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ABSTRACT

Poincaré’s work more than one century ago, or Laskar’s numerical simulations from the 1990’s on, have irrevo-
cably impaired the long-held belief that the Solar System should be stable. But mathematical mechanisms explaining this
instability have remained mysterious. In 1968, Arnold conjectured the existence of “Arnold diffusion” in celestial mechan-
ics. We prove Arnold’s conjecture in the planetary spatial 4-body problem as well as in the corresponding hierarchical
problem (where the bodies are increasingly separated), and show that this diffusion leads, on a long time interval, to some
large-scale instability. Along the diffusive orbits, the mutual inclination of the two inner planets is close to π/2, which hints
at why even marginal stability in planetary systems may exist only when inner planets are not inclined. More precisely,
consider the normalised angular momentum of the second planet, obtained by rescaling the angular momentum by the
square root of its semimajor axis and by an adequate mass factor (its direction and norm give the plane of revolution and
the eccentricity of the second planet). It is a vector of the unit 3-ball. We show that any finite sequence in this ball may be
realised, up to an arbitrary precision, as a sequence of values of the normalised angular momentum in the 4-body problem.
For example, the second planet may flip from prograde nearly horizontal revolutions to retrograde ones. As a consequence
of the proof, the non-recurrent set of any finite-order secular normal form accumulates on circular motions – a weak form
of a celebrated conjecture of Herman.
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1. Introduction

1.1. A case for instability in the solar system. — Hook’s and Newton’s discovery of uni-
versal attraction in the XVII century masterly reconciles two seemingly contradictory phys-
ical principles: the principle of inertia, put forward by Galileo and Descartes in terrestrial
mechanics, and the laws of Kepler, governing the elliptical motion of planets around
the Sun [1, 61, 86]. The unforeseen mathematical consequence of Hook’s and New-
ton’s discovery was to question the belief that the solar system be stable: it was no longer
obvious that planets kept moving immutably, without collisions or ejections, because of
their mutual (“universal”) attraction. Newton himself, in an additional and staggering
tour de force, estimated the first order effect on Mars of the attraction of other planets.

© The Author(s) 2024
https://doi.org/10.1007/s10240-024-00151-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s10240-024-00151-z&domain=pdf


2 ANDREW CLARKE, JACQUES FEJOZ, MARCEL GUARDIA

But infinitesimal calculus was in its infancy and the necessary mathematical apparatus to
understand the long-term influence of mutual attractions did not exist.

In their study of Jupiter’s and Saturn’s motions, Lagrange, Laplace, Poisson and
others laid the foundations of the Hamiltonian theory of the variation of constants. They
managed to compute the secular dynamics, i.e. the slow deformations of Keplerian el-
lipses, at the first order with respect to the masses, eccentricities and inclinations of the
planets. This level of approximation is still integrable, and Keplerian ellipses have slow
but non-vanishing precession and rotation frequencies, thus departing from the dynami-
cal degeneracy described by Bertrand’s theorem. Besides, the analysis of the spectrum of
the linearised vector field entailed a resounding stability theorem for the solar system: the
observed variations of action variables in the motion of Jupiter and Saturn come from
resonant terms of large amplitude and long period, but with zero average ([66, p. 164],
[68]). Yet it is a mistake, which Laplace made, to infer the topological stability of the
non-truncated planetary system.

In the XVIII and XIX centuries, mathematicians spent an inordinate amount of en-
ergy trying to prove the stability of the Solar system... until Poincaré discovered a remark-
able set of arguments strongly speaking against stability: generic divergence of perturba-
tion series, non-integrability of the 3-body problem, and entanglement of the stable and
unstable manifolds of the Lagrange relative equilibrium in the restricted 3-body prob-
lem [89].

In the mid XX century, Siegel and Kolmogorov still proved that, respectively for
the linearisation problem of a one-dimensional complex map and for the perturbation
of an invariant torus of fixed frequency in a Hamiltonian system, perturbation series
do converge, albeit non-uniformly, under some arithmetic assumption of Diophantine
type, ensuring that the frequencies of the motion are far from low order resonances, in
a quantitative way. The obtained solutions are quasiperiodic and densely fill Lagrangian
invariant tori. They form a large set in the measure theoretic sense, but a small set from
the topological viewpoint. Besides, starting from dimension 6, invariant tori do not sepa-
rate energy levels and thus do not confine neighboring motions, so, outside invariant tori,
nothing prevents action variables from drifting. Kolmogorov’s theorem was successfully
adapted to the planetary system, despite the numerous degeneracies of the latter, and
assuming that the masses of the planets are very small [3, 23, 38, 90]. This result is some-
times referred to as Arnold-Herman’s invariant tori Theorem. The obtained solutions
are small perturbations of (Diophantine) Laplace-Lagrange motions.

Soon afterward, Arnold imagined an example of dynamical instability in a near-
integrable Hamiltonian system with many degrees of freedom, where action variables
may drift (for some well-chosen orbits), by an amount uniform with respect to the small-
ness of the perturbation [4]. Of course, the drifting time tends to infinity as the size of the
perturbation tends to 0, consistently with the continuity of the time-t map of the flow with
respect to parameters. Drifting orbits shadow the stable and unstable manifolds of a chain
of hyperbolic invariant tori (“transition chain”). This phenomenon has been called Arnold
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diffusion, since Chirikov coined the phrase, referring to the (in part conjectural) stochastic
properties of such a dynamics [24]. In fact, in this seminal paper, Arnold conjectured the
following.

Conjecture 1 (Arnold [4]). — The mechanism of transition chains [...] is also applicable to the

case of general Hamiltonian systems (for example, to the problem of three bodies).

Arnold’s example has proved difficult to generalise because of the so-called large gap

problem: usually the transition chain is a (totally disconnected) Cantor set of hyperbolic tori
and it is not obvious whether there exist orbits shadowing these tori. A better strategy has
emerged, consisting in shadowing normally hyperbolic cylinders (whether they contain
invariant tori or not). Nearly integrable Hamiltonian systems are usually1 classified as a

priori unstable and a priori stable [21]. A priori unstable models are those whose integrable
approximation presents some hyperbolicity (the paradigmatic example being a pendulum
weakly coupled with several rotators). In this case, the unperturbed model has a normally
hyperbolic invariant manifold with attached invariant manifolds that one can use, for the
perturbed model, as a “highway” for diffusing orbits. The existence of Arnold diffusion
generically in these models is nowadays rather well understood, at least for two and a half
degrees of freedom (see [7, 19, 28, 31, 52, 78, 92], or [34, 53, 93] for results in higher
dimension).

A priori stable systems are those whose integrable approximation is foliated by
quasiperiodic invariant Lagrangian tori. Since the unperturbed Hamiltonian does not
possess hyperbolic invariant objects, in order to construct the diffusing “highway” one
has to rely on a first perturbation and face involved singular perturbation problems. One
of the difficulties is that one cannot avoid double resonances, where the system is intrinsi-
cally non-integrable. Arnold’s conjecture refers to these models. The work of Mather on
minimizing measures has been deeply influential. In the finite smoothness category, the
papers [8, 18, 64] show the typicality (in the cusped residual sense as defined by J. Mather)
of Arnold diffusion in a priori stable Hamiltonian systems of 3 degrees of freedom. Yet,
many questions remain unsolved. In particular, the original Arnold conjecture on the
typicality of Arnold diffusion for analytic non degenerate nearly integrable Hamiltonian
systems of 3 or more degrees of freedom remains open (see however [47, 48]).

In the 1990s, with extensive numerical computations Laskar showed that over the
physical life span of the Sun, or even over a few hundred million years, collisions and
ejections of inner planets occur with some probability [67, 70].2 Our solar system is now

1 One can also consider the so called a priori chaotic case, where the unperturbed Hamiltonian presents “local non-
integrability”. In particular, it has a first integral and a periodic orbit with transverse homoclinics at each energy level.
Examples of such settings are certain geodesic flows with a time dependent potential, see [10, 25, 29, 30, 50, 51].

2 Such long term computations are checked to pass various consistency tests (e.g. the preservation of first integrals).
But due to the exponential divergence of solutions, they are statistical in nature: an uncertainty of a few centimeters on the
initial position of the Earth leads to an uncertainty of the size of the Solar System after a few hundred millions years. But
one likes to believe that such Hamiltonian systems have good shadowing properties, i.e. that any finite-time pseudo-orbit
(as computed numerically) is shadowed by orbits.
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believed only marginally stable. This has been corroborated by abundant numerical evi-
dence, as overviewed in Morbidelli’s book [83]. In particular, the effect of mean motion
(Keplerian) resonances in the asteroid belt has been described by [73]. Numerical evi-
dence has also been suggesting that secular resonances are a major source of chaos in
the Solar system [49, 69, 71]. For example, astronomers have established that Mercury’s
eccentricity is chaotic and can increase so much that collisions with Venus or the Sun
become possible, as a result from an intricate network of secular resonances [12]. On
the other hand, that Uranus’s obliquity (97o) is essentially stable, is explained, to a large
extent, by the absence of any low-order secular resonance [11, 71]. The effects of secular
resonances of the inner planets have later been studied systematically using both com-
puter algebra and numerics and the main “sources of chaos” in the inner solar system
have been identified [6, 80].

The mathematical theory of instability remains in its infancy and the Astronomers’
instability mechanisms are still mysterious. A matter of discontent with Arnold diffu-
sion is that the time needed for actions to drift looks larger than in other, far from inte-
grable, instability mechanisms that astronomers observe. Resonance overlapping, a phe-
nomenon described by Chirikov [24], would be a fantastic competing mechanism. But to
our knowledge it lacks mathematical explanation (see however a simple example in [42]).

Regarding “the oldest problem in dynamical systems”, in his ICM lecture [59]
Herman formulated the following two precise conjectures. Consider the N-body problem
in space, with N ≥ 3. Assume that the center of mass is fixed at the origin and that on the
energy surface of level e we C∞-reparametrise the flow by a C∞ function ϕe such that the
collisions now occur only in infinite time (ϕe > 0 is a Cω function outside collisions).3

Conjecture 2 (Global instability). — Is for every e the non-wandering set of the Hamiltonian flow

of He on H−1
e (0) nowhere dense in H−1

e (0)?

This would imply that bounded orbits are nowhere dense and no topological sta-
bility occurs.4 The conjecture is wide open, and we are still at the stage of looking for
non-recurrent orbits having negative energy (due to the Lagrange-Jacobi identity, non-
wandering orbits have negative energy) [40].

Herman further argues that What seems not an unreasonable question to ask (and possibly

prove in a finite time with a lot of technical details) is that:

Conjecture 3 (Planetary instability). — If one of the masses is fixed (m0 = 1) and the other

masses mj = ρm̃j , 1 ≤ j ≤ n − 1, m̃j > 0, ρ > 0, then in any neighbourhod of fixed different circular

orbits around m0 moving in the same direction in a plane, when ρ is small, there are wandering domains.

3 Here indeed it is natural to count the non-wandering set without collision orbits, since positions do not necessarily
go to infinity at collisions. Herman furthermore claims that this reparametrised flow is complete. This is not clear due to
the potential presence of non-collision singularities. But conjecture 2 remains relevant with a possibly incomplete flow.

4 This incidentally contradicts a conjecture of Poincaré, that periodic orbits are dense [89, End of Section 36].
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This conjecture is also wide open. Observed unstable motions in Celestial Mechan-
ics in the last decades has typically fallen into one of two categories: chaotic dynamics and
the previously mentioned Arnold diffusion which, even if related, are different in nature,
and each can occur independently of the other.

By chaotic motions we mean the existence of invariant sets with symbolic dynamics
(i.e. dynamics (semi-)conjugated to the shift map). Such sets can exist even if the orbital
elements are almost constant, and therefore even if Arnold diffusion is not present. Such
dynamics imply positive topological entropy and can be used to establish the existence
of oscillatory motions5 as conjectured by Chazy [17], see [2, 35, 54–57, 75, 76, 84, 91].
Other regions of phase space where chaotic motions haven been proven to exist are close
to triple collisions [77, 79], close to Poincaré’s periodic orbits of second species [9], close
to the Euler-Lagrange points [13], on the submanifold of zero angular momentum of the
3-body problem [81, 82], and so on. It is part of the richness of the N-body problem to
include such diverse kinds of behavior. Note that none of these results apply to models of
solar systems, where all the bodies revolve (approximately) on well-separated ellipses. In
fact, there are no results on Smale horseshoes in such regimes even in reduced models
such as the Restricted Planar Circular 3-Body Problem.6

Indeed, scarce mathematical mechanisms regarding instabilities of any kind have
been described regarding more astronomical regimes, which would be plausible for sub-
systems of solar or extra-solar systems. Within the domain of negative energy, of special
astronomical relevance is the planetary problem, where planets with small masses revolve
around the Sun.7 Another well-known problem is the hierarchical problem, an extension
to N-bodies of the so-called Hill problem or lunar problem, where one body (the Sun)
revolves far away around the other two (the Earth and the Moon).8 These problems are
rendered difficult by the proximity to a degenerate (“super-integrable”) integrable system
of two uncoupled Kepler problems. As mentioned above, the recurrent set has positive
Lebesgue measure due to Arnold-Herman’s invariant tori theorem, while the existence
of unstable orbits relies on Arnold diffusion.

Even if Arnold in his seminal paper conjectured that his Arnold diffusion mech-
anism via transition chains should be present in the 3 body problem, even nowadays
the results in this direction are rather scarce and, up to the present paper, nonexistent
in planetary regimes. Indeed, as far as the authors know, the only complete analytical proof

5 Oscillatory motions are those such that the superior limit of the distances between bodies is unbounded while
the inferior limit is bounded. This terminology typically refers to the motion of a comet in a Sun-Planet-Comet model,
where the comet makes long excursions far away from the other two bodies. Such regime is radically different to planetary
regimes where all bodies make approximate ellipses. The most complete result up to now is [57], where such motions are
proven to exist in the 3-Body Problem for almost any value of the masses. Note that the orbital elements along such orbits
remain almost constant for all time, and so there is no Arnold diffusion.

6 The paper [41] proves the existence of Smale horsehoes for the secular 3-body problem. This certainly does not
lead to chaotic dynamics for the full 3-body problem since one model only approximates well tbe other over certain long
time scales.

7 Jupiter, the largest planet of the solar system, weighs roughly 1/1000 the mass of the Sun.
8 The lunar distance is roughly 1/400 the distance from Earth to Sun.
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of Arnold diffusion in Celestial Mechanics, prior to the present work, is contained in an
article by Delshams, Kaloshin, de la Rosa and Seara [35]. In this paper, the authors con-
sider the Restricted Planar Elliptic 3 Body Problem and construct orbits with large drift
in angular momentum, assuming the mass ratio and the eccentricities of the primaries
are sufficiently small. A key point of this paper is that the body of zero mass is close to the
so called parabolic motions. That is, it relies on the invariant manifolds of infinity which
are already present in the two body problem. They then perform a delicate perturbative
analysis of the model.

Some works have uncovered instability mechanisms in celestial mechanics related
to Arnold diffusion, relying on computer assisted computations (see [16, 43] and also [14]
which relies on computer assisted proofs) or conditionally to a plausible transversality
hypothesis [95].

Regarding Conjecture 3, the construction of wandering domains using Arnold
diffusion-like mechanisms is a difficult problem. As far as we know, the only positive result
in this direction is in [72], where wandering domains for Gevrey nearly integrable sym-
plectic maps are constructed. The methods used in that paper to construct such domains
do not admit an immediate extension to the analytic category.

The present work

– proves Arnold’s Conjecture 1 in the planetary spatial 4-body problem (see The-
orem 4 below)

– and proves a weak local version of Herman’s Conjecture 3, dealing with non-
recurrent orbits instead of wandering orbits (Theorem 6), for the corresponding
secular dynamics.

1.2. Main results. — Consider the 4-body problem, that is 4 bodies numbered from
0 to 3 moving in 3-dimensional space according to the Newtonian gravitational law,

ẍj =
∑

0≤i≤3
i �=j

mi

xi − xj

‖xi − xj‖3
,

where xj ∈ R3 is the position and mj > 0 is the mass of body j for j = 0,1,2,3.
For the sake of simplicity, let us first focus on the “hierarchical regime” where

body 2 revolves around and far away from bodies 0 and 1, while body 3 revolves around
and even farther away from bodies 0, 1 and 2. Each body thus primarily undergoes the
attraction of one other body: bodies 0 and 1 are close to being isolated, body 2 primarily
undergoes the attraction of a fictitious body located at the center of mass of 0 and 1, and
body 3 primarily undergoes the attraction of a fictitious body located at the center of mass
of 0, 1 and 2. We think of body 0 as the Sun and of the three other bodies as planets. The
Jacobi coordinates are well suited for this regime (Figure 2), but we defer their definition
to a later stage. Assuming that the center of mass is fixed, the small displacements of the
Sun may be recovered from the positions of the planets.
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The fast dynamics consists in those planets moving along Keplerian ellipses ac-
cording to the above approximation, with elliptical elements as first integrals, in addition
to the total energy and the total angular momentum C = C1 +C2 +C3, where Ci is the
angular momentum of planet i. Let a1, a2 and a3 be the semimajor axes. In our regime,

a1 � a2 � a3

(we will later make a more specific hypothesis on how the ratios ai/ai+1 of semimajor
axes compare to each other). Let also e1, e2 and e3 be the eccentricities. The angular
momentum Ci , seen as a vector in space, is normal to the plane of ellipse i and its length
is
√

ai(1− e2
i ), up to a mass factor (see (1) below). Let θij be the mutual inclinations, i.e.

the oriented angle αCi×Cj
(Ci,Cj) between the angular momenta of planets i and j, the

orientation being defined by the normal vector Ci ×Cj (here assumed non-zero).
The so-called secular dynamics describes the slow evolution of the three Keplerian

ellipses. At the first order of approximation, it is governed by the vector field obtained
by averaging out the mean anomalies, thus defining a dynamical system on the “secu-
lar space” of triples of Keplerian ellipses with fixed semimajor axes. In the hierarchical
regime, the dominating term is what is usually called the “quadrupolar” Hamiltonian
F12

quad of the two inner planets. It was introduced in various particular cases by Lidov and
then Kozai [65, 74, 97] (it had been previously analysed by H. von Zeipel [94], see also
the survey [62]). It may come as a surprise that F12

quad is integrable (defined in (26) in
Section 3), as noticed by Harrington [58], due to the fact that it does not depend on the
argument of the outer pericenter g2. This dynamics was later studied more globally in the
secular space by Lidov, Kozai and others (see a review in [85]).

Our analysis follows from a higher order, non-integrable approximation of the
system (it will rely also on the quadrupolar Hamiltonian of planets 2 and 3, and the oc-
tupolar term of planets 1 and 2, as introduced later). Precisely understanding the various
time scales within the secular dynamics will be key to our analysis. At this stage, let us
only loosely describe the different roles played by the three planets:

– Since the semimajor axis a3 is so large, it is planet 3 which most contributes
to the total angular momentum C, so planet 3 cannot change substantially in
eccentricity or inclination. Yet, planet 3 is a source of angular momentum for
the two inner planets, and a minor change of C3 results in major changes of the
elliptical elements of planets 1 or 2.

– The elliptical elements of the first (inner) planet vary faster than the elements of
the second one. So the approximate conservation of F12

quad introduces a coupling
between the eccentricity and the inclination of the first planet. It can drive an
initially near-circular orbit to arbitrarily high eccentricity, and flip an initially
moderately inclined orbit between a prograde and a retrograde motion. This is
an integrable, quasiperiodic dynamics, reportedly discovered by Lidov and thus
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called the Kozai mechanism.9 After reduction by the symmetry of rotations, the
existence of an elliptic secular fixed point, which is the continuation (for non-
zero eccentricities and inclinations) of the singularity known to Lagrange and
Laplace, explains the oscillation of the argument of the inner pericenter.10

For our part, we will instead localise in a region where the two inner plan-
ets are mutually highly inclined, i.e. θ12 is close to π/2. In this region, there is
a hyperbolic secular singularity, which was used for instance by Jefferys-Moser
to prove the existence of normally hyperbolic invariant tori [63]. This singu-
larity, when lifted to the full phase space, yields a normally hyperbolic cylinder
which will be crucial to our construction. In particular we will show that its
codimension-1 stable and unstable invariant manifolds split, and we will need to
control the splitting of the underlying foliations more or less carefully depending
on directions. The motions of interest to us will occasionally shadow the stable
and unstable foliations of the cylinder, thus moving away from the cynlinder
itself, to a homoclinic channel and then back close to the cylinder (along a so-
called homoclinic excursion). So θ12 will vary substantially but with no drift. On
the other hand, it is planet 1 which most contributes to the secular Hamilto-
nian, so, because of the near conservation of the latter, the eccentricity e1 will be
bounded within a small interval.

– In contrast, no first integral prevents the eccentricity e2 or the mutual inclination
θ23 to vary, even dramatically. It is the goal of this article to prove that these two
quantities do vary arbitrarily, since any finite sequence of points in the (e2, θ12)-
cylinder is shadowed by the projection of some solutions of the 4-body problem.

The following theorem is a more precise statement of some of these assertions, in
terms of the normalised angular momentum vector

(1) C̃2 =
√

m0 + m1 + m2

m2(m0 + m1)
√

a2
C2

of planet 2, which lies in the unit Euclidean ball B3 since |C̃2| =
√

1− e2
2 and e2 ∈ (0,1)).

An even more precise statement will be given in Section 2. Fix 0 < η� 1 and choose
masses in the set

(2) Mη =
{

(m0,m1,m2,m3) ∈ (0,+∞)4, m0 + m1 + m2 + m3 = 1,
|m0 − m1| ≥ η, |m0 + m1 �= m2| ≥ η

}

;

9 We will call it the Lidov-Kozai effect, as suggested by A. Neishtadt and [85].
10 The Lidov-Kozai mechanism has had useful many applications to a variety of systems from planetary and stellar

scales to supermassive black holes. The orbits’ eccentricity can reach extreme values, leading to a nearly radial motion,
which can further evolve into short orbit periods and merging binaries. Furthermore, the orbits’ mutual inclinations may
change dramatically from pure prograde to pure retrograde, leading to misalignment and a wide range of inclinations.
These dynamics are accessible from a large part of the triple-body parameter space and can be applied to a diverse range
of astrophysical settings and used to gain insights into many puzzles [85]. But since it is an integrable behavior, it cannot
bring light to Herman’s conjectures.
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the sum of masses is fixed in order to avoid non-compactness issues, which are artificial
due to the invariance of the dynamics with respect to a change of mass units; and the two
inequalities are meant to avoid some degeneracies in the secular dynamics. (Note that in
the planetary regime these degeneracies do not exist.)

Theorem 4 (Main result). — Fix η > 0. Consider (m0,m1,m2,m3) ∈Mη and any finite

sequence of points in B3. For every 0< δ� 1, there exists an orbit whose normalised angular momentum

C̃2 passes successively δ-close to each point of the prescribed itinerary.

The statement calls for a few comments:

(1) The orbits of interest will be found first in the hierarchical regime a1 � a2 � a3,
with fixed masses such that

m0 �= m1 and m0 + m1 �= m2.

(2) Now consider the planetary regime, where m0 = 1 and mi = ρm̃i (i = 1,2,3), with
ρ → 0. A more precise statement of the Theorem 4 in Section 2 will show
that the semimajor axes may be chosen independently from 0 ≤ ρ ≤ 1, i.e. the
conclusion holds in the planetary problem.

(3) Let us be more specific on the orbit of the conclusion. Let C̃0
2, . . . , C̃

N
2 ∈ B3 be

the prescribed itinerary. These points determine values

– ek
2 of the eccentricity

– θ k
23 of the inclination between planets 2 and 3 (the inclination of planet

3 being nearly fixed)
– and hk

2 of the longitude of the node of planet 2.

The proof will show that there exist times t0 < t1 < · · ·< tN such that the oscu-
lating orbital elements satisfy, as stated,

(3)

⎧

⎪

⎨

⎪

⎩

|e2(tk)− ek
2| ≤ δ

|θ23(tk)− θ k
23| ≤ δ

|h2(tk)− hk
2| ≤ δ (k = 0, . . . ,N).

Moreover, the orbit can be chosen so that

(4)

{

|e1(tk)| ≤ δ
|θ12(tk)− θ k

12| ≤ δ (k = 0, . . . ,N),

where θ k
12 ∈ (0,π) is determined by the relation

(5)
(

1− (e0
2

)2)3/2
cos θ k

12 =
(

1− (ek
2

)2)3/2
cos θ 0

12
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whereas

(6)

{

|e3(t)− e0
3| ≤ δ

|aj(t)− a0
j | ≤ δ for (j = 1,2,3, t ∈ [0, tN]).

Note that we can choose any initial condition e0
3 ∈ (0,1) and e3 remains almost

constant along the trajectories we consider.
(4) We also obtain estimates for the drifting time T = tN. In the hierarchical regime

where the fixed masses belong to Mη, we have

(7) T = C(m0,m1,m2,m3)
N
δκ

where C is a constant depending only on the masses, for some exponent κ
which does not depend on N or the itinerary. To be more precise, call αi =
ai/ai+1, i = 1,2, the semimajor axis ratios. As δ tends to zero, the αi ’s will be
chosen polynomially smaller, and the drifting time itself depends polynomially
on the αi ’s.

In the planetary regime where mj = ρ m̃j with ρ small, the drifting time
satisfies

(8) T = C(m0, m̃1, m̃2, m̃3)
N
δκρ2

for some exponent κ which does not depend on N or the itinerary.
(5) One may consider the setting in the present paper as a mix between a priori

stable and a priori unstable. Indeed, this is a model with multiple time scales
and degeneracies. This implies that some directions can be treated as a priori
unstable, when one has to face a regular perturbation problem. This are the
so-called secular variables. Other directions, which encapsulate the Keplerian
mean motions, are much faster. In the present paper we manage to obtain drift-
ing orbits along the a priori unstable directions, that is in the secular actions
(angular momenta and inclinations), with a sufficiently robust mechanism, so
that fast directions do not interfere with the slow ones. Drift in the actions con-
jugated to the mean anomalies, that is the semimajor axis, would require a
deeper analysis since would fall into an a priori stable regime. In particular, the
drift in actions obtained in Theorem 4 requires time scales which are polyno-
mial in the perturbative parameter. On the contrary, drift of the semimajor axis
must take an exponentially long time since Nekhoroshev Theory applies along
these directions (see [87]).

(6) Note that the trajectories that we construct are only of finite length. This is
a consequence of the shadowing techniques that we employ (see [26]). It may
be possible to extend this argument to allow the shadowing of infinite pseudo-
orbits, by using the method of cone conditions (see [14, 15]).
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Here are some noteworthy consequences.

(1) Why are inner planets not inclined? If the two inner planets have their mutual
inclination close to π/2, Theorem 4 proves that the next planet might be sub-
ject to large instabilities. In reality, where semimajor axes are fixed, there is a
competition between the semimajor axes ratios and e2, which we do not con-
trol here. We conjecture that this mechanism leads e2 to become so large that
planets 1 and 2 may collide.

In the solar System, indeed most planets have relatively small mutual
inclinations. On the other hand, the two largest dwarf planets Pluto and Eris
are trans-Neptunian (i.e. they play the role of our third planet) and have large
inclinations to the ecliptic (17◦ and 44◦ respectively).

(2) Orbits described by Theorem 4 may flip from prograde to retrograde.
In the Solar System, the orbits around the Sun of all planets and most

other objects, except many comets, are prograde.11 However, protoplanetary
disks can collide with or steal material from molecular clouds and this can
lead to disks and their resulting planets having retrograde orbits around their
stars. Retrograde motion may also result from the Lidov-Kozai mechanism,
as already mentioned. Here we thus provide another mechanism possibly ex-
plaining the existence of some retrograde planets.

(3) As far as the authors know, up to the present paper there has been no result (an-
alytical or otherwise) on Arnold diffusion in a (non-restricted) N-body problem.
As we have already explained, it relies on the existence of normally hyperbolic
structure along secular resonances. We consider a purely elliptic regime, that
is, at short time scales the bodies perform aproximate ellipses, and therefore no
hyperbolic invariant objects exist at first order. We rely on the analysis of the
perturbed secular dynamics to detect such objects and use its invariant mani-
folds to obtain drifting orbits. This allows us to obtain Arnold diffusion in the
classical planetary regime.

Note that our diffusion mechanism is robust in the following sense; if we
consider the N-body problem and assume that the initial conditions of the first
four bodies are as in Theorem 4 and the remaining N− 4 bodies revolve suffi-
ciently far away, the conclusion of Theorem 4 still holds. In fact, we expect that
analogous diffusive behaviour could be observed in the remaining N−4 bodies
in an appropriate regime. However this would require an inductive argument,
the technical details of which would likely be very complicated, largely due to
the nature of the coordinates we use (see Section 2.2 below for a description of
the Deprit coordinates). A potential inductive step in this process would be to
check how these results could be adapted to the 5-body problem [20].

11 They orbit around the Sun in the same direction as the sun rotates about its axis, consistently with the most
probable scenarios of formation of the Solar System.
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(4) In a sequel [27] to this paper, we consider a slightly different regime of the
4-body problem (namely, the regime where a3 � a3

2), and we prove that, in
addition to the chaotic motions described by Theorem 4, the semimajor axis
a3 can also be made to follow any finite predetermined itinerary. In contrast,
in the present paper we assume that a

11/6
2 � a3 � a2

2 (see (11) below), which
implies that the phenomenon of exponentially small splitting of separatrices
can be observed in the a3 direction, and consequently the semimajor axis a3 is
stable in the current regime.

We now consider implications of our main theorem regarding Herman’s local con-
jecture 3, in the case of the spatial 4-body problem. We need the following complement to
the main theorem, which follows from our construction and [26, Remark 2.13], because
in the secular directions aligned windows are bounded.

Proposition 5. — Transition chains obtained for the secular system (thus diregarding the fast,

Keplerian dynamics) have infinite length and the subsequent shadowing orbits are defined for all future

times.

We can thus conclude the following.

Theorem 6 (Weak local Herman conjecture). — Under the hypotheses of Theorem 4, circular

orbits are in the closure of the non-recurrent set (as well as of the recurrent set) of the secular dynamics at

any finite order.

The main theorem above (Theorem 4) will be reworded more precisely as two
theorems (Theorems 7 and 8 below) which imply Theorem 4 above. These new theorems
are more detailed and analyse the dynamics in a different set of coordinates called Deprit
variables. The key point of these coordinates is that they are symplectic and moreover
adapted to the symplectic reduction the 4 body problem with respect to all its symmetries
(translation and rotation).

1.3. Main ideas of the proof of Theorem 4. — We first prove the theorem for the hier-
archical regime (and fixed values of the masses), and then give a continuation argument
which allows to vary the masses within Mη (see (2)).

The starting point of our construction is a now classical scheme:

(1) Establish the existence of a normally hyperbolic invariant manifold (see Ap-
pendix B for the definition).

(2) Using Poincaré-Melnikov theory, prove that its stable and unstable manifolds
have a transverse homoclinic intersection.

(3) Compute the first order of the scattering maps in certain variables.
(4) Using a shadowing theorem, find true orbits that shadow those of the scattering

maps.
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However there are many caveats. Since we assume that the semimajor axes of the Keple-
rian ellipses are of different orders, there are numerous time scales. In particular the mean
anomalies revolve much faster than the other angles (see below for a description of the
angles), and so the splitting of separatrices in the directions of their symplectic conjugate
variables is exponentially small. This makes the computation of the scattering maps in
those directions a significant challenge. The shadowing results of [26] are well equipped
to dealing with problems of this nature; actually, this paper was precisely written for the
purpose of its application to the present problem. Therefore we proceed by checking that
the assumptions of that paper (summarised in Appendix C) are satisfied by the secular
system (defined in Section 3), and thus the full four-body problem.

Beginning with the usual Hamiltonian (see (9) in Section 2) of the four-body prob-
lem, we have a conservative system with 12 degrees of freedom. It is well known that
this system possesses many integrals of motion. We first pass to Jacobi coordinates to
perform the symplectic reduction by translational invariance, which removes 3 degrees
of freedom. For a three-body problem, the next step would usually be to pass to orbital
elements (i.e. Delaunay variables) in order to perform Jacobi’s classical reduction of the
nodes. It is known however that this approach does not extend to the N-body problem
when N ≥ 4. Instead, we use the so-called Deprit variables. These were introduced by De-
prit in the paper [36], but he stated “Whether the new phase variables... are practical in
the General Theory of Perturbations is an open question. At least, for planetary theories,
the answer is likely to be in the negative”. The variables were subsequently forgotten for
a number of years, until they were rediscovered by Chierchia and Pinzari [22, 23], who
pointed out that they are in fact very useful, by defying Deprit’s advice and nonetheless
implementing the coordinates in the planetary problem. The use of these coordinates re-
duces a further 2 degrees of freedom from our system, resulting in a system with 7 degrees
of freedom. To our knowledge, this paper represents the first use of the Deprit variables
since the papers of Chierchia and Pinzari.

Denote by Cj the angular momentum of the j th fictitious Keplerian body. The
(Deprit) coordinates we are left with after the symplectic reduction are as follows: the
mean anomalies �1, �2, �3 and their symplectic conjugates L1,L2,L3 which are propor-
tional to the square root of the semimajor axes; the arguments of the perihelia γ1, γ2, γ3

(not with respect to the ascending node, but rather some different nodes; see Section 2
for a precise definition) and their symplectic conjugates the absolute angular momenta
Γ1 = |C1|, Γ2 = |C2|, Γ3 = |C3|; an abstractly defined angle ψ1 and its symplectic conju-
gate Ψ1 = |C1 +C2|.

In these coordinates the Hamiltonian can be written H = FKep + Fper where the
Keplerian function FKep describes the motion of three uncoupled two-body problems, and
the perturbing function Fper describes the gravitational forces between the planets. The as-
sumptions we make on the semimajor axes of the Keplerian ellipses imply that the mean
anomalies evolve much faster than the other angles, and so we can use the averaging
theory to make a near-to-the-identity symplectic transformation that averages the angles
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FIG. 1. — We assume that the semimajor axes of the Keplerian ellipses are of different orders. Moreover, assuming that
the mutual inclination of bodies 1 and 2 (i.e. the angle between the angular momentum vectors C1 and C2 in the figure)
is sufficiently large, the first order term in the expansion of the secular Hamiltonian has a saddle periodic orbit. Our main
theorems say that, given any predetermined itinerary of mutual inclinations between bodies 2 and 3, and eccentricities of
the 2nd ellipse, there exist trajectories of the four-body problem shadowing that itinerary

�j out of Fper up to arbitrarily high order. The Hamiltonian resulting from averaging Fper

over the angles �j is called the secular Hamiltonian and is denoted by Fsec. Since we as-
sume that the semimajor axes are of different orders we have L1 � L2 � L3 and so, using
the Legendre polynomials, we can expand Fsec in powers of L1

L2
and L2

L3
. The first order

terms in the expansion of the secular Hamiltonian are referred to as the quadrupolar and
octupolar Hamiltonians of the interactions between bodies 1 and 2 (F12

quad and F12
oct), and the

interactions between bodies 2 and 3 (F23
quad and F23

oct); all other terms are of higher order,
and are not required for our analysis. All parts of the proof described so far are contained
in Section 3.

In order to continue, we observe that the actions are of different orders; indeed,
Γ1 = O(L1)= O(1), Γ2 = O(L2), Γ3 = O(L3), Ψ1 = O(L2). As it is more convenient to
deal with actions of order 1, we perform a linear symplectic coordinate transformation
and we “chop” the new action space in rectangles with sizes of order 1. We perform our
analysis in each of these rectangles. Since the assumptions in [26] are local, one can ver-
ify them in each rectangle separately. This coordinate transformation leaves the variables
γ1, Γ1 unchanged, and we denote by γ̃j , Γ̃j , ψ̃1, Ψ̃1 the new variables. Substituting these
variables into the Hamiltonians F12

quad, F12
oct, F23

quad, and F23
oct illuminates the time scales of

our problem, and allows us to perform further Taylor expansions of each of these Hamil-
tonians, keeping a careful account of the term in which each variable appears for the first
time (see Proposition 11). This linear change, localization and expansion of the secular
Hamiltonian are also performed in Section 3.

Part of the beauty of the Deprit variables is that the Hamiltonians F12
quad and F12

oct
are identical to the quadrupolar and octupolar Hamiltonians (respectively) in the three-
body problem expressed in Delaunay coordinates (see [41], for example). Moreover, we
choose the coordinate transformation in Section 3 carefully to ensure that the first-order
term in the expansion of F12

quad is identical to the first-order term in the expansion of the
quadrupolar Hamiltonian in [41] (modulo some errata; see Appendix F). This Hamil-
tonian, which we denote by H12

0 , possesses a well-known saddle with a separatrix (see
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for example [63]) whenever the mutual inclination between bodies 1 and 2 is sufficiently
large (see Figure 1); moreover, the saddle is present for an interval of values of the energy
H12

0 . Collecting these saddles on this interval of energy levels, we obtain a normally hy-
perbolic invariant manifoldΛ (see Appendix B for definitions), whose stable and unstable
manifolds coincide. Furthermore, Fenichel theory implies that the secular Hamiltonian
Fsec inherits the normally hyperbolic cylinder Λ [44–46]. The results of [41] imply that
the octupolar Hamiltonian splits the separatrix in the three-body problem; as the equa-
tions are identical, F12

oct splits the stable and unstable manifolds of Λ in our case too. The
manifold Λ for the secular Hamiltonian is written as a graph over the variables γ̃2, Γ̃2,
ψ̃1, Ψ̃1, γ̃3, Γ̃3, and so has the structure of a cylinder T3 × [0,1]3. This is described in
detail in Section 4.

In Section 5 we analyse the inner dynamics: the restriction of the secular flow to
the normally hyperbolic cylinder Λ. The primary goal of this section is to find a new
system of coordinates on the cylinderΛ, denoted by (γ̂2, Γ̂2, ψ̂1, Ψ̂1, Γ̂3, Γ̂3), in which we
can continue our analysis. This system is constructed in two steps. The first step produces
a coordinate transformation that brings the restriction to Λ of the symplectic structure
into its canonical form, using Moser’s trick from his proof of Darboux’s theorem. The
second step uses standard methods from averaging theory to push the dependence of the
inner Hamiltonian Fsec|Λ on the angles γ̂2, ψ̂1, γ̂3 to higher order terms.

In Section 6 we prove that there are two homoclinic channels relative toΛ that give
rise to two globally defined scattering maps (see Appendix B for definitions). Moreover we
compute the first order of the jumps in the scattering maps in the variables Ψ̂1, Γ̂3. This
section relies on the computation of three Poincaré-Melnikov integrals: the first of these
is identical to the computation in [41] (see also Appendix F), whereas the computation of
the remaining two integrals is performed in Section 6.2 by considering complex values
of time and integrating over certain contours using the residue theorem. Since these
computations are conducted in ‘tilde’ variables, we then have to do further computations
to determine the jumps in the scattering maps in the ‘hat’ variables (Lemma 30).

In Section 7 we consider the return map to the Poincaré section {γ̂2 = 0} in an
energy level of the secular Hamiltonian. The restriction to an energy level eliminates Γ̂2,
and so we are left with a map of a four-dimensional cylinder. We prove that the map sat-
isfies a twist condition, and we show that the jumps in the scattering maps in the Ψ̂1, Γ̂3

directions are the same as those for the scattering maps corresponding to the flow. We de-
duce from the formulas for the scattering maps that there are pseudo-orbits (i.e. orbits of
the iterated function system consisting of the Poincaré map and the two scattering maps)
that follow any itinerary in the actions Ψ̂1, Γ̂3, and that the scattering maps map tori
corresponding to constant values of Ψ̂1, Γ̂3 transversely across other such tori. These are
the assumptions of the first main theorem of [26] (these results have been summarised in
Appendix C – see Theorem 47), and so we obtain orbits of the secular Hamiltonian that
follow any predetermined itinerary of the variables Ψ̂1, Γ̂3 (thus proving Proposition 5).
As a consequence, we can then show that the full four-body problem therefore satisfies
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the assumptions of the second main theorem in [26] (see Theorem 48 in Appendix C),
and so we obtain an analogous result for the full four-body problem. Furthermore, the
shadowing methods provide us with (non-optimal) time estimates, which are contained in
Section 7.3.

In Section 8 we explain how we can pass from the hierarchical to the planetary
case, where the masses of the planets are arbitrarily small of order 0< ρ� 1. We show
that the separation of the semimajor axes of the planets can be taken independently of
the smallness of the masses of the planets. This effectively amounts to a demonstration
that we can rescale the planetary Hamiltonian by ρ−1 and time by a factor of ρ−2 in
order to obtain the hierarchical Hamiltonian, where ρ is the small mass parameter.

2. Main results in Deprit coordinates

In Section 2.1 we introduce the Hamiltonian of the four-body problem, perform
the reduction by translational symmetry, state our assumptions precisely, and expand
the perturbing function using the Legendre polynomials. In Section 2.2 we recall the
definition of the Deprit coordinates. Then, in Section 2.3 we give more detailed versions
of Theorem 4 in terms of Deprit coordinates.

2.1. Setting up the problem. — Consider four point masses in space, interacting via
gravitational attraction in the sense of Newton. Denote by mj the mass, by xj ∈ R3 the
position, and by yj ∈ R3 the linear momentum of body j for each j = 0,1,2,3. This
system is described by the flow of the Hamiltonian function

(9) H =
∑

0≤j≤3

y2
j

2mj

−
∑

0≤i<j≤3

mimj

‖xj − xi‖ .

Hamilton’s equations of motion give a system of 24 differential equations. It is well-known
that this system has (at least) 10 integrals of motion: the integral H corresponds to con-
servation of energy; 6 integrals correspond to the motion of the barycenter (translational
symmetry); and 3 integrals correspond to conservation of angular momentum (rotational
symmetry). By making suitable changes of coordinates we can make these integrals visi-
ble, thus reducing the equations of motion. First, we pass to Jacobi coordinates to perform
the symplectic reduction by translational symmetry, and then use Deprit coordinates to
reduce by rotational symmetry.

Reduction by translational symmetry. — Let

Mj =
j
∑

i=0

mi, σij = mi

Mj

,
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FIG. 2. — Jacobi coordinates

and define the Jacobi coordinates (qj, pj) ∈ R3 ×R3 for j = 0,1,2,3 by
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

q0 = x0

q1 = x1 − x0

q2 = x2 − σ01 x0 − σ11 x1

q3 = x3 − σ02 x0 − σ12 x1 − σ22 x2

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

p0 = y0 + y1 + y2 + y3

p1 = y1 + σ11 y2 + σ11 y3

p2 = y2 + σ22 y3

p3 = y3.

This is a symplectic change of coordinates, and the variable q0 does not appear in
the Hamiltonian (9). The reduced phase space has coordinates (qj, pj)j=1,2,3, and, without
loss of generality, we may restrict to p0 = 0. Thus write

(10) H = FKep + Fper

where

FKep =
3
∑

j=1

(

p2
j

2μj

− μjMj

‖qj‖
)

and

Fper =
3
∑

j=2

μjMj

‖qj‖ − m0 m2

‖q2 + σ11 q1‖

− m0 m3

‖q3 + σ22 q2 + σ11 q1‖ −
m1 m2

‖q2 − σ01 q1‖
− m1 m3

‖q3 + σ22 q2 + (σ11 − 1) q1‖ −
m2 m3

‖q3 + (σ22 − 1) q2‖
with the reduced masses μj defined by

μ−1
j = M−1

j−1 + m−1
j (j = 1,2,3).
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The function FKep is an integrable Hamiltonian describing the motion of 3 uncoupled
Kepler problems, and Fper is the so-called perturbing function.

Assumptions and expansion in Legendre polynomials. — In this paper, we assume that each
term of FKep is negative, so each of the 3 uncoupled Keplerian trajectories is elliptical.
We assume that the orbit of body 2 is far away from the orbits of the first two bodies. We
assume moreover that the orbit of body 3 lies far from the orbits of the first 2 bodies, in a
range dictated by the position of body 2. More precisely, if we denote by aj the semimajor
axis of the j th Keplerian ellipse, our assumptions are:

(11) O(1)= a1 � a2 →∞ and a
11
6

2 � a3 � a2
2.

The purpose of these assumptions is twofold. First, the fact that a1 � a2 � a3 � a2
2 im-

plies that the three mean anomalies are the fastest three angles, and so we can average
out these three angles (see below in this section). Second, the fact that a

11/6
2 � a3 implies

both that the first two terms in the expansion of the secular Hamiltonian come from
the quadrupolar Hamiltonian of bodies 1 and 2, and that the first nontrivial term in the
Melnikov potential comes from the octupolar Hamiltonian of bodies 1 and 2 (see later).

We are in a near-integrable setting, as Fper is smaller than FKep. Indeed, denote by
ζj the angle between qj and qj+1 for j = 1,2, and denote by Pn the Legendre polynomial
of degree n. Our assumptions imply that ‖q1‖ � ‖q2‖ � ‖q3‖. Therefore we can write
the perturbing function as

(12) Fper = F12
per + F23

per +O
(‖q1‖2

‖q3‖3

)

where

(13) F12
per =

μ2M2

‖q2‖ − m0 m2

‖q2 + σ11 q1‖ −
m1 m2

‖q2 − σ01 q1‖ =−μ1m2

‖q2‖
∞
∑

n=2

σ̃1,nPn(cos ζ1)

(‖q1‖
‖q2‖

)n

is the perturbing function from the 3-body problem (see [41], for example), and where

(14) F23
per =−μ2m3

‖q3‖
∞
∑

n=2

σ̃2,nPn(cos ζ2)

(‖q2‖
‖q3‖

)n

with

σ̃1,n = σ n−1
01 + (−1)nσ n−1

11 , σ̃2,n = (σ02 + σ12)
n−1 + (−1)nσ n−1

22 .

2.2. The Deprit coordinates and reduction by rotational symmetry. — To prove Theorem 4
and to take advantage of the rotational symmetry, we rely on Deprit coordinates. These
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coordinates were discovered originally by Deprit [36] and rediscovered recently by Chier-
chia and Pinzari [22].

Denote by

Cj = qj × pj

the angular momentum of the j th fictitious Keplerian body (Keplerian refering to FKep),
and let kj be the j th element of the standard orthonormal basis of R3. Define the nodes νj

by

ν1 = ν2 = C1 ×C2, ν3 = (C1 +C2)×C3, ν4 = k3 ×C

where

C = C1 +C2 +C3

is the total angular momentum vector. For a non-zero vector z ∈ R3 and two non-
zero vectors u, v lying in the plane orthogonal to z, denote by αz(u, v) the oriented
angle between u, v, with orientation defined by the right hand rule with respect to
z. Denote by Πj the pericenter of qj on its Keplerian ellipse. The Deprit variables
(�j,Lj, γj,Γj,ψj,Ψj)j=1,2,3 are defined as follows:

– �j is the mean anomaly of qj on its Keplerian ellipse;
– Lj = μj

√

Mjaj ;
– γj = αCj

(νj,Πj) (see Figure 3);
– Γj = ‖Cj‖;
– ψ1 = α(C1+C2)(ν3, ν2), ψ2 = αC(ν4, ν3), ψ3 = αk3(k1, ν4);
– Ψ1 = ‖C1 +C2‖, Ψ2 = ‖C1 +C2 +C3‖ = ‖C‖, Ψ3 = C · k3.

The Deprit variables are analytic over the open subset D over which the 3 terms of FKep

are negative, the eccentricities of the Keplerian ellipses lie strictly between 0 and 1, and
the nodes νj are nonzero.

The Deprit variables form a symplectic coordinate system over D. In Appendix A
we give an alternative proof of its symplecticity from that in [22, 36].

In these coordinates the Keplerian Hamiltonian becomes

FKep =−
3
∑

j=1

μ3
j M2

j

2L2
j

and so the mean anomalies �j undergo a rigid rotation with frequency
√

Mj

a3
j

, while all

other variables remain fixed. Moreover the variables ψ3,Ψ2,Ψ3 are integrals of motion
for the full 4-body problem (due to conservation of angular momentum), and so the
Hamiltonian does not depend on Ψ3,ψ2,ψ3.
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FIG. 3. — The node νj and the argument γj of pericenter Πj

Note that one can express the orbital elements in terms of Deprit as follows. The
osculating eccentricities are defined by

(15) ei =
√

1− Γ
2
j

L2
j

, j = 1,2,3.

The mutual inclination between the bodies 1 and 2 is given by i12, which is defined by

(16) cos i12 = Γ
2
1 + Γ2

2 −Ψ2
1

2Γ1Γ2
.

For the third planet one can measure its inclination with respect to the plane orthogonal
to the vector S1 = C1 + C2, that is with respect to the plane orthogonal to the angular
momentum given by planet 1 and 2. If one denotes this angle by i23, one has

(17) cos i23 = Γ
2
3 +Ψ2

1 −Ψ2
2

2Γ3Ψ1
.

Note that we are in a regime where L2 � L1 and therefore the angular momentum of the
first two planets is essentially carried by planet 2.

2.3. Arnold diffusion in Deprit coordinates. — In this paper we consider both the hier-
archical and planetary regimes. We first state the results in the hierarchical regime, which
imply Theorem 4 for fixed values of masses. Later, we consider the planetary regime, that
is we take masses of the planets arbitrarily small.

To this end, let us specify what is the hierarchical regime in Deprit coordinates. For
now we assume that the masses m0,m1,m2,m3 > 0 are fixed and belong to Mη (see (2)).
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Then, we consider that semimajor axes of the bodies are well separated

a1 � a2 � a3

and equivalently

L1 � L2 � L3.

Note that we assume that the eccentricities of the bodies are uniformily bounded away
from 0 and 1 and therefore

(18) Γi ∼ Li for i = 1,2,3 and Ψi ∼ Γi+1 for i = 1,2

(recall that Ψ2 is the total angular momentum which is a conserved quantity).
In this regime the semimajor axes are very stable. The same happens for Γ3 due

to the conservation of angular momentum vector. However a “small” transfer of angular
momentum from the third planet to the second can have a big effect on the eccentricty
and inclination of the second planet.

In particular, Γ3 may transition from

(19) Γ3 ∼Ψ2 −Ψ1 to Γ3 ∼Ψ2 +Ψ1.

This corresponds to having C3 and C1 + C2 close to parallel and either with the same
sense or opposite sense. Such transition is equivalent to make a transition in the inclina-
tion θ23 (see Section 9 below).

On the other hand, note that 0<Γ2 < L2. So the maximal transition Γ2 can make
is

(20) Γ2 ∼ L2 to Γ2 ∼ 0.

By (15), this corresponds to the second planet transitioning from a close to circular orbit
(e2 ∼ 0) to a highly eccentric one (e2 ∼ 1).

The next theorem shows that such transitions are possible and that one can freely
vary Γ3 and Γ2 within there admitted ranges. In the constructed orbits the changes in the
other actions are determined by those two.

Theorem 7 (Hierarchical regime). — Fix masses m0,m1,m2,m3 > 0 such that

m0 �= m1 and m0 + m1 �= m2.

There exists 0< κ� 1, α > 0, β > 0, such that the following is satisfied.

Fix N ≥ 1 any {νk}N
k=0 ⊂ (0,1), {ηk}N

k=0 ⊂ (−1,1) and constants Γ0
3 ∈ [κL0

3, (1−κ)L0
3],

Ψ0
1 ,Γ

0
2 ∈ [κL0

2, (1−κ)L0
2] such that |Ψ0

1 −Γ0
2| ≤ κ ,Ψ0

2 such thatΨ0
2 ∈ [Γ0

3 −(1−κ)Ψ0
1 ,Γ

0
3 +

(1− κ)Ψ0
1 ] and L0 = (L0

1,L
0
2,L

0
3) satisfying L0

1 ∈ [1/2,2] and

(21) L0
1 � L0

2 and
(

L0
2

) 11
6 � L0

3 �
(

L0
2

)2
.
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Then, there exists an orbit of the Hamiltonian H in (10) expressed in Deprit coordinates and times

{tk}N
k=0 satisfying

t0 = 0 and |tk| ≤
(

L0
2

)α
, k ≥ 1

such that

|Γ2(tk)− νkL0
2| ≤

(

L0
2

)−β
, |Ψ0

2 − Γ3(tk)− ηkΨ1(tk)| ≤
(

L0
2

)−β

and

|Γ1(tk)− L0
1| ≤

(

L0
2

)−β
, |Ψ1(tk)− Γ2(tk)−Mk| ≤

(

L0
2

)−β

where Mk ∈ (0, κ) is determined by

M2
k

(L0
2 − Γ2(tk))3/2

= M2
0

(L0
2 − Γ0

2)
3/2

and M0 =Ψ0
1 − Γ0

2

whereas for all t ∈ [0, tN],

|Γ3(t)− Γ0
3| ≤ 2L0

2, and |Lj(t)− L0
j | ≤

(

L0
2

)−β
for j = 1,2,3.

One can obtain an analogous statement in the planetary regime, that is when one
considers arbitrarily small masses for the bodies 1,2,3. That is, m0 ∼ 1 whereas mi = ρm̃i ,
i = 1,2,3, with m̃i ∼ 1 and 0< ρ� 1. Note that when ρ tends to 0, the actions (L,Γ,Ψ)
all satisfy

L,Γ,Ψ→ 0.

Therefore, to be able to capture the drift in actions it is convenient to perform a symplec-
tic scaling

L = ρ˜L, Γ = ρ˜Γ, Ψ = ρ˜Ψ,

Note that all the orbital elements are homogeneous functions of degree 0 of the Deprit
coordinates (see (15), (16), (17)). Therefore, the drift in the scaled coordinates will deter-
mine the behavior described in Theorem 4 for the planetary regime.

Theorem 8 (Planetary regime). — Fix m0, m̃1, m̃2, m̃3 > 0 and consider the Hamiltonian H
in (10) expressed in Deprit coordinates with masses m0,mj = ρm̃j with j = 1,2,3. There exists 0<
κ0 � 1, α > 0, β > 0, such that the following is satisfied for any κ ∈ (0, κ0).
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Fix N ≥ 1 any {νk}N
k=0 ⊂ (0,1), {ηk}N

k=0 ⊂ (−1,1) and constants ˜Ψ0
1 ,
˜Ψ0

2 ,
˜Γ0

2,
˜Γ0

3 ,
˜L0

1,
˜L0

2,
˜L0

3 such that

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

˜Ψ0
1 ,
˜Γ0

2 ∈ [κL2, (1− κ)L2]
|˜Ψ0

1 −˜Γ0
2| ≤ κ

˜Γ0
3 ∈ (κ˜L3, (1− κ)˜L3)

˜Ψ0
2 ∈ [˜Γ0

3 − (1− κ)˜Ψ0
1 ,
˜Γ0

3 + (1− κ)˜Ψ0
1 ]

and

˜L0
1 ∈ [1/2,2], ˜L0

1 �˜L0
2 and

(

˜L0
2

) 11
6 �˜L0

3 �
(

˜L0
2

)2
.

Then, there exists ρ0 such that for any ρ ∈ (0, ρ0), there exists an orbit of the Hamiltonian H
in (10) expressed in scaled Deprit coordinates and times {tk}N

k=0 satisfying t0 = 0 and

|tk| ≤ C
(L0

2)
α

ρ2

with C> 0 independent of ρ and L0
2, such that

|˜Γ2(tk)− νk
˜L0

2| ≤
(

˜L0
2

)−β
, |˜Ψ0

2 −˜Γ3(tk)− ηk
˜Ψ1(tk)| ≤

(

˜L0
2

)−β

and

|˜Γ1(tk)−˜L0
1| ≤

(

˜L0
2

)−β
, |˜Ψ1(tk)−˜Γ2(tk)−Mk| ≤

(

˜L0
2

)−β

where Mk ∈ (0, κ), k = 1 . . .N, is determined by

M2
k =

(˜Ψ0
1 −˜Γ0

2)
2

(˜L0
2 −˜Γ0

2)
3/2

(

˜L0
2 −˜Γ2(tk)

2
)3/2

whereas for all t ∈ [0, tN],
|˜Γ3(t)−˜Γ0

3| ≤ 2˜L0
2 and |˜Lj(t)−˜L0

j | ≤
(

˜L0
2

)−β
for j = 1,2,3.

Sections 3 - 7 are devoted to prove Theorem 7. Then, in Section 8 we explain how
to extend the proof in the planetary regime.

3. The averaging procedure and the secular Hamiltonian

The purpose of this section is to define the secular Hamiltonian, and compute all
terms relevant for our later analysis. This involves averaging the perturbing function (12)
in Deprit coordinates, and performing a Taylor expansion of the resulting expressions in
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powers of the small parameters 1
L2

and L2
L3

. In Section 3.1 we define the secular Hamil-
tonian, and compute the first two terms in its expansion. In Section 3.2, we introduce
affine coordinate transformations to split the action space in substrips such that the new
action variables in each strip are of order 1. This makes the multiple time scales of the
problem visible, and allows us to perform further Taylor expansions.

3.1. The averaging procedure and the secular Hamiltonian. — It can be seen in equations

(13), (14) that F12
per, F23

per are of order O( 1
a3

2
), O( a2

2

a3
3
) respectively. Therefore our assumption

(11) implies that the mean anomalies �j have faster frequencies than the other angles,
and moreover that the frequencies of the mean anomalies are of different orders. As a
result we can apply the normal form theory (see [37, 96]): we may construct an arbitrary
number k of non-resonant normal forms. One can achieve this by constructing successive
changes of coordinates as follows. At the step j = 1 . . . k− 2 the averaging transformation
is obtained as the composition of two changes of coordinates.

– First, the terms of order a
−j−1
2 in the Hamiltonian F12

per in (13) depending on �1

and �2 are removed (recall that F12
per is independent of �3). Since the small divi-

sors have a lower bound of order a
−3/2
2 (the size of the �2-frequency), this can be

achieved by an a
−j+1/2
2 -close to the identity symplectic coordinate transforma-

tion.
– Then, we apply a second transformation to remove the terms in Fper − F12

per

(see (12)) of size a
j+1
2 /a

j+2
3 depending on the mean anomalies. Since these terms

may depend on �3, the small divisors have size a
3/2
3 and therefore these terms

can be removed by an a
j+1
2 /a

j−1/2
3 -close to the identity symplectic coordinate

transformation.

This leads to the Hamiltonian

(22) F = FKep + Fsec,k +O
((

1
a2

)k+1

,
ak

2

ak+1
3

)

where Fsec,k is the secular Hamiltonian of order k, defined by

(23) Fsec,k = F12
sec,k + F23

sec,k +O
(

1
a3

3

)

with

F12
sec,k =

1
(2π)2

∫

T2
F12

per d�1 d�2 +O
(

1

a
9/2
2

)

,
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and

F23
sec,k =

1
(2π)2

∫

T2
F23

per d�2 d�3 +O
(

a4
2

a
9/2
3

)

.

In what follows we drop the k subscript and simply write F12
sec and F23

sec to simplify notation.
Now, the first term in the expansions (13), (14) after averaging is called the quadrupo-

lar Hamiltonian (with respect to bodies 1 and 2, and with respect to bodies 2 and 3, re-
spectively), and the second is called the octupolar Hamiltonian (following the terminology
of electrostatic multipoles). Since σ̃j,2 = 1 for j = 1,2, we write

(24) Fj,j+1
sec =−μj mj+1

(2π)2

(

Fj,j+1
quad + σ̃j,3 Fj,j+1

oct +O
(

a4
j

a5
j+1

))

for j = 1,2.

The eccentricity of the j th Keplerian ellipse is given in terms of Deprit coordinates by

(25) ej =
√

1− Γ
2
j

L2
j

.

Lemma 9. — The quadrupolar and octupolar Hamiltonians of bodies 1 and 2 are given by

(26) F12
quad =

a2
1

8 a3
2 (1− e2

2)
3
2

((

15 e2
1 cos2 γ1 − 12 e2

1 − 3
)

sin2 i12 + 3e2
1 + 2

)

and

F12
oct = − 15

64
a3

1

a4
2

e1 e2

(1− e2
2)

5
2

(27)

×

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

cosγ1 cosγ2

[ Γ2
1

L2
1

(

5 sin2 i12

(

6− 7 cos2 γ1

)− 3
)

−35 sin2 γ1 sin2 i12 + 7

]

+ sinγ1 sinγ2 cos i12

[

sin2 i12

(

4− 7 cos2 γ1

)− 3
)

−35 sin2 γ1 sin2 i12 + 7

]

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

respectively, where ej is the eccentricity of the j th Keplerian ellipse, and i12 is the mutual inclination of

Keplerian bodies 1 and 2, defined by

(28) cos i12 = Γ
2
1 + Γ2

2 −Ψ2
1

2Γ1Γ2
.

Proof. — The quadrupolar and octupolar Hamiltonians are defined by

F12
quad =

∫

T2
P2(cos ζ1)

‖q1‖2

‖q2‖3
d�1 d�2, F12

oct =
∫

T2
P3(cos ζ1)

‖q1‖3

‖q2‖4
d�1 d�2.
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In order to measure cos ζ1, it is sufficient to derive expressions for q1, q2 in Deprit coordi-
nates with respect to any orthonormal basis of R3. Recall the definition of the nodes νi .
As in Claim 1 of [22] we consider the orbital basis Bi = (ki,1, ki,2, ki,3) for i = 1,2, where

ki,1 = νi

‖νi‖ , ki,3 = Ci

‖Ci‖ ,

and where ki,2 is chosen to make the basis orthonormal. We assume that qi ∈ R3 \ {0}. Let
q̄i = ‖qi‖−1qi . Then, by the definition of the angle γi , the point q̄i is written with respect
to Bi as Q̄i = (cos(γi + vi), sin(γi + vi),0), where vi is the true anomaly corresponding
to the mean anomaly �i . Define the standard rotation matrix by an angle θ ∈ T around
the x-axis by

R1(θ)=
⎛

⎝

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞

⎠ .

Since ν1 = ν2, the change of basis matrix from B1 to B2 is R1(i12), and so

cos ζ1 =R1(i12)Q̄1 · Q̄2.

A standard computation (see Appendix C of [37]; compare also equations (6), (7) of [41])
completes the proof. □

Remark 10. — Analogous expressions exist for F23
quad and F23

oct. However these expressions are

long, and difficult to interpret. In order to transform these expressions into a more easily understandable

form, we first perform a coordinate transformation that allows us to perform a further Taylor expansion.

This coordinate transformation and expansion is carried out in Section 3.2.

3.2. Expansion of the secular Hamiltonian. — In what follows, we perform a pertur-
bative analysis with respect to the small parameters 1

L2
, L2

L3
, 1

L3
. In order to do this, first

notice that the actions Γ1,Γ2,Ψ1,Γ3 are of different order; we therefore make an affine
symplectic change of variables that results in actions of order 1. Indeed, our assumptions
regarding the semi-major axes imply that Γ2,Ψ1 are of order L2, while Γ3,Ψ2 are of or-
der L3. Recall that Ψ2 is the norm of the total angular momentum, and therefore it is a
first integral. We fix it as

Ψ2 = δ2 L3

for some fixed δ2 ∈ (0,1) independent of L2 and L3. Note that different values of δ2 give
different (approximate) values for Γ3 (of order L3) and therefore different (approximate)
values for the osculating eccentricity of the ellipse of the third planet.
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We make the symplectic change of variables (with respect to the symplectic form
Ω=∑3

j=1 dΓi ∧ dγi + dΨ1 ∧ dψ1):

(29)

⎧

⎪

⎨

⎪

⎩

Ψ̃1 =Ψ1 − δ1 L2, ψ̃1 =ψ1 + γ2

Γ̃2 =Ψ1 − Γ2, γ̃2 =−γ2

Γ̃3 =Ψ2 − Γ3 − δ3 L2, γ̃3 =−γ3

where δ1 ∈ (0,1) and δ3 ∈ (−1,1) are constant with respect to the secular Hamiltonian.
Note that this symplectic transformation does not modify the variables γ1,Γ1.

We assume that

(30) Γ̃2 > 0

as the case where Γ̃2 is negative can be treated analogously. Moreover, we assume that the
new actions Γ1, Γ̃2, Γ̃3, Ψ̃1 live in a compact set away from the origin which is indepen-
dent of L2 and L3. Indeed, we can choose (Γ̃3, Ψ̃1) ∈ [−1,1]2. Then, choosing a discrete
set of pairs (δ1, δ3) appropriately, we can cover the whole domain that we want to analyse
(see (18), (19), (20)). Since all the analysis we have to perform can be done locally, it is
then enough to do it in each of these rectangles to achieve Arnold diffusion in the whole
range of actions.

The rest of this section is dedicated to a Taylor expansion of the secular Hamilto-
nian in powers of L2

L3
and 1

L2
; observe that these quantities are both small as a result of our

assumption (11). The following proposition summarises the results of the rest of this sec-
tion, and its proof is effectively contained in the subsequent Lemmas 13, 14, 15, and 16
in which we expand F12

quad, F12
oct, F23

quad, and F23
oct respectively. The proposition is important

as it tells us the order of the speed of each variable γ1, γ̃2, ψ̃1, γ̃3,Γ1, Γ̃2, Ψ̃1, Γ̃3. It also
tells us the first order terms containing products of trigonometric functions of ψ̃1 (resp.
γ̃3) with functions of γ1,Γ1, γ̃2; this will be of great significance later on, as these will be
the lowest order terms that give a nontrivial Poincaré-Melnikov potential in ψ̃1 (resp. γ̃3;
see Proposition 27 in Section 6, as well as Section 6.2).

Proposition 11. — The secular Hamiltonian (23) has the form

(31) Fsec = c +
∞
∑

i,j=0

ε iμjFij

where ε = 1
L2

and μ= L2
L3

. Moreover the terms in this expansion satisfy the following properties.

(1) The first two nontrivial terms in the expansion are F6,0 = α12
0 H12

0 , F7,0 = α12
1 H12

1 where

α12
i are nontrivial constants, and where the Hamiltonians H12

0 , H12
1 are defined by (33) and

(34) respectively, are integrable, and do not depend on the masses. The Hamiltonians H12
0 ,
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H12
1 are the first order terms from F12

quad (see (26)). The variables γ1,Γ1, Γ̃2 appear in H12
0 ,

and the action Ψ̃1 first appears in H12
1 .

(2) The angle γ̃2 first appears in H12
2 , which is contained in F8,0. The Hamiltonian H12

2 is

defined by (38), and is the first order term in the expansion of F12
oct (see (27)).

(3) The angle ψ̃1 first appears in F2,6 = H23
0 where the Hamiltonian H23

0 is defined by (39),
and is the first order term coming from F23

quad (see (24)).
(4) The term H23

2 , contained in F3,6, is the first order term containing products of trigonometric

functions of ψ̃1 with functions of γ1,Γ1, γ̃2. The Hamiltonian H23
2 is defined by (40), and

comes from F23
quad.

(5) The action Γ̃3 first appears in H̃3, which is contained in F3,6. The Hamiltonian H̃3 is

defined by (42), and comes from F23
quad.

(6) The angle γ̃3 first appears in H23
3 , which is contained in F2,8. The Hamiltonian H23

3 is

defined by (50), and is the first order term from F23
oct (see (24)).

(7) The term H23
5 , contained in F3,8, is the first order term containing products of trigonometric

functions of γ̃3 with functions of γ1,Γ1, γ̃2. The Hamiltonian H23
5 is defined by (53) and

comes from F23
oct.

Proof. — Notice that, as a result of our assumption (11) on the semimajor axes, we
have the inequalities

(32)
1
L6

2

� 1
L7

2

� L4
2

L6
3

� L5
2

L7
3

� L3
2

L6
3

,
1
L8

2

� L3
2

L6
3

� L6
2

L8
3

,

and, equivalently

ε6 � ε7 � μ6ε2 � μ7ε2 � μ6ε3, ε8 � μ6ε3 � μ8ε3.

Combining these inequalities with the contents of Lemmas 13, 14, 15, and 16 completes
the proof of the proposition. □

Notation 12. — Throughout this paper, in order to simplify notation, we use ellipsis to mean the

following. Fix some sufficiently large integer r ∈ N. The notation F = ε iμj G + · · · means that there

are η1, η2 ∈ N0, not both 0, and a positive constant C such that
∥

∥F− ε iμj G
∥

∥

Cr ≤ C ε i+η1 μj+η2 .

Moreover, we use the expression nontrivial constant to mean a constant depending only on the masses

and the parameters δj that is nonzero for all m0, m1, m2, m3 > 0, all δ1, δ2 ∈ (0,1), and all δ3 ∈
(−1,1).

Lemma 13. — The Hamiltonian F12
quad can be written in the variables (29) as

F12
quad = c̃12

0 + 1
L6

2

α12
0 H12

0 + 1
L7

2

α12
1 H12

1 + 1
L8

2

α̃2 H̃2 + · · ·
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where

H12
0 =

(

1− Γ
2
1

L2
1

)[

2− 5
(

1− Γ̃
2
2

Γ2
1

)

sin2 γ1

]

+ Γ̃
2
2

L2
1

(33)

H12
1 = (3H12

0 (γ1,Γ1, Γ̃2)− 1
)

Ψ̃1 − 4Γ̃2H12
0 (γ1,Γ1, Γ̃2)+ 3Γ̃2 − Γ

2
1Γ̃2

L2
1

(34)

H̃2 =
(

3H12
0 (γ1,Γ1, Γ̃2)− 1

)

Ψ̃2
1 +

(

6− 8H12
0 (γ1,Γ1, Γ̃2)− 2

Γ2
1

L2
1

)

Γ̃2Ψ̃1(35)

+ 1
8

[

sin2 γ1

(

5Γ2
1 −

5Γ4
1

L2
1

+ 210Γ2
1 Γ̃

2
2

L2
1

− 205 Γ̃4
2

L2
1

+ 205 Γ̃4
2

Γ2
1

)

+ Γ
4
1

L2
1

− 66Γ2
1 Γ̃

2
2

L2
1

+ 41 Γ̃4
2

L2
1

+ 40 Γ̃2
2

]

and

α12
0 = 3 L4

1 M3
2μ

6
2

8 M2
1 δ

3
1 μ

4
1

, α12
1 =−3 L4

1 M3
2μ

6
2

8 M2
1 δ

4
1 μ

4
1

, α̃2 = 3 L4
1 M3

2μ
6
2

4 M2
1 δ

5
1 μ

4
1

.

Moreover F12
quad is integrable.

Proof. — Recall from the definition of the Deprit variables in Section 2 that aj =
L2

j

μ2
j Mj

, the eccentricity ej is defined by (25), and the inclination i12 is defined via its cosine

in (28). It follows from (29) that

Γ2 = δ1 L2 + Ψ̃1 − Γ̃2, Ψ1 = δ1 L2 + Ψ̃1.

Therefore

(36) 1− e2
2 =

Γ2
2

L2
2

= δ2
1 +

1
L2

2δ1 (Ψ̃1 − Γ̃2)+ 1
L2

2

(Ψ̃1 − Γ̃2)
2

and

cos i12 = Γ
2
1 + Γ2

2 −Ψ2
1

2Γ1Γ2
(37)

=− Γ̃2

Γ1
+ 1

L2

Γ2
1 − Γ̃2

2

2 δ1Γ1
− 1

L2
2

(Γ2
1 − Γ̃2

2)Ψ̃1 − Γ2
1 Γ̃2 + Γ̃3

2

2 δ2
1 Γ1

+O
(

1
L3

2

)

.
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Combining these formulas with (26) and expanding in powers of 1
L2

yields the formulas
(33), (34), and (35). Finally, the integrability of F12

quad is due to the fact that it does not
depend on γ2, and therefore Γ2 is a constant of motion. Indeed, it is thus a Hamiltonian
system with two degrees of freedom and two integrals of motion. □

Lemma 14. — The Hamiltonian F12
oct can be written in the rescaled variables (29) as

F12
oct =

1
L8

2

α12
2 H12

2 + · · ·

where

(38) H12
2 =

√

1− Γ
2
1

L2
1

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

cosγ1 cos γ̃2

⎡

⎢

⎢

⎣

Γ2
1

L2
1

(

5
(

1− Γ̃2
2

Γ2
1

)

(

6− 7 cos2 γ1

)− 3
)

−35 sin2 γ1

(

1− Γ̃2
2

Γ2
1

)

+ 7

⎤

⎥

⎥

⎦

+ Γ̃2
Γ1

sinγ1 sin γ̃2

⎡

⎢

⎢

⎣

Γ2
1

L2
1

(

5
(

1− Γ̃2
2

Γ2
1

)

(

4− 7 cos2 γ1

)− 3
)

−35 sin2 γ1

(

1− Γ̃2
2

Γ2
1

)

+ 7

⎤

⎥

⎥

⎦

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

and

α12
2 =−15

64
L6

1μ
8
2M4

2

μ6
1M3

1

√

1− δ2
1

δ5
1

.

Proof. — Similarly to the proof of Lemma 13, we combine the formulas for aj , the
eccentricity ej , as well as the expansions (36) and (37) with the formula (27) for F12

oct and
expand in powers of 1

L2
to obtain (38). □

Lemma 15. — The Hamiltonian F23
quad can be written in the rescaled variables (29) as

F23
quad = c̃23

0 + L4
2

L6
3

α23
0 H23

0 + L5
2

L7
3

α23
1 H23

1 + L3
2

L6
3

α23
2 H23

2 + · · ·

with

(39) H23
0 = cos2 ψ̃1 +O

(

L2

L3
,

1
L2

)

, H23
1 = sin2 ψ̃1 +O

(

L2

L3
,

1
L2

)

where the higher order terms depend only on ψ̃1, Ψ̃1, Γ̃2, Γ̃3, and

(40) H23
2 =

√

Γ2
1 − Γ̃2

2 (c1 cos ψ̃1 cos γ̃2 + c2 sin ψ̃1 sin γ̃2)+O
(

L2

L3
,

1
L2

)
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where

(41) c1 = δ2
1, c2 =−(5− 4 δ2

1

)

.

Moreover, the term of order L−1
2 in the expansion of H23

0 is 1
L2

c̃3 H̃3 where c̃3 is a nontrivial constant,

and

H̃3 = Ψ̃1

[

5
(

δ2
3 − δ4

1

)

cos2 ψ̃1 − 5δ2
3 + 3δ4

1

]

(42)

+ Γ̃2

[

5
(

δ4
1 − δ2

1δ
2
3

)

cos2 ψ̃1 + 4δ2
1δ

2
3 − 3δ4

1

]

+ Γ̃3

[

5
(

δ3
1δ3 − δ1δ3

)

cos2 ψ̃1 + 5δ1δ3 − 4δ3
1δ3

]

.

Proof. — By definition, we have

(43) F23
quad =

∫

T2
P2(cos ζ2)

‖q2‖2

‖q3‖3
d�2 d�3.

Denote by R1(θ), R3(θ) the rotation matrix by an angle θ around the x, z-axis respec-
tively, and let I3 = R3(π). Write q̄j = ‖qj‖−1 qj , and Q̄j = (cos(γj + vj), sin(γj + vj),0)
where vj is the true anomaly corresponding to the mean anomaly �j . By Proposition 4.1
of [88], we have

q̄2 =R3(ψ3)R1(i)R3(ψ2)R1(ĩ2)R3(ψ1) I3 R1(i2) Q̄2

and

q̄3 =R3(ψ3)R1(i)R3(ψ2) I3 R1(i3) Q̄3

where

(44) cos i = Ψ3

Ψ2
, cos ĩ2 = Ψ

2
2 +Ψ2

1 − Γ2
3

2Ψ1Ψ2
,

(45) cos i2 = Γ
2
2 +Ψ2

1 − Γ2
1

2Ψ1Γ2
, cos i3 = Γ

2
3 +Ψ2

2 −Ψ2
1

2Ψ2Γ3
.

Since the last 3 rotations performed in each expression q̄2, q̄3 are the same, they can be
ignored in the computation of cos ζ2 = q̄2 · q̄3.

First, we focus on the rotations by the angles i2, i3. Observe that, in our rescaled
variables,

cos i2 = 1− 1
L2

2

Γ2
1 − Γ̃2

2

2 δ2
1

+O
(

1
L3

2

)

, sin i2 = 1
L2

√

Γ2
1 − Γ̃2

2

δ1
+O

(

1
L2

2

)

,
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cos i3 = 1−
(

L2

L3

)2
δ2

1 − δ2
3

2 δ2
2

+O
((

L2

L3

)3

,
L2

L2
3

)

,

sin i3 = L2

L3

√

δ2
1 − δ2

3

δ2
+O

((

L2

L3

)2

,
L2

L2
3

)

.

The square roots in the above terms are real-valued: indeed, the triangle inequality im-
plies that

Ψ1 ≤ Γ1 + Γ2, Ψ2 ≤Ψ1 + Γ3.

Inserting the rescaled variables into these inequalities and using (30) yields

Γ1 ≥ Γ̃2 > 0, δ1 > δ3 > 0.

Therefore we can write

R1(i2)= Id+ L−1
2 M2 +O

(

L−2
2

)

,

R1(i3)= Id+ L2

L3
M3 +O

((

L2

L3

)2

,
L2

L2
3

)

where

Mj =
⎛

⎝

0 0 0
0 0 −bj

0 bj 0

⎞

⎠ with

⎧

⎨

⎩

b2 =
√

Γ2
1−Γ̃2

2

δ1

b3 =
√

δ2
1−δ2

3

δ2
.

We thus obtain the expression

(46) cos ζ2 = q̄2 · q̄3 = W0 + L2

L3
W1 + 1

L2
W2 +O

((

L2

L3

)2

,
1
L3
,

1
L2

2

)

where

W0 =R1(ĩ2)R3(ψ1) I3 Q̄2 · I3 Q̄3,(47)

W1 =R1(ĩ2)R3(ψ1) I3 Q̄2 · I3 M3 Q̄3,(48)

W2 =R1(ĩ2)R3(ψ1) I3 M2 Q̄2 · I3 Q̄3.(49)

Recall the Legendre polynomial of degree 2 is P2(x)= 1
2(3 x2 − 1). Thus

P2(cos ζ2)= P2(W0)+ 3
L2

L3
W0 W1 + 3

1
L2

W0 W2 +O
((

L2

L3

)2)

.
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Integrating these 3 terms separately (using again the technique introduced in Appendix
C of [37]) and applying the change of coordinates (29), we obtain

F23
quad =

a2
2

a3
3 (1− e2

3)
3
2

(

K0 + L2

L3
K1 + 1

L2
K2 +O

((

L2

L3

)2))

where

K0 = 1
8

((

15 e2
2 cos2 ψ̃1 − 12 e2

2 − 3
)

sin2 ĩ2 + 3 e2
2 + 2

)

,

K1 =−3 b3

4
cos ĩ2 sin ĩ2

((

1− e2
2

)+ 5 e2
2 sin2 ψ̃1

)

,

K2 = 3 b2

4
cos ĩ2 sin ĩ2

((

1− e2
2

)

cos ψ̃1 cos γ̃2 −
(

1+ 4 e2
2

)

sin ψ̃1 sin γ̃2

)

.

Finally, combining the above equations with (24) and observing that, due to (25),

e2
2 =

(

1− δ2
1

)+ 1
L2

2δ1(Γ̃2 − Ψ̃1)+O
(

L−2
2

)

, e2
3 = 1− δ2

2 +O
(

L2

L3

)

,

cos ĩ2 = δ3

δ1
+ L2

L3

δ2
1 − δ2

3

2δ1δ2
+ 1

L2

δ1Γ̃3 − δ3Ψ̃1

δ2
1

+O
(

1
L3

)

,

and

sin2 ĩ2 =
(

1− δ
2
3

δ2
1

)

− L2

L3

2δ3

δ1

δ2
1 − δ2

3

2δ1δ2
− 1

L2

2δ3

δ1

δ1Γ̃3 − δ3Ψ̃1

δ2
1

+O
((

L2

L3

)2

,
1
L3

)

where the higher-order terms depend only on Ψ̃1, Γ̃2, Γ̃3, we obtain the expressions (39)
and (40). Moreover, expanding K0 up to terms of order L−1

2 and using the above formulas,
we see that the lowest-order term containing Γ̃3 is the expression H̃3 defined by (42). □

Lemma 16. — The Hamiltonian F23
oct can be written in the rescaled variables (29) as

F23
oct = c̃23

1 + L6
2

L8
3

α23
3 H23

3 + L7
2

L9
3

α23
4 H23

4 + L5
2

L8
3

α23
5 H23

5 + · · ·

where:

– The Hamiltonian H23
3 is defined by

H23
3 = ν0 cos(γ̃3 + 3ψ̃1)+ ν1 cos(γ̃3 + ψ̃1)(50)



34 ANDREW CLARKE, JACQUES FEJOZ, MARCEL GUARDIA

+ ν2 cos(γ̃3 − ψ̃1)+ ν3 cos(γ̃3 − 3ψ̃1)

where

(51)

ν0 = 35
8 δ3

1

(

δ2
1 − 1

)

(δ3 − δ1)(δ3 + δ1)
2,

ν1 =− 1
8 δ3

1

(

3δ2
1 − 7

)

(δ3 + δ1)
(

15δ2
3 − 10δ1δ3 − δ2

1

)

,

(52)

ν2 = 1
8 δ3

1

(

3δ2
1 − 7

)

(δ3 − δ1)
(

15δ2
3 + 10δ1δ3 − δ2

1

)

,

ν3 =− 35
8 δ3

1

(

δ2
1 − 1

)

(δ3 + δ1)(δ3 − δ1)
2.

Moreover H23
3 is the lowest-order term containing γ̃3.

– The Hamiltonian H23
4 does not depend on γ1,Γ1, γ̃2. Moreover, the average of H23

4 with

respect to ψ̃1 does not depend on γ̃3.

– The Hamiltonian H23
5 is given by

(53) H23
5 =

√

Γ2
1 − Γ̃2

2

(

J1(ψ̃1, γ̃3) cos γ̃2 + J2(ψ̃1, γ̃3) sin γ̃2

)

where

J1(ψ̃1, γ̃3)

= 30 δ2
3 sin γ̃3 cos ψ̃1 sin ψ̃1 − 10 δ2

1 sin γ̃3 cos ψ̃1 sin ψ̃1

− 20 δ1 δ3 cos γ̃3 cos2 ψ̃1 + 10 δ1 δ3 cos γ̃3

J2(ψ̃1, γ̃3)

=−50 δ1 δ3 cos γ̃3 cos ψ̃1 sin ψ̃1 + 70 δ3

δ1
cos γ̃3 cos ψ̃1 sin ψ̃1

+ 105 δ2
3

δ2
1

sin γ̃3 cos2 ψ̃1

− 75 δ2
3 sin γ̃3 cos2 ψ̃1 + 25 δ2

1 sin γ̃3 cos2 ψ̃1

− 35 sin γ̃3 cos2 ψ̃1 − 105 δ2
3

δ2
1

sin γ̃3

+ 60 δ2
3 sin γ̃3 − 17 δ2

1 sin γ̃3 + 28 sin γ̃3.
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Proof. — Similarly to the proof of Lemma 15, we use formula (46) for cos ζ2 and
the Legendre polynomial P3(x)= 1

2(5x3 − 3x) to obtain

P3(cos ζ2)= P3(W0)+ L2

L3

1
2

(

15 W2
0 − 3

)

W1

+ 1
L2

1
2

(

15 W2
0 − 3

)

W2 +O
((

L2

L3

)2)

.

Computing this using formulas (47), (48), and (49) for W0,W1,W2, substituting the result
into

F23
oct =

∫

T2
P3(cos ζ2)

‖q2‖3

‖q3‖4
d�2 d�3,

integrating these 3 terms separately using the technique introduced in Appendix C of
[37], and applying the change of coordinates (29) completes the proof of the lemma. □

4. Analysis of the first-order Hamiltonian

The purpose of this section is to analyse the first order term H12
0 in the expansion

of the secular Hamiltonian. We establish the existence of a saddle periodic orbit (in an
interval of energy levels), the stable and unstable manifolds of which coincide. Collecting
the saddle periodic orbits in this interval of energy levels yields a normally hyperbolic
invariant manifold with a separatrix. In addition, we obtain an explicit time parametri-
sation of the separatrix.

It follows from Proposition 11 that the first term in the expansion of the secu-
lar Hamiltonian Fsec is H12

0 . A convenient property of the Deprit coordinates is that the
quadrupolar Hamiltonian of the interaction between planets 1 and 2 in the 4-body prob-
lem (and indeed the N-body problem) coincides with the quadrupolar Hamiltonian from
the 3-body problem, expressed in Delaunay coordinates. Furthermore, H12

0 corresponds
precisely to its counterpart from the 3-body problem [41] (see also Appendix F). In this
section we recall results from [41] regarding the existence of 2 hyperbolic periodic orbits
of H12

0 , connected by a separatrix.
Since H12

0 does not depend on γ̃2, we may consider Γ̃2 as a parameter. Differenti-
ating (33), we see that Hamilton’s equations of motion are

⎧

⎨

⎩

γ̇1 = ∂H12
0

∂Γ1
= 2Γ1

L2
1
[5 (1− Γ̃2

2

Γ2
1
) sin2 γ1 − 2] − 10 (1− Γ2

1
L2

1
)
Γ̃2

2

Γ3
1

sin2 γ1

Γ̇1 =− ∂H12
0

∂γ1
= 5 (1− Γ2

1
L2

1
) (1− Γ̃2

2

Γ2
1
) sin 2γ1.

We seek equilibria of the Hamiltonian vector field. Although we have assumed that the
eccentricities ej satisfy 0 < ej < 1, which implies that Γ1 ∈ (0,L1), the Hamiltonian H12

0
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is analytic on a neighbourhood of the cylinder (γ1,Γ1) ∈ T× (0,L1) in T×R. Observe
that Γ̇1 = 0 if Γ1 = L1. In this case we have γ̇1 = 0 if and only if

(54) sin2 γ1 = 2

5 (1− Γ̃2
2

L2
1
)
.

Assuming that

(55) |Γ̃2|< L1

√

3
5
,

equation (54) has two solutions in the interval γ1 ∈ (0,π) (and two more for γ1 ∈ (π,2π)).
One of these solutions, which we denote by γ min

1 lies in the interval (0, π2 ), and the other
solution is γ max

1 = π − γ min
1 .

We have thus found two equilibria (γ1,Γ1)= (γ min,max
1 ,L1). These equilibria cor-

respond to circular ellipses, and it can be shown by making a suitable change of co-
ordinates that they are hyperbolic [41]. Lifting the equilibria to the full phase space
(γ1,Γ1, γ̃2, Γ̃2) of H12

0 , we obtain the two hyperbolic periodic orbits

Z0
min,max

(

t, γ̃ 0
2

)= (γ min,max
1 ,L1, γ̃

0
2 + γ̃ 1

2 (t), Γ̃2

)

where γ̃ 0
2 ∈ T is the initial condition, and

(56) γ̃ 1
2 (t)=

2 Γ̃2

L2
1

t

is determined by differentiating (33) with respect to Γ̃2 and setting Γ1 = L1.
Suppose (55) holds, and recall moreover we have assumed in (30) that Γ̃2 > 0.

Define the positive constants

(57) χ =
√

2
3
Γ̃2

L1

1
√

1− 5
3
Γ̃2

2

L2
1

, A2 = 6
L1

√

2
3

√

1− 5
3
Γ̃2

2

L2
1

.

The proof of the following result is identical to the proof of Lemma 3.1 in [41].

Lemma 17. — There is a heteroclinic orbit of H12
0 joining Z0

max and Z0
min backward and

forward in time respectively. It is defined by the equation

(

1− Γ̃
2
2

Γ2
1

)

sin2 γ1 = 2
5

where γ1 ∈ (γ min
1 , γ max

1 )⊂ (0,π), and its time parametrisation is given by

Z0
(

t, γ̃ 0
2

)= (γ1(t),Γ1(t), γ̃2(t), Γ̃2

)
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where

cosγ1(t)=
√

3
5

sinh(A2 t)
√

χ 2 + (1+ χ 2) sinh2(A2 t)
,(58)

Γ1(t)= Γ̃2

√

5
3

√

1+ 3
5

L2
1
Γ̃2

2
sinh2(A2 t)

cosh(A2 t)
,(59)

and

(60) γ̃2(t)= γ̃ 0
2 + γ̃ 1

2 (t)+ γ̃ 2
2 (t), with γ̃ 2

2 (t)= arctan
(

χ−1 tanh(A2 t)
)

.

Even though the Hamiltonian function H12
0 is analytic near {Γ1 = L1}, the Deprit

coordinates, as is the case with Delaunay coordinates, are singular on this hypersurface.
Indeed, on the circular ellipse Γ1 = L1, the argument γ1 of the perihelion is without
meaning. We therefore introduce the Poincaré variables

(61) ξ =√2 (L1 − Γ1) cosγ1, η=−√2 (L1 − Γ1) sinγ1.

This is a symplectic change of variables, in the sense that

(62) dξ ∧ dη= dΓ1 ∧ dγ1.

In these variables, the Hamiltonian H12
0 becomes

(63) H̃12
0 = 1

L1

[

2 ξ 2 −
(

3− 5
Γ̃2

2

L2
1

)

η2

]

+ Γ̃
2
2

L2
1

+O2

(

ξ 2 + η2
)

and the entire hypersurface {Γ1 = L1} becomes a single hyperbolic periodic orbit

(ξ, η, γ̃2, Γ̃2)=
(

0,0, γ̃ 0
2 + γ̃ 1

2 (t), Γ̃2

)

.

Moreover, the heteroclinic connection established in Lemma 17 becomes a homoclinic
connection to this hyperbolic periodic orbit.

On the hyperbolic periodic orbit and the separatrix, the energy is given by Γ̃2
2

L2
1
. It

follows that we have a hyperbolic periodic orbit and a homoclinic connection for each
positive value of Γ̃2 satisfying (55). In other words, the Hamiltonian H̃12

0 has a normally
hyperbolic invariant manifold given by

(64) Λ0 =
{

(ξ, η, γ̃2, Γ̃2) : (ξ, η)= (0,0), γ̃2 ∈ T, Γ̃2 ∈ [ζ1, ζ2]
}

where ζ1, ζ2 satisfy

(65) 0< ζ1 < ζ2 < L1

√

3
5
.

Moreover the stable and unstable manifolds of Λ0 coincide.
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5. The inner dynamics

The goal of this section is to establish the existence of a normally hyperbolic in-
variant manifold Λ for the secular Hamiltonian, and to determine a set of coordinates in
which the inner dynamics (i.e. the dynamics carried by Λ) can be analysed.

In Section 5.1, we consider a graph parameterization of the normally hyperbolic
invariant cylinder and analyse the pull back of the Hamiltonian Fsec defined in (31) into
the cylinder. We also average this Hamiltonian and show that it is very close to integrable.
Finally, in Section 5.2, we compute the first and second derivatives of this Hamiltonian
with respect to the actions. Such analysis will be fundamental in Section 7 to prove that
this Hamiltonian has torsion.

5.1. The parametrisation of the cylinder and the inner Hamiltonian. — The normally hy-
perbolic invariant manifoldΛ0 defined by (64) can be lifted to the full secular phase space
simply by including the remaining variables, to obtain

(66) Λ̃0 = {(ξ, η, γ̃2, Γ̃2, ψ̃1, Ψ̃1, γ̃3, Γ̃3) : ξ = η= 0, γ̃2, ψ̃1, γ̃3 ∈ T, Γ̃2 ∈ [ζ1, ζ2],
Ψ̃1 ∈ [−1,1], Γ̃3 ∈ [−1,1]}.

This set obviously remains a normally hyperbolic invariant manifold for H12
0 . It is dif-

feomorphic to T3 × [0,1]3 and its stable and unstable manifolds, each of dimension 7,
coincide. In a neighbourhood of Λ̃0, the symplectic form is

Ω= dξ ∧ dη+ dΓ̃2 ∧ dγ̃2 + dΨ̃1 ∧ dψ̃1 + dΓ̃3 ∧ dγ̃3

due to (62). The restriction of Ω to Λ̃0 is

(67) Ω0 =Ω|Λ̃0
= dΓ̃2 ∧ dγ̃2 + dΨ̃1 ∧ dψ̃1 + dΓ̃3 ∧ dγ̃3.

Note that, as a result of our assumption (11) on the semimajor axes of the Keplerian
ellipses, we have

L11
2

L6
3

� 1.

The following is the main result of this section.

Theorem 18. — For any r ≥ 2 there is L∗
2 > 0 such that for all L2 ≥ L∗

2 and all L3 ∈
[L−

3 ,L
+
3 ] (where L+

3 > L−
3 > 0 depend on L2) the following holds.

(1) There is a Cr smooth normally hyperbolic invariant manifold Λ of Fsec that is O(L−1
2 )

close to Λ̃0 in the Cr topology. Moreover the variables (γ̃2, Γ̃2, ψ̃1, Ψ̃1, γ̃3, Γ̃3) define

coordinates on Λ with respect to which the restriction of the symplectic form Ω to Λ is closed

and non-degenerate (but not necessarily in Darboux form).
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(2) Fix any k1, k2 ∈ N. Then there is a coordinate transformation

(68) (γ̃2, Γ̃2, ψ̃1, Ψ̃1, γ̃3, Γ̃3) �→ (γ̂2, Γ̂2, ψ̂1, Ψ̂1, γ̂3, Γ̂3)

on Λ that is O(L11
2

L6
3
) close to the identity in the Cr topology such that Ω|Λ becomes the

standard symplectic form, and the secular Hamiltonian Fsec, when restricted to Λ, becomes

(69) F̂ = F̂0(Γ̂2, Ψ̂1, Γ̂3; ε,μ)+ εk1μk2 F̂1(γ̂2, Γ̂2, ψ̂1, Ψ̂1, γ̂3, Γ̂3; ε,μ)
where F̂0 = ε6c0Γ̂

2
2 + ε7ĥ0(Γ̂2, Ψ̂1, Γ̂3; ε,μ), where ε = 1

L2
, μ = L2

L3
, and where the

Cr norms of ĥ0 and F̂j are uniformly bounded in ε,μ for j = 0,1.

Remark 19. — The existence of the normally hyperbolic invariant manifold Λ for Fsec follows

from Fenichel theory. Indeed, Fsec is O(L−7
2 ) close to its first-order term α12

0 L−6
2 H12

0 (see Proposition 11).

Since L−1
2 is the small parameter in this instance, and since Fenichel theory applies to vector fields of order

O(1), we must scale Fsec by L6
2 (by scaling time). We thus obtain a Hamiltonian that is O(L−1

2 ) close to

its first-order term α12
0 H12

0 . Since H12
0 has a normally hyperbolic invariant manifold Λ̃0 defined by (66),

Fenichel theory implies that L6
2Fsec has a normally hyperbolic invariant manifold Λ that is O(L−1

2 )

close to Λ̃0 in the Cr topology [44–46]. Clearly Λ is a normally hyperbolic invariant manifold for the

secular Hamiltonian Fsec itself; in fact, the invariance is only local, in the sense that the vector field is

tangent to Λ, but trajectories can escape through the boundary (see Appendix B). The smoothness r of Λ

in Theorem 18 can be made as large as required by increasing L∗
2 if necessary; indeed, Λ̃0 is C∞, and

the Lyapunov exponents of the flow of H12
0 on Λ̃0 are 0 in the directions transverse to the flow. We fix

some sufficiently large value of r, and choose L∗
2 large enough so that Λ is Cr smooth.

Remark 20. — To be precise, whenever we make a coordinate transformation (see (68) for ex-

ample; the same applies to Lemmas 23 and 24 below), we must shrink the range of the actions (see

(66)) on the cylinder Λ in order to continue to use the results of Section 4: there is a small � > 0 such

that for all sufficiently large L2, L3, the new cylinder is defined for Ψ̂1 ∈ [−1 + �,1 − �], Γ̂2 ∈
[ζ1 + �, ζ2 − �], Γ̂3 ∈ [−1 + �,1 − �]. To maintain simplicity of notation, we continue to refer to

this cylinder as Λ.

The rest of the section is dedicated to the proof of Theorem 18. Then, in Sec-
tion 5.2, we analyse the second derivatives ĥ0. Such analysis will be used later on in Sec-
tion 7 to show that certain Poincaré map associated to the flow F̂0 has non-degenerate
torsion.

By Remark 19, Fenichel theory guarantees the existence of a function ρ : Λ̃0 → R2

such that

(70) Λ= graph(ρ)= {(ρ(y), y) : y = (γ̃2, Γ̃2, ψ̃1, Ψ̃1, γ̃3, Γ̃3)

γ̃2, ψ̃1, γ̃3 ∈ T; Γ̃2 ∈ [ζ1, ζ2]; Ψ̃1, Γ̃3 ∈ [−1,1]}
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where ζ1, ζ2 satisfy (65) and such that ρ is O(L−1
2 ) close to 0 in the Cr topology. Note that

ρ represents the values of the Poincaré variables ξ, η on the cylinder Λ, expressed as a
function of the variables (γ̃2, Γ̃2, ψ̃1, Ψ̃1, γ̃3, Γ̃3), and so we can consider these variables
as coordinates on Λ. The following lemma provides information regarding the orders at
which each of these variables first appears in the Taylor expansion of ρ.

Lemma 21. — The function ρ can be expanded in the form

(71) ρ = 1
L2
ρ0 + 1

L2
2

ρ1 + L10
2

L6
3

ρ2 + ε̂ ρ3

where ε̂ ≲ L9
2

L6
3

and

(72)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ρ0 = ρ0(Γ̃2),

ρ1 = ρ1(γ̃2, Γ̃2, Ψ̃1),

ρ2 = ρ2(γ̃2, Γ̃2, ψ̃1, Ψ̃1),

ρ3 = ρ3(γ̃2, Γ̃2, ψ̃1, Ψ̃1, γ̃3, Γ̃3),

where the Cr norms of ρi , i = 0,1,2,3, are uniformly bounded with respect to L2 and L3.

Proof. — As already explained in Remark 19, the existence of the Cr normally
hyperbolic invariant manifold, its regularity with respect to the parameters, and its graph
parametrisation is a direct consequence of Fenichel Theory. It only remains to compute
its expansion. We follow the approach considered in [31] by Delshams, de la Llave and
Seara (see also [60]). That is why we consider the invariance equation for the graph
parametrisation of the cylinder and expand the parametrisation and the equation with
respect to the parameters.

Let us denote by

x = (ξ, η), y = (γ̃2, Γ̃2, ψ̃1, Ψ̃1, γ̃3, Γ̃3)

the inner and normal variables respectively. Since the unperturbed cylinder (66) is defined
by the equation x = 0, Fenichel Theory ensures the existence of a graph parametrisation
of the cylinder x = ρ(y)= ρ(y; ε,μ).

The invariance of the graph then implies the following. Denote by X the Hamil-
tonian vector field (which we will make precise below), and denote by XN and XT its x

(normal) and y (tangential) components respectively. Then, the invariance of ρ implies
that

XN
(

ρ(y), y
)= Dρ(y)XT

(

ρ(y), y
)

.

In order to prove the lemma, we expand this equation and observe the variables on which
each term in the expansion of ρ depends.
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Denote by X̃ the vector field associated to the Hamiltonian Fsec in (31). Note that
the first term is of order ε6. Therefore, to normalise and have a regular perturbation
problem we define X = ε−6X̃, which can be written as

X(x, y)=
∑

i,j≥1

εi−6μjXij(x, y)

where Xij is the Hamiltonian vector field associated to the Hamiltonian Fij (see (31)). Note
that, on one hand, when μ= 0, the terms in the series start with i = 6 and therefore this
is a regular perturbation problem in ε. On the other hand, the first terms in μ are order
O(μ6) and therefore, since ε� μ the terms in μ are also small (in fact, one could define
the new small parameter μ̃= μ/ε and expand in parameters ε and μ̃).

We analyse the terms in the expansion ρ(y; ε,μ) in two steps. First the case μ= 0
and then we consider the μ-dependent terms.

When μ= 0, by Proposition 11, the vector field X does not depend on ψ̃1, γ̃3 and
Γ̃3. Therefore, from the invariance equation, it can be seen that

ρ(y; ε,0)= ρ(γ̃2, Γ̃2, Ψ̃1; ε,0).
To obtain the more precise information on this term stated in the lemma, we expand it
in ε. For the first term, it is enough to point out that the vector field associated to the
Hamiltonian H12

0 +L−1
2 H12

1 = H12
0 + εH12

1 is integrable and is independent of γ̃2 and Ψ̃1.
Then, it can be seen as a 1 degree of freedom Hamiltonian depending on the parameter
Γ̃2. If one writes this vector field in Poincaré coordinates (ξ, η), it has a saddle close to
(ξ, η)= (0,0) which is of the form

(ξ, η)= ερ0(Γ̃2).

This implies that ρ(y; ε,0) is of the form

ρ(y; ε,0)= ερ0(Γ̃2)+ ε2ρ1(γ̃2, Γ̃2, Ψ̃1; ε)
for some functions ρ0, ρ1. Now we perform a perturbative argument in μ, and to this end
we write the vector field X as

X(x, y; ε,μ)=̂X0(x, y; ε)+μ6
̂X1(x, y; ε)+O

(

μ8ε−4
)

.

Note that the O(μ8ε−4) terms in the vector field expansion lead to terms of the same
order in ρ and therefore, since

μ8ε−4 = L8
2

L6
3

� ε̂,

they are contained in ρ3. Thus, we must analyse the order μ6 terms.
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For this reason, we write the parametrisation ρ as

ρ(y; ε,μ)= ρ0(y; ε)+μ6ρ1(y; ε)+O
(

μ8ε−4
)

,

where ρ0(y; ε)= ρ(y; ε,0). Then, ρ1 must satisfy

(73)
[

D̂XN
0

(

ρ0
)−Dρ0D̂XT

0

(

ρ0
)]

ρ1 −Dρ1
̂XT

0 (ρ0)= Dρ0
̂XT

1

(

ρ0
)−̂XN

1

(

ρ0
)

.

To compute ρ1 it is enough to invert the linear operator on the left hand side. However, it
is not necessary to compute the inverse operator explicitly, because we already know that
ρ1 exists, due to the regularity of ρ with respect to μ. Therefore it remains only to analyse
the dependence of ρ1 on each variable. To this end we expand ρ1 in powers of ε and we
analyse each term. Note that, by Proposition 11, the vector field ̂X1 can be expanded as

̂X1 = ε−4X10 +O
(

ε−3
)

,

where X10 is the vector field associated to the Hamiltonian H23
0 introduced in Proposi-

tion 11 (see also Lemma 15). Therefore, one can conclude

ρ1 = ε−4ρ10 +O
(

ε−3
)

.

In other words,

ρ(y; ε,μ)= ρ0(y; ε)+μ6ε−4ρ10 +O(ε̂).

That is, ρ10 is just the function ρ2 in the statement of the lemma. To prove that it depends
on the variables (γ̃2, Γ̃2, ψ̃1, Ψ̃1), we look for the equation it satisfies. To this end, it is
enough to expand (73) in powers of ε to obtain

[

D̂XN
0

(

ρ0
)−Dρ0D̂XT

0

(

ρ0
)]

ρ10−Dρ10
̂XT

0 (ρ0)= Dρ0XT
10

(

ρ0
)−XN

10

(

ρ0
)

.

Then, it is enough to point out that all the terms in this equation are independent of γ̃3

and Γ̃3 and therefore ρ10 must be independent of these variables too. □

Denote by Fin = Fsec|Λ the restriction of the secular Hamiltonian to the normally
hyperbolic invariant manifold Λ.

Corollary 22. — The expansion of the inner Hamiltonian Fin in powers of ε = 1
L2

and μ= L2
L3

satisfies the following properties:

(1) The lowest order term containing Γ̃2 is

(74) ε6H̄12
0 = ε6Γ̃2

2,

up to a nonzero multiplicative constant independent of ε and μ, which is the leading term in

the expansion of Fin.
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(2) The lowest order terms containing the actions Ψ̃1 and Γ̃3 respectively, up to nonzero multi-

plicative constants independent of ε and μ, are ε7H̄12
1 and ε3μ6H̃3, where

(75) H̄12
1 =

(

3
Γ̃2

2

L2
1

− 1
)

Ψ̃1 +H′
1(Γ̃2),

for some function H′
1, and where H̃3 is defined by (42).

(3) The lowest order term containing the angle γ̃2 is at least of order ε8.

(4) The lowest order terms containing the angles ψ̃1 and γ̃3 respectively, up to nonzero multi-

plicative constants, are ε2μ6H23
0 and ε2μ8H23

3 , where H23
0 is defined by (39) and H23

3 is

defined by (50).

Proof. — The Poincaré variables (ξ, η) first appear in H12
0 , where they always ap-

pear at least quadratically (see (63)). Squaring the formula (71) for the function ρ, using
(72), and recalling that the order of H12

0 is ε6 = L−6
2 , we see that the function ρ satisfies

the following properties:

– The first-order correction from ρ to the inner Hamiltonian that contains γ̃2, Γ̃2

is of order O(ε8);
– The first-order correction from ρ to the inner Hamiltonian that contains Ψ̃1 is

of order O(ε9);
– The first-order correction from ρ to the inner Hamiltonian that contains ψ̃1 is

of order O(ε3μ6);
– The first-order correction from ρ to the inner Hamiltonian that contains γ̃3, Γ̃3

is of order O(ε̂ ε7) where ε̂ ≲ L9
2

L6
3
.

Comparing these orders with the first order of appearance of each variable

γ̃2, Γ̃2, ψ̃1, Ψ̃1, γ̃3, Γ̃3

in the expansion of the Hamiltonian (see Proposition 11), we see that parts 1-4 of the
corollary follow. The formulas (74) for H̄12

0 , and (75) for H̄12
1 come from restricting formula

(33) for H12
0 and formula (34) for H12

1 to Λ̃0 = {ξ = η= 0}. □

Due to Corollary 22 and Proposition 11, we have the expansion

Fin = F12
in + F23

in

with

(76)

⎧

⎨

⎩

F12
in = c12

0 + 1
L6

2
α12

0 H̄12
0 + 1

L7
2
α12

1 H̄12
1 + · · ·

F23
in = c23

0 + L4
2

L6
3
α23

0 H̄23
0 + L5

2

L7
3
α23

1 H̄23
1 + · · ·
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for some nontrivial constants α j,j+1
n , where H̄12

0 is defined by (74), and H̄12
1 is defined by

(75). The term F12
in contains the L3-independent terms and F23

in contains the rest.
The following lemma allows us to find a coordinate transformation that straightens

the symplectic form.

Lemma 23. — There is a change of coordinates

(γ̃2, Γ̃2, ψ̃1, Ψ̃1, γ̃3, Γ̃3) �→
(

γ ′
2,Γ

′
2,ψ

′
1,Ψ

′
1, γ

′
3,Γ

′
3

)

on Λ that is O(L−2
2 ) close to the identity satisfying

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Γ′
2 = Γ̃2 + 1

L3
2
P′

2(γ̃2, Γ̃2, ψ̃1, Ψ̃1)+ ε̂

L2
N′

2(γ̃2, Γ̃2, ψ̃1, Ψ̃1, γ̃3, Γ̃3),

Ψ ′
1 = Ψ̃1 + 1

L3
2
P′

1(γ̃2, Γ̃2, ψ̃1, Ψ̃1)+ ε̂

L2
N′

1(γ̃2, Γ̃2, ψ̃1, Ψ̃1, γ̃3, Γ̃3),

Γ′
3 = Γ̃3 + ε̂

L2
N′

3(γ̃2, Γ̃2, ψ̃1, Ψ̃1, γ̃3, Γ̃3),

where ε̂ ≲ L9
2

L6
3

comes from Lemma 21, such that

(77) Ω|Λ = dΓ′
2 ∧ dγ ′

2 + dΨ ′
1 ∧ dψ ′

1 + dΓ′
3 ∧ dγ ′

3.

Proof. — Recall in Lemma 21 we obtained the expansion (71) for the function ρ.
Denote by U the neighbourhood of the origin in R2 in which the Poincaré variables (ξ, η)
are valid, and by V the subset of R3 to which the actions (Γ̃2, Ψ̃1, Γ̃3) belong. Define the
inclusion

P : T3 ×V −→ U× (T3 ×V
)

by (ξ, η, y)= P(y)= (ρ(y), y). Then Ω1 = P∗Ω, is the pullback of the canonical form in
the tilde coordinates

We claim that Ω1 is exact. Indeed, we have Ω= dλ where

λ= ξ dη+ Γ̃2 dγ̃2 + Ψ̃1 dψ̃1 + Γ̃3 dγ̃3

is the Liouville 1-form. Let λ1 = P∗λ. Then Ω1 = dλ1 since the pullback commutes with
the differential, and so Ω1 is exact.

Now, denote by ρξ , ρη the ξ, η components of ρ, and by ρj,ξ , ρj,η the ξ, η compo-
nents of ρj for each j = 0,1,2,3. Recall Ω0 is defined by (67). We have

Ω1 = P∗Ω= dρξ ∧ dρη +Ω0 =Ω0 +R1 +R2

where, since ρ0 only depends on Γ̃2,

R1 = 1
L3

2

[

dρ0,ξ ∧
(

dρ1,η + L8
2

L6
3

dρ2,η

)

+
(

dρ1,ξ + L8
2

L6
3

dρ2,ξ

)

∧ dρ0,η

]
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+ 1
L4

2

(

dρ1,ξ + L8
2

L6
3

dρ2,ξ

)

∧
(

L8
2

L6
3

dρ2,η

)

R2 = dρξ ∧ dρη −R1.

Then R1 is of order 1
L3

2
and does not depend on γ̃3, Γ̃3, and R2 is of order ε̂

L2
. We first

eliminate R1 by a change of coordinates which does not depend on γ̃3, Γ̃3 and then we
eliminate R2.

Suppose there exists a coordinate transformation

h0 : (γ̃2, Γ̃2, ψ̃1, Ψ̃1, γ̃3, Γ̃3) �→
(

γ ∗
2 ,Γ

∗
2,ψ

∗
1 ,Ψ

∗
1 , γ̃3, Γ̃3

)

so that

(78) h∗0Ω
′ =Ω0 where Ω′ =Ω0 +R1.

Suppose moreover there is a (nonautonomous) vector field Xt such that h0 = φε where
φt is the time-t map of Xt , and where ε = L−3

2 . Differentiating (78) with respect to ε and
using Cartan’s magic formula, we get

0 = d

dε

[

φ∗εΩ
′]= φ∗ε

[

d

dε
Ω′ +LXt

Ω′
]

= φ∗ε
[

d

dε
Ω′ + iXt

dΩ′ + diXt
Ω′
]

where LXt
is the Lie derivative with respect to Xt and iXt

is the contraction operator of
Xt . Now, Ω′ =Ω0 + R1 is also exact, with Ω′ = dλ′ for some 1-form λ′, by an argument
analogous to the above proof of exactness of Ω1. Therefore

diXt
Ω′ = − d

dε
Ω′ = − d

dε
dλ′ = −d

(

d

dε
λ′
)

.

Then, to obtain a vector field Xt with this property, it is enough to look for Xt satisfying

iXt
Ω′ = − d

dε
λ′.

It is easy to check that a solution Xt to this equation exists; its flow exists at least for time
ε; and its time-ε map, by construction, is the required coordinate transformation h0.

In the new coordinates, the symplecticΩ1 becomes of the form Ω̂1 = h∗0Ω1 =Ω0+
R̂2, where R̂2 = h∗0R2. Then, since R̂2 is of order ε̂

L2
, we may repeat the procedure again

to complete the proof. □

Since the coordinate transformation provided by Lemma 23 is O(L−2
2 ) close to

the identity, the expansions (76) are unchanged (at least) up to the terms H̄j,j+1
2 . The
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restriction of the secular Hamiltonian to Λ can be written as

(79) Fin = F12
in + F23

in = c0 +
∞
∑

n=0

εnαnhn

where

ε0 = 1
L6

2

� ε1 = 1
L7

2

� ε2 = L4
2

L6
3

� · · ·

and

(80) h0 = H̄12
0 , h1 = H̄12

1 , h2 = H̄23
0 , . . . α0 = α12

0 , α1 = α12
1 , α2 = α23

0 , . . .

(see (32)). In the next lemma we perform an arbitrary number k of steps of symplectic
averaging.

Lemma 24. — Let (k1, k2) ∈ N2. There is a symplectic coordinate transformation

Φ : (γ ′
2,Γ

′
2,ψ

′
1,Ψ

′
1, γ

′
3,Γ

′
3

) �→ (γ̂2, Γ̂2, ψ̂1, Ψ̂1, γ̂3, Γ̂3)

on Λ that is O(L11
2

L6
3
) close to the identity such that the restriction F̂ of the secular Hamiltonian to Λ,

defined in (79), becomes

F̂ = F̂0(Γ̂2, Ψ̂1, Γ̂3; ε,μ)+ εk1μk2 F̂1(γ̂2, Γ̂2, ψ̂1, Ψ̂1, γ̂3, Γ̂3; ε,μ)
where F̂0 = ε6c0Γ̂

2
2 + ε7ĥ0(Γ̂2, Ψ̂1, Γ̂3; ε,μ), where ε = 1

L2
, μ = L2

L3
, and where F̂j is uniformly

bounded in ε,μ for j = 0,1. Moreover, the transformations of the actions satisfy

Γ̂2 = Γ′
2 +O

(

L9
2

L6
3

)

,(81)

Ψ̂1 =Ψ ′
1 −

L11
2

L6
3

α2

α1

cos(2ψ ′
1)

2(3 (Γ
′
2)

2

L2
1
− 1)

+ · · ·(82)

Γ̂3 = Γ′
3 +

L13
2

L8
3

α̃

(

3
(Γ′

2)
2

L2
1

− 1
)−1[1

3
ν0 cos

(

γ ′
3 + 3ψ ′

1

)+ ν1 cos
(

γ ′
3 +ψ ′

1

)

(83)

− ν2 cos
(

γ ′
3 −ψ ′

1

)− 1
3
ν3 cos

(

γ ′
3 − 3ψ ′

1

)

]

+ · · ·

where α̃ is a nontrivial constant, and the constants νj are given by (51), (52).

Proof. — The fact that such a coordinate transformation exists is a standard result
from averaging theory and the fact that the frequencies (γ̃2, ψ̃1, γ̃3) are at different time
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scales. We compute the first order. There is a Hamiltonian function K such that the
corresponding flow φ t

K with respect to the standard symplectic form Ω1 (given by (77))
satisfies φ1

K =Φ. We can write

K =
k
∑

n=2

ε̂nKn

where the sum starts at n = 2 because h0, h1 do not depend on the angles γ ′
2,ψ

′
1, γ

′
3. In

order to obtain a first order approximation of Φ we determine ε̂2, K2. The purpose of
K2 is to eliminate the angle ψ ′

1 from h2 by adjusting the action Ψ ′
1, which first appears in

h1. Set

ε̂2 = ε2

ε1
= L11

2

L6
3

.

Suppose K2 does not depend on γ ′
2. Then, from (75) and (80),

Fin ◦ φ−ε̂2K2
= c0 + ε0α0h0 ◦ φ−ε̂2K2

+ ε1α1h1 ◦ φ−ε̂2K2
+ ε2α2h2 ◦ φ−ε̂2K2

+ · · ·(84)

= c0 + ε0α0Γ̂
2
2 + ε1α1h1 + ε2

(

α2h2 − α1{h1,K2}
)+ · · ·

where {·, ·} is the Poisson bracket. We therefore require that K2 solves the equation

(85) {h1,K2} = α2

α1

(

h2 − 〈h2〉
)= α2

α1

(

cos2ψ ′
1 −

1
2

)

.

Let

K2 = α2

α1

sin 2ψ ′
1

4(3 (Γ
′
2)

2

L2
1
− 1)

.

Since K2 does not depend on γ ′
2, equation (84) holds; moreover K2 solves (85). From

Hamilton’s equations of motion we have

Ψ̂1 =Ψ ′
1 − ε̂2

∂K2

∂ψ ′
1

+ · · ·

which implies (82).
Since F12

oct has a factor of e1 (see (27)), it is zero on Λ̃0, and thus O(L−1
2 ) on Λ. It

follows that the angle γ ′
2 does not appear in the inner secular Hamiltonian until the term

of order O(L3
2L−6

3 ). Since the action Γ′
2 appears in the term of order O(L−6

2 ), we get the
approximation (81).
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Let us now prove formula (83). By part 6 of Proposition 11, the first-order term

where we see γ̃3 is L6
2

L8
3
α23

3 H23
3 where H23

3 is defined by (50). Notice that

〈

H23
3

〉

ψ̃1
= 1

2π

∫

T
H23

3 dψ̃1 = 0.

So this term is completely eliminated in the averaging process if one considers as inte-
grable first order L−6

2 H̄12
0 + L−7

2 H̄12
1 since then ψ̃1 has a non-trivial frequency (see (75)).

By similar logic to that used in the definition of ε̂2 and K2, we define ε̂ = L13
2

L8
3

, and

we search for a Hamiltonian function K̂ = α̃ K̃, with α̃ = α23
3

α12
1

, such that H23
3 −{H12

1 , K̃} =
0. Notice that this equation is satisfied by the Hamiltonian function

K̃ =−
(

3
(Γ′

2)
2

L2
1

− 1
)−1 [ 1

3 ν0 sin(γ ′
3 + 3ψ ′

1)+ ν1 sin(γ ′
3 +ψ ′

1)

−ν2 sin(γ ′
3 −ψ ′

1)− 1
3 ν3 sin(γ ′

3 − 3ψ ′
1)

]

.

Differentiating this expression with respect to γ ′
3 and using the formula

Γ̂3 = Γ′
3 − ε̂

∂K̂
∂γ ′

3

+ · · · = Γ′
3 − ε̂ α̃

∂K̄
∂γ ′

3

+ · · ·

yields (83). □

This completes the proof of Theorem 18. Now it only remains to compute the
second derivatives of the averaged Hamiltonian in the cylinder. This will be used to show
that certain Poincaré map associated to this Hamiltonian has nonzero torsion (see Sec-
tion 7).

5.2. The Hessian of the averaged inner Hamiltonian. — Now, consider the restriction of
the secular Hamiltonian to Λ given by Lemma 24. We have denoted this Hamiltonian
by F̂ and it is expressed as a function of the “hat” coordinates (γ̂2, Γ̂2, ψ̂1, Ψ̂1, γ̂3, Γ̂3).

The following lemma gives first-order expressions for the partial derivatives of F̂ of
orders 1 and 2 with respect to the actions Γ̂2, Ψ̂1, Γ̂3. Note that the Hamiltonian F̂ given
in Lemma 24 is just given by F̂0 plus very small terms. Therefore, we only need to analyse
the derivatives of F̂0.

The Hessian matrix of F̂ will be useful to determine the torsion of a certain
Poincaré map of the inner dynamics. Indeed, the highest order term of the torsion will
depend only on those derivatives.

Lemma 25. — The first and second-order partial derivatives of F̂ with respect to the actions

Γ̂2, Ψ̂1, Γ̂3 are

∂F̂

∂Γ̂2

= ε6C12
6 Γ̂2

L2
1 δ

3
1

+ · · · , ∂F̂

∂Ψ̂1

= 3ε7C12
L2

1 − 3 Γ̂2
2

L2
1 δ

4
1

+ · · ·
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∂F̂

∂Γ̂3

= ε3μ6C23
(20− 2 δ2

1) δ3

δ2
1 δ

3
2

+ · · · , ∂2F̂

∂Γ̂2
2

= ε6C12
6

L2
1 δ

3
1

+ · · ·

∂2F̂

∂Ψ̂2
1

= 12ε8C12

(

3 Γ̂2
2 − L2

1

L2
1 δ

5
1

)

+ · · · ,

∂2F̂

∂Γ̂2
3

= ε4μ6C23
(20− 12 δ2

1)

δ2
1 δ

3
2

+ · · ·

∂2F̂

∂Γ̂2∂Ψ̂1

=−ε7C12
18 Γ̂2

L2
1 δ

4
1

+ · · · , ∂2F̂

∂Γ̂2∂Γ̂3

= ε4μ6C23
24 δ3

δ1 δ
3
2

+ · · ·

∂2F̂

∂Ψ̂1∂Γ̂3

=−ε4μ6C23
40 δ3

δ3
1 δ

3
2

+ · · ·

where ε = 1
L2

and μ= L2
L3

, and where C12,C23 are nonzero constants independent of L2 and L3 coming

from F12
quad, F23

quad respectively.

To prove this lemma we proceed in several steps. First we analyse the averaged
Hamiltonian

〈Fin〉(γ̃2,ψ̃1,γ̃3)

where Fin is the Hamiltonian given by Corollary 22. In particular, we analyse the linear
and quadratic terms with respect to the actions of the averaged Hamiltonian.

Then, we prove that these terms remain unchanged (at first order) when one ap-
plies the change of coordinates given by Lemmas 23 and 24. This implies that these terms
give the first order of the first and second derivatives given in Lemma 25.

Proof of Lemma 25. — The formulas for the first derivatives are straightforward us-
ing the expansion of the Hamiltonian Fsec given by Proposition 11 and the expansion of
the normally hyperbolic invariant cylinder given by Lemma 21. Indeed, the expansion of
Fsec given in Proposition 11 gives explicitly the first order of the linear terms in the actions
Γ̃2, Ψ̃1, Γ̃3 of the Hamiltonian. One can easily compute the pullback of these terms in the
cylinder and then show that the changes of coordinates given by Lemmas 23 and 24 do
not alter these first orders.

Now we analyse the second derivatives. Note that Proposition 11 does not give
terms which are quadratic in the actions and therefore it does not provide first orders of
the second derivatives. To this end we have to do a deeper analysis of the Hamiltonian
〈Fin〉(γ̃2,ψ̃1,γ̃3)

.
To analyse it, we first analyse the Hamiltonian 〈Fsec〉(γ̃2,ψ̃1,γ̃3)

, where Fsec is the
Hamiltonian analysed in Proposition 11, restricted to the normally hyperbolic invari-
ant cylinder given by Lemma 21. We use the expansions of the Hamiltonian given by
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the Proposition 11 and the expansion of the parameterization of the cylinder given in
Lemma 21.

The first orders in the actions in the Hamiltonian 〈Fin〉(γ̃2,ψ̃1,γ̃3)
come from F12

quad

and F23
quad. In order to compute the derivatives, we go back to the original formulas (26)

for F12
quad and (43) for F23

quad. We average out the angles γ̃2, ψ̃1 from these Hamiltonians
(recall F12

quad and F23
quad do not depend on γ3), and compute the derivatives with respect

to the actions. We compute the expansions of these derivatives in powers of ε = 1
L2

and
μ= L2

L3
.

First we compute the derivatives of F12
quad restricted to Λ̃0. Recall that Γ1 = L1 on

Λ̃0; therefore e1|Λ̃0
= 0 and so

K1 = F12
quad|Λ̃0

= a2
1

8 a3
2 (1− e2

2)
3
2

(

3 cos2 i12 − 1
)

where e2 is defined by (25), and cos i12 is defined by (28). Therefore, using again the fact
that Γ1|Λ̃0

= L1, we see that the first and second partial derivatives of K1 are

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂2K1
∂Γ2

2
= a2

1
8 a3

2
(

45 L3
2Ψ

4
1

2Γ7
2 L2

1
− 18 L3

2Ψ
2
1

Γ5
2 L2

1
− 45 L3

2Ψ
2
1

Γ7
2

+ 45 L2
1 L3

2

2Γ7
2

+ 3 L3
2

2Γ3
2 L2

1
+ 6 L3

2
Γ5

2
)

∂2K1
∂Ψ2

1
= a2

1
8 a3

2
(

9 L3
2Ψ

2
1

Γ5
2 L2

1
− 3 L3

2

Γ3
2 L2

1
− 3 L3

2
Γ5

2
)

∂2K1
∂Γ2∂Ψ1

= a2
1

8 a3
2
(− 15 L3

2Ψ
3
1

Γ6
2 L2

1
+ 9 L3

2Ψ1

Γ4
2 L2

1
+ 15 L3

2Ψ1

Γ6
2
)

∂K1
∂Γ2

= a2
1

8 a3
2
(− 15 L3

2Ψ
4
1

4Γ6
2 L2

1
+ 9 L3

2Ψ
2
1

2Γ4
2 L2

1
+ 15 L3

2Ψ
2
1

2Γ6
2

− 15 L2
1 L3

2

4Γ6
2

− 3 L3
2

4Γ2
2 L2

1
− 3 L3

2
2Γ4

2
)

∂K1
∂Ψ1

= a2
1

8 a3
2
(

3 L3
2Ψ

3
1

Γ5
2 L2

1
− 3 L3

2Ψ1

Γ3
2 L2

1
− 3 L3

2Ψ1

Γ5
2
).

(86)

Due to (29) we have

(87)
∂K1

∂Γ̃2

=−∂K1

∂Γ2
,
∂K1

∂Ψ̃1

= ∂K1

∂Ψ1
+ ∂K1

∂Γ2
,
∂2K1

∂Γ̃2
2

= ∂
2K1

∂Γ2
2

,

and

(88)
∂2K1

∂Ψ̃2
1

= ∂
2K1

∂Ψ2
1

+ 2
∂2K1

∂Γ2∂Ψ1
+ ∂

2K1

∂Γ2
2

,
∂2K1

∂Γ̃2∂Ψ̃1

=− ∂2K1

∂Γ2∂Ψ1
− ∂

2K1

∂Γ2
2

.
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Combining (86), (87), and (88), effecting the coordinate transformation (29), and expand-
ing in powers of ε = 1

L2
, we see that

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂2K1
∂Γ̃2

2
= ε6C12

6
L2

1 δ
3
1
+O(ε7)

∂2K1
∂Ψ̃2

1
= 12ε8C12(

3 Γ̃2
2−L2

1

L2
1 δ

5
1
)+O(ε9)

∂2K1
∂Γ̃2∂Ψ̃1

=−ε7C12
18 Γ̃2

L2
1 δ

4
1
+O(ε8)

∂K1
∂Γ̃2

= ε6C12
6 Γ̃2

L2
1 δ

3
1
+O(ε7)

∂K1
∂Ψ̃1

= 3ε7C12
L2

1−3 Γ̃2
2

L2
1 δ

4
1
+O(ε8)

(89)

where the coefficient C12 is a nonzero constant depending on L1 and μj,Mj for j = 1,2
(but independent of L2 and L3).

Now, the restriction to Λ̃0 of F23
quad depends on γ2,ψ1. Since we have shown

in Lemma 24 that a Cr near-to-the-identity coordinate transformation transforms the
Hamiltonian to its average over γ̃2, ψ̃2, we instead consider

K2 =
[∫

T4
P2(cos ζ2)

‖q2‖2

‖q3‖3
d�2 d�3 dγ̃2 dψ̃1

]

|Γ1=L1

=
[∫

T2

〈

P2(cos ζ2)
〉

γ̃2,ψ̃1

‖q2‖2

‖q3‖3
d�2 d�3

]

|Γ1=L1

where we have taken formula (43) for F23
quad, restricted attention to Λ̃0 by setting Γ1 = L1

(and noticing that F23
quad does not depend on γ1), averaged over the variables γ̃2, ψ̃1, and

used the fact that ‖q2‖,‖q3‖ do not depend on γ̃2, ψ̃1. Recall from the proof of Lemma 15
and the coordinate transformation (29) that

cos ζ2 =
(

R1(ĩ2)R3(ψ̃1 + γ̃2) I3 R1(i2) Q̄2

) · (I3 R1(i3) Q̄3

)

where R1,R3 is the rotation around the x, z-axis respectively, I3 = R3(π), the angles
ĩ2, i2, i3 are defined by (44) and (45), and Q̄j = (cos(vj − γ̃j), sin(vj − γ̃j),0) with vj denot-
ing the true anomaly of the j th fictitious body. We can thus compute 〈P2(cos ζ2)〉γ̃2,ψ̃1

=
∫

T2
P2(cos ζ2) dγ̃2 dψ̃1, and use the resulting expression to obtain

K2 = −4π 2 a2
2

32 a3
3 (1− e2

3)
3
2

(

3 e2
2 + 2

) (

3 cos2 i2 − 1
)

× [6 cos ĩ2

√

1− cos2 ĩ2 cos i3
√

1− cos2 i3

− 6 cos2 ĩ2 cos2 i3 + 3 cos2 i3 + 3 cos2 ĩ2 − 2
]

.
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TABLE 1. — The order at which the relevant products of the actions appear in the inner Hamiltonian, as a result of
appearing explicitly in the averaged secular Hamiltonian 〈Fsec〉(γ̃2,ψ̃1,γ̃3)

, and as a result of restricting the Hamiltonian
〈Fsec〉(γ̃2,ψ̃1,γ̃3)

to the manifold Λ using the function ρ

Γ̃2Ψ̃1 Γ̃2Γ̃3 Ψ̃1Γ̃3 Γ̃2
2 Ψ̃2

1 Γ̃2
3

From 〈Fsec〉(γ̃2,ψ̃1,γ̃3)
ε7 ε4μ6 ε4μ6 ε6 ε8 ε4μ6

From ρ ε9 ε̂ ε7 ε̂ ε7 ε8 ε9 ε̂ ε7

To compute this integral we have used again the technique described in Appendix C of
[37] (used above in Lemmas 9, 15, and 16). We now effect the coordinate transformation
(29), and expand K2 in powers of μ= L2

L3
and ε = 1

L2
to obtain

K2 = ε2μ6C23

[(

K̄0,0 + εK̄0,1 + ε2K̄0,2 + · · · )+μ(K̄1,0(90)

+ εK̄1,1 + ε2K̄1,2 + · · · )

+μ2
(

K̄2,0 + εK̄2,1 + ε2K̄2,2 + · · · )]

where the formulas for K̄i,j can be found in Appendix E. Therefore we can compute

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂2K2

∂Γ̃2
3

= ε4μ6C23
(20−12 δ2

1)

δ2
1 δ

3
2

+O(ε5μ6, ε4μ7)

∂2K2

∂Γ̃3∂Ψ̃1
=−ε4μ6C23

40 δ3
δ3

1 δ
3
2
+O(ε5μ6, ε4μ7)

∂2K2

∂Γ̃3∂Γ̃2
= ε4μ6C23

24 δ3
δ1 δ

3
2
+O(ε5μ6, ε4μ7)

∂K2

∂Γ̃3
= ε3μ6C23

(20−12 δ2
1) δ3

δ2
1 δ

3
2

+O(ε4μ6, ε3μ7).

(91)

Note that these second derivatives are the derivatives of the pullback of the Hamil-
tonian to the unperturbed cylinder Λ0. To ensure that the first order of the derivatives
remain unchanged if one considers the pullback to the perturbed normally hyperbolic
invariant cylinder given by Lemma 21 it is enough to use the expansion of its parameter-
ization given by this lemma.

The sizes of each of the terms in the Hamiltonian and the cylinder parameteriza-
tion are gathered in Table 1. In each case the dominant term is the term coming from
the averaged secular Hamiltonian; this can be checked using the assumption (11) and the

inequality ε̂� L9
2

L6
3
.

To complete the proof of Lemma 25 it is enough to ensure that the change of
coordinates given in (68) does not alter the first order of the second derivatives given
in (89) and (91). This change of coordinates is the composition of the changes given by
Lemmas 23 and 24. Then, it is enough to use the estimates given in these lemmas on how
close to the identity are these changes. □
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6. The outer dynamics

Recall from Section 5 that Theorem 18 ensures the existence of the normally hy-
perbolic (weakly) invariant cylinderΛ (see (70) and (65)) with stable and unstable invariant
manifolds. The purpose of this section is to show that these invariant manifolds intersect
along two homoclinic channels. Such channels allow us to establish the existence of two
scattering maps. This is done in Section 6.1 were we provide asymptotic formulas for
those maps. These formulas are given by an associated Poincaré-Melnikov potential. Its
computation is contained in Section 6.2.

6.1. The scattering map. — Recall from Section 5 that Theorem 18 ensures the
existence of the normally hyperbolic (weakly) invariant cylinder Λ (see (70) and (65))
with stable and unstable invariant manifolds. The purpose of this section is to show that
these invariant manifolds intersect along two homoclinic channels. Such channels allow
us to establish the existence of two scattering maps S± :Λ→Λ′, for some Λ′ such that
Λ ⊂ Λ′ ⊂ T3 × R3 (see Appendix B for the definition). Then, we derive a first-order
approximation of the changes in the actions Ψ̂1, Γ̂3 in the ‘hat’ coordinates defined by
Theorem 18. The following theorem is the main result of this section.

Theorem 26. — The stable and unstable invariant manifolds of the normally hyperbolic invari-

ant cylinder Λ introduced in Theorem 18 intersect transversally along (at least) two homoclinic channels.

Associated to these channels, there exist two scattering maps S± :Λ→Λ′ such that

S± : (γ̂2, Γ̂2, ψ̂1, Ψ̂1, γ̂3, Γ̂3) �−→
(

γ̂ ∗
2 , Γ̂

∗
2, ψ̂

∗
1 , Ψ̂

∗
1 , γ̂

∗
3 , Γ̂

∗
3

)

with

Ψ̂∗
1 = Ψ̂1 + L9

2

L6
3

S±
1 (ψ̂1, Γ̂2)+ · · · , Γ̂∗

3 = Γ̂3 + L11
2

L8
3

S±
3 (ψ̂1, γ̂3, Γ̂2)+ · · ·

where

S±
1 (ψ̂1, Γ̂2)=∓α23

2 κ

(

π Γ̂2

A2 L2
1

)

c2 cos ψ̂1(92)

+ α
23
0

α12
1

β2
L1

6

√

3
2
Γ̂2

√

1− 5
3
Γ̂2

2

L2
1

sin 2ψ̂1

3 Γ̂
2
2

L2
1
− 1
,

S±
3 (ψ̂1, γ̂3, Γ̂2)(93)

=∓α23
5 κ

(

π Γ̂2

A2 L2
1

)[

50 δ1 δ3 sin γ̂3 cos ψ̂1 sin ψ̂1
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− 70 δ3

δ1
sin γ̂3 cos ψ̂1 sin ψ̂1

+ 105 δ2
3

δ2
1

cos γ̂3 cos2 ψ̂1 − 75 δ2
3 cos γ̂3 cos2 ψ̂1

+ 25 δ2
1 cos γ̂3 cos2 ψ̂1 − 35 cos γ̂3 cos2 ψ̂1

− 105 δ2
3

δ2
1

cos γ̂3 + 60 δ2
3 cos γ̂3 − 17 δ2

1 cos γ̂3 + 28 cos γ̂3

]

+ L1

6

√

3
2
β2 Γ̂2

√

1− 5
3
Γ̂2

2

L2
1

α̃

(

3
Γ̂2

2

L2
1

− 1
)−1

[

ν0 cos(γ̂3 + 3ψ̂1)

+ ν1 cos(γ̂3 + ψ̂1)+ ν2 cos(γ̂3 − ψ̂1)+ ν3 cos(γ̂3 − 3ψ̂1)
]

.

where the function κ is defined by

(94) κ(x)=
√

2
3

L2
1

χ

[

1− x

sinh x

]

,

the constant c2 is defined in (41), and χ, A2 are the constants defined in (57), the constants αk
ij come

from the expansion of the secular Hamiltonian, and are defined in Section 3, the constant β2 is defined in

Appendix D, the nontrivial constant α̃ comes from Lemma 24, and the constants νj are defined by (51)
and (52).

The proof of Theorem 26 is done in several steps. The first step is to prove that
the invariant manifolds of the cylinder intersect. This analysis is performed in the ‘tilde’
coordinates introduced in (29). The analysis of the transversality of these invariant mani-
folds allows us to derive first-order expressions for the associated scattering maps in ‘tilde’
coordinates. Then, the second step is to express the scattering maps in the ‘hat’ variables
provided by Theorem 18.

The first step is achieved by means of a suitable Poincaré-Melnikov Theory. We
follow the approach by Delshams, de la Llave and Seara in [31] which deals with the
transverse intersection of the invariant manifolds of normally hyperbolic invariant mani-
folds in nearly integrable regimes.

Recall that the Hamiltonian F12
quad analysed in Lemma 13 is integrable. We show

that the higher order terms in the Hamiltonian make the invariant manifolds of the cylin-
der split.

Recall that in Section 4 we established the existence of two hyperbolic periodic or-
bits Z0

min,Z
0
max for the Hamiltonian H12

0 ; moreover we found that the stable and unstable
manifolds of these saddles coincide along a heteroclinic trajectory Z0. Furthermore, in
Poincaré variables (61) the two saddles are reduced to a single hyperbolic periodic or-
bit, which we denote by Z0

∗, and this hyperbolic periodic orbit possesses a homoclinic
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connection, which for convenience we continue to denote by Z0. Write F̃12
quad = L6

2F12
quad.

Then F̃12
quad possesses a hyperbolic periodic orbit Zquad

∗ that is O(L−1
2 ) close to Z0

∗; more-
over there is a homoclinic orbit Zquad to Zquad

∗ that is O(L−1
2 ) close to Z0. Since F̃12

quad is
integrable, the homoclinic trajectory Zquad corresponds to a non-transverse homoclinic
manifold intersection of the stable and unstable manifolds of Zquad

∗ . Note that, as hap-
pened in Section 4, such objects are referred to the Hamiltonian F̃12

quad seen as a 1 degree
of freedom Hamiltonian in the (γ̃1, Γ̃1) variables (or equivalently in (η, ξ) variables). One
can consider the same objects in the full phase space. Then, the hyperbolic periodic or-
bit becomes the normally hyperbolic invariant cylinder and the homoclinic becomes a 7
dimensional homoclinic manifold. Note that, by the particular form of F12

quad provided by
Lemma 13, the invariant cylinder of F12

quad is just foliated by invariant quasiperiodic tori.
Abusing notation, we use the same notation for the objects in the reduced and the full
phase space.

Now, write H̄ = L6
2Fsec − F̃12

quad, and define the Poincaré-Melnikov potential by

L(γ̃2, ψ̃1, γ̃3, Γ̃2, Ψ̃1, Γ̃3)=
∫ ∞

−∞

(

H̄
(

Zquad(t, γ̃2, ψ̃1, γ̃3, Γ̃2, Ψ̃1, Γ̃3)
)

(95)

− H̄
(

Zquad
∗ (t, γ̃2, ψ̃1, γ̃3, Γ̃2, Ψ̃1, Γ̃3)

))

dt.

As with H̄ itself, the Poincaré-Melnikov potential L can be expanded in ratios of powers
of L2 and L3. The following result gives an expression for the first-order term at which
each angle γ̃2, ψ̃1, γ̃3 appears in the expansion of L. The proposition is proved in Sec-
tion 6.2.

Proposition 27. — The expansion of the Poincaré-Melnikov potential L satisfies the following

properties, where the notation α
ij

k , Hij

k is as in Proposition 11.

(1) The first nontrivial term in the expansion of L is 1
L2

2
α12

2 L12
2 where

L12
2 (γ̃2, Γ̃2)=

∫ ∞

−∞

(

H12
2

(

Z0(t, γ̃2, ψ̃1, γ̃3, Γ̃2, Ψ̃1, Γ̃3)
)

−H12
2

(

Z0
∗(t, γ̃2, ψ̃1, γ̃3, Γ̃2, Ψ̃1, Γ̃3)

))

dt

= L̃12
2 (Γ̃2) sin γ̃2

and where L̃12
2 is an analytic function of Γ̃2 that is nonvanishing for Γ̃2 ∈ [ζ1, ζ2] (see

(70), (65), and Appendix F).

(2) The first term in the expansion of L that depends on ψ̃1 is
L9

2

L6
3
α23

2 L23
2 where

L23
2 (γ̃2, ψ̃1, Γ̃2)=

∫ ∞

−∞

(

H23
2

(

Z0(t, γ̃2, ψ̃1, γ̃3, Γ̃2, Ψ̃1, Γ̃3)
)
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−H23
2

(

Z0
∗(t, γ̃2, ψ̃1, γ̃3, Γ̃2, Ψ̃1, Γ̃3)

))

dt

= κ
(

π Γ̃2

A2 L2
1

)

[c1 cos γ̃2 cos ψ̃1 + c2 sin γ̃2 sin ψ̃1]

where the function κ is defined in (94), the constants c1, c2 are defined in (41), and χ, A2

are the constants defined in (57).

(3) The first term in the expansion of L that depends on γ̃3 is
L11

2

L8
3
α23

5 L23
5 where

L23
5 (γ̃2, ψ̃1, γ̃3, Γ̃2)=

∫ ∞

−∞

(

H23
5

(

Z0(t, γ̃2, ψ̃1, γ̃3, Γ̃2, Ψ̃1, Γ̃3)
)

−H23
5

(

Z0
∗(t, γ̃2, ψ̃1, γ̃3, Γ̃2, Ψ̃1, Γ̃3)

))

dt

= κ
(

π Γ̃2

A2 L2
1

)

(

J1(ψ̃1, γ̃3) cos γ̃2 + J2(ψ̃1, γ̃3) sin γ̃2

)

where again κ is the function defined by (94), and where

J1(ψ̃1, γ̃3)= 30 δ2
3 sin γ̃3 cos ψ̃1 sin ψ̃1 − 10 δ2

1 sin γ̃3 cos ψ̃1 sin ψ̃1

− 20 δ1 δ3 cos γ̃3 cos2 ψ̃1 + 10 δ1 δ3 cos γ̃3

J2(ψ̃1, γ̃3)=−50 δ1 δ3 cos γ̃3 cos ψ̃1 sin ψ̃1 + 70 δ3

δ1
cos γ̃3 cos ψ̃1 sin ψ̃1

+ 105 δ2
3

δ2
1

sin γ̃3 cos2 ψ̃1

− 75 δ2
3 sin γ̃3 cos2 ψ̃1 + 25 δ2

1 sin γ̃3 cos2 ψ̃1

− 35 sin γ̃3 cos2 ψ̃1 − 105 δ2
3

δ2
1

sin γ̃3

+ 60 δ2
3 sin γ̃3 − 17 δ2

1 sin γ̃3 + 28 sin γ̃3.

The following result guarantees the existence of two homoclinic channels, and thus
two scattering maps; furthermore it provides first-order approximations of the scattering
maps in ‘tilde’ variables.

Lemma 28. — The secular Hamiltonian has two homoclinic channels Γ± corresponding to the

normally hyperbolic invariant manifold Λ, and there are two scattering maps defined globally on Λ (see

(70) and (65)) in the variables (29) by

S̃± : (γ̃2, ψ̃1, γ̃3, Γ̃2, Ψ̃1, Γ̃3) �−→
(

γ̃ ∗
2 , ψ̃

∗
1 , γ̃

∗
3 , Γ̃

∗
2, Ψ̃

∗
1 , Γ̃

∗
3

)
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with

γ̃ ∗
2 = γ̃2 +Δ±

2 (Γ̃2; · · · ), ψ̃∗
1 = ψ̃1 + 1

L2
2

Δ±
1 (Γ̃2; · · · ),

γ̃ ∗
3 = γ̃3 + L10

2

L7
3

Δ±
3 (γ̃2, ψ̃1, γ̃3, Γ̃2, Ψ̃1, Γ̃3)

and

Γ̃∗
2 = Γ̃2 + L8

2

L6
3

Θ±
2 (ψ̃1, Γ̃2; · · · ), Ψ̃∗

1 = Ψ̃1 + L9
2

L6
3

Θ±
1 (ψ̃1, Γ̃2; · · · ),

Γ̃∗
3 = Γ̃3 + L11

2

L8
3

Θ±
3 (ψ̃1, γ̃3, Γ̃2; · · · )

where the ellipsis after the semicolon denotes dependence on the remaining variables at higher order, and

where

Δ±
2 (Γ̃2; · · · )= 2 arctanχ−1 + · · · ,

Δ±
1 (Γ̃2; · · · )= L1

6

√

3
2
β2Γ̃2

√

1− 5
3
Γ̃2

2

L2
1

+ · · · , Δ±
3 = O(1)

and

Θ±
2 (ψ̃1, Γ̃2; · · · )=±α12

1 α
23
2 κ

(

π Γ̃2

A2 L2
1

)

c2

(

3
Γ̃2

2

L2
1

− 1
)

L2
1

2 Γ̃2

cos ψ̃1 + · · ·

Θ±
1 (ψ̃1, Γ̃2; · · · )=∓α23

2 κ

(

π Γ̃2

A2 L2
1

)

c2 cos ψ̃1 + · · ·

Θ±
3 (ψ̃1, γ̃3, Γ̃2; · · · )=∓α23

5 κ

(

π Γ̃2

A2 L2
1

)

∂J2

∂γ̃3
(ψ̃1, γ̃3)+ · · ·

where κ is the function defined by (94).

Proof. — Denote by (ω0,ω1,ω2) the frequency vector of the angles (γ̃2, ψ̃1, γ̃3) on
a torus on Λ corresponding to fixed values of the actions Γ̃2, Ψ̃1, Γ̃3 for the Hamiltonian
F̃12

quad. Its particular form, given in Lemma 13, implies that

ω0 = 2α12
0

Γ̃2

L2
1

+O
(

1
L2

)

ω1 = O
(

1
L2

)

, ω2 = 0.

Consider the function

(96) τ �−→L(γ̃2 −ω0 τ, ψ̃1 −ω1 τ, γ̃3 −ω2 τ, Γ̃2, Ψ̃1, Γ̃3)
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where L is the Poincaré-Melnikov potential defined by (95). Results of [31] imply that
nondegenerate critical points of (96) correspond to transverse homoclinic intersections of
the stable and unstable manifolds ofΛ. Equation (95), Proposition 11, and Proposition 27
imply that

L= 1
L2

2

α12
2 L12

2 +O
(

L9
2

L6
3

)

.

The function τ �→L12
2 (γ̃2 −ω0 τ, Γ̃2) has nondegenerate critical points τ± where ω0τ± =

γ̃2 ± π

2 . It follows that there are functions

τ ∗±(γ̃2, ψ̃1, γ̃3, Γ̃2, Ψ̃1, Γ̃3)= 1
ω0

(

γ̃2 ± π2
)

+O
(

L11
2

L6
3

)

such that

d

dτ
|τ=τ∗±L(γ̃2 −ω0 τ, ψ̃1 −ω1 τ, γ̃3 −ω2 τ, Γ̃2, Ψ̃1, Γ̃3)= 0.

We now introduce the reduced Poincaré-Melnikov potentials

L∗
±(γ̃2, ψ̃1, γ̃3, Γ̃2, Ψ̃1, Γ̃3)

=L
(

γ̃2 −ω0 τ
∗
±, ψ̃1 −ω1 τ

∗
±, γ̃3 −ω2 τ

∗
±, Γ̃2, Ψ̃1, Γ̃3

)

.

Now, following again [31], the changes in the actions coming from the scattering maps
S̃± are defined using the functions L∗

± via

Γ̃∗
2 = Γ̃2+ ∂L

∗
±

∂γ̃2
+· · · , Ψ̃∗

1 = Ψ̃1+ ∂L
∗
±

∂ψ̃1

+· · · , Γ̃∗
3 = Γ̃3+ ∂L

∗
±

∂γ̃3
+· · ·

Note that the cylinder frequencies in the model in [31] all have the same time scale and
moreover the first order of the perturbation depends on all the angles. On the contrary,
in our model all have different speeds and the angles ψ̃1 and γ̃3 appear only at higher
order terms (see Proposition 11). Still, one can easily check that the statements in [31] are
still valid in the present setting. The only difference is that the first order of the scattering
maps in the actions Ψ̃1 and Γ̃3 come from higher orders of the Melnikov potential.

Indeed, we have

∂L∗
±

∂γ̃2
= L9

2

L6
3

α23
2

∂L23
2

∂ψ̃1

∂

∂γ̃2

(

ψ̃1 − τ ∗±ω1

)+ · · ·

= −L9
2

L6
3

α23
2 κ

(

π Γ̃2

A2 L2
1

)

c2 sin
(

∓π
2

)

cos(ψ̃1)ω1
∂τ ∗±
∂γ̃2

+ · · ·
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= ± L8
2

L6
3

α12
1 α

23
2 κ

(

π Γ̃2

A2 L2
1

)

c2

(

3
Γ̃2

2

L2
1

− 1
)

1
ω0

cos ψ̃1 + · · ·

= ± L8
2

L6
3

α12
1 α

23
2 κ

(

π Γ̃2

A2 L2
1

)

c2

(

3
Γ̃2

2

L2
1

− 1
)

L2
1

2 Γ̃2

cos ψ̃1 + · · · ,

∂L∗
±

∂ψ̃1

= L9
2

L6
3

α23
2

∂L23
2

∂ψ̃1

+ · · · = ∓L9
2

L6
3

α23
2 κ

(

π Γ̃2

A2 L2
1

)

c2 cos ψ̃1 + · · · ,

and

∂L∗
±

∂γ̃3
= L11

2

L8
3

α23
5

∂L23
5

∂γ̃3
+ · · · = ∓L11

2

L8
3

α23
5 κ

(

π Γ̃2

A2 L2
1

)

∂J2

∂γ̃3
(ψ̃1, γ̃3)+ · · ·

For the angles γ̃2, ψ̃1, γ̃3, the first-order term under application of the scattering
map is a so-called phase shift. This is a change in the angle that comes from the integrable
part of the Hamiltonian along the separatrix, and does not necessarily depend on the
functions L∗

± at first order. The phase shift in γ̃2 comes from (60) as follows:

Δ2(Γ̃2; · · · )= lim
t→+∞

(

γ̃ 2
2 (t)− γ̃ 2

2 (−t)
)= 2 arctanχ−1.

The phase shift in ψ̃1 is computed in Appendix D. As for the phase shift in γ̃3, we simply

estimate that it cannot be larger than O(L10
2

L7
3
) for the following reason: the first order term

in the expansion of the secular Hamiltonian containing Γ̃3 is of order L3
2

L6
3

(see Proposi-
tion 11). Since this term provides no phase shift in γ̃3 at first order, the largest possible
term that can produce a phase shift has another factor of L2

L3
. Since we normalise the

entire secular Hamiltonian by L6
2, we see that the phase shift in γ̃3 cannot be larger than

terms of order L3
2

L6
3

L2
L3

L6
2 = L10

2

L7
3

. □

Remark 29. — Note that we do not give an expression for Δ3 in Lemma 28. Indeed we require

only an estimate on its order; as we will see in the proof of Lemma 30, the phase shift in γ̃3 is small

enough that we can ignore it.

Next, we combine Lemma 28 and the coordinate transformation (γ̃2, ψ̃1, γ̃3, Γ̃2,

Ψ̃1, Γ̃3) �→ (γ̂2, ψ̂1, γ̂3, Γ̂2, Ψ̂1, Γ̂3) provided by Theorem 18 (see also Remark 20) to pro-
duce an expression for the scattering maps S± in ‘hat’ variables, thus completing the proof
of Theorem 26.

Lemma 30. — In the ‘hat’ coordinates, the scattering maps S± : Λ→ Λ′ introduced in

Lemma 28 are given by

S± : (γ̂2, ψ̂1, γ̂3, Γ̂2, Ψ̂1, Γ̂3) �−→
(

γ̂ ∗
2 , ψ̂

∗
1 , γ̂

∗
3 , Γ̂

∗
2, Ψ̂

∗
1 , Γ̂

∗
3

)
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with

Ψ̂∗
1 = Ψ̂1 + L9

2

L6
3

S±
1 (ψ̂1, Γ̂2)+ · · · , Γ̂∗

3 = Γ̂3 + L11
2

L8
3

S±
3 (ψ̂1, γ̂3, Γ̂2)+ · · ·

where S±
1 and S±

3 are given by (92) and (93) respectively.

Proof. — Denote by ẑ a point on Λ in ‘hat’ coordinates, by z̃ the same point ex-
pressed in ‘tilde’ coordinates, and by Φ : z̃ �→ ẑ the coordinate transformation provided
by Theorem 18. The maps S̃±, defined in Lemma 28 send z̃ �→ z̃∗. In ‘hat’ coordinates,
the scattering maps S± are therefore defined by

ẑ∗ = S±(ẑ)=Φ ◦ S̃± ◦Φ−1(ẑ).

We compute the effect of these maps in the Ψ̂1, Γ̂3 variables. Comparing Lemma 23 and
Lemma 24 in the context of the coordinate transformation Φ, notice that we can write

Ψ̂1 = Ψ̃1 + L11
2

L6
3

Φ1(ψ̃1, Γ̃2; · · · ), Γ̂3 = Γ̃3 + L13
2

L8
3

Φ3(ψ̃1, γ̃3, Γ̃2; · · · ),

where (see equation (80))

Φ1(ψ̃1, Γ̃2; · · · )=−α
23
0

α12
1

cos(2ψ̃1)

2(3 Γ̃
2
2

L2
1
− 1)

+ · · ·

Φ3(ψ̃1, γ̃3, Γ̃2; · · · )

= α̃
(

3
Γ̃2

2

L2
1

− 1
)−1[1

3
ν0 cos(γ̃3 + 3ψ̃1)+ ν1 cos(γ̃3 + ψ̃1)

− ν2 cos(γ̃3 − ψ̃1)− 1
3
ν3 cos(γ̃3 − 3ψ̃1)

]

+ · · ·

where α̃ is a nontrivial constant. Thus

Ψ̂∗
1 = Ψ̃∗

1 +
L11

2

L6
3

Φ1

(

ψ̃∗
1 , Γ̃

∗
2; · · ·

)

= Ψ̃1 + L9
2

L6
3

Θ±
1 (ψ̃1, Γ̃2; · · · )

+ L11
2

L6
3

Φ1

(

ψ̃1 + 1
L2

2

Δ±
1 (Γ̃2; · · · ), Γ̃2 + L8

2

L6
3

Θ±
2 (ψ̃1, Γ̃2; · · · ); · · ·

)

= Ψ̂1 + L9
2

L6
3

[

Θ±
1 (ψ̃1, Γ̃2; · · · )+ ∂ψ̃1

Φ1(ψ̃1, Γ̃2; · · · )Δ±
1 (Γ̃2; · · · )

]+ · · ·
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= Ψ̂1 + L9
2

L6
3

[

Θ±
1 (ψ̂1, Γ̂2; · · · )+ ∂ψ̂1

Φ1(ψ̂1, Γ̂2; · · · )Δ±
1 (Γ̂2; · · · )

]+ · · ·

and

Γ̂∗
3 = Γ̃∗

3 +
L13

2

L8
3

Φ3

(

ψ̃∗
1 , γ̃

∗
3 , Γ̃

∗
2; · · ·

)

= Γ̃3 + L11
2

L8
3

Θ±
3 (ψ̃1, γ̃3, Γ̃2; · · · )

+ L13
2

L8
3

Φ3

(

ψ̃1 + 1
L2

2

Δ±
1 (Γ̃2; · · · ), γ̃3 + L10

2

L7
3

Δ±
3 (· · · ),

Γ̃2 + L8
2

L6
3

Θ±
2 (ψ̃1, Γ̃2; · · · ); · · ·

)

= Γ̂3 + L11
2

L8
3

[

Θ±
3 (ψ̃1, γ̃3, Γ̃2; · · · )

+ ∂ψ̃1
Φ3(ψ̃1, γ̃3, Γ̃2; · · · )Δ±

1 (Γ̃2; · · · )
]+ · · ·

= Γ̂3 + L11
2

L8
3

[

Θ±
3 (ψ̂1, γ̂3, Γ̂2; · · · )

+ ∂ψ̂1
Φ3(ψ̂1, γ̂3, Γ̂2; · · · )Δ±

1 (Γ̂2; · · · )
]+ · · ·

Therefore it remains only to compute

S±
1 (ψ̂1, Γ̂2)=Θ±

1 (ψ̂1, Γ̂2)+ ∂ψ̂1
Φ1(ψ̂1, Γ̂2)Δ

±
1 (Γ̂2; · · · )

= ∓ α23
2 κ

(

π Γ̂2

A2 L2
1

)

c2 cos ψ̂1

+ α
23
0

α12
1

β2
L1

6

√

3
2
Γ̂2

√

1− 5
3
Γ̂2

2

L2
1

sin 2ψ̂1

3 Γ̂
2
2

L2
1
− 1

and

S±
3 (ψ̂1, γ̂3, Γ̂2)

=Θ±
3 (ψ̂1, γ̂3, Γ̂2)+ ∂ψ̂1

Φ3(ψ̂1, γ̂3, Γ̂2)Δ
±
1 (Γ̂2)

=∓α23
5 κ

(

π Γ̂2

A2 L2
1

)

∂J2

∂γ̂3
(ψ̂1, γ̂3)
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+ L1

6

√

3
2
β2 Γ̂2

√

1− 5
3
Γ̂2

2

L2
1

α̃

(

3
Γ̂2

2

L2
1

− 1
)−1

×
[

ν0 cos(γ̂3 + 3ψ̂1)+ ν1 cos(γ̂3

+ψ̂1)+ ν2 cos(γ̂3 − ψ̂1)+ ν3 cos(γ̂3 − 3ψ̂1)

]

=∓α23
5 κ

(

π Γ̂2

A2 L2
1

)

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

50 δ1 δ3 sin γ̂3 cos ψ̂1 sin ψ̂1 − 70 δ3
δ1

sin γ̂3 cos ψ̂1 sin ψ̂1

+ 105 δ2
3

δ2
1

cos γ̂3 cos2 ψ̂1 − 75 δ2
3 cos γ̂3 cos2 ψ̂1

+25 δ2
1 cos γ̂3 cos2 ψ̂1 − 35 cos γ̂3 cos2 ψ̂1

− 105 δ2
3

δ2
1

cos γ̂3 + 60 δ2
3 cos γ̂3 − 17 δ2

1 cos γ̂3

+28 cos γ̂3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ L1

6

√

3
2
β2Γ̂2

√

1− 5
3
Γ̂2

2

L2
1

α̃

(

3
Γ̂2

2

L2
1

− 1
)−1

[

ν0 cos(γ̂3 + 3ψ̂1)

+ ν1 cos(γ̂3 + ψ̂1)+ ν2 cos(γ̂3 − ψ̂1)+ ν3 cos(γ̂3 − 3ψ̂1)
]

.

□

6.2. Computation of the Poincaré-Melnikov potential. — In this section we address the
proof of Proposition 27. First of all, note that part 1 of the proposition was proved in
[41] (see also Appendix F), since F12

sec coincides with the secular Hamiltonian from the
three body problem. It remains to prove parts 2 and 3 of the proposition. By Propo-
sition 11, the first terms that could potentially split the separatrices in the Ψ̃1, Γ̃3 di-
rections are H23

2 ,H
23
5 respectively, since they are the first-order terms combining the

separatrix variables γ1,Γ1, γ̃2 with the angles ψ̃1, γ̃3 respectively. Since the variables
ψ̃1, γ̃3 are constant with respect to H12

0 , we can easily write the periodic orbits Z0
min,max

and the heteroclinic orbit Z0 as functions of (t, γ̃2, ψ̃1, γ̃3, Γ̃2). We must therefore com-
pute

L23
j (γ̃2, ψ̃1, γ̃3, Γ̃2)

=
∫ ∞

0

(

H23
j ◦ Z0(t, γ̃2, ψ̃1, γ̃3, Γ̃2)−H23

j ◦ Z0
min(t, γ̃2, ψ̃1, γ̃3, Γ̃2)

)

dt+

+
∫ 0

−∞

(

H23
j ◦ Z0(t, γ̃2, ψ̃1, γ̃3, Γ̃2)−H23

j ◦ Z0
max(t, γ̃2, ψ̃1, γ̃3, Γ̃2)

)

dt
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for j = 2,5 where H23
2 is defined by (40) and H23

5 is defined by (53). Now, notice that, since
ψ̃1, γ̃3 are constant with respect to H12

0 , we can write

(97)
L23

2 (γ̃2, ψ̃1, Γ̃2)= c1 cos ψ̃1 L1(γ̃2, Γ̃2)+ c2 sin ψ̃1 L2(γ̃2, Γ̃2)

L23
5 (γ̃2, ψ̃1, γ̃3, Γ̃2)= J1(ψ̃1, γ̃3)L1(γ̃2, Γ̃2)+ J2(ψ̃1, γ̃3)L2(γ̃2, Γ̃2)

(with the constants c1, c2 defined in Lemma 15 and the expressions J1, J2 defined
in Lemma 16) where we have discarded the higher-order terms for convenience,
where

Lj(γ̃2, Γ̃2)

=
∫ ∞

0

(

Fj ◦ Z0(t, γ̃2,0,0, Γ̃2)−Fj ◦ Z0
min(t, γ̃2,0,0, Γ̃2)

)

dt

+
∫ 0

−∞

(

Fj ◦ Z0(t, γ̃2,0,0, Γ̃2)−Fj ◦ Z0
max(t, γ̃2,0,0, Γ̃2)

)

dt,

and where the functions

F1 =
√

Γ2
1 − Γ̃2

2 cos γ̃2, F2 =
√

Γ2
1 − Γ̃2

2 sin γ̃2

do not depend on ψ̃1, γ̃3.
For the rest of this section, to simplify notation, we write γ,Γ instead of γ̃2, Γ̃2,

respectively. Recall from Lemma 5 that γ = γ 0 + γ 1 + γ 2 along the separatrix, where γ 2

is defined by (60). Since γ 2 does not tend to 0 as t goes to ±∞, we must take into account
the phase shifts

(98) Δ± = lim
t→±∞arctan

(

χ−1 tanh(A2 t)
)=±arctanχ−1

along the periodic orbits Z0
min,max in order to ensure that the integrals Lj are well-defined.

This is done by taking γ = γ 0 + γ 1 +Δ+ on Z0
min and γ = γ 0 + γ 1 +Δ− on Z0

max.
Expanding the Fourier series of Lj in γ 0 for j = 1,2, we have

(99) Lj

(

γ 0,Γ
)=L∗

j eiγ 0 +L∗
j e−iγ 0

where

L∗
j =

1
2

∫ ∞

0

(

ξ+j (t)+ i η+j (t)
)

eiγ 1(t) dt + 1
2

∫ 0

−∞

(

ξ−j (t)+ i η−j (t)
)

eiγ 1(t) dt

with

(100)

{

ξ±1 (t)=−η±2 (t)=
√
Γ1(t)2 − Γ2 cosγ 2(t)−√L2

1 − Γ2 cosΔ±
η±1 (t)= ξ±2 (t)=

√
Γ1(t)2 − Γ2 sinγ 2(t)−√L2

1 − Γ2 sinΔ±
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and where Γ1(t), which describes the motion of Γ1 along the separatrix, is defined by
(59).

Lemma 31. — We can write

(101) L∗
1 =

i

2

√

2
3
Γ

A2 χ

[∫ ∞

0
f +(τ ) dτ +

∫ 0

−∞
f −(τ ) dτ

]

where

(102) f ±(τ )= (tanh τ ∓ 1) e
i 2Γ

A2 L2
1
τ

and where τ = A2 t. Furthermore

(103) L∗
2 =−iL∗

1.

Proof. — As in [41] (see Lemma 5.1, 5.2, and 5.3 of that paper) we first write the
integrands of L∗

1 in terms of γ1 and then in terms of τ = A2 t. It follows directly from (58),
(59), and (60) (see also Lemma 5.1 of [41]) that, on the separatrix, we have

(104) cosγ 2 =
√

1− 5
3

cos2 γ1, sinγ 2 =
√

5
3

cosγ1, Γ1 =
√

5
3
Γ

sinγ1
√

1− 5
3 cos2 γ1

.

It follows that

(105)
√

Γ2
1 − Γ2 =

√

2
3
Γ

1
√

1− 5
3 cos2 γ1

.

Moreover, from (57) and (98) we get

(106)

cosΔ± = χ
√

1+ χ 2
=
√

2
3
Γ

1
√

L2
1 − Γ2

,

sinΔ± =± 1
√

1+ χ 2
=±

√

2
3
Γ

χ

1
√

L2
1 − Γ2

.

Combining (100) with (104), (105), and (106) yields

(107) ξ±1 = 0, η±1 =
√

2
3

√

5
3
Γ

cosγ1
√

1− 5
3 cos2 γ1

∓
√

2
3
Γ

χ
.
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FIG. 4. — The contours C± over which we integrate f ±

Now that η±1 is written in terms of γ1, we proceed to write it in terms of τ . Equation (58)
implies that

√

1− 5
3

cos2 γ1 = χ cosh A2 t
√

χ 2 + (1+ χ 2) sinh2(A2 t)
.

This expression, together with (56), (58), and (107) proves (101) and (102). Finally, com-
paring (100) proves (103). □

In order to determine the integral of f ± over the positive and negative halves of the
real line, we instead integrate f ± over appropriately chosen contours C± in the complex
plane using the residue theorem. Initially we assume the contour has “width” R > 0.
Then, taking the limit as R →∞ allows us to derive an expression for L∗

1.
From (102), it can be seen that

(108) f ±(τ + iπ)= e
− 2π Γ

A2 L2
1 f ±(τ ).

Moreover the only singularity of tanh τ , and thus of f ±, in the region {0< Im τ < π} is
z0 = i π2 , and the residue of f ± at z0 is

Res
(

f ±, z0

)= e
− π Γ

A2 L2
1 .

We therefore define the contours C± as follows. Fix some R> 0, and denote by C+
1 the

segment of the real line from 0 to R; denote by C+
2 the straight line from R to R + iπ ;

and denote by C+
3 the straight line from R + iπ to iπ . The last part C+

4 of the contour
C+ is composed of two straight lines and a small semicircle centred at z0, so as to exclude
z0 from the interior of the region bounded by C+ (see Figure 4(a)). Similarly, C−

1 is the
segment of the real line from −R to 0; C−

2 is C+
4 traversed in the opposite direction; C−

3

is the straight line from iπ to −R+ iπ ; and C−
4 is the straight line from −R+ iπ to −R
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(see Figure 4(b)). Thus we define

C± = C±
1 ∪C±

2 ∪C±
3 ∪C±

4 .

The residue theorem implies that
∫

C+
f +(τ ) dτ = 0,

∫

C−
f −(τ ) dτ = 2π i e

− π Γ

A2 L2
1 .

In the limit as R →∞ we have

lim
R→∞

∫

C+
2

f +(τ ) dτ = 0 = lim
R→∞

∫

C−
4

f −(τ ) dτ

and

lim
R→∞

∫

C±
1 ∪C±

3

f ±(τ ) dτ =±(1− e
− 2π Γ

A2 L2
1
)

∫ ±∞

0
f ±(τ ) dτ

due to (108). The last part of the integral is
∫

C+
4

f +(τ ) dτ +
∫

C−
2

f −(τ ) dτ =
∫

C−
2

(

f −(τ )− f +(τ )
)

dτ = 2
∫

C−
2

e
i 2Γ

A2 L2
1
τ

dτ.

As the integrand of the last expression is holomorphic, this equals

2
∫

i [0,π]
e
i 2Γ

A2 L2
1
τ

dτ = i
A2 L2

1

Γ

(

1− e
− 2π Γ

A2 L2
1
)

.

Therefore summing the integral of f + over C+ and the integral of f − over C−, and taking
the limit as R →∞ yields

2π i e
− π Γ

A2 L2
1 = (1− e

− 2π Γ
A2 L2

1
)

[∫ ∞

0
f +(τ ) dτ +

∫ 0

−∞
f −(τ ) dτ + i

A2 L2
1

Γ

]

.

Rearranging terms and using (101) gives

L∗
1 =

1
2
κ

(

π Γ

A2 L2
1

)

where κ is the function defined by (94). As this is real-valued, we find from (99) and (103)
that

L1

(

γ 0
)= κ

(

π Γ

A2 L2
1

)

cosγ 0, L2

(

γ 0
)= κ

(

π Γ

A2 L2
1

)

sinγ 0

which, together with (97), completes the proof of Proposition 27.
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7. Reduction to a Poincaré map and the shadowing argument

The purpose of this section is to show that there are orbits of the four body problem
along which the quantities Ψ1 and Γ3 drift along any itinerary we choose. The idea is
to apply the shadowing results proved by the authors in [26] (see Appendix C of the
present paper for a summary of those results). As the results of that paper are for maps
(as is typically more convenient for shadowing results), we must first reduce the secular
system to a Poincaré map; this is done in Section 7.1. In doing so, we show that the map
satisfies the assumptions of Theorem 47. We then show in the subsequent sections that the
Poincaré map of the full four body problem thus satisfies the assumptions of Theorem 48,
and so, there are drifting orbits.

7.1. The Poincaré map. — In this section we show that we can extend the coordi-
nates (γ̂2, Γ̂2, ψ̂1, Ψ̂1, γ̂3, Γ̂3)on Λ to (probably non-symplectic) coordinates on a subset
of the secular phase space, and show that we can define a Poincaré map in the region in
which these coordinates are defined, within an energy level of the secular Hamiltonian.
We show that the inner map satisfies a twist condition, and deduce first-order expressions
for the scattering maps in the action variables.

Consider the region D̃ of the phase space in which the variables (ξ, η, γ̃2, Γ̃2,

ψ̃1, Ψ̃1, γ̃3, Γ̃3) (introduced in Sections 3 and 4) satisfy γ̃2, ψ̃1, γ̃3 ∈ T, Γ̃2 ∈ [ζ1, ζ2],
Ψ̃1, Γ̃3 ∈ [−1,1], and (ξ, η) belongs to the open ball of radius

√
2 L1 centred at the

origin in R2 (see (61)). Recall the constants ζ1, ζ2 were defined in (65). We now further
restrict these constants by assuming that

(109) 0< ζ1 < ζ2 <
L1√

3
.

The reason for this further restriction is to guarantee that the Poincaré map which we
will construct in this section satisfies a twist condition; see Lemma 34.

By slightly shrinking this region D̃ in the sense of Remark 20, we obtain a domain
D in which there is a (non-symplectic) coordinate transformation

(110) : (ξ, η, γ̃2, Γ̃2, ψ̃1, Ψ̃1, γ̃3, Γ̃3) �→ (ξ, η, γ̂2, Γ̂2, ψ̂1, Ψ̂1, γ̂3, Γ̂3)

where (γ̂2, Γ̂2, ψ̂1, Ψ̂1, γ̂3, Γ̂3) are the coordinates on Λ constructed in Section 5. Define
the subset E ⊂ R by E = {Fsec(z) : z ∈ D}. The following theorem is the main result of
this section.

Theorem 32. — Fix some energy level {Fsec = E0} of the secular Hamiltonian where E0 ∈ E ,

and consider the Poincaré section M =D ∩ {Fsec = E0} ∩ {γ̂2 = 0}.
(1) There is a well-defined Poincaré map F : M → M, and the set Λ̂=Λ∩M is a normally

hyperbolic invariant manifold for F.
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(2) The variables (ψ̂1, γ̂3, Ψ̂1, Γ̂3) define coordinates on Λ̂, and the inner map f = F|Λ̂ has

the form

(111) f :
{

(ψ̂∗
1 , γ̂

∗
3 )= (ψ̂1, γ̂3)+ g(Ψ̂1, Γ̂3)+O(εk1−6μk2)

(Ψ̂∗
1 , Γ̂

∗
3)= (Ψ̂1, Γ̂3)+O(εk1−6μk2)

where ε = 1
L2
, μ= L2

L3
, where k1, k2 ∈ N come from part 2 of Theorem 18, and where

det Dg(Ψ̂1, Γ̂3) �= 0.

Moreover the bottom eigenvalue of Dg(Ψ̂1, Γ̂3) is of order
L8

2

L6
3
.

(3) There are two scattering maps

Ŝ± : Λ̂−→ Λ̂′

where Λ̂′ is an open cylinder in T2 ×R2 containing Λ̂. Moreover the actions (Ψ̂∗
1 , Γ̂

∗
3) of

the image of a point (ψ̂1, γ̂3, Ψ̂1, Γ̂3) ∈ Λ̂ under the scattering maps Ŝ± is given by

Ψ̂∗
1 = Ψ̂1+ L9

2

L6
3

S±
1 (ψ̂1, Γ̂2)+· · · , Γ̂∗

3 = Γ̂3+ L11
2

L8
3

S±
3 (ψ̂1, γ̂3, Γ̂2)+· · ·

where S±
1 is defined by (92) and S±

3 is defined by (93).

We divide the proof of Theorem 32 into three lemmas. The following lemma estab-
lishes the existence of coordinates in a neighbourhood of Λ involving the ‘hat’ variables,
and the existence of a Poincaré map.

Lemma 33. — The variables (ξ̂ , η̂, ψ̂1, Ψ̂1, γ̂3, Γ̂3) define coordinates on the section M =
D ∩ {Fsec = E0} ∩ {γ̂2 = 0} for E0 ∈ E , and there is a well-defined Poincaré map F : M → M.

Furthermore the set Λ̂=Λ∩M is a normally hyperbolic invariant manifold for F.

Proof. — Denote by Φ̂ the coordinate transformation (110). The transformation Φ̂
may not be symplectic, but the flow possesses an integral Ĥ = L6

2 Fsec ◦ Φ̂ nonetheless. Fix

some level set {Ĥ = E0} of the integral. Since Φ̂ is O(L11
2

L6
3
) close to the identity, we have

(differentiating (33) with respect to Γ̃2 and effecting the coordinate transformation)

(112)
∂Ĥ

∂Γ̂2

= Γ̂2

[

2
L2

1

+ 10
Γ2

1

(

1− Γ
2
1

L2
1

)

sin2 γ1

]

+O
(

L11
2

L6
3

)

.

Observe that this is nonzero as long as Γ̂2 �= 0; indeed the term 1 − Γ2
1

L2
1

is e2
1 and thus

belongs to (0,1), and so the term inside the square brackets is strictly positive. Therefore,
by the implicit function theorem, we may express Γ̂2 as a function of the other variables
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in the energy level {Ĥ = E0}. Moreover, notice that dγ̂2
dt

is equal, up to higher order terms,
to (112). Since the time derivative of Γ̂2 is of higher order, it follows that the return map
F to the section M =D ∩ {Fsec = E0} ∩ {γ̂2 = 0} is well-defined as long as Γ̂2 �= 0, which
is true on D.

Finally, the fact that Λ̂=Λ∩M is a normally hyperbolic invariant manifold for the
return map F follows immediately from the fact thatΛ is a normally hyperbolic invariant
manifold for the flow. □

Lemma 34. — The inner map f = F|Λ̂ has the form

(113) f :
{

(ψ̂∗
1 , γ̂

∗
3 )= (ψ̂1, γ̂3)+ g(Ψ̂1, Γ̂3)+O(εk1−6μk2)

(Ψ̂∗
1 , Γ̂

∗
3)= (Ψ̂1, Γ̂3)+O(εk1−6μk2)

where ε = 1
L2
, μ= L2

L3
, where k1, k2 ∈ N come from part 2 of Theorem 18, and where

(114) det Dg(Ψ̂1, Γ̂3) �= 0.

Moreover the bottom eigenvalue of Dg(Ψ̂1, Γ̂3) is of order μ
6

ε2 .

Proof. — Consider the normalised inner Hamiltonian L6
2F̂ where F̂ is defined by

(69). By part 2 of Theorem 18, the first order term of this Hamiltonian is c0 Γ̂
2
2 , and so the

rate of change of γ̂2 is 2 c0 Γ̂2 +O(ε). Since this is of order 1, the return time of the flow
associated with the Hamiltonian function L6

2F̂ to the Poincaré section {γ̂2 = 0} is itself of
order 1. Due to equation (69), the angles ψ̂1, γ̂3 do not appear in the Hamiltonian L6

2F̂
before the terms of order εk1−6μk2 , and so the return map f has the form (113). It remains
to prove the formula (114), and to determine the order of the bottom eigenvalue of Dg.

Write P0 = Γ̂2, P1 = Ψ̂1, P2 = Γ̂3, and P = (P1,P2). Write

ωi(P0,P)= ∂F̂0

∂Pi

for i = 0,1,2, where F̂0 is defined in (69). By the implicit function theorem, in the energy
level {F̂0 = E0} where E0 ∈ E , we can write P0 = α(P), and the derivatives of α are given
by

∂α

∂Pj

(P)=− ω̂j(P)
ω̂0(P)

where we have defined ω̂i(P) = ωi(α(P),P). Using this notation we have gi(P) =
ω̂0(P)−1ω̂i(P). In the following computation, for convenience, we suppress the depen-
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dence of functions and their derivatives on P and P0 = α(P).

ω̂3
0(Dg)ij = ω̂3

0

∂gi

∂Pj

= ω̂2
0

(

∂ωi

∂P0

∂α

∂Pj

+ ∂ωi

∂Pj

)

− ω̂0 ω̂i

(

∂ω0

∂P0

∂α

∂Pj

+ ∂ω0

∂Pj

)

=−ω̂0 ω̂j

∂ωi

∂P0
+ ω̂2

0

∂ωi

∂Pj

+ ω̂i ω̂j

∂ω0

∂P0
− ω̂0 ω̂i

∂ω0

∂Pj

=−∂F̂0

∂P0

∂F̂0

∂Pj

∂2F̂0

∂P0∂Pi

+
(

∂F̂0

∂P0

)2
∂2F̂0

∂Pj∂Pi

+ ∂F̂0

∂Pi

∂F̂0

∂Pj

∂2F̂0

∂P2
0

− ∂F̂0

∂P0

∂F̂0

∂Pi

∂2F̂0

∂Pj∂P0
.

Combining this formula with the derivatives given in Lemma 25, we see that

ω̂3
0(Dg)11 = ε20 C3

12

54 (L2
1 − 3 Γ̂2

2) (L
2
1 + Γ̂2

2)

L6
1 δ

11
1

+ · · ·

ω̂3
0(Dg)12 =−ε16μ6 C2

12 C23
72 (3 L2

1 δ
2
1 + 9 Γ̂2

2 δ
2
1 − 5 L2

1 + 5 Γ̂2
2) δ3

L4
1 δ

9
1 δ

3
2

+ · · ·

ω̂3
0(Dg)21 =−ε16μ6 C2

12 C23
72 (3 L2

1 δ
2
1 + 9 Γ̂2

2 δ
2
1 − 5 L2

1 + 5 Γ̂2
2) δ3

L4
1 δ

9
1 δ

3
2

+ · · ·

ω̂3
0(Dg)22 =−ε16μ6 C2

12 C23
36 Γ̂2

2 (12 δ2
1 − 20)

L4
1 δ

8
1 δ

3
2

+ · · ·

As a result of (11) we have ε20 � ε16μ6. Since O(ω̂3
0)= ε18, the top eigenvalue of Dg is

of order O((Dg)11)= ε2. Moreover, the determinant is equal, up to higher order terms,
to the product of the entries on the diagonal of Dg; therefore it is of order μ6, and it is
nonzero as long as

Γ̂2
2

(

L2
1 − 3 Γ̂2

2

) (

L2
1 + Γ̂2

2

)(

12 δ2
1 − 20

) �= 0.

This is true whenever Γ̂2 ∈ (ζ1, ζ2) where ζ1, ζ2 satisfy condition (109) is satisfied since the
second last factor is strictly positive, and since δ2

1 ∈ (0,1) implies that the last factor never
vanishes. The fact that the bottom eigenvalue is of order ε−2μ6 follows from the fact that
the top eigenvalue is of order ε2 and the determinant is of order μ6. □

Remark 35. — The fact that condition (109) implies the twist property (114) can also be

obtained via Arnold’s isoenergetic nondegeneracy condition; that is, the condition that the so-called

bordered Hessian of F̂0 (where F̂0 is defined by (69)) has nonzero determinant (see Appendix 8 of [5]

and the references therein). The reason we have computed explicitly the derivative of the frequency vector
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g is that we need to know the order of the eigenvalues of Dg in order to obtain estimates on the diffusion

time; the bordered Hessian and its determinant do not readily provide this data.

Lemma 36. — There are two scattering maps

Ŝ± : Λ̂−→ Λ̂′

where Λ̂′ is an open cylinder in T2 ×R2 containing Λ̂. Moreover the actions Ψ̂∗
1 , Γ̂

∗
3 of the image of a

point (ψ̂1, γ̂3, Ψ̂1, Γ̂3) ∈Λ under the scattering maps Ŝ± are given by

Ψ̂∗
1 = Ψ̂1 + L9

2

L6
3

S±
1 (ψ̂1, Γ̂2)+ · · · , Γ̂∗

3 = Γ̂3 + L11
2

L8
3

S±
3 (ψ̂1, γ̂3, Γ̂2)+ · · ·

where Γ̂2 is a function of the coordinates (ψ̂1, γ̂3, Ψ̂1, Γ̂3) and the energy E0 ∈ E on the cylinder Λ̂,

where S±
1 is defined by (92) and S±

3 is defined by (93).

Proof. — By Lemma 28, there are two homoclinic channels Γ± corresponding to
the normally hyperbolic invariant manifold Λ, which give rise to two globally defined
scattering maps S± :Λ→Λ′ for some cylinderΛ′ such thatΛ⊂Λ′ ⊂ T3×R3. It follows
that the sets Γ̂± = Γ± ∩ {γ̂2 = 0} ∩ {Fsec = E0} are homoclinic channels for the return
map F to the section {γ̂2 = 0} ∩ {Fsec = E0}. Let Λ̂′ = Λ′ ∩ {γ̂2 = 0} ∩ {Fsec = E0}, and
denote by Ŝ± : Λ̂→ Λ̂′ the scattering maps corresponding to the homoclinic channels
Γ̂±. Denote by φ̂ t the time-t map of the flow of the Hamiltonian function L6

2 F̂ where
the inner Hamiltonian F̂ is defined by (69). Proposition 3 of [33] implies that there are
smooth functions τ± : Λ̂→ R such that

Ŝ±(ẑ)= φ̂τ±(ẑ) ◦ S±(ẑ)

and τ±(ẑ)= O(1) for all ẑ ∈ Λ̂. Indeed, the fact that τ±(ẑ)= O(1) is due to the functions
τ± being constructed as return times with respect to the Hamiltonian L6

2 F̂ to the section
{γ̂2 = 0}; since the time derivative of γ̂2 with respect to L6

2 F̂ is of order 1, so too is the
return time.

Now, choose any point ẑ = (ψ̂1, γ̂3, Ψ̂1, Γ̂3) ∈ Λ̂. This gives rise to a point z =
(γ̂2, ψ̂1, γ̂3, Γ̂2, Ψ̂1, Γ̂3) in Λ where γ̂2 = 0 and Γ̂2 is a function of ψ̂1, γ̂3, Ψ̂1, Γ̂3 and the
energy E0. Write z̄ = S±(z). Then the Ψ̄1, Γ̄3 components of z̄ are

(115) Ψ̄1 = Ψ̂1 + L9
2

L6
3

S±
1 (ψ̂1, Γ̂2)+ · · · , Γ̄3 = Γ̂3 + L9

2

L6
3

S±
3 (ψ̂1, γ̂3, Γ̂2)+ · · ·

Write ẑ∗ = Ŝ±(ẑ)= φ̂τ±(ẑ)(z̄). Since τ±(ẑ) is of order 1, part 2 of Theorem 18 implies that
the Ψ̂∗

1 , Γ̂
∗
3 components of ẑ∗ satisfy

(116)
(

Ψ̂∗
1 , Γ̂

∗
3

)= (Ψ̄1, Γ̄3)+O
(

εk1−6μk2
)
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where k1, k2 are assumed to be sufficiently large. Combining (115) and (116) completes
the proof of the lemma. □

7.2. Constructing transition chains of almost invariant tori. — Observe that the normally
hyperbolic invariant manifold Λ̂ constructed in Theorem 32 has a foliation by leaves

(117) L
(

Ψ̂∗
1 , Γ̂

∗
3

)= {(ψ̂1, γ̂3, Ψ̂1, Γ̂3) ∈ Λ̂ : Ψ̂1 = Ψ̂∗
1 , Γ̂3 = Γ̂∗

3

}

,

each of which is almost invariant by the inner map f , since it is of the form (111). The
following result allows us to construct sequences of leaves {Lj} of the foliation connected
by the scattering maps Ŝ± (i.e. transition chains) such that the image of each leaf Lj under
one of the scattering maps Ŝβj

(where βj ∈ {+,−}) is mapped transversely across Lj+1 in
the following sense: there is a z ∈Lj such that Ŝβj

(z) ∈Lj+1, and

(118) TŜβj
(z)Λ= TŜβj

(z)

(

Ŝβj
(Lj)

)⊕TŜβj
(z)Lj+1.

This, combined with the results of Section 7.1, will allow us to apply shadowing results
from [26]. Recall that the first order terms S±

1 , S±
3 in the expansion of the images Ψ̄1, Γ̄3

of a point (ψ̂1, γ̂3, Ψ̂1, Γ̂3) under the scattering maps Ŝ± : Λ̂→ Λ̂′ are given by (92), (93)
respectively due to Theorem 32.

Lemma 37. — Consider the set Λ̂ = Λ ∩ M defined in Theorem 32. Then there are con-

stants ν±, ν̂±, ξ±, ξ̂± > 0 and C± > 0 such that for L2 large enough (see (21)) and any leaf

L∗ =L(Ψ̂∗
1 , Γ̂

∗
3) of the foliation of Λ̂ there are open sets U±

j ⊂L∗ � T2 for j = 1,2,3,4 such that

μ(U±
j ) >C± where μ is the Lebesgue measure on T2, and:

(1) For all z ∈ U±
1 we have S±

1 (z) > ν
±, |∂ψ̂1

S±
1 (z)|> ν̂±, S±

3 (z) > ξ
±, |∂γ̂3S±

3 (z)|>
ξ̂±.

(2) For all z ∈ U±
2 we have S±

1 (z) < −ν±, |∂ψ̂1
S±

1 (z)| > ν̂±, S±
3 (z) < −ξ±,

|∂γ̂3S±
3 (z)|> ξ̂±.

(3) For all z ∈ U±
3 we have S±

1 (z) > ν
±, |∂ψ̂1

S±
1 (z)| > ν̂±, S±

3 (z) < −ξ±,

|∂γ̂3S±
3 (z)|> ξ̂±.

(4) For all z ∈ U±
4 we have S±

1 (z) < −ν±, |∂ψ̂1
S±

1 (z)| > ν̂±, S±
3 (z) > ξ

±,

|∂γ̂3S±
3 (z)|> ξ̂±.

Proof. — We prove part 1 of the lemma for the scattering map Ŝ+, as the cases for
parts 2-4 of the lemma and for Ŝ− are analogous. Since Γ̂2 ∈ (ζ1, ζ2) (see (109)), the coef-
ficient of each term in (92) is bounded away from zero. It follows that S+

1 is a nonconstant
trigonometric polynomial with zero average, and with two different harmonics; therefore
we have ∂ψ̂1

S+
1 = 0 only on a set of measure 0 in each fixed L∗. Moreover, this implies

that there is an open set V+
1 ⊂ T of positive measure in T and constants ν+, ν̂+ > 0 such

that, for each ψ̂1 ∈ V+
1 , we have S+

1 (ψ̂1, Γ̂2) > ν
+ and |∂ψ̂1

S+
1 (ψ̂1, Γ̂2)|> ν̂+.
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Since Γ̂2 ∈ (ζ1, ζ2) (see (109)), the coefficients in front of the two expressions in
square brackets in (93) are bounded away from zero. Recall the quantities νj for j =
0,1,2,3 appearing in (93) are defined by (51) and (52). Observe that νj cannot all be zero
simultaneously. Indeed, νj depends only on δ1, δ3, where δ1 ∈ (0,1) and δ3 > 0. Therefore
ν0 = 0 if and only if δ1 = δ3, in which case ν1 �= 0. Since the harmonics appearing in the
second set of square brackets in (93) are different from those appearing in the first set of
square brackets, it follows that S+

3 is a nonconstant trigonometric polynomial with zero
average for any fixed value of Γ̂2.

Now, suppose ψ̂1 ∈ V+
1 , and choose γ̂3 ∈ T such that S+

3 (ψ̂1, γ̂3, Γ̂2) > 0. By
slightly adjusting ψ̂1, γ̂3 if necessary, we can obtain ψ̂ ′

1, γ̂
′
3, Γ̂

′
2 where ψ̂ ′

1 ∈ V+
1 , such

that S+
3 (ψ̂

′
1, γ̂

′
3, Γ̂

′
2) > 0 and |∂γ̂3S+

3 (ψ̂
′
1, γ̂

′
3, Γ̂

′
2)| > 0. Therefore we can find constants

ξ+, ξ̂+ > 0 and an open set U+
1 ⊂ T2 such that part 1 of the lemma holds. □

It is clear that Lemma 37 provides us with large open sets U±
j in each leaf L of the

foliation of Λ̂ such that the scattering map can jump a fixed distance either up or down
in the Ψ̂1, Γ̂3 directions. In the next lemma we show that the conditions satisfied by the
scattering maps in these sets U±

j imply transversality of the foliations in the sense of (118).

Lemma 38. — Suppose ẑ ∈ U±
j ∩ L0 and ẑ∗ = Ŝ±(ẑ) ∈ L1, where U±

j are the open sets

found in Lemma 37 and Lj are leaves of the foliation of Λ̂. Then Ŝ± maps L0 transversely across L1

at the point ẑ∗ = Ŝ±(ẑ) in the sense that

Tẑ∗Λ̂= Tẑ∗
(

Ŝ±(L0)
)+Tẑ∗L1.

Proof. — We prove the lemma for Ŝ+, assuming ẑ ∈ U+
1 and ẑ∗ = Ŝ+(ẑ). The set

Tẑ∗Λ̂ is a 4-dimensional vector space, and its elements can be written in the form v =
(Q,P) where Q ∈ R2 is a tangent vector in the ψ̂1, γ̂3 directions, and P ∈ R2 is a tangent
vector in the Ψ̂1, Γ̂3 directions. Since Ŝ+ is smooth we have Tẑ∗(Ŝ+(L0))= DẑŜ+(TẑL0).
With ẑ = (ψ̂1, γ̂3, Ψ̂1, Γ̂3) and ẑ∗ = (ψ̂∗

1 , γ̂
∗
3 , Ψ̂

∗
1 , Γ̂

∗
3), we can write

DẑŜ+ =
(

A1 A2

A3 A4

)

where

A1 = ∂(ψ̂
∗
1 , γ̂

∗
3 )

∂(ψ̂1, γ̂3)
, A2 = ∂(ψ̂

∗
1 , γ̂

∗
3 )

∂(Ψ̂1, Γ̂3)
,

A3 = ∂(Ψ̂
∗
1 , Γ̂

∗
3)

∂(ψ̂1, γ̂3)
, A4 = ∂(Ψ̂

∗
1 , Γ̂

∗
3)

∂(Ψ̂1, Γ̂3)
.
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Therefore

A1 =
(

1 0
0 1

)

+ · · · , A3 =
⎛

⎝

L9
2

L6
3
∂ψ̂1

S+
1 (ẑ) 0

L11
2

L8
3
∂ψ̂1

S+
3 (ẑ)

L11
2

L8
3
∂γ̂3S+

3 (ẑ)

⎞

⎠+ · · ·

since S+
1 does not depend on γ̂3.

Now, let v0 ∈ TẑL0 and v1 ∈ Tẑ∗L1. Due to the topology of the leaves Lj we have
vj = (Qj,0) for j = 0,1. Therefore we have

(

Q̄
P̄

)

= DẑŜ+
(

v0
)+ v1 =

(

A1Q0 +Q1

A3Q0

)

+ · · ·

Since ẑ ∈ U+
1 , the entries on the diagonal of A3 are nontrivial by part 1 of Lemma 37,

and therefore it is invertible. This completes the proof of the lemma. □

7.3. Application of the shadowing theorems. — In this section we show that the shadow-
ing results of [26] (which are summarised in Appendix C for convenience) can be applied
to (23) and, consequently, to (22). In fact, we have already proved that the secular Hamil-
tonian Fsec satisfies the assumptions [A1-3] of Theorem 47. Indeed, in Section 7.1, we
constructed a Poincaré map F to the section {Fsec = E0} ∩ {γ̂2 = 0}; we showed that F has
a normally hyperbolic invariant cylinder Λ̂� T2 × [0,1]2, that the restriction f = F|Λ̂ is
a near-integrable twist map in the sense of Definition 44 (satisfying a non-uniform twist

condition of order L8
2

L6
3
), that the stable and unstable manifolds meet transversely (with an

order of splitting equal to 1
L2

2
), and that there are two scattering maps Ŝ± : Λ̂→ Λ̂′ (see

Theorem 32). This implies conditions [A1] and [A2]. In Section 7.2 we constructed a
foliation of Λ̂ by leaves of the form (117), each of which is almost invariant under the
map f . In Lemma 37, we showed that we can make jumps of a fixed distance of order
L11

2

L8
3

(either up or down) in each of the Ψ̂1, Γ̂3 directions using the scattering maps; choose
some such sequence of leaves {Lj}j∈N such that for each j ∈ N there is βj ∈ {+,−} such
that Lj+1∩ Ŝβj

(Lj) �= ∅. By Lemma 38, the scattering map Ŝβj
maps Lj transversely across

Lj+1, and the angle of transversality is of order L11
2

L8
3

. Thus assumption [A3] of Theorem 47
is also satisfied.

Recall in Section 3 we made the change of variables (29) to the ‘tilde’ variables,
which were the basis for all further analysis in the paper. This change of variables, how-
ever, is local, whereas the drift in eccentricity and inclination described in Theorem 4
is global. In order to define these coordinates we introduced constants δj for j = 1,2,3.
Here δ2 is the coefficient of total angular momentum, and is therefore fixed for the secular
system. The constants δ1, δ3 on the other hand are allowed to vary, and by varying them
we simply obtain a different system of ‘tilde’ coordinates. It is not hard to see that the
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subsequent analysis of this paper holds equally for any value of the constants12 δ1 ∈ (0,1)
and δ3 ∈ (−1,1). Denote by C̃δ1,δ3 the system of ‘tilde’ coordinates corresponding to the
values δ1, δ3. Then the results of Section 4 apply in C̃δ1,δ3 coordinates for each value of
δ1, δ3, so we have a normally hyperbolic invariant manifold Λδ1,δ3 in each such system
of coordinates. Moreover, since the cylinder depends smoothly on the parameters δ1, δ3,
this construction allows us to obtain one large normally hyperbolic invariant cylinderΛ∗.

Observe that the contents of Sections 7.1 and 7.2 apply equally in each system
of coordinates C̃δ1,δ3 . Furthermore, since the γ̂2 variable does not depend on δ1, δ3, the
Poincaré section is global, and so we obtain a large 4-dimensional cylinder Λ̂∗ for the re-
turn map to the Poincaré section. We now fix a global transition chain on the cylinder Λ̂∗

such that the actions Ψ̂1, Γ̂3 drift by an amount of order L2 along the chain, and choose
some sequence {C̃δk

1,δ
k
3
}k=1,...,K so that we have an appropriate system of coordinates to

apply the analysis of the earlier sections near each torus in the chain. The analysis of Sec-
tions 7.1 and 7.2 applies in each coordinate system C̃δk

1,δ
k
3
. Note that the shadowing results

of [26] apply equally well using the many different coordinate systems, as the coordinates
used in that paper are purely local. Thus the assumptions of Theorems 47 and 48 apply
to the global transition chain on the cylinder Λ̂∗.

Denote by {Li} the global transition chain. Then, by Theorem 47, for any η > 0,
all sufficiently large L2, and all L3 satisfying (21), there exists a sequence {zj}j∈N in the
secular phase space and times tj > 0 such that

zi+1 = φ tj
sec(zi), d(zi,Li) < η

for each j ∈ N where φ t
sec is the flow associated with the secular Hamiltonian (see (31)).

Observe that this completes the proof of Proposition 5. Moreover, the time to move a
distance of order L2 in the Ψ̂1, Γ̂3 directions (which is the time to move a distance of
order 1 in the eccentricity e2 and the inclination θ23) is of order

(119) L2 L6
2

L16
3

L22
2

L6
3

L8
2

L8
3

L11
2

= L30
3

L34
2

.

Indeed, this follows from the following facts: the distance we drift in the Ψ̂1, Γ̂3 variables
is of order L2; each tj obtained via Theorem 47 is of order L6

2 as this is the order of the
return time to the Poincaré section; the order of splitting of separatrices of the cylinder is
1

L2
2

in the Γ̂3 direction by Proposition 27; the twist property is of order L8
2

L6
3

by Theorem 32;

and the order of transversality of foliations is L11
2

L8
3

by the proof of Lemma 38. Combining
these values with the formula (124) gives the time estimate (119).

Consider now the Hamiltonian F4bp (see (22)) of the four body problem after av-
eraging the mean anomalies � = (�1, �2, �3) ∈ T3. For j = 1,2,3 fix some L±

j ∈ R such

12 More properly, one has to consider δ1, δ3 in closed intervals within the open intervals to be uniformly away from
the singularities of the Deprit coordinates.
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that 0< L−
j < L+

j and if L = (L1,L2,L3) ∈ [L−
1 ,L

+
1 ] × [L−

2 ,L
+
2 ] × [L−

3 ,L
+
3 ] then (21) is

satisfied. Write Σ = T3 × [L−
1 ,L

+
1 ] × [L−

2 ,L
+
2 ] × [L−

3 ,L
+
3 ]. Recall from the beginning

of Section 7.1 the definition of the domain D in the secular phase space. Denote by
E4bp = {F4bp(z, �,L) : z ∈ D, (�,L) ∈ Σ} the set of values of the energy of the full four-
body problem that we consider. Fix E1 ∈ E4bp, and denote by Ψ the Poincaré map of the
flow of F4bp to the section D ×Σ ∩ {γ̂2 = 0} ∩ {F4bp = E1}. With z denoting a point in
D, we write (z̄, �̄, L̄) = Ψ(z, �,L) where z̄ = G(z, �,L) and (�̄, L̄) = φ(z, �,L). Since
the Hamiltonian F4bp is obtained by averaging the mean anomalies, there are k̂1, k̂2 ∈ N
such that the variables �j do not appear in F4bp until terms of order ε k̂1 μk̂2 where ε = 1

L2

and μ = L2
L3

, and where we can choose k̂j to be as large as we like. It follows that the

map G can be written in the form G(z, �,L)=˜G(z;L)+O(ε k̂1−6μk̂2) where the higher-
order terms are uniformly bounded in the Cr topology (for any r ∈ N), and where for
any fixed values of L, the map z �→ ˜G(z;L) is a Poincaré map F of the type constructed
above in Theorem 32, and therefore satisfies assumptions [A1-3] of Theorem 47. This in
turn implies that the map Ψ satisfies assumption [B1] of Theorem 48. Moreover, writ-
ing φ(z, �,L)= (φ1(z, �,L),φ2(z, �,L)) such that �̄= φ1(z, �,L) and L̄ = φ2(z, �,L), we
have φ2(z, �,L)= L+O(ε k̂1−6μk̂2) where the higher-order terms are uniformly bounded
in the Cr topology. Therefore assumption [B2] is also satisfied. As explained in Ap-
pendix C, as a consequence of results of [32], the map Ψ has a normally hyperbolic
(locally) invariant manifold ˜Λ that is close to Λ̂ × Σ. We can thus use the coordinates
w,�,L on ˜Λ where w are the coordinates on Λ̂, and define a foliation of ˜Λ by leaves

L̃
(

Ψ̂∗
1 , Γ̂

∗
3,L

∗)= {(w, �,L) ∈ ˜Λ :w ∈L
(

Ψ̂∗
1 , Γ̂

∗
3

)

, L = L∗}

where L(Ψ̂∗
1 , Γ̂

∗
3) is the leaf of the foliation of Λ̂ defined by (117). Fix η > 0, K1,K2 ∈ N,

and choose some initial values L1
∗ = (L1

1,L
1
2,L

1
3) of the Lj variables such that (�,L1

∗) ∈
IntΣ for any � ∈ T3. Choose N ≤ ε−K1 μ−K2, and values P1

∗, . . . ,P
N
∗ of the actions Ψ̂1, Γ̂3

such that the leaves Lj =L(Pj
∗) of the foliation of Λ̂ are connected by the scattering maps

(corresponding to the secular Hamiltonian with L = L1
∗) in the sense of Lemma 37. Then

by Theorem 48 there are L2
∗, . . . ,L

N
∗ ∈ [L−

1 ,L
+
1 ] × [L−

2 ,L
+
2 ] × [L−

3 ,L
+
3 ] such that, with

L̃j = L̃(Pj
∗,L

j
∗), there are points (z1, �1,L1), . . . , (zN, �N,LN) in the phase space of the

full four body problem and times t∗j > 0 such that

(

zi+1, �i+1,Li+1
)= φ t∗j

4bp

(

zi, �i,Li
)

, d
((

zi, �i,Li
)

, L̃i

)

< η

where φ
tj

4bp is the flow of the Hamiltonian F4bp of the full four body problem. Moreover,
the time estimate (119) holds also in this case as a lower bound on the time to move a
distance of order 1 in the inclination θ23 and the eccentricity e2.
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8. Continuation in the planetary regime

We would like to discuss the robustness of our instability mechanism with respect
to modifications of the four masses and the three semimajor axes. (There are other pa-
rameters, e.g. the eccentricities of the planets, but these do not play a similar role.) Due
to the invariance of physical laws by change of mass and length units, without loss of
generality we may set m0 = a1 = 1 and are reduced to a 5 dimensional parameter space.

Up to now we have investigated the moderate hierarchical regime,

(120) O(1)= a1 � a2 →∞ and a
11
6

2 � a3 � a2
2

(‘moderate’ meaning that while a3 is much smaller than a2, it is not allowed to be arbi-
trarily small). Weakening the hypothesis (120) and considering the general hierarchical
regime a1 � a2 � a3 would require another proof since the fast dynamics of planet 3
could be slower than the secular dynamics of planets 1 and 2, which would completely
destroy the frequency hierarchy we have extensively used, for averaging and so on.

We have also assumed that m0 �= m1 and m0 + m1 �= m2, because m1 − m0 and m0 +
m1−m2 are in factor of the two quadrupolar Hamiltonians respectively. Rather than fixing
the masses, we may as well let (m0,m1,m2,m3) vary arbitrarily in some fixed compact
subset of K ⊂ Mη (see (2)) and the conclusions our main theorems will hold, all our
construction being uniform with respect to K.

Another important regime in the parameter space is the so-called planetary
regime, where

m1,m2,m3 → 0

while, in turn, semimajor axes are fixed (or vary in some compact subset) [40].

Proposition 39. — The instability mechanism which we have shown to exist in the hierarchical

regime in Sections 3-7 continues in the planetary regime and, as ρ tends to 0, the instability time is of

the order of ρ−2.

Proof. — Write

mj = ρm̄j, j = 1,2,3,

so that, when μ� 1,

Mj ∼ 1, σ0,j ∼ 1, σij ∼ ρ and μj ∼ ρ (i, j = 1,2,3)

(notations defined in Section 2). Our proof in the hierarchical regime assumed ρ constant,
and we will now show why the construction holds when ρ is small.



78 ANDREW CLARKE, JACQUES FEJOZ, MARCEL GUARDIA

The key remark is the following. Consider for instance the part of the perturbing
function F12

per regarding planets 1 and 2 (first introduced in equation (13)):

F12
per =

μ2M2

‖q2‖ − m0 m2

‖q2 + σ11 q1‖ −
m1 m2

‖q2 − σ01 q1‖ .

The first two terms are O(ρ), while the third one (describing the interaction of planets
1 and 2) is O(ρ2); this could impair the construction of the hierarchical regime. But the
third term is qualitatively so similar to the second one, that the relative smallness of m1m2

will not qualitatively change the dynamics. This can be seen explicitely in the expansion
in Legendre polynomials:

F12
per =−μ1m2

‖q2‖
∞
∑

n=2

σ̃1,nPn(cos ζ1)

(‖q1‖
‖q2‖

)n

where

σ̃1,n = σ n−1
01 + (−1)nσ n−1

11 ∼ 1,

so that the hierarchy of terms inside the infinite sum is unchanged when we move away
from the hierarchical regime to the planetary regime. Similar is the case of F23

per.
Because the secular frequencies are ρ2-small compared to the Keplerian frequen-

cies, the splitting is O(ρ2) in the secular directions (while it is exponentially small with
respect to ρ in the Keplerian directions). □

9. From Deprit coordinates to elliptic elements: proof of Theorem 4

Theorem 4 and the behaviour described in (3), (4), (5), (6) are a direct consequence
of Theorems 7 and 8. We first explain how to obtain the evolution of the orbital elements
and then deduce Theorem 4.

To obtain the evolution of e2 in (3), one just has to take into account its definition in
(15). For θ23, note that (21) implies θ23 = i23 +O(L−1

2 ) where i23 is defined by (17). Then,
the evolution of θ23 can be deduced from the evolution of the Deprit variables and (17)
(and taking L2 large enough). The evolution of the node, even if not stated in Theorem 7
can be easily deduced from the shadowing argument explained in Section 7.3, by iterating
the Poincaré map along leaves of the almost invariant foliation of the normally hyperbolic
cylinder.

The behaviour in (4), (5) can be obtained as follows. First, note that the times {tk}
obtained in Theorem 7 are chosen so that the corresponding points are very close to the
normally hyperbolic invariant cylinder. In particular, Γ1 is very close to L1. This implies
that e1 is very small.
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Moreover, note that the energy must be preserved. The Keplerian terms in the
Hamiltonian are constant up to an arbitrarily high order. This implies that the next term
in the Hamiltonian expansion (see Proposition 11), that is the quadrupolar Hamiltonian
must be preserved up to small errors. If one evaluates it (see (26) in Lemma 9) at the
normally hyperbolic invariant manifold, one obtains the expression

(1− e2
1) cos2 θ12

(1− e2
2)

3/2
+ · · · = constant.

(note that for the first two planets θ12 coincides with i12, see (16)). Since e1 ∼ 0 on the
cylinder, the drift in e2 implies a drift in the inclination θ12. This is precisely what is
described in (4), (5).

The evolution of e3 and aj in (6) is a direct consequence of the evolution of Γ3 and
Lj in Theorems 7 and 8.

Finally, note that (3), (4), (5), (6) imply Theorem 4 since the inclination, the node,
and the eccentricity determine the normalised angular momentum vector. Note that in
Theorem 4 we allow the orbit to shadow angular momenta corresponding to degenera-
cies of the Deprit variables. In order to do this, it is enough to choose δ and the ratio
of the semimajor axes adequately. Clearly we can choose these ratios polynomially in δ.
Then, the time estimates in Theorems 7 and 8 imply the time estimates (7) and (8).

Appendix A: Deprit’s coordinates

This appendix is a reminder on the Deprit coordinates. These coordinates are well suited
for the reduction by 4 dimensions due to the symmetry of rotations. Here we show a
direct way to check that they form a symplectic coordinate system, alternative to some
other presentations [22, 36]. We restrict to 3 planets, as needed in this article, but the
argument extends to any number of planets (it is not an induction on the number of
bodies).

Denote by

Cj = qj × pj

the angular momentum of the j th fictitious Keplerian body (Keplerian refering to FKep),
and let kj be the j th element of the standard orthonormal basis of R3. Define the nodes νj

by

ν1 = ν2 = C1 ×C2, ν3 = (C1 +C2)×C3, ν4 = k3 ×C

where

C = C1 +C2 +C3
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FIG. 5. — The flows of the Gi ’s and the Ψi ’s are rotations

is the total angular momentum vector. For a non-zero vector z ∈ R3 and two non-
zero vectors u, v lying in the plane orthogonal to z, denote by αz(u, v) the oriented
angle between u, v, with orientation defined by the right hand rule with respect to
z. Denote by Πj the pericenter of qj on its Keplerian ellipse. The Deprit variables
(�j,Lj, γj,Γj,ψj,Ψj)j=1,2,3 are defined as follows:

– �j is the mean anomaly of qj on its Keplerian ellipse;
– Lj = μj

√

Mjaj ;
– γj = αCj

(νj,Πj);
– Γj = ‖Cj‖;
– ψ1 = α(C1+C2)(ν3, ν2), ψ2 = αC(ν4, ν3), ψ3 = αk3(k1, ν4);
– Ψ1 = ‖C1 +C2‖, Ψ2 = ‖C1 +C2 +C3‖ = ‖C‖, Ψ3 = C · k3.

The Deprit variables are analytic over the open subset D over which the 3 terms of FKep

are negative, the eccentricities of the Keplerian ellipses lie strictly between 0 and 1, and
the nodes νj are nonzero.

Lemma 40. — The Deprit variables form a symplectic analytic coordinate system over D.

That Deprit’s variables are independent, follows from their symplectic character.
So, we only need to prove symplecticity.

The flow of Li is a reparameterization of the Kepler flow of planet i, such that
{Li, �i} = 1 (as is known from the Delaunay coordinates) and the bracket of Li with any
other Deprit variable vanishes.

The following facts follow from the property that the angular momentum generates
rotations, from rotational equivariance of the angular momentum and from the bare
definition of the action variables (see Figure 5):

The time-t map of the flow of Gi is a rotation of angle t of the ellipse i in its plane,
around the center of attraction. So {Gi, γi} = 1 and the bracket of Gi with any other
variable vanishes.

Ψ1 = |C1 + C2| generates rotations of ellipses 1 and 2 around C1 + C2. So
{Ψ1,ψ1} = 1 and the bracket of Ψ1 with any other variable vanishes.
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Ψ2 = |C| generates rotations of all three ellipses around C. So {Ψ2,ψ2} = 1 and
the bracket of Ψ2 with any other variable vanishes.

Ψ3 = C · k3 generates rotations of all three ellipses around the third axis. So
{Ψ3,ψ3} = 1 and the bracket of Ψ3 with any other variable vanishes.

It remains only to check that the brackets of pairs of angles vanish. Due to Jacobi’s
identity, it is sufficient to check these brackets when angles (�j, γj,ψj)j=1,2,3 all vanish
(cf. [39]), i.e. when planets are at their pericenters and all three pericenters Πi lie on
the half line generated by k1. From now on we restrict to this (allegedly Lagrangian)
submanifold.

Recall that qa = (qa,b)b=1,2,3 and pa = (pa,b)b=1,2,3 are the position and impulsion of
the ath fictitious Kepler body. Fix bodies j and k.

First,

{γj, γk} =
∑

a

⎛

⎜

⎜

⎝

∑

b=1(�
�∂γj

∂qa,b

∂γk

∂pa,b

− ∂γj

∂pa,b �
�

�∂γk

∂qa,b

)+
∑

b�=1(
∂γj

∂qa,b �
�

�∂γk

∂pa,b

−
�

�
�∂γj

∂pa,b

∂γk

∂qa,b

)

⎞

⎟

⎟

⎠

= 0;

indeed,

– when b = 1, ∂γj

∂qa,b
= 0 because a variation of qa,b leaves pj orthogonal to qj so the

pericenter Πj remains on the k1-axis,
– when b �= 1, ∂γj

∂pa,b
= 0 because after a variation of pa,b, pj remains orthogonal to

qj ,
– γj and γk play symmetric roles.

Second,

{γj,ψk} =
∑

a

⎛

⎜

⎜

⎝

∑

b=1(�
�∂γj

∂qa,b

∂ψk

∂pa,b

− ∂γj

∂pa,b �
�

�∂ψk

∂qa,b

)+
∑

b�=1(
∂γj

∂qa,b �
�

�∂ψk

∂pa,b

−
�

�
�∂γj

∂pa,b

∂ψk

∂qa,b

)

⎞

⎟

⎟

⎠

= 0

and

{ψj,ψk} =
∑

a

⎛

⎜

⎜

⎝

∑

b=1(�
�∂ψj

∂qa,b

∂ψk

∂pa,b

− ∂ψj

∂pa,b �
�

�∂ψk

∂qa,b

)+
∑

b�=1(
∂ψj

∂qa,b �
�

�∂ψk

∂pa,b

−
�

�
�∂ψj

∂pa,b

∂ψk

∂qa,b

)

⎞

⎟

⎟

⎠

= 0

for similar reasons.
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Appendix B: The scattering map of a normally hyperbolic invariant
manifold

In this section we denote by M a Cr smooth manifold, and by φ t : M → M a smooth
flow with d

dt
|t=0φ

t = X where X ∈ Cr(M,TM). Let Λ ⊂ M be a compact φ t-invariant
submanifold, possibly with boundary. By φ t-invariant we mean that X is tangent to Λ,
but that orbits can escape through the boundary (a concept sometimes referred to as local

invariance).

Definition 41. — We call Λ a normally hyperbolic invariant manifold for φ t if there is

0< λ<μ−1, a positive constant C and an invariant splitting of the tangent bundle

TΛM = TΛ⊕ Es ⊕ Eu

such that:

‖Dφ t|Es‖ ≤ Cλt for all t ≥ 0,

‖Dφ t|Eu‖ ≤ Cλ−t for all t ≤ 0,

‖Dφ t|TΛ‖ ≤ Cμ|t| for all t ∈ R.

Moreover, Λ is called an r-normally hyperbolic invariant manifold if it is Cr smooth, and

(121) 0< λ<μ−r < 1

for r ≥ 1. This is called a large spectral gap condition.

This definition guarantees the existence of stable and unstable invariant manifolds
Ws,u(Λ)⊂ M defined as follows. The local stable manifold Ws

loc(Λ) is the set of points in
a small neighbourhood of Λ whose forward orbits never leave the neighbourhood, and
tend exponentially to Λ. The local unstable manifold Wu

loc(Λ) is the set of points in the
neighbourhood whose backward orbtis stay in the neighbourhood and tend exponentially
to Λ. We then define

Ws(Λ)=
∞
⋃

t≥0

φ−t
(

Ws
loc(Λ)

)

, Wu(Λ)=
∞
⋃

t≥0

φ t
(

Wu
loc(Λ)

)

.

On the stable and unstable manifolds we have the strong stable and strong unstable foli-
ations, the leaves of which we denote by Ws,u(x) for x ∈Λ. For each x ∈Λ, the leaf Ws(x)

of the strong stable foliation is tangent at x to Es
x, and the leaf Wu(x) of the strong unsta-

ble foliation is tangent at x to Eu
x. Moreover the foliations are invariant in the sense that

φ t(Ws(x)) = Ws(φ t(x)) and φ t(Wu(x)) = Wu(φ t(x)) for each x ∈ Λ and t ∈ R. We thus
define the holonomy maps π s,u : Ws,u(Λ)→Λ to be projections along leaves of the strong
stable and strong unstable foliations. That is to say, if x ∈ Ws(Λ) then there is a unique
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FIG. 6. — The scattering map S takes a point x− ∈ Λ, follows the unique leaf of the strong unstable foliation passing
through x− to the point x in the homoclinic channel Γ, and from there follows the unique leaf of the strong stable foliation
passing through x to the point x+ on Λ

x+ ∈Λ such that x ∈ Ws(x+), and so π s(x)= x+. Similarly, if x ∈ Wu(Λ) then there is a
unique x− ∈Λ such that x ∈ Wu(x−), in which case π u(x)= x−.

Now, suppose that x ∈ (Ws(Λ) ⋔ Wu(Λ))\Λ is a transverse homoclinic point such
that x ∈ Ws(x+)∩Wu(x−). We say that the homoclinic intersection at x is strongly transverse

if

(122)
TxWs(x+)⊕Tx

(

Ws(Λ)∩Wu(Λ)
)= TxWs(Λ),

TxWu(x−)⊕Tx

(

Ws(Λ)∩Wu(Λ)
)= TxWu(Λ).

In this case we can take a sufficiently small neighbourhood Γ of x in Ws(Λ) ∩ Wu(Λ)

so that (122) holds at each point of Γ, and the restrictions to Γ of the holonomy maps
are bijections onto their images. We call Γ a homoclinic channel (see Figure 6). We can then
define the scattering map as follows [32].

Definition 42. — Let y− ∈ π u(Γ), let y = (π u|Γ)−1(y−), and let y+ = π s(y). The scatter-
ing map S : π u(Γ)→ π s(Γ) is defined by

S = π s ◦ (π u
)−1 : y− �−→ y+.

Suppose now that the smoothness r of M and X is at least 2, suppose the normally
hyperbolic invariant manifoldΛ is a Cr submanifold of M, and suppose the large spectral
gap condition (121) holds. This implies Cr−1 regularity of the strong stable and strong
unstable foliations [60], which in turn implies that the scattering map S is Cr−1 [32].

In general, the scattering map may be defined only locally, as the transverse ho-
moclinic intersection of stable and unstable manifolds can be very complicated; however
in the setting of the present paper, the scattering maps we study turn out to be globally
defined.
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Appendix C: A general shadowing argument

We follow the notation and exposition of [26]. Let M be a Cr manifold of dimension
d = 2(m + n) where r ≥ 4. Let F ∈ Diff4(M), and assume F depends smoothly on a
small parameter ε, with uniformly bounded derivatives. Suppose F has a normally hyper-
bolic invariant (or locally invariant) manifold Λ⊂ M of dimension 2n satisfying the large
spectral gap condition (121); suppose moreover that Λ is diffeomorphic to Tn × [0,1]n.
Furthermore, we assume that dim Ws(Λ) = dim Wu(Λ) = m + 2n. In order to state the
remaining assumptions and the shadowing theorems, we must consider some definitions.

Suppose the scattering map S is defined relative to a homoclinic channel Γ for all
sufficiently small ε > 0. We allow for the possibility that the angle between Ws,u(Λ) along
the homoclinic channel Γ goes to 0 as ε→ 0. Denote by α(v1, v2) the angle between two
vectors v1, v2 in the direction that yields the smallest result (i.e. α(v1, v2) ∈ [0,π ]). For
x ∈ Γ, let

αΓ(x)= infα(v+, v−)

where the infimum is over all v+ ∈ TxWs(Λ)⊥ and v− ∈ TxWu(Λ)⊥ such that ‖v±‖ = 1.

Definition 43. — For σ ≥ 0, we say that the angle of the splitting along Γ is of order
εσ if there is a positive constant C (independent of ε) such that

αΓ(x)≥ Cεσ

for all x ∈ Γ.

Recall we have assumed that the normally hyperbolic invariant manifold Λ is dif-
feomorphic to Tn ×[0,1]n, and denote by (q, p) ∈ Tn ×[0,1]n smooth coordinates on Λ.
Define f := F|Λ, which also depends on the small parameter ε.

Definition 44. — We say that f :Λ→Λ is a near-integrable twist map if there is some

k ∈ N such that

f :
{

q̄ = q + g(p)+O(εk)

p̄ = p+O(εk)

where

det Dg(p) �= 0

for all p ∈ [0,1]n, and where the higher order terms are uniformly bounded in the C1 topology. If the

higher order terms are 0 then f is an integrable twist map.



WHY ARE INNER PLANETS NOT INCLINED? 85

It follows from the definition that if f :Λ→Λ is a near-integrable twist map, then
there exist twist parameters T+ >˜T− > 0 such that

˜T−‖v‖ ≤
∥

∥Dg(p)v
∥

∥≤ T+‖v‖
for all p ∈ [0,1]n and all v ∈ Rn. We can always choose T+ to be independent of ε. Our
formulation of the problem allows the parameter˜T− to depend on ε: there is τ ∈ N0 and
a strictly positive constant T− (independent of ε) such that ˜T− = ετT−.

Definition 45. — Suppose f :Λ→Λ is a near-integrable twist map. Denote by T+ >˜T− =
ετT− > 0 the twist parameters. We say that f satisfies:

– A uniform twist condition if τ = 0;

– A non-uniform twist condition (of order ετ ) if τ > 0, and the order εk of the error

terms in the definition of the near-integrable twist map f is such that k > τ .

In the coordinates (q, p), we may define a foliation of Λ, the leaves of which are
given by

(123) L
(

p∗
)= {(q, p) ∈Λ : p = p∗

}

.

If f :Λ→Λ is a near-integrable twist map in the sense of Definition 44, then each leaf
of the foliation is almost invariant under f , up to terms of order εk . Denote by U ⊂
Λ the domain of definition of the scattering map S. We use the following notation: if
M1, M2 are submanifolds of M then M1 ⋔ M2 is the set of points x ∈ M1 ∩M2 such that
TxM1 ⊕TxM2 = TxM.

Definition 46. — We say that the scattering map S is transverse to leaves along leaves,
and that the angle of transversality is of order ευ (with respect to the leaves (123) of the
foliation of Λ) if there are c, C > 0 such that for all p∗0 ∈ [0,1]n and all p∗ ∈ [0,1]n satisfying

‖p∗ − p∗0‖< c ευ we have

S
(

L
(

p∗0
)∩U

)

⋔L
(

p∗
) �= ∅

and there is x ∈ S(L(p∗0)∩U) ⋔L(p∗) such that

infα(v0, v)≥ Cευ

where the infimum is taken over all v0 ∈ TxS(L(p∗0)∩U) and v ∈ TxL(p∗) such that ‖v0‖ = ‖v‖ =
1.

Using these definitions, we may now state the main assumptions of the first shad-
owing theorem, which will be applied to the secular Hamiltonian (23) to prove the exis-
tence of drifting orbits for the secular Hamiltonian defined by (23).
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[A1] The stable and unstable manifolds Ws,u(Λ) have a strongly transverse homo-
clinic intersection along a homoclinic channel Γ, and so we have an open set
U ⊆Λ and a scattering map S : U →Λ. The angle of the splitting along Γ
is of order εσ .

[A2] The inner map f = F|Λ is a near-integrable twist map with error terms of
order εk satisfying a non-uniform (or uniform) twist condition of order ετ .

[A3] The scattering map S is transverse to leaves along leaves (with respect to the
leaves (123) of the foliation of Λ), and the angle of transversality is of order
ευ .

Theorem 47. — Fix η > 0, let ε > 0 be sufficiently small, and suppose k ≥ 2(ρ + τ)+ 1
where ρ = max{2σ,2υ, τ }. Choose {p∗j }∞j=1 ⊂ [0,1]n such that

S(Lj ∩U)∩Lj+1 �= ∅,
and S(Lj ∩ U) is transverse to Lj+1, where Lj = L(p∗j ). Suppose the distance between Lj and Lj+1

is of order ευ for each j. Then there are {zi}∞i=1 ⊂ M and ni ∈ N such that zi+1 = Fni(zi) and

d(zi,Li) < η.

Moreover, the time to move a distance of order 1 in the p-direction is bounded from above by a term of

order

(124) ε−ρ−τ−υ.

Observe that Theorem 47 cannot be applied to (22). Indeed, a crucial assumption
in Theorem 47 is that the scattering map S is transverse to leaves along leaves. For (22),
we have no information about the behaviour of the scattering map in the Li directions,
and so we cannot check assumption [A3] for the Hamiltonian (22). Theorem 48 below
generalises Theorem 47 to settings where transversality is only known in some directions,
and thus allows us to complete the proof of Theorem 7.

To state Theorem 48 we consider, as before, a Cr manifold M of dimension 2(m+
n) where r ≥ 4 and m, n ∈ N. Let Σ = T�1 × [0,1]�2 for some �1, �2 ∈ N0, and denote by
(θ, ξ) ∈ T�1 ×[0,1]�2 coordinates on Σ. Write ˜M = M×Σ. Suppose Ψ ∈ Diff4(˜M) such
that

Ψ(z, θ, ξ)= (G(z, θ, ξ),φ(z, θ, ξ))

where z ∈ M, G ∈ C4(˜M,M), and φ ∈ C4(˜M,Σ). Suppose Ψ depends on a small pa-
rameter ε. We make the following assumptions on Ψ .

[B1] There is some L ∈ N such that

G(z, θ, ξ)=˜G(z; ξ)+O
(

εL
)
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where the higher order terms are uniformly bounded in the C4 topology, and
for each ξ ∈ [0,1]�2 the map

˜G(·; ξ) : z ∈ M �−→ ˜G(z; ξ) ∈ M

satisfies the assumptions [A1-3] of Theorem 47.
[B2] Moreover, the map φ has the form

φ :
{

θ̄ = φ1(z, θ, ξ)

ξ̄ = φ2(z, θ, ξ)= ξ +O(εL)

where the higher order terms are uniformly bounded in the C4 topology.

Results from [32] imply that Ψ has a normally hyperbolic invariant manifold ˜Λ
that is O(εL) close in the C4 topology toΛ×Σ whereΛ⊂ M is the normally hyperbolic
invariant manifold of ˜G(·; ξ). Moreover there is an open set ˜U ⊂ ˜Λ and a scattering map
˜S : ˜U → ˜Λ such that the z-component of˜S(z, θ, ξ) is O(εL) close in the C3 topology to
S(z; ξ) where S(·; ξ) : U →Λ is the scattering map corresponding to ˜G(·; ξ).

We use the coordinates (q, p, θ, ξ) on ˜Λ where (q, p) are the coordinates on Λ and
(θ, ξ) are the coordinates on Σ. Notice that the sets

˜L
(

p∗, ξ ∗
)= {(q, p, θ, ξ) ∈ ˜Λ : p = p∗, ξ = ξ ∗}=L

(

p∗
)×T�1 × {ξ ∗}

for p∗ ∈ [0,1]n and ξ ∗ ∈ [0,1]�2 define the leaves of a foliation of ˜Λ, where L(p∗) are the
leaves of the foliation of Λ defined by (123).

Theorem 48. — Fix η > 0 and K ∈ N and let ε > 0 be sufficiently small. Choose N ∈ N
satisfying

N ≤ 1
εK

ξ ∗1 ∈ Int([0,1]�2) so that ˜G(·; ξ ∗1 ) satisfies assumptions [A1-3], and p∗1, . . . , p
∗
N ∈ [0,1]n as in

Theorem 47 such that

S
(

Lj ∩U; ξ ∗1
)∩Lj+1 �= ∅

and S(Lj ∩U; ξ ∗1 ) is transverse to Lj+1, where Lj =L(p∗j ). Suppose the distance between Lj and Lj+1

is of order ευ for each j, and L> 0 is sufficiently large, depending on K. Then there are ξ ∗2 , . . . , ξ
∗
N ∈

[0,1]�2 such that, with ˜Lj = ˜L(p∗j , ξ ∗j ), there are w1, . . . ,wN ∈ ˜M and ni ∈ N such that the ξ

component of w1 is ξ ∗1 ,

wi+1 =Ψni(wi),
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and

d(wi, ˜Li) < η

where ρ,σ, τ are as in the statement of Theorem 47. Moreover, the time to move a distance of order 1 in

the p-direction is of order ε−ρ−τ−υ .

Note that the transition chain obtained in Theorem 48 is only of finite length,
while the one obtained in Theorem 47 may be infinite.

Appendix D: Computation of the phase shift in ψ̃1

Recall the secular Hamiltonian (see (31)) can be written

Fsec = C12F12
quad +O

(

1
L8

2

)

where C12 =− μ1m2

(2π)2
.

Since Fsec ∼ L−6
2 (Proposition 11), we scale time to have an order one Hamiltonian, F̃sec =

L6
2Fsec. From now on in this section, we use this tilde notation to denote the scaled (secular,

quadrupolar, octupolar etc.) Hamiltonians.
Denote by Φt the flow of F̃sec and let us consider points z± in Λ such z+ = S(z−).

Then, there exists a point z∗ in the homoclinic channel such that
∣

∣Φt
(

z∗
)−Φt

(

z±
)∣

∣≲ e−ν|t| as t →±∞
for some ν > 0 independent of L2. The change in the ψ̃1 component from z− to z+ is

1
L2

2

Δ(ψ̃1)= ψ̃+
1 − ψ̃−

1 =
∫ +∞

0

(

∂Ψ̃1
F̃sec

(

Φt
(

z∗
))− ∂Ψ̃1

F̃sec

(

Φt
(

z+
)))

dt(125)

+
∫ 0

−∞

(

∂Ψ̃1
F̃sec

(

Φt
(

z∗
))− ∂Ψ̃1

F̃sec

(

Φt
(

z−
)))

dt

The phase shift is the first order of this integral. Since ∂Ψ̃1
F̃sec is of order L−1

2 , it may be
expected that the phase shift will also be of order L−1

2 ; however, we will see below that the
first order term does not contribute to the integral (125), and so we have to go the second
order.

Now, notice that, since the first order of F̃12
oct does not depend on Ψ̃1 (Lemma 14),

∣

∣∂Ψ̃1
F̃sec −C12∂Ψ̃1

F̃12
quad

∣

∣≲ 1
L3

2

and therefore, to compute Δ(ψ̃1), one can replace F12
sec by C12F̃12

quad in the integrals (125).
Analogusly, one can replace the flow Φt by the flow Φt

quad of C12F̃12
quad. That is, one can
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conclude that

1
L2

2

Δ(ψ̃1)= C12

∫ +∞

0

(

∂Ψ̃1
F̃12

quad

(

Φt
(

z∗
))− ∂Ψ̃1

F̃12
quad

(

Φt
quad

(

z+
)))

dt

+C12

∫ 0

−∞

(

∂Ψ̃1
F̃12

quad

(

Φt
quad

(

z∗
))− ∂Ψ̃1

F̃12
quad

(

Φt
quad

(

z−
)))

dt

+O
(

L−3
2

)

.

Now, recall that F̃12
quad is an integrable Hamiltonian which has a saddle with a homoclinic

connection (in Poincaré variables). This homoclinic connection is L−1
2 close to that of H12

0

given in Lemma 17. We denote by z∗quad and z∗0 the saddles of H12
0 and F12

quad respectively
and we denote by zh

quad(t) and zh
0(t) their homoclinic connections to the saddle. Therefore

we can rewrite the phase shift as

(126)
1
L2

2

Δ(ψ̃1)= C12

∫ +∞

−∞

(

∂Ψ̃1
F̃12

quad

(

zh
quad(t)

)− ∂Ψ̃1
F̃12

quad

(

z∗quad

))

dt +O
(

1
L3

2

)

.

Finally, it remains only to take advantage of the particular form of F̃12
quad (see Lemma 13)

to compute a first order for this integral. Write F̂12
quad = L6

2

α12
0
(−c̃12

0 + F̃12
quad). Then we know

from Lemma 13 that

F̂12
quad(γ1,Γ1, Γ̃2, Ψ̃1)= H12

0 (γ1,Γ1, Γ̃2)+ L−1
2 β1 H12

1 (γ1,Γ1, Γ̃2, Ψ̃1)

+ L−2
2 β2 H̃12

2 (γ1,Γ1, Γ̃2, Ψ̃1)+O
(

L−3
2

)

where βj = α12
j /α

12
0 .

Write

A(γ1,Γ1, Γ̃2)=−4Γ̃2H12
0 (γ1,Γ1, Γ̃2)+ 3Γ̃2 − Γ

2
1Γ̃2

L2
1

B(γ1,Γ1, Γ̃2)=
(

6− 8H12
0 (γ1,Γ1, Γ̃2)− 2

Γ2
1

L2
1

)

Γ̃2.

It follows that

∂Ψ̃1
F̂12

quad(γ1,Γ1, Γ̃2, Ψ̃1)= L−1
2 β1

(

3H12
0 (γ1,Γ1, Γ̃2)− 1

)

+ L−2
2 β2

[

2Ψ̃1

(

3H12
0 (γ1,Γ1, Γ̃2)− 1

)

+ B(γ1,Γ1, Γ̃2)
]+O

(

L−3
2

)

.
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Notice that β
2
1
β2
= 1

2 . Using these formulas one can write ∂Ψ̃1
F̂12

quad as

∂Ψ̃1
F̂12

quad(γ1,Γ1, Γ̃2, Ψ̃1)

= L−1
2 β1

(

3F̂12
quad(γ1,Γ1,Γ2)− 1

)

+ L−2
2 β2

[

2
(

3F̂12
quad − 1

)

Ψ̃1 + B(γ1,Γ1, Γ̃2)− 3
β2

1

β2
H12

1

]

+O
(

L−3
2

)

= L−1
2 β1

(

3F̂12
quad(γ1,Γ1,Γ2)− 1

)

+ L−2
2 β2

[

1
2

(

3F̂12
quad − 1

)

Ψ̃1 + B(γ1,Γ1, Γ̃2)− 3
2

A(γ1,Γ1, Γ̃2)

]

+O
(

L−3
2

)

.

Now, since F̂12
quad is constant along its solutions,

F̂12
quad

(

zh
quad(t)

)= F̂12
quad

(

z∗quad

) ∀t ∈ R

and therefore the integral (126) can be rewritten as

Δ(ψ̃1)= C12 β2

[∫ +∞

−∞

[

B
(

zh
quad(t)

)− B
(

z∗quad

)]

dt

− 3
2

∫ +∞

−∞

[

A
(

zh
quad(t)

)−A
(

z∗quad

)]

dt

]

+O
(

L−1
2

)

.

Finally, using that the separatrix and saddle of F̂12
quad and H12

0 are L−1
2 -close one can con-

clude that

Δ(ψ̃1)= C12β2

[∫ +∞

−∞

[

B
(

zh
0(t)
)− B

(

z∗0
)]

dt

− 3
2

∫ +∞

−∞

[

A
(

zh
0(t)
)−A

(

z∗0
)]

dt

]

+O
(

L−1
2

)

.

where zh
0 is the separatrix analysed in Lemma 17 and z∗0 the saddle to which it is asymp-

totic.13 Using the fact that H12
0 (z

h
0(t))= H12

0 (z
∗
0(t)), and that Γ̃2 is constant with respect

to H12
0 , we see that

Δ(ψ̃1)=−1
2
Γ̃2

L2
1

C12 β2

∫ +∞

−∞

(

Γ1(t)
2 − L2

1

)

dt

13 In Deprit coordinates it is asymptotic to two different saddles in the past and future due to the blow up of circular
motions. However the values of A and B on the two saddles are the same and therefore we abuse notation and we identify
them.
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where the value Γ1(t) of Γ1 on the separatrix is given by (59). It follows that

Δ(ψ̃1)=− 1
2A2

Γ̃2

L2
1

C12 β2

∫ +∞

−∞

5
3 Γ̃2 − L2

1

cosh2 τ
dτ

= L1

6

√

3
2

C12 β2 Γ̃2

√

1− 5
3
Γ̃2

2

L2
1

where we have used the formula (57) for A2.

Appendix E: Expansion of the inner Hamiltonian

In the proof of Lemma 25, we performed an expansion of the restriction K2 of F23
quad to

Λ, after averaging over all of the angles. The terms defined in (90) are as follows.

K̄0,0 =−(18 δ2
1 − 30) δ2

3 − 6 δ4
1 + 10 δ2

1

3 δ2
1 δ

3
2

K̄0,1

= (12 Γ̃2 δ
2
1 − 20 Ψ̃1) δ

2
3 + (−12 Γ̃3 δ

3
1 + 20 Γ̃3 δ1) δ3 + (4 Ψ̃1 − 4 Γ̃2) δ

4
1

δ3
1 δ

3
2

K̄0,2 =− 1
δ4

1 δ
3
2

[((

12 Γ̃2 Ψ̃1 − 9 L2
1 + 15 Γ̃2

2

)

δ2
1

− 30 Ψ̃2
1 + 15 L2

1 − 15 Γ̃2
2

)

δ2
3

+ (−24 Γ̃2 Γ̃3 δ
3
1 + 40 Γ̃3 Ψ̃1 δ1

)

δ3

+ (−2 Ψ̃2
1 + 4 Γ̃2 Ψ̃1 + 3 L2

1 + 6 Γ̃2
3 − 5 Γ̃2

2

)

δ4
1

+ (−5 L2
1 − 10 Γ̃2

3 + 5 Γ̃2
2

)

δ2
1

]

K̄1,0 =−(24 δ2
1 − 40) δ3

3 + (−12 δ4
1 + 20 δ2

1) δ3

δ2
1 δ

4
2

K̄1,1 = 1
δ3

1 δ
4
2

(

(48 Γ̃2 δ
2
1 − 80 Ψ̃1) δ

3
3 + (−72 Γ̃3 δ

3
1 + 120 Γ̃3 δ1) δ

2
3

+(24 Ψ̃1 − 24 Γ̃2) δ
4
1 δ3 + 12 Γ̃3 δ

5
1 − 20 Γ̃3 δ

3
1

)

K̄1,2 =− 1
δ4

1 δ
4
2
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×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

((48 Γ̃2 Ψ̃1 − 36 L2
1 + 60 Γ̃2

2) δ
2
1 − 120 Ψ̃2

1 + 60 L2
1

−60 Γ̃2
2) δ

3
3

+(−144 Γ̃2 Γ̃3 δ
3
1 + 240 Γ̃3 Ψ̃1 δ1) δ

2
3

+((−12 Ψ̃2
1 + 24 Γ̃2 Ψ̃1 + 18 L2

1 + 72 Γ̃2
3 − 30 Γ̃2

2) δ
4
1

+(−30 L2
1 − 120 Γ̃2

3 + 30 Γ̃2
2) δ

2
1) δ3

+(−24 Γ̃3 Ψ̃1 + 24 Γ̃2 Γ̃3) δ
5
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

K̄2,0 =−(123 δ2
1 − 205) δ4

3 + (−78 δ4
1 + 130 δ2

1) δ
2
3 + 3 δ6

1 − 5 δ4
1

2 δ2
1 δ

5
2

K̄2,1 = 1
δ3

1 δ
5
2

[(

123 Γ̃2 δ
2
1 − 205 Ψ̃1

)

δ4
3 +

(−246 Γ̃3 δ
3
1 + 410 Γ̃3 δ1

)

δ3
3

+ (78 Ψ̃1 − 78 Γ̃2) δ
4
1 δ

2
3

+ (78 Γ̃3 δ
5
1 − 130 Γ̃3 δ

3
1

)

δ3 + (−6 Ψ̃1 + 3 Γ̃2) δ
6
1 + 5 Ψ̃1 δ

4
1

]

K̄2,2 =− 1
4 δ4

1 δ
5
2

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

((492 Γ̃2 Ψ̃1 − 369 L2
1 + 615 Γ̃2

2) δ
2
1

−1230 Ψ̃2
1 + 615 L2

1 − 615 Γ̃2
2) δ

4
3

+(−1968 Γ̃2 Γ̃3 δ
3
1 + 3280 Γ̃3 Ψ̃1 δ1) δ

3
3

+((−156 Ψ̃2
1 + 312 Γ̃2 Ψ̃1 + 234 L2

1

+1476 Γ̃2
3 − 390 Γ̃2

2) δ
4
1

+(−390 L2
1 − 2460 Γ̃2

3 + 390 Γ̃2
2) δ

2
1) δ

2
3

+(−624 Γ̃3 Ψ̃1 + 624 Γ̃2 Γ̃3) δ
5
1 δ3

+(36 Ψ̃2
1 − 36 Γ̃2 Ψ̃1 − 9 L2

1 − 156 Γ̃2
3 + 15 Γ̃2

2) δ
6
1

+(−10 Ψ̃2
1 + 15 L2

1 + 260 Γ̃2
3 − 15 Γ̃2

2) δ
4
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Appendix F: Corrigendum of [41]

As this paper uses several ideas and formulas from [41], we include here corrections to
some errata in that paper.

(1) In Lemma 2.1, equation (12), the sign of the last term Γ2

L2
1

should be +, and so

the Hamiltonian H0 should look the same as the Hamiltonian H12
0 defined in

equation (33) of the present paper.
(2) In Lemma 3.1, equation (26), the sign should be +, and so that lemma is equiv-

alent to Lemma 17 of the present paper.
(3) In Lemma 5.1, the sign of sinγ 2 should be +.
(4) Lemma 5.2 should be as follows:
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Lemma. — The function F+ can be written, on the separatrix, as a function of g1 as F+ =
1
2(F1 + iF2) with

⎧

⎪

⎨

⎪

⎩

F1 = C1

√

1− 5
3 (1+χ2) cos2 g1

1− 5
3 cos2 g1

cos g1

F2 = C2

√

1− 5
3 (1+χ2) cos2 g1

1− 5
3 cos2 g1

(− 21
5 + 1

3
Γ2

L2
1

15−13 cos2 g1

1− 5
3 cos2 g1

)

where

C1 = 20
3

√

2
3
Γ3

L3
1 χ

Aoct, C2 =
√

10
3

Γ

L1 χ
Aoct,

Aoct =−15
64

a3
1

a4
2

e2

(1− e2
2)

5
2
.

(5) As a consequence, there are many cancellations in the Poincaré-Melnikov com-
putation in Section 5 of [41], the complex integrand has only one singularity,
and the integral L(γ 0) defined in equation (34) takes the simple form

L
(

γ 0
)=

√

3
2

π Aoct e
π Γ

A2 L2
1

6
√

15 L1 (1+ e
2π Γ
A2 L2

1 )

(

24 L2
1 − 37Γ2

)

sinγ 0.

Note that the notation from [41] is Γ = Γ̃2, and moreover the function in front
of sinγ 0, called L̃12

2 in Proposition 27 of the present paper, does not vanish
under condition (55).
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