the condition that A >
1, then X is contained in the convex hull K of D(£) and ¢, 1R ;.. Suppose by contradiction
that there exists x € X \. K. First note that x ¢ X’ by Lemma 5.23 below.

As before, consider v € V such that x € D(v), the shortest point projection D; of v
on {D,},ez in V, and a geodesic path (v,,)o<n<y from Dy to v in V, with M € N U {oo}.
One may find y € dD(§) \ 9S8 such that [x, y[ does not intersect K. The last point z of
[y, x] in X/ belongs to D; N D(v;) which does not intersect dD(§) \ 9S. Thus z # y, so
2 €]y, «], so z € X' \. K which is absurd. O

Lemma 5.23. — Consider 0 < A < Ay < A3 and

Al 00
g= 0 )\.3 0
0 0 i

Lt Q C S* “be a g-invariant properly convex open set. Then ils projection on S parallel to [e441] is
contained in Q@ N ST, which is the convex hull of 2 N S*=% and [e,].

Proof — Consider x = [x1, ..., x.41] € Q. If x lies in Q or 8!~ {[e,]}, then x; # 0

for some 1 <i:<d — 1. Thus g7"x converges in this case to [x], ..., x,-1, 0, 0] when 7
tends to infinity, and this limit must belong to 92 N S=2. This implies that [y, ..., x4, 0]
lies in the convex hull of 32 N 8?2 and [¢,]. O

3.5. Telescope of tiles. — We now move to the second type of sequences which we
call telescopes of tiles. Informally speaking, a telescope of tiles is a sequence of consecutive
tiles D, such that infinitely many of the walls D,, N D,,;| are pairwise disjoint.

Again, we will assume some periodicity assumptions, namely, that, up to projec-
tive transformations, there are only finitely (or compactly) many configurations of four
consecutive tiles D,, D11, D,19, D,4+3 where the walls D, N D,,; and D,;; N D,,, are
disjoint.

In this case (D, N D,41, 2, D,19 N D, 3) form what we call a visible triple.

Definition 5.24 (Visible Triple). — A visible triple s a triple (L, K, M) of (non-empty)

compact properly convex sets such that L, M C K, LN M = @, and any segment of K from L. to M
intersects the interior of K.
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F1G. 7. — Contraction for visible triples

See Figure 7 for an illustration of a visible triple.
The analysis of the cell at infinity of a telescope of tiles rests on a contraction
property of visible triples which we now discuss.

5.5.1. Contraction for visible triples. — The set of visible triples is endowed with a
Hausdorff topology. A sequence of compact subsets C, C S? converges to a compact
subset C C S if the following two conditions are satisfied:

— If'a sequence x, € G, converges to x € S?, then x € C.
— For every x € C there exists a sequence x, € G, converging to it.

This induces a Hausdorff topology on the space of triples in a natural way.

Lemma 5.25. — Let KC be a compact set of visible triples. Then there exists A > 1 such that
the following holds. Consider a properly convex open set S2, a point x € K2, two rays r, 1" of Q starting
at x, two hyperplanes H, H' and a closed convex subset K C 2 such that:

- HNQ,KHNQ) eGLLR)-K.
— Theray r (resp. ') meets first HN Q2 at y (resp. y') and then H' N Q at z (resp. 7).

Then do(z, 7)) = Ada(p,)).

See Figure 7 for an illustration of the objects introduced in the above lemma.

Proof — We may assume that K is a very small neighborhood of a given triple
(L, K, M). Fix an affine chart A containing K, with a Euclidean distance d4. We may
assume that it contains K’ for every (I, K', M") € K.

Let Hy C S? by a hyperplane separating L. and M. We may assume that it separates
L/ and M’ for every (I, K', M") € K.

Let € > 0 be the minimal distance for d4 between a point of HoNCH (I, M’) and
apoint of HyN oK' for (I, K', M’) € K, and D the maximal possible d 4-diameter for K'.
By [16] (see also [17, Fact 2.1.3]), there exists A > 1 depending on € and D such that for
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any (I, K', M') € K, denoting by €2, (resp. 25) the relative interior of Hy N CH (L', M)
(resp. Hy NK'), for all x, y € 2, we have

do, (x,9) > Adg, (x, ).

Consider a properly convex open set £2, a point x € 2, two rays r, 7’ of §2 starting
at x, two hyperplanes H, H" and a closed convex subset K’ C €2 such that, denoting
L':=HNQand M :=H'NQ

- (I,K', M) € GLs+ 1 (R) - K.

— The ray r (resp. ') meets first int(L) at y (resp. »') and then int(M") at z (resp. 2).

Denote by € (resp. €21, resp. €2y, resp. €23) the relative interior of Hy N CH (x, M) (resp.
Hy NCH(L', M), resp. Hy N K/, resp. Hy N Q). Observe that

Q()CQlCQQCQg.

Therefore, denoting by w and w’ the stereographic projections in €2y of z and 2’
seen from x, we obtain by Remark 3.13 that

do(z,7) = do,(w, w') > dg, (w, w') > Adg, (w, w')

5.5.2. Visible triples in X. — Let X = |, .., Dy be a tessellated properly convex set
as above. We now describe where to find visible triples in it.
Assume that each tile D, has the following properties:

(1) Any intersection of (at least 2) walls is either empty or a corner.
(2) Any closed proper face touching a wall is contained in a (possibly different)
wall.

(3) Any closed proper face with codimension at least 2 that touches a corner is
contained in a corner.

We have the following:

Lemma 3.26. — Let D C X be a tile. Let W be a wall of D. Consider an open neighborhood
U of W in S? such that D \. U is convex. Then:

— There are only finitely many walls Wy, ..., W, adjacent to W and not contained in U.
— (W, K, D N\ U) s a visible triple for every convex compact set K C X containing D with
mt(W;) C mt(K) for every j < n.

The objects mentioned in the above lemma are illustrated in Figure 8.
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U / w \

D~\U

F1G. 8. — Visible triples in X

Progff — Only a finite number of walls Wy, ..., W, are adjacent to W but not
contained in U. Indeed, if there was an infinite sequence of them then they would accu-
mulate on a closed codimension > 2 face F touching W but not contained in U, which
by assumption would be contained in a wall W' adjacent to W. The fact that F touches
the corner W N W’ would then imply that it is contained in it, which is absurd.

To finish the proof we only need to prove that any segment s from W to D \ U
intersects int(D) or int(W;) for some z. If s C 9D, then by assumption it is contained in a
wall adjacent to W, which is not contained in U. So s C W; for some ¢. If, by contradic-
tion, s C AW, then it is contained in a face of D of codimension at least 2 which touches
W N'W;, hence is contained in it. This is absurd. ]

We will also need the following technical lemma.

Lemma 5.27. — For any neighborhood U of W there exists a smaller newghborhood U’ such
that D . U’ contains all walls not contained in U and non-adjacent to W.

Proof. — 1f by contradiction this was not the case, then there would exist an in-
finite sequence of walls limiting on a comdimension-> 2 face F intersecting W but not
contained in U. This is absurd, as remarked in the proof of Lemma 5.26. O

5.5.3. The extremal point of a telescope of tiles. — Let G = (V, £) be a gluing kit with
X =Upey D.

Proposition 5.28. — Suppose that all strata have codimension 2, and that there exists a compact
set K of visible triples such that the following holds: For any path {A, B, G, D} C'V such that AN B
and C N D are disjoint, there exists a convex compact subset K C X such that

(ANB,K,CND)eGL. (R) K.

Then any cell at infinity that does not intersect X is an extremal C' point.
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Proof. — Consider the ray & = {D,},en € 0V, such that D(§) N X = .

Let us prove that D(§) 1s reduced to a point.

Suppose by contradiction that it is not the case. Pick x € int(Dy) and p,p' €
mt(D(&)), and denote by r and 7 the rays of €2 := int(X) starting at x and ending respec-
tively at p and p. Set F*:=D, N --- N D,y for all n, k. Let y, (resp. ¥)) be the successive
intersection points of 7 (resp. ') with int(F}).

Claim 1. — The sequence dq(,,,) is non-decreasing and bounded from above
by dinme) (p, ) < 00.

Proof of the clavm. — Let us take care of monotonicity first: Consider the 2-plane
P spanned by 7,7 and the intersection X N P. Let [a,, /] be the intersection of the
projective line spanned by y,,, with X. Notice that we have F! N P = [q,,d] and,
by construction, F ,ln NP = [a,, d ] is contained in the cone with vertex x bounded by
the lines [, ,] and [x, a ]. The intersection of the line spanned by [a,, a,] with such
cone is a larger segment [b,, 5 ]. By standard properties of the cross ratio, we get
(oo Vs Vs 00 1 = [ay, 94, 9, d,]. By monotonicity under inclusion (see Definition 3.13), we
also get [0y, ¥ V.5 01 < [@ys 9w, V), @, ]. This concludes the monotonicity part of the state-
ment.

The upper bound follows from the semicontinuity of the extension of the Hilbert
distance to the boundary (see Definition 3.13). UJ

Let A > 1 be the constant from Lemma 5.25. In order to get a contradiction, it is
enough to prove the following:

Claim 2. — Yor any n there exists m > n such that do(y,,,0) = Ada(y,, 7).
Proof of the clavm. — Pick n € N. Since D(§) does not intersect X, there exists £ > 2

such that F¥, | is empty. Take it minimal, meaning that Fﬁﬂ #.
If k=2, then F¥ =¢. Set m=n.

If k>3, then F\o) =F 5 =... =F2, , (since all strata have codimension 2), and
F2+k_2 =Fﬁ+1 =0.Setm=n+k—2.

Let V' be the component of V ~\ {D,,, D,,+3} containing D, ;. By assumption, there
exists a properly convex compact set K C (V' containing D,,; UD,,4» such that

(Dm N Dm+17 K» Dm—i—? N Dm+3) € GL(H-I (R) ' IC

By Lemma 5.25, we get
dQ (ym+2’y;ﬂ+2) = )\‘dQ ()/m,)):,,) = )\‘dQ ()}my:,) ,:]

Claim 3. — The point D(§) is extremal.
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Proof of the claim. — This is an immediate consequence of the fact that X ~ D(&) is
convex. UJ

Saying that p is C' is equivalent (see e.g. [17, Prop. 5.4.8]) to saying that for any
two rays 7, 7’ of  ending at p, the distance inf{dg (x, ') : (x, x') € r X 7'} is null, which can
be proved using almost the same proof as above. 0J

6. Convex-cocompactness and relative hyperbolicity

The goal of this Section 3-fold: We are going to establish three geometric properties
of the convex projective manifolds (potentially with totally geodesic boundary) that we
construct in this paper, namely:

(a) Convex-cocompactness.
(b) Relative hyperbolicity.
(c) Extended geometric finiteness.

We now state the results. Later we will give precise definitions of their terms.

The first property we establish is convex-cocompactness. The following result is
probably well-known to experts, as the proof follows a classical strategy. Recall that for us
the terminology b-manifolds denotes projective manifolds with totally geodesic boundary.

Proposition 6.1. — Let M be a compact properly convex b-manyfold with unwersal cover M C
S?. Suppose that every proper face of M touching the closure of a wall belongs to it. Then 7r,(M) acts
convex-cocompactly on any invariant properly convex open set containing M.

Remark 6.2. — 1In the setting of Proposition 6.1, there does not always exists an in-
variant properly convex open set containing M. For instance, if M 1s the manifold €29/ I'y
obtained in Theorem 1.5, then 7;(M) = I'y does not act naively convex-cocompactly
on any properly convex open set £2 (see the definition of naive convex-cocompactness in
Section 6.1).

The second property we consider is relative hyperbolicity. There are two cases,
depending on whether we consider a manifold with or without boundary.

Theorem 6.3. — Let M be a compact properly convex b-manifold with universal cover M C §°.
Suppose that:

— All walls of I\N/Ifz(we parrwise disjoint closures.
— Any pownt of OM outside closed walls is extremal.

Then 71 (M) s hyperbolic relatively to the fundamental groups of its walls, and the Bowditch

boundary s equivariantly homeomorphic to the quotient Y := 0N/~ obtained by contracting closed
walls into points.
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Relative hyperbolicity is a group theoretic generalization of the fundamental
groups of geometrically finite hyperbolic manifolds, in which case the Bowditch boundary
corresponds to the usual limit set (see Section 6.2 for more details).

The above theorem can be seen as a consequence of very general work of Weis-
man [70, Th. 1.16] or work of Islam and Zimmer [37, Th. 1.3-6], in the special case
where 7,(M) is convex-cocompact. However, notice that we will apply this theorem in
a case where convex-cocompactness does not hold (see the above Remark 6.2). In fact
we will exploit a different property: Namely that our subgroups with respect to which we
want to prove relative hyperbolicity have codimension 1. The strategy of proof of Theo-
rem 6.3 follows the same line as in Weisman and Islam—Zimmer’s works, which themself
are inspired by older works.

In the case where M is closed, relative hyperbolicity comes from the following:

Fact 6.4 (Weisman [70, Th. 1.16]). — Let M = Q/ T be a closed properly convex projective
manifold. Consider closed, totally geodesic, embedded, pairwise disjoint hypersurfaces W; = C;/ T'; C M
where C; = Q N H; with H; projective hyperplanes, I'; = Stabr(H;), and j = 1. .. n. Suppose that:

— The U -translates of the C;’s in 2 have pairwise disjoint closures.
— Any point of 0S2 outside the closures of these translates is extremal.

Then T is hyperbolic relatively to Ty, . .., T',, and the Bowditch boundary s equivariantly homeomor-
phic to the quotient Y := 02/ . obtained by contracting y 9C; for every y € I andj=1...n.

The last property we consider is extended geometrical finiteness, a recent no-
tion due to Weisman [71, Def. 1.3]. Extended geometrically finite discrete subgroups
of semisimple Lie groups generalize the class of geometrically finite discrete subgroups
of rank-one semisimple Lie groups such as SO(x, 1). In particular, all extended geomet-
rically finite groups are by definition relatively hyperbolic with respect to some proper
subgroups.

Let F be the partial flag variety of pairs of points and hyperplanes (x, H) of RP*
such that x € H.

Proposition 6.5. — In the settings of Theorem 6.3 and Fact 6.4, the action of T on F 1s
extended geometrically finite wn the sense of [71, Def. 1.3].

Extended geometrical finiteness in the setting of Fact 6.4 and in the setting of
Theorem 6.3 with convex-cocompactness was already known in [72, Th. 1.2].

6.1. Convex-cocompactness. — Consider a properly convex open set 2 C $¢ and a
discrete group I' C SLirl (R) preserving it.

The action of I on €2 is said to be nawely convex-cocompact if there exists a I'-invariant
convex subset of €2 on which I" acts cocompactly. In such a case, and if €2 is not strictly
convex, there 1s not always a smallest such convex set, contrarily to convex-cocompactness
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in hyperbolic geometry. One reason is that the set of accumulation of points of an orbit
I" - x may depend on the choice of x € Q (e.g. if € is a triangle in $?, and [ is generated by
an infinite-order non-proximal element). For this reason, and others, explained in [30], it
appears that this notion of convex-cocompactness is not the best one; this is why another
one has been introduced, as follows.

The full orbital limit set of T" is the union over all x € €2 of the set of accumulation
points of the orbit I' - «, 1.e. Uealx N2,

Definition 6.6 (Danciger—Guéritaud—Kassel |30, Def. 1.11]). — The action of T on Q2 s said
lo be convex-cocompact if the convex hull in S2 of the full orbital limit set is non-emply and has
compact quotient by I".

We refer to [30, §1.4-1.6-1.7-4.1-10.7] and [31] for more details and examples

on convex-cocompactness.

Proof of Proposition 6.1. — Let €2 be an invariant properly convex open set contain-
ing Mand " = m;(M). Let A be the full orbital limit set.

The convex set M is the union of its interior with the relative interior of countably
many of its codimension 1 faces (its totally geodesic boundary). Hence 9; M = (M) ~ M
is compact, and the closure of M is the convex hull of 3;M. Moreover, one easily checks
by compactness of M that IMC A CIf.

To prove the proposition it is now enough to prove that any § € A lies in .M.
Assume by contradiction that § ¢ 82-1\7[. There exist x € 2 and a sequence y, €C I' such
that y,x converges to &.

Pick y in the interior of M Consider a, b € 02 and z in a wall of M such that
a, y, z, X, b are aligned in this order. Up to extracting a subsequence, let us assume that

Valay, z, %, b) —> (o, 1, £, &, B) € 0K x M x ;M x 9Q x 9S2.

Since & ¢ 0; M one then checks that «, 1, ¢, &, B are pairwise distinct.

Let K be the closure of M in 8¢ and J:K— oM map each p to the entry point
of [§, p] in K. By convexity, this map is continuous. Moreover, f(p) belongs to a wall of
M for every p in the interior of 1\71; by continuity and connectivity they all belong to the
same wall W. By continuity again f(n) € oW N [¢, §].

The segment [n, f(1)] is non-trivial, contained in dM and touches W, hence it
must be contained in W. Thus & € Span W.

This is absurd: Span(&, ») N Span W = {§} whence f(y) ¢ W. O

6.2. Yaman’s characterization of relative hyperbolicity. — We now give our working defi-
nition of relative hyperbolicity, following Yaman. This is not the original definition, which
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is due to Bowditch [23]. There are many definitions in the literature; the following one is

equivalent to Bowditch’s definition.

Defination 6.7 (Relative Hyperbolicity [74, Th. 0.1]). — Let' Y be a compact metrisable space
and I a discrete group acting by homeomorphisms on'Y .

— The action 15 called a convergence action if I" acts properly on the set of distinct triples of
Y.

— A point p € Y 15 called conical if there exists a sequence y, € I' and a # b € Y such that
VuX = a and Y,y — b _for any y # x.

— A point p €Y s called parabolic if Stabr (p) us infinite and acts properly on Y . {p}.

— A parabolic point p € Y s called bounded if Stabr(p) acts cocompactly on Y ~ {p}.

— The action 1s geometrically finite if it is a convergence action and all points are conical or

bounded parabolic.
Suppose the action is geometrically finite, and all stabilizers of parabolic points are finitely generated, then

(1) T s relatively hyperbolic with respect to the stabilizers of parabolic points.
(2) 'Y is the Bowditch boundary.

Remark 6.8. — In the setting of Definition 6.7, the action is uniform if all points of
Y are conical. Then T is hyperbolic and Y is its Gromov boundary.

Let us now consider the convex projective setting.

Fix a properly convex open set 2 C 8, a closed subset F C Q, and a discrete
subgroup I' C SLZ,'EJrl (R) preserving €2 and F. (In our case I will always be 0€2, except in
Proposition 6.10 and Section 6.6.) Fix a I'-invariant equivalence relation ~ on I which
is closed (in the sense that {(x,) € F*: x ~ »} C F? is closed) and such that Y := F/.
contains at least 3 points.

We say that

— F satisfies the convexity condition if it contains all segment [x, y] C 02 with x, y € F.
— I satisfies the visibility condition it contains all segments of 9€2 touching it.
— ~ satisfies the visibility condition if [x, y] C dS2 implies x ~ y for all x, y € F2.

These assumptions imply that the convex hull of F intersects €2.

Fact 6.9 (Islam—Zimmer [37, Prop. 8.1-2]). — If the convexity condition on ¥ and the visi-
bility condition on ~ are satisfied, then Y is a compact metrisable space on which the action of T s a

convergence action.

By the fact, in order to get relative hyperbolicity, it remains to understand conical
and bounded parabolic points.
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6.3. Conicality. — Consider 2, F, I', ~ and Y :=F/. as in the previous section.

We first give a criterion for conicality. It is similar to a classical criterion in real
hyperbolic geometry (see for instance the discussion [64, p. 75]), and it also has a similar
flavor to a result of Islam and Zimmer [37, Prop. 8.4] and the argument behind a proof
of Weisman [70, Prop. 8.17].

Yor any p € Y, denote by Sing, C T'Q the set of unit tangent vectors v such that
v*, v™ € p. Moreover, set Sing := [,y Sing,, which is a closed subset of T' Q.

Proposition 6.10. — Suppose the convexity condition on ¥ and the visibility condition on ~.
Consider pe Y, x € p CF, and v € T'Q pointing forward at x and backward at y € F with y » x.
Then p is conical if and only if the projection in T' 2/ T of the forward geodesic orbit of v intersects
infinitely often a compact subset of (T'Q2 X Sing)/ T.

Progf. — Suppose that the projection of the forward geodesic orbit of v intersects
infinitely often a compact subset of (T'Q \ Sing)/ T, i.e. there exists y, € I and ¢, going
to infinity such that y,¢, v converges to w ¢ Sing. This implies that y,x and y,y converge
respectively to ¥ := w* and ) := w~ € F with ' » y'. It suffices to prove that y,z accu-
mulates on [)'] for any z € F \ p. Up to extracting a subsequence we may assume that
¥u2 converges to Z'. It is enough to check that [y, 2] C 9Q2. We can assume that [y, z]
intersects £2. It is then enough to check that the Hilbert distance from the base point of
Vu®,, U to ¥,[9, 2] tends to infinity, in other words that the distance from ¢, v to [, 2] tends
to infinity. This is a consequence of the fact that z » x (which implies that z and x do not
have the same face).

Suppose that p is conical: there exists y, € I diverging and a # b € Y such that
vup tends to a while y,¢ tends to b for any ¢ € Y \ {p}. Up to extracting a subsequence
we may assume that y,x and y,y converge to respectively ¥’ € a and y" € b. The segment
[/, »'] intersects €2 since x” » ). Therefore there exists £, € R such that y,¢, v converges to
some unit tangent vector w. Since y, diverges, the sequence ¢, accumulates on {£00}. Up
to extracting again a subsequence we may assume that ¢, converges. If by contradiction
the limit was —oo, then by the first step of the present proof, for any ¢ € Y \ {y} the
sequence ¥,¢ would converge to a, which is absurd. 0J

6.4. Technical lemmas for parabolicity.

Fact 6.11. — Consider a properly convex open set 2 and a sequence of automorphisms g, €

GL441 (R) that converges to a non-invertible non-zero matrix g. Then the kernel and image of g intersects
Q but not Q.

Lemma 6.12. — Consider a properly convex open set 2 C S?, a closed subset F C 92 with
the visibility condition (it contains all segments of 9S2 touching 1t), and a closed subgroup I' C Aut(£2)
preserving F.
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Let X C S be the union of supporting hyperplanes of 2 at points of ¥ (it is closed). Let O be the
connected component of S* . X that contains 2. It is open, convex, T -invariant, and contains Q \. F.

Then:

— Either T' acts properly on O, and every T -orbit of a compact subset of O accumulates on ¥,

— or ¥ us reduced to a pont and T s virtually generated by a rank-one automorphism in the
sense of Islam [35, Def. 6.2].

Progf — Consider a diverging sequence g, € I" such that ||g=!||~'g*" converges to

a non-zero non-invertible matrix g,. By Fact 6.11, the following four compact convex sets

are non-empty and contained in 92.

P#1_:=Im(g )N C K, :=Ker(g,)NQ CIQ
P#£1, :=Im(g)NQ C K_:=Ker(g )NQ CIQ

Let us prove that if I' is not virtually generated by a rank-one element, then K_
and K, are contained in F. Suppose for instance that K, is not contained in F. Then
those two compact convex subsets of 0€2 are disjoint by the visibility condition on F. By
definition of K, this means that g, tends to g, (F) C 1, as t = oco. But g,FF = F for all
nso F C I, and hence I, = K_ = by the visibility condition on F. This implies that
I_ and K_ are disjoint, and hence I admits a compact convex neighborhood U disjoint
from K_ = F such that g, 'U C U for n large. By the Brouwer fixed point theorem, g, has
a fixed point x € U, and also one y € F. By [18, Cor. 6.9], g, is a rank-one automorphism
and I = {y}, and hence I is a rank-one group that fixes ». This implies that I" is virtually
generated by g, by [19, Prop. 2.4].

Suppose now that K_ and K, are contained in F. Let us consider a converging
sequence x, € O with limit x € O and prove that g,x, converge to a point of F. Consider
y € K. The kernel Ker(g;) is contained in a supporting hyperplane of €2 at K} so it
does not intersects O (by definition), hence g,x, tends to gyx as n — 00. By definition of
O, the ray [, y) C O enters Q \ F at some point x'. Since y € K, we have g,x = g,x' =
lim, g,x" € QN Im(g,) =K,. O

Lemma 6.12 has the following corollary, where is exploited the assumption in The-
orem 6.3 that the subgroups “with respect to which we want to prove relative hyperbol-
icity” have codimension I; assumption that, we recall, compensate for the absence of
convex-cocompactness.

Corollary 6.13. — Consider a properly convex open set 2, a closed subset ¥ C 0S2 with
the visibility condition, a discrete group I C Aut(S2) preserving ¥, a T"-invariant closed equivalence

relation ~ on ¥ with at least three equivalence classes and the visibility condition (see Section 6.2), and
Y:=0Q/..
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Pick a point y € Y, seen as a closed subset of 02, which is not fixed by a rank-one element of T’
(for instance if y contains at least three points). Then y is a parabolic point.
Suppose moreover that:

- F=0Q.

— 3R~y is homeomorphic to a finite disjoint union of copies of R~ (e.g. if v is a face of dS2).

— The virtual cohomological dimension of Stabr(y) is equal to d — 1 (e.g if y is a face on which
Stabr (p) acts properly cocompactly).

Then y is bounded parabolic.

Proof. — Lemma 6.12 tells us Stabr(y) acts properly discontinuously on F X .

Suppose by contradiction that two points x, ' € Y N\ {y} are dynamically related by
x, € Y X {y} converging to x (for Y’s topology), y, € Stabr(y) diverging and y,x, converg-
ing to «’.

Pick any sequence (p,), € [ [, %, By definition of the quotient topology on Y, up
to extracting we can assume that it converges to p € x C €2 \\ », and that y,p, converges
to p/ € ¥ C 92 . ». This means Stabr(y) does not act properly on 92 \ y, which is a
contradiction.

The last conclusion of the corollary follows immediatly from the well-known fact
that a discrete group of cohomological dimension ¢ — 1 acting properly on R~! must act
cocompactly. See for instance [59]. 0J

6.5. Proof of Theorem 6.3 and Fact 6.4. — We are going to prove both results at
the same time. Let us call “walls” the hypersurfaces Wy, ..., W, C M in the setting of
Fact 6.4, as well as their lifts in M. -

A point of Y corresponds either to an extremal point of 9M or to a closed subset
of IM of the form W N dM where W is a wall of M.

By Fact 6.9, Y is compact metrisable and the action of 7r;(M) is a convergence
action. .

By Corollary 6.13, every point of Y corresponding to a wall of M is bounded
parabolic.

Thus, by the working definition of relative hyperbolicity, it is enough to check that
every point x € dM outside of closed walls projects to a conical point of Y, using Propo-
sition 6.10.

Fix compact pairwise disjoint neighborhoods for the walls of M. Pick also a point
p in the interior of M.

By Proposition 6.10 it is enough to check that the projection in M of the ray [p, x)
passes infinitely often in the complementary of our fixed set of neighborhoods. Let us
assume the contrary: that there exists ¢ € [p, x) such that [¢, x) 1s contained in a lift U of
a neighborhood of a wall; denote by W C U the lift of the wall.
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Let ¢, € [¢, x) converge to x. Since the stabilizer Stabr (W) of W acts cocompactly
on it and on U, there exists a diverging sequence g, € Stabr(W) such that g,¢, stays in a
compact set K of U.

Up to extracting a subsequence we may assume that ||g,|| ~'g, converges to a matrix
g- By Lemma 6.12, if €2 is the interior of M then Ker(g) NQ and Im(g) N Q are contained
in W, which does not contain x. Thus 8.9, tends to gx, which 1s also the limit of g,x and
hence belongs to the relative boundary of W, which does not meet K: contradiction.

6.6. Extended geomelrical finiteness. — Consider a properly convex open set  C $%, a
closed subset F C €2 with the visibility condition (it contains all segments of d€2 touching
it), and a discrete subgroup I' C Aut(£2) preserving F. Fix a I'-invariant closed equiva-
lence relation ~ on F with at least three equivalence classes and the visibility condition
(see Section 6.2), and Y :=F/~.

Denote by RP?* the set of hyperplanes of RP?. Let F* C 9Q* be the set of sup-
porting hyperplanes intersecting F. Notice that I* is a closed subset with the visibility
condition, and that it carries a natural I'-invariant closed equivalence relation with the
visibility condition (H ~ H’ if there are x € HNF and " € H' N F with x ~ x’), such that
the map I*/. — Y, mapping [H] to [x] when x € H, is well-defined and is a homeomor-
phism.

Let 7 C RPY x RP’* be the partial flag variety of pairs (x, H) such that x € H.
Set A := (F x F*) N F. We have a natural I'-equivariant surjective continuous map
¢ : A — Y, sending (x, H) to the equivalence class of x. This map extends to a map
o1 X Py : FxXF*— Y.

Our assumptions imply that ¢ is antipodal: any two points (x, H), (v, H') € A with
different images by ¢ are antipodal, in the sense that x ¢ H and x' ¢ H.

Defimation 6.14 (Weisman [71, Def. 1.2]). — A map ¥ : A — Y extends the con-
vergence action of I' on Y if for every z € A there exists an open subset C, C F containing
AN 1(2) such that every diverging sequence y, € U admits a subsequence y,, and z+ € Y such that
Y K accumulates on =" () for every compact subset K C C._.

Lemma 6.15. — The map ¢ extends the convergence action of I on Y.

Progf — For any z € Y, let A, C RP? (resp. A* C RP*) be the connected compo-
nent containing €2 (resp. %) of the (open and convex) set of x (resp. H) such that x ¢ H’
(resp. ' ¢ H) for any (x, H) € ¢ (2).

Consider a diverging sequence g, € I'.

Up to extracting a subsequence, we may assume that ||g='[|~'g"' converges to a

matrix g¢. Set Ky = Ker(gy) N 92 and I, = Im(gy) N 92 (note that I, C Ky).

By Fact 6.11, for every x € Q2 the sequence g'x tends to gox € L. This applies
in particular to any x in the convex hull of F, and the I'-invariance of F implies that it
intersects K4, and hence contains it by the visibility condition on F.
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The visibility condition on ~ implies that ¢ sends all pairs (x, H) € A with x € K.
on the same point of z € Y.

Let us check that g, A. C I, with the consequence that g, K — ¢, (z,) for any
compact subset K C A, . Pick x € A, and y € K. By definition of A, , the segment
[x, ] intersects 2 at some point p. Now any lifts of x and p in R*"! differ by a vector of
Kerg,,sogr=xpel;.

A duality argument (involving g') ensures that for any compact subset K C A% |
the orbit g,K accumulates on ¢; ' (z1), which is the set of supporting hyperplanes of € at
¢1_1 (z4).

In conclusion, for any compact subset K C (A, x AZ ) N F, the orbit g,K accu-
mulates on ¢~ (z,), i.e. ¢ extends the convergence dynamics of I" on Y. O

Corollary 6.16. — If the action of T on Y 1is geometrically finite, as in the settings of Theo-
rem 6.3 and Fact 6.4, then the action of T on F is (by definition) extended geometrically finite
the sense of [71, Def. 1.3].

7. Projective gluings

In this section we describe a gluing construction whose input consists of projec-
tive manifolds with totally geodesic boundary and corners and whose output is a convex
projective cone-manifold. By translating the conditions of the previous sections in the
language of gluings:

— We establish when the singularities of the glued projective cone-manifold can be
blown up to totally geodesic boundary components.

— We describe the shape of the resulting convex domain, in particular, we charac-
terize the flat regions of the boundary and the extremal and C' points.

7.1. Gluings. — We start with some topological preliminaries about gluings.

Definition 1.1 (Gluing). — Given a collection of b-manifolds M, a gluing is a smooth invo-
lution f : 9M — M that does not preserve any boundary component. We denote by M the quotient
of M under the equivalence relation x ~ f (x) for x € IM.

Every component M C M can be seen as an immersed codimension 0 submanifold of M
called a cell. Similarly, every boundary component W C 0 M. projects to an embedded codimension 1
submanifold of M called a wall. The graph of cells us the graph whose vertices are cells and whose
edges are walls (a wall links the two adjacent cells).

7.1.1. Unwersal cover. — Let M be a collection of b-manifolds and / a gluing of
the boundary. Assume that the gluing M is connected. We now describe its universal
cover

n:/\>lf—>/\/lf.
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The preimages of the interior of the cells and the preimages of the walls give a
natural decomposition of M,

M= | | =7 (mwp)u | | 77 @M).

McM McM

into cells which are manifolds with boundary that cover the cells of M, (the components
of M).

It is convenient to realize this decomposition as a gluing of a covering N of M.
We now explain more formally how to do that.

The covering N is a pullback

NHMf

..

M — =M

'

More precisely, N' C M x M is the set of pairs (x, ») € M, x M such that 7 (x) = 777(y).
It is elementary to check that the second coordinate projection N” — M is a covering,.

Then M; is naturally identified with ,, where g is the involution of IN =N "N
(M x M) such that g(x, ») = (x, f(»)) for any (x, ).

In general, the cells and walls of N, = M (i.e. the components of N and dN) are
not copies of the universal covers of the corresponding cells and walls of M. We now
show that this is the case when the gluing satisfies a 7r;-injectivity property.

Conveniently, this can be explained using the theory of graph of spaces of Scott

and Wall [57]: Let G be the graph of cells of N, = M; (vertices are components of N
and edges are images in N, of components of dN).

Fact 7.2, — If M has 7, -injective boundary, then G is a tree, and each cell and wall of M [
(i.e. each component of N and ON') is simply connected.

Proof. — Each wall of M admits a tubular neighborhood, and hence M/ is a
realization of the graph of space associated to M and f and their graph of cells, in the
sense of Scott and Wall [57, p. 155]. According to Scott and Wall, this means that the
fundamental group of M is isomorphic to the fundamental group of the associated graph of
groups, in which Scott and Wall [57, Prop. 3.6] prove that the fundamental groups of each
cell and wall injects (see also [58, §5 Cor. 1]). This proves that each component of A/ and
dN is simply connected.

The fact that G is a tree comes from that ./\;lf is also the realization of a graph of
spaces with underlying graph G. Indeed since each cell of M is simply connected, the
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fundamental group of M [/ (which is trivial) coincides with the fundamental group of G
by [58, p. 61]. UJ

The gluings that we will consider from now on will always satisty the m,-injectivity
condition of Fact 7.2 thanks to the following classical fact.

Fact 7.3. — Any wall of a properly convex b-manifold is 7, -injective.

Progf. — Let M be a properly convex b-manifold with universal cover M. Each lift
in M of a wall of M is mapped homeomorphically by the developing map to a convex
subset of a hyperplane. In particular, it is simply connected. UJ

7.1.2. Projective gluing. — Next, we introduce geometric structures on gluings:

Definition 1.4 (Projective Gluing). — Let M be a collection of b-manifolds. A projective
gluing is the data of a gluing f* together with a projective structure on M that restricts to the projective
structure of each component of M.

Not all gluings admit a compatible projective structure and, if it exists, it is not
necessarily unique. Note for instance that if there is compatible projective structure, then
S 19M — M is an isomorphism of projective (d — 1)-manifolds (but this is not a suffi-
cient condition in general).

7.1.3. Admussible gluing. — We now come to gluings of projective manifolds with
totally geodesic boundary and corners. They are defined as follows:

Definition 7.5 (Admissible Gluing). — Let MC = (M} ;5 be a collection of be-manifolds
with smooth locus M = {M; C M} 5. A projective gluing f for M is said to be admissible if for
each corner € of MC, we can find cells My, ..., M,, C MC such that each M; has a corner €;
(with €y = €) and two adjacent walls W; and W such that

— W =W, for each i.

- ﬁw+ extends to a homeomorphism fe, 1 €; — Cyy.

— fle,, © o fie, o fe, is the identity map of €.

(All the indices are thought modulo m). We denote by MC; the quotient of MC by the closure of the
relation x ~ f (x) for x € 9 M.

A corner or singularity of MC; s the projection of a corner of MC.

A choice of {(M;, W, €)}iz, as in the previous paragraph is called a cell ordering of the
corner in MC;.

Admissible gluings provide natural examples of projective cone-manifolds:
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Lemma 7.6. — Let MC be a collection of be-manifolds with smooth locus M. Let f be an
admissible gluing. Then MCy is a cone-manifold (Definition 4.6).

Proof. — Fix a corner €. Let {(M;, Wall;t, ¢,)}i<. be a cell ordering for €.
One can find an open neighborhood V of € that satisfies the following:

— V does not intersect any other singularity.

-~ V=V, U---UV, where each V; is a tubular neighborhood of the lift ¢; C M;
of €.

- WﬂE =V;N WalljE is a tubular neighborhood of €; in Walli

— The universal cover V of V can decomposed as a glumg of universal covers
Vi,...,V L via fi: W —>W1+lsuchthatﬁl of(x)-xforanyxé@l

— m1(€) naturally acts on € and V and all the @ s and V;’s and Wi’s so that
a(fi(x)) =fi(x(x)) for any s and x € Wl+

Our goal is to find a tube T and a local homeomorphism V — T which is projec-
tive on the smooth locus and equivariant with respect to a morphism 7, (€) — Aut(l).

Fix a developing map dev' : V, — 8 that sends €, to §¢2, By induction, the
projective structure on M, determines for each 7 < n a developing map dev' : V; — 8¢
such that dev'™ = dev' of;_; on \/N\/f_1 It also determines a new developing map of V, of
the form dev"™' = g o dev' where g € SL,,;(R), such that dev" = dev""" of; on \/NV,'ZF

Claim 1. — g fixes every point of 872,

Proof of the clavm. — TYor every x € €; we have

gdev'(v) =dev'™! (f, 0~ 0.5 0/ (%))
:dev"(}f,_l 0---0f ofl(x))

= dev! (x). 0

Up to making V smaller, we may assume that for each 1 <7 <n+1 the image of

dev' is contained in the sector S; of 8¢ between the half-hyperplanes spanned by dev' (W)
and dev' (W+) We choose a lift 81 C B U S”? of the first sector, which determines by in-

duction lifts of SQ, .., 5,41 to sectors SQ, e Sn+1 C BUS? 2. Then dev' lifts in a unique
way to dev': V; — S, Similarly g lifts to a unique g € Aut(B) that maps S; to Sn+1 (and
fixes S472).

Let T be the tube

(02K
C
n
S
~
14
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where ~ identifies via g the wall of S| spanned by dev' (\/NVI_) with the wall of S, spanned
by dev'(W). Denote by 7wp: Sy U---US, — T the quotient projection. We have the
following:

Claim 2. — The map F: V — T such that F(x) = 7 (dev' (o)) for all  and x € V;
is well-defined and is a local embedding that respects the projective structures.

Let hol : m,(€) — SL,+ R be the holonomy of dev!, which lifts to a holonomy
hol : 7,(€) — Aut(B) of dev'. For any « € (), the new developing map dev' o «
determines by induction as above new developing maps of Vs, ..., V,, V|, which can be
written dév' o . On the other hand, the developing map hol(er) o dév' clearly determines
the developing maps hol(a) o dév'. We check that:

Claim 3. — hol(@) is an automorphism of T.

Proof of the claim. — Since dév' o = hol(a) odev', we have dev' oo = hol(a) o dev’
for all 2 <7 <n+ 1. As a consequence, hol(a) preserves each S;. Moreover, it commutes
with g since

hol(ar) 0 g o dév' = hol(a) o dev'™ =dev'™ o«
=godév' o =gohol(x) odév'.
Thus hol(«) yields an automorphism ¢ () of T. ]
It is clear that ¢ is a morphism. To conclude, let us check that:

Clasom 4. — Foa=¢(x)oF.

Proof of the clavm. — Let x € V. We have x € V; for some i. Then a(x) is also in V;,
and by definition

F(a(x) = mr(dev'(ax)) = mr(hol(@)dev' (1)) = ¢ (@)mr(dev'(v)). O
This concludes the proof of the lemma. 0J

7.2. Polars and bulging. — We describe the notion of polars and gluings adapted to
polars. They come in one-parameter families obtained via a bulging procedure. The goal
of this section is to explain this picture.

Let MC be a collection of be-manifolds. Let / be a gluing for M.
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Definition 7.7 (Polars). — A polar point of @ wall W C M is the data, for each projective
chart of W in 8¢, of a point of RP? transverse to the image of the chart, which behaves well with respect
lo transition maps.

FEach developing map W — S? gives rise to a holonomy invariant polar.

A projective gluing M 1s said to be adapted to a given choice of polars if for any developing

map My — 87 and any wall W C M, the associated polars of W and fW cotncide.

Remark 7.8. — 1f all walls of M admit a polar, then there exists a projective gluing
adapted to the polars if and only if / is a projective isomorphism of (¢ — 1)-dimensional
projective manifolds and for any wall W C 9. M, denoting by p (resp. p') the dilation char-
acter of W (resp. fW), we have p = p" o f,.

The dilation character is defined as follows: For each wall W C 9 M and develop-
ing map dev: W — 8¢, whose image spans V. C R**!, the dilation character of W is the
determinant of the representation of 7r;(W) to GL(R*"!'/V) induced by the holonomy
representation. It is a real character that does not depend on the choice of dev.

If M is hyperbolic, then the dilation characters are trivial, the polars are the or-
thogonal subspaces for the Lorentzian bilinear form, and the unique hyperbolic gluing is
adapted to this choice of polars.

If M, is the double of a manifold M, and all boundary components of M admit
polars, then there is a natural projective gluing adapted to the polars.

Let us finally recall the definition of bulging,

Definition 7.9 (Bulging). — Assume that each wall of M admits a polar, and that M, admits
a projective gluing adapted to the polars with atlas A. Let (w)wcam be a_family of positive real
parameters. The bulging of M along the polars with parameters (tw)weam s the projective
gluing which includes the following charts.

For any point p € M which is the image of p € W C M C M and f(p) e fW C M’ C
M, for any chart ¢ of A defined on a small enough neighborhood U LU C M UM/, the map
Bo ¢y UB o ¢ is achart of the bulging, where B (resp. B') is the linear transformation that
fixes (U NW) (resp. p(U' 0 f W) with eigenvalue iy (resp. (i) and also fixes the polar, with

eigenvalue 3, (resp. M}i‘w ).

7.3. Convexity of gluings. — Having described how an admissible gluing of bc-
manifold gives rise to a projective cone-manifold, we now turn to the problem of deter-
mining when (the smooth locus of) such manifold is convex and when its decomposition
into gluing pieces corresponds to a periodic tessellation of a convex domain in S°.

In order to do so, we revisit the results of the previous sections using the terminol-
ogy of admissible projective gluings and Section 7.1.

First of all, we consider a single tile M € MC, a properly convex be-manifold with
universal cover M C S8 and study its geometry. We describe under which conditions it
satisfies the hypothesis of Proposition 5.1.
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7.3.1. Codimensions 1 and 2 strata. — Let M be a properly convex bc-manifold,

with universal cover M C S?. First, we have to make sure that the walls and corners of M
correspond to faces of M.

Definition 7.10 (Complete Walls and Corners). — A wall (resp. corner) of M is said to be
complete if any lift in M consusts of a_full codimension 1 (resp. codimension 2) face.

Completeness of walls and corners is not difficult to check:

Fact 7.11. — We have the following:
— Any convex hyperbolic be-manifold which is complete for the hyperbolic metric also has complete

walls and corners, in the sense of the previous definition.
— Any compact properly convex be-manifold has complete walls and corners.

Proof. — The proof'is subdivided into claims about (¢ — 2) and (d — 1)-manifolds.
The first one is classical and not proved here. It implies that complete convex hyperbolic
bc-manifolds have complete corners.

Clazm 1. — Any hyperbolic (d — 2)-manifold which is complete in the metric sense
is also complete in the sense of (G, X)-structures: The developing map is a bijection onto
H'2,

Next we have another classical result about hyperbolic manifold. It implies that
complete convex hyperbolic be-manifolds have complete walls.

Claim 2. — Let N be a complete hyperbolic (¢ — 1)-manifold with totally geodesic
boundary, with universal cover N C H”". Then N is the biggest convex subset of H*™!
delimited by the walls of N.

We now turn to the second point of the fact. The following classical fact implies
that compact properly convex be-manifolds have complete corners. We recall the proof
for the reader’s convenience.

Claim 3. — Let /1" be a closed convex projective (d — 2)-manifold. Then €2 1s

maximal for inclusion among I'-invariant properly convex open subsets of $772.

Proof. — Let Q' be I'-invariant and contain 2. It suffices to show € is closed in €'.
Let x € 2" be the limit of x, € 2. By compactness there is y, € I' such that y,x, converges
to y € Q. Since I' acts properly on €', the sequence y, converges in I and x € Q. UJ

To conclude, the last claim implies that compact properly convex bc-manifolds
have complete walls.
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Claim 4. — Let N be a compact properly convex projective (d — 1)-manifold
with totally geodesic boundary, with universal cover N C ! and holonomy I' <
Aut(int(N)). Then int(N) 1s maximal among I'-invariant properly convex open subsets
of $?~! delimited by the span of the walls of N.

Progf: — Let Q2 = int(N) and let ' C $*~! be I"-invariant, open, properly convex,
and delimited by the span of the walls of N. It suffices to show € is closed in €. Let
x € ' be the limit of x, € Q. By compactness there is y, € I' such that y,x, converges
to some y € N. Since I acts properly on ', if y € Q then y, converges in I and x € Q.
Assume that y lies in a wall W of N (i.e. a component of NN BN)

Consider a small closed half-ball B centered at y and contained in N, whose
boundary is decomposed into 0B = (BN W) U ¥ where ¥ C 2. One may check that
VX, € Int(B) for n large and that the Hilbert distance do (y,%,, ) 1s bounded below by
some constant € independent of n. Note that do (y,x,, Y.x) = do (x,, x) tends to zero, and
thus is less than € for n large enough. Then y,x € int(B), otherwise [y,x,, ¥,x] would cross
X (it cannot cross BN W) and have length at least €. Therefore x € 2. U

This concludes the proof of the fact. UJ

7.3.2. Ghost strata. — Let M be a properly convex bc-manifold which we now
assume to have complete walls and corners which will lift to codimension 1 and 2 faces
of the universal cover M C §7.

The next issue that we want to address is the potential presence of codimension 2
faces that do not come from corners.

Definition 7.12 (Ghost Corner). — A ghost stratum is a_face of M which is the intersection
of at least two closed walls but which is not a closed corner. 1t is called a ghost corner if it has
codimension 2.

Remark 7.13. — Here is an example of ghost strata: Let C C R® be the positive
cone consisting of vectors v = (vy, vg, v3) € R? such that vy, vy, v3 > 0 or v}, vy > 0 = v3
or v, v3 > 0 = vy, and let T := 8(C). Then {[¢,]} is a ghost corner of T and its compact
quotient M under the action of any diagonal matrix with positive decreasing diagonal
entries. Moreover, T U {[¢]} is a properly convex bc-manifold with complete walls and
corners and without ghost corner, but, since it is compact, M cannot be described as
the complement of corners in a properly convex bc-manifold with complete walls and
corners and without ghost corner.

Again, there is a simple criterion to check that there are no ghost strata in the
hyperbolic setting:
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Fact 7.14. — Let M be a complete convex hyperbolic be-manifold. Then:

— Any ghost stratum has dimension 0.
— If M 15 compact then there is no ghost stratum.

Progf. — The universal cover M is a closed convex subset of the hyperbolic space
H’ with non-empty interior. Let S be a ghost stratum.

It is a proper face of M and lies in dM ~ M C dH’, and hence is a point, since H’
is strictly convex.

Suppose by contradiction that M is compact. Then there is 7 > 0 such that for any
ball B of H? of radius 7, if B intersects two walls of M then these walls share a corner and
B intersects no other wall. Fix p € M.

If three walls were adjacent to S, then any ball of radius » with center in [p, S) close
enough to S would intersect all three walls, contradicting the definition of r.

Thus S is the intersection W, N Wy where W, W, are two walls of M. As before
any ball of radius » with center in [p, S) close enough to S intersects both W, and W,
making S an actual corner of M, which is absurd. U

7.3.3. Local convexity. — We are now ready to translate the local convexity condi-
tions of Proposition 5.1.

Definition 7.15 (Containment Condition). — Let M be a properly convex b-manzfold. We say
that the polar pownt associated to a wall W of M satisfies the Containment Condition if for any iift
w of W n M, and any developing map dev : M — S, the image of dev is contained in the convex
hull of dev(W) and the polar point.

Fact 71.16. — Let M be a collection of properly convex b-manifolds with polar points satisfying
the Containment Condition, and consider a compatible projective gluing. Then the union of any two
adjacent cells of the universal cover is convex.

Progf: — This 1s a consequence of Remark 5.6. 0J

In the case of convex hyperbolic manifolds, the Containment Condition follows
from angle assumptions on the corners.

Fact 7.17. — Let M be a complete hyperbolic be-manifold and W a wall such that all ad-
Jacent corners have angle at most 7w /2. Then the hyperbolic polar point of W satisfies the Containment
Condition.

Proof. — Suppose M C H and W C H'"". Let p € S? be one of the two hyperbolic
polars, such that M intersects the cone G = CH(p, H'™"). Let X C H be the half-space
with boundary H?~! that contains M.
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Fact 7.17 1s a consequence of the classical facts that:

— X satisfies the Containment Condition with respect to H™! and p, i.e. X C C =
CHMH, p).

— For any x € H’™!| the projective line through x and p intersects H’ in exactly the
geodesic perpendicular to H™! at «.

Indeed, let {W }; be the collection of walls of M adjacent to W. Tor each i let
H; = Span(Wl) NH’, let H: C H’ be the hyperplane orthogonal to H*™! at wn WZ, and
let X; and X be the half-spaces with boundary H; and H! containing M.

Then Y’ :=XN[).X!is the preimage of W by the orthogonal projection on H?™!,
and it satisfies the Containment Condition with respect to Y NH*™! = W, Le. X' C
CHW, p).

Moreover, Y’ contains Y := X N[ "), X; which contains M since all corners adjacent

to W have angle at most 7w /2. Thus M must also satisfy the Containment Condition. [

7.3.4. Global convexity. — We now rephrase Proposition 5.1 using the terminology
that was introduced in the previous sections.

Theorem 71.18. — Let MC be a collection of be-manifolds. Let [ be a projective gluing on
M. Assume that:

(1) M 15 connected.

(2) All cells are properly convex, with complete walls and corners (Definition 7.10), and without
ghost corners (Definition 7.12).

(3) The union of any two adjacent cells in the universal cover is convex (satisfied for instance if
there are polar points satisfying the Containment Condition).

(4) Each singularity is uniformizable in S* (see Proposition 4.7).

Then M is convex.

Progf — Let G = (V, £) be the graph of cells associated to the gluing of /\;l st each
v € V corresponds to a cell of M, and cach ¢ € £ corresponds to a wall of M; (sce

Definition 7.1 and Section 7.1.1). Fix a developing map M, — 87, and for each v € V
let D, be the closure in 8¢ of the image of v by the developing map.

It is enough to check that (G, {D,},c1) satisfies the assumptions of Proposition 5.1,
i.e. that it is a gluing kit (Definition 5.3). Note that connectedness of G is an immediate
consequence of Property (1).

Assumption (1) of Proposition 5.1. This follows from the fact that walls of
M are complete (Property (2)) and Property (3).

Assumption (2) of Propeosition 5.1. Let p = (v, vy, ...,v,) C G be a path
such that F, := D, N---ND,, is a codimension 2 face of D,, for every i. Since M has no
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ghost corner (Property (2)), int(F,) is a lift of a corner of MC;. As a consequence, p may
be extended to a bi-infinite path ¢ = (v;)ez such that (), D,, = F,. Then Property (4)
implies by Proposition 4.7 that the sequence (D,,)ez satisfies the assumptions of Propo-
sition 5.20, whose conclusion is that F, is contained in the boundary of a half-space of 8§
containing | J,_z Dy, as required by Proposition 5.1. UJ

7.4. Totally geodesic blowups of gluings. — As we have seen in Lemma 7.6, admissible
projective gluings give rise to projective cone-manifolds. Hence, as proved in Section 4,
under suitable conditions on the holonomy of the meridians of the corners, we can blow
up each singularity to a totally geodesic boundary component and we can also give an
explicit description of such components in terms of the geometry of the corners. This is
the content of the next theorem.

Theorem 7.19. — In the setting of Theorem 7.18, assume further that

— M is properly convex (for instance if one of the cells has an irreducible holonomy).
— Each singularity of MCj s special (Definition 4.10).

T hen the following holds:

(1) The totally geodesic blowup N of the singularities of MCy (Definition 4.13) has complete
walls and no ghost corners. If each cell of M has no ghost stratum then so does N. .
(2) For each wall W of N blowing up a corner € there is a developing map of N sending W

onto the interior of CH(C, [e,]) such that the holonomy of 71 (W) is generated by that of
the corner

y € 11(€) —>

—1
(¢(y) o' (y) e SL, 1 (R)

¢<y>d—2112>

and of the meridian

[T VI
nz A € € SLyy1(R),
IR, |
nT A

where p' is a morphism, ¢ a positive character, A > 1, € =1 if A =1 and O otherwise,
and > AT
(8) If A > 1 then [es41] yields a polar of W which satisfies the Containment Condition.

Proof. — We start with the description of the developing map of N sending W onto
CH(C, [ed]).

By Lemma 7.6, MC/ is a cone-manifold: Every point of € admits a neighborhood
that embeds into a tube T = T LU S/~2. Thus we can find a tubular neighborhood U C
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MC; of € and a developing map f : U — T with holonomy in the automorphism group
of T. We denote by U the universal cover to emphasize the fact that its smooth locus U
is not the universal cover of the smooth locus U of U (it is an intermediate cover with
fundamental group Z).

Since each cell of M is properly convex, € is uniformizable in $772 so f is injective
on €. Up to making U smaller we can assume that / is injective, which identifies U with
a subset of T.

Let 7 : T — T =T US’? be the totally geodesic blowup of T. By definition, the
totally geodesic blowup U’ of Uis 771 (0).

By Proposition 4.12, there is a developing map dev : T’ — $ that sends the bound-
ary onto CH(S?72, [¢,]) such that the holonomy of the meridian has the form

JVa VIR .
g= wT A € € SLy 1 (R),
=1,
nz A

with A > 1, e =1 if A =1 and 0 otherwise, and u > k%, since by assumption each
singularity of MC; is special.

The map dev restricts to a developing map U’ — 87 that maps 3U’ onto
CH(C, [¢;]). The holonomy of the meridian is g.

The holonomy of € is in Aut(B) and commutes with g, so it preserves S and [¢,]
and Span([e,], [ez+1])- .

For any wall W of M adjacent to €, any lift in U of W N U is preserved under
the action of 7,€, and its image under dev spans a hyperplane containing S/ that is
preserved under the holonomy of €, which must therefore fix many and hence all points
of Span([e,], [es+1]), and thus have the form staNted in Theorem 7.19.

By Property 1 of Proposition 5.22, CH(€, [¢,]) corresponds to a cell at infinity of
the associated gluing kit G = (V, £). Property 2 of Proposition 5.22 says moreover that
such a cell at infinity 1s a full closed face of 9N, which implies that N has complete walls.

By Property 1 of Proposition 5.19 and the above, if S = C’H(Q, EN)) ﬁC’H(Qﬁg, [x9])
is a ghost stratum of N then S= ¢, N ¢, 9 and hence S has codimension at least 3. This
implies that N has no ghost corners, and moreover no ghost stratum at all if M has no
ghost stratum.

That each wall of N above a singularity with hyperbolic SLy-angle admits a polar
point satisfying the Containment Condition is an immediate consequence of Property 3
of Proposition 5.22. O

Remark 7.20. — In the setting of Theorem 7.19, if every singularity has hyperbolic
SLy-angle then one can apply Theorem 7.18 to put a convex projective structure on the
double P of N.



164 PIERRE-LOUIS BLAYAC, GABRIELE VIAGGI

7.5. Stratification of the boundary for a gluing. — Lastly, after blowing up the singularity
of the convex projective cone-manifold given by a suitable admissible gluing, we want to
describe the geometry of its universal cover. In order to do so, we have to understand the
stratification of the boundary. We do this exploiting the work we developed in Section 5
as stated in the next result:

Theorem 7.21. — In the setting of Theorem 7.19, suppose that:

— For each cell M C M with universal cover M, each non-trivial_face of M touching a wall is
contained in a wall. - -

— For each cell M C M with universal cover M, each non-trivial face of M touching a corner
s a wall adjacent to the corner or is contained in the corner.

— There is no ghost stratum.

— MCs is compact.

Then the assocated ghung kit satisfies the assumptions of Proposition 5.28, so any cell at infinity which
is not a wall of the totally geodesic blowup N consists of an extremal C' point.

One can reformulate the first two conditions using the terminology of visibility like
in Sections 5.5 and 6.2. The first condition means that the union of walls is “visible” from
its complement in 9€2, and the second condition means that for any wall W, each corner
contained in dW is “visible in W” from its complement in dW.

Progf — Let G = (V, £) be the gluing kit associated to (M, f) (see Definition 5.3
and Section 7.1), so that Mf = X where X := Upey D- Let us see how to derive the above
theorem from Lemmas 5.26 and 5.27 and from our compactness assumption.

Fix a smooth structure on MC; that extends that of M, by using a nice
parametrization. Fix also a Riemannian metric.

The group I' := m(M;) acts on the set of pairs (D, W) where D is a cell
of G and W is an adjacent wall, and this action admits finitely many representatives
Dy, W), ..., D,, W,) since MC; is compact.

Fix i. Choose for each wall W of D; not adjacent to W;, in a Stabp (W;)-equivariant
way, a segment from W; to W with smallest length for the Riemannian metric; denote by
vy the starting vector (transverse to W;) and by y»w € W the ending point of the segment.
By compactness of MC;, we can find a compact set K of transverse vectors to W; and
a set W; of Stabr(W,)-representatives of walls W of D; non-adjacent to W, such that
vw € K for any W € W,. Then there exists an open neighborhood U, of W; such that
ow ¢ U, for any W € W,. By Lemma 5.27, we can find an open neighborhood U’ of W;
such that D; \ U is convex and contains walls in W,. By Lemma 5.26, (W,, X, D; ~ U)
1s a visible triple.

By compactness, there is a finite number of Stabr(W,)-representatives {W,;}; of
walls of D; adjacent to W;. Fix j. Let D;; be the cell other than D; which is adjacent
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to W;; and ¢;; ;== W; N W, ;. Choose for each corner € of W;; other than €,;, in a
Stabr(W;, €; ;)-equivariant way, a segment from €;; to € with smallest length for the
Riemannian metric; denote by ve the starting vector (transverse to €; ;) and by y¢ € € the
ending point of the segment.

By compactness, we can find a compact set K of vectors tangent to W; ; and trans-
verse to €;; and a set C;; of Stabr(W;, €; j)-representatives of corners € of W;; other than
¢, such that ve € K for any € € C; ;. Then there exists an open neighborhood U;; of W;
such that y¢ ¢ U, for any € € C;;. By Lemma 5.27, we can find an open neighborhood
U! g of W; such that (D;UD; ;) \ U, g 1s convex and contains all walls adjacent to a corner
of C;, other than W, ;. By Lemma 5.26, (W;, X, (D; U D;j) ~ U;J-) 1s a visible triple.

Let us now stop fixing 7,7, and let C be the set of visible triples of the form
(W;, X, M) where M C D; Ul or (D; UD;) \ U;-J- for some 1, .

Let A, B, C, D be a path of cells of G such that ANB N C N D is empty.

— if ANB N C is empty, then do the following. Find ¢ and g € I" such that (B, AN
B) =g(D;, W,). Find W € W, and % € Stabr(W,) such that BN C = ghW. Then
(ANB,X,CND) e ghk;

— if BN CND is empty, then apply the previous point to the path D, C, B, A, so
that (CND,X,ANB) e GL, (R) - K;

— ifANBNCand BN CND are non-empty, then do the following. Find ¢ and
g € I' such that (B,ANB) =g(D;,W,). Find j and % € Stabr(W;) such that
BNC=nW,; and ANBNC =gh¢,;. Find € € C;; and k € Stabr(W,, &, )
such that BN C ND = ghk€. Then (AN B, X, CND) € ghkK. O

8. Hyperbolic building blocks

In this section we construct the hyperbolic building blocks that serve as input for
the construction in the proof of Theorems 1.1 and 1.2. In particular we describe the
results of Bonahon and Otal [21] and we prove Theorem 1.8.

8.1. Dumension d = 3. — In dimension ¢ = 3 there is a lot of flexibility in the choice
of building blocks.

8.1.1. 3-manyfold topology. — The existence of a convex hyperbolic metric with
totally geodesic boundary pleated along some corners on a compact 3-manifold (M, 0M)
such that the pleating locus coincides with a multicurve ¢« = o) LI - - - U, C M can be
reduced to an explicit purely topological problem by work of Bonahon and Otal [21].

Before stating their results, we briefly review the necessary terminology and notion
from 3-dimensional topology. For a more in-depth discussion, we refer to [50, Ch 9].

Defination 8.1 (Irreducible). — An orientable 3-manifold M s irreducible if every embedded
2-sphere S* C M bounds a 3-ball B*> C M.
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Defination 8.2 (Atorowdal). — An orientable vrreducible 3-manifold M s atoroidal if every
embedded 7, -injective 2-torus T* C M is isotopic to a component of M.

Defination 8.3 (Doubly Incompressible). — Let M be a compact 3-manifold with boundary
oM # (. An essential multicurve @ = oy U - - - U o, C dM 25 doubly incompressible if:

(1) We have
> i, 0A) > 0
J=n
Jor every properly embedded essential annulus or Mobwus band (A, 9A) C (M, dIM).
(2) We have

> ey, D) > 2

j=n
Jor every properly embedded essential disk (D, dD) C (M, dM).

Here i(e, ®) denotes the geometric intersection number between closed curves on OM (see

/50, Ch. 8]).

The notion of doubly incompressible multicurve was introduced by Thurston in
[63]. It is well-known that doubly incompressible multicurves are abundant, in fact, there
is a full Lebesgue measure open set O C PML of the space of projective measured
laminations on dM (see Lecuire [45] for the definitions and topological properties and
Kerckhoft [42] and Gadre [33] for its Lebesgue measure), such that every multicurve
o € O satisfies such property. We refer to [50, Ch. 8] for an introduction to (projective)
measured laminations.

8.1.2. Convex hyperbolic 3-manifolds with prescribed corners. — The existence of hyper-
bolic structures on (M, 0M) is a consequence of Thurston’s Hyperbolization Theorem:

Fact 8.4 (Thurston, see [41, Th. 1.43]). — Let M be a compact orientable irreducible atoroidal
3-manyfold with non-empty boundary OM #£ @. Let T be the union of all toroidal components of IM.
Then M — T admits a complete convex hyperbolic structure of finite volume, that is M — T is home-
omorphic to a quotient C/ T where C C H® is a T -invariant convex set and T' < Isom™ (H?) is a
discrete and torsion _free subgroup.

If M has a convex hyperbolic metric of finite volume as in Fact 8.4, then it has a
large deformation space of such metrics.
In particular, Bonahon and Otal proved:

Fact 8.5 (Bonahon—0Otal [21, Th. 2]). — Let M be a compact orientable 3-manifold with
non-empty boundary OM # O such that M s irreducible and atorordal. Let oy U - - - U, C OM be a
multicurve and let 0, . . ., 0, € [0, ] be a set of angles. Suppose that the following properties hold:
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(1) We have

> 6, 0A) > 0

Jj=n

Jor every properly embedded essential annulus or Mobius band (A, 9A) C (M, dIM).
(2) We have

> 6ji(;, D) > 27

j<n
Jor every properly embedded essential disk (D, dD) C (M, dM).

Let o C o be the subset of curves with angle 7. Then, there exists a convex hyperbolic metric on
M — ., unaque up to isotopy, such that

— FEach curve oy C o — 4 15 a geodesic.

— The closure of each component of OM — « s totally geodesic.

The pleating angle between the components adjacent to otj of o — 15 6;.
— Fvery curve oy C [ 1s a rank one cusp.

The statement of Fact 8.5 is not phrased in the same language used in [21, Th.2],
but is equivalent to it. We formulated it in a language adapted to this paper.

Endowed with such hyperbolic metric M is a hyperbolic 3-manifold with totally
geodesic boundary and prescribed corners o; C 9M and corner angles 7 — 6.

It is immediate to check that if a multicurve @« = a; U - - - U, 1s doubly incompress-
ible, then it is enough to choose angles 6; very close to 7 to be sure that the requirements
of Fact 8.5 are also fullfilled.

Note that Fact 8.5 guarantees some freedom in the choice of the angles at the
corners. This is an important feature and we will use it to obtain a certain degree of
flexibility in the choice of the projective structure and holonomy of the totally geodesic
boundary tori T; in Theorem 1.2.

8.1.3. Deformation space. — The space of isotopy classes of hyperbolic metrics on
M with totally geodesic boundary and corners or rank one cusps at the multicurve o =
o) U --- U, has a natural topology induced by the topology of algebraic convergence
of the holonomy representations p : 7 (M, x) — Isom™ (H?) where % € int(M) is a fixed
basepoint. The next result of Bonahon and Otal gives a simple description of convergence
of metrics in terms of convergence of angles:

Fact 8.6 (Bonahon—Otal [21, Th. 24]). — Let o« = oy U --- U, C OM be a doubly
incompressible multicurve. The map that associates to each hyperbolic metric on M with totally geodesic
boundary and corners or rank one cusps at the multicurve oo the pleating angles (0, ..., 0,) € (0, 7]
is @ homeomorphism onto an open polytope Py, C (0, 1", For any jy, . . ., Ji, the preimage of the set of
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angles 0; such that 0; , ..., 0, are exactly the angles equal to 7 is the set of metrics that have rank one

cusps at the curves @, . . ., o,

Again, the statement of Fact 8.6 is not literally the one of [21, Th. 24], but is
equivalent to it.

Using a different set of parameters, Choi and Series [27] showed that the lengths
of the pleating locus of the boundary give a local parametrization of the same space of
metrics considered by Bonahon and Otal [21].

Fact 8.7 (Choi—Series [27, Th. A]). — Let « =y U --- U, C OIM be a doubly in-
compressible multicurve. The map that associates to each hyperbolic metric on M with totally geodesic
boundary and corners or rank one cusps at the multicurve ot the pleating lengths (£,, ..., £,) € [0, 00)"
s an wnjective local homeomorphism. For any jy, . . ., Jr, the preimage of the set of lengths £; such that
2

Olj‘l,...,Ol]‘k.

.. &y, are exactly the lengths equal to zero is the set of metrics that have rank one cusps at the curves

Fact 2.1 from the introduction is a combination of Facts 8.6 and 8.7 (note that the
pleating angle is 7 minus the corner angle).

We give a brief sketch of the argument. By Facts 8.6 and 8.7, we have an injective
continuous map from a neighborhood of (7, ..., ) in (0, 7]" to [0, 00)" such that the
preimage of each stratum of [0, 00)" 1s the corresponding stratum of (0, 7 ]”. By reflecting
this map along all the codimension 1 strata, we get a continuous injective map from an

open neighborhood of (7, ..., 7) in R" to a R". By Invariance of Domain, the image is
open and hence contains a neighborhood of (0, ..., 0).
8.2. Dimension d > 3. — In this section we prove Theorem 1.8.

For convenience of the reader, we briefly recall our goal: We want to find a closed
hyperbolic d-manifold M which contains £ totally geodesic connected embedded hyper-
surfaces Ny, ..., N; whose pairwise intersection C = N; N N; is a (fixed) codimension
2 connected totally geodesic submanifold and such that the angles of intersection are
ZNjNj; | = 7 /k for every j < k (indices modulo £). Furthermore, we want that the hyper-
surfaces IN; are pairwise isometric and related by a cyclic isometry p of M that fixes C
pointwise and maps p(N;) =N, ;.

When the dimension is d > 4, hyperbolic d-manifolds with patterns of totally
geodesic hypersurfaces can be obtained by using arithmetic techniques and separabil-
ity properties of arithmetic lattices as in Gromov-Thurston [34] and Kapovich [40] and,
in fact, our construction is inspired by those. Let us point out that, while we have little
control on the topology and geometry of these examples, we can, crucially, make sure that
two properties are satisfied: The pattern and the angles at the intersections are controlled.

Our strategy is as follows: For every £ we consider an explicit cocompact arithmetic
lattice G < SOy (d, 1) defined in terms of a suitable quadratic form ¢. We first construct
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explicitly a convex-cocompact subgroup Q < G such that H’/Q contains, by construc-
tion, the desired configuration of £ totally geodesic embedded hypersurfaces Ny, ..., N;
intersecting exactly along a codimension 2 totally geodesic corner C = N; N --- N N;
with angles of ZN;Nj;; = 7 /k. Then we use strong separability properties of G due to
Bergeron, Haglund, and Wise [15] to embed N, U - - - U N} in a finite cover of HY/G.

We begin with the description of some standard arithmetic manifolds which is the
starting point of the construction.

8.2.1. Arnthmetic manifolds from quadratic forms. — From now on let £ > 2 be a fixed
integer.

Consider the number field I := Q(cos(r /k), sin(rr /k)). It is a totally real extension
of Q, that 1s, every field embedding I — C has image contained in R. We denote by
o1, ...,0, the r = deg(F/Q) real embeddings o; : F — R where o, is the trivial one
o01(x) = x for every x € .

Let O C F be the ring of integers of the field. It is a standard fact that every x € F
can be written as x = § with a € O and b € N,

Lemma 8.8. — There exists T € O such that

(1) F=Q(7).
2) Tt=0(r) > 0.
(3) oj(t) <0 for every j > 2.

Progf. — By standard facts (see [51, Prop. 4.26]), the image of the ring of integers

O under the map (o4, ...,0,) : F — R’ is a lattice. Thus, we can find an element 7 € O
such that (o1(7), ..., 0,(7)) lies in the orthant {x; > 0,x <0, ..., x < 0} of R" and the
entries 0;(7) are pairwise distinct. In particular, T has degree r = deg(F/Q) over Q which
implies I = Q(7). U

Consider the quadratic form of signature (n, 1)
q(x) = x? +--- —|—x§ — rxle.

Let SO(¢)o be the group of orientation preserving isometries of ¢ with coefficients in O
that preserve the hyperboloid

H':={xe R |g(x) = =1, x441 > 0}.

Lemma 8.9. — SO(q)o < SO(q) is discrete and acts cocompactly on H.

Proof. — This comes from the so-called restriction of scalars construction (see [12,
Ex. 5 §2.1]) which requires that the quadratic forms

S

=4+ x — (T,
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are all positive definite for j > 1 while ¢°' has signature (d, 1) (as ensured by Lem-

ma 8.8). 0

We will work with closed oriented hyperbolic d-manifolds that are quotients of H
by torsion free finite index subgroups of SO(¢). Such groups are abundant by Selberg’s
Lemma and Malcev’s Theorem (see [52]). The group SO(¢)p has also much stronger
subgroup separability properties and we will need them later on:

Fact 8.10 (Bergeron—Haglund—Wise [15, Th. 1.4]). — There exists a torsion free finite index
subgroup G < SO(q)o such that every convex-cocompact subgroup of G is separable.

Let us fix such a G < SO(¢)o.
We briefly recall the definition of separability:

Definition 8.11 (Separable). — A subset S C A of a group A is separable if for every g €
A — S there exists a finite index subgroup A" < A such that S C A" and g ¢ A'.

Consider the hyperplane
H:={xeR""|x, =0}
and the codimension 2 plane
V:={reR" |y =x =0}
Let p be the r/k-rotation around V

cos(m/k) —sin(w/k)
po:=| sin(m/k) cos(m/k)
I

Note that p € SO(¢)p. This implies that:
Lemma 8.12. — The subgroup
GNpGp~' NN p2-lGp=@D

has finite index in G and is normalized by p.

Progf. — Recall that every x € F can be written as x = § where a € O, the ring of
integers of I, and b € N. For every 1 <j < 2k, write every entry of p/ as a fraction of an
element in O and an element in N and let D C N be the finite set of the denominators
(note that p~ = p?~ for every 0 <j < 2k). Let § € N be the product of all the elements
in D.

Let I < O be the ideal generated by §°.
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In particular, as O is finitely generated as a Z-module (see [51, Cor. 2.30]), O/1 is
a finite extension of the finite ring Z/§%Z and, hence, it is itself a finite ring,
Consider the congruence subgroup of G

Gy :=ker(G < SO(g)o — SL,41(O/D).

G; has finite index in G. Every matrix A € G; can be written as A =1 + B with every
entry of B of the form 8%u for some u € O. Therefore, the matrix p/Ap~ =1+ p/Bp~
has coefficients in O and preserves ¢. In other words, the conjugation by o/ induces an
injective homomorphism G; — SO(¢)o.

Note that 0/Gsp~ < SO(g)o, being cocompact in SO(g), has finite index in
S0(9)o.

As the intersection G N pGp~' N --- N p?*~1Gp~*=D contains the intersection of
finite index subgroups G; N pG;p ™' N -+ N p*71Gsp~*~ it has finite index in G. [

Recall that separability passes to subgroups, meaning that, if S is separable in A
and B < A, then SN B is separable in B. Hence, up to replacing G with the intersection
given by Lemma 8.12, we can assume that G is normalized by p. From now on we assume
this is the case.

8.2.2. A ping-pong argument. — We now construct a convex-cocompact subgroup
Q < G such that H?/Q contains the desired configuration of hypersurfaces.

Recall that H C H? is the hyperplane {x € R%!|x; = 0}.

Let K denote the isometry group K := G NSO(¢|n) o where we identify SO(¢|n)o
with its natural inclusion in SO(¢) . Observe that K acts cocompactly on H as SO(¢|u)o
act cocompactly on H (by Lemma 8.9) and K is a finite index subgroup of it.

We have:

Proposition 8.13. — There exists a finite set A C K such that for every finite index subgroup of
T < K with T N A =0 we have the following: The group

Q: (Tls---,Tk> <G,
where Tj := p'Tp™ leaves invariant the hyperplane H; := p'H, has the following properties:
) 1t is convex-cocompact.

(1
(2) The projection 7w : H; — H’/Q induces an embedding H;/T; — H/Q,
(3) Forevery 1 <1 <j < kwehave H;/'T; "H;/T; = V/P where P = Staby (V).

Progf. — The idea of the proofis to construct a suitable ping-pong system adapted
to the groups T, ..., T} and hyperplanes Hy, ..., Hy.

The group Q) is a subgroup of G because G is normalized by p and T < G.

Let us consider a very large R > 0 which we will adjust for our needs later on.
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First, we select a finite index subgroup T' < K so that
dgt(V,aV) > R.

for every o € T — P where P = Stabr (V).
We can find such subgroup by using hyperplane separability properties: Let W C V
be a compact fundamental domain for the action of P on V. Consider the finite set

Ag ={y e K—P| du(W, yW) <R}.

By [15, Lem. 1.7] the subgroup P < K 1is separable, thus there exists a finite index
subgroup T < K containing P and such that T N Ag = @. Such subgroup satisfies the
assumption: If we had dy«(V,yV) < R for some y € T — P, then we would have
dg(@W, yBW) < R for some «, B € P and, hence, dge(W, a2~ 'yBW) < R. As a con-
sequence, by our choice of Ag, we would get ™'y € P and, hence, y € P contradicting
the initial assumption.

Consider the two hyperplanes H), H” containing V' that form with H; angles of
7t /2k. The hyperplanes H;, H! divide H’ into four quadrants. Let us consider the union
U; of two opposite closed quadrants containing H;. Notice that, by the angle assumption,
for every i < the intersection U; N'U; is V, H: or H. In particular, the interiors of the
sectors Uy, ..., U, are pairwise disjoint.

We use these sectors as a ping-pong system.

Claim 1. — We have:

(i) If B € P, then B(U;) = U;.
(i) Let R be big enough. If o; € T; — P and i %, then «;(U;) C int(U,).

Proof of the clavm. — 'The first part 1s clear.
For the second part, consider H;, H;, o;H;. We need the following:

Lemma 8.14. — For every i,j, there is a 2-plane 7. C H* that intersects orthogonally
H;, Hj, o;H;.

Proof — We work in the projective model H? C RP”,

With a slight abuse of notation, unless it is not necessary, we will not make a dis-
tinction between a totally geodesic subspace of H? and the corresponding linear subspace
of RP’. Also recall that every linear subspace L. C RP? has a dual L* € RP? which cor-
responds to the orthogonal subspace L with respect to the quadratic form g.

A 2-plane Z C H? is orthogonal to a hyperplane H C H” if and only if Z passes
through the dual point H*.

Let x;, xj, a;x; be the dual points of H;, H;, ojH;. Let

7 := Span{x;, xj, ajx;}
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Uj

F1G. 9. — Ping-pong system

be the linear subspace of RP* they generate. Notice that Z is dual to the intersection
(as linear subspaces) H; N H; N a;H;. The triple intersection of the hyperplanes (as linear
subspaces) avoids the closure of H? as

(H,NnH,NeH) NH = (VNe,V)NH = 0.

In particular, the restriction of the quadratic form ¢ to the triple intersection is positive
definite. As a consequence, the restriction of the quadratic form ¢ on the dual space Z has
signature (2, 1) which implies that Z intersects H? in a totally geodesic H?. Furthermore,
by construction, Z passes through the dual points x;, ;, &jx;, hence, it is orthogonal to the
subspaces H;, H;, a;H;. O

Let Z be the 2-plane provided by Lemma 8.14-.

Consider the intersection points p=7Z NV, ¢:=Z Na;V, see Figure 9.

By the assumption on T, we have that dg«(p, ¢) > dg(V, 2;V) > R.

Consider also the intersections at infinity {§, ¢} := 0Z N do;H;. The angles
Zpg&, Zpg¢ are respectively |j — | /k and w — |j —i|r /k. Consider the triangles A(p, ¢, &)
and A(p, ¢, ¢). By hyperbolic trigonometry, the angles at p are very small: By the hyper-
bolic law of cosines and a small manipulation we have

2
cosh(dg:(p, ¢)) sin(|j — 1] %)
2
- )
~ cosh(R) sin(|j —7|%)

sin(Z£gpé), sin(Lgpg) <

If R is chosen so that the angles Zgpé, Zgp¢ are much smaller that 7 /2%, then ;U
1s contained in U;. O

Using the ping-pong system, we deduce the properties that we need.
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Properties (2) and (3). Let us pick an element y € Q). We can always write it as
Y =q; ---a; where ;, €'l — P and o, € T}, and such that j; # .4, for every £.

Let us observe that by the first claim, we have yH; C U;, for every H; and, fur-
thermore, yH; C int(U;)) if n > 1: In fact, consider first o, H; there are two cases: If
Jn =1, then o; H; = H; and, hence, it is contained in U; = U; . Otherwise, by the Claim,
a; H; C a; U; C U; . The conclusion follows by inductively applying the Claim using the

Jn

fact that j; # jit1:

yH = q; ...a.HZ.

ji
Caj o, U
Caj - ,int(U;_))
C---
Ca; U, Cint(U}).
We can now prove the following

Claim 2. — If yH; N H; # @, then y = aja; with ; € T; and o € T},

Proof of the claim. — We proceed by induction on the length of the shortest repre-
sentative of y of the above form y =« ---«;,. The base case n =1 is clear. If n > 1
then, by the above computation, yH; C int(U;;). As yH; N H; # @, we must have j, =.
Consider y' = Olj?l)/. The element y’ has by construction a shorter representative than

y and satisfies y'H; N H; = _1 (yH; N H;) # @. Therefore, by the inductive hypothesis,
we have y' = Ol/ " with a € T and o; € T;. Finally, we conclude y = (o, ])Ol which
concludes the 1nduct1ve step as o, a; € T 0

Claim 3. — For every j < k, the natural map H;/T; — H?/Q is an embedding.

Proof of the claim. — Suppose that 7 (x) = 7 () for x, y € H;. Then, there exists y €
Q such that y = yx and, in particular, y H; N H; # @. By the previous claim, we deduce
that y € T; and, hence [x] = [y] in H;/'T}. ]

Claim 4. — Yor every 1 <j we have H;/T; " H,/T; = V/P.

Proof of the clavm. — Suppose that 7w (x) = 7 () for x € H;, y € H;. Then, there exists
y € Q such that y = yx and, in particular, yH; N H; # . By the previous claim, we
deduce that y = a;a; with oj € T and o; € T};. In order to coclude we just observe that

o '(yH;NH) = (e H; VH) =H;NH; =V

sothat y€ yH;NH; =,V and x = v~y € a;V. Therefore 7 (x) = 7 (y) € V/P. ]
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This concludes the proof of the properties (2) and (3).

Property (1). By Fact 3.20, it is enough to prove that the orbit of a point p € V
is quasi-convex provided that R is large enough. As the orbit is coarsely dense in H; for
each j < £, it is enough to show that

v€Q, j=<k

1s quasi-convex.

Notice that C has an intrinsic path metric. Two distinct points of C can be con-
nected by either a geodesic segment of HY, if they lic on the same flat piece yH;, or
by a concatenation Kk = kj * ... * k,, C C of geodesic segments of H? which is geodesic
for G and where each «; lies on some translate y;H; and has endpoints on two different
translates of V in y;H;. We show that such intrinsic C-geodesics k are a uniform quasi-
geodesics and, therefore, by stability of quasi-geodesics, they lie at a uniform Hausdorff
distance from the geodesic in H? joining the same endpoints. This suffices to prove that
C is quasi-convex.

In order to prove that k is a uniform quasi-geodesic we need a couple of obser-
vations: First, the length of each «; is at least R as the geodesic segment joins distinct
translates of V. Second, as the concatenation is a geodesic for the intrinsic path metric
of C, the angle between two consecutive segments kj, K41 is at least the angle between
YiH;, vi+1H;,, which is at least 77 /k. The conclusion follows from the following elemen-
tary fact

Fact 8.15. — For every 6 > O there exist R > 0 and ¢ > 0 such that each concatenation
i« C Y of geodesic segments of length at least R forming angles of at least 0 is a c-quasi-geodestc.

This concludes the proof. ]
We are now ready to prove Theorem 1.8.

8.2.3. The proof of Theorem 1.8. — We prove part (a).
Let Q < G be the subgroup provided by Proposition 8.13. By Fact 8.10, Q is
separable in G. A standard argument shows that:

Claim. — There is a finite index subgroup G’ < G containing ) < G’ and such
that the covering projection H?/Q — H?/G’ restricts to an embedding on N; U --- U
N; C H‘I/Qwhere Nj = HJ/TJ

Proof of the clim. — By Proposition 8.13, Q) acts cocompactly on a convex set
CH C H”. The quotient CH/Q embeds in H’/Q and contains H;/T;. Consider the
covering projections 7w : H?/Q — H/G and the restriction of & to CH/Q. Observe that
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7(p) = m(g) for some p, g € C/Q if and only if there exists lifts x, y € F of p, ¢ to some
compact fundamental domain F C CH and an element y € G such that yx =y.

We use separability of Q) to eliminate this configuration in an intermediate finite
covering H'/Q — H’/G' — H’/G: Consider the finite set

A:={y e G-QJyFNF#4}.

By separability of Q) in G, there exists a finite index subgroup G’ < G containing () and
such that G’ N A = @. As G’ contains Q, we have a covering projection 7’ : H*/Q —
H’/G’. By our choice of A and the fact that G’ N A = ¢, the restriction of 7" to CH/Q is

now injective. U

By Proposition 8.13 and the fact that the projection H/Q — H/G/’ restricts to
an embedding on N, U---UN; C C/Q, the abstract completion M of any of the comple-
mentary components of H//G’ — N, U - -- U N, is a compact hyperbolic d-manifold with
totally geodesic boundary and corners, all the corner angles are equal to 7 /£, and, if £ 1s
even, then the graph of the boundary is bipartite.

This finishes the proof. 0J

9. Hyperbolic doubles

In this section we prove Theorems 1.1, 1.2, and 1.5.

We will deduce them from the following special case of the glue-and-bend con-
struction, namely, the double of a compact convex hyperbolic manifold with totally
geodesic boundary bent along some corners.

Theorem 9.1, — Let M be a compact convex hyperbolic be-manyfold with non-empty boundary
of dimension d > 3. Fix a parameter for each wall. Suppose that

(1) AL the corner angles are smaller than 7t /2.

(i) For every corner € with angle 0 and adjacent walls W and W' with parameters v and (',

: it it
denotingv=p = andVv'=p' 7,

! 1
{i= cos(«9)2<i + v_) — sin(G)Q(v/v + —) > 9.
v/ Vv Vv

Set g = max{ﬁ, ‘;—/} and h¢ := 5 + % - 1.
Then the following holds:

(1) N := DM — U obtained from the double DM of M by removing a tubular neighborhood
U of the corners admits a convex projective structure with totally geodesic boundary.
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(2) For each wall W of N there s a developing map of N sending a copy of W onto
CHM2, [e,]) such that the holonomy of v, (W) is the group generated by

. pe i N
( ¢ 12)7 pe ke € |esLam,
e he!
withe =1 if A =1 and O otherwise and where € is the corner W blows up, with holonomy
e <SSO —2,1).
(3) If Ae¢ > 1 then N satisfies the Containment Condition with respect to W and the polar

[ed+1]- -
(4) Every pair of distinct walls of N C S* have disjoint closures (i.e. N has no ghost stratum)

and every point of N outside closures of walls is extremal and C'.

Before proving the main result, let us fix some notations.

9.1. Some notations. — For every 0 € [0, 27r), we will denote by 7, Ry the rotations

. [cos(@) —sin(0) (L
9.1) o 1= <sin(9) cos(6) eSlh,®), Ry:= " €SLy41(R).
For every u > 0, we will also denote by b,,, b, B, the bulging matrices
L0 , L)
(9.2) b, = (6 M) SL®), b, 1= (6 Md) eGL (R),
and
1 1
_Id _Id—l
9.3 B,:=* =" i .
(9.3) " ( Md) ( e bﬂ@ﬂ)ﬂ) €SLay1 (R)

9.2. Projective structures on hyperbolic doubles. — The basic computation behind the
proof of Theorem 9.1 is that of the holonomy of a meridian around each corner, and the
tube-type of the corner. Let us use the notation from Theorem 9.1, and further denote
by M’ the copy of M that we glue to M, and by M and M’ the smooth loci of these
manifolds.

We bulge the gluing DM of M with its double M’ (and hence obtain a projective
structure on DM) using the parameters of Theorem 9.1 for the walls of M, and using
trivial parameters equal to 1 for the walls of M'.

9.2.1. Holonomy of meridians. — Consider a corner € of M with angle 6 and adja-
cent walls W and W’ with bulging parameters ¢ and .
Set v = *V/2 and v/ = p/@*H/2,
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Let U C DM be an open neighborhood of a point of € such that U N M and
U N M are both small hyperbolic balls (hence convex).

Let U C T be the lift of U, which identifies with any lift of U in DM. It is moreover
the gluing of sequences of lifts (V,),ez and (V/),ez of respectively U N M and U N M/,
along lifts (W,),cz and (W/),ez of UNW and U N W/, such that V, N V) =W, and
VNV, =W,,.

Consider a hyperbolic developing chart ¢ of U N M that sends M N € in H 2,
sends UNW’ in CH(H"2, [¢,]), and sends UNM in CHH*!, [es1]). B

This determines a developing map dev for the (bulged) projective structure on U.

An elementary computation shows the following:

Lemma 9.2. — Let y be a mendian around € that starts on U N'W', goes through U N M,
wntersects U N'W, then goes through U N M back to its starting point.

— The SLy1 (R)-holonomy of y 15 p(y) = RQBMRQB;/I.
— The SLy -angle of p(y) (Definition 4.4) is

ay) = Vebufebv_/1~

— The projection of dev(Vo U V() in 8' = SR /R is the properly convex segment
between [e;] and ryb, 7y b;,l [es].

9.2.2. The proof of Theorem 9.1. — The plan is the following.

— We check that the conditions of Theorem 7.18 are satisfied.

— We apply Theorem 7.18 to obtain that DM is convex.

— We check that the conditions of Theorem 7.19 are satisfied, in particular that
DM is properly convex.

— We apply Theorem 7.19 to obtain the totally geodesic blowup N of DM, which
has no ghost stratum and satisfy the Containment Condition at walls blowing
up singularities with hyperbolic SLy-angle.

— We prove that every point of 9N outside closures of walls is extremal and C!
using Theorem 7.21, Corollary 5.15 and Observation 5.16.

Proof of Theorem 9.1. — Let us check that the assumptions of Theorem 7.18 are
verified (this is where we use Lemma 9.2):

Claim 1. — DM is connected.
Proof of the clavm. — This is clear. U

Claim 2. — M is properly convex, with complete walls and corners, and without
ghost strata.
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Proof of the clavm. — This follows from our assumption and Fact 7.14. U

Claim 3. — Every wall of M satisfies the Containment Condition relatively to its
hyperbolic polar.

Proof of the claim. — 'This is given by Fact 7.17. 0

Claim 4. — Each singularity of DM is uniformizable in $* (Proposition 4.7).

Proof of the claim. — Fix a corner € of DM and take notation from Section 9.2.1
and Lemma 9.2.

By Lemma 4.9 and the last point of Lemma 9.2, we only need to check that g(y) =
r9b,7pb7," is non-trivial (this is an elementary computation) and has trace at least 2, which
is exactly the assumption of Theorem 9.1 since this trace is

/ A I
[= cos(9)2<1/ + ”—) — sin(@)z(v’v + f) 0
V V Vv

At this point we can use Theorem 7.18 to say that DM is convex. To be able to use
Theorem 7.19, we need to check that:

Claim 5. — Each singularity of DM is special (Definition 4.10).
and
Claim 6. — DM is properly convex.

Proof of Clavm 5. — 'Take notation from the above proof of (4). We have

(5)%@)) ‘

According to Definition 4.10 (more precisely (4.10)), we must show that (£)* — (£)7+ 1
is positive. We compute:

v 2 V . v 2 .
—) == Jt+1=sin@®)’| =) +1+v*+v*)>0. O
v v/ v/

To prove Claim 6 we will need the following:

Fact 9.3. — Any compact convex hyperbolic be-manifold X = (C C H)/ T of dimension at
least 3 has vrreducible holonomy (no mvariant proper subspace).
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Proof of the fact. — 1t 1s classical that I' is irreducible if and only if the convex hull
in H? of its limit set has non-empty interior (see for instance [19, Prop. 2.5]).

As T acts cocompactly on the closed convex subset C C HY, its limit set is 3C N dHY.
Moreover, the closure of C (in §) is the convex hull of its extremal points. None of these
extremal points is in dC N H? since this set is a union of walls and corner (the corners
have positive dimension since d > 2), so they are all in 9C N dH?, the limit set of I", whose
convex hull is therefore C, which has non-empty interior. U

Proof of Claim 6. — Suppose d > 2, then by Fact 9.3 7r; (M) acts irreducibly on S,
which immediately implies, by standard arguments, that DM, which is 77, (M)-invariant,
1s properly convex (see Definition 3.1). U

At this point we can apply Theorem 7.19.
Finally, Theorem 7.21, Corollary 5.15 and Fact 5.16 ensure that every point of N
outside closures of walls is extremal and C', provided that:

Claim 7. — Every point of dM N 9H? outside the closures of the walls is an ex-
tremal C' point of dM.

Claim 8. — Tor every wall WcC 1\71 every point of W N oH? outside closures of
a corners is an extremal C' point of the boundary of the union of M with any bulged
reflection of M across W.

The proofs of these two points are essentially the same.

Proof of Clavm 7. — Let x € dM N 9H’ be outside the closures of the walls. This
point is extremal for M because it is extremal for HY, which contains M.

Pick p € M. Since M is compact, the fact that x does not lie in the closure of a wall
says that the projection of the ray [p, x) comes back infinitely often in a compact subset
of the interior of M. Therefore there exists 7 > 0 and p, € [p, x) tending to x such that the
ball of H? of radius r around all p, is contained in M. This classically implies that IM is
C' (otherwise there would be a ray [¢, x) C H? outside of M but then by basic hyperbolic
geometry this ray would eventually get arbitrarily close to [p, x)). 0J

Proof of Clazm 8. — Consider a bulged reflection M’ of M across W. One can
stretch H? to obtain a 77 (W)-invariant ellipsoid £ that contains M U M’, and such that
ENST=H""

Let x € BW N dH""! be outside the closures of corners. This point is extremal for
M because it is extremal for £, which contains M UM’
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Pick p € W. Since W is compact, the fact that ¥ does not lie in the closure of a
corner says that the projection of the ray [p, x) comes back infinitely often in a compact
subset of the interior of W. Therefore there exists » > 0 and p, € [p, x) tending to x such
that the ball of £ of radius 7 around all p, is contained in M UM'. This classically implies
that IMU M’ is C'. O

This concludes the proof of Theorem 9.1. 0

Remark 9.4 (The case d = 2). — Note that the proof given above holds also in
dimension d = 2 except in Claim 6. However, the conclusion of the claim still holds (by
an elementary argument).

9.3. The proofs of the main theorems.

Proof of Theorems 1.3 and 1.5. — Fix k = 4. Let M be the convex compact hyper-
bolic d-manifold with totally geodesic boundary and corners with angles 7 /4 provided
by Theorem 1.8, whose graph of the boundary is bipartite. Let us consider a coloring
of the walls of M in yellow and purple such that any two adjacent walls have different
colors.

For j =1, 2, consider v; such that

Loy L -
— W +y7) - —=0+D=2+2—).
ﬁ( i) V2 /
By Theorem 9.1, by giving parameters vj-(dﬂ)/ * and v;(dH)/ ? to yellow and purple

walls, we get a compact convex projective manifold with totally geodesic boundary N;
without corners, with complete walls (Definition 7.10), and without ghost strata (Defini-
tion 7.12). (Note that N, and Ny are homeomorphic.)

LetN; C S? be the universal cover of N;. Then:

— The description stated in Theorem 1.5 of the walls of N [; (the lifts of the walls of
N;) as cones with stabilizer of the form 7, (&) x Z with € C M a corner, is given
in Theorem 9.1.

— Using again Theorem 9.1, every point of dN; which is not in the closure of a
wall is extremal and C'.

Let I'; be the fundamental group of N;.
Let A; be the full orbital limit set of I'; in 9€2;.

— By Theorem 6.3, T; is relatively hyperbolic with respect to the fundamental
groups of the walls of N, i.e. the stabilizers of the walls of N;.

Casej=1.1fj =1, then:
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— Each wall has a polar that satisfies the Containment Condition by Theorem 9.1.

— By Theorem 7.18, the projective structure on N, extends to a convex projective
structure on the double N = DN, which is actually properly convex as d > 3 by
Fact 9.3.

— Let ©; C 8¢ be the universal cover of N, which is divided by I' := 7, (N) since
N is a closed manifold. By Proposition 6.1, I'; acts convex-cocompactly on 2.

— Let us call “wall” the image in N of the walls of N}, and the lifts of these in
2;. By the description of the walls of N 1 and their stabilizers, the walls of €2,
form a I'-invariant collection of properly embedded cones with pairwise disjoint
closures, whose stabilizers have the form 7, (€) x Z where € C M is a corner.

— By Theorem 7.21, Corollary 5.15 and Fact 5.16, every point of 9€2; which is
not in the closure of a wall is extremal and C'.

— By Fact 6.4, I is relatively hyperbolic with respect to the stabilizers of the walls,
i.e. the properly embedded cones. This concludes the proof of Theorem 1.3.

— By convex-cocompactness and [30, Lem. 4.1], A, = 8M1 ~ Ml, so that
CH(A) N A =M.

This finishes the proof of Theorem 1.5.

Case ) = 2. Suppose j = 2. Let us check that Ay = M, 1\7[2.

The inclusion Ay C BMQ ~ 1\712 1s clear, let us prove the other one.

Fix pe Q. Let x € 81\7[2 which is not in the closure of any wall. As shown in the
proof of Theorem 6.3, the image of [p, x) in My comes back infinitely often in a compact
subset of the complement of the walls, in other words there exists x, € [p, x) going to x
and g, € I'y such that g,x, stays in a compact subset of €2y. Consider R > 0 large enough
so that the closed Hilbert ball B, := Br(g,x,) contains p for every n. Since x is extremal,

g 'B, = Br(x,) converge to x (see for instance [17, Fact 2.1.10]). In particular, x € I'y - p.
As points in the relative boundary of walls can be approached by points outside
closed walls, 9M5 ~. M5 is contained in F_gp, and hence in the full orbital limit set. [

Theorem 1.1 is a particular case of Theorem 1.3.
We prove Theorem 1.2.

Proof of Theorem 1.7. — Take € from Fact 2.1. Consider @, b;, ¢;, 1 =1,...,n,asin
Theorem 1.7, i.e. such that 1 < a; < ¢/?, b; > 3and 1 <¢; < —2+ b?/2.

Set £; := 2In(a;) < €, and consider the hyperbolic metric on M with totally
geodesic and corners, such that the corners are the o;’s, with length ¢; and angle 6; < 7 /4.

The fact that ¢; < —2 + b7/2 and ; < 7 /4 guarantees that

¢+ 0;1 < é(bf + bfg) — 1 < cos? 91-(bl-2 + bfg) — 2sin*6;,
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and, hence, that

cos? 0;(b7 + b)) — (i + ¢ )
< — .
sin” 6;
Thus there exists a unique ¢; > 1 such that

cos? Gi(b? + bl»_Q) — (¢ + ci_l)

d’+d7 < ( ,
to sin®
and
L == cos® Gi(bf + bl-_Q) — sin’ Oi(a’f + di_Q) =+ ci_l > 2.
Set Wi i = A/ b;d; and ,bL; = «/dl‘/b,'.
Note that p;/u’ = b; and u;i: = d; and ¢; = ;/2 + \/tf/4 — 1.
We get the desired projective structure on DM \ U by applying the bulging proce-
dure from Theorem 9.1 with parameters p,; and w! (recall that d = 3). O

9.4. Commensurability. — Lastly, we show that our construction is flexible enough to
produce an abundance of examples of inequivalent non-symmetric non-strictly divisible
convex domains.

To begin with let us recall the definition of commensurability.

Definition 9.5 (Commensurable). — Two groups G, G' are commensurable if they contain
isomorphic finite index subgroups H < G, H < G'.

We prove

Theorem 9.6. — Suppose d > 5. Let @ = 1w /n, 0" = 7w /0’ be such that the number fields F =
Q(cos(0),sin()), F' = Q(cos(0"), sin(8")) are different. Let t € ¥, ' € ¥ be elements satisfying
the assumptions of Lemma 8.8. Let I', T"" < PSLy;y (R) be the groups as in Theorem 1.5 dividing
the properly convex sets 2, ' C RP? which are relatively hyperbolic with respect to the collections of
subgroups {®; x L}y, {@} X L}jcy with ©;, @}ﬁnite index subgroups of SO(q) 0, SO(¢) o where
g=x+---+ X;Zz—z —v’andqd =x +- -+ xf,_g — 'y, Then T, T are not commensurable.

Proof. — Suppose that I', T are commensurable. This means that there exists a
group G that embeds in both I', I'" as a subgroup of finite index. Let us say G < I" and
t: G — I is an embedding.

As I', ' are relatively hyperbolic with respect to the collections of subgroups {®; x
Z}, {@j’- x Z};cy it follows that G is relatively hyperbolic with respect to {S; , := a(®; x
Z)a'N G}jej,wer and also with respect to {S},a = (ot(@J’- X Z)a*l)}jej/,aeru Notice that
each S;,, L(S]/-’a) is a finite index subgroup of a(®; x Z)ar™', a(@} x Z)ya .
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By work of Islam and Zimmer [37, Th. 1.6], we have the following: Let L , be the
(full orbital) limit set of the group S}, in 2. Then:

- L’ C 092 1s closed and CH(L’ BN L/ is a convex subset of 2

- The group S}, acts Cocompactly on C?—[(L/ i) NI, C Q.

— There 1s an equlvarlant homeomorphism between the Bowditch boundary of
(G, {S})a}jejf,aer/) and the space obtained from 92 by collapsing each Lj/-ﬂ to a
point. In particular, the sets L , C 9€2 are pairwise disjoint.

— If [a, b] C 0K2 1s a non-trivial line segment, then [a, b] C Lj/-ﬂ for some j € J' and
ael.

Consider one of the properly embedded cones CH(H, p) N € C on which acts
cocompactly S; s = B(0; x Z) ' NG for some £ € J and B € T'; let L; 4 be the full orbital
limit set of S; g, i.e. the relative boundary of the cone.

Yor every ¢ € 9H the line segment [¢, p] C 92 is contained in some L} ,. As all
segments intersect in p we conclude that they are all contained in the same L; ,. Therefore
L sCL, and CH(H, p) C C?—[( o)

Note that S; g preserves L . Indeed if Y €Sipthen i\, =
hence intersects Lj and hence i 1s equal to it.

Since S’ is a finite index subgroup of StabG(L’ ), this means that S; g N S’ s a
finite index subgroup of S; o. In particular its Cohomologlcal dimension is the same as that

=yL;, contains L; 4

of S; g, which is  — 1, which is also the cohomological dimension of S! ,. By a standard
argument (see [59]), thls implies that S; g NS}, is also a finite index subgroup of §,.

In particular, ®; x Z and ©; x Z are Commensurable as they contain the isomor-
phic finite index subgroups S; s N S! , and ¢(S; s NS/ ).

Let K be a group such that every finite index subgroup of K has trivial center.
For example, all ©;, ©' have such property. Consider a finite index subgroup S < K x Z.
Then the center of S is Z(S) = SN ({1} x Z) and we have

S/Z(S)=S/(SN ({1} xZ)) ~7(S) <K

where 7 : K x Z — K is the projection onto the first factor.

Let us prove this claim: Consider 7 (S) < K. It is a finite index subgroup and,
hence, it has trivial center by assumption. If (¢, #) € S is in the center of S, then « is in
the center of 7 (S) which is trivial. Vice versa it is immediate to see that {1} X Z is in the
center of K x Z.

We apply this fact to S:=S; s NS}, < ©; x Z and ((S) < O} x Z: Let 7;, 1; be the
projections of ©; X Z, ©' x Z onto the first factors. We have

7(S) = S/Z(S) = 7;(1(8)).

Thus ©; is commensurable with ©; as they contain the isomorphic finite index
subgroups m;(S) and ;(¢(S)).
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In order to conclude we will use a commensurability invariant of hyperbolic man-
ifolds, namely the invariant trace field:

Defination 9.7 (Trace Field). — Let T < SOy(d — 2, 1) be a lattice. The invariant trace
field of T s

kI) == Q({tr(Ad(y))| ¥ €T})

where Ad : SOy(d — 2, 1) = so(d — 2, 1) s the adjoint representation.

By Mostow Rigidity (see [73, Ch. 15]), if d > 5, the invariant trace field k(I") s an invariant
of the abstract group T" and does not depend on the particular embedding I' < SOy(d — 2, 1) as a
lattice (which 1s unique up to conjugation).

Vinberg [69] shows that the trace field £(I") 1s an invariant of the commensurability
class of T":

Fact 9.8 (Vinberg [69]). — Let © < SOy (d — 2, 1) be a lattice. If © < © s a finite index
subgroup, then k(®y) = k(®).

The computation of the trace field in our case is not difficult:

Fact 9.9 (Prasad—Rapinchuck [54, Lem. 2.6]). — Let ¥ be a number field with ring of integers
O. Let

g=al+ -+, — 0

be a quadratic form where T € O satisfies the assumptions of Lemma 8.8. Then
k(SO(9)0) =F.

Since @j’-, ®; are commensurable we must have k(@f{) = k(®;). However, @J’«, ®; are
finite index subgroups of SO(¢)o, SO(¢) o respectively where ¢ =x; + -+ + x5_, — T)”
and ¢ =x, +---+x;_, — vy and O, O’ are the ring of integers of F, F'. By the above
results, we get k(@}) =TI and £(®,;) =F. As I # IV, this provides a contradiction and
finishes the proof. U
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