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ABSTRACT

Let f be a cuspidal Hecke eigenform of level 1. We prove the automorphy of the symmetric power lifting Sym” f
for every n > 1.

We establish the same result for a more general class of cuspidal Hecke eigenforms, including all those associated
to semistable elliptic curves over Q,
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Introduction

Context. — Let F be a number field, and let 7 be a cuspidal automorphic repre-
sentation of GL,(Ar). Langlands’s functoriality principle [Lan70, Question 5] predicts
the existence, for any algebraic representation R : GL, = GLy, of a functorial lift of &
along R; more precisely, an automorphic representation R(7r) of GLx(Ap) which may
be characterized by the following property: for any place v of F, the Langlands param-
eter of R(7), is the image, under R, of the Langlands parameter of 7,. The Langlands
parameter is defined for each place v of I using the local Langlands correspondence for
GL,(F),) (see [Lan89, HTO01, Hen00]).

The simplest interesting case is when n =2 and R = Sym” is the m™ symmetric
power of the standard representation of GL;. In this case the automorphy of Sym™ 7 was
proved for m = 2 by Gelbart and Jacquet [G]78] and for m = 3, 4 by Kim and Shahidi
[KS02, Kim03].

More recently, Clozel and the second author have proved the automorphy of
Sym™ 7 for m < 8 under the assumption that 7 can be realised in a space of Hilbert
modular forms of regular weight [CT14, CT15, CT17]; equivalently, that the number
field F is totally real and the automorphic representation 7 is regular algebraic, in the
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sense of [Clo90b]. This includes the most classical case of automorphic representations
arising from holomorphic modular forms of weight £ > 2. We also mention the work of
Dieulefait [Diel5], which shows automorphy of the 5" symmetric power for cuspidal
Hecke eigenforms of level 1 and weight £ > 2.

On the other hand, the potential automorphy (i.e. the existence of the symmetric
power lifting after making some unspecified Galois base change) of all symmetric powers
for automorphic representations 7 associated to Hilbert modular forms was obtained by
Barnet-Lamb, Gee and Geraghty [BLGG11] (the case of elliptic modular forms is due to
Barnet-Lamb, Geraghty, Harris and Taylor [BLGHT11]).

Results of this paper. — In this paper, we prove the automorphy of all symmetric
powers for cuspidal Hecke eigenforms of level 1 and weight £ > 2. More precisely:

Theorem A. — Let 7w be a regular algebraic cuspidal automorphic representation of GLy(Ag)
of level 1 (i.e. which is everywhere unramified). Then for each integer n > 2, the symmetric power lifting
Sym" ™' 7w exists, as a regular algebraic cuspidal automorphic representation of GL, (Ag).

In fact, we establish a more general result in which ramification is allowed:

Theorem B. — Let 7r be a regular algebraic cuspidal automorphic representation of GLo(Ag)
of conductor N > 1, which does not have CM." Suppose that for each prime [|N, the Jacquet module of
7T, 15 non-trwial; equivalently, that 7, is not supercuspidal. Then for each integer n > 2, the symmetric

power lifling Sym" ™" 7w exists, as a regular algebraic cuspidal automorphic representation of GL,, (Ag).

The class of automorphic representations described by Theorem B includes all
those associated to holomorphic newforms of level I'j(N), for some squarefree integer
N > 1; in particular those associated to semistable elliptic curves over Q. We can therefore
offer the following corollary in more classical language:

Corollary CG. — Let E be a semustable elliptic curve over Q. Then, for each integer n > 2, the
completed symmetric power L-function A(Sym" E, 5) as defined in e.g. [DMW09], admits an analytic
continuation to the entire complex plane.

We remark that the meromorphic, as opposed to analytic, continuation of the com-
pleted L-function A (Sym"E, 5) was already known, as a consequence of the potential au-
tomorphy results mentioned above. Potential automorphy results were sufficient to prove
the Sato—Tate conjecture, but our automorphy results make it possible to establish ¢ffective
versions of Sato—Tate (we thank Ana Caraiani and Peter Sarnak for pointing this out to
us). See, for example, [Thol4b] for an unconditional result and [Mur85, BK16, RT'17]
for results conditional on the Riemann Hypothesis for the symmetric power L-functions.

! In other words, there is no quadratic Hecke character x such that 7 =7 ® x.
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Strategy. — Algebraic automorphic representations of GL,(Ay) are conjectured to
admit associated Galois representations [Clo90b]. When F is totally real and 7 is a
self-dual regular algebraic automorphic representation, these Galois representations are
known to exist; their Galois deformation theory is particularly well-developed; and they
admit p-adic avatars, which fit into p-adic families of overconvergent automorphic forms.
We make use of all of these tools. We begin by proving the following theorem:

Theorem D. — Let n > 2 be an integer and suppose that the n" symmetric power lifting exists for
one regular algebraic cuspidal automorphic representation of GLo(Aq) of level 1. Then the n™ symmetric
power lifting exists for every regular algebraic cuspidal automorphic representation of Glo(Ag) of level 1.

We sketch the proof of Theorem D, which is based on the properties of the
Coleman-Mazur eigencurve &,. We recall that if p is a prime, the eigencurve &, is a
p-adic rigid analytic space that admits a Zariski dense set of classical points correspond-
ing to pairs (f, o) where f is a cuspidal eigenform of level 1 and some weight £ > 2 and
« is a root of the Hecke polynomial X? — 4,(/)X + p*~"'. The eigencurve admits a map
k:&—=>W,= Hom(Z/’f, G,) to weight space with discrete fibres; the image of (f, ) is
the character x > 72,

We first show that for a fixed n > 1, the automorphy of Sym” /" is a property which
is “constant on irreducible components of &,”. (Here we confuse f and the automor-
phic representation 7 that it generates in order to simplify notation.) More precisely, if
(f,a) and (f, a’) determine points on the same irreducible component of &,, then the
automorphy of Sym” f is equivalent to that of Sym” f”. This part of the argument, which
occupies §2 of this paper, does not require a restriction to cusp forms of level 1 —see Theo-
rem 2.33. It is based on an infinitesimal R = T theorem on the eigenvariety associated to
a definite unitary group in n variables. Kisin (for GL,) [KisO3] and Bellaiche-Chenevier
(for higher rank) [BC09] have observed that such theorems are often implied by the van-
ishing of adjoint Bloch—Kato Selmer groups. We are able to argue in this fashion here
because we have proved the necessary vanishing results in [N'T20].

To exploit this geometric property, we need to understand the irreducible com-
ponents of &,. This is a notorious problem. However, conjectures predict that £, has a
simple structure over a suitably thin boundary annulus of a connected component of
weight space W, (see e.g. [LWX17, Conjecture 1.2]). We specialise to the case p = 2,
in which case Buzzard—Kilford give a beautifully simple and explicit description of the
geometry of £, “close to the boundary of weight space” [BKO05].

More precisely, &, is supported above a single connected component Wy C W,
which we may identify with the rigid unit disc {|w| < 1}. The main theorem of [BK05]
is that the pre-image « ' ({|8] < |w| < 1}) decomposes as a disjoint union U X; of
rigid annuli, each of which maps isomorphically onto {|8| < |w| < 1}. Moreover, X, has
the following remarkable property: if (f, @) € X; is a point corresponding to a classical
modular form, then the p-adic valuation v,(a) (otherwise known as the slope of the pair

(f, o)) equals v, (w(k (f, a))).
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We can now explain the second part of the proof of Theorem D, which occupies
§3 of the paper. Since each irreducible component of £ meets k' ({|8] < |w| < 1}), it
1s enough to show that each X, contains a point (f, @) such that Sym" f is automorphic.
This property only depends on f and not on the pair (f, a)! Moreover, the level 1 form f
determines two points (f, ), (f, B) of k "' ({|8] < |w| < 1}), which lie on components X
and Xy satisfying i +7 = (k— 1) /v,(w(x (f, @))). Starting with a well-chosen initial point
on a given annulus X, we can jump to any other X in a finite series of swaps between
pairs (f",a’), (f’, B') and moves within an annulus. We call this procedure playing ping
pong, and it leads to a complete proof of Theorem D.

We remark that for this second step of the proof it is essential that we work with
level 1 forms, since it is only in the level 1, p = 2 case that the eigencurve &, admits such a
simple structure (in particular, the eigencurve is supported above a single connected com-
ponent of weight space and every Galois representation appearing in & admits the same
residual representation, namely the trivial 2-dimensional representation of Gal(Q/Q)
over Fy). We note as well that it is necessary to work with classical forms which may be
ramified at the prime 2 in order for their weight characters to lie in the boundary annulus
of W;". We have suppressed this minor detail here.

Theorem D implies that to prove Theorem A, it is enough to prove the following
result:

T heorem E. — For each integer n > 2, there is a regular algebraic cuspidal automorphic repre-
sentation T of GLo(Ag) of level 1 such that Sym"_1 T exusts.

As in the previous works of Clozel and the second author [CT14, C'T15, CT17],
we achieve this by combining an automorphy lifting theorem with the construction of
level-raising congruences. We aim to find /* and an isomorphism ¢ : Q — G such that

(writing 77, : Gg —> GLQ(Q,) for the p-adic Galois representation associated to f) the
residual representation

Sym"™' %, : Gg — GL,(F))

is automorphic; then we hope to use an automorphy lifting theorem to verify that
Sym"~'r;, is automorphic, and hence that Sym"~' f is automorphic. In contrast to the
papers just cited, where we chose 7/, to have large image but p to be small, in order to
exploit the reducibility of the symmetric power representations of GLy in small charac-
teristic, here we choose 7,, to have small image, and p to be large.

More precisely, we choose f to be congruent modulo p to a theta series, so that

Tr = Indgﬁw is induced. In this case Sym"™' 7| is a sum of characters, so its residual
automorphy can be verified using the endoscopic classification for unitary groups in n
variables. The wrinkle is that the automorphy lifting theorems proved in [ANT20] (gen-
eralizing those of [Thol5]) require the automorphic representation 7 of GL,(Ax) (say)
verifying residual automorphy to have a local component which is a twist of the Steinberg
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representation. To find such a 7 we need to combine the endoscopic classification with
the existence of level-raising congruences.

In fact, we combine two different level-raising results in order to construct the
desired congruences. The first of these, original to this paper, suffices to prove Theorem E
in the case that n1s odd. The argument is based on a generalization of the following simple
observation, which suffices to prove Theorem E in the case n = 3: let ¢ be an odd prime
power, and let Us(g) denote the finite group of Lie type associated to the outer form of
GL; over F,. Let p be a prime such that ¢ (mod p) is a primitive 6™ root of unity. Then
the unique cuspidal unipotent representation of Us(¢) remains irreducible on reduction
modulo p, and this reduction occurs as a constituent of the reduction modulo p of a
generic cuspidal representation of Us(¢) (see Proposition 1.15). Using the theory of depth
zero types, this observation has direct consequences for the existence of congruences
between automorphic representations of Us. Similar arguments work for general odd 7,
for carefully chosen global data. We leave a discussion of the (quite intricate) details to §4.

The second level-raising result, proved by Anastassiades in his thesis, allows us to
pass from the existence of Sym"~' f to the existence of Sym*~' f. We refer to the paper
[AT21] for a more detailed discussion.

It remains to extend Theorem A to the ramified case, and prove Theorem B. For
this we induct on the number of primes dividing the conductor, and use an argument
of ‘killing ramification’ as in the proof of Serre’s conjecture [KW09]. Thus to remove a
prime / from the level we need to be able to move within a family of /-adic overconvergent
modular forms to a classical form of the same tame level, but now unramified at /. This
explains our assumption in Theorem B that the Jacquet module of 7, is non-trivial for
every prime /: it implies the existence of a point associated to (a twist of) 7 on an /-adic
eigencurve for every prime /.

In a sequel to this paper [N'T], we prove a new kind of automorphy lifting theorem
for symmetric power Galois representations. This allows us to finally prove a version of
Theorem B where the hypothesis that no local component 7, is supercuspidal is removed.
The arguments of [N'T] use only fixed weight classical automorphic forms (as opposed to
overconvergent automorphic forms) but do require the results of this paper (in particular,
Theorem B) as a starting point.

Organization of this paper. — We begin in §1 by recalling known results on the clas-
sification of automorphic representations of definite unitary groups. We make particular
use of the construction of L-packets of discrete series representations of p-adic unitary
groups given by Moeeglin [Maeg07, Moegl4], the application of Arthur’s simple trace for-
mula for definite unitary groups as explicated in [Labl1], and Kaletha’s results on the
normalisation of transfer factors (in the simplest case of pure inner forms) [Kall6].

In §2 we study the interaction between the existence of symmetric power liftings of
degree n with the geometry of the eigenvariety associated to a definite unitary group in z
variables. The basic geometric idea is described in §2.1. In §3 we combine these results
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with the explicit description of the tame level 1, p = 2 Coleman—Mazur eigencurve to
complete the proof of Theorem D.

We then turn to the proof of Theorem E, which rests upon two level-raising results,
only the first of which is proved here. The proof of this result is in turn split into two
halves; first we give in §4 an automorphic construction of level-raising congruences using
types, in the manner sketched above. Then in §6 we establish level-raising congruences
of a different kind using deformation theory for residually reducible representations, as
developed in [Thol5, ANT20]. These two results are applied in turn to construct our
desired level-raising congruences for odd n (Proposition 7.4). A key intermediate result is
a finiteness result for certain Galois deformation rings, established in §5, and which may
be of independent interest. We use this to control the dimension of the locus of reducible
deformations.

Finally, we are in a position to prove our main theorems. In §7 we combine the
preceding constructions with the main theorem of [AT21] in order to prove Theorem E
and therefore Theorem A. In §8, we carry out the argument of ‘killing ramification’ in
order to obtain Theorem B. The main technical challenge is to manage the hypothesis of
‘n-regularity’ which appears in our analytic continuation results (see especially Theorem
2.33). To do this we prove a result (Proposition 8.3) which takes a given automorphic
representation 7 and constructs a congruence to an n-regular one 7', This may also be
of independent interest.

Notation. — If F is a perfect field, we generally fix an algebraic closure F/F and
write Gy for the absolute Galois group of F with respect to this choice. We make the
convention that a soluble extension F'/F is a (finite) Galois extension with soluble Galois
group Gal(F'/F).

When the characteristic of I is not equal to p, we write € : Gy — Z 7 for the p-adic
cyclotomic character. We write ¢, € F for a fixed choice of primitive 2" root of unity (when
this exists). If F is a number field, then we will also fix embeddings F — F, extending the
map I — F, for each place v of F; this choice determines a homomorphism Gy, = Gy.
When v is a finite place, we will write Op, C F, for the valuation ring, @, € Oy, for a
fixed choice of uniformizer, Frob, € Gy, for a fixed choice of (geometric) Frobenius lift,
k(v) = Oy, /(w,) for the residue field, and ¢, = #k(v) for the cardinality of the residue
field. When v is a real place, we write ¢, € Gy, for complex conjugation. If S is a finite
set of finite places of F then we write Fs/F for the maximal subextension of F unramified
outside S and Gy g = Gal(¥s/F).

If p is a prime, then we call a coefficient field a finite extension E/Q, contained
inside our fixed algebraic closure (,'_Q_ﬁ, and write O for the valuation ring of E, @ € O for
a fixed choice of uniformizer, and £ = O/(w) for the residue field. If A is a local ring,
we write Cy for the category of complete Noetherian local A-algebras with residue field
A/my. We will use this category mostly with A=E or A= O. If G is a profinite group
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and p : G > GL, (Q_ﬂ) 1s a continuous representation, then we write p : G — GL, (Fp) for
the associated semisimple residual representation (which is well-defined up to conjugacy).

If F 1s a CM number field (i.e. a totally imaginary quadratic extension of a totally
real number field), then we write F* for its maximal totally real subfield, ¢ € Gal(F/F*)
for the unique non-trivial element, and 8p/p+ : Gal(F/F*) — {£1} for the unique non-
trivial character. If S is a finite set of finite places of F*, containing the places at which
F/F* is ramified, we set Fs = F{ and Gy s = Gal(Fs/F).

We write T, C B, C GL, for the standard diagonal maximal torus and upper-
triangular Borel subgroup. Let K be a non-archimedean characteristic 0 local field, and
let €2 be an algebraically closed field of characteristic 0. If p : Gx — GL,,((_L)) is a con-
tinuous representation (which is de Rham if p equals the residue characteristic of K),
then we write WD(p) = (7, N) for the associated Weil-Deligne representation of p, and
WD ()" for its Frobenius semisimplification. We use the cohomological normalisation
of class field theory: it is the isomorphism Artg : K* — W which sends uniformizers
to geometric Frobenius elements. When €2 = G, we have the local Langlands correspon-
dence reck for GL,(K): a bijection between the sets of isomorphism classes of irreducible,
admissible C[GL,(K)]-modules and Frobenius-semisimple Weil-Deligne representations
over C of rank n. In general, we have the Tate normalisation recy of the local Lang-
lands correspondence for GL, as described in [CT14, §2.1]. When @ = G, we have
recy () =recg(r @ | - [17"/2).

If G 1s a reductive group over K and P C G is a parabolic subgroup and 7 is an
admissible Q2[P(K)]-module, then we write Indg(%) 7 for the usual smooth induction. If
Q = C then we write 757 for the normalised induction, defined as i57w = Indg(%) T®
8}1,/ 2, where dp : P(K) — R, is the character dp(x) = | det(Ad(x)|LieN,) |k (and Np is the
unipotent radical of P).

If  : K* — G is a smooth character, then we write Sp, () = (r, N) for the
Weil-Deligne representation on C" = @"_ G - ¢; given by r = ({y o Artg') @ (Y| - | ' o
Artlzl) S D oArtIEl) and Ne; =0, Nejyy = ¢ (1 <0 <n—1). We write St, ()
for the unique irreducible quotient of sz(I// o det)dp V2= Indgn];’fg) ¥ o det. We have
recg (St,(¥)) = Sp, ().

If F is a number field and x : F*\Aj — C* is a Hecke character of type A (equiv-
alently: algebraic), then for any isomorphism ¢ : Qp — C there is a continuous character

7. Gp = Qﬁx which is de Rham at the places v|p of I and such that for each finite

place v of F, WD(r, ,) o Artp, = L*lxlle,. Conversely, if x': Gy — Q: 1s a continuous
character which is de Rham and unramified at all but finitely many places, then there
exists a Hecke character x : F*\Aj — C* of type A such that 7, , = x'. In this situation
we abuse notation slightly by writing x =tx’.

If F is a CM or totally real number field and 7 is an automorphic representation of
GL,(Ay), we say that 7 is regular algebraic if 77, has the same infinitesimal character as
an irreducible algebraic representation W of (Resy/q GL,)c. We identify X*(T,) with Z"
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in the usual way, and write Z', C Z" for the subset of weights which are B,-dominant. If
WY has highest weight A = (A;)cHom(r.c) € (Zi)Hom(F’C), then we say that 77 has weight A.

When F is CM, the automorphic representation 7 is said to be conjugate self-dual
if m° = m". We refer to [BLGGT'14, §2.1] for the more general notion of a polarizable
automorphic representation. Note that if 7 is conjugate self-dual, then (7, 8 p..) is po-
larized and therefore 7 is polarizable.

If 7 is cuspidal, regular algebraic, and polarizable, then for any isomorphism ¢ :
Q — G there exists a continuous, semisimple representation 7, : Gy — GL,Z(@) such
that for each finite place v of F, WD (ry |, )" = recgv (" 'm,) (see e.g. [Carl4]). (When
n =1, this is compatible with our existing notation.) We use the convention that the
Hodge—Tate weight of the cyclotomic character 1s —1. Thus if 7 1s of weight A, then for
any embedding 7 : I — @ the T-Hodge—Tate weights of 7, , are given by

HTr(rn,z) = {)‘-Lr,l + (n - l)a )\'tt,Q + (72 - 2)’ ceey )\'lf,n}'

For n > 1, we define a matrix

(=1

If E/F is a quadratic extension of fields of characteristic 0 then we write 6 =6, :
Resg r GL, = Resg/r GL, for the involution given by the formula 6(g) = ®,¢(9)™ an_l.
We write U, C Resg/r GL, for the fixed subgroup of ,. Then U, is a quasi-split unitary
group. The standard pinning of GL, (consisting of the maximal torus of diagonal matri-
ces, Borel subgroup of upper-triangular matrices, and set {E; ;4 |t =1, ..., 72— 1} of root
vectors) is invariant under the action of 6 and defines an F-pinning of U, that we call its
standard pinning. If F is a number field or a non-archimedean local field, then we also
write U, for the extension of U, to a group scheme over O with functor of points

U,(R) = {g € GL,R ®0, Op) |g= ®,(1 ® c)(g) ' '}.

When F is a number field or a local field, we identify the dual group “U, = GL,(C) x Wy,
where Wy, acts trivially on GL,(C) and an element w, € Wy — Wy, acts by the formula
w, - g=®,g7'® " (therefore preserving the standard pinning of GL,(C)).

Given a partition of n (i.e. a tuple (ny, ny, ..., n;) of natural numbers such that
n +ng + -+ 4+ n = n), we write L, ,, for the corresponding standard Levi sub-
group of GL, (i.e. the block diagonal subgroup GL,, x --- x GL,, C GL,), and P, _,,
for the corresponding standard parabolic subgroup (i.e. block upper-triangular matrices
with blocks of sizes ny, ..., n;). If E is a non-archimedean characteristic 0 local field and
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7y, ..., are admissible representations of GL,, (E), ..., GL, (E), respectively, then we
write 717 X 7Tg X -+ X T = ZE,J(LI” o ® -+ ® . We write 7r; H - - - H 7, for the irre-
ducible admissible representation of GL,(E) defined by recy, (E\ﬂleni) = @lerecE (7;); it
1s a subquotient of 7w X - -+ X 7.

Given a tuple (n;, no, ..., n) of natural numbers such that 2(n; + - - - +n_1) +n, =

n, we write M,

.....

) for the Levi subgroup of U, given by block diagonal matrices with
blocks of size ny, no, ..., m—1, ng, np—1, ..., ny. Then M, ) 1s a standard Levi subgroup
(with respect to the diagonal maximal torus of U,), and projection to the first £ blocks gives
) = (RCSE/F C‘an1 XX RCSE/F GL7lk—l) X Unk' We write Q,(”l ,,,,, )
for the parabolic subgroup given by block upper triangular matrices (with blocks of the
same sizes). If I is a non-archimedean characteristic 0 local field and 7y, ..., 7, ) are
admissible representations of GL,, (E), ..., GL,,_, (E), U, (F), respectively, then we write

T ®-- Q.

an isomorphism M,

,,,,,

.U,
ﬂlXﬂQXH-XﬂH:b% _____ "

1. Definite unitary groups

In this paper we will often use the following assumptions and notation, which we
call the “standard assumptions”:

e I is a CM number field such that F/F* is everywhere unramified. We note
this implies that [F* : Q] is even (the quadratic character of (F")*\A, /O
cutting out F has non-trivial restriction to F} for each v|oo but is trivial on
(=D € (F£)%).

e pisa prime. We write S, for the set of p-adic places of F'".

e S is a finite set of finite places of F*, all of which split in F. S contains S,.

e For each v € S, we suppose fixed a factorization v = V0" in F, and write S= (V]

v e S}
Let n> 1 be an integer. Under the above assumptions we can fix the following data:

e The unitary group G, = G over F" with R-points given by the formula
(1.0.1) GR) = g€ GLR & F) [g=(1®)(9) ).

We observe that for each finite place v of F*, Gy+ is quasi-split, while for each
place v|oo of F, G(F}) is compact. We use the same formula to extend G to

a reductive group scheme over Op-+ (this uses that F/F* is everywhere unrami-
fied).?

2 The authors apologize for using the same notation Gy, to denote both an extension of scalars of the algebraic
group G and an absolute Galois group. We hope no confusion will arise.
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e The mner twist § : U, — Gy, given by the formula

£(2,8) = (g, D, 'g®,)
with respect to the identifications

U,r={(g.2) €GL, xGL, | g = ®,g'®,"}
and

Gr={(g1,2) €GL, xGL, |[@ =g '}.

e Alift of & to a pure inner twist (&, u) : U,y = Gy. We recall (see e.g. [Kalll])
that by definition, this means that « € Z'(F*,U,) is a cocycle such that for
all 0 € Gy+, we have €796 = Ad(u,). When 7 is odd, we define u to be the
cocycle inflated from Z'(Gal(F/F*), U,(F)), defined by the formula u; = 1,
u. = (®,, ®,). When n is even, we choose an element { € F* with trg/p+ () =0
and define u to be the cocycle inflated from Z'(Gal(F/F'), U,(F)), defined by
the formula u; = 1, u, = (¢ ®,, ¢ ' ®,). (In fact, we will make essential use of this
structure only when 7 1s odd.)

e We also fix a choice of continuous character up = @ : F*\Aj — C* such that
I AL = 8r/r+ o Artp+ and such that if v is any place of F which is inert over F,
then p|px is unramified.

If v is a finite place of F*, then the image of the cocycle « in H'(F[, U,) is trivial (this
is true by Hilbert 90 if v splits in F, and true because detu, € Ny_pr F5 if v is inert
in F, cf. [Rog90, §1.9]). Our choice of pure inner twist (§, «) therefore determines a
U, (F)-conjugacy class of isomorphisms ¢, : G(F) — U,(F) (choose g € U,,(Fj) such
that ¢™'‘¢ = u,; then 1, is the map induced on F} -points by the map Ad(g) 0 £ : G+ —
Un,Fja which descends to F). If v splits v = ww* in F, then we have an isomorphismv Ly
G(F}) = GL,(F,) (composite of inclusion G(F}) C (Resp/p+ GL,)(F) and canonical
projection (Resp/r+ GL,)(F/) — GL,(F,)).

If L*/F" is a finite totally real extension, then we will use the following standard
notation:

e Weset L=L*F.

o If T is a set of places of F* then we write T}, for the set of places of Lt lying
above T. If w € T}, lies above v € T and v splits v = V0’ in F (in particular, we
suppose that we have made a choice of V|v), then we will write W for the unique
place of L which lies above both w and v’ (in which case w splits w = wWw* in L))
We write e.g. S}, for the set of places of the form w (w € Sy).

We note that formation of G is compatible with base change, in the sense that the group
Gp+ 1s the same as the one given by formula (1.0.1) relative to the quadratic extension



SYMMETRIC POWER FUNCTORIALITY 11

L/L*. The same remark applies to the pure inner twist (£, «). When we need to compare
trace formulae over F* and its extension L*/F* (a situation that arises in §4), we will use
the character pur, = pp o Np 5.

1.1. Base change and descent — furst cases. — In the next few sections we summarise
some results from the literature concerning automorphic representations of the group
G(Agp+). We first give some results which do not rely on an understanding of the finer
properties of L-packets for p-adic unitary groups at inert places of the extension F/F*.

Theorem 1.2, — Let o be an automorphic representation of G(Ay+). Then there exist a parti-
tion n=mny + - - - + n;, and discrete, conjugate self-dual automorphic representations

Ty vy T

GLm (AF)v vy GLnk (AF)1

respectively, with the following properties:

(1) Let 1 =y B - - - B mwy. Then for each finite place w of ¥ below which o s unramified, 1, is
unramified and 1s the unramified base change of o)., -

(2) For each place v = ww* of ¥ which splits in F, 7w, 0,01,

(3) For each place v|oo of ¥, m, has the same infinitesimal character as @+.x,—.c¢Wr, where W 1s
the algebraic representation of GL,(F,)) = GL,(C) such that oy = W |5y

Progf. — This follows from [Labl1, Corollaire 5.3]. U

We call 7 the base change of 0. If ¢ : Q} — C is an isomorphism, we say that o is
t-ordinary if 7 is t-ordinary at all places w|p in the sense of [Gerl9, Definition 5.3]. We
note that this depends only on 7, and the weight of 77 (equivalently, on 0, and o).

Corollary 1.3. — Let ¢ : Q — C be an isomorphism. Then there exists a unique continuous

semisimple representation 15, : Gy — GL, ((_lp) with the following properties:

(1) For each prime-to-p place w of ¥ below which o s unramified, r, |G, 15 unramafied.

(2) For each place v € Sy, 15, |Gy 15 de Rham.

(3) For each place v = ww* of F* which splits in F, WD (15|, )"~ Z recy, (0, 0 1,").

Progf. — This follows from the classification of discrete automorphic representa-
tions of GL,,(Ay) [MW89], together with the known existence of Galois representations
attached to RACSDC (regular algebraic, conjugate self-dual, cuspidal) automorphic rep-
resentations of GL,, (Ay) (cf. [AT21, Corollary 3.4]). UJ
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We remark that if 75, [y, 1s multiplicity free, then the base change of o is 7 =
m 8- -8y, where each 7, 1s a cuspidal automorphic representation of GL,, (Ar). Indeed,
[MW389] shows that a non-cuspidal 7; would contribute a direct sum of copies of a single
Galois representation twisted by powers of the cyclotomic character to 7,,, which gives a
factor with multiplicity > 1 in 70~1|GF<:,;>‘ In particular, if ;U’L|GF(C/;) is multiplicity free then
7 is tempered (as each ; is, by the results of [Shill, Clo13, Carl2]).

Theorem 1.4. — Let w be a RACSDC automorphic representation of GL.,(Ay). Suppose that
7 s unramified outside S. Then there exists an automorphic representation o of G(Ay+) with the

Jollowing properties:
5 (Un(Op))

(1) For each finite place v € S of ¥, o #0

(2) 7 1s the base change of o .
Progf. — 'This follows from [Labl1, Théoréme 5.4]. U
1.5. Endoscopic data and normalisation of transfer factors. — To go further we need to

use some ideas from the theory of endoscopy, both for the unitary group G and for the
twisted group Resg/p+ GL, X 6. We begin by describing endoscopic data for G (cf. [Labl1,
§4.2], [Rog90, §4.6]). The equivalence classes of endoscopic data for G are in bijection
with pairs (p, ¢) of integers such that p4+¢=mnand p> ¢ > 0. Define u, =1, u_ = .
We identify py with characters of the global Weil group Wy using Artp. Then we can
write down an extended endoscopic triple £ = (H, s, n) giving rise to each equivalence
class as follows:

e The group His U, x U,.
e s=diag(l,...,1,—1,...,—1) (with p occurrences of 1 and ¢ occurrences of
—1).
e 1:“H — G is given by the formulae:
n: (g1, 0) % 1> diag(g, g) x 1 € GL,(C) =G,
(¢1,9) € GL,(C) x GL,(C) = H;
(1/,, 1(]) Xw — diag(,l,l,(_l)q(U))ll,, //L(_l)/r(UJ)lq) X w (U) < WF)
(15, 1,) ¥ w, > diag(®,, ®,)P;" x w,,

where w, € Wp+ — Wy is any fixed element.

As described in [Labll, §4.5], a choice of extended endoscopic triple £ determines a
normalisation of the local transfer factor AL (v a place of F*) up to non-zero scalar. We
will fix a normalisation of local transfer factors only when 7 is odd, using the following
observations:
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e The quasi-split group U,, with its standard pinning, has a canonical normal-
1sation of transfer factors. Indeed, in this case the Whittaker normalisation of
transfer factors defined in [KS99, §5] is independent of the choice of additive
character and coincides with the transfer factor denoted A, in [LLS87].

e Our choice of pure inner twist (§, ) : U, — G defines a normalisation of the
local transfer factors for G. This normalisation of local transfer factors satisfies
the adelic product formula (a very special case of [Kall8, Proposition 4.4.1]).

A local transfer factor having been fixed, one can define what it means for a function
S e C2HF)) (resp. /M € C*(H(As+))) to be an endoscopic transfer of a function
f € CX(G(F)) (resp. f/ € C°(G(Ag+))). After the work of Waldspurger, Laumon, and
Ngo, any function f € C®(G(F})) (resp. C*(G(Ag+))) admits an endoscopic transfer
(see [Labll, Théoréme 4.3] for detailed references).

We next discuss base change, or in other words, endoscopy for the twisted
group Respp+ GL, % 6,. We will only require the principal extended endoscopic
triple (U, 1,, 1), where n : "U, — LResF/F+ GL, 1s defined as follows: first, identify
LResF/F+ GL, = (GL,(C) x GL,(C)) x Wg+, where W+ acts through its quotient
Gal(F/F") and an element w, € Wg+ — Wy acts by the automorphism (g;, g) —
(P.g, @, Do '@, "). Then n: U, - “Resp/p+ GL, is given by the formulae:

n:(g) x 1 > diag(g, 's™") x 1 € GL,(C) x GL,(C);
(ln) XN W = diag(lm ln) X w, (w EWF);
(1,) ¥ w, > diag(®,, ;") x w,.

Following [Lab11, §4.5], we fix the trivial transfer factors in this case. By [Labl1, Lemme
4.1], each function ¢ € C*(Resp/p+ GL,(F) % 6,) admits an endoscopic transfer oY €
C>*(U,(F?)), and every function in C*(U,(F])) arises this way. We will follow op. ¢it. in
using the following notation: if /€ G (U, (F})) (or more generally, if U, is replaced by a
product of unitary groups) then we write / € C®(Resp/p+ GL,(F]) % 6,) for any function
that admits / as endoscopic transfer (with respect to the principal extended endoscopic
triple defined above).

If £ = (H,s,n) is one of the extended endoscopic tr’\iples for G as above then,
following [Labl1, §4.7], we set M" = Resp/p+ Hy, and write M" for the twisted space on
M associated to the non-trivial element of Gal(F/F*). Then we may canonically identify
M = Resy/p+ GL, x GL, and M = (Resyp+ GL, x GL,) % (6, x 6,). We will use the
same notation to describe stable base change for M. In particular, if / € C>(H(Ag+)),
then we will use f/ € CSO(MH (Ag+)) to denote a function whose endoscopic transfer (with
respect to the principal extended endoscopic triple for MY, defined as above) with respect
to the trivial transfer factors is f (cf. [LLabl1, Proposition 4.9]).

Having fixed the above normalisations, we can now formulate some simple propo-
sitions.
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Proposition 1.6. — Let n > 1 be odd, and let v be an infinite place of ¥+. Suppose given
an extended endoscopic triple € = (H, s, 1) as above and a Langlands parameter ¢y : Wyr — "H
such that 1 o @y is the Langlands parameter of an irreducible representation o, of G(¥). Let 7w be
the (necessarily tempered, 6 -nvariant) wrreducible admissible representation of H(¥y) associated to the
Langlands parameter oy vy, , and let f, € C*(G(F})) be a coefficient for . Then there is a sign
€, &, pn) € {1} such that the identity ﬁ(}‘:JH) =€, &, pn)o,(fy) =€, &, pn) holds, where
the twisted trace 1s Whittaker normalised (¢f- [Labl 1, §3.6)).

Proof — Let IT(gpn) be the L-packet of discrete series representations of H(F)
associated to ¢y. According to the main result of [Clo82], there is a sign €, € {£1} such
that T(f,") = €3, crigm Tvu(fy). According to [Kall6, Proposition 5.10], there is
a sign €y € {£1} such that €, ZUv.HEH((ﬂH) o, u(f) = 0,(f;). We may take €(v, &, ) =
€1€9. [

The sign in Proposition 1.6 depends on our fixed choice of pure inner twist (be-
cause it depends on the normalisation of transfer factors). We make the following basic
but important remark, which is used in the proof of Proposition 4.6: let LT /F* be a finite
totally real extension, and let . = L*F. Then G+ satisfies our standard assumptions, and
comes equipped with a pure inner twist by base extension. If v is an infinite place of L*,
then we have the identity € (v, &+, ‘pH|WL;r) =e(lp+, &, on).

Proposition 1.7. — Let n> 1 be odd, let v be a finite place of ¥, and let f;, € C°(G(F)).

Suppose given an extended endoscopic triple € = (H, s, n).

(1) Suppose that v is inert in ¥ and that f,, is unramified (i.e. G(Ogy)-biinvariant). Suppose given an
unramified Langlands parameter gy : Wy — “H and let 0, w1, 0, be the unramified irreducible
representations of H(F), G(F]) associated to the parameters oy, 1 o @y, respectively. Let 7t be
the unramified irreducible representation of MM (F1) associated to gy lwy - Then there are identities
T GUH) =0o,n %H) = 0,(f,), where the twisted trace 1s normalised so that 0 fixes the unramafied
vector of 7. (If 7 1s generic, this agrees with the Whittaker normalisation of the twisted trace.)

(2) Suppose that v =VV° splits in F. Suppose given a bounded Langlands parameter ¢y : Wy — “H
and let 0 11, 0, be the representations of H(F), G(F) associated to the parameters ¢y, 1 0 g,
respectwely (by the local Langlands correspondence recy; for general linear groups). Let v, be the
irreducible representation of MM (F +) associated to ‘PH|WF;- Then there is an identity T, (jf)H) =
ouH (va) = 0, (fy), where the twisted trace 1s Whittaker normalised.

Proof. — It 1s well-known that these identities hold up to non-zero scalar, which
depends on the choice of transfer factor; the point here is that, with our choices, the scalar
disappears. In the first part, the identity 7 (£!) = 0, u(f;"") is the fundamental lemma for
stable base change [Clo90a]. The identity o, u(f}") = 0,(f,) is the fundamental lemma
for standard endoscopy [LLNO8], which holds on the nose because our transfer factors are
identified, by the isomorphism ¢, : G(F) — U,(F}), with those defined in [L.S87] with
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respect to our fixed pinning of U, j+; this is the ‘canonical normalisation’ of [Hal93]. If
is generic then a Whittaker functional is non-zero on the unramified vector, which gives
the final assertion of the first part of the proposition.

In the second part, the equality 7, (/) = o, u(£") is the fundamental lemma for
stable base change in the split case, cf. [Rog90, Proposition 4.13.2] (where the result is
stated for U(3) but the proof is valid in general). The equality o, q(£") = 0,(f,) holds
because o, can be expressed as the normalised induction of a character twist of o, i
(after choosing an appropriate embedding Hy+ — Gy and a parabolic subgroup of G+
containing Hy+) and because the correspondence f, > /) can in this case be taken to be
the corresponding character twist of the constant term along Hy+ (cf. [Rog90, Lemma
4.13.1] and [Shill, §§3.3-3.4], noting that our normalisation of transfer factors at the
place v in this case agrees on the nose with the analogue of the factor written as A” in loc.
cit., as follows from the definition in [LLS87]). UJ

1.8. L-packets and types for p-adic unitary groups. — Let v be a place of F* inert in F.
In this section we follow Maeglin [Moeg07, Moegl4] in defining L-packets of tempered
representations for the group G(F)) (equivalently, given our choice of pure inner twist,
U, (FH).

We write A(GL,(Fy)) for the set of isomorphism classes of irreducible admissible
representations of GL,(Fy) over C, and A,(GL,(Fy)) for its subset of tempered rep-
resentations. We define A(U,(F))) and A,(U,(F})) similarly. We write A?(GL,(Fy))
and A’(GL,(Fz)) for the respective subsets of f-invariant representations (so e.g.
A?(GL,(F)) is the set of irreducible representations of GL,(Fy) such that 77 ;=7 0 0 =
m). Using the local Langlands correspondence recp, for GL,(Fy) (and the Jacobson—
Morozov theorem), we can identify A(GL,(F5)) with the set of GL,,(C)-conjugacy classes
of Langlands parameters, i.e. the set of GL,(C)-conjugacy classes of continuous homo-
morphisms ¢ : Wy, x SLy(C) = GL,(C) satisfying the following conditions:

® ¢|w,. 1s semisimple;
5
® ¢lsL,(c) is algebraic.

Then A,(GL,(Fy)) is identified with the set of parameters ¢ such that the @(Wy;) is
relatively compact, and A?(GL,(F5)) is identified with the set of conjugate self-dual pa-
rameters. We write .Af)(GL,Z(Fg))Jr - Af (GL,(Fy)) for the subset of parameters ¢ which
extend to a homomorphism @+ : Wi+ x SLy(C) — LU,. Such an extension, if it ex-
ists, 13 unique up to GL,(C)-conjugacy (see e.g. [GGP12, Theorem 8.1]). The existence
of such an extension @+ can be equivalently phrased as follows: fix a decomposition

l; m WeV N ny .
© =@iaap, i 0; ' @rex (G @ T, *)"™, where:

e The integers /;, mj, n; are all non-zero.
e [ach representation p;, 0, 7; is irreducible and no two are isomorphic.
v ~ ~ _w,

and for each j we have 0; = o;

~ w,

e For each ¢ we have p; = p;

we,V
have 7, Z 7, " ".

Y. For each k we
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e For each i, p; is conjugate self-dual of sign (—1)"~" and for each j, o; is conjugate
self-dual of sign (—1)”, in the sense of [GGP12, p. 10].

Then an extension @+ exists if and only if each integer m; is even. If the extension ¢p+
is discrete, in the sense that Cent(GL,(C), im@p+) is finite, then /; =1 for each 7 € I
and the sets J, K are empty. If the parameter ¢+ corresponding to a representation
7 € A°(GL,(F3)), is discrete, then we say that 7 is §-discrete.

Let S, denote the set of equivalence classes of pairs ((ny, ..., m), (7, ..., 7)),
where (ny, ..., n;) is a partition of n and 7y, ..., 7; are supercuspidal representations of
GL, (Fy), ..., GL, (Iy), respectively. Two such pairs are said to be equivalent if they
are isomorphic after permutation of the indices {1, ..., k}. Thus we may think of an
element of §, as a formal sum of supercuspidal representations. We recall (see e.g. [BZ77])
that to any 7 € A(GL,(F3)) we may associate the supercuspidal support sc(7r) € S,
defined by the condition that 7 occurs as an irreducible subquotient of the representation
T X 9 X - -+ X 7 (notation for induction as defined at the beginning of this paper).

Mceeglin associates to any element © € A, (U,(F})) its extended cuspidal support
esc(t) € S,. We do not recall the definition here but note that its definition can be re-
duced to the case where 7 is supercuspidal, in the following sense: suppose that 7 is a
subquotient of a representation

U
T X X Ty X T =g, T & Q@71 ® To,

s lf)

where ) is a supercuspidal representation of U, (F/). Then esc(t) = sc(m) + -+ +
sc(mi_y) + esc(ty) + sc(rr,f_l) + -+ sc(nf).

Proposition 1.9. — If T € AU, (F)) then there is a unique element 7r, € A% (GL,(F3))4
such that esc(t) = sc(m,).

Progof — [Maeg07, Lemme 5.4] states that there is a unique element 7w =
T, € Af(GL,,(Fg)) such that esc(t) = se(r). We need to explain why in fact 7w €
A%(GL,(F5))4. [Mceg07, Théoréme 5.7] states that this is true when 7 is square-
integrable. In general, we can find a Levi subgroup M, .. ,, C U, and an irreducible
square-integrable representation m; @ - -+ ® w,—; @ Ty of My, ) (FF) such that 7 is
a subquotient of zg(” T @ @ B T (see [Wal03, Proposition II1.4.1]). Then
o= () X 7)) X (9 X 7)) X -+ X (74— X 7T]_|) X 7y, so the result follows from the
square-integrable case. 0J

......

According to the proposition, there is a well-defined map
BC : A,(U,(F)) — AJ(GL,(Fy)),

defined by BC(t) = m; (which might be called stable base change).



SYMMETRIC POWER FUNCTORIALITY 17

Proposition 1.10. — The map BC. s surjective, and it has finite fibres.

Progf. — The image of BC contains the #-discrete representations, and the fibres
of BC above such representations are finite, by [Moeg07, Théoreme 5.7]. The general
case can again be reduced to this one. U

Ifr e Af (GL,(F5)) 4, then we define TT1(;r) = BC™'(7r). By definition, the sets
I[1(7) partition A,(U,(F})) and therefore deserve to be called L-packets. The following
proposition is further justification for this.

Proposition 1.11. — Let w € A% (GL,(Fy)) 4, and fix an extension T to the twisted group
GL,(Fz) % 0. Then there are constants ¢, € C* such that for any f € C*°(GL,(Fy) x 6):

7?(][) = Z CIT(][U")-

tell(n)

Proof. — When 7 is -discrete, this is the content of [Moeg07, Proposition 5.5]. In
general, T1(7r) admits the following explicit description: decompose 7 = 71 X 75 X 7Y,
where 7, € A,(GL,, (F;)) and 7y € A?(GL,_y,, (Fy)) is O-discrete. Then I1(7r) is the set
of Jordan—Holder factors of the induced representations 7, X Ty as Ty varies over the set
of elements of T1(7ry). Using the compatibility of transfer with normalised constant terms
along a parabolic (see [Morl0, Lemma 6.3.4]) we thus have an identity

AN = xmxa) (N= > e x)(™)

T9ell(mg)

for some constants ¢;, € G*. To prove the proposition, it is enough to show that if 75, 7, €
[T(7ry) are non-isomorphic then the induced representations 7, X Ty, 7; X T, have no
Jordan—Hélder factors in common. This follows from [Wal03, Proposition I11.4.1]. U

We now introduce some particular representations of U,. These are built out of
depth zero supercuspidal representations of Us. Accordingly we first introduce some cus-
pidal representations of the finite group of Lie type Us(k(v)):

e We write 7 (v) for the unique cuspidal unipotent representation of Uz (k(v)) (see

[Lus77, §9)).

e Let k3/k(v) be a degree 3 extension, and define
C =ker(Nie@y/s; * Resiu@y/iw) G = Resyg i) G-

Then there is a unique U;(£(v))-conjugacy class of embeddings C — Us 4, (as
can be proved using e.g. [DL76, Corollary 1.14]).

Let p be a prime such that g, is a primitive 6® root of unity modulo p,
and let 0 : C(k(v)) = C* be a character of order p. Then we write A(v, 6)



18 JAMES NEWTON, JACK A. THORNE

for the (negative of the) Deligne—Lusztig induction —ng”) 0. Then A(v,0) is a
cuspidal irreducible representation of Us(£(v)) (note that C is not contained in
any proper k(v)-rational parabolic of Us j,)).

We define C = Resyyi@)/1@) G- Then the homomorphism C(k(")) — CGk(v)), 2> 2/,
1s surjective, and we define a character g : C(k(N)) — G~ of order p by 9(.5) =0(z/7).
There is a unique GL3(£(V))-conjugacy class of embeddings C— GL; 1), and we write
*(¥,0) for the Deligne—-Lusztig induction RgL“@ 6. Then A(7,6) isa cuspidal irreducible
representation of GL;(£(V)).

We now assume that the residue characteristic of £(v) is odd.

Proposition 1.12. — (1) Let T, = C—Indgiégl) T(v) (compact induction). Then T, is a su-
Fy

percuspidal irreducible admissible representation of Us(F) and BC(t,) = Sto(x) B 1, where
X+ FX — C is the unique non-trivial quadratic unramified character.

(2) Let Ay(0) = c-In dﬁg%?j) A(v, 0). Then 1,(0) is a supercuspidal irreducible admussible repre-

sentation of Us (FH).
(3) Extend X(v 9) loa mpmenmnon of FXGL3(Or,) by making ¥ act trivially, and let )L (9) =

c- Ind;’Lé(IF ()(’) ))»(v 6). Then 2+(9) is a supercuspidal irreducible admissible representation of

GLy(Fy), and BC(A, (0)) = 35(@).

Proqf — If wp 1s a cuspidal irreducible representation of Us(k(v)), then
C—IndgjzoL )+) o is a supercuspidal, irreducible admissible representation of Us(F!) (see

[MP96, Proposmon 6.6] —we will return to this theme shortly). The essential point there-
fore 1s to calculate the extended cuspidal support in each case, which can be done using
the results of [LLS20] (which require the assumption that £(v) has odd characteristic).
Indeed §8 in op. cit. explains how to compute the reducibility points Red(sr) (defined in
[Mceg07, §41) of a depth 0 supercuspidal representation, at least up to unramified twist.
We compute that Red(z,) = {(1, 3/2), (x, 1)} or {(1, 1), (x,3/2)} which corresponds
to BC(t,) = Sty(1) B x or BC(7,) = Sty(x) B 1. Since BC(z,) € A?(GL3(Fy)), the
second alternative holds. For A,(0), we dgduge that Red(A,(0)) = {(p, 1)}, where p is
a conjugate self-dual unramified twist of Ay(6). We again conclude by sign considera-
tions. 0J

Corollary 1.13. — Let n = 2k + 1 be an odd integer, and consider a representation
7w =St () B1B (B " x;) € A} (GL,(Fy))+.,

where x : F5 — C* s the unique non-trivial quadratic unramified character and for each 1 =

2k — 2, x; t ¥2 — C is a character such that Xz'|(9;~ has order 2. We can assume, afler
relabelling, that x; = X9\ _; (i=1, ...,k — 1), and then T1 (1) contains each irreducible subquo-
tient of the induced representation X1 X X9 X +++ X Xp—1 X Ty.
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Proof. — First we explain why we can relabel the characters so that x; = XQ";C‘;Y_Z-.
Considering the explicit description of A? (GL,(Fy))+, we need to explain why conjugate
self-dual characters must appear with even multiplicity amongst the x;. Suppose x; is
conjugate self-dual. We know that yx; |@5E is the non-trivial quadratic character, so there

are two possibilities for x; determined by x,(@,) = —1 or 1 (this value is also the sign of
x1)- If the sign is —1, the multiplicity of x; is one of the even exponents m;. If the sign is
+1, dimension reasons force its multiplicity to be even. The rest of the Corollary follows
from the definition of T1(;r) in terms of extended supercuspidal supports. Note that we
do not claim that TT(;r) contains only the subquotients of this induced representation —
this is not true even when £ = 1. 0J

To exploit Corollary 1.13 we need to introduce some results from the theory of
types. We state only the results we need, continuing to assume that n = 2k 4 1 is odd.
Let p, denote the standard parahoric subgroup of U,,(OF;) associated to the partition
(1,1,...,1,3); in other words, the pre-image under the reduction modulo @, map
U, (Op:) = U, (k(v)) of Qq1,1.....1,3 (£(v)). Projection to the Levi factor gives a surjective
homomorphism p, — M 1,13 (k(v)) = k(D)) x Us(k(v)).

Given a cuspidal representation o (v) of M, 1.3 (k(v)) = (k) x Us(k(v)),
the pair (p,,0(v)) defines a depth zero unrefined minimal K-type in the sense of
[MPI6]. In this case we write £(0,) for the set of irreducible representations of (FZ)*! x
Ug (OFU-*-) C M(l,l,..4,1,3) (Fj) whose restriction to M(l,l,.“,l,?))(OFj') = (O;ﬂ})k_l X Ug (OF;F)
1s isomorphic to (the inflation of) o (v). We have the following result.

Proposition 1.14. — Let 0 (v) be a cuspidal vrreducible representation of My 1....1.3)(k(v)).
T hen:
(1) For any o' € E(o(v)), the compact induction c-Ind

M, 1,1, FD / .- .

E XU Op) o'(v) is wrreducible and su-
percuspidal.

(2) Let v be an irreducible admissible representation of U, (FF). Then 1|, contains o (v) if and only

of T 1s a subquotient of an induced representation

.U, Mai,...1,3EFD /
W C'Ind(Fg)kfl XUs(Op) o (v)
Jor some 6’ € E(o (v)).
Progf. — See [MP96, Proposition 6.6] and [MP96, Theorem 6.11]. UJ

We now describe explicitly the two types that we need. Recall that we are assuming
that the characteristic of £(v) is odd. Let w (V) : £(v)* — {£1} denote the unique non-
trivial quadratic character of £(v)*.

e 'The representation 7 (v, n) of p, inflated from the representation
o) ® - ®w®) ®1T(v)
of M1,1.....1.3 (£(v)).
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e The representation A(v, 8, n) of p, inflated from the representation
0w@)® - Q@) @A(v,0)

of M1....1.5(k(v)) (where 0 as above is a character of C(£(v)) of order p, and

we assume ¢, mod p is a primitive 6% root of unity).

These types are introduced because they are related by a congruence modulo p, because
of our assumption that ¢, mod p is a primitive 6" root of unity:

Proposition 1.15. — Fix an isomorphism Q_ﬁ — G and use this to view t(v,n) and
A(v, 6, n) as representations with coefficients in 61) T hen:
(1) T(v, n) s trreducible.
(2) M(v, 0, n) contains T (v, n) as a Jordan—Holder factor with multiplicity 1.

(As usual, overline denotes semi-simplified residual representation over Fﬁ->

Progf. — The modular irreducibility of cuspidal unipotent representations is a gen-
eral phenomenon (see [DM18]). The proposition is a statement about representations
of Us(k(v)), which can be proved by explicit computation with Brauer characters; see
[Gec90, Theorem 4.2] (although note that there is a typo in the proof: the right-hand
side of the first displayed equation should have x; in place of x,2_,). UJ

The following proposition will be a useful tool for exploiting the type (p,,A(v,0,7)).
We introduce an associated test function ¢ (v, 6, n) € C*(U,(F])): it is the function sup-
ported on p, and inflated from the character of A(v,0,n)". If 7 is an admissible rep-
resentation of U,(F}), then w(¢(v,0,n)) is (up to a positive real scalar depending on
normalisation of measures) the dimension of the space Hom,, (A (v, 0, n), 7|,,).

Proposition 1.16. — Assume that the characteristic of k(v) s greater than n. Let ¢ =
¢ (v,0,n), and let € = (H, 5, 1) be one of our fixed endoscopic triples for U, with H="U, x U,.
Suppose given~representations Ty, T, N Af (GL,,(FE))JF, Af (GL,(¥%)) 4, respectively, such that
(1, @ 7,)~ (¢™) # 0. Then sc(my) + se(7w,) = Ay(0) + X1+ - - - + Xouo, where X1, ..., Xop—s :
FZ — C* are characters such that for each 1 =1, ..., 2k — 2, Xi|@?,7 =w).

Proof. — By Proposition 1.11, there is an identity

(7T/, ® ﬂq)w(aﬂ) = Z C‘L’pcl'(/ ('L'/, X ‘Eq) (¢H)
7y €ll(my)
7,€l ()

for some constants ¢, ¢;, € G*. Now, [KV12, Theorem 2.2.6] shows that ¢ can be
taken to be a weighted sum of inflations to H(Og+) of characters Rgf(”) O '@ w((V)®% D)



SYMMETRIC POWER FUNCTORIALITY 21

associated to conjugacy classes of embeddings C; : C x Res@) /) G- = Hyy. (Our ap-
peal to this reference is the reason for the additional assumption on the characteristic of
k(v) in the statement of the theorem.) If (77, ® nq)”(aH) # 0, then there exists a sum-
mand on the right-hand side such that 7, ® 7, contains the inflation to H(Op:) of the
(irreducible) representation with character —Rgf“’ (0 ® w(¥)®*). Taking into account
the compatibility between parabolic induction and Deligne—Lusztig induction, the tran-
sitivity of Deligne—Lusztig induction [Lus76], and Proposition 1.14, we see that for one
of the representations 7,, 7, (the one for the factor of even rank), the extended cuspidal
support is a sum of characters of I, each of which is the twist of an unramified character
by a ramified quadratic character; and for the other of the representations t,, 7,, the ex-
tended cuspidal support is a sum of such characters, together with A3(6). This completes
the proof. 0J

1.17. Types for the general linear group. — In this section we record some analogues of
the results of the previous section for general linear groups. Let 2 < n; < n be an integer.
Let ¥ be a finite place of F. We assume that the characteristic of £(v) is odd. We have
already introduced the notation @ (v) for the unique non-trivial quadratic character of
k(v)*. We introduce a further representation of the finite group GL,, (k(v)) of Lie type:

e Let £, /k(V) be an extension of degree n;, and suppose that ¢z mod p is a prim-
itive n" root of unity modulo p. Let © : ky — G* be a character (’)f order p.
Then © is distinct from its conjugates by Gal(k,, /ks), and we write A(V, ©) =
(—1)n—1RG™ ® for the DeligneLusztig induction. Then A(%, ®) is an

Resty, /4@) G

irreducible representation of GL,, (k(V)).

The notation A(v, ®) thus generalises that introduced in the previous section (where

n =3 and © =6).

Proposition 1.18. — Let 7t be an wrreducible admissible representation of GL,, (¥y), and let
F5.,, /Y5 denote an unramified extension of degree ny. Then the following are equivalent:
(1) The restriction of  to GL,, (Op;) contains F)\:('f)', 0).
> — C such that xlox = © and recpm =

v,n
o U,nq

(2) There exists a continuous character ¥ :

Wr _ : : .
Indw:f 1 (x o ArtFT}_n1 ). In particular, v s supercuspidal.

U,n

Progf. — This follows from the results of [Hen92] (see especially §3.4 of that paper)
and [MP96]. 0J

Let ng = n — ny. We write qy C GL,(OF,) for the standard parahoric subgroup as-
sociated to the partition (n, n9), 1.e. the pre-image under the reduction modulo @y map
GL,(Or;) — GL,(k(V)) of Py, ., (k(V)). We write 3:(37, ®, n) for the irreducible repre-
sentation of ¢y inflated from the representation X(’U, ©) ® (@ (V) o det) of L, ) (k(V)).
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We write vy C qy for the standard parahoric subgroup associated to the partition
(n,1,1,...,1). Then we have the following analogue of Proposition 1.14:

Proposition 1.19. — Let v be an irreducible admussible representation of GL.,(¥y). Then the
Jollowing are equivalent:

o 77| conlains T, 0, )|
o sc(m) =m + X1+ -+ X, where T, salisfies the equivalent conditions of Proposition 1.18
and X1, ..., Xu, 2 5 — CX are characters such that for each i =1, ..., ny, Xi|01>7<~ =

w (V).
Progf. — This once again follows from the results of [MP96]. 0J

The pair (qy, f)\:(?f, ®, n)) 1s not in general a type (because f)\:(?f, ®, n) is not a cus-
pidal representation of L, ., (k(V)) unless ny = 1). Nevertheless, we have the following
proposition:

Proposition 1.20. — Let v be an irreducible admussible representation of GL,(¥y). Then the
Jollowing are equivalent:
(1) The restriction of T to qy contains *(@,0,n).
(2) There exist irreducible admuissible representations 7t; of GL,,(¥Fy) (1 =1, 2) such that 7 = 7, B
709, the restriction of 7wy to GL., (Of;) contains ’)t(’ff, ®), and the restriction of 7wy to GL,,(Or;)
contains w (V) o det.

We note that in the situation of the proposition, 7y is the twist of an unramified
representation by a quadratic ramified character.

Progf. — Let P="P, ,,), L =L, ), and let Np denote the unipotent radical of P.
Abbreviate A = k(v ®,n) and Ay, = )\.lL(OF ). If w 1s an irreducible admissible repre-

sentation of GL,(Fy) then we define m* = Hoqu()» lq). We ﬁrst show that for any

admissible representation 7w of GL,(Fy), the natural projection T — JTNPP (restriction of
projection to unnormalised Jacquet module) is an isomorphism. Indeed, it is surjective
by [Vig98, I1.10.1, 1)]. To show that it is injective, let ;& = X|t5 and let R=Pg, 1.1...1),
Nr the unipotent radical of R. Then the pair (t3, 1) is a depth zero unrefined minimal
K-type in the sense of [MP96]. We now have a commutative diagram

M\I
7'[ — 7T1\P

|

~ AN
T T
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where the left vertical arrow is the natural inclusion and the right vertical arrow is the
natural projection to co-invariants. The lower horizontal arrow is an isomorphism, by
[Mor99, Lemma 3.6]. We conclude that the top horizontal arrow is injective, and there-
fore an isomorphism.

Suppose now that 7 is an irreducible admissible representation of GL,(F3) and
that 7* # 0. Then % # 0, so by Proposition 1.19, 7 is an irreducible subquotient of an
induced representation 7’ = m; X x| X --- X X,,, where the inducing data is as in the
statement of that proposition. Computation of the Jacquet module (using the geometric
lemma [BZ77, Lemma 2.12]) shows that (7')* has dimension 1; therefore 7 must be
isomorphic to the unique irreducible subquotient of 7" which contains *. This is 77, x 77,
where 7y is the unique irreducible subquotient of x; X --+ X x,, such that mscr,, O,
contains @ () o det (note that 77, X 75 is irreducible, by [Zel80, Proposition 8.5]).

Suppose instead that m = By =y X 7, with 771, 773 as in the statement of the

.. . by 3
proposition. Then the geometric lemma shows that nN]:P # 0, hence 7* # 0. U

We now introduce the local lifting ring associated to the inertial type which is the
analogue, on the Galois side, of the pair (qy, f)t(?f, ®, n)) introduced above. We recall that
k,, /k(D) is an extension of degree n;, ¢z mod p is a primitive 2" root of unity modulo p,
and ® : £ — G is a character of order p. Let ¢: Qp — G be an 1somorphism, so that

ICE ky — (_2; is a character with trivial reduction modulo p. Fix a coefficient field
E and suppose given a representation py : Gy, — GL, () of the form p, =05, @ 079,
where:

e Let Iy, /Iy be the unramified extension of degree n; and residue field £,,. Then
there 1s an unramified character 5 : GFM1 — £* and an isomorphism oy =
Gry —
IndGFﬁ,ul w’,‘j.
® 0y |va Qw (D) oArtgi1 1s trivial. (In other words, o7y 5 1s the twist of an unramified
representation by a ramified quadratic character.)

We recall that Cp denotes the category of complete Noetherian local O-algebras with
residue field O/w = k.

Lemma 1.21. — Let R € Co and let py : Gp, — GL,(R) be a continuous lft of py (i.e. a
continuous homomorphism such that py mod wag = py). Then there are continuous lifis o%; : Gp, —
GL,(R) of 05 (1 =1, 2) with the property that o5 @ o059 s 1 + M, (mg)-comjugate to py.
Moreover, each o ; 1s tself unique up to 1 + M, (Mg )-conjugacy.

Proof — The  splitting exists and 1s unique because the groups
H'(Fy, Hom(c31,07%2)) and H'(Fy, Hom(59,075,)) vanish for ¢ = 0, 1. Compare
[Shol8, Lemma 2.3]. O
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Let RY € Co denote the universal lifting ring, i.e. the representing object of
the functor of all continuous lifts of pz. We write R(V, ®,p5) for the quotient of
R;D associated by [Shol8, Definition 3.5] to the inertial type 1y : Iy, — GL,Z(Qﬁ),

Ty = @?LI(L”@??I o ArtF_ﬁl) D (w() o Art;;)@”. We record the following properties of
R(T): C ) ﬁ'f}')'

Proposition 1.22. — (1) The ring R(V, O, p5) is reduced, p-torsion-free, and is supporied on

a union of irreducible components of RS . In particular, Spec R(V, ©, py) is Oflat and equidi-
mensional of dimension 1 + n*.

(2) Let x: RF — Q, be a homomorphism, and let p, : Gy, — GL,(Q,) be the pushforward of

the universal lifting, with its associated direct sum decomposition p, = o0, @ 0,9. Then x_factors
~ : : : : ~ 1 1GFy
through R(v, ®, 0%) if and only if there is an isomorphism o, = IndG:i V. for a character
v,n)

V. Gy, = Q, such that Y, 0 Arty;, =710 and 0,5y, ® 0 (@) 0 Arty,| is trivial.
(3) Let 03,1 : Gy, > GL,, (R(V, ®, p3)) be the representation associated to the universal lifting by
Lemma 1.21. There exists ay € R(V, ©, py) /(@) such that_for any Frobenius lift ¢ € Gy,
det(X — 03,1 (¢5)) = (X — ap)" mod w .
(4) Let Liz/ Y5 be a finite extension such that vy, _ is trinal, and let Ra denote the universal lifting ring
of Pley, - Then the natural morphism RE; — R(V, ©, py) (classifying restriction of the universal

lfting to Gy;) factors over the quotient REU — Ry that classifies unramified biftings of pylc, . -

Proof. — The first two properties follow from [Shol8, Proposition 3.6]. For the
third, let ¢y be a Frobenius lift. We note that det(X — oy (¢y)) = X" 4 (—1)" detoy ;1 (¢y)-
Indeed, this can be checked at Qﬂ-points, at which o3, 1s irreducible, induced from
a character of Gy;, which extends '@ o Art;;?ll. Reducing modulo @ and apply-
ing Hensel’s lemma, we find that there is an element oy € R(v, ®, p3)/(w) such that
det(X — 051 (¢9) =1L, (X — ¢5 'ab) mod . If ey = ()" then det(X — o1 (¢%)) =
(X — ap)™. For the fourth part of the lemma, we need to show that the universal lifting is
unramified on restriction to Gi.. Since R(V, ©, py) is reduced, it suffices to check this at
each geometric generic point. At such a point oy is irreducible, induced from a charac-
ter of Gy, , while 035 1s a quadratic ramified twist of an unramified representation. The
result follows. O

1.23. Algebraic modular forms. — Finally, we define notation for algebraic modular
forms on the group G. Retaining our standard assumptions, fix a coefficient field E C Q,
containing the image of each embedding I — @, with ring of integers O, and let T;,

denote the set of embeddings 7 : I — E inducing a place of gp. Given A = (A;), € (Zi)lﬁ,
we write V, for the E[[ ], GL,(Fy)]-module denoted W, in [Ger19, Definition 2.3];
it is the restriction to GL,(Fy) of a tensor product of highest weight representations of
GL,(E). We write V; C V; for the O[] ],.s GL,(OF;)]-submodule denoted M;, in loc.

cit.; it is an O-lattice.

UES{;
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In this paper we will only consider algebraic modular forms with respect to open
compact subgroups U C G(A2) which decompose as a product U =[], U,, and such
that for each v € S, U, C ;' GL,(OF;). Given such a subgroup, together with a finite
set X of finite places of F* and a smooth O[Ug]-module M, finite as O-module, we
define S; (U, M) to be the set of functions f/ : G(F")\G(A) — Vi ®o M such that for
each u € U and g € G(AR), u- f(gu) =/ (g). (Here U acts on V;, ®o M via projection to
U, x Ug.) If A =0, we drop it from the notation and simply write S(U, M).

We recall the definition of some useful open compact subgroups and Hecke oper-
ators (see [Gerl9, §2.3] for more details):

e For any place v of F* which splits v = ww’ in F, the maximal compact subgroup
GL,(Oy,). Ifv ¢ TUS,, U, =¢;,'GL,(OF, ), and 1 <j < n, then the unramified
Hecke operator T/, given by the double coset operator

T = [H <GL,Z((’)F,) (wmldf 0 )GLn(Ob,)> x U“]
w w w O Idn—j w
acts on S; (U, M).

e For any place v of F* which splits v = ww* in F, the Iwahori subgroup Iw,, C
GL,(OF,) of matrices which are upper-triangular modulo @,,.

e lor any place v € S, and ¢ > b > 0 with ¢ > 1, the subgroup Iwz(b,c) C
GL,(Op;) of matrices which are upper-triangular ¢ and unipotent upper-
triangular modulo w;b. IfU, = L»EIIW5(b, ¢) for each v €S, and 1 <j < n,
then the re-normalised Hecke operator Uy, of [Gerl9, Definition 2.8] acts
on S; (U, M). (This Hecke operator depends on our choice of uniformizer wy.
However, the ordinary part of S; (U, M), defined below using these operators, is
independent of choices.)

e lor any place v of F* which splits v = ww’ in F, the principal congruence

subgroup K5(1) = ker(GL,(OF;) — GL,(k(V))).

When U, = ¢ 'Twy(b, ¢) for each v € S,, there is a canonical direct sum decomposition
S, (U, M) = S7(U, M) & SK_””[(U, M) with the property that S2“(U, M) is the largest
submodule of S, (U, M) where each operator Uy, (v €S,,j=1,...,n) acts invertible
([Gerl19, Definition 2.13]).

We recall some basic results about the spaces S, (U, M). We say that U is suffi-
ciently small if for g € G(A}), the group G(F') NgUg ™! is trivial. We have the following
simple lemma (cf. [Gerl9, p. 1351]):

Lemma 1.24. — Suppose that U s sufficiently small and that M is O-flat. Then for any
¢ > 1, the natural map S; (U, M) @0 O/ — S; (U, M/ (")) is an isomorphism.

After fixing an isomorphism ¢ : Qﬁ — G, we can describe the spaces S; (U, M) in
classical terms ([Gerl9, Lemma 2.5]):
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Lemma 1.25. — Let ¢ : Q — G be an isomorphism. Then there is an isomorphism
S, (U,M) ®o, C= @,m(0) Homy(M ®0, G)*, 0™)

respecting the action of Hecke operators at finite places away from X U 'S, where the sum runs over
automorphic representations o of G(Ag+) such that for each embedding T : ¥ — G inducing a place v
of ¥, 0, is the restriction to G(F") of the dual of the irreducible algebraic representation of GL,(C)
of highest weight )1

Part I: Analytic continuation of functorial liftings

The first part of this paper (§§2 — 3) is devoted to the proof of Theorem D from
the introduction, which shows that the automorphy of the n™ symmetric power for one
cuspidal Hecke eigenform of level 1 implies the automorphy of the n™ symmetric power
for all cuspidal Hecke eigenforms oflevel 1.

As described in the introduction, the proof has two main ingredients. The first,
which is the main result of §2, is that automorphy of symmetric powers can be prop-
agated along irreducible components of the Coleman-Mazur eigencurve. The second
ingredient, which is explained in §3, uses the main result of [BK05] and has already been
sketched in the introduction.

Here we make some further introductory remarks on §2. By making a suitable (in
particular, soluble) base change to a CM field, we translate ourselves to the setting of
definite unitary groups. We start from a classical point z, of an eigenvariety for a rank
2 unitary group, &, such that the »'" symmetric power of the associated Galois repre-
sentation is known to be automorphic. We use Emerton’s construction of eigenvarieties
(involving his locally analytic Jacquet functor), and our point of view on eigenvarieties
and Galois representations is particularly influenced by those of [BC09] and [BHS17].
Like the authors of [BHS17], we rely in an essential way on the results of [KPX14],
which make it possible to spread out pointwise triangulations to global triangulations. We
consider the diagram:

bl
52 . ‘)C;{)J,Q X 772

l Sym”
iﬂ+1

gnJrl ? X;m,n#»l X 7;+1

Here, &, is an eigenvariety for a rank n + 1 unitary group, &), ,; is a certain rigid space
of d-dimensional p-adic Galois pseudocharacters and 7; is a rigid space parameterising
characters of a p-adic torus. Our eigenvarieties come equipped with maps to these char-
acter varieties as part of their construction; combining this with the existence of a family
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of Galois pseudocharacters over the eigenvariety interpolating the global Langlands cor-
respondence at classical points gives the closed immersions 7, appearing in the diagram.
The map Sym” corresponds to taking the 2 symmetric power of the 2-dimensional pseu-
docharacter.

Our task is to show that if C is an irreducible component of & containing zy, then
Sym"(z3(C)) 1s contained in the image of 7,. A classicality result (Lemma 2.30) will then
be used to show that for another classical point z; of C, its symmetric power Sym”(zy(z1))
is actually the image of a classical point of &, ;.

To show that Sym"(i3(C)) is indeed contained in the image of 7,, we combine a
simple lemma in rigid geometry (Lemma 2.2) with information coming from the local ge-
ometry of a certain natural locally closed neighbourhood of Sym”"(z5(29)) in X 1 X T4
which contains open subspaces of both £,,; and Sym"(i,(C)). This subspace is essentially
the trianguline variety, but since we work with spaces of pseudocharacters instead of rep-
resentations we restrict to open neighbourhoods in which our pseudocharacters are abso-
lutely irreducible and hence naturally lift to representations. Our results on the vanishing
of adjoint Selmer groups [N'T20] are used to compare &, and the trianguline variety.
We proceed in a similar way to the proof of [BC09, Corollary 7.6.11], which shows that
vanishing of an adjoint Selmer group implies that ¢,;; induces an isomorphism between
completed local rings of the eigenvariety and the trianguline variety.

2. Trianguline representations and eigenvarieties

Throughout this section, we let p be a prime and let E C Q_p be a coefficient field.
We write G, for the completion of Qp If X is a quasi-separated E-rigid space we let
X (Q) = Uy g, X (E'), where the union is over finite extensions of E. We can naturally

view X (Qﬁ) as a subset of the set of closed points of the rigid space Xg, (where base ex-
tension of a quasi-separated rigid space is as defined in [BGR84, §9.3.6], see also [Con99,

§3.1]).

2.1. An ‘analytic continuation’ lemma. — Suppose given a diagram of E-rigid spaces
yﬁg%x )
ﬁ o

where « is a closed immersion. We identify X with a subspace of G. Let x € ) be a point
such that B(x) € X.

Lemma 2.2. — Suppose that B~ (X)) contains an affinoid open neighbourhood of x. Then_for
each irreducible component C of Y containing x, we have B(C) C X.
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Proof. — We observe that 87! (X)) NC is a Zariski closed subset of C which contains
a non-empty affinoid open subset. This forces B7'(X) N C = C (apply [Con99, Lemma
2.2.3]), hence B(C) C X. O

2.3. A Galows deformation space. — Let F, S, p be as in our standard assumptions (§1).
We assume that E contains the image of every embedding 7 : ¥ — Q.

2.3.1. Tranguline deformations — infinitesimal geometry. — This section has been
greatly influenced by works of Bellaiche and Chenevier [BC09, Chell]. We use the
formalism of families of (¢, I'p;)-modules, as in [KPX14]. Thus if v € S, and X is an
E-rigid space, one can define the Robba ring Rx r;; if V is a family of representations of
Gy, over X, then the functor D,T_Z-g of [KPX14, Theorem 2.2.17] associates to V the family

D!

ng

(V) of (¢, I'p,)-modules over X which is, locally on X, finite free over Rx ;. We refer
to [HS16, §2] for the definitions of these objects, as well as more detailed references. If
X = SpA, where A is an E-affinoid algebra, we write Rx p, = Rap,. If 8 : FS — A¥ isa
continuous character, we have a rank one (¢, I'p,)-module R4 r; (8,) defined by [KPX14,
Construction 6.2.4]. We will also have cause to mention the (¢, I')-cohomology groups
H;‘WFE(—) which are defined in [KPX14, §2.3].

Let v € S;, and let p, : Gp; — GL,(E) be a continuous representation. If 8, =
By1s---s8p,) 0 (F2)" — E* is a continuous character, we call a triangulation of p, of
Iig(pv) by direct summand (¢, 'y, )-stable Ry, p;-
submodules such that the successive graded pieces are isomorphic to Rg p;(8,.1), ..,

parameter 6, an increasing filtration of D

R p;(8,.,). We say that p, is trianguline of parameter §, if it admits a triangulation of
parameter §,. If §, satisfies 6, ;(zy) € O* for each 7, then we say that §, is an ordinary
parameter. Equivalently, §, is ordinary if 8, ; o Artrfgl extends to a continuous character of
Gy, for each . For an ordinary parameter §,, p, is trianguline of parameter 4, if and only
if p, has a filtration with successive graded pieces isomorphic to 8, ; o Art;;, cees Oy 0
Art;;.

We say that the character §, is regular if for all 1 < <j <n, we have §, ;/§, ; # x™

for any a, = (a,.¢); € ZSSIDQ"(F&E), where by definition ™ (y) =[], (»)®*. Note that the
characters x™ satisty |x“; Wwl,=p Loar g0 there is an affinoid cover of the rigid space
Hom(F}, G,,) with each open containing only finitely many x®.

We define 7, = Hom((F3)", G,,), a smooth rigid space over E, and write 7% C
7T, for the Zariski open subspace of regular characters (Zariski open by the finiteness
observation in the preceding paragraph). We define W, = Hom((Oy.)", G,,) and write

r, : T, = W, for the natural restriction map.

Lemma 2.4. — Let p,, : Gy, = GL,(E) be a continuous representation. Then for any 8, €
TJ4(E), p, admits at most one triangulation of parameler 8. If such a triangulation exists, then p, is
strictly trianguline of parameter 8, in the sense of [KPX14, Definition 6.5.1].
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Proof. — Suppose p, admits a triangulation of parameter §,, so Djig(,ov) is
equipped with an increasing filtration Fil,. Following [KPX14, Definition 6.3.1], we need
to show that for each 0 < ¢ < n the cohomology group ng ((Dzig(,ov) / Fili) (8,,,Z-+1)_1)
is one-dimensional. It follows from [KPX14, Proposition 6.2.8] that

HS’»VFv (grj (Djig(,ov)) (81),2-)_1) vanishes when 7 < j and is one-dimensional when 7 =.

The vanishing holds precisely because §, is regular. A dévissage completes the proof. [J

Definition 2.5. — If § : ¥5 — E* is a continuous character (hence locally Q,-analytic) we let
the tuple (wt, (5))reHomQﬁ(Fg,E) be such that the derivative of § is the map

Fg—)E

X Z —wt, (8)T ().

TEHOme (F3,E)

We can extend this discussion to Artinian local rings. Let C; denote the category
of Artinian local E-algebras with residue field E. If A € Cp, then Ra r;, = Ry, ®p A If
pv i Gp; = GL,(A) is a continuous representation, then Djig(,ov) is a free R p,-module.
If 8, € T,(A), we call a triangulation of p, of parameter §, an increasing filtration of
Djig(pv) by direct summand (@, I'p,)-stable R4 p,-submodules such that the successive
grdded pieces are isomorphic to Ra p; (8,.1), - - ., Rar;(8y.0)-

If p, : G, = GL,(E) is a continuous representation and F, is a triangulation of
parameter §, € 7, (E), then we write D, 7, s, : C; = Sets for the functor which associates
to any A the set of equivalence classes of triples (p,, F,, 8, ), where:

e o : Gy, = GL,(A) is a lifting of p,, continuous with respect to the p-adic topol-
ogy on A.

e 8 €7T,(A) is alifting of §,,.

e F! is a triangulation of p; of parameter 6, which lifts F, (note that there is a
canonical isomorphism D’ (p)) @ E= D:ig(,ov), as D'. commutes with base

g ng

change).
Triples (o), F/,8.), (o), F.', &) are said to be equivalent if there exists g € 1 + M, (my)

which conjugates p! to p; and takes F, to F, .
We write D, for the functor of equivalence classes of lifts p; : Gy, = GL,(A).
Thus forgetting the triangulation determines a natural transformation D, 7, s, = D,, .

Proposition 2.6. — Suppose that 8, € T ¢(E). Then the natural transformation D, r, 5, —
D, is relatively representable, and injective on A-points for every A € Cy. If p,, is absolutely irreducible,
then both functors are pro-representable, in which case there is a surjective morphism R,,, — R, 7, s,
of (pro-)representing objects.

Progf. — If Fy = Q,, this is contained in [BCO09, Proposition 2.3.6] and [BCO09,
Proposition 2.3.9]. The general case is given by [Nak13, Lemma 2.35, Proposition 2.37,
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Corollary 2.38] (noting that Nakamura works with Berger’s category of B-pairs, which is
equivalent to the category of (¢, I')-modules over the Robba ring). U

A consequence of Proposition 2.6 is that when 8, is regular, D, 7, 5, (E[€]) can be
identified with a subspace of D, (E[€]) = H'!(F5, ad p,). Since F, is moreover uniquely
determined by §, (Lemma 2.4), this subspace depends only on §,, when it is defined. We
write Hj, 5 (Fy, ad p,) for this subspace. We observe that there is a natural transforma-
tion D, 7, 5, — Spf (”)\Wv,,.u((;v), which sends a triple (p,, F/, 8!) to the character r,(8)).
Evaluating on E[€]-points, we obtain an E-linear map

H}n,sv (Fy,ad p,) = T, 5, W,

where T, ,)WV, denotes the Zariski tangent space of W, at the point ,(8,). This map
appears in the statement of the following lemma:

Lemma 2.7. — Let p, : Gy, = GL,(E) be a continuous representation. Suppose that:
(1) py is de Rham.
(2) py is trianguline of parameter 8, € T*(E).
(3) For each T € Homg, (F5, E), we have

wtr (31),1) < U)fo((SU,Q) << wt‘L’ (8v,n)~

We note that the labelled weights wt, coincide with the labelled Hodge—Tate weights of p, (¢f- [RPX14,
Lemma 6.2.12)).
Then the natural map

ker (H,, , (Fy, ad p) = T,,5,W,) = H'(Fy, ad p)
has vmage contained in

H, (Fy, ad p) = ker(H' (Fy, ad p) — H'(Fy, ad p ®q, Bir))-

Proof. — We must show that if (o), F,,8,) € D,, s, (El€]) is an element in the
kernel of the map to T s,))V,, then p; is de Rham. When Fy = Q,, this follows from
[BCO9, Proposition 2.3.4]; in general it follows from modifying their argument as in
[HS16, Proposition 2.6] (the coeflicients in this latter result are assumed to be a field,
whilst we need coefficients E[€], but the same proof works with any Artin local E-algebra

as coefficient ring). O

We say that a triangulation of a representation p, : Gy, — GL,,(Q]]) of parameter
8, is non-critical if for each T € Homg,(F7, E), the labelled weights are an increasing
sequence of integers:

th(sv,l) < wtr(av,Q) << wjt((sv,n)-
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In other words, if §, satisfies condition (3) of Lemma 2.7.

We now give a criterion for a de Rham representation to have a triangulation
satisfying this condition. This generalizes [HS16, Lemma 2.9], which treats the crystalline
case.

Lemma 2.8. — Let v € S, and let p, : Gp; — GLn(@) be a de Rham representation
satisfying the following conditions:

(1) There exists an increasing filtration of the associated Weil—Deligne representation WD (p,,) (by sub-

Weil—Deligne representations) with associated gradeds given by characters X1, ... s Xv.n : Wry =

(2) For each embedding T : ¥y — E, the T-Hodge—T1ate weights of p, are distinct.
(3) For each embedding T : ¥y — E, let k; < -+ < k;, denote the strictly increasing sequence of
T-Hodge—Tate weights of p,. Then we have for all T € Homg, (¥3, E):

U (D) < kep+ Y ke
T#T

and forall1=2,...,n—1:

i—1
U (Ot - X)) B < ke + D kit DD ke
=1

T#T T

Then p, ts trianguline of parameter 8, where for eachi =1, ...,n,8,,;: F5 — 6;( is defined by the
Jormula 8, ;(x) = (Xy,; o Artp, (%)) [, t(x) i, In particular, the pair (p,, 8,) satisfies condition
(3) of Lemma 2.7.

Progf. — The filtration of WD(p,) determines an increasing filtration 0 = M, C
M, CM, C---CM, =D,,(p,) of D,;(p,) by sub-(¢, N, Gg;)-modules (via the equiv-
alence of categories of [BSO7, Proposition 4.1]). The main result of [Ber08] states that
there is an equivalence of tensor categories between the category of filtered (¢, N, Gy, )-
modules and a certain category of (¢, I'p;)-modules (restricting to the usual equivalence
between weakly admissible filtered (¢, N, Gp;)-modules and (¢, I'p;)-modules associated
to de Rham representations). We thus obtain a triangulation of the associated (¢, I'y;)-
module of p,.

A filtered (¢, N, Gg;)-module M of rank 1 is determined up to isomorphism
by its associated character x : Wy, — 6_: and the (unique) integers a, such that
gr (Mpy; ®F'5®Q{,(_2psf®id @) # 0. The corresponding rank-1 (¢, I'p;)-module is the one

associated to the character § : F; — (_2: given by the formula § = x™* () o Artg;) (cf.
[KPX14, Example 6.2.6(3)]). What we therefore need to verify is that if @, ; € Z are the
integers for which gr*/(M,;/M,_; ®;, Qf)) # 0, then a,; =k, .
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This follows from hypothesis (3) of the lemma, together with the fact that D,,(p,)
is a weakly admissible filtered (¢, N, G, )-module, as we now explain. We show by induc-
tion on ¢ that the jumps in the induced Hodge—de Rham filtration of M; are as claimed.
For M,, if these jumps are £; ;, then we have for each T

vp(Xu,l (w_v))

1 1
— ko -
Fr Q)] 2+ D ke " Foo Q)]

T'#£T

1
=un(M M)=—— ky i,
(M) > (M) [F;: Q,] ; Jr

Since the sequences £; ; are strictly increasing, this is possible only if j; = 1 for each 7. In
general, if the jumps of M;_, are as expected and M;/M,_, has jumps £, ; then we have

for each ©
1 i1
e [ R D) ki Y Y ey | > M)
[FF ’ QJ}] T'#T v g=1
1 i-1
> (ki) = ———— ke g, + ke
H [F:: Q)] ; Je ; ; J
Once again this is possible only if j; = ¢ for each 7. U

Definition 2.9. — We say that a character 8, € T, (Q) us numenically non-critical if it satisfies
the following conditions:
(1) For each T € Homg, (¥, E), the labelled weights wt,(8,.1), ..., Wt (8,,) are an increasing
sequence of integers.
(2) For each T € Homg, (Fy, E), and for each 1 =1, ..., n — 1, we have

vp((Sv,l e SU,Z)(p)) < wtr(gv,iJrl) - wtt ((Suz)

Following [BC09, Remark 2.4.6], we may reformulate Lemma 2.8 as follows: let
oy Gy, — GL,Z(@) be a Hodge-Tate regular de Rham representation, and suppose
that WD(p,) 1s equipped with an increasing filtration such that the associated gradeds are
given by characters x, 1, ..., Xp.: Wr; — 6_: Let k. < --- < k., be the strictly increas-
ing sequences of T-Hodge—Tate weights, and let §, € T(Q) be the character defined by
the formula 8, ;(x) = (X, 0 Artp, () [ ], T (x) 7%, Then if §, is numerically non-critical,
the representation p, admits a non-critical triangulation with parameter §,,.

The most important case for us is that of 2-dimensional de Rham representations
of Gg,, and their symmetric powers. In this case the possible triangulations admit a par-
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ticularly explicit description (cf. [Col08]; this description can be easily justified, including
the case p = 2, using the results of [Ber08]):

Example 2.10. — Let p : Go, = Gl (@) be a de Rham representation with Hodge—Tate
weights ki < ky such that WD(p)" = x1 & xo with x;: Wq, — Qﬁx Assume_for simplicity that
X1 7 Xo. Then we have the following possibilities:

(1) 1f p 1s not potentially crystalline, then we can choose X\, xo so that x1 = xo(| - |, © Artéj}). In
this case p has a unique triangulation. It is non-critical, of parameter

="y 0 Artg,, xyy0 Artg, ).

(2) If p s potentially crystalline and vrreducible, or reducible and indecomposable, p has two triangula-
tions. Both of these are non-critical, and their respective parameters are

="y 0 Artg,, xyy0 Artg,)

and
§=(T"yx50 Artg,, x 2y o Artg,).

(3) If p 1s decomposable, we can assume p = Yy @ Yo where VY; has Hodge—Tate weight k; and

WD) = x;. In this case p admuts two triangulations. The non-critical triangulation has pa-
rameter

§=x"y o0 Artg,, x x50 Artg,)
and the critical triangulation has parameter

8= (x"x0Artg,, x " x; 0 Artg,)
(see for example [Berl 7, Example 3.7] for the crystalline case).

We now consider the global situation. We define 7 = Huesﬁ Ty, T = l_[vesﬁ T,

and W =T], es, Wo. We write r = I, N T — W for the product of restriction maps.
Let G, = (GL, x GL;) x {£1} denote the group scheme defined in [CHT08, §2.1], vg, :
G, — GL, its character, and suppose given a continuous homomorphism p : Gp+ g —
G.(E) such that vg, o p = 61_”8; N We write ad p for the E[Gp+ s]-module given by
adjoint action of G, on the Lie algebra of GL,. We write D, : C;; — Sets for the functor
which associates to each A € Cj; the set of ker(GL,(A) — GL,(E))-conjugacy classes of
lifts p": Grr.s — G,(A) of p such that vg, 0 p' = €' 78} 1.

If A C Gy is a subgroup, then p(A) C G°(E) = GL,(E) x GL, (E), and we follow
[CHTO8] in writing p|a : A — GL,(E) for the projection to the first factor. If v € S, then
there is a natural functor D, — DP|GF5 , given by restriction p’ > 0’|, .
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Let § = (8,)ves, € T"(E) be such that for each v € S, p, = plg,, is trianguline of
parameter J,. We define a functor

D, rs=D, Xl_luesﬁ Dy, 1_[ D,, 7,5,

UES/,

and H}, ;(Fs/F*, ad p) = D, x5 (Ele]) C H' (Fs/F*, ad p).

Proposition 2.11. — Keeping assumptions as above, suppose further that the following conditions
are satisfied:
(1) For each v € S,, p, is de Rham.
(2) Foreach v € S, WD(p|gy. ) is generic, in the sense of [All16, Definition 1.1.2].
(3) Foreach v € S, and for each T € Homg, (F3, E), we have

Wi, (81),1) < wtr(Sv,Q) << Wh (Sun)

In other words, the triangulation of p, with parameter 8, is non-critical.
(4) H}(F*, adp) =0.
Then dlmF Hzln',a (Fs/F+, ad ,0) < dlmF W.

Progf: — Our assumption that WD(p|g,. ) is generic means that for each v € S,
H}(F;;, adp) = H;(F;, adp) and for ecach v € S — S, H}(F;;, ad p) = H!(Fy, ad p) (see
[All16, Remark 1.2.9]). Lemma 2.7 then implies that the map H, ,(Fs/F*, adp) —
T, W is injective (its kernel being contained in H} (Ft,adp) =0). UJ

2.11.1. Tranguline representations — global geometry. — We fix a continuous pseu-
docharacter T : Gy — £ of dimension n > 1 which is conjugate self-dual, in the sense
that Toc=T" ® €'™". (We define pseudocharacters following Chenevier [Che14], where
they are called determinants. For a summary of this theory, including what it means for
a pseudocharacter of Grg to be conjugate self-dual, see [NT20, §2].) Let R, denote
the universal pseudodeformation ring representing the functor of lifts of T to conjugate
self-dual pseudocharacters over objects of Co (cf. [NT20, §2.19]). If v € S;, let R, ,, de-
note the pseudodeformation ring of T|g,_. We write &), for the rigid generic fibre of
R,;, and &), , for the rigid generic fibre of R, ,. Then there is a natural morphism
Xy — Xy ) = Hvesp X} of rigid spaces over E. We recall that to any representation
p : Gps = GL,(E) such that trp = 7, and which is conjugate self-dual in the sense that
p° = p¥ ® €', is associated a closed point tr p € X),(E). Conversely, if ¢ € X, (E), then
there exists a semi-simple conjugate self-dual representation p : Gy g — GL,,(@) such
that tr p = ¢, and this representation is unique up to isomorphism.

If p: Gps = GL,(E) is an absolutely irreducible representation such that p° =
p¥ ® €'™", then there is a homomorphism p : Gy+ s — G,(E) such that p;|c,, = p and
vg, 0 py = €' "8}, sp+- The integer a € {0, 1} is uniquely determined by p, and any two
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such extensions are conjugate by an element of GLn(Qﬁ). (See [CHTO08, Lemma 2.1.4].)
The following lemma extends this to objects of Cp;:

Lemma2.12. — Let p : Gy s = GL,(E) be an absolutely vrreducible representation such that
0= pY @€', and fix an extension p, as in the previous paragraph. Let A € Cy.. Then the following
sets are in canonical byection:

(1) The set of ker(GL,(A) — GL,(E))-comjugacy classes of liftings p’ : Gys — GL,(A) of p
such that tr p’ o c =tr(p’)¥ ® €' .

(2) The set of ker(GL,(A) — GL,(E))-conjugacy classes of liftings p; : Grr s = G,(A) of p
such that v o p| = 61_”8§/F+.

Proof. — There is an obvious map sending p| to tr p{|g;s. We need to check that
this is bijective (at the level of conjugacy classes). To check injectivity, let pi, p{ : Gp+ s —
G,(A) be two such homomorphisms and suppose that p{|c.s, o1 laps are ker(GL,(A) —
GL,(E))-conjugate. We must show that p{, p{ are themselves conjugate. We may suppose
that in fact p||g.s = 0] lGps- In this case Schur’s lemma (cf. [CHTO08, Lemma 2.1.8]),
applied to p;(c)~"' p/'(c), shows that p], p} are equal.

Now suppose given p’ : Gy s — GL,(A) lifting p, and such that tr p’oc = tr(p")¥ ®
€' Let ] € GL,(E) be defined by pi(c) = (J, —vg, o p1(c)); (cf. [CHT08, Lemma
2.1.1]), so that p(c) =Jp(0) ]! @ €' for all 0 € Gys. Then [Chel4, Example 3.4]
implies the existence of a matrix ]’ € GL,(A) lifting J such that p’(c°) =] (p'(0)) ' (J) ™"
for all o € Gys. By [CHTO08, Lemma 2.1.1], this implies the existence of a homo-
morphism p) : Gp+ s = G,(A) lifting p; and such that p||g, = p’. This completes the

proof. UJ
There is a Zariski open subspace prij}i”' C &), consisting of those points at which
the universal pseudocharacter is absolutely irreducible. We write X/i;,m =11, s, X}J’jfvm

and X} " for the pre-image of X% ,". Thus again there is a canonical morphism

Xlﬁ_m — X/ﬁ;m. According to [Chel4, §4.2], there exists an Azumaya algebra A over

/'\f'p‘jj”' and a homomorphism p! : G, — A* such that tr p is the universal pseudochar-

acter.

Lemma 2.13. — Let p, : Gy, — GL,(E) be an absolutely wrreducible representation, cor-
responding lo a point z = trp, € Xp'jj”(E). Then there exists an affinoid open neighbourhood
z €U C X' "(E) and an isomorphism Aly = M, (Oyy).

ps,v
Progf. — Let U be an open affinoid neighbourhood of z. The stalk Oy, is a
Henselian local ring ([FvdP04, Proposition 7.1.8]). Thus the stalk 4. is an Azumaya
algebra over a Henselian local ring which is split over the closed point; it is therefore split,
Le. there exists an isomorphism A, = M, (Oy ). After shrinking U, this extends to an
isomorphism AU) = M, (OWU)), as desired. O
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Lemma 2.14. — (1) Let z € .XZ;”(E) be the closed point corresponding to the isomorphism
class of a tuple (py)ves, of absolutely irreducible representations p, : Gp; — GL,(E). Then there

is a canonical isomorphism
p—UT ~~ 1
TzX/JJ,/) = @UES/,H (F59 ad pv)

(2) Letz € Xjﬁ._m(E) be the closed point determined by a representation p : Gy+ s — G,(E) such that
Joreach v € S, play. s absolutely irreducible. Then there is a canonical isomorphism

T.X0 " = H (G s, ad p),

which has the property that the diagram

T.XL" ——— H'(Gprs,ad p)

| J

T.XL" —— @5 H (Fr,adp,)

commules.

Progf. — The first part follows from [Chel4, §4.1], which states that the completed
local ring of 2\?}5;”’ at the E-point corresponding to an absolutely irreducible represen-
tation p, : Gy, = GL,(E) pro-represents the functor D, . The second follows from this
and Lemma 2.12. 0J

Proposition 2.15. — Let v € S, and let p, : Gg; — GL,(E) be an absolutely irreducible
representation which is trianguline of parameter 8, € T¢(E). Let z € X pl;;f" X T be the closed point
corresponding to the pair (py, 8,). Then:

(1) There exists an affinoid open newghbourhood U, C X p‘;}”" x T of z over which there exists a
unwversal representation pl : Gp, — GL,(OU,)). Let V,, C U, denote the set of points (p., 5.)
such that p), us trianguline of parameter 8., and let Z,, C U, denote the Zariski closure of V,,. Then
V), 1s the set of points of a Larisk open subspace of Z,,.

(2) The Lariski tangent space of Z, at z is contained in the subspace H[ln-’ 5, (Fv, ad py) of the Qariski
tangent space of Xp’;fv”’ x T at z.

Proof — By Lemma 2.13, there is an affinoid neighbourhood U, C X;};Lm x T
of z over which there exists a universal representation p! : Gy, - GL,(OU,)). We can
assume without loss of generality that U, is connected. By [KPX14, Corollary 6.3.10],
there is a reduced rigid space Z’ over E and a proper birational morphism f : 2" — Z,

having the following properties:
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e Lor every point 2 € Z’, the absolutely irreducible representation py(.y is trian-
guline.

e There is an increasing filtration 0 = F, C F; C --- C F, = DT (f*(p“))) by
coherent (¢, I'p;)-stable 'R z/ r,-submodules.

e There exists a Zariski closed subset Z; C Z’ such that Z; Nf~'(V,) = @ and
for each 7 € Z' — Z,, the pullback of F. to D!, (ps2) is a triangulation of
parameter 8/(y.

g

e Over Z' — Z,, F, is in fact a filtration by local direct summand Rz p,-
submodules.

e The map f factors through a proper birational morphism [:2 - Z,, where
Z, is the normalisation of Z,. Moreover,f factors as the composition of a se-
quence of proper birational morphisms between normal rigid spaces

Z/:Zm_)szl_)"'zlzédv

where each morphism Z; — Z;_; is glued, locally on the target, from analyti-
fications” of birational projective schemes over Spec(A), with Sp(A) C Z;_; an
affinoid open.

Note that the final point is a consequence of the construction in the proof of [KPX14,
Theorem 6.3.9]. The third point actually implies that 2’ = Z; U f~'(V,), hence Z, =
J(Z)) uV,. Since f is proper this shows that V, is Zariski open in Z,.

Let z1, ..., 2, € Z, be the closed points of the normalisation with image in 2,
equal to z. For each 1 <j <m, let z; be a closed point of the preimage of z; in Z.
We denote by % the image of z in any of the Z;, for 1 <¢ < m. We claim that the map
Ox Z,.5 > O 2,2 on completed local rings is injective; indeed, it follows from the final point

in the 1temlzed list above that we need to show injectivity for each map O 25> O Zige
Each of these maps coincides with the map on complete local rings A, — OX . associated
with a (projective, birational) morphism of schemes X — Spec(A), where A is the ring
of functions on an open affinoid neighbourhood of z; € Z;, x € Spec(A) is the maximal
ideal given by z; and x" € X is a closed point mapping to x. The complete local ring A,
is a domain (by normality and excellence of A,) and the map A, — Ox_, is injective (by
dominance of X — SpeggA)) so [GD71, Corollaire 3.9.8] gives the desired injectivity.
The map Oz, . — [, Oz ;. is the normalisation of @) z,.2, S0 it Is also injective. Putting
everything together, we have shown that the map O z,.—> [, O 2.2 18 HlJCCthC

After possibly extending E, we can assume that all of the pomts Z,in Z' have
residue field E. The existence of a global triangulation over 2’ — Z; implies that for
each :=1,...,m, there is a classifying map R, 7 s, — Oz 2> where F, is the unique

% Here we mean the relative analytification defined by Kopf [Kép74], see also [Con06, Example 2.2.11].
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triangulation of p, of parameter §,. This implies the existence of a commutative diagram

OZ/{U,Z - OZU,Z

| |

m P~
vas]:v»lsv l_[i:l OZ/»%;’

where the left vertical arrow is surjective (Proposition 2.6) and the top horizontal arrow
1s surjective. We have already noted that the right vertical arrow is injective. These facts
together imply that the top horizontal arrow factors through a surjective map R, 7, s, =
Oz, .. This implies the desired result at the level of Zariski tangent spaces. U

Remark 2.16. — Prompted by a referee, we note that the definition of “Zariski
dense’ given in [KPX14, Definition 6.3.2] is somewhat non-standard. In this paper (and
in other references we cite such as [BHS17]), a subset Z of a rigid space X is called Zariski
dense if the smallest closed analytic subset of X which contains Z is X. In [KPX14,
Definition 6.3.2] the stronger condition is imposed that Z is Zariski dense (in the usual
sense) in each member of some admissible affinoid cover of X.

When we apply [KPX14, Corollary 6.3.10] in the above proof, we have a Zariski
dense subset of an affinoid, so there is no discrepancy between the definitions in this case.
Eugen Hellmann has explained to us that the crucial result [KPX14, Theorem 6.3.9]
does in fact hold with the weaker, standard definition of Zariski dense. Since it may be of
interest, we sketch the argument.

We start with X, §, M as in [KPX14, Theorem 6.3.9] and suppose we have a
Zariski dense (in the usual sense) subset X, C X satisfying the assumptions of loc. cit. We
may assume that X is normal and connected, and will show that X, can be enlarged to
a subset which is Zariski dense in the stronger sense of [KPX14].

There are coherent sheaves H;,VK(MV (%)), H;,VK(Mv (8)/1t,) on X, which are lo-
cally free over a non-empty (hence dense) Zariski open subset U C X. At points z in
the Zariski dense subset Xy, N U, the fibre H) (MY(8)) ®oy k(2) = H, , (MY (5.))
has dimension one and the map M, — Ry, (wk)(8,) dual to a non-zero element of
this fibre is surjective. The latter condition is equivalent to non-vanishing of the map
HSJ»VK(M\/ (0)) ®oy k(z) = H%YK(Mv (8)/t;) oy k(z) for every p-adic embedding o.
These conditions hold over a Zariski open subset U’ C U. Since U’ contains X, N U,
it is also Zariski dense in X. Moreover, U’ contains a Zariski dense subset of every affi-
noid open V C X. Indeed, the intersection V N U with the Zariski open and dense subset
U contains an affinoid open subset of V. Repeating this step, the intersection V. N U’
also contains an affinoid open subset of V. We have shown that we obtain the desired
enlargement of X, by adjoining U’



SYMMETRIC POWER FUNCTORIALITY 39

2.17. The unitary group etgenvariety. — Now let F, S, p, G = G, be as in our standard
assumptions (§1). We continue to assume that E contains the image of every embedding
T:F— @ In particular, the reductive group Resp+/g G, splits over E.

Let U, =[], U,, C G,(A}Y) be an open compact subgroup such that for every
finite place v € S of F*, U, , is hyperspecial maximal compact subgroup of G,(F;). We
define TS =O[T., ..., T" , (T")"'1C O[UE\G,,(A;?;S)/US] to be the algebra generated
by the unramified Hecke operators at split places v = ww* of F* not lying in S. These
operators were defined in §1.23.

We write T, C B, = T,N, C GL, for the usual maximal torus and upper triangular
Borel subgroup, and define E-rigid spaces

W, =Hom([ | T.(O,), G,)

veS,

and

T,=Hom([ [ Tu(Fp), G,).

veES,

Restriction of characters determines a morphism 7 : 7, — W, of rigid spaces. Note that
the spaces 7,, W, may be canonically identified with the spaces T, W of the previous
section.

We fix a choice of isomorphism ¢ : @ — C. If 7 1s an automorphic represen-
tation of G,(Ayp+) with Y # 0, there is a corresponding semisimple Galois represen-
tation 7, : Gpg — GL,Z(@) (cf. Corollary 1.3), which satisfies local-global compati-
bility at each place of F. The space ¢~'(7z>)Y
which therefore determines a homomorphism ¥, : T> — Q,. We call an accessible re-

Jinement of 7 a choice x = (Xy)ves, for each v € S, of a (necessarily smooth) character

* is naturally an isotypic T>-module,

X T.(Fy) — 6; which appears as a subquotient of the normalised Jacquet module
i, () = 0! (700N, (5 O, 11/ 2); equivalently, for which there is an embedding of m, into
the normalised induction ig IL”L Xv. Note that x € 7;((_21]).

Lemma 2.18. — Let 7t be an automorphic representation of G, (AY), and let x = ( Xv)ves,
be an accessible refinement of 7. Then for each v € S,, there is an increasing filtration of recgE (')
by sub-Weil—Deligne representations with graded preces

1—n)/2 1-n)/2
XU,ll : |( n)/ OArth’ MR Xv,nl : |( ”)/ OArtFﬁ'

Proof. — Since m, admits an accessible refinement, it is a subquotient of a principal
series representation. Suppose that recy, (r,) = @f;l Spn,-(lM - |®=D/2) for some charac-
ters ¥; : FX — G*. By the Langlands classification, 7, is isomorphic to a subquotient of
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the normalised induction
=" St, (Y1) ® - ® St,, (Y1),

where P C GL, is the standard parabolic subgroup corresponding to the partition n =
ny 4+ ny + - -+ + ;. It will therefore suffice to show the stronger statement that if @ =
a) @ -+ @a, is a subquotient of the normalised Jacquet module of I, then there is an
increasing filtration of @le Sp,, (il - |%=D/2) by sub-Weil-Deligne representations with
graded pieces given by o) o Arty,, ..., &, o Arty,. We recall that each Sp, (] - |“~D/%)
comes with a standard basis ¢, ¢, .. ., ¢,. We concatenate and relabel these bases so that
e1, e, ..., e, s abasis for @le Sp,, (¥l - |=D/2) with Oyl e b5, the standard basis
for Spnj(Wﬂ . |(,y_1)/2)'

We first treat the case £ = 1, n; = n. After twisting we can assume that ¥ = 1. Then
the normalised Jacquet module of St, equals | - |2 ® - @ | - |17"/2 while there is a
unique invariant flag of Sp (| - |*=D/2) given by Fil; = span(e, ..., ¢) (i=1, ..., n) which
has the desired graded pieces.

Now we return to the general case. Using [Zel80, Theorem 1.2], we see that the
irreducible subquotients of the normalised Jacquet module of IT are precisely the charac-
ters By,-11y @ - -+ ® By-1(»), where w € S, is any permutation which is increasing on each
ofthesets {1,...,m}, {mi+1,....my+m}, ..., {;m+-4+m_g+1,....0m+--+nl,
and (B, ..., B,) is the concentration of the tuples (¥;| - |~ D2 ... | - |17/%) for
1=1,...,k

We see that the increasing filtration of

@, Sp,, (Wil - | 7V7)
given by Fil; = span(e,-1(1, - - . , €y-1¢;)) 1s a filtration by sub-Weil-Deligne representations

which has the desired property. This completes the proof. U

If x is an accessible refinement of 7, then we write v(m, x) € 7;(61]) for the char-
acter

(2.18.1) (T, ) = K1) - (ot "85 F)es,

where k() € T,(E) is the (B,-dominant) Q,-algebraic character which is the highest
weight of 177w, Ik (T)y = (K > ke >0 > KT’,,)T:F;_)@ then the labelled Hodge—
Tate weights of T7TJ|GF'57 in increasing order, are (—k; | < —Kk;o+ 1 < < =k, +n—
l)r:F;er'

We write j, : T, — 7T, for the map defined by the formula

1)y =1, - (1,€7! oArtg,, ..., el o Arty;).

The reason for introducing this map is that if 7 is an automorphic representation of
G,(Ag+) and x is an accessible refinement, then the parameter § associated to x| - |7/
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by the formula of Lemma 2.8 satisfies ,(v(s, x)) = 8. We call the accessible refinement
x numerically non-critical or ordinary if § is. Note that this property depends on the pair
(7r, x) and not just on x.

2.18.1. Emerton’s ewgenvariety construction. — We now describe the construction, fol-
lowing Emerton [Eme06b], of the (tame level U,) eigenvariety for G,. We use Emerton’s
construction because we do not want to restrict to considering 7= with Iwahori-fixed vec-
tors at places in S, (as is done, for example, in [BC09]) and it seems to us that Emerton’s
representation-theoretic viewpoint is the most transparent way to handle this level of
generality.

We recall the set-up of §1.23, so for each dominant weight A we have a module
S, (U,, O/@™") of algebraic modular forms, which has a natural action of TS. When A is
trivial we omit it from the notation.

We define

5

S(U2, 0) = lim <11_r>r1 S(U'U,, O/wf)>

Uy
and
S(U”,E) :=S(U, 0) @0 E,

SO g(Uﬁ, E) is an E-Banach space (with unit ball g(Uﬁ, 0)), equipped with an admissible
continuous representation of G,Z(F;). For dominant weights A, we can consider the space
of locally V' -algebraic vectors g(Uﬁ, E)Vi~%_ We have a (G, (F;) X TS)—equivariant 1S0-
morphism

lim S, (U/U,, O) ®o V; = S(U?, E)Vi—k

n’
Uy

(see [Eme06b, Corollary 2.2.25]). We can also consider the space of locally Q,-analytic
vectors g(Uﬁ, E)*, and apply Emerton’s locally analytic Jacquet functor Jg, to this locally
analytic representation of G,Z(F;“). We thereby obtain an essentially admissible locally
analytic representation JB,S(Uﬁ, E)™ of nves,, T,(F3), and by duality a coherent sheaf
M, on T,, equipped with an action of T%. We denote by A, C End(M,) the coherent
O7.-algebra subsheaf generated by T>. Now we can define the eigenvariety, an E-rigid
space, as a relative rigid analytic spectrum

£ =Spr A ST,

equipped with the canonical finite morphism v'.
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We define another finite morphism v : £, — 7, by twisting v’ by &5’ ' (see Remark
2.21). By construction, we also have a ring homomorphism ¥ : T> — O(E,), so we obtain
a map on points:

¥ xv:£,(Q,) — Hom(T}, Q) x 7,(Q,).

For E//E finite (with E/ C Qp), a point (¥, vy) € Hom(T?, E) x T,(E') is in the image of
¥* x v ifand only if the eigenspace

T, (SCUZ EN™) [0, 108, ]

is non-zero, or in other words if there is a non-zero [ [,.s T(¥Fy)-equivariant map

veS,

Vo8, — Js, (SCUZ, EN™) [10].

We define the subset Z, C 5,1(@) of classical points to be those for which there is more-
over a non-zero map to the Jacquet module of the locally algebraic vectors:

VoS, — Ju, (S(UZ, EN) [].

Lemma 2.19. — For any characters T: — Eand x . [],.s. T(Fy) = E*, we have

veSy

Homyy, ) (x.Js, (SUL B)”) [¥1)
= Homyp,_, o (x.Js, SUL B)7[¥])).

Proof. — This can be seen using Emerton’s canonical lift [Eme06a, Proposition
3.4.9], which identifies both sides of the equality with the same eigenspace in g(Uﬁ, E)®.
Alternatively, we can use the left exactness of the Jacquet functor. In the latter argument
we need to use the fact that T? acts on S( ', E)” via a Noetherian ring and we then
deduce that passing to an eigenspace for a (ﬁnltely generated) ideal in this ring commutes
with the Jacquet functor. U

We now relate the classical points Z, to refined automorphic representations. Let

A, denote the set of automorphic representations 7 of G, (Ag+) such that (JTOO)U? #0,
let RA, denote the set of pairs (7, x) where m € A, and x is an accessible refine-
ment of 7, and let Z, C Hom(Ti, Q) X 7;(@) denote the set of points of the form
(Y, v(7, x)), where (1, x) € R.A,. We note in particular the existence of the surjective
map ¥, : RA, — Z,.

Lemma 2.20. — The map ™ X v restricts to a byection 7., — Z,.
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Proof — If z€Z,NE,(E) is a classical point defined over E, it follows from the
above discussion on locally algebraic vectors that z arises from a non-zero map

v(2)8g, = Js, (h_rgl S, (USU,, EN[Y™(2)] ®w VX)

Uy

for some dominant weight A. It follows from [Eme06a, Prop. 4.3.6] that such maps cor-
respond bijectively with non-zero maps

V(2)8s,(A) " = Jg, (h_rgl S,.(ULU,, E)[W(z)]) :

Uy

where 1 is the highest weight of V.

By Lemma 1.25, we have (7, x) € R.A, where 7, has highest weight (A", ¥, =
¥*(2) and v(2) = AV x8; "> = v(x, x). This shows that we do indeed have an induced
map Z, — Z,, and it is easy to see that this is a bijection. UJ

Remark 2.21. — An accessible refinement x is numerically non-critical if and only
if for every v € S, the character v(7, x),dp, = k(7), XU(S]% ? has non-critical slope, in the

sense of [Eme06a, Defn. 4.4.3]. The renormalisation (replacing XUSI;/ * with ch?éi 2) ap-
pears in Emerton’s eigenvariety construction because Xv(?éi ? is a smooth character ap-

pearing in the (non-normalised) Jacquet module ¢~ ', x, ), whilst Bellaiche—Chenevier
normalise things to be compatible with the Hecke action on Iwahori-fixed vectors (see

[BCO9, Prop. 6.4.3]).

Our next task is to recall some well known properties of the eigenvariety &,
(cf. [Brelb, §7]), variants of which are established by numerous authors in slightly differ-
ent contexts (e.g. [Che04, Buz07, Eme06b, Loel1]). We follow the exposition of [BHS17]
which establishes these properties for the patched eigenvariety. In order to at least sketch
the proofs of these properties in our context, we first introduce a ‘spectral variety’ which
will turn out to be a Fredholm hypersurface over W,.

We fix the element z = (z,)ves, € I1 , T,(F3) with z, = diag(w§_1, ooy, 1),

vesS
and let Y be the closed subgroup of Hvesﬁ T,(Fy) generated by Huesp T,(OF;) and z.

The rigid space Y= Hom(Y, G,) is then identified with W, X G,,. As in [BHS17, §3.3],
it follows from [Eme06a, Proposition 3.2.27] that Jgng(U{;, E)™ has dual equal to the
space of global sections of a coherent sheaf N, on W, x G,,. We define Y. to be the
schematic support (cf. above Définition 3.6 in [BHS17]) of N, (85 "). This rigid space
comes equipped with a closed immersion . <> W, X G,,. The twist in the definition of
Y. is there to ensure that this closed immersion is compatible with the map v. Indeed, the
map from &, given by composing v with the restriction map to W, x G,, factors through
a finite map f : £, — )., giving us a commutative diagram:
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v

& —— T,

o

yz(—> WﬂXGm

Now we state our proposition summarising the key properties of the eigenvari-

ety &,.

Proposition 2.22. — The tuple (€,, W, v, Z,) has the following properties:

(1) &, is a reduced E-rigid space, equipped with a_finite morphism v : E, — T,. We write k for the
induced map « : E, —> W,.

2) 7,Cé, (Qﬁ) is a Lariski dense subset which accumulates at every point of 2., (in other words, each
pownt of 7., admuts a basis of affinoid neighbourhoods V such that V N 7., s Lariski dense in V),
and the map y* X v : Sn(ﬁﬁ) — Hom(TS, Q) X 7;(6_,}) restricts to a byection 7., — Z,.

(3) For any affinoid open N C T,, the map T @ O(V) — O(W~'V) is surjective.

(4) &, is equidimensional of dimension equal to diim W, For any wrreducible component C C E,, k (C)
is a Laniski open subset of WV,

(5) Let z€ €&, (Qﬁ) be a point, and suppose that § = J,(v(z)) factors as & = 840, where 844 1s a
strictly dominant algebraic character and 8, s smooth, and that & s numerically non-critical. Then
z2€7,.

(6) r takes values in the subring O(E,)=" of bounded elements.

Proof. — First we note that a tuple satisfying the first three properties is unique —we
will not actually use this fact, but it can be proved in the same way as [BC09, Proposition
7.2.8] (our context is slightly different, as we equip our eigenvarieties with a map to 7,
instead of W, x G,,). We also note that it is not essential for our purposes to show that &,
is reduced (this is the most delicate of the listed properties); we could instead replace &,
with its underlying reduced subspace.

Now we summarise how to verify these properties. Property (5) follows from Emer-
ton’s ‘classicality criterion’ for his Jacquet functor [Eme06a, Theorem 4.4.5] (cf. Remark
2.21). Property (3) holds by construction.

Property (4) can be established as in [BHS17, §3.3] using the spectral variety )..
More precisely, (the proof of) Lemma 3.10 in this reference shows that the closed analytic
subset of W, x G,, underlying Y, is a Fredholm hypersurface, and ), has an admisible
cover by affinoids (U’);e; on which the map to W, is finite and surjective with image an
open affinoid W; C W,. Moreover, each U’ is disconnected from its complement in the
inverse image of W; and I" (U, N,) is a finite projective Oyy, (W;)-module.

Having established the existence of a good affinoid cover of the spectral variety,
we set U; = f ”(U;—). Since f is a finite map, (U,); 1s an admissible affinoid cover of
&,. It can then be shown, as in [BHS17, Proposition 3.11], that each affinoid Og¢, (U,) is
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isomorphic to a Oy, (W;)-algebra of endomorphisms of the finite projective Oy, (W,)-
module I'(U;, M,). We can now prove Property (4) as in [BHS17, Corollaire 3.12]: this
shows that &, is equidimensional of dimension equal to W,, without embedded compo-
nents, and each irreducible component maps surjectively to an irreducible component of
V.. Since irreducible components of Fredholm hypersurfaces are again Fredholm hyper-
surfaces, the image of such an irreducible component is Zariski open in W, (cf. [BHS17,
Corollaire 3.13]).

Now to establish property (2), using property (), it suffices to show that points z €
5,1(617) with numerically non-critical § = j,(v(z)) accumulate at any point z, with x(zp)
locally algebraic (cf. [BHS17, Théoréme 3.19]). Using the good affinoid cover described
in the previous paragraph, we have an affinoid neighbourhood U of 2, which is a finite
cover of an affinoid W C W,. In fact, such U form a neighbourhood basis at z, (cf. [Tail6,
Theorem 2.1.1, Lemma 2.1.2]). The valuations v,(3, ;()) are bounded as z varies in U
(with § = 7,(v(2))). It follows from the description in Definition 2.9 that there is a subset
¥ of W, accumulating at k(z) such that «~'(X) N U consists entirely of points with
numerically non-critical §. The subset « ~!(X) N U is Zariski dense in U.

Finally, to establish property (1) it remains to prove that &, is reduced. Since we
showed that &, is without embedded components, it suffices to prove that every irre-
ducible component of &, contains a reduced point. Using (4) and the Zariski density of
algebraic characters in W,, it suffices to show that &, is reduced at every point z, with
Kk (z9) algebraic. We use a good affinoid neighbourhood U = Sp(B) of 2 as in the pre-
vious paragraph, with W = k' (U) = Sp(A). The finite A-algebra B is identified with a
sub-A-algebra of Ends(M), where M = I'(U, M,) is a finite projective A-module. As
in the proof of [Che05, Proposition 3.9], it now suffices to show that for w in a Zariski
dense subset of W, the Hecke algebra TS and HUES}, T,(Fy) act semisimply on the fibre
M ®x k(w) — we use the fact that an endomorphism of a projective A-module which
vanishes in the fibres at a Zariski dense subset of points in W necessarily vanishes. The
proof of [BHS17, Corollaire 3.20] shows that we can achieve this by choosing w so that
their pre-images in U have #¢s classique associated characters § [BHS17, Définition 3.17]
(this is a condition on characters with algebraic image in W, which can be guaranteed
by a ‘numerical’ condition as in the proof of [BHS17, Théoreme 3.19], in particular it
gives a Zariski-dense and self-accumulating subset of &,). We can replace the reference
to [CEG'16] in the proof with the well-known assertion that the Hecke algebra T acts
semisimply on li_r)nUp S, (UU,, E) for dominant A. Finally, property (6) follows from the

fact that the T-action stabilizes the unit ball g(Uﬁ, 0) C g(U’Z, E). O

The properties established in Proposition 2.22 imply the existence of a conjugate
self-dual Galois pseudocharacter T, : Gy — O(E,) with the property that for any point
z € Z, corresponding to a pair (7, x), T, . = trr,,. This is proved as in [BC09, Proposi-
tion 7.5.4] and [Che04, Proposition 7.1.1]. The key points are that O(E,)=! is compact
[BC09, Lemma 7.2.11] and the map O(&,)=' — [].., C, given by the evaluation maps

€Ly
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at each z € Z, is a continuous injection (by Zariski density of Z, and reducedness of &,).
Then [Chel4, Example 2.32] is used to glue together the pseudocharacters tr7,, to form
the continuous pseudocharacter T,.

The pseudocharacter T, determines an admissible cover £, = Uz £,(T,) as a dis-
joint union of finitely many open subspaces indexed by Gy-orbits of pseudocharacters
T,:Gps — Fp, over which the residual pseudocharacter satisfies the condition Tn, L=T,
(cf. [Chel4, Theorem 3.17]).

Fix a pseudocharacter 7, : Gps — Fp. Extending E if necessary, we may assume
that T, takes values in £. We recall some of the E-rigid spaces of Galois representations
defined in §2.11.1, now decorated with z subscripts. Thus &), is the space of conjugate
self-dual deformations of T, X;;,m 1s its Zariski open subspace of pseudocharacters which
are irreducible at the p-adic places. We also have the subspace A7, of pseudocharacters
which are (globally) irreducible. The existence of T, determines a morphism A : £(T,) —
&X)s.0, and the morphism i, = A x (j ov) : £,(T,) = &), X T, is a closed immersion, by
point (3) in the list of defining properties of &,.

Now assume that n > 3, and let Ty : Gps — F/, be a conjugate self-dual pseu-
docharacter of dimension 2. Let T, = Sym” ' Ty; then T, is a conjugate self-dual pseu-
docharacter of Gy g of dimension 7. Taking symmetric powers of pseudocharacters de-
termines a morphism o,, : X, o — X, ,. On the other hand, we can define a map
0.y Ty = 7T, by the formula

((81),1 > 81},2))1}68/] = ((8331 s 53;281),2» SRR 3331))v68p-

We write 0, = 0,,, X 0, : X0 X Ty = &), x T, for the product of these two morphisms.
We have constructed a diagram

001 n

52(?2)*%)(3% X ﬁ%grz(?n)
Compare Lemma 2.2.

Definition 2.23. — Let 7t be an automorphic representation of Go(Ag+), let X = (Xv)ves, be
an accessible refinement of 0, and let n > 2. We say that x 1s n-regular if for each v € S, the character

Xo = Xo.1 @ Xuo salisfies (Xv.1/Xv2) # 1 for 1 <i<n—1.

Theorem 2.24. — Let (19, x2) € RAjg satisfy tTq,, = To, and let z9 = yo(7wq, x2) €
E(T9) ((_2,,). Suppose that:
(1) The refinement xy ts numerically non-critical and n-regular.
(2) There exists (70,, x,) € RA, such that (0, 0 15)(22) = 1,(2,), where 2, = Y, (7T, X,)-
(3) For each v € S,, the Jariski closure of 1y, ,(Gg;) (in GLy/ @ ) contains SLy.
Then each irreducible component C of E4(Ty)c, containing zo satisfies (0, 0 13)(C) C 4,(E,(T,)e,)-

Proof: — Extending E (the field over which &, is defined) if necessary, we may as-
sume that zo € &(T9)(E) and r,,, takes values in GLy(E). By [Con99, Theorem 3.4.2]
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(which says that an irreducible component of & (T2)c, 1s contained in the base change of
an irreducible component of £ (Ty)), it suffices to show that each irreducible component
C of & (T,) containing 2y satisfies (0, 04)(C) C ,(€,(T,)). By Lemma 2.2, it is enough to
show that (0, 04y) ™' (3,(€,(T,))) contains an affinoid open neighbourhood of z,. To prove
this, we will use a number of the results established so far.

Since x9 1s a numerically non-critical refinement, the parameter §, of the associ-
ated triangulation is non-critical, in the sense that for each T € Hom(F, E), the sequence
of T-weights of §, 1s strictly increasing (Lemma 2.8). Passing to symmetric powers, we see
that 7, , 1s trianguline of parameter 6, = 0,,,(d;), and that §, is non-critical (although it is
not necessarily numerically non-critical).

The n-regularity of xo implies that §, € 7“(E). We are going to apply Propo-
sition 2.11 to conclude that dimg Htln»’ 5, (F's/ Ft,adr,,,) < dmW, = dim&,(T,). Note
that if v € S then WD(r,,mll(;FU) is generic, because it is pure: the base change of m,
to GL,(Ap) exists (for example, by [Labll, Corollaire 5.3]) and is cuspidal (because
7z, 1s irreducible), so we can appeal to the main theorem of [Carl2] (which estab-
lishes the general case; under various additional hypotheses, purity was established in
[HTO01, TYO07, Shill, Clo13]). If v € S, let us write f, : X, x T, = X}, , x T, for
the natural restriction map. By Proposition 2.15 and Lemma 2.14, we can find for each
v € S, an affinoid open neighbourhood U, C &), ,, x 7T, of the point f,(z,) such that the
following properties hold:

e Infact,U, C X/X;”J x 7% and there exists a universal representation p! : Gy, —
GL,(OU,)) over U,.

e Let Z, CU, denote the Zariski closure of the set V, C U, of points correspond-
ing to pairs (p,, §,) such that p, 1s trianguline of parameter §,. Then the Zariski

tangent space of Z, at f,(z,) is contained in H}ﬂ 5, (Fy adry, |GF;)'

We can then find an affinoid open neighbourhood U C &), x 7, of the point z, such
that the following properties hold:

o U C ﬂvegﬂfv_l(uv) and there exists a universal representation p": Gpg —
GL,(OU)) over .

o Let Z=UN (ﬂvesﬂf' (Z,)). Then Z is a closed analytic subset of ¢/ and the
Zariski tangent space of Z at the point z, is contained in H,, ;(Fs/F*, adr, ).
By the main theorem of [NT20], we have H}(F+, adr,,,) = 0, so Proposition
2.11 implies that the Zariski tangent space of Z at point z, has dimension at

most dim W,.

Let U’ = &,(T,) NU. Then U’ is an affinoid open neighbourhood of z, in £,(7,). We
note that if 2, = y, (), x!) € U', where x/ is a numerically non-critical refinement, then
Z, € Z (by Lemma 2.8, and the definition of Z). Such points accumulate at z,, implying
that every irreducible component of /" containing the point z, is contained in Z. In
particular, Z contains an affinoid open neighbourhood of z, in /', so we have dim Z >
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dim &,(T,) = dim W,. It follows that dim Z = dim W,, that 62 ., 18 a regular local ring,
and that Z is smooth at the point z,. Consequently, 4’ and Z are locally isomorphic
at z,, £,(7,) is smooth at the point z,, and &,(T,) has a unique irreducible component
passing through z,. Applying Lemma 2.2, we can also deduce that the unique irreducible
component Z’ of Z containing z, is contained in U’

Now let U” = (0, 0 i) "' (U), and let g = (0, 0 i)y : U” — U. Then U” is an
admissible open of & (Ty), and g~'(£) C U" is a non-empty closed analytic subset. Let
(5, X3) € RAy be apair such that x; satisfies the analogue of property (1) in the theorem.
Arguing again as in the second paragraph of the proof, we see that if the point (o, o
) (Yo (75, x5)) lies in U, then it in fact lies in Z. Since such points accumulate at zo,
we see that g7' (Z2’) contains each irreducible component of " which passes through z,
(and hence contains an affinoid open neighbourhood of zy). Since Z" C U’ we deduce
that (o, 0 i) "'(£,(T,)) contains an affinoid open neighbourhood of z,. This completes
the proof. 0J

Remark 2.25. — Note that assumption (3) on the image of the local Galois rep-
resentation ensures that all symmetric powers remain locally irreducible. We need this
to apply the results of §2.11.1. The authors expect that, with some effort, this material
could be adjusted to allow locally reducible (but globally irreducible) families of Galois
representations.

We also prove a version of this result in the ordinary case. We first note a well-
known consequence of Hida theory:

Lemma 2.26. — The lariski closure of the classiwcal points with ordinary refinements
E.T,)" C E,(T,) is a union of connected components of E,(T,) which are finite over W,, and every
classical point of E,(T,)" has an ordinary refinement. All pownts of E,(T,)" with dominant locally
algebraic image in YV, are classical.

Proof. — We can identify &,(T,)” with the generic fibre of the formal spectrum of
Hida—Hecke algebra (a localization of the ring denoted by T 4(U,(p>), O) in [Gerl9,
§2]), since this is naturally a Zariski closed subspace of X, x 7, in which the classical
points with ordinary refinements are Zariski dense. We deduce from Hida theory that
E.(T,)" is finite over W, and equidimensional of dimension dim W,. Moreover, the map
v:E,(T,)"™ — T, factors through the open subspace 7,° C 7, classifying unitary charac-
ters of Huesﬁ T,(F5).

On the other hand, we claim that every point of &,(T,) X, 7. 7,° is contained in
E.(T,)™. Assuming this, these (reduced) subspaces of &,(T,) are equal and &,(T,)" is
an open and closed subspace of £,(7,). The final part of the lemma follows from the
classicality theorem in Hida theory [Gerl9, Lemma 2.25].

It remains to show the claimed inclusion of &,(T,) X, 7. T.° in &,(T,)"". Suppose

z is an E-point of &,(T,) %, 7. T° (extending scalars deals with the general case). The
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character v(z)dg, then appears in the eigenspace (]B"ASJ(U{JL, E)“") [¥*(2)]. This charac-

ter therefore also appears in Jg, (g(Uﬁ, E)“”[tp*(,z)]), by Lemma 2.19. Applying [Sorl7,

Corollary 6.4] to g(Uﬁ, O)[¥*(2)] (note that Sorensen’s Jacquet modules are twisted by

Sg, ' compared to ours), we deduce that the unitary character v(z) appears in the ordinary

part OrdBnE(U{;, O)[¥*(2)]. This shows that z is a point of &€,(T,)"". O
Theorem 2.277. — Let (709, x9) € RAy satisfy tvTr,, = To, and let 79 = yo(79, x2) €

& (@)(@). Suppose that:

(1) The refinement ¥ ts ordinary.

(2) There exists (70,, X,) € RA, such that (0, 0 15)(22) = 1,(2,), where 2, = Y, (7., X2)-

(3) The Lariski closure of rr, ,(Gy) contains SLs.

Then each irreducible component C of E4(Ty), containing zo satisfies (0, 0 13)(C) C 4,(E,(T,)e,)-

Progf. — Extending E if necessary, we may assume that zo € £ (7o) (E) and 7,
takes values in GLy(E). We denote by 7;HT_”5' C 7, the Zariski open subset where for each
v €S, and T € Homg, (F, E) the labelled weights wt; (§,,,,;) are distinct for 1 =1, ..., n.

By Lemma 2.12 and (a global variant of) Lemma 2.13, there is an open affinoid
neighbourhood

Zn = (trrnn,u ) el C X" x T

ps,n n

and a universal representation p* : Gys = GL,(O(U)) such that the induced representa-
tion (p"),, : Gy = GL,(OUY,,) with coefficients in the completed local ring at z, extends
to @ homomorphism (p"),, : Gp+ s = G,(OU),,) with vg, o (p"),, = €' 8" Jp+

Since X, is ordinary, the parameter §, = 0,,(8,) is ordinary. We denote by
FL,(O;) % U the rigid space (equipped with a proper map to U) classifying S,-tuples
(-Fv)vesp of full flags in O},. We consider the closed subspace

Z" C FLO)

whose points z correspond to flags F,, which are Gy,-stable (under the p"-action) for each
v € S, and the action of Gy, on gr'(F,) is given by 8, ; ArtF_,v,1 where 8. is the parameter
of a(z). Since our parameters lie in 7;HT_”§, Z" — U is a closed immersion (it is a
proper monomorphism).

Using the existence of (p").,, we can view the tangent space T. Z”? as a sub-
space of H' (Gy+ 5, ad 7, ,). By a similar argument to Proposition 2.11, it follows from e.g.
[Gerl9, Lemma 3.9] (which gives the analogue of Lemma 2.7 in the ordinary case) and
the main theorem of [NT20] that the map T., Z — T, WV, is injective. On the other
hand, &,(T,)" NU, a subspace of Z”¢ containing z,, is equidimensional of dimension
dim W,. We deduce that Z°? is smooth at z,, and that &,(T,,) is locally isomorphic to Z”
at z,. We complete the proofin the same way as Theorem 2.24. U
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We restate Theorem 2.24 and Theorem 2.27 in a way that does not make explicit
reference to &,.

Corollary 2.28. — Let (779, X2), (715, x3) € RAs, and let 29, 2} € 52(@) be the corre-
sponding points of the eigenvariety. Suppose that one of the following two sets of conditions are satisfied:
(1) The refinement xy is numerically non-critical and n-regular.

(2) For each v € Sy, every triangulation of 1 |Gy is non-critical. The refinement x; is n-regular.
(3) For each v € S, the Lariski closures of the images of 17, |y, and 1z} |Gy, contan SLy.
(4) There exists an automorphic representation v, of G, (Ap+) such that

n—1 ~
Sym"™ 1y, =1, e

(5) The points 25, 2, lie on a common irreducible component of €9 ¢, ;

or

(1) The refinement ¥y is ordinary.

(2) The Zariski closure of the image of 14,..|G, contains SLy.

(3) There exists an automorphic representation 7, of G, (Ap+) such that

n—1 ~
Sym"™ 1z, = T 0

47?) The points z9, 2, lie on a common irreducible component of Ey ¢, (this implies that the refinement
2 Gy
Xy 15 also ordinary, by Lemma 2.26).
Then there exists an automorphic representation 7w of G, (Ag+) such that

n—1 ~
Sym Tapu = Taja

Proof. — Choose U, C G,(A}3) so that (JT,ZOO)UZP # 0 and take Ty = tr7,,,. Then
(0,01)(29) € 1,(E,(T),) (Qp)). We claim that setting x,., = X;:h ® X;;:ZlXQ,u,Q R--® Xé:,;
for v € S, defines an accessible refinement yx, of 7,. Fix v € S,. To temporarily simplify
notation, we write x = x; ® xo for x9,. The representation 7y , is isomorphic to either
Sto(tx1] - |~'/%) or to an irreducible parabolic induction ig’QLQL x . In the first case,

rec% () = Sym"‘1 recrl% () = Spn(XfH - |d=m72y

and x,, 1s the unique accessible refinement of , . In the second case,

n—1

T —1 ~ —1 T —1 ~ —1—i_ i 1—n)/2 —1
recys (t7'71,,0) = Sym" ™ recy (i ng,v):@xf ol 107 0 Arty .
=0

* By [Con99, Theorem 3.4.2], this assumption is equivalent to requiring that there is a finite extension of coefficient
fields E/ /E such that z9, zj lie on a common geometrically irreducible component of &, .
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Note that 7, , is generic (the base change of w, to GL,(Ay) 1s cuspidal, since 7, , is irre-
ducible). We can now use the characterisation of generic representations in the Bernstein—
Zelevinsky classification [Zel80, Theorem 9.7] and the compatibility with local Lang-
lands [Rod82, §4.4]. It follows that no pair of characters in the above direct sum decom-
position have ratio equal to the norm character, so the parabolic induction ig IL”L Xnv 18
irreducible and isomorphic to =, ,. In particular, yx,, i3 an accessible refinement of 7, ,,.

Taking the above discussion into account, it is straightforward to see that (o, o
i9)(z2) is associated to the pair (7,, x,) € R.A,. Thus the hypotheses of Theorem 2.24 or
2.27 are satisfied, and for any (7, x,) as in the statement of the corollary there exists a
point 2 € £,(T,) (Q,) such that T, , = tr Sym"_1 Trpae It remains to show that 2 € Z,, or
in other words that Z/ is associated to a classical automorphic representation.

In the ordinary case, this follows from Lemma 2.26. In the remaining case, Lemma
2.29 shows that for each v € S, every triangulation of Sym”_1 rﬂégtlgFU is non-critical. It
follows from Lemma 2.30 that 2, € Z,. O

Lemma 2.29. — Letv € Sy, and let p, : Gp; — GLy (617) be a continuous, regular de Rham
representation such that WD(p,) has two distinct characters X\, xo as fordan—Holder factors, which
satispy (x1/x2)' # 1 for each i = 1, ..., n — 1. Suppose moreover that every triangulation of p, is
non-critical. Then every triangulation of Sym"™" p,, is non-critical.

Proof. — We begin by describing the data of the triangulation of p, in a bit more
detail. Let K = Fy and let I./K be a Galois extension over which p, becomes semi-stable.
Let Ly be the maximal unramified extension of L./Q,. After enlarging E, we can assume
that every embedding of L in Q lands in E, and that p, is defined over E. The filtered
(¢, N, Gal(LL/K))-module D associated to p, consists of the following data:

(1) A free Lo ®q, E-module D of rank 2, equipped with a 0 ® 1-semilinear endomor-
phism ¢.

(2) An Ly ®q, E-linear endomorphism N of D satisfying the relation Ng = poN.

(3) An Ly-semilinear, E-linear action of the group Gal(LL/K) on D that commutes with
the action of both ¢ and IN.

(4) A decreasing, Gal(LL/K)-stable, filtration Fil, Dy, of D, =D ®y,, L.

For each embedding 7 : L = E, we write [; C D; = Dy, Qg5 E for the image of the
rank 1 step of the filtration Fil,. We can define an action of the group Wx on D by the
formula g - v = (¢ mod Wp,) 0 9™%® where a(g) is the power of the absolute arithmetic
Frobenius induced by g on the residue field of K.

This action preserves the factors of the product decomposition D = [, D,, where
¢t ranges over embeddings ¢ : Ly — E and D, = D ®,gi E. Moreover, the isomorphism
class of the Weil-Deligne representation D, is independent of ¢. The data of a triangu-
lation of p, is equivalent to the data of a choice of character appearing in some (hence



52 JAMES NEWTON, JACK A. THORNE

every) D,. If N is non-zero on D,, then there is a unique N-stable line in Sym”~' D,.
Hence there is a unique triangulation of Sym"~' p,, induced by the unique (non-critical)
triangulation of p,, and it is also non-critical. From now on we assume that N = 0, and
we proceed as indicated in [Chel I, Example 3.26].

We can choose a basis ¢, ¢; for D as Ly ®q, E-module such that the projection of
the vectors ¢;, ¢, to each D is a basis of eigenvectors for the group Wx.

Having made this choice of basis, each line /; is spanned by a linear combination
of ¢, €. Our assumption that every triangulation of p, is non-critical is equivalent to the
requirement that /; may be spanned by a vector ¢, + a. ¢, where a, € E* for all 7. Indeed,
if /; 1s spanned by ¢; for some ¢, then the triangulation corresponding to the submodule
of D spanned by ¢; will fail the condition required for non-criticality with respect to the
embedding 7.

Having made these normalisations, the condition that every triangulation of
Sym"~! p, be non-critical is equivalent to the following statement: let I C {0, ...,n — 1}
be a subset, and let ), a;x' € E[x] be a polynomial, which is equal to (1 4 a;x)"Q(x)
for some polynomial Q(x) € E[x] of degree at most n — 1 — |I|, then Q(x) = 0. Polyno-
mials of the latter form correspond to elements of the |I|th step of the Hodge filtration
on Sym"~' D, and the statement implies that this Hodge filtration is in general position
compared to the filtration induced by every triangulation. Replacing the variable x with
—ax, we can assume that ¢, = —1. As in [Chell, Example 3.26], the vanishing of the
1| successive derivatives at 1 of ) . @;x' gives a non-degenerate linear system of |I| equa-
tions satisfied by the ¢;, and therefore the ; are all zero. Non-degeneracy is checked
by noticing that the determinant of the linear system is the Vandermonde determinant

l_[i<jel ( _]) : O

Lemma 2.30. — Let z € £,(T,) ((_lﬁ) be a point with 1,(z) = (trr., ) € Xp{,_nm((_zﬁ) X
T (Q_p) Suppose that 8 = J,(V(2)) = 8,0, with 8, algebraic and 8, smooth. Suppose moreover
that, for each v € S, every triangulation of 1. |c,_ is non-critical. Then z € Z, (in particular, 8, is
strictly dominant).

Progf. — After extending E, we may assume that z € £,(T,)(E) and 7, takes values
in GL,(E). We note that, since § is locally algebraic, it follows from property (3) of the
eigenvariety that the subset of numerically non-critical classical points in ¢! (X/{;;lm x T )
accumulates at z. It follows from [KPX14, Corollary 6.3.10], applied as in Proposition
2.15, that there is a connected affinoid neighbourhood U of z in 7! ()C}{’;,W x T7¢), over
which there exist representations p.! : Gy, = GL,(O0f)) for each v € S, with trace equal
to the restriction to Gy, of the universal pseudocharacter and a non-empty Zariski open

and dense subspace V C U such that for every 7/ € V with i,(2') = (&7, §'), 7 is trian-
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guline of parameter §'. Now we can apply [BHS17, Lemme 2.11]° to deduce that 8, is
strictly dominant and 7, is trianguline of parameter 8.

We now argue as in [BHS17, Prop. 3.28] (which is itself similar to the argument
of [Chell, Prop. 4.2]). The idea of the argument is to show that failure of classicality
would entail the existence of a ‘companion point’ to z, with the same associated Galois
representation and a locally algebraic weight which is not strictly dominant. This would
contradict [BHS17, Lemma 2.11].

Let n = v(2)dB, = NaeNon, With 1, dominant algebraic (since J,;, is strictly domi-
nant) and 7, smooth. By the construction of &, and Lemma 2.19 we have a non-zero
space of morphisms

O # HomnveSp T, (Fy) (U’JBM (PSJ(U/:L, E)(m[w*(i)])) .

Now we use some of the work of Orlik—Strauch [OS15], with notation as in [Brel),
§2]. We denote by g, the Q,-Lie algebra of Hves G,(FH =11, es, GL.(F) and de-

note by b, C g, the lower triangular Borel. We define a locally analytic representatlon
of Huesf G,(F}) (see [Brel5, Thm. 2.2] for the definition of the functor .7: "):

Fody)) := F" ((U(gn,E) U, ) 7@) : nmagj) :

Note that (U(gn,E) QU 1) n;;)v has a unique simple submodule (isomorphic to the
unique simple quotient of U(g,,r) ®u, ;) n;;), the algebraic representation V(1,,)" with
lowest (with respect to B,) weight 7, It follows from [Bre15, Thm. 2.2] that F¢"(n8y")

has a locally algebraic quotient isomorphic to V(1,,) ® Indg” 775,,181; 11.
By [Brel5, Thm. 4.3], there is a non-zero space of moriohisms

0 # Homnves G"(F:r) («Fg:l(na];ll)9 ’SJ(U{;? E)[m[‘/f*(Z)]) .

The Jordan—Haolder factors of 7 O "(n8") can be described using [Bre15, Thm. 2.2]
and standard results on the Jordanff—lolder factors of Verma modules (see [Brel),
Cor. 4.6]). Suppose A € T,(E) is an algebraic character. Denote by M, the unique simple
submodule of the dual Verma module (U(gn,E) QU A~ ) Then the Jordan—Holder

factors of ]:Fi (70, " are all of the form
JHw, ) = }—ﬁiﬂ (Mwm/g’ n)

with P, a parabolic subgroup of [ [,.s G,(F}) containing Bn, 7 a Jordan—Holder factor

vES)

of the parabolic induction of mm83n from B, to the Levi of P,, and w an element of the

5 We caution the reader that the version of this paper currently available on the arXiv contains a less general result
than the published version, to which we appeal here. In particular, it restricts to Galois representations which are known
in advance to be crystalline.
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Weyl group of (Resy+,q G,) X g E, acting by the ‘dot action’ on 7,,. Here P, is maximal
for My,.,,,, in the sense of [Brel5, §2].

We claim that there cannot be a non-zero morphism JH(w, w) — g(Uﬁ E) Ut ()]
for w # 1. Suppose, for a contradiction, that there is such a map. It follows from [Brel6,
Cor. 3.4] that we have ¥*(z) = ¥*(¢) (and hence an isomorphism of Galois represen-
tations 7, = r,) for a point 7 € &,(T,)(E) with j,(v(Z)) locally algebraic but not strictly
dominant (its algebraic part matches the algebraic part of j,(w - 74,)). The argument in
the first paragraph of this proof, using [BHS17, Lemma 2.11], then gives a contradiction.

We deduce from this that any map

Fornsy)) — SUL E)" (97 (2)]

factors through the locally algebraic quotient V(1,,) ®g Indg” nsm(Sgnl. Applying [Brel),
Thm. 4.3] again, we deduce that we have equalities

Hompy, .00 (1.5, (S(UL )" [¥7(2)]))
=Homyy .o (For (185, S(UL B)" [y ()
=Hompy, 6,09 (f 5 (851 S(U, E)“lg[l/f*(z)])
= Homy, 1,0 (1.Js, (SU, E)“[y*(2)]1)) .
In particular, our point z arises from a non-zero map

n— Js, (SCUZ EY[y*(2)]).

Applying [Eme06a, Prop. 4.3.6] and computing locally algebraic vectors as in §2.18.1

we see that such a map corresponds to a non-zero map of smooth representations

Now — I, (h_r)nU S,]v/é, vy, E)[w*(z)]) and hence a pair (7,,t 0 17‘;,,18];1/2) e RA, with
[7 alg n

corresponding classical point equal to z. We therefore have z € Z,,. 0J

2.31. Application to the eigencurve. — Thus far in this section we have found it conve-
nient to phrase our arguments in terms of automorphic forms on unitary groups. Since
our intended application will rely on particular properties of the Coleman—Mazur eigen-
curve for GLy, we now show how to deduce what we need for the eigencurve from what
we have done so far.

We first introduce the version of the eigencurve that we use. Fix an integer N > 1,
prime to p. Let 7o = Hom(Q) /Z) x Q, G,); itis the E-rigid space parameterising char-
acters Xo = Xo.1 ® Xo.0 of (Q_;)2 such that xo is unramified. Let W, = Hom(ZpX, G,),
and write 7 : Ty = W) for the morphism given by 7(x0.1 ® X0.2) = Xo.1/ X0’2|Zﬁx =
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Xoalz;- We denote the map 1 o vy : & — Wy by «. Let T = O[T}, S)}yx] de-
note the polynomial ring in unramified Hecke operators at primes not dividing Np.
Here T, and S, are the double coset operators for the matrices (é ?) and ((/) ?) Let
UMN=]],UiN), C GLy(Z) = [, GLao(Z)) be defined by

U,(N), = {(‘; 2) €GLy(Z):c,d—1¢ NZZ} .

The eigencurve is a tuple (&, ¥, vo, Zo), where:

(1) & is a reduced E-rigid space, equipped with a finite morphism vy : & — 7.

(2) Yo : T{;N — O(&) is a ring homomorphism, which takes values in the subring
O(&)=" of bounded elements.

(3) Zo C & (@) 1s a Zariski dense subset which accumulates at itself.

The following properties are satisfied:

(1) & is equidimensional of dimension dim W, = 1. For any irreducible component C C
&o, k(C) is a Zariski open subset of W.

(2) Let Aj denote the set of cuspidal automorphic representations 1y of GL,(Ag) such
that (ngo)Ul(N)p # 0 and 7y o has the same infinitesimal character as (Symk_Q C?)Y for
some k£ > 2 (in which case we say 7y has weight £), and let R.4, denote the set of pairs
(o, X0), where my € Ay and xo = x0,1 ® Xo,2 is an accessible refinement of 7, such
that xo,1 is unramified. As in the unitary case we considered above, for (g, xo) € R.Aj
we have a homomorphism ¥, : T’SN — (,'_2_: determined by the action of the Hecke

operators on L_I(JTOOO)UI(N)I). There 1s also a character vy(iry, xo) € 76(@) defined
in exactly the same way as in the unitary case (2.18.1). An explicit formula appears
below (2.31.1). Our assumption that o is unramified implies that this character
does indeed give a point of Ty. Now we can let Z, C Hom(T N @) X T(@) denote
the set of points of the form (Y, vo(70, X0)), where (g, xo) € RAp. Then the map
Yo X vy EO(Q) — Hom(TpN, (_2!7) X 7’0(@) restricts to a bijection Zg — Z.

(3) For any affinoid open V, C 7, the map T’gN ® O(Vy) — O(v; V) is surjective.

The uniqueness of the tuple (&, ¥, Vo, Zo) follows from [BC09, Proposition 7.2.8]. Its
existence can be proved in various ways. A construction using overconvergent modular
forms is given in [Buz07]. We note that in this case, in contrast to the unitary group case,
the map RA, — Z, is bijective — a consequence of the strong multiplicity one theorem.
We will therefore feel free to speak of the cuspidal automorphic representation 7, € Ay
associated to a point lying in Zj. As in the unitary group case, there is a Galois pseu-
docharacter ¢ : Gg,n, — O(&) with the property that for z € Z, associated to (79, xo),
b, =107y ..

Let us describe explicitly the link with more classical language. We are using the
normalisations of [DI95, §11]. If (7o, x0) € Ao, then there is a cuspidal holomorphic
modular form f = ¢+ Y _,a,(f)¢" of level I';(Np") (for some 7 > 1) which is an eigen-
form for all the Hecke operators T (/1 Np) and U, in their classical normalisations, and
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we have the formulae

a/(f) = eigenvalue of T, on JTOC:’ZLQ(Z’), pil/gap(f) =1x0.1(p).

Note that the central character of 7 is a Hecke character v, with ¥, |r_,(2) =
227*. So wm)lpr = 1(X0.1X0.2) 1s a finite order twist of the character z +— |z|>~*. To con-
vince the reader that these formulae are correct, we observe that if 7 ; is a normalised
induction i, * 41 ® s, then the eigenvalue of T; on 7y @ is '3 (1) + pa (1)) [DI95,
(11.2.4)], whilst considering the central character shows that w,(/)us(/) has (complex)
absolute value /#72. This is compatible with the fact that (f) is a sum of numbers with
absolute values [¢~D/2,

We can define amap s : & (@) — R, called the slope, by composing the projection

to '76((_2!7) with the map x — v, (x (‘8 ?)) Note that if (779, 0.1 ® Xo0.2) € RAg we have

—-1/2

(2.31.1) Vo (o, x0) () Z) =65 Y01 (1) Xo.2(12) tl
2

b

so the slope map sends (79, Xo0,1 ® Xo,2) € RAg to 1/2 +v,(x0,1(p))-

In particular, at a point 2y € Z corresponding to a classical holomorphic modular
form f, s(z)) equals the p-adic valuation of t~'a,(f). Note that the corresponding pair
(70, Xo) 1s numerically non-critical exactly when s(zy) < £ — 1 and ordinary exactly when
$(z0) = 0. The classicality criterion of Coleman [Col96, Col97] shows that a point z €
& (6_{,) with k() restricting to ¢ — 72 on a finite index subgroup of pr and s(z2) < k—1
1s necessarily in Z.

Let 7} C Z, denote the subset of points corresponding to pairs (7, x) where 7,
is not a twist of the Steinberg representation (p¢ stands for potentially crystalline). We now
define a ‘twin’ map 7 : Z)° — ZI. Let (1, xo) be the pair corresponding to a point
z e 7. Write xo = X1 ® Xo.2- Since o, 18 not a twist of the Steinberg representation,
7y, equals the full normalised induction ig’QLZL Xo, which is irreducible. Let ¢ : Q* \A(Xl —

= X . . . . . .
Z, be the unique finite order character which is unramified outside p and such that

1#|sz = XO’Q|£/>71<. Then the character XQﬁQW'ZﬁX is unramified and x| = Xo,zlﬁ|z; ® XO,I‘NZ;

1s an accessible refinement of the twist my ® 1. We therefore have a point 7(z) € Z'g[
corresponding to the pair T (1, xo) = (my ® ¥, X)), that we call the twin of z. Note that
t? =1 and if 77, is unramified then 7(z) is the usual companion point appearing in the
Gouvea-Mazur construction of the infinite fern [Maz97, §18]. The following lemma is
an easy computation.

Lemma 2.32. — Lel z € fo, and let 7 = t(z). Let s, s denote the slopes of these two ponts,
and k(2),k(Z) e W, (Qﬁ) their images in weight space. Then s + s =k — 1 and v,(k (2)(1 +
Q) — 1) =v,(k ()1 4 q) = 1), where g = p if p is odd and q =4 if p is even.

Here is the main result of §2.
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Theorem 2.33. — Let (1, X0), (775, x4) € RAg and let n > 2. Let 2y, 2, € Zy be the
corresponding points. Suppose that one of following two sets of conditions are satisfied:
(1) The refinement x s numerically non-critical and n-regular.
(2) The refinement x| is n-regular.
(3) The Zariski closures of 1z,,(Gq,) and 15 (Gq,) contain SLy.
(4) Sym"™" 1y, , is automorphic;
or
(1) The refinement xq is ordinary.
(2) 1o and 7t are not CM (so the Zariski closures of 14, ,(Gg) and 12,.(Gq) contain SLy).
(374) Sym" " 1y, is automorphic.
If the points 2o, 2, lie on a common irreducible component of & ¢, then Sym"™! Tl 18 also automor-

phic.

Progf. — We want to apply Corollary 2.28. We first need to specify suitable data F,
S, Gy, Us. Let F'/Q be an abelian CM extension satisfying the following conditions:

e Each prime dividing Np splits in F'.
o [(F)*:Q]iseven.

e The extension F'/(F')* is everywhere unramified.

After extending E, we may assume that 2, 2, € Ey(E) and that there is an irre-
ducible component C C &, containing the points 2y, z,. Moreover, by the first part of
[Con99, Theorem 3.4.2], we may assume that C is geometrically irreducible. Let W de-
note the unique connected component of W, containing « (C). We can find a character
x : Gg — O(W)* such that the determinant of the universal pseudocharacter over C
equals €'y (x is the product of a finite order p-unramified character and the compo-
sition of € with the universal character Z* — OW,)). By Lemma 2.34, we can find a
finite étale morphism 7 : W — W and a character Y :Gp— O (\Kf)X , unramified almost

everywhere, such that ¥/* = x|¢,,, and such that for each place v[p of (F)*, there is a
place v]v of ' such that Vg, is unramified. We now let F/Q be a soluble, Galois, CM

v
extension, containing I, such that:

e Each prime dividing Np splits in F.
e The extension F/F" is everywhere unramified.
e The character ¥|g, is unramified away from p.

Let S denote the set of places of F* dividing Np. Fix as usual a set of factori-
sations v = V" for v € S. Fix the unitary group Gy as in our standard assumptions
(§1). Then for each v € S, there is an isomorphism 5 : Go(F/) — GLy(F5). We let
Uy =[], Uy, C G(AR) be an open subgroup with the property that Uy , is hyperspecial
maximal compact if v € S, and U, , is the pre-image under ¢; of the subgroup U, (N), of
GLy(Qy) if v € S has residue characteristic / (in which case Fy = Q).
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We recall that Ty = l_[veS Hom((F%)?, G,,). Let T = To Xw, W withi: T — W

the projection map. If x* = x!' ® x5 € To(Ty) denotes the universal character, then the
tuple of characters

((x{ ©Nry/g, - ¥ oy, 0 Artg;) ® (x5 0 Niyjg, - ¥ oy, 0 Artr;))ves,

in 75('7-) determines a morphism b, : T —> T5. Writing A, for the rigid space of 2-
dimensional pseudocharacters of Gq, unramified outside Np, there is a base change
morphism b: Xy X T - Xy s x Ty covering b, and sending a pair (7, 1) to (t]g, ®
v 40> bp()). This leads to a diagram of rigid spaces

~ b
XO’/“ X 7- e XQ’/’X X 7; .

3 I

50 X’]B,?i 52

Let C=C xywW=C X T T. Then the morphism C — C is finite étale. In particular,
each irreducible component of C maps surjectively to C. Choose E'/E so that the ir-
reducible components of C are geometrically irreducible (we apply [Con99, Theorem
3.4.2] again). Since C is geometrically irreducible, we still know that each irreducible
Component of Cyy maps surjectively to C. Consequently, we can find points 2y, 2)_of Cr
lifting 2o, 2, and lying on a common geometrically irreducible component C' of Cy. We
next wish to show that bo z(C )Cw (52 i), or equivalently that (bo z) Y(iy(Eapr)) contains
C'. Since 15 1s a closed immersion, it suffices to show that Zo> the pre-image of Z in C
satisfies b o z(Z ) C 55(& (Qﬁ)) (the accumulation property of Z in C' is inherited from
the corresponding property of the subset Zo N C C C).

To see this, we note that for any (77, x) € 2, with lift 7 € Z;), the base change
mr (which exists since F/Q is soluble) is still cuspidal. Indeed, if not then 7, |, would
be reducible, implying that 7 was automorphically induced from a quadratic imaginary
subfield K/Q of F/Q. This is a contradiction, since we chose I so that all primes dividing
Np splitin F, yet K must be ramified at at least one such prime. The descent of 7y ® (Y~ !
to Gy (which exists, by [Labl1, Théoréeme 5.4]) gives (together with b,(vy(7T, x))) a point
of & which equals the image of ¥ under the map b o .

We can now complete the proof. Indeed, the points & o?(zl), b 07(5/1) lie on a
common geometrically irreducible component of &, by construction. They satisfy
the conditions of Corollary 2.28 (in particular, Example 2.10 shows that our assump-
tion on 7y (Ggq,) in the non-ordinary case implies that all of its triangulations are non-
critical). We therefore conclude the existence of an automorphic representation 7, of
G,(Ag+) such that Sym"™! TajalGy = Trr.. Our assumptions (cf. Lemma 3.5(2)) imply
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that Sym"™! 7x).lGy 1s irreducible, and therefore that the base change of 7, is a cuspi-
dal automorphic representation of GL,(Ay). Soluble descent for GL, now implies that
Sym"™! Tz . 18 itself automorphic. U

Lemma 2.34. — Let ¥ be a CM number field. Suppose that each p-adic place of F* splits
wm ¥, and let S be a set of p-adic places of ¥ such that S L S’ is the set of all p-adic places of F.
Let W be a connected E-rigid space, and let x : Gg — O (W) be a continuous character (continuity
defined by demanding that the induced characters with values in O(U)* are continuous for all affinoid
admussible opens U C W, as in [Buz04, §2]), unramified almost everywhere. Then we can find a finite
étale morphism n W — W and a continuous character v Gy — OW)* such that the Jollowing
properties hold:
(1) ¥ s unramified almost everywhere.
(2) For each v € gp, Vly, 15 unramyfied.

(3) Y =n"C0ley-

Progf: — We first claim that we can find a finite étale morphism W' — W and a
continuous character A : Gy — O(W’)* with the following properties:

e A is unramified almost everywhere.
e x|g AA has finite order.

Indeed, let L: [,,, O, — O(W)* be defined by the formula

wlp
L((u)w) = [ | x g © Arty, (7).

~ NL"
veSp

Then L is continuous, and trivial on a finite index subgroup of Oy (it is trivial on the
norm 1 units in O, ). It follows from Chevalley’s theorem [Che51, Théoreme 1] that
there is a compact open subgroup U’ of [],,, Of such that L is trivial on I'(UF) :=

(U X l_[w\p w) OX
Note that if H is a product of a finite abelian group and a finite Z,-module, and

H’ C H is a finite index subgroup, then the natural map Hom(H, G,,) - Hom(H’, G,,)
of rigid spaces is finite étale. Maps of rigid spaces W — Hom(H, G,,) biject with contin-
uous characters H — O(W)*.

It follows that we may extend L to a continuous character L' : F*\AP™* —
O(W')*, for some finite étale morphism W' — W. Indeed, we apply the preceding re-
mark with H' the quotient of [],,, OF, by the closure of I'(U”) and H the quotient of
F*\A7" ™ by the closure of the image of U? (cf. the discussion in [Buz04, §2]).

We define A by A o Artp = L. The character x|g,AA" has finite order because it
factors through the Galois group of an abelian extension of I which is unramified at all
but finitely many places and unramified at the primes above p.
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Replacing W’ by a connected component, we may suppose that W’ is connected,
in which case the character x|, AA‘ is constant (i.e. pulled back from a morphism W' —
SpE/, for a finite extension E'/E). Applying [BLGGT14, Lemma A.2.5], we may find a
finite extension E”/E’ and a continuous character ¢ : Gy — (E”)* of finite order such
that x|g,AL" = @@‘. The proof'is complete on taking W= Wi, and ¢ = A~ O

We conclude this section with a lemma that will be used in §8. It uses the existence
of the universal pseudocharacter ¢ over &.

Lemma 2.35. — Fix n> 1, and let Z C & denote the set of points x satisfying one of the
Jollowing conditions:
(1) t, us absolutely reducible;
(2) t, = trp, for an absolutely vrreducible representation p, : Gg — GLy (Qp), and the Lariske
closure of the tmage of p, does not contain SLy.

(3) There exists a prime [|N such that l‘X|GQJ = X1 + Xo for characters x; : Gg, — 6_; such that

i/ x2)' =1 forsomei=1,...,n—1.
Then Z s Zariski closed.

Progff — The discussion in [Chel4, §4.2] shows that the locus where ¢, is absolutely
reducible is Zariski closed. If p, : Gg — GL, (Q) is irreducible, then the Zariski closure
of the image of p, contains SL, if and only if Sym6 P, 1s irreducible. Indeed, the Zariski
closure of the image of p, contains SL; if and only if the Zariski closure G, of the image
of the associated projective representation Proj o, : Gg — PGL, (@) is PGLy. There are
two possibilities for the group G,, which is a (possibly disconnected) reductive group: the
first is that it 1s finite, hence either dihedral or conjugate to one of A4, Sy, or A;. In any of
these cases Sym°® p, is reducible. The next is that G, has a non-trivial identity component,
which therefore contains a maximal torus of PGLy. The only possibilities are therefore
that either G, equals the normaliser of this maximal torus (in which case Sym® p, is again
reducible) or that G, = PGL, (in which case Sym® p, is irreducible).

This shows that the set 25 of points satisfying conditions (1) or (2) of the Lemma
1s Zariski closed. Finally, if /[N and :=1,...,n— 1, let Z5,; denote the set of points x
such that MGQJ = X, + x» for some characters x,, xo such that ()},/x2) = 1. It remains to
show that Z; ,; 1s Zariski closed. Its complement is the set of points such that either tX|GQ1
is absolutely irreducible, or MGQJ is absolutely reducible and there exists g € Gg, such
that the discriminant of the characteristic polynomial of g' under the pseudocharacter ¢,
1s non-zero. This is a union of Zariski open sets. 0J

3. Ping pong

In this section we use the rigid analytic results of §2 to prove the following theorem.
We recall that we say that an automorphic representation 7 of GLy(Ag) has “weight £”
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for an integer £ > 2 if , has the same infinitesimal character as the dual of the algebraic
representation Sym‘~? G2,

Theorem 3.1. — Fix an integer n > 2. Let 7y be a cuspidal automorphic representation of
GLy(Ag) which is everywhere unramified and of weight k, for some k > 2. Suppose that Sym"™" ry, ,
is automorphic for some (equivalently, any) prime p and isomorphism ¢ Q — Q. Then for any every-
where unramified cuspidal automorphic representation 7 of GLo(Aq) of weight | > 2, Sym"™" 1, , is
automorphic.

To prove Theorem 3.1, we will use the properties of the eigencurve &), as defined
in §2.31. More precisely, we henceforth let p =2, N = 1, and let & denote the eigencurve
defined with respect to this particular choice of parameters. We fix an isomorphism ¢ :
Q, — C. & is supported on the connected component W,” C W defined by x (—1) = 1.
We write x*: Z5 — O(V,) for the universal character. We have the following explicit
result of Buzzard and Kilford on the geometry of the morphism « : & — W, and the
slope map s : & (617) — R:

Theorem 3.2, — Let w € O(WV,) denote the function x"“(5) — 1. Then:

(1) w restricts to an 1somorphism between WJ and the open unit disc {|w| < 1}.

(2) Let Wy(b) C W), denote the open subset where |8| < |w| < 1, and let Ey(b) = k= Wy (b)).
Then there is a decomposition Ey(b) = UL, X; of Ey(b) as a countable disjoint union of admissible
open subspaces such that for each i > 1, k |x, : X; = Wy (b) s an isomorphism.

(3) Foreachi=1,2, ..., themap SOK|)_(Z.1 : Wo(b)((_lﬁ) — X,-(Qp) — R equals the map 1v,ow.

Proof. — 'This 1s almost the main theorem of [BK05], except that here we are using
the cuspidal version of the eigencurve. However, if £; denotes the full eigencurve used in
[BKO05], then there is a decomposition & = £ L E[” " as a union of open and closed
subspaces. This follows from the fact that the ordinary locus £ in the eigencurve can
also be constructed using Hida theory (see [Pill3, §6]), so is finite over W,. Since & is
separated the open immersion £ < &, is therefore also finite, hence a closed immer-
sion. In our particular case (p = 2, N = 1), we have £ = W, (the unique ordinary
family is the family of Eisenstein series) and therefore £/ = &, giving the statement
we have here. See Lemma 7.4 of the (longer) arXiv version of [BC05] for an alternative
argument.

We note as well that in our normalisation, the trivial character in W corresponds
to forms of weight 2, whereas in the notation of [BK05], the character x* corresponds to
forms of weight 2. However, this renormalisation does not change the region Wy(6). [

Before giving the proof of Theorem 3.1, we record some useful lemmas.

Lemma 3.3. — Let 7z € Zﬁf N Eo(b), and suppose z € X;. Let 7 = t(2) be the twin of 7.
Then z € Xy, where i satisfies the relation i + ¢ = (k — 1) /v,(w(2)).
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Proof — By Lemma 2.32, 7 lies in &(b), so in X; for a unique integer ¢ > 1.
Writing s, s" for the slopes of these two points and £ for their weights, we have £ — 1 =
s+ =w,(w(2) +7v,(w(z)), hence i + 7 = (k= 1) /v,(w(2)). O

As a sanity check, we observe that in the context of the proof of Lemma 3.3, (k —
1)/v,(w(z)) is always an integer. Indeed, « (z) satisfies k¥ (2)(5) = 5%=2¢y. for some k> 2
and m > 0. This weight lies in W, (b) if and only if either £ is odd, or £ is even and m > 1.
If m > 1, then v,(w(z)) = 2'=" If m =0 and £ is odd, then v,(w(z)) = 2. In either case
we see that (£ —1)/v,(w(z)) is an integer.

Lemma 3.4. — Let 7w be an everywhere unramified cuspidal automorphic representation of
GLy(Ag) of weght k > 2. Every accessible refinement of 70 is numerically non-critical and n-regular
Jor every n > 2 (recall that we have fixed p = 2 and these notions refer to the local factor at 2, 15).

Progf. — Numerical non-criticality of every refinement is immediate from the fact
that there are no cusp forms of level 1 that are ordinary at 2. For regularity, if we fix
a refinement x = x; ® xo then a = p%1x,(p) and B = p'/?1xy(p) are the roots of the
polynomial X? — @ X + 2"~ with ay the Ty-eigenvalue of the level 1 weight £ normalised
eigenform / associated to 7. We need to show that a/B is not a root of unity.

Suppose /B = ¢ is a root of unity. If we fix ¢5 : Q, = C, the semisimplified mod 5
Galois representation 7y ,; arises up to twist from a level 1 eigenform of weight < 6 (i.e. the
level 1 Eisenstein series of weight 4 or 6). This shows that ¢;'(¢) = 2° or 2° mod mz,
and therefore ¢ is the product of a 5-power root of unity and %z (since 2 has order 4 in
F). Applying a similar argument at the prime 7 with ¢, : Q, = C, we see that ;' ({) =
2%,2° or 27 mod mz, and therefore ¢ is the product of a 7-power root of unity and a cube
root of unity. This gives the desired contradiction. (We thank Fred Diamond for pointing
out this argument to us, and thank an anonymous referee for explaining how to avoid
using Hatada’s congruence which appeared in the first version of this argument.) 0J

Lemma 3.5. — Let 7w be a cuspidal automorphic representation of GLo(Ag) of weight k> 2.
We temporarily let p be an arbitrary prime. Then:
(1) 7z, |GQ[j us reductble if and only if 7 is t-ordinary.
(2) Suppose either that 1y, |qu is wreducible and 1, admits a 3-regular refinement, or that k > 2 and
Tz 15 not potentially crystalline. Then the Zariski closure of 17 (Gq,) (in GLy/ Q_p) contains SLy.
(3) Suppose again that p = 2, and that 7w s everywhere unramfied. Then the Zariski closure of
12,.(Gq,) contains SLy.

Progf: — Tor the first part, t-ordinarity implies reducibility by local-global com-
patibility at p, as in [Thol5, Theorem 2.4]. Yor the converse, if 77,|aq, 13 reducible,
then its Jordan—Hélder factors are de Rham characters of Gg, and therefore have the
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[-. = X . . . . .
form ;e %, where the v; are Zp -valued characters with finite order restriction to in-
ertia and the £ are the Hodge-Tate weights (we can assume £, =0 and kA =k — 1
in our situation). The Weil representation part of WD(rml(;Qﬁ) is therefore equal to

YL DYoo Artéj. Since WD (7, |GQﬁ) = reca} (Flnp), 7, is a subquotient of the nor-

malised induction i, * (1) o Artg, | - |'2 ® 19y 0 Artg, | - [¥*7). It follows from [Thol5,
Lemma 2.3] that 7 is t-ordinary.

For the second part, we note that rml(;% is irreducible. Indeed, if rﬂ,tngp 1s re-
ducible then the first part of the lemma shows that 7 is t-ordinary, and [Thol5, Lemma
2.3] implies that 7, is a subquotient of ngLQX1 ® xo with v, (Lil(Xl/XQ(p))) =1—kIf
7z, 1s not potentially crystalline then WD(r,,,L|GQﬁ) has N # 0 and local-global compat-
ibility implies that if 7, is a subquotient of i, X1 ® xo, then xi/xo = | - [¥'. This is a
contradiction if £ > 2.

Thus 7, ,|cq, 1s irreducible and the Zariski closure H of its image is a reductive
subgroup of GLy. Let T be a maximal torus of H. Since 7, , is Hodge—Tate regular, T is
regular in GLy (i.e. its centralizer is a maximal torus of GLy) by [Sen73, Theorem 1]. If H
does not contain SL,, then it is contained in the normaliser of a maximal torus of GL, and
rm|GQﬁ 1s induced from a character of an index two subgroup. This forces WD(rml(;QP)
to likewise be induced, so any refinement x = x; ® x» of m, satisfies xXi= XQQ , and this
Weil-Deligne representation has N = 0. This is a contradiction, since we are assuming
either that there exists a 3-regular refinement or that N is non-zero.

For the third part, we have already observed (see the proof of Theorem 3.2) that
there are no cusp forms of level 1 that are ordinary at 2, so 1z, |, 1s irreducible. Suppose

that rm|GQ2 1s induced. Then WD(rn,L|GQ2) = Indzt;% Y for some quadratic extension
K/Q, and character ¢ : Wx — Q;( . Since this Weil-Deligne representation must be
unramified, we see that K and ¥ are both unramified, and therefore that ¢ extends to
a character ¥ : Wg, — QQX such that WD(rm|GQ2) =Y & (¥ ® dk/q,). In particular,
the T'y-eigenvalue (which equals the trace of Frobenius in this representation) is 0, but, as
shown in the proof of Lemma 3.4, this is impossible. U

Lemma 3.6. — Let 1 > 1 be an integer, and let z € 7.0 N X; (G_p) be the pownt corresponding
to a pair (v, x). Suppose that x s n-regular. Let 7 € Zy N X; (@) be any other point, corresponding

to a pair (7r', x'), with x' n-regular. If Sym"™" r,.., is automorphic, then Sym"™" 1. , is also.

Progf. — We can assume n > 3. We apply Theorem 2.33 (note that X;¢, =
Wo(b)cp is irreducible): since there are no ordinary points in &, x is numerically non-
critical and Lemma 3.5 implies that the Zariski closures of 7 ,(Gq,) and r,/,(Ggq,) con-
tain SLy (the first part of the lemma shows that we are in the locally irreducible and
3-regular case of the second part of the lemma). UJ
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Lemma 3.7. — Let w be a cuspidal, everywhere unramified automorphic representation of
GLy(Ag) of weight k > 2, and let x be a choice of accessible refinement. Then there exists an in-
teger my, > 1 such that for any integer m > my, we can find a cuspidal automorphic representation ' of
GLy(Ag) satisfying the following conditions:

(1) 7' is unramfied outside 2.

(2) ' admts two accessible refinements of distinct slopes (in particular these refinements are n-regular
Jor every n>2).

(3) There is an accessible refinement x' of ' such that (v, x) and (7', x') define points z, 7' on the
same irreductble component of €y ¢,

(4) k(Z) € Why(b). In particular, 7 € X; for some 1 > 1 (notation as in the statement of Theorem
3.2).

(5) Set 7" =t(2), and let (", x") € ch be the associated pair® Then 2’ € Xon_;.

(6) The automorphy of any one of the three representations

—1 —1 —
Sym"™" 7y, Sym" v, Sym" T 1,

implies automorphy of all three.

Progf. — We use Theorem 3.2. Extending E if necessary, we may assume that
z € &(E) and every irreducible component of &, containing z is geometrically irre-
ducible. Fix one of these irreducible components and fix ¢ such that this irreducible
component contains X; (such an 7 exists, because every irreducible component of &, has
Zariski open image in W, hence intersects £y(b) and therefore contains a non-empty
union of irreducible components of £y(5)). We define m,, to be least integer m, > 1 satis-
fying the inequality

(20 + 2"t —3)/2 > 2i.

Given m > m,, we choose 7 € Xi(@) to be the point such that « (2')(5) = 52, where
K =2i+ 2" — 1. Then (¥ — 2)/2 > 2i = s(¢). By Coleman’s classicality criterion,
7z €7y If 7 was not in Z{;”, its slope would be (4 —2)/2. So 7 € fo and if (7', x')
denotes the corresponding pair, then the two accessible refinements of 7’ have distinct
slopes (2t and £ — 1 — 2¢).

Let 7/ = t(Z) denote the twin point, and (", x”) the corresponding pair. Then
7" lies on Xy, where ' = (K — 1)/2 —1=2" — 1, by Lemma 3.5. We’re done: the first 5
properties of (7, x) follow by construction, whilst the 6th follows from Theorem 2.33,
Lemma 3.4 and Lemma 3.5. 0J

We can now complete the proof of Theorem 3.1.

5 Bouncing from 7 to its twin point z” reminded the authors of a game of ping pong, whence the section title.
Earlier versions of the argument involved longer rallies!
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Proof of Theorem 3.1. — Let my, 7y be everywhere unramified cuspidal automor-
phic representations of GLy(Ag) of weights &, k) > 2, respectively. Define integers my,,
my; as in Lemma 3.7 and fix an integer m > max(#y,, my;). Combining Lemma 3.7 and
Lemma 3.6 (applied with 7 = 2" — 1) we see that the automorphy of Sym" ™' 7, , implies
that of Sym"™ Tz .- Since 7 was arbitrary, this completes the proof. U

Part II: Raising the level

Most of the remainder of this paper (§§4 — 7) is devoted to the proof of Theorem E
from the introduction, namely the existence for each n > 2 of a single regular algebraic,
cuspidal, everywhere unramified automorphic representation 7 of GLy(Ag) such that
Sym"™!' 7 exists. As a guide to what follows, we now give an expanded sketch of the proof
of this theorem.

Fix, for the sake of argument, a regular algebraic, cuspidal, everywhere unrami-
fied automorphic representation 7 of GLy(Ag). We will try to establish the existence of
Sym"~' 7 by proving the automorphy of one of the Galois representations Sym" ™' 7, ,
associated to a choice of prime p and isomorphism ¢ : Qﬁ — G, using an automor-
phy lifting theorem. First, if K/Q is an imaginary quadratic extension then we can
find (using e.g. [BLGGT14, Lemma A.2.5]) a (de Rham) character w : Gx — 6_:

n—1

such that ww’ = (detr, ,e~")""'. Then the representation p = w ® Sym
P = pY ® €', so has the potential to be associated to a RACSDC automorphic repre-
sentation of GL,(Ag). This means we can use an automorphy lifting theorem adapted to
such automorphic representations. (The automorphy of p will imply that of Sym" ™' 7, ,
by quadratic descent.)

We need to select w and ¢ so that the residual representation p is automorphic. For
“most” ¢ (say, for all but finitely many primes p) the image of 7, will contain a conjugate
of SLy(F,) and Sym"_1 p will be irreducible, and it is not clear how to proceed. We
therefore want to avoid this generic case. Here we choose m and ¢ so that there is an

7|ag satisfies

. . _ ~t. Go— . . . .
isomorphism 7, , = Inng X for some imaginary quadratic extension K/Q and character

X : Gk — FPX. Then there is an isomorphism
ﬁ ; ®;Z=1W7l—i(yf)i—l .

In particular, this residual representation is highly reducible, being a sum of n characters.
Most automorphy lifting theorems in the literature require the residual representation
to be irreducible; we will apply [ANT20, Theorem 1.1], an automorphy lifting theorem
that does not have this requirement, but that does have some other stringent conditions.
These conditions include the requirement that there exist a RACSDC automorphic rep-
resentation IT of GL,(Ag) such that 7q , = p, and satisfying the following:

e Il is t-ordinary (and so is 7).
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e There exists a prime [ # p and a place v|/ of K such that both m; and II, are
twists of the Steinberg representation (of GLy(Q,) and GL,(K,), respectively).

It is easy to arrange that the first requirement be satisfied, by choosing p to be a prime
which splits in K. The second is more difficult. First it requires that 7 is ramified at /,
whereas we have to this point asked for 7 to be everywhere unramified. We will thus first
find a ramified 7 for which Sym"~' 7 exists, and eventually remove the primes of ramifi-
cation using the /-adic analytic continuation of functoriality results proved in the first part
of the paper. The main problem is then to find a IT verifying the residual automorphy
of p such that IT, is a twist of the Steinberg representation. This is what will occupy us
in §84 — 6 below. The above argument is then laid out carefully in §7 in order to finally
prove Theorem E.

Here 1s how we get our hands on I1. By choosing an appropriate lift of the charac-
ter X, we can choose characters X, ..., X, : K*\Ag — C* such that [T, = X, H- - -HX,
1s a regular algebraic and conjugate self-dual (although not cuspidal!) automorphic rep-
resentation of GL,(Ax) whose associated residual representation is p. If G is a definite
unitary group in n variables associated to the extension K/Q, quasi-split at finite places,
then we can hope that I, transfers to an automorphic representation of G(Ag). There is
a slight wrinkle here in that such a group G does not exist if  is even, and even in the case
that n 1s odd there is a potential obstruction to the existence of this transfer given, at least
conjecturally, by Arthur’s multiplicity formula. Both of these obstacles can be avoided
by replacing Q with a suitable soluble totally real extension F/Q. In order to avoid in-
troducing additional notation in this sketch, we pretend they can be dealt with already
in the case I = Q. (Actually, we will find it convenient to take I to be the box sum of
two cuspidal automorphic representations of GLy(Ax) and GL,_5(Ak), respectively. This
means that the final form of the proof of Theorem E will be a kind of induction on .)

We thus find ourselves with an automorphic representation ¥, of G(Ag), whose
base change (in the sense of Theorem 1.2) is I1. Say for the sake of argument that / splits
in K, so that we can identify G(Q,) with GL,(K,). If we can find another automorphic
representation X; of G(Ag), congruent modulo p to X, and such that X, , is a twist of
the Steinberg representation, then we will have solved our problem. We can therefore
now focus on this problem of level-raising for the definite unitary group G.

There are differing approaches to this problem in the literature. First there is the
purely automorphic approach, pioneered by Ribet for GLy(Ag) [Rib84]. Some gener-
alisations to higher rank groups of this statement do exist (see for example [Thol4a]),
but nothing that is applicable in the level of generality considered here. Then there is the
purely Galois theoretic approach, based on the powerful automorphy lifting theorems
which are now available for Galois representations in arbitrary rank (see for example
[Geell]). We can not directly apply such results here because the only automorphy lifting
theorems applicable in the residually reducible case (namely those of [ANT20]) require
the existence of at least one place at which the starting automorphic representation is
sufficiently non-degenerate.
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We solve the problem here by combining aspects of these approaches. A similar
combination of techniques is used in the paper [CT17]: the idea is to first use an auto-
morphic technique to replace ¥, with a representation X such that X is so ramified
that, in conjunction with other conditions in place, X is forced to be stable (i.e. its base
change is cuspidal). (The possibility of doing this is the reason for choosing ITj to in fact
be a box sum of two cuspidal factors, as mentioned above.) This situation is reflected
in the deformation theory, where one finds that (in the big ordinary Galois deformation
ring) the locus of reducible deformations is small enough that something like the tech-
niques of [Geel 1] can be applied to construct an automorphic lift of o with the required
local properties. These Galois theoretic arguments are carried out in §85, 6.

What remains to be explained then is the automorphic level-raising technique de-
veloped in §4. The approach to creating congruences here is based on types. We recall
(using the language of [BK98]) that if s is an inertial equivalence class of G(Q)) (i.e. a
supercuspidal representation of a Levi factor of G(Qy), up to unramified twist), then an
s-type is a pair (U, 7), where U is an open compact subgroup of G(Q) and 7 is an irre-
ducible finite-dimensional representation of U such that for each irreducible admissible
representation o, of G(Q)), the supercuspidal support of 0, is in class s if and only if 0, |y
contains T.

It can sometimes happen that two inertial equivalence classes s, §' admit types
(U, 1) and (U, t’) with the property that U = U’, the reduction modulo p T of t"'t
is irreducible, and the reduction modulo p T' of t"'17’ contains T as a Jordan—Holder
factor. This situation might be called a congruence of types. If this is the case then the
theory of algebraic modular forms implies that any automorphic representation X of
G(Ag) such that X, is of type s is congruent to another X’ such that X is of type §". The
existence of such global congruences is explained in [Vig01, §3]. It gives an efficient way
to construct congruences between automorphic representations X, 3’ such that X;, 3
are in different inertial equivalence classes, although it is not usually possible to change
the Levi subgroup underlying the inertial equivalence class. Since G(Q,) = GL,(K,) and
the initial representation 3 is certainly not supercuspidal at /, it is not immediately clear
how to use this.

We therefore instead introduce an auxiliary imaginary quadratic extension E/Q in
which / is inert, as well as an associated definite unitary group G’, and carry out the first
step of the automorphic part of the level-raising argument using algebraic modular forms
on G’. The importance of the group G’ is that there are conjugate self-dual irreducible
admissible representations of GLs3(E;) which are not supercuspidal, but for which the
associated L-packets of representations of Us(Q)) contain supercuspidal elements. For
carefully chosen local data, we can find use the method of types to find congruences to
supercuspidal representations of Us(Q);) whose base change to GL;3(E;) is supercuspidal.
We have already constructed such congruences of types in §1.8. In terms of automorphic
representations of GL,(Ag), this will allow us to change the Levi subgroup underlying
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the inertial equivalence class at / from the maximal torus of GL,(E;) to the group GL3 x
GL!?. This will be enough for our intended application.

4. Raising the level — automorphic forms

Let n =2k 4 1 > 3 be an odd integer, and let F, p, S, G = G, etc. be as in our
standard assumptions (see §1). Suppose given cuspidal, conjugate self-dual automorphic
representations 1y of GLy(Ay) and m,—y of GL,_9(Ay) with the following properties:

(1) m =7y B,y is regular algebraic.
Consequently, 75| - |/2 and 7, 5 are regular algebraic and the representations p, =
Ty |@0/2.15 Py_g = T, -1, are defined. We set p =7,, =, @ p,_,. Moreover, my and
7,—9 are both tempered, cf. the remark after Corollary 1.3.
(2) m is t-ordinary.
(3) We are given disjoint, non-empty sets T, Ty, T3 of places of F™ with the following
properties:
(1) Forallv e T=T,UT,UTs, v €S and ¢, is odd. The representation 7 is unram-
ified outside SU T. If ¥ is a place of F lying above a place in T then, as in §§1.8,
1.17, we write (V) : k(V)* — G for the unique quadratic character.
(2) For each v € Ty, v is inert in F, ¢, mod p is a primitive 6™ root of unity, and
the characteristic of £(v) is greater than n. There are characters xv, Xv.0, X#.1» - - - »
v.ou—9 - Fx — G such that xy, x7.0 are unramified and foreachi=1, ..., 2k—2,
Xiilog. = (). We have 75 = Sty(x7) and 7,05 = B Xz
(3) For cach v Ty, v splits v = 0" in F, ¢, mod p is a primitive 2™ root of unity,

T, leLz((’)y ) contains )»(v ®y) (for some order p character Oy as in §1.17, with

n =2), and 7, 2.7laL, (0, contains (V) o det. Thus 7y satisfies the equivalent

conditions of Proposition 1.20, and 73|, contains X(Tf O3, n).

(4) For each v € T3, v splits v = Vv° in F, ¢, mod p is a primitive (n— 2)™ root of unity,

Tu—2,5lG1, 5Oy, contains *(@, Op) (for some order p character ®y asin §1.17, with

n =n—2), and Ty, U|GL2(@FN) contains w (V) o det. Thus 75 satisfies the equivalent

conditions of Proposition 1.20, and 73|, contains k(v O3, n).

Let T = {v]| v eT}. We fix for each v € T a character 6, : C(k(v)) — C* of order p
(notation as in Proposition 1.12). In the rest of this section, we will prove the following
theorem.

Theorem 4.1. — With hypotheses as above, let L.* /¥ be a totally real S U T-split quadratic
extension, and let 1. = 1L.TF. Then there exists a RACSDC automorphic representation T1 of GL,(Ay)
with the following properties:

(1) T1 is t-ordinary, and unramified at any place not dividing S U'T.

(2) 71’[ [ 771 zlGL

(3) For each place v € T 1, Tyl contains the representation @, ¢9U| s Wy (thus satisfying the
equivalent conditions of Proposition 1.19).



SYMMETRIC POWER FUNCTORIALITY 69

(4) For each place v € Ty 1, U Ts 1, Iy, contains the representation @, Oy, n) (thus satisfying
the equivalent conditions of Proposition 1.20 withny = 2 ifv € Ty, andny =n—2 ifv € Ts ).

Remark 4.2. — The places v € Ty U T play a role in ensuring that IT is cuspidal
(using Lemma 4.5 below). Our set-up is adapted to the proof of Proposition 7.4, which
uses an induction on the dimension to construct automorphic representations with an
unramified twist of Steinberg local factor which are congruent to some very special odd-
dimensional symmetric powers.

We begin with two important observations.

Lemma 4.3. — Let v be a finite place of ¥+ which is inert in ¥. Then 7wy € Af (GL,(F)).

Progf. — The representation 7y is tempered because both 9 7 and 7,_9 7 are tem-
pered. By the main theorem of [BC11], r;, extends to a homomorphism 7 : Gp+ —
Qn(%) such that v o r=¢€'™"3}. sp+- Restricting to Wyt and twisting by an appropri-
ate character, we see that the Langlands parameter of my extends to a parameter
Wi+ x SLy — G, O

Remark 4.4. — A consequence of this lemma is that for v € T the character yxz is
non-trivial quadratic and the character g is trivial.

Lemma 4.5. — Suppose given a partition n = ny + - - - 4 n, and cuspidal, conjugate self-
dual automorphic representations 7|, ..., 7w of GL, (Ay) such that 7' = m{ B --- B 7w/ s regular
algebraic. Suppose moreover that the following conditions are satisfied:

(1) There is an isomorphism 71, = Ty ,.

(2) If v € Ty UTs then il gy contains T, Oz, n).

Then one of the following two statements holds:

(1) We haver =1, ny = n, and so " is cuspidal.

(2) Afier re-ordering we have r = 2, my =n — 2, ng = 2. If v € Ty then 7| 3lc1, y0y,) contains
@ (V) o det and 1) 5lGry(©Oy,) contains T, Oy), while if v € Ts then ) 5lr, , Oy, contains
3:(17, ®3) and 7T2/’5|GL2(0FF) contains @ (V) o det. We have isomorphisms of semisimplified residual
representations T\ -1, = P,_o and Tal@-n/2, =Dy.

Proof. — Before beginning the proof, we observe that the representations 0,, p,_,
have the following properties:

o If v €Ty, then py|¢,  is unramified and p,_, [, 1s unramified after twisting by
a ramified quadratic character. (The character ®5 has order p.)

o Ifv eTs, then p, ay; 1s unramified after twisting by a ramified quadratic char-
acter and E*?'éw is unramified.
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We can suppose without loss of generality that » > 2. Fix places vy € Ty, v3 € Tjs.
By Proposition 1.20, we can assume after relabelling that 7y lcr, ©, ) contains
~ ’ ) U3

A(V3, Og,, ny) (and in particular, #; > n — 2), in which case (né’% H.-.-BH 71’;’»53) |GL"_”1 ©Or,)
contains @ (v3) o det. There is an isomorphism

_ ;- ~ — _
Tt = @i Ty iz, = 0o B 0,9,
hence
r - 55 s — S5 - S5
Gai:lrrr-/l»l("i_")/z,L |GF~ = 102|GF~ D Pn—2|GF~ :
¢ v3 vg vg

Since ©_y7,\. -0/ |G, contains no unramified subrepresentation, we conclude that
i ’ U3
Tr(|jn—n/2 , CONtAINS O,_o AS A subrepresentation.
We now look at the place vy. There are two possibilities for the representation
/ . . / . ~ ~ . . i~ .
T 5, either 711,52|0Lﬂ1 ©Ory,) contains A(vy, ®5,, n;), or it contains w(vy) o det. We claim
that the first possibility does not occur. Indeed, in this case arguing as above shows that
D_yTr -2, |G, contains no unramified subrepresentation, and therefore that p, is a
i s ¥ '52

subrepresentation of [EARGECENS This forces n; = n and r = 1, a contradiction. Therefore
i . ~ ~ .

we must have r = 2, ny = 2, and 7'[252|GL2(@F;2) contains A(vy, Oy,). Since vy, vs were

arbitrary, this completes the proof. UJ

We now commence the proof of the theorem. Let U =[], U, C G(A{) be an
open compact subgroup with the following properties:

e ToreachveSs, JT?(UU) #0.

o Ifv gSUT, then U, = G(Oy).

e Ifv €S, then U, = i3 'Twi(c, ¢) for some ¢ > 1 such that 73" 7“”" = 0 (notation
as in [Gerl9, §5.1]) and U, contains no non-trivial torsion elements (note this
implies that U is sufficiently small).

e Ifv e T, then U, =, 'p, (notation as in §1.8).

o IfveTy,UT; then U, = Lglqg (notation as in §1.17, defined with n, = 2 if
veTlyandn =n—2ifveTs).

We define 1, = ®yer, T (v, 1) ®ueryur, "(@, O, n), where T(v, n), (T, O, n) are the rep-
resentations of p,, gy defined in §1.8, §1.17 respectively. Thus 7, is an irreducible G[U-~]-
module, which we view as a G[U]-module by projection to the T-component. Similarly
we define A, = ®yer, A (v, O, 1) Qyer,ur; P)\:('if, Oy, n). Fixing a sufficiently large coefficient
field, we can choose O-lattices 7, and )D\g in "'z, and (7'4,, respectively.

If L*/F* is an S U T-split totally real quadratic extension, then we define an open
compact subgroup Uy, =[], U, C G(A7%) and representations 7,1, A,y by the same
recipe (where we now replace the sets S, T; by their lifts Sy, T, to L*1).
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Proposition 4.6. — Let LT /F™ be an S U T-split totally real quadratic extension and let
L = L*F. Then ether there exists an automorphic representation o of G(Ag+) with the following
properties:
(1) v 1s the base change of & (cf. Theorem 1.2);
(2) For each placev ¢ T, o # 0;
(3) orluy contains T,.
or there exists an automorphic representation o of G(Ay+) with the following properties:
(1) Let 7y, denote the base change of 7 with respect to the quadratic extension L/¥. Then 1y, is the base
change of o ;
(2) For each place v & 1, o) #0;
(3) oy |y, contains Ty,

Proof. — By [Labl1, Théoreme 5.1], there 1s an identity

(4.6.1) TSN = WG HTE (),

H
for any /' =/ ® foo € CZ(G(Ag+)) such that /5, 1s a pseudocoefficient of discrete series.
Here the sum on the right-hand side is over representatives for equivalence classes of
endoscopic data for G, represented here by the associated endoscopic group H (recall
that we have fixed representative endoscopic triples in §1). The coefficients ¢(G, H) are
given in [Labll, Proposition 4.11], while the expression Tdm 7 71y i given in [Labll,
Proposition 3.4] as a formula

462 > > Y (detls—1la /oW DD eI, @Y.

Le£0 /WM sewit (1) Flel (L)
where (summarizing the notation of op. cit.):

o MH is a twisted space on a Levi of Resy/p+ GL,, as in §1.5;

o L' s the set of standard Levi subgroups of M";

o WY'(L),, is the quotient by the Weyl group W¥ of the set of elements s in
the twisted Weyl group WM = WM™ 5 6y which normalise L and such that
det(s—1 | ar/aym) # 0, where a, denotes the Lie algebra of the maximal Q-split
subtorus of the centre of a reductive group.

° l'[dm(L) is the set of isomorphism classes of irreducible representations of the
twisted space L,(Ap+) which appear as subrepresentations of the discrete spec-
trum of L.

o I(@M) (/M) is a certain intertwining operator, with Q a parabolic subgroup with
Levi L.

We fix our choice of /5, so that it only has non-zero traces on representations of G(FY)

whose infinitesimal character is related, by twisted base change, to that of . The argu-
. .. H .

ment of [Shill, Proposition 4.8] then shows that for each L. € £°/W™" | there is at most
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one element s € WM (L), for which the corresponding summand in (4.6.2) can be non-
zero (and a representative for s can be chosen which acts as conjugate inverse transpose
on each simple factor of L). Using Proposition 1.7, linear independence of characters, the
description of the discrete spectrum of general linear groups [MW89], and the Jacquet—
Shalika theorem [JS81], we can combine (4.6.1) and (4.6.2) to obtain a refined identity

(4.6.3) Zm(m)m(f) (n(f)+(nn 2 ® (1, ® ! o det)” (FU )

where:

e The sum on the left-hand side is over the finitely many automorphic represen-
tations o; of G(Ay+) which are unramified at all places below which 7 is unram-
ified, have infinitesimal character related to that of 4, by twisted base change,
and which are related to 7 by (either unramified or split) base change at places
v €T of FT, each occurring with its multiplicity m(o;).

e The twisted traces on the right-hand side are Whittaker-normalised. (These two
terms arise from H=U,, L = Resg/p+ GL,_9 x GLy and H=U,_y x Uy, L =
MM respectively. The same argument as in [Lab11, Proposition 3.7] shows that
Arthur’s normalisation of the twisted trace, implicit in the term I (?) of (4.6.2),
agrees with the Whittaker normalisation on the corresponding terms.)

We remark that the representations my, 7,_9 are tempered and that the representa-
tions GiTl (e. prime to T)-part) are isomorphic. If v € T, then we can find (com-
bining Proposition 1.11 for U,_y x Uy and e.g. [Hir04, Proposition 4.6]) a finite set
{Ay.;} of irreducible adm1551ble representatlons of G(F}) and scalars d,, € G such that
(TTy9.0 ® (9, @ ;' odet))™ (fU —2xU2) — > .dy iy i(fy). By Proposition 1.6, Proposition

1.7 and Proposition 1.11, we therefore have an identity:

Zm(U)UZTI(fT1 (l_[e(v Un,(pU")l_[ Z e T(h)

i v|oo veT) tell(my)
+] e, Uia x Us, 0t ou0) [ | Zdv,ixv,i@) ,
v|oo veT; 1

Choose for each v € T a representation 7, € I1(r,) such that 7,|y, contains 7 (v, n) (this
1s possible by Corollary 1.13 and Proposition 1.14). We can assume that for each v € T,
Ayl = Ty (possibly with &, ; = 0). We conclude that there is at most one automorphic
representation o of G(Ap+) with the following properties:

e o 1s unramified outside S U T, and is related to 7 by split or unramified base
change at all places v ¢ T';
o IfveT,theno, =1,.
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The representation o occurs with multiplicity

m(o) = %(]‘[e(v, Unou) [ ]

v|oco veTy
+ HG(U, U,—s x Uy, ¢u, ,xu,) 1_[ dv,l)-
v|oo veT)

We note that the numbers ¢;, are all non-zero, by Proposition 1.11. If m(o’) is non-zero,
then we’re done (we are in the first case in the statement of the proposition). Otherwise,
[Toer, & =Tler, 451, which we now assume.

In this case, let L™ /F* be a totally real quadratic SU T-split extension, let L. = L*F,
and let 1, denote the base change of = with respect to the quadratic extension L/F. If
v e Ty, let 7, = 7., . Then repeating the same argument shows that there is at most

one automorphic representation o of G(Ay+) with the following properties:

e o 1s unramified outside Sy, U Ty, and is related to 7y, by split or unramified base
change at all places v €T, 1;
o IfveT,,theno, =1,.

Using the remark after Proposition 1.6, we see that the representation o occurs with
multiplicity

m(a):% [T+ []dal|=]]¢-

veTy L, veTy veT)

This 1s non-zero, so we’re done in this case also (and we are in the second case of the
proposition). U

We now show how to complete the proof of Theorem 4.1, assuming first that we
are in the first case of Proposition 4.6. We let o be the automorphic representation of
G(Ap+) whose existence is asserted by Proposition 4.6. Let A € (Zi)Hom(F'Qf’) be such
that o contributes to Sf{d (U, Fl‘cg) under the isomorphism of Lemma 1.25. Let T C
Endo(Sy“(U, 1 "'1,)) be the commutative O-subalgebra generated by unramified Hecke
operators T/, at split places v = ww’ & S of F', and let m C T be the maximal ideal
determined by o.

Then S§“(U, %, ®0 k)w is non-zero, by Lemma 1.24, hence (using the exactness of
Si"d(U, —) as a functor on £[U]-modules, together with Proposition 1.15) Si"l(U, A R0
k)m # 0, hence S7(U, )O\.g)m # 0. Applying Lemma 1.25 once again, we conclude the
existence of an automorphic representation X of G, (Ag+) with the following properties:

_ ~ -
[ 7E,L = 7’7,;’1.
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e Y|y, contains A,.
e X is t-ordinary and is unramified outside SU T

Let IT denote the base change of ¥, let L¥/F* be a quadratic totally real extension as
in the statement of Theorem 4.1, and let IT}, denote base change of IT with respect to
the extension L/F. We claim that IT;, satisfies the requirements of Theorem 4.1. The
only points left to check are that ITy, is cuspidal and that if v € T, 1, then Il , satisfies
condition (3) in the statement of Theorem 4.1. In fact, it is enough to show that IT is
cuspidal and that if v € T then Ily|.; contains 3:(5, 51), n)|¢;- We first show that IT is cus-
pidal. If TT is not cuspidal, then Lemma 4.5 shows that IT = IT,_, B I, where IT,_o, Ty
are cuspidal, conjugate self-dual automorphic representations of GL,_2(Ar), GLy(Ay),
respectively. Arguing as in proof of Proposition 4.6, we obtain an identity

(4.6.4) Zm(z V() = (H(f) + (T, o, ®u 1o det))N(}‘VU"*QXUQ)) ,

7

where the sum on the left-hand side is over the finitely many automorphic representations
>; of G(Ap+) which are unramified at all places below which IT is unramified, have in-
finitesimal character related to that of Tl by twisted base change, and which are related
to IT by (either unramified or split) base change at places v & T} of F*.

Fix v € T}, and consider a test function of the form /' = f, ® foo ® f°°, where:

® /- 1s a coefficient for X
e /, is the test function denoted ¢ in the statement of Proposition 1.16.
e /" is the characteristic function of an open compact subgroup of G(A?

o X(f) #0.

Then %;(f) 1s non-negative for any 7, and the left-hand side of (4.6.4) is non-zero. We
conclude that at least one of the terms l_I(f) and (IT,_, ® (I, ® ="' o det))”™ (fU" 2xU2)
is non-zero. In either case Proposition 1.16 implies that the cuspidal support of Iy, and
therefore I, o3, contains a supercuspidal representation ¥ of GLs(F3) such that the
semisimple residual representation attached to reckT (") is unramified. This contra-
dicts Lemma 4.5, which implies that 7y, -1, |Ct is the sum of an unramified character
and the twist of an unramified representatlon by a quadratic ramified character.
Therefore IT is cuspidal, and a similar argument now gives an identity

(4.6.5) Y m(E)E() =T,

[

With the same choice of test function we have ﬁ(j? ) # 0, so another application of Propo-
sition 1.16 shows that ITy has the required property. This completes the proof of Theorem
4.1, assuming that the first case of Proposition 4.6 holds. If the second case holds, the ar-
gument is very similar, except that there is no need to replace IT by its base change with
respect to a quadratic extension L/F. In either case, this completes the proof.
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5. Afiniteness result for Galois deformation rings

In this section we prove that certain Galois deformation rings are finite over the
Iwasawa algebra (Theorem 5.2), and use this to give a criterion for a given deformation to
have an irreducible specialization with useful properties (Theorem 5.7). These technical
results form the basis for the arguments in §6, where we will apply our criterion to the
Galois representation valued over a big ordinary Hecke algebra.

The novelty of the results proved in this section is that we assume that the residual
representation is reducible (in fact, to simplify the exposition we assume that this repre-
sentation i3 a sum of characters). The main tools are the automorphy lifting theorems
proved in [ANT20] and the idea of potential automorphy, for which we use [BLGGT14]
as a reference. The notation and definitions we use for Galois deformation theory in the
ordinary case are summarized in [ANT20, §3], and we refer to that paper in particu-
lar for the notion of local and global deformation problem, and the definitions of the
particular local deformation problems used below.

Before getting stuck into the details, we record a useful lemma. If I" is a profinite
group, 4 1s a field with the discrete topology, and p : I' — GL, (k) is a continuous rep-
resentation, we say that p is primitive if it is not isomorphic to a representation of the
form Ind}, & for some finite index proper closed subgroup I'" C ' and representation
o : I = GL,r.rq (k). This condition appears as a hypothesis in the automorphy lifting
theorem proved in [ANT20].

Lemma 5.1. — Suppose that p =X, B - - - B X, for some continuous characters ; : I' — k*
such that for each i # j, X/ X; has order greater than n. Then p is primative.

Proof. — Suppose that there is an isomorphism p = Ind}, &. Then Frobenius reci-
procity implies that & contains each character x;|r. These n characters are distinct: if
Xilr = Xjlr, then (X, /E)[F:F’] = 1, which would contradict our assumption that ¥ ,/X;
has order greater than n if 7 7. Thus o must have dimension at least n, implying that
I' =T". It follows that p is primitive. 0

Now let n > 2 and let F, S, p be as in our standard assumptions (see §1), and
let E C Q be a coefficient field. We recall the definition of the Iwasawa algebra A. If
v € S,, then we write A, = O[[(I%Z(p))”]], where I;g(p) denotes the inertia subgroup of
the Galois group of the maximal abelian pro-p extension of Fy. We set A = @vespl\v,
the completed tensor product being over O. For each v € S, and ¢ =1, ..., n there is
a universal character 1,0:) : I;‘;(p) — A). At times we will need to introduce Iwasawa
algebras also for extension fields I'/F and for representations of degree n’ # n, in which
case we will write e.g. Ap , for the corresponding Iwasawa algebra, dropping a subscript
when either F' =F or v’ =n.

Let p : Gp+ s = O be a continuous character which is de Rham and such that
w(c,) = —1 for each place v|oco of F*. Fix an integer n > 2, and suppose given characters
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Xi>--+s Xo:Grs — £ such thatforeachi=1,...,n, X, X; = tlg;s- Weset 0 =@ X
then p extends to a homomorphism 7 : Gy+ s — G, (k) such that vg, o 7 = 1, by setting
7(¢c) = (1,, 1)j € G, (k). We suppose that for each v € S, 7|GFﬁ is trivial.

Let ¥ be a set of finite places of F* split in F and disjoint from S, and ¥ alift of
Y to F. Iffor each v € X, ¢, = 1 mod p and 7|g,_ 1s trivial, then we can define the global
deformation problem

Sy = (F/F,SUZ,SUE, A, 7, 1, {(R%es, U R} yess, U (RS ex).

(For the convenience of the reader, we summarize the notation from [ANT20, §3]. Thus
the local lifting ring R2 represents the functor of ordinary, variable weight liftings; RY
the functor of all liftings; and R¥ the functor of Steinberg liftings.) If 7 is Schur, in the
sense of [CHT08, Definition 2.1.6], then the corresponding global deformation functor
is represented by an object Rg, € Cy. If X is empty, then we write simply S = Sp.

T heorem 5.2. — Suppose that the following conditions are satisfied:
(1) p> 2n.
(2) Foreach 1 <i<j<n,X;/X;
(3) [F() : Fl=p—1.
(4) X is non-emply.
Then R, 1s a finite A-algebra.

|GF(C[;) has order greater than 2n. (In particular, 7 s Schur.)

Proof. — We will compare Rg; with a deformation ring for Galois representations
to Go,. First, fix a place v, of F prime to SU X, lying above a rational prime ¢ > 2 which
splits in F. After possibly enlarging £, we can find a character ¥ : Gy — £* satisfying the
following conditions:

. W{ _ 61_2’]E|611~ B
e lorcachv € SUX, g, is unramified.
e ¢ divides the order of J/ WE(IF%).

Using the formulae in [BLGGT'14, §1.1], we can write down a character
(W, € 77T S : Gpr — Gy (k),
the tensor product representation

TR (W, € "I Spype) : Gre = G, k),

which has multiplier €'~>

n=1G® (y, 61_2nﬁ715F/F+)) : Gr+ — GSp,, (k)

", and the representations

and

7o = (g, : Gr+ = Gou(h).
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These representations have the following properties:

e The multiplier character of 7, equals €' ="
2n

e The multiplier character vg,, o7, equals €' =" -
e The representations 7|g, and 73|c, are both conjugate in GLy, (k) to p ® ¥ &
pPrRY.
Let oy, =75|g,. We observe that the following conditions are satisfied:

o ,¢T ™" and F ¢ F*(¢)).
e D, Is primitive.

e 'The irreducible constituents of p, occur with multiplicity 1.

| Gry)

—keradpy

Indeed, the condition F ¢ F*(¢,) holds because [F(¢,) : F] = p — 1. We have F C
F({X:/ X s E/Ef, {ijﬁ_l }i;) =M, say, and ¢ acts on Gal(M/F) as —1. It follows that
F(¢,) N M has degree at most 2 over F, showing that ¢, ¢ M. To see that p, is primitive,
it is enough (by Lemma 5.1) to show that X;/X; has order greater than 2nr if 7 7 j and that

X))/ (YJ”ZWC) has order greater than 2n for any 7, ;. These properties hold by hypothesis
in the first case and since ¢ > 2n in the sgg)nd. F inallyﬂche constituents of p, are, with
multiplicity, X, @ ¥, ..., X, @ V¥, X1 ® ¥, ..., X, ® ¥ . Our hypotheses include the
condition that x; ® WlGFW FA® WIGFW) i I, ® W|GF(;,,> = 7]‘ ® EWGW) then
J/E[h%q is trivial, a contradiction.

Fix an isomorphism ¢ : 617 — C. By [BLGGT14, Theorem 3.1.2], we can find a
Galois totally real extension L™ /F* and a regular algebraic, self-dual, cuspidal, automor-
phic representation 7 of GLy,(Ar+), with the following properties:

e Let L=FL". Then L/F is linearly disjoint from the extension of F(¢,) cut out
—k

by D5y, - In particular, [L(5) : L] =p—1, ¢, ¢ L CmdMGL, and L Z L*(g)).

e There is an isomorphism 7, , =7 |¢, . -

e 7 is t-ordinary. More precisely, 7 is of weight 0 and for each place v|p of L*, 7,
1s an unramified twist of the Steinberg representation.

® Dy, 1s primitive.

e 'The irreducible constituents of p, occur with multiplicity 1.

|GL<<
)
e For each place v of L* lying above a place of X, 7, is an unramified twist of the

Steinberg representation.

More precisely, [BLGGT'14, Theorem 3.1.2] guarantees the existence of L* satisfying the
first condition and an essentially self-dual 7 satistying all the remaining conditions (except
possibly the last one). The last paragraph of the proof notes that the 7 constructed is in
fact self-dual and 7, is an unramified twist of the Steinberg representation for each place
v|p of L. We can moreover ensure that 7 is Steinberg at the places of L™ lying above &
by inserting the condition “4(P) < 0 for all places v|Z of L™ in the first list of conditions
on [BLGGT14, p. 549].
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After possibly adjoining another soluble totally real extension of F* to LT, we can
assume that the following further conditions are satisfied:

Polc, 1s unramified at those finite places not dividing Sy, U ..

Each place of L at which 7y, is ramified is split over L*.

For each place v € S;, U X, E|GLF 1s trivial.

For each place v € S, 1, [Ly : Q)] > 2n(2n — 1)/2 4+ 1 and 52|GL17 1s trivial.

Here 71, denotes the base change of 7. It is a RACSDC automorphic representation of
GLy,(Ar). By construction, then, 7y, satisfies the hypotheses of [ANT20, Theorem 6.2].
Therefore, if we define the global deformation problem

S'=(L/L",SLUSL, SLUZp, Ap oy, Bolg .. €,

R }ves, . U R huesi—s, U AR ez, D,

then Rg is a finite Ay o,-algebra. (Here we have written Ay 9, to distinguish from A =
Ay, used above.)

We now need to relate the rings Rg and R, . In fact, it will be enough to construct
a commutative diagram

Rs /(@) —— Rs; /(@)

T T

AL,Q?Z/(w—) — AF,n/(w)

where the top horizontal morphism is finite. We first specify the map Ay, ,/(@) —
Ay,/(w). It is the map that for each place w € S,;, lying above a place U of F classi-
fies the tuple of characters

-1 —1
(l/flvh[q“ PRI w:ll]‘w ) ’l//’”Il,w’ RN wlvllllw)'

This endows the ring Rs, /(@) with the structure of Ay o,-algebra. To give a map
Rs /() — R, / (), we must give a lifting of 75|, , over Rs; /() which is of type S'.
To this end, let  denote a representative of the universal deformation (of 7) to Rs, /(@),
and let ¥ =10 @ (¥, €' "I '8p1+))¢, |, (notation as in [BLGGT14, §1.1]). Then '
is a lift of 7, and 7|, is the restriction of 7|, ® ¥ @ r*|g, ® ¥ to Gr.. We need to check
that for each v € S, 1, 7’|, is of type R'; and that for each v € Xy, 7'|q,_ is of type RY.
These statements can be reduced to a universal local computation.

It follows that 7 is of type &', and so determines a morphism Rg /(@) —
Rs, /(). To complete the proof, it will be enough to show that this is a finite ring map.
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We can enlarge the above commutative diagram to a diagram

Rs /(@) Rs, /(@)

| T

Qe /(@)R0AL/ (@) — Qi/(@)R0Ar./ (@),

where Q 7|, is the complete Noetherian local O-algebra classifying pseudocharacters of
Gy s, ux, lifting the restriction of ty = tr7y|g, to G, Q 7 is defined similarly with respect
to the pseudocharacter ¢ = tr7|g, of Gy sus, and the map Q;2‘GL/(w) — Q 7/(w) 1s the
one classifying the natural transformation sending a pseudocharacter ¢ lifting ¢ to the
pseudocharacter (¢|g, ® W) + (t'lg, ® Jo). We deduce from [Thol5, Proposition 3.29]
that the vertical arrows are finite ring maps. The map Ay, 9, — Ap, 1s also finite, so it’s
enough finally to show that the map Q 3, /(@) — Q.;/(w) 1s finite. This map can in
turn be written as a composite

Qg /(@) = Qiyie, /(@) = Qi/ (@),

where the first map classifies restriction of pseudocharacters from Gy to Gy.. Since 75|, 1s
multiplicity free, [ANT20, Proposition 2.5] (specifically, the uniqueness of the expression
as a sum of pseudocharacters) implies that the second map is in fact surjective. We finally
just need to show that the first map is finite, and this follows from the following general
lemma. 0

Lemma 3.3. — Let I be a topologically finitely generated profinite group, let X be a closed
subgroup of finite index, and let t be a pseudocharacter of T with coefficients in k of some dimension n.

Let Q 7 be the complete Noetherian local O-algebra classifying lifts of t. Then the map Q 7. — Q ;
classifying restriction to X 1s a finite ring map.

Progf: — Ttsuffices to show that Q ;/(mg , ) is Artinian. If not, we can find a prime
ideal p of this ring of dimension 1; let A be its residue ring (which is a k-algebra), and let
ta be the induced pseudocharacter of I' with coefficients in A. Let N=[I": X]. If y € I
then y™ € . If we factor the characteristic polynomial of X — y under ¢ as [ |, (X — ;)
for some elements «; in the algebraic closure of FracA, then the characteristic polyno-
mial of yN' under ¢, namely [, X — oz%\“), lies in A[X] and equals the characteristic
polynomial of ™ under 7. This shows that the elements «; are in fact algebraic over £,
and thus (using [Chel4, Corollary 1.14]) that ¢y can be defined over £, and must in fact
equal ¢. This is a contradiction. UJ

Corollary 5.4. — With hypotheses as in Theorem 5.2, fix A € (Zi)Hom(F’Qﬁ) such that _for
eachi=1,...,n and T € Hom(F, @), we have Ay j = —A¢ pip1—i. Suppose further that for each
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veS, [Fy: Q)] > n(n—1)/2+ 1. Then there exists a homomorphism r : Gp+ g — gﬂ(ip) lifting
7 such that v\, ¢ 1s ordinary of weight A, in the sense of [Thol5, Definition 2.5].

Progf. — We observe that [Thol5, Proposition 3.9, Proposition 3.14] show that for
each minimal prime QQ C Rs;, dimRs;/Q = dim A; consequently, there is a minimal
prime Q4 of A and a finite injective algebra morphism A/Q, — R, /Q. The corollary
follows on choosing any prime of Rs; /QJ1/p] lying above a maximal ideal of A/QA[1/p]
associated to the weight A as in [Gerl9, Definition 2.24]. U

Corollary 5.5. — With hypotheses (1) — (3) of Theorem 5.2, choose a place vy & S of ¥+ split
in ¥ and a lift vy to ¥ such that q,, = 1 mod p and 7|GF;0 i trivial. Consider the quotient

A= RS@/(wa {tI’ 75[/1 (FI'Ob%O) - n}i:l ,,,,, n)'

Then A is a finite A-algebra. Consequently, im R, /() < n[F* : Q] + n.

Proof. — 1t suffices to verify that the quotient of Rs, where the characteristic poly-

nomial of Frobg, equals [T, (X — ¢/~ is a quotient of Rs,,,;- This in turn means check-

Vo
ing that the quotient A, of the local unramified lifting ring R}’ where the characteristic
polynomial of Frobenius equals [T'_, (X — ¢, is a quotient of Rg(‘) . Since A, is flat over

O, this follows from the definition of Rfé (see [Tay08, §3]). U

For the statement of the next proposition, suppose given a surjection Rs /(@) = A
in Cy, where A is a domain, and let 7 : Gp+ s — G,(A) denote the pushforward of (a
representative of) the universal deformation. Suppose given the following data:

e A decomposition r =1, @ 1, where the 7, : Gp+ s = G, (A) satisty Vg, © 1 =
vg, o r. (In other words, r|g, = 71|g, @ nlg, and if 7;(c) = (A;, 1) then r(¢) =
diag(A;, Ag)J.)

e Asubset R CS — S, (consisting of places of odd residue characteristic) with the
following property: for each v € R we are given an integer 1 < ny < n such that

th

gy mod p is a primitive 7' root of unity and there is a decomposition 7|g, =

v
7.1 @0y, where oy = Indg:g _ W; with F3 . /Fy the unramified extension of
degree ny and W; an unramified character of GFM;, and oy 9 18 the twist of an
unramified representation of Gy, of dimension n — ny by a ramified quadratic
character.

e An isomorphism ¢ : Qp — C and for cach v € R, a character O3 : Of,  — C~
of order p. Thus the lifting ring R(V, O, n) is defined (notation as in §1.17).

Proposition 5.6. — With the above assumptions on Rs /(wr) — A, suppose that the following
additional conditions are satisfied:
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(1) p > 2n.

(2) For each 1 <i<j<n, X;/X;
non-trivial and 7 is Schur,)

(3) Foreachv €S, [Fy: Q] > n(n—1)/2 + 1.

(4) [F(g) : Fl=p— 1.

(5) Foreachv € R, both 1|y and 7ol admut a non-trivial unramified subquotient and the compostte
map RUD — R — A factors over R(V, O, n).

Let Ls, denole the maximal abelian pro-p extension of ¥ unramified outside S,, and let A =

Gal(Ls,/F)/(c+1). Let dr denote the Z,-rank of the subgroup of A generated by the elements Froby,

veR. ThendimA <n[F": Q]+ n— dx.

|GF(4'/;) has order greater than 2n. (In particular, this character 1s

Proof: — Fix a place Uy of F split over F*, prime to S, and such that ¢z, = 1 mod p
and 7|GFUO 1s trivial. Let I denote the ideal of A generated by the coeflicients of the poly-
nomial det(X — 7|g, ((Froby))) — (X = 1)". Then dimA/I > dim A — n. After replacing
A by A/p, where p CAisa prime ideal minimal among those containing I, we can as-
sume that 7|, ;(Frobg,) is unipotent, and must show dim A < n[I'" : Q] — dg. Consider
the deformation problems (z: =1, 2):

Si = (F/F+’ SU {UO}’ g U {:JO}’ Anla ?is M, {RUA}UESP U {RUD}UES—Sp U {Rié})'

Let K = Frac A. We now repeat the argument of [ANT20, Lemma 3.6]: if v € S;, then
(since we assume [Fy: Q,] > n(n — 1)/2 + 1) we can appeal to [Thol5, Corollary 3.12],
which implies the existence of an increasing filtration

OCFill CFilc---CFil'=K'

of 7l ®a K by Gy,-invariant subspaces, such that each gr'Fil® = Fil /Fil;™' (i =
l,...,n)is 1-dimensional, and such that the character Iy, (p) — K™ afforded by gr' Fil?
agrees with the pushforward of the universal character ¢! : I, — A*. Using the de-

—n

composition 7 = r; @ 7, we obtain induced filtrations Fil? N(K" @ 0™) of 71|GF5 ®r K
and Fil; N(0" @ K”) of » ®4 K and, applying [Thol), Corollary 3.12] once more, we
see that we can find an isomorphism A,”®A,l2 = A = A, such that, endowing A with
the induced A;-algebra structure, 7; is a lifting of 7; of type S; for each i =1, 2. We de-
duce the existence of a surjective A-algebra homomorphism Rs,®oRs, — A. We ob-
serve that Theorem 5.2 applies to the deformation problems &) and Sy, showing that
dimRs /(@) <n[F":Q].

Let ¥, : Ggps = O* denote the Teichmiiller lift of Ei = det7|g, 5, and let R:slf de-
note the quotient of Rs, over which the determinant of the universal deformation equals
Y. Then [Thol5, Lemma 3.36] states that there is an isomorphism R, = Rg:@oO[[A]].
In particular, dim R:éﬁ /(@) < (n; — D)[FT : Q]. To complete the proof, it is enough to
show that if A’ =A/(m ng), then dim A’ < 2[F': Q] — dg = dimk[A x A] — dk.

121
RSl ?



82 JAMES NEWTON, JACK A. THORNE

To this end, we observe that by construction there is a surjection £[A x A] — A’.
If W), Wy : Gps — k[A x A]* are the two universal characters, then the third part of
Proposition 1.22 (together with our assumption that both 7i|¢,_ and 7s|c, admit an un-
ramified subquotient) implies that the relation W (Froby)™ = Wy(Froby)™ holds in A’
for each v € R. Since A is a pro-p group, this implies that W, (Froby) = Wy (Froby) in
A’, and hence that the map k[A x A] = A’ factors over the completed group alge-
bra of the quotient of A x A by the subgroup topologically generated by the elements
(Froby, —Froby),cr. This completes the proof. O

We are now in a position to prove the main theorem of this section, which guarantees the
existence of generic primes in sufficiently large quotients of a certain deformation ring.
For the convenience of the reader, we state our assumptions from scratch.

Thus we take F, S, p as in our standard assumptions (see §1). We assume that
[F(g) : F] = (p— 1). We let E be a coefficient field, and suppose given an isomorphism
L Q — C and a continuous character u : G+ g — O which is de Rham and such
that u(c,) = —1 for each place v|oo of F*. We fix an integer 2 < n < p/2 and characters
X152 Xn: Gps — k¥ such thatforeach i =1, ..., 2, X, X; = lgps. Weset p =@ X
then p naturally extends to a homomorphism 7 : Gy s — G, (k) such that vg, o 7= . We
suppose for each | <i<j<n, ¥, /lecF({p) has order greater than 2n. This implies that 7
1s Schur. We suppose that for each v € S, 7|g,. 1s trivial and [Fy: Q)] > n(n — 1) /2 + 1.

We suppose given a subset R = R; U Ry C S — S, (consisting of places of odd
residue characteristic) and integers 1 < ny < n (v € R) such that for each v € R, ¢y mod p
is a primitive n

v

root of unity, and there is a decomposition 7|g,. = 051 @ 05,2, where
Oy = Indg::: _ ¥ is induced from an unramified character of the unramified degree ny
extension of F%, and 07y 9 1s the twist of an unramified representation of dimension n — ng
by a ramified quadratic character. We fix for each v € R a character @y : Oy — C* of
order p. -

Assuming (as we may) that E is large enough, we may then (re-)define the global
deformation problem

S=(F/F"S,S, A7 w, (R} es, U R®T, O, ) }oer U {RT }yes—s,um)-

Following [ANT20, Definition 3.7], we say that a prime p C Rs of dimension 1 and
characteristic p is generic at p if it satisfies the following conditions:

e Let A=Rgs/p, and let 7, : Gy+ s = G,(A) be the pushforward of (a representa-
tive of) the universal deformation. Then for each v € S;, the (pushforwards from
A of the) universal characters ¥}, ..., ¥ : Iff;(p) — A are distinct.

e There exists v € S, and 0 € Ian; (p) such that the elements ¥/ (), ..., ¥ (0) €
A satisty no non-trivial Z-linear relation.

We say that p is generic if it is generic at p and if 7 |, ¢ ® A Frac A is absolutely irreducible.
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Theorem 5.7. — With assumptions as above, let Rs — B be a surjection in Cp, where B is

a finite A /(@ )-algebra. Let Ls, denole the maximal abelian pro-p extension of ¥ unramafied outside

Sy, and let A = Gal(Ls,/F)/(c + 1). Let dy, denole the Z,-rank of the subgroup of A topologically

generated by the elements Froby, v € R,.

Suppose that the following conditions are satisfied:

(1) Each irreducible component of Spec B has dimension strictly greater than sup({n[F* : Q] + n —
dr.}i=1,2, {n[F* : Q] —[F5: Qp]}vesp)-

(2) For each direct sum decomposition 7 =7\ @7y with7; : Gp+ s — G, (k) (=1, 2) and myny # 0,
there exists 1 € {1, 2} such that for each v € R, both 7, |G and TolGy, admit a non-trivial
unramified subquotient.

Then there exists a prime p C R of dimension 1 and characteristic p, containing the kernel of Rs — B,

which ts generic.

Proof. — After passage to a quotient by a minimal prime, we can assume that B is
a domain. The argument is now very similar to that of [ANT20, Lemma 3.9]. Indeed, by
[ANT20, Lemma 3.8], we can find countable collection (I;);>; ofideals I; C A /(@) such
thatforall: > 1, dim A /(w, I;) < sup{n[F*: Q] —[Fy: Q,1}ves, and if p C R is a prime
of dimension 1 and characteristic p which is not generic at p, then LRs C p for some ¢ > 1.
Let Igd C Rs be the reducibility ideal defined just before [ANT20, Lemma 3.4], and let
I, = 1%, o)Rs. Proposition 5.6 shows that dim Rs /Iy < sup{n[F" : Q] + n— dg }i=1 .

Since B is a finite A/(w)-algebra, we have dimB/I; < sup{a[F" : Q] — [Fy :
QJ)]}UESP' We also have dim B/ < sup{a[F" : Q]+n—dg,};=1 9. The existence of a generic
prime p containing the kernel of the map Rs — B thus follows from [Thol5, Lemma
1.9]. 0

We conclude this section with a result concerning the existence of automorphic lifts
of prescribed types, under the hypothesis of residual automorphy over a soluble extension.
It only uses the results of [ANT20] and not the results proved earlier in this section, and
1s very similar in statement and proof to [BG19, Theorem 5.2.1].

We begin by re-establishing notation. We therefore let Iy be an imaginary CM field
such that Fo/Fy is everywhere unramified. We fix a prime p and write S, for the set of
p-adic places of Fj. We fix a finite set Sy of finite places of Fj containing S ,. We assume
that each place of Sy, splits in Fy, but not necessarily that each place of Sg — S, splits in
Fy. We choose for each v € Sy a place v of Fy lying above v, and write go ={vV]veSy
We fix a coefficient field E C Q Fix an integer n > 2, and suppose given a continuous
representation p : Gy, s, = GL,(£) satistying the following conditions:

e There is an isomorphism p = @_, p;, where each representation p; is absolutely
irreducible and satisfies p¢ = p, ® €'™". Moreover, for each 1 <i <j <7, we
have p; Zp;.
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Proposition 53.8. — Fix disjont subsets Ty, Xo C So consisting of prime-to-p places which
split i ¥o. We assume that for each v € Xy, we have gz =1 mod p and P, 15 trivial. We fix for

each v € Ty a quotient RY — R, of the universal lifiing ring of Play, corresponding to a non-emply
union of irreductble components of Spec RE[1/p). We suppose that if v € Sy and v is inert in ¥y, then
P g, ) s of order prime to p. Fix a weight A € (Zi)Hom(F"’Qﬁ) such that for each 1 =1, ..., n and
T € Hom(F,, Q), Arei = —Agap1—i, and suppose that for each v € Sy, ﬁlGFo,a admits a lift to

Zp which s ordinary of weight Ay, in the sense of [Gerl 9, Definition 3.8]. Suppose that there exists a

soluble CM extension ¥ /¥y such that the following conditions are satisfied:

(1) p > max(n, 3). For each place v|p of ¥, we have [F, : Q,]1 > n(n — 1)/2 + 1 and plg;, s
trivial. erads

(2) ¥(&) 15 not contained in ¥ " and F is not contained in F*(g,). Foreach 1 <i<j <r,
ﬁilc,mp) is absolutely vrreducible and ﬁi|Gm,,> Z0; Moreover, p|g, s primitive and p(Gr)
has no quotient of order p.

(3) There exists a RACSDC automorphic representation 7w of GL,,(Ay) and an isomorphism v : Q —
C such that 7, = p|,. Moreover, w is t-ordinary and there exists a place v of ¥ lying above %
such that 7, s an unramified twist of the Steinberg representation.

(4) If'S denoles the set of places of ¥t lying above S, then each place of S splits in F.

Then there exists a RACSDC automorphic representation 1y of GL,(Ag,) satisfying the following

conditions:

(1) 1o s unramified outside Sy and there is an isomorphism 7, ,

(2) 1 is L-ordinary of weight (.

(3) For each place v € Lo, 17, |y, . defines a point of R,.

(4) For each place v € Xy, 7y 7 s an unramified twist of the Steinberg representation.

(5) For each place v € Sy which is nert in ¥y, reduction modulo p induces an isomorphism

77TQ,L(IF0,I7) — ?HO,L(IFO,’J)'

|GF(C/)) :

~

D.

Proof. — Let v € Sy, and let p, : Gg,; — GL,Z(Z,) be the lift of 5|GF5 which i1s
ordinary of weight Ay and which exists by assumption. Thus p, is conjugate over Qﬁ to

. . . . ~
an upper-triangular representation with the property that if 1, ..., o0y, 1 Gr,; > Q,
are the characters appearing on the diagonal, then for each : =1, ..., n the character
a,,; 1s equal, on restriction to some open subgroup of Iy, ., to the character

Xogi-O € IF(),'E = E(O’)l_i 1_[ T(Art;olg(g))—lr.nfiﬂ )
r:F011~,—>§p

After enlarging E, we can assume that each character «,; takes values in O. We use the
restricted characters ozv,thw(p) g (p) = O (ve Sy, t=1,...,n) to define a homo-
morphism Ay, — O.

Let By = ozvyixk_g’li. Then 5 = @_, By, is an inertial type and the type 77, Hodge
Ay, Ty
v

type Ay lifting ring R is defined and equidimensional of dimension 1 + n* 4+ n(n —
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D[Foz:Qyl/2 (see [KisO8, Theorem 3.3.4]). When 75 is trivial, [Gerl9, Lemma 3.10]

W

shows that there is a minimal prime ideal of RZ"™ such that, writing R, for the corre-

sponding quotient, the following properties are satisfied:

e R, is O-flat of dimension 1 + n* + n(n — 1)[Fo3 : Q,1/2.
e The map R5""™ — Q, determined by p, factors through R,.
e lor every homomorphism R, — @, the corresponding Galois representation

Gryy = GL,Z(@) is ordinary of weight Ay, in the sense of [Gerl9, Definition
3.8].
e The homomorphism RPY®0 A, — R, (completed tensor product of the tauto-

logical quotient map RY — R, and the composite A, — O — R,) factors over
the quotient RI®p A, — R2 (defined in e.g. [Thol5, §3.3.2]).

In fact, the same proof shows that these properties hold also in the case that 7y is non-
trivial.
Our hypotheses imply that we can extend p to a continuous homomorphism 7 :

G+ . = G, (k) with the property that vo7 = €!78" . Let R™" denote the deformation
.S property Fo/F,
0

ring, defined as in [BG19, Corollary 5.1.1], of €'7"§" . -polarised deformations of 7,

Fo/Fg
where the quotients of the local lifting rings for v € S, areospeciﬁed as follows:

If v €Sy, we take the quotient R, defined above.
If v e Ty, take R,.

If v € ¥y, take the Steinberg lifting ring RY'.
If v € Sy and v is inert in Fy, take the component corresponding to the functor

of lifts r of 7|GF . such that the reduction map induces an isomorphism r(IF0+ ) —
0,v v
ALy ).

We can invoke [BG19, Corollary 5.1.1] to conclude that R"™" has Krull dimension at
least 1. We remark that this result includes the hypothesis that 7|g, ., is irreducible, but
this is used only to know that the groups H’(F{, ad7) and H(F{, ad7(1)) vanish, which is
true under the weaker condition that 7|GF . 1s Schur, which follows from our hypotheses.

(The vanishing of these groups implies that the deformation functor is representable and
that the Euler characteristic formula gives the correct lower bound for its dimension.)
We consider as well the deformation problem

S=(F/F".S,S, A, g, €' 785 s (R }yes, U {RE}vesf(s,,uz) U{R} }ex).

where we define S, T, X to be the sets of places of F* above Sy, T, Xy, respectively. Then
there is a natural morphism Rg — R"™ of Ap-algebras, which is finite (apply Lemma 5.3
and [Thol), Proposition 3.29(2)]). By [ANT20, Theorem 6.2], Rs is a finite Ap-algebra.
The map Ay — R™ factors through a homomorphism Ay — O (by construction), so
R"V is a finite O-algebra (of Krull dimension at least 1, as we have already remarked).
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We deduce the existence of a lift r : GFJ,SO — g,l(ip) of 7 arising from a homo-

morphism R”" — Z,. We can now apply [ANT20, Theorem 6.1] and soluble descent

to conclude that r|GFO 1s automorphic, associated to an automorphic representation 7 of
GL,(Ag,) with the desired properties. 0J

6. Raising the level — Galois theory

This section is devoted to the proof of a single theorem that will bridge the gap
between Theorem 4.1 and our intended applications. Let I, S, p, G be as in our standard
assumptions (see §1), and let » > 3 be an odd integer such that p > 2n. Fix an isomorphism
L: @ — C. We suppose given a RACSDC automorphic representation 7w of GL,(Ag),
and that the following conditions are satisfied:

(1) 7 is t-ordinary:.
(2) [F(gy) :Fl=p—1.
(3) There exist characters X, ..., X, : Gr = pr and an isomorphism 7, =X, @ --- D

X, where for each i =1,...,n, we have X! =%,€'™ and for each 1 <i<j <n,

X /YJ|GF@/}) has order strictly greater than 2n.

(4) For each v € S, 77”|GFT) is trivial and [Fy: Q] > n(n —1)/2 + 1.
(5) There is a set R =R, LRy C S — S, with the following properties:

(a) The sets R, and Ry are both non-empty and for each v € R, the characteristic of
k(v) is odd. As in §1.17, we write w (D) : k&(V)* — {£1} for the unique quadratic
character.

(nb) If v € Ry, then ¢, mod p is a primitive 3" root of unity, and there exists a character
Oy : k5 — € of order p such that 734, contains 3:(75, Oy, n) (notation as in §1.17,

this representation of qy defined with respect to n; = 3).

(c) If v € Ry, then ¢, mod p is a primitive (n — 2)" root of unity, and there exists a
character ®y : £, — C* of order p such that 3|4, contains (T, Oy, n) (notation
as in §1.17, this representation of qy defined with respect to n; =n — 2).

(d) For each non-trivial direct sum decomposition 7, , = p, @ p,, there exists ¢ € {1, 2}
such that for each v € R;, p, |G, and Pslcy, both admit a non-trivial unramified
subquotient.

(This 1s the situation we will find ourselves in after applying Theorem 4.1. The sets of
places R, and Ry here will correspond to the sets T} and T's respectively from §4, and
it will be possible to label the characters ¥; so that we have the following ramification
properties:

e Ifv e Ry, then X, Xy, X3 are unramified at v and ¥, ..., X, are ramified at ¥
(and the image of inertia under each of these characters has order 2).

e If v € Ry, then ¥, X, are ramified at v (and the image of inertia under each of
these characters has order 2) and 3, . .., X, are unramified at v.
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These properties imply condition 5(d) above, which is what we actually need for the proofs
in this section.)
The theorem we prove in this section is the following one:

Theorem 6.1. — With assumptions as above, fix a place vs, of ¥ lying above S — (S, UR) such
that ¢y, = 1 (mod p) and 7, |GFUS, us trivial. Then we can find a RACSDC t-ordinary automorphic
representation ' of GL,,(Ar) satisfying the following conditions:

(1) There is an isomorphism 71, = Ty ,.
(2) For each embedding T : F — (_lﬁ, we have

HT: (rr,) =HT: (rz,).
(3) 7, is an unramified twist of the Steinberg representation.

Our proof of this theorem follows a similar template to the proof of [CT17, Theo-
rem 5.1]. Briefly, we use our local conditions at the places of R, together with Theorem
5.7 to show that (after a suitable base change) we can find a generic prime in the spec-
trum of the big ordinary Hecke algebra. This puts us in a position to use the “R, =T,”
theorem proved in [ANT20], which is enough to construct automorphic lifts of 7, , (or its
base change) with the desired properties.

We now begin the proof. Let I*/F denote the extension of F({,) cut out by 7,
and let Y* be a finite set of finite places of F with the following properties:

|Gy(9}) b

e For each place v € Y*, v is split over F*, prime to S, and 7, is unramified.
e For each intermediate Galois extension F*/M/F such that Gal(M/F) is simple,
there exists v € Y which does not split in M.

Then any Y“-split finite extension L/F is linearly disjoint from F*/F. After conjugation,
we can find a coefficient field E such that 7, is valued in GL,(O), and extend it to a
homomorphism 7 : Gp+ s — G,(O) such that vor = 61_”3§/F+. We write 7 : Gp+ s = G, (k)
for the reduction modulo @ of 7.

Lemma 6.2. — Let 1/¥ be an Y*-split finite CM extension. Then:

(1) 7|GL+<¥/J> us Schur.

(2) 7|, s primitrve.

(3) Suppose moreover that L./ ¥ is soluble. Then the base change of 7w with respect to the extension L/ F
i cuspidal.

(4) More generally, suppose that L./¥o /¥ 1s an intermediate field with L/¥y soluble, and let T1 be a
RACSDC automorphic representation of GL,,(Ag,) such that 7o, = 7|GFO- Then the base change
of T1 with respect to the extension L/¥y ts cuspidal.

Progf: — For the first part, it is enough to check that L ¢ L*(¢,) and /Xjlore,, 1s
non-trivial for each 1 <7 <j <n. We have [L(¢,) : L] = p — 1, which implies L. ¢ L*(¢,),
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while X; /% (Gre,)) = X;/X;(Gr,), so this ratio of characters is non-trivial. The second
part follows from Lemma 5.1 and the fact that X;/X;|c,, has order greater than 2n for any
1 #7, because L/F is linearly disjoint from the extension IF*/F.

The third part is a special case of the fourth part, so we just prove this. Suppose
for contradiction that the base change of IT with respect to the extension L/F; is not
cuspidal. Then we can find intermediate extensions L/Fy /I /Fj such that there is a tower
Fi=M,/M,_,/.../My=F,, where each extension M,;,/M, is cyclic of prime degree;
Fy/F, 1s cyclic of prime degree /; the base change Iy, of IT to F; (constructed as the
iterated cyclic base change with respect to the tower M,,/M,,—,/ ... /M) is cuspidal; but
the base change of Iy, to Iy is not cuspidal. We will derive a contradiction. By the
second part of the lemma, ?l(;Fl 1s primitive. Let o € Gal(F,/F,) be a generator. Since
the base change of Iy, with respect to the extension Fy/F) is not cuspidal, there exists a
cuspidal automorphic representation E of GL,/;(Ar,) such that the base change of I,
s EHE B...@g" (see [AC89, Theorem 4.2]). We claim that E is in fact conjugate
self-dual. The representation E| - |*/="/2 is regular algebraic (by [AC89, Theorem 5.1]).
Since Iy, is conjugate self-dual, [AC89, Proposition 4.4]) shows that EEHE° H- - -H g
is also conjugate self-dual. The classification of automorphic representations of GL, then

=V

implies that there is an isomorphism E“Y = E° for some 0 < i < /. If w is an infinite

place of Fy, then the purity lemma ([Clo90b, Lemma 4.9]) implies that E,, = E%", hence
By = E;’j. Since EM E°H---HE" s regular algebraic, this is possible only if 7 =0
and & 1s indeed conjugate self-dual.

Therefore rg.jwi-n/2, is defined and there is an isomorphism

Gr
~ 1
MMy, 0 = IndGF2 Ta| /-2,

This contradicts the second part of the lemma, which implies that 7, , is primitive. This
contradiction completes the proof. 0J

Combining Lemma 6.2 and Proposition 5.8, we see that Theorem 6.1 will follow
provided we can find a soluble CM extension L/F with the following properties:

o L/Fis Y%split.

e There exists a RACSDC t-ordinary automorphic representation 7" of GL,(Ay,)
and a place v” of L lying above vg, such that 7,», =7, |, and 7}, is an unram-
ified twist of the Steinberg representation.

After first replacing I by a suitable Y* U R-split soluble extension, we can assume in
addition that S =S, U R U {vg|p+} and that 7 is unramified outside S, U R (use the
Skinner—Wiles base change trick as in [CHT08, Lemma 4.4.1]).

Lemma 6.3. — There exist infinitely many prime-to-S places v, of ¥ with the following prop-
erty: v, does not split in F(¢ ) and 7(Frobyg, ) is scalar.
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Proof. — By the Chebotarev density theorem, it is enough to find T € Gy such that
7(t) is scalar and €(t) # 1. We can choose any 7y, € Gy such that €(ty)? # 1, and set
T =T1)T. O

Choose a place U, of F as in Lemma 6.3 which is absolutely unramified and of odd
residue characteristic. We set S, = {¥,|p+} and ga ={v,}.

We will need to consider several field extensions L/F and global deformation prob-
lems. We therefore introduce some new notation. We define a deformation datum to be
apair D = (L, {R,},ex) consisting of the following data:

e AYU ga-split, soluble CM extension L/F.
e Asubset X C S — S, which may be empty. We write X for the pre-image of X
in S.
e lor each v € X, one of the following complete Noetherian local rings R,,, repre-
senting a local deformation problem:
— For any v € Ry, such that v'is split over F, the ring R, = R(v, @y, 7],_) (no-
tation as in Proposition 1.22 — we define O3 = Oy,).
— For any v € Sy, such that ¢, = 1 mod p and 7|, 1s trivial, the unipotently
ramified local lifting ring R, = R} considered in [Thol5, §3.3.3].
— For any v € Sy, such that ¢, = 1 mod p and 7|g, _ 1s trivial, the Steinberg local
lifting ring R, = R¥ considered in [Thol5, §3.3.4].

If D = (L, {R,},ex) is a deformation datum, then we can define the global deformation
problem

Sp = (L/L*,S, 1 UX, S, UX, Ar, 7lo,, . €' 78] 1 (R: hues, UIR, hex)-

We write Rp = R, € C,, for the representing object of the corresponding deformation
functor.

Lemma 6.4. — If' D = (L, {R, },ex) ts a deformation datum, then each irreducible component
of Rp has dimension at least 1 + n[L" : Q).

Progf. — This follows from [Thol)b, Proposition 3.9], noting that the term
H°(L*, ad7(1)) vanishes because 7lg, e is Schur (cf. [CHTO08, Lemma 2.1.7]). O

Given a deformation datum D, we define an open compact subgroup Up =
HUESL_SﬁLUD‘U C HueSL—sﬁLGLn(OFa) and a smooth O[Upl-module Mp =
®yes;—s,. Mp,, as follows:

o Ifv¢X, then Up, =GL,(O;) and Mp , = O.
e Ifv e XNRy and R, = R(7, Oy, 7|GLE)’ then Up , = gy and Mp , is an O-lattice
in .'A(V, Oz, )" (notation as in §1.17).
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e IfveXand R, =R! or RY, then Up, = Iwy and Mp , = O.

We now define a Hecke algebra Tp associated to any deformation datum D =
(L, {Ry}yex). It is to be a finite Ap-algebra (or zero). If ¢ > 1, let U(D, ¢) C G(A7Y)
be the open compact subgroup defined as follows:

U(D,¢) = ]_[ ;5 Twi(e, ¢) X ( ]_[ i) Up

VES) L veSL—Sy L

< [T 'Ks(1) x GO

UESHT]‘

(here we are using the notation for open compact subgroups established in §1.23). Note
that U(D, 1) 1s sufficiently small, because of our choice of v,. We write

T"(D, ¢) C Endo(S"(U(D, ¢), Mp))

for the O-subalgebra generated by the unramified Hecke operators T/, at split places
v=ww’ ¢S, US, 1, and the diamond operators () for u € Iwz(1, ¢) (v € S, ).

Following [Gerl9, §2.4], we define T"(D) = l(ir_nﬁ T"(D, ¢) and H"(D) =
1<i£1[ Hom(S"(U(D, ¢), Mp), O). We endow T"?(D) with a Ap-algebra structure using
the same formula as in [Gerl9, Definition 2.6.2]. We then have the following result.

Proposition 6.5. — H"(D) is a finite free Ay -module and T"*(D) is a finite faithful Ay -
algebra, if it 1s non-zero.

Progf. — This can be proved in the same way as [Gerl9, Proposition 2.20] and
[Ger19, Corollary 2.21]. The proof uses that U(D, 1) is sufficiently small. 0J

We write mp C T"?(D) for the ideal generated by m,, and the elements T/ —
@9~V tr N¥(Frob,,) (w a split place of L/L™ not lying above a place of S, U S, ). It
is either a maximal ideal with residue field %, or the unit ideal. In either case we set
Tp = T" (D), which is either a finite local Ay-algebra or the zero ring. (In the cases
we consider, it will be non-zero, but this will require proof.)

For any deformation datum D, we write Pp for the Aj-subalgebra of Rp topo-
logically generated by the coefficients of the characteristic polynomials of elements of Gy,
in (a representative of) the universal deformation rs,. By [Thol5, Proposition 3.26], the

group determinant detrs,|g, is valued in Pp, and Pp is a complete Noetherian local
Ay -algebra. By [Thol5, Proposition 3.29], Rp is a finite Pp-algebra.

Lemma 6.6. — Let D = (L, {R, },ex) be a deformation datum, and suppose that R, # Ri‘
Jorall v e X. Then there is a natural surjective morphism Pp — Tp of Ay -algebras.
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Proof. — The proof is the essentially the same as the proof of [Thol5, Propo-
sition 4.12], but we give the details for completeness. It is enough to construct maps
Pp — T"(D, ¢)u;, which are compatible as ¢ > 1 varies. Let TT(D, ¢) denote the set of
automorphic representations o of G(Ay+) with the following properties:

L] 75’1 = 7|GL.
® 0 Is the trivial representation.

e 'The subspace
Homyp,y (M, t'0>)”" C Homyp,y (M, 1~ 0™)

where all the Hecke operators Uy (v € S,, j =1,...,n) act with eigenvalues
which are p-adic units is non-zero.

Then there is an injection

(6.6.1) T (D, ¢)mp ®0 Q, = Boen0.0Q,

which sends any Hecke operator to the tuple of its eigenvalues on each (17'a>)V P9,

We can find a coefficient field E,/E with ring of integers O, and for each o € TI(D, ¢), a
homomorphism 7, : G+ — G,(0,) lifting 7 and such that 7,|¢, = 75, (apply [CHT08,
Lemmas 2.1.5, 2.1.7]).

Let A, Ck® @aen(D,ﬁ) O, be the subring consisting of elements (4, (4,),) such
that for each o, a, mod @, = a. Then A, is a local ring containing the image of the map
(6.6.1), and the representation 7 X (X,en(p.o%) 1s valued in G,(A,) and is of type Sp
(by our choice of deformation problems and level structures). Writing Qs, € Co for the
ring classifying pseudocharacters which lift tr7|g, g , we see that there 1s a commutative
diagram

Rp —— A,

T |

%L ®O AL TOI’d (Dv C)m[)

The ring Pp is equal to the image of the map Qg, ® 0 A, — Rp. The proof is thus com-
plete on noting that the right vertical arrow is injective and the bottom horizontal arrow
1s surjective. UJ

We define Jp = ker(Pp —>_TD); this 1s a proper ideal if and only if Tp # 0.
We now fix a place vg,; of F above vg,. If L/F is a CM extension, we write vs; 1, =
Vs ..

Lemma 6.7. — We can find a deformation datum Dy = (L, @) with the following properties:
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(1) Tp, #0.
(2) There exists a prime ideal p, C Rp, of dimension 1 and characteristic p which is generic, such that
Jp, Ty, and such that r,, |GLI»”S[.141 is the trivial representation.

Proof — We first claim that we can find an RUY U {v,}-split soluble CM extension
L, /F with the following properties:

e For each i € {1, 2}, let Ly s, denote the maximal abelian pro-p extension of Ly
unramified outside S, 1,,, and let Ar, = Gal(Los,/Lo)/(c+ 1). Let dRM‘U denote
the Z,-rank of the subgroup of Ay, topologically generated by the elements
Froby, v € R;y,. Then dg,, > n+ n>.

e ForcachvesS,, [Loy:Q,] > n.

e lor each v e Sy, — (5,1, URy), 7|GL0.5 1s trivial, and ¢, = 1 mod p.

The third property is automatic, since Sy, — (S, 1, U Ry,) consists of primes above vg,|p-+.
We can construct an extension satisfying the first two properties using a similar idea to the
proof of [ANT20, Theorem 7.1]. Indeed, we can find, for any odd integer d > 1, a cyclic
totally real extension M,/F* which is R U {v|p+ | v € Y} U S,-split and in which each
place v € S, is totally mert. If d > n> and Ly = M, - F then Lo /F will be a RUY‘U {v.})-
split soluble CM extension which also satisfies the second point above. We need to explain
how to arrange that the first point is also satisfied. By class field theory, dg,,  1s equal to the
Z,-rank of the subgroup of (O, ®zZ,)* topologically generated by (O ., )="!. Since

fo k., ®z Q, decomposes as a Q, [Gal(Ly/F*)]-module with multiplicity 1, [Mai02,

Lo.R; 1,
Proposition 19] shows that this rank equals the Z-rank of (Of{)’R“‘U)‘:_I, which is d|R;].
Choosing any d > n+ n* therefore gives an extension with the desired properties.

Let my be the base change of m with respect to the extension Ly/F. It is cuspi-
dal by Lemma 6.2. Let Dy = (Lo, {R(V, Oy, ﬂGLo.i)}UERLo)' Then D, is a deformation
datum and the existence of 7, together with Theorem 1.4, shows that Tp, # 0. Let
B=Rp,/(p,, My ). Then dimB > [l : Q] — 7%, and we may apply Theorem 5.7
to conclude the existence of a generic prime p, C Rp, of dimension 1 and characteristic
p which contains (Jp,, My ).

We now make another base change. Let L; /Ly be a CM extension with the follow-
ing properties:

e L,/Fissoluble and Y* U {v,}-split.

e lor each v € Ry, the natural morphism R? — R(7, O, ?lGLw) factors over the

unramified quotient RY — R¥ (cf. Proposition 1.22).

e Foreachv €S, — 85,1, ¢y =1 modpand7lg, _ is trivial.

Let 7, denote the base change of 7 to L;. Then 7, is a RACSDC, t-ordinary automor-
phic representation of GL,(A;,) which is unramified outside S, ;.. Thus D, = (L, ¥) is a
deformation datum and Tp, # 0.
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To complete the proof; it is enough to produce a commutative diagram

Ry, Pp, Tp,
RDO PDO TDO .

Indeed, then we can take p; to be the pullback of p, along the map Rp, — Rp,. The
only arrow which has not already been constructed is the arrow Tp, — Tp,. This may be
constructed in exactly the same way as [Thol5, Proposition 4.18], using the construction
of the Hecke algebra as an inverse limit as in the proof of Lemma 6.6, provided we
can prove the following statement: for any automorphic representation oy of G(Ag+)
satisfying the following conditions:

e There exists ¢ > 1 such that Homyp, . (M%O, L710[?0 ) £ 0;
® 00 oo Is trivial;
e There is an isomorphism 7, , = 7,

Gry>

(in other words, such that o, contributes to S”(U(D, ¢), MD)mDU for some ¢ > 1), there
exists an automorphic representation oy of G(Ay+) satisfying the following conditions:

o There exists ¢ > 1 such that Homyp, ,(Mp , o) £ 0;
® 0 Is trivial;
e There is an isomorphism 75, , = 75|y, -

To see this, we first show that the base change of any such oy to Ly (in the sense of
Theorem 1.2) must be cuspidal. We will show that in fact 7,,, is irreducible. Suppose
that there is a decomposition 7,,, = p; @ po. By assumption, there exists v € Ry, such
that both p|¢, ; and Py, ; admit an unramified subquotient. However, local-global
compatibility (together with Proposition 1.20) shows that 75, /|, ; = 01 © p;, where py is
an irreducible representation of Gy, ; with unramified residual representation and pj is a
representation of Gy, such that p), is a sum of ramified characters. This is a contradiction
unless one of p; and py is the zero representation. If 1ty denotes the base change of oy, a
RACSDC t-ordinary automorphic representation of GL,(Ay, ), then the base change of
o with respect to the soluble extension L, /Ly is also cuspidal, by Lemma 6.2, and the
existence of o follows from Theorem 1.4. This completes the proof. U

We can now complete the proof of Theorem 6.1. We recall that it is enough
to construct a RACSDC, (-ordinary automorphic representation 7" of GL,(Ay,) such

that 7,7, = 7|g, and m,  1s an unramified twist of the Steinberg representation.
’ Ly US,Ly

Let Dy and p, be as in the statement of Lemma 6.7. Consider the deformation data
Dy.= Ly, {RY P and Dy, = (L, {R!_ }). Then there are surjections Rp,, = Rp,,

US., Ly USi,Ly
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and Rp,, = Rp, and the prime p; lies in intersection of Spec Rp, and SpecRp,, in
SpecRp, ,. We see that the hypotheses of [ANT20, Theorem 4.1] are satisfied for Rp,,
(in the notation of loc. cit., we set R = {vs, 1, }, Xvs, = 1, S(B) = (), and conclude
that for any minimal prime Q C Rp,, contained in p;, we have Jp,, C Q. In particu-
lar, dimRp, ,/Q = dim Ay, . (We remark that the essential condition for us in applying
[ANT20, Theorem 4.1] is that there is no ramification outside p; this is the reason for
proving Lemma 6.7.)

Lemma 6.4 and Theorem 5.2 show together that each minimal prime of Rp, , has
dimension equal to dim Ay, . Let Q, C Rp, , be a minimal prime contained in p;. Then
Q, 1s also a minimal prime of Rp, ,, Jp,, C Q,, and there exists a minimal prime Q of
Ay, such that Rp, ,/Q), is a finite faithful Ay, /Qy-algebra. If Q; = Q, N Pp, , then there
are finite injective algebra maps

ALI/QQ - PDM/Q = TDl,/;/Q - RDl,,./Qﬂ'

Using [Gerl9, Lemma 2.25] and Theorem 1.2, we conclude the existence of an auto-
morphic representation 7" of GL,(Ay, ) with the required properties.

7. Level 1 case

The goal of this section is to prove Theorem E, using the level-raising results es-
tablished in the last few sections. Combining this with the results of §§2 — 3, we will then
be able to deduce Theorem A.

Our starting point is 0y, the cuspidal automorphic representation of GLy(Ag) of
weight 5 associated to the unique normalised newform

Jolg) =g —4¢* + 164" — 14¢° — 64¢° + . ..

of level I';(4) and weight 5; it is the automorphic induction from the quadratic exten-
sion K = Q1) of the unique unramified Hecke character with co-type (4, 0). For any
prime p = 1 mod 4 and isomorphism ¢ : Q, — G, 0y is t-ordinary. We observe that 7, , =

Indgg‘w for a character ¥ : Gx — 6: (which depends on p) and detr,,, = 8k/0€
where 8k /g : Gg — {£1} is the quadratic character with kernel G.
The main technical result of this section is the following theorem:

Theorem 7.1, — Let n > 3 be an integer. Suppose given the following data:
(1) A prime p=1 (mod 48n!) and an isomorphism t : Qﬁ — C.
(2) A prime q # p.
(3) A finite set Xo of places of K, each prime to 2pq.
(4) A de Rham character o : Gx — 6: such that ww* = € and w|, is unramified if v € X,
Then there exists a soluble CM extension ¥ /K with the following properties:
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(1) F/K s Xo-split.

(2) There 1s a RACSDC, t-ordinary automorphic representation I1 of GL,(Ay) with the following
properties:
(a) There is an isomorphism

?H,l = 5”_1 |GF ® SYmnil 7(70,! Gr*
(b) For each embedding T : ¥ — @, we have
HT, () = HT (0" g, ® Sym" ™ 75, l6p)-
(c) There exists a place v|q of ¥ such that T1, is an unramified twist of the Steinberg representation.

The following lemma will be used repeatedly.

Lemma 1.2, — Let n > 3 be an integer, and let p =1 (mod 48n!). Let w : Gx — Q: be
a de Rham character such that o = €.
Let ¥ /K be afimte CM extension which is linearly disjoint from the extension of K(&,) cut out by

_ _ 1 —n—i —C_
ol and set T =@ @G Y,

P=X,D---BX,, o that there is an isomorphism

~

— —n—1 n—1 =
pP=w" @Sym" Ty lok-

T hen:

(1) [F() :Fl=p—1.

(2) E/Eclgmp) has order greater than 2n(n — 1) and for each 1 <1 <j <, Yz’/YJ"GFu,» has order
greater than 2n.

(3) Foreach 1 <i<n, X, x:i=¢€'"

(4) ¢, ¢ F*r24% and F ¢ FH(¢,).

(5) Play is primative.

Proof. — We have [F(g,) : F] = p — 1 because F/K is disjoint from K(¢,)/K. To
justify the second point, let L/K denote the extension cut out by ¥/ . We must show
that [L - F(¢y) : F(g,)] > 2n(n — 1). We note that [L: K] > (» — 1)/4, because the re-
striction of J/WL to an inertia group at p has order (p — 1)/4. Moreover, L. N K(¢,)
has degree at most 2 (since ¢ acts as 1 on Gal(K(¢,)/K) and as —1 on Gal(L/K)), so
[L(,) 1 K] > (p— 1)?/8.

Since F/K is supposed disjoint from L(¢,) /K, we have [F-L(¢,) : K] > (p— 1)?[F:
K]/8. Since [F(¢)) : F] = p — 1, we have [F({,) : K] = (p — D[F : K]. Putting these to-
gether we find

[F-L(5) : K]

F-L(g) : F(g)] =
[F- L(g) 1 F(g)] 7z K]

>(p—1)/8.
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Since we assume p = 1 (mod 48n!), we in particular have p — 1 > 48n!, hence (p—1)/8 >
2n(n—1).

If 1 <i<j<nthen X,/X; = (Ef/w)i*f, so this shows the second point of the
lemma. For the third point we compute

7175 — (melGF)n—l(WchF)n—l — el—n‘

We now come to the fourth point. To show that ¢, ¢ Frerad? vwe must find T € Gy such
that o(7) is scalar but €(r) # 1. We can choose T = 7y7§ for any 7y € Gy such that
€(19)? # 1. Such a T exists because [F(¢,) : F]=p — 1, and p(7) is scalar by the third
part of the lemma. If F C F*(¢,) then F(¢,) =F(g,) and [F(¢,) : F] = [FF(g,) : FF]/[F:
Ft]=(p— 1)/2, contradicting the first part of the lemma.

For the fifth point it is enough, by Lemma 5.1, to show that for each | <7 <j <n,
X:/X; has order greater than n. This follows from the second point. 0J

Before giving the proof of Theorem 7.1, we give a corollary which establishes the
existence of the automorphic representations necessary for the proof of Theorem 7.6.

Corollary 7.3. — Let n > 3 be an integer. Then there exists a cuspidal automorphic representa-
tion o of GLo(Aq) of weight 5 wuth the following properties:
(1) o s unramified away from 2 and a prime ¢ = 3 mod 4.
(2) o9 is isomorphic to a principal series representation i;LQ X1 @ Xo, where x, s unramified and xo
has conductor 4. —
(3) o, 15 an unramified twist of the Steinberg representation.
(4) For any prime p and any isomorphism v : Qp — G, Sym" ™" 1, is automorphic.

Proof. — Choose a prime p =1 (mod 48n!) and an isomorphism ¢ : (_l;; — C. It
suffices to construct o as in the statement of the corollary such that Sym”"~' 7, , is auto-
morphic for our fixed choice of ¢.

Let F** /Q denote the extension cut out by 7,,, @ €, and choose a prime ¢ sat-
isfying ¢ = 3 mod 4 (so a,(fy) = 0) and ¢ = —1 mod p. This implies that oy satisfies the
level-raising congruence at ¢. By a level-raising result for GLy(Ag) (e.g. [Dia89, Corol-
lary 6.9]), we can find an t-ordinary cuspidal automorphic representation o of GLy(Ag)
satisfying the following conditions:

e o has weight 5, and 7, , =75, ,.

e o is unramified at primes not dividing 2¢; oy is isomorphic to a principal series
representation ng L2 X1 ® X2, where x; 1s unramified and y» has conductor 4; and
0, 1s an unramified twist of the Steinberg representation.

Let w : Gk — Qﬁx be a character crystalline at p and unramified at ¢ and such that
ww’ = €. Then (Yw)(Yw) = e~'. We take X, be a set of prime-to-2p¢ places of K at
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which o is unramified, and with the property that any X-split extension of K is linearly
disjoint from F®*? /K.

Let F/K and 7 be the soluble CM extension and RACSDC automorphic repre-
sentation of GL,(Ay) whose existence is asserted by Theorem 7.1. Thus in particular
1s t-ordinary, is an unramified twist of Steinberg at some place v|q of I, and there are
1somorphisms

= —n—1 T ] —n—1 —1 =
T =06, @ (@Y (¥)7 o) S0 g @ Sym™ 75,6y

We now want to apply [ANT20, Theorem 6.1] (an automorphy lifting theorem) to con-
clude that the representation "' ® Sym"™" 7, |, is automorphic. This will in turn imply,
by soluble descent, that Sym"~' 7, is automorphic. The hypotheses of [ANT20, Theo-
rem 6.1] may be checked using Lemma 7.2. This concludes the proof. U

We first prove Theorem 7.1 in the case where n = 2k 4 1 is an odd integer, using
the results of §§4 — 6.

Proposition 7.4. — Theorem 7.1 holds when n = 2k + 1 s odd.

Proof. — We prove the proposition by induction on odd integers n = 2k + 1. Let p,
7, Xo, @ be as in the statement of Theorem 7.1. Let Z denote the set of rational primes
below which w is ramified, together with 2, p, ¢. Let F*“ /K denote the extension of K
cut out by 7,, , @ €. We fix a finite set X of finite places of K with the following properties:

e X contains Xj.

e Ifv € X then v is prime to Z. In particular, ®|g,, is unramified.

e Yor each subextension M/K of F***“ /K with Gal(M/K) simple and non-trivial,
there exists v € X which does not split in M.

Let ¢y be a prime not in Z and which does not split in K, and let Y denote the set of
rational primes dividing ¢, or an element of X. We make the following observations:

e IfF/K is a finite X-split extension, then F/K is linearly disjoint from F**¢ /K.
e IfFy/Q is a finite Y-split extension, then Fy/Q is linearly disjoint from F*"*/Q
and FyK/K is linearly disjoint from F**“ /K.

Note in particular that Y-split extensions are linearly disjoint from K/Q, We can find
distinct rational primes ¢;, ¢o, g5 satisfying the following conditions:

e loreachi:=1, 2, 3, we have ¢; € YUZ and ¢; splits in K. In particular, ¢, is odd.
e We have ¢; > n and ¢; mod p is a primitive 6 root of unity. The eigenvalues
of Frob,, on Indgg J% have ratio ¢;”' mod p, while the eigenvalues of Frob,, on

Go . o o oo
Inng ¥ have ratio which is a primitive 124™ root of unity in F.
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e We have ¢o = —1 mod p and the eigenvalues of Irob,, on Indgg W% have ratio
—1.
e The number ¢; mod p is a primitive (n — 2)" root of unity and the eigenvalues

of Frob,, on Indgzw have ratio ¢’ mod .

72

To construct ¢, g2, ¢35 we use the Chebotarev density theorem. After conjugation, we can
— - ¢ . . . . « e —

assume that 7, ,|cx, = ¥ @ ¥ is diagonal. Consideration of the restriction of 7,5, ,|g, to

the inertia groups at p shows that (7,,, @ €)(Gg) contains the subgroup

{(diag(a', (c/a)). ") | a,c € F}} C GLy(F,) x F5.

We assume p =1 (mod 48n!), hence in particular p = 1 (mod 96£). Let z € F; be an

element of order 96k, and let x; = z'*®  y, = 71 Then y| is a primitive 6 root of

unity and x!% = /™% If the prime ¢, is chosen so that ¢, > n and (7, , ® €) (Frob,,) =

(diag(xt, (5 /x1)*), 07", then the eigenvalues of Frob,, in Indggw have ratio 2%/)} =

; o . . . . Gq —~2k
PHOM=O = 28 3 primitive 124™ root of unity, while the eigenvalues of Frob,, in IndG§ )

have ratio
6k _ . _—1 _
2=y =€ (Irob,)=¢ (modp).

We can choose the prime ¢, so that (75, ® €)(krob,,) = (diag(xé‘,xf), —1),
where x, € pr satisfies x%()k = —1; and we can choose ¢3 so that (7,,, ® €)(Frob,,) =
(diag(x}, (r3/x3)%), ygl), where x5, 95 € FPX, 3 is a primitive (n — 2)™ root of unity, and x3
is chosen so that x5 = »3. These choices of x;, y; are again possible because of the congru-
ence p = 1 mod 48n!.

We fix real quadratic extensions M;/Q (¢ =1, 2, 3) with the following properties:

o M, is YU {p, ¢, q1, ¢2}-split, and ¢s is ramified in M, .
e M, is YU {p, q, ¢g3}-split, and ¢;, ¢o are ramified in M.
e M;is YU {p, ¢, q1, ¢s3}-split, and ¢ is ramified in M;.

We write w; : Gg — {#£1} for the quadratic character of kernel Gy,.

By a level-raising result for GLy(Ag) (e.g. [D'T94, Theorem A], we can find a
cuspidal, regular algebraic automorphic representation T of GLy(Ag) with the following
properties:

e 7 is unramified outside 2, ¢y, ¢o.

. . o~ Gq -2 G
e There is an isomorphism 7., = Indcglﬁ and detr,, = de‘[InnglﬁzlC =
Gigk(SK/Q’.
e 7, is an unramified twist of the Steinberg representation, and there is an iso-

Wq,

~ 2

= Indyy, . Xg» where x,,
(5

particular, t,, is supercuspidal.

morphism recq, T is a character of order p. In

7 |IQ4
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. . . G
e 7 is t-ordinary and 7, , has the same Hodge—Tate weights as Inde\,” Y2k,

For the ordinary condition in the last point, note that since p > 8k and r;, has Hodge—
Tate weights (0, 8£) and reducible local residual representation 7”|GQp at p, T 1s neces-
sarily t-ordinary [Edi92, Theorem 2.6].

By induction, there exists a soluble CM extension F_, /K with the following prop-
erties:

o I' /K is X-split.
e There exists a RACSDC, t-ordinary automorphic representation m of
GL,_9(Ay_,) with the following properties:

(1) There is an isomorphism

n—3

- = n—3 —
ij = |GF, ® Sym 7(70,L|GF7 .
1 1

(2) For each embedding 7 :F_; — (_lr, we have
HTT (TH,L) = HTr (wniglGE &® Symn% 7JO,L|GE)-

(3) There exists a place v_,|q of F_; such that m, | is an unramified twist of the
Steinberg representation.

We can find a soluble CM extension F;/Q with the following properties:

e I is Y-split.

e The prime ¢, is split in Fj, and each place of F{ above ¢; is inert in Fy. The
primes g9, g3 split in F.

o Fy/F] is everywhere unramified.

e Yor each place v|p of Fy, v is split over Fj and [F,, : Q)] >n(n—1)/2+1.

e Tor each place v|q of Fy, v is split over Fj and ¢, = 1 mod p.

e There exists a crystalline character w : Gy, — 6;, unramified outside p, such
that wyw(, = 638K/Q|GFO- (Use [BLGGT14, Lemma A.2.5].)
e Tor cach place v|pg of ¥y, the representations 7y, |G,  and @olgy, , are trivial.
Define
- —n—3 J— k—1 I dGQ' —Qk—i—l—ﬁ,i—l J— 74_(/{71)
Pr=w; Q| & (@izl (In Gk Y Y ) @ wse |GF()'

Then for each place v|pq of Fy, ﬁ()lGFO , 1s trivial.
We now apply Proposition 5.8 with the following choices:

o I''=F_ -F)-M,-M,-M,.

® P, is the residual representation defined above.

e X is the set of places of Fj lying above ¢; Ty is the set of places of Fy lying
above ¢, or ¢3; and S is the set of places of Fj lying above p, ¢, ¢1, g2, or .
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e Ifv|gy, then R, is the fixed type deformation ring (defined as in [Sho18, Defini-

tion 3.5]) associated to the inertial type EB?iEQw(v) oArty,, |(_le (where as usual,
" Fo v

w(v) denotes the unique quadratic character of £(v)™ provided that £(v) has

odd characteristic). If v|gs, then there is a character ®, : O~ — C* of order

p such that R, is the fixed type deformation ring associated to the inertial type

i—1
@O oArty,, ng (where Fy, ,—9/Fo, 1s an unramified extension
w Fo,v,n—2

of degree n — 2).
e 1 is the twist of the base change of 7 with respect to the soluble CM extension

F,/F_, by the character ng” |GF1 Jw"3

GF1 .
(Note that F, /K 1s X-split, so Lemma 7.2 may be applied to 7, ,.) We conclude the exis-

tence of a RACSDC, t-ordinary automorphic representation 7y of GL,_s(Ay,) satisfying
the following conditions:

e There is an isomorphism 7, , = 0.

e 17 is unramified outside S,.

e or each place v|q of Fy, 7y, 13 an unramified twist of the Steinberg representa-
ton.

e Tor each place v|q, of Iy, there are characters x,.0, Xv.1---» Xv.26—2 : Fév — C
such that o, = xp.0 B xu.1 B - B xp.9r—9, Xv.0 1 unramified,and for each i =
l,...,2k—2, X“viloﬁo,v =w(v).

e Yor each place vlg, of Fo, 7o,v[cL,, (0, ) contains w(v) o det.

e lor each place v|g; of Fy, jTO;U|GLn—2(OF0_U) contains the representation X(v, ®,)
(notation as in Proposition 1.18).

Let T; denote the set of places of F, (J{ lying above ¢;, and let T'="T, U'Ty U T’5. Let 7
denote the base change of T to Fy, andlet my =1, ® | - |(”_2)/2ta)1w$_1. Letm, o =10 ® |-
|73La)§. We see that the hypotheses of Theorem 4.1 are now satisfied, and we conclude the
existence of a T-split quadratic totally real extension Lj /F§ and a RACSDC t-ordinary
automorphic representation I, of GL,(Ay,) satisfying the following conditions:

e The extension L,/Q is soluble and Y-split.

e There is an isomorphism
o~ _ Go—2k _ Go —-2k—i—rci
. 23 ', ® (@ ®Indgt Y & ® @ (Indgy Y1)

—
® wse )‘GLO'

e Tor each place v|g; of Ly, there exists a character ®, : Oy, . — C* of order p

such that Iy |, contains X(v, Oy, )|, (notation asin §1.1 7),;
e lor each place v|¢s of Ly, I ,|4, contains the representation A(v, ®,, n) (where
we define ©, = Oy ).
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In fact, IT, has the following stronger property:

e lor each place v|g, of Lo, ITy,|q, contains X(v, ®,, n).

e . =X .
To sce this, it is enough to check that no two eigenvalues «, 8 € F, of the representation

(Sym”_3 Indgg ) (Frob,,) satisty (a/ B)? = ¢} (recall that if v|g, is a place of Ly, then
Lo,/Q,, is an unramified quadratic extension). Recalling the numbers x;, y; € F), we see
that we must check that ()% /x1°)" # 72 for i = 1, ..., 2k — 2. However, by construction
7 is a primitive 3™ root of unity and »®/x!° is a primitive 64" root of unity, so we cannot
have (¥ /x[9)* = 1if 1 <i < 2k.

Let L) = LK. Then the following conditions are satisfied:

e The extension L, /K is soluble and X-split.

e Let IT; denote the base change of IT, with respect to the quadratic extension
L,/Ly. Then IT, is RACSDC and t-ordinary. (It is cuspidal because L, /Ly is
quadratic and 7 is odd, cf. [AC89, Theorem 4.2].)

e lor each place v of L; of residue characteristic ¢, ¢3, v is split over Ly and over
L. (The prime ¢; splits in K.)

Thus the hypotheses of Theorem 6.1 are satisfied with R, (resp. Ry) the set of places of
L of residue characteristic ¢, (resp. ¢3), and we conclude the existence of a RACSDC (-
ordinary automorphic representation I} of GL,(Ay, ) satistying the following conditions:

e There is an isomorphism 7, =T, |GL1 .
o There exists a place v|g of L; such that IT/  is an unramified twist of the Stein-
berg representation.

Finally, let F = L,M,;MyMj3, and let IT" be the base change of IT| with respect to the
extension F/L;. We see that the conclusion of Theorem 7.1 holds with IT =IT' ®

L(a)l(}}‘/w()lcy)n_l' |:|

Proof of Theorem 7.1. — 1f n 1s odd then the statement reduces to Proposition 7.4.
Let m > 1 be an odd integer. We will prove by induction on » > 0 that the conclusion of
Theorem 7.1 holds for all integers of the form n = 2"m.

The case r = 0 is already known. Supposing the theorem known for a fixed » > 0
(hence n = 2'm), we will now establish it for » 4+ 1 (hence 7' = 2""'m = 2x). Fix data p, ¢,
Xp, w as in the statement of Theorem 7.1. In particular p = 1 (mod 48#x'!). Once again
we enlarge X so that any X-split extension F/K is forced to be linearly disjoint from the
fixed field of ker(7,,, ® €).

By induction, we can find a soluble CM extension F/K and a RACSDC automor-
phic representation 7 of GL,(Ay) such that the following conditions are satisfied:

e 7 is t-ordinary. There is an isomorphism 7, = @" '|g, ® Sym" ' 7. ]Gy
The representations 7,,, and »"~!|g, ® Sym"™'r,, , have the same Hodge-Tate
weights (with respect to any embedding 7: F— Q).
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e There exists a place v|g such that m, is an unramified twist of the Steinberg
representation.

o I'is X, -split.

After possibly enlarging F, we can assume that the following additional conditions are
satisfied:

e ¢, =1 mod p and 7,, ,(Frob,) is trivial.
e Each place of F which is either p-adic or at which 7 is ramified is split over F*.

Let 2, W : K*\Ag — C* be the Hecke characters of type A, with rq , = @ and ry,, = V.
Define 1, =7 ® (| - |"*(QW o Nyk)), mo=mQ (|- |"2(QW° o Ny/k)"). We make the
following observations:

e m; and my are cuspidal, conjugate self-dual automorphic representations of
GL,(Ag).

o Letmy =m Hmy and define 7y, = 17, -2, @ 7y -n2,,. Then 7y is regular alge-
braic and t-ordinary. Moreover, for each finite place v of F there is an isomor-
phism WD (7, , |GFU)F_“‘Y = rech (70.4), and there is an isomorphism

)
- ~ —2n—1 2n—1 —
7770,[ =w |GF ® SYm ro‘o,LlGF'

e There are unramified characters & : I — G* such that 7; = St,(§;) and
L1 /& () = ¢, mod mz,.
® 7. is not isomorphic to a twistof 1 e~ ' @ -+ ® €2,

We justify each of these points in turn. Since 7 is conjugate self-dual, the first point
follows from the fact that (QW)(QW)“ = |- |~! (in turn a consequence of the identity
(@¥)(w¥) =€ "). The second follows from the identity

SYan—l Tao,zlGK o~ 1‘an—l D w?n—?wc DD (w()Qn—l
=W e (W)") Sym" 1y oy

The third point holds by construction (¢, = 1 (mod p) and 7, ,(Frob,) is scalar). The
fourth holds since otherwise 7, [y, would be a twist of the trivial representation, con-
tradicting part 2 of Lemma 7.2.

We see that the hypotheses of [AT21, Theorem 5.1] are satisfied. This theorem
implies that we can find a quadratic CM extension F'/F such that F'/K is soluble X,-
split, as well as a RACSDC automorphic representation 7’ of GL, (Ay) satisfying the
following conditions:

e 1’ is t-ordinary, and there is an isomorphism

= ~ —'—1 W—1=
Tn'y =W |GF/ ® S}’m 700,L|GF/ .
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e The weight of 7’ is the same as that of .
e There exists a place v'|v of I such that 7/, is an unramified twist of the Steinberg
representation.

This existence of I and 7" completes the induction step, and therefore the proof of the
theorem. [

Remark 7.5. — We observe that the results of [AT21] already suffice to prove The-
orem 7.1 (and hence Theorem 7.7) when 7 is a power of two, without using the level
raising results of Sections 4-6.

We can now put everything together to deduce our main results on automorphy of
symmetric powers.

Theorem 7.6. — Let n > 3. Then there exisis a cuspidal, everywhere unramified automor-
phic representation 7w of GLo(Aq) of weight k = 2 such that, for any somorphism ¢ : Q, — G,

Sym" ! 1, , is automorphic.
Y T,

Progf. — By Corollary 7.3, we can find odd primes p # ¢, with ¢ = 3 mod 4, and
a cuspidal automorphic representation o of GLy(Ag) of weight 5 satisfying the following
conditions:

e o is unramified at primes not dividing 2¢; oy is isomorphic to a principal series
representation i](;’QLQ X1 & X2, where x; is unramified and X, has conductor 4; and
0, 1s an unramified twist of the Steinberg representation.

e For any isomorphism ¢, : 610 — C, Sym"™! Tz, 1s automorphic.

Now we choose an isomorphism ¢, : Q — C. By the second part of Lemma 3.5, the
Zariski closure of 75, (Ggq,) contains SL,. Since o, is an unramified twist of Steinberg
it has a unique (g-adic) accessible refinement, which is numerically non-critical and 7-
regular. We can therefore apply Theorem 2.33 to the point of the ¢-adic, tame level 4
eigencurve associated to o with its unique accessible refinement. Using the accumula-
tion property of the eigencurve to find a suitable classical point in the same (geometric)
irreducible component as this point, we deduce the existence of a cuspidal automorphic
representation o’ of GLy(Ag) of weight £ > 2 satisfying the following conditions:

(1) o' is unramified outside 2, and o is isomorphic to a principal series representation
i](;;L2 X1 ® X9, where x; is unramified and x» has conductor 4.

(2) The weight of 0’ satisfies £ = 3 mod 4 (this is possible because ¢ = 3 mod 4, and we
can choose any £ = 5 mod (¢ — 1)¢” for sufficiently large ).

(3) Sym"™! 7o', 1 automorphic.



104 JAMES NEWTON, JACK A. THORNE

Let ¢ : Q, — C be an isomorphism. These conditions imply that the Zariski closure of
75:.(Gq,) must contain SLy. Indeed, we have already observed in §3 that there are no 2-
ordinary cusp forms of tame level 1, so (invoking Lemma 3.5) if this Zariski closure does
not contain Sl then 7, |GQ2 must be irreducible and induced from a quadratic extension
of Q,, implying that both refinements of ¢’ at the prime 2 have slope (k — 1)/2, an odd
integer. However, Theorem 3.2 implies that there are no newforms of level 4 and odd
slope (see [BK05, Corollary of Theorem B]); a contradiction. The same argument shows
that the refinement x; ® xo i1s n-regular, since the two refinements of ¢’ have distinct
slopes.

We see that (o', x; ® x») satisfies the hypotheses of Theorem 2.33. Using the ac-
cumulation property of the (tame level 1, 2-adic) eigencurve, we deduce the existence of
a cuspidal, everywhere unramified automorphic representation 7 of GLy(Ag) such that
Sym" ' r,, is automorphic. This completes the proof. U

Combining Theorem 7.6 with Theorem 3.1, we deduce:

Theorem 7.7. — Let n > 3, and let 7 be a cuspidal, everywhere unramified automorphic rep-
resentation of GLo(Ag) of weght k > 2. Then for any isomorphism  : Q_ﬁ — C, Sym”_1 T 1S

automorphic.

8. Higher levels

In this section we extend our main theorem to higher levels as follows:

Theorem 8.1. — Let 7t be a cuspidal automorphuc representation of GLo(Aq) of weight k > 2
satisfying the following two conditions:
(1) Foreach prime L, 7v; has non-trivial jJacquet module (equivalently, 7t; admats an accessible refinement).
(2) 7 is not a CM form.
Then for any n > 3 and any isomorphism t : (_2)0 — C, Sym"™ ' ., is automorphic.

For example, these conditions are satisfied if 7 is associated to a non-CM cuspidal
eigenform / of level I'; (N) for some squarefree integer N > 1; in particular, if £ = 2 and
7 18 associated to a semistable elliptic curve over Q.

Fix n > 3 for the remainder of this section. We first prove the following special case
of Theorem 8.1:

Proposition 8.2. — Let 7w be a cuspidal automorphic representation of GLy(Ag) of weight
k> 2 satisfying the following conditions:
(1) For each prime | such that 7, is ramified, 7, has an accessible refinement which is n-regular, in the
sense of Definition 2.25.
(2) 7 s not a CM form.
Then_for any isomorphism t : Qp — G, Sym" ™' 1, is automorphic.
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Proof. — We prove the proposition by induction on the number of primes r divid-
ing the conductor N of 7. The case r = 0 (equivalently, N = 1) is Theorem 7.7.

Suppose therefore that » > 0 and that the theorem is known for automorphic rep-
resentations of conductor divisible by strictly fewer than r primes. Let w be a cuspidal
automorphic representation as in the statement of the proposition. Fix a prime p at which
7 1s ramified, and an isomorphism ¢ : @ — C. Factor N = Mp’, where (M, p) = 1.

Suppose first that 7r,|Gg, 1s reducible. Then 7 is i-ordinary and 7 admits an
ordinary refinement x. After twisting by a finite order character, we can assume that
(7, x) € RA, (here we use the notation established for the Coleman—Mazur eigencurve
in §2.31). Let C be an irreducible component of the (tame level M, p-adic) eigencurve
&o,¢, containing the point x corresponding to (7, x), and let Z C & denote the Zariski
closed set defined in Lemma 2.35. Our hypotheses imply that x & Z,.

We can therefore find a point x” € C — Z¢, such that the image of x” in Wy ¢, is a
character of the form y — y*' =2 for some integer £ > 2. Indeed, since the image of C in
Wi.g, is Zariski open, we can find such a point in C. There is an affinoid neighbourhood
U” of this point which maps in a finite and surjective fashion onto an affinoid open in
Wo,c,,. The image of Zcﬁ N U” in this affinoid open is Zariski closed, and we can therefore
find another such point x” € C — Zg, . (In fact, the ordinary component C surjects onto a
connected component of W ¢,, but we will apply the same argument for a non-ordinary
component.)

Choosing another point in a sufficiently small affinoid neighbourhood of x” in C —
Z¢, and applying the classicality criterion, we can find a point ¥’ € C — Z¢, corresponding
to an t-ordinary cuspidal automorphic representation 7" of GLy(Ag) of weight £ > 2
with the following properties:

(1) Let x' denote the ordinary refinement of ’. Then (7', x’) determines a point on the
same irreducible component of the (tame level M, p-adic) eigencurve & ¢, as (7, x).

(2) The level of ' is prime to p.

(3) Yor each prime /|M, each accessible refinement of 7/ is n-regular.

(4) The Zariski closure of 77, (Gg) (in GLy/Q,) contains SL.

(The latter two properties follow from the definition of the set Z in Lemma 2.35. In fact
we can take ¥ = x”, since ordinary points of classical weights are classical; however, we
will repeat the same argument in the next paragraph also for a non-ordinary component
of the eigenvariety, in which case two steps are required.) By induction, Sym" ™' 7/, is
automorphic. We may then apply the ordinary case of Theorem 2.33 to conclude that
Sym"~! 7, , is automorphic.

Suppose instead that rml(;Qp is irreducible, and let x be an accessible, n-regular
refinement. The existence of x implies that the Zariski closure of 7;,(Ggq,) in GLy /Qﬂ
contains SLy, by Lemma 3.5. Again, after twisting by a finite order character, we can
assume that (7, x) € RAj. Repeating the same argument as in the ordinary case, we
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can find a cuspidal automorphic representation 7’ of GLy(Ag) of weight £ > 2 with the
following properties:

(1) 7" admits a non-ordinary refinement x’ which is numerically non-critical and 7-
regular. (This again implies that the Zariski closure of 7,7 ,(Ggq,) contains SLy.)

(2) The pair (7', x') determines a point on the same irreducible component of the (tame
level M, p-adic) eigencurve & ¢, as (7, ).

(3) Yor each prime /|M, each accessible refinement of 7] is n-regular.

(4) The level of 7’ is prime to p.

By induction, Sym"~' 7/, is automorphic. We can then appeal to Theorem 2.33 to con-
clude that Sym"~' 7, , is automorphic.
In either case we are done, by induction. 0J

To reduce the general case of Theorem 8.1 to Proposition 8.2, we establish the
following intermediate result.

Proposition 8.3. — Let 7w be a cuspidal automorphic representation of GLy(Ag) of weight
k> 2, without CM. Suppose that for each prime [, 7w, has non-trivial Jacquet module. Then we can
find a prime p, an isomorphism t : Qp — G, and another cuspidal automorphic representation 7' of
GLy(Ag) of weight k with the following properties:

(1) p> max(2(n+ 1), (n— 1)k).

(2) The image of 7+, contains a conjugate of SLo(F).

(3) Both 1, and 7t are unramified.

(4) There is an isomorphism 7 | = Tppr .

(5) For each prime [, 7] has non-trivial Jacquet module. If 7v] is ramified, then each accessible refinement
of 7] is n-regular.

Progf. — We use Taylor—Wiles—Kisin patching. The idea is that if all the automor-
phic representations congruent to 7 mod p fail to have n-regular refinements at / then
the patched module will be supported on a codimension one quotient of the local defor-
mation ring at /, which contradicts the numerology of the Taylor-Wiles—Kisin method.

Let M denote the conductor of w. We can choose a prime p satisfying (1) and (2),
p > M, such that 7, is unramified, and satisfying the following additional condition:

e Tor each prime / # p such that 7, is ramified, the universal lifting ring classifying
lifts of 7, |GQ, of determinant equal to detr,, is formally smooth.

Indeed, it is sufficient that for each such prime /, the group H’(Q,, ad"7,,(1)) vanishes.
Such a prime exists thanks to [Wes04, Proposition 3.2, Proposition 5.3].

Fix an additional prime ¢, > p such that m,, is unramified and such that the uni-
versal lifting ring classifying lifts of 7;,|gq, —of determinant equal to detry, is formally
smooth. This is possible by e.g. [DT94, Lemma 11].
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Fix a coefficient field E/Q,, large enough that there is a conjugate p : Gg —
GLy(k) of 77, and such that x = detr,, takes values in O. We assume moreover that
for each o € Gq, the roots of the characteristic polynomial of p(0) lie in £. Let S denote
the set of primes at which 7, , is ramified (equivalently, at which p is ramified), together
with ¢,. We consider the global deformation problem (in the sense of [Thol6, Definition
5.6])

8 = (ﬁ’ X Sv {O}UES’ {DU}UGS)’

where D, is the functor of lifts of 5|GQ,, of determinant x which are Fontaine—Laffaille
with the same Hodge—Tate weights as 7,,, and if [ € S — {p} then D, is the functor of
all Iifts of p|gq, of determinant x. Since p is absolutely irreducible, the functor of de-
formations of type S is represented by an object Rg € Co (cf. [Thol6, Theorem 5.9]).
We may choose a representative ps : Gg — GLy(Rs) of the universal deformation.
We set H = HI(YUI(M%), Syrnk_2 0?%), where U;(Mg,) is the open compact sg‘pgroup
of GLy (Aa") defined in §2.31 and Yy is the modular curve of level U (denoted Y (U) in
[Eme06b, §4.1]). We write T® C Endp (H) for the commutative O-subalgebra generated
by the unramified Hecke operators T, S, for [ ¢ S. Then there is a unique maximal ideal
m C T with residue field £ such that for each prime / ¢ S, the characteristic polynomial
of p(Frob)) equals X* — T,X + /*~'S; mod m. The localization Hy, is a finite free O-
module, and there is a unique strict equivalence class of liftings pn : Gg — GLy (Tfn) of
type S such that for each prime / ¢ S, the characteristic polynomial of p,, (Frob,) equals
the image of X? — T,X + //7!'S, in T [X]. (See [Tho16, Proposition 6.5] for justification
of a very similar statement in the context of Shimura curves.) In particular, there is an
O-algebra morphism Rgs — T3, classifying pm, which is surjective.
Suppose given a finite set () of primes satisfying the following conditions:

(A QNS=4¢.
(b) For each ¢ € Q, ¢= 1 mod p and p(Frob,) has distinct eigenvalues «,, B, € £.

In this case we can define the following additional data:

e The group Ag = quQ(Z/ qZ?X(p) (i.e. the maximal p-power quotient of the
product of the units in each residue field).
e The augmented global deformation problem

Sq =, x, SUQ, {Ohiecsuq, {Duliesuq),

where for each ¢ € Q, D, is the functor all lifts of Pleg, of determinant x.
The labelling of a,, B, for each ¢ € Q determines an algebra homomorphism
Ol[Ag] — Rs, 1n the following way: if ps, is a representative of the universal
deformation, then /OSQ|GQ,, is conjugate to a representation of the form A, & B,
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where A, : GQ4 — R;Q is a character such that A, mod MR, 1s unramified
and A, mod mqu(Frobq) = @, (and similarly for B,). Then A, o Artg, |z fac-
tors through a homomorphism (Z/¢Z)* (p) — REQ. These homomorphisms for
g € Q collectively determine the algebra homomorphism O[Aq] — R, .

e The cohomology module Hg = H'(Yu, avig)nus(qy» Sym*™> O%), where we de-
fine

Uy (Q) = (Z 2) € GLQ(Z) :¢c=0mod (nq), wd ' 1€ Ag ¢,
7€Q

and commutative O-subalgebras T5V2 C T(S;Q C Endo(Hg). By definition,
T2 is generated by the unramified Hecke operators T, S; for / ¢ S U Q and
T;UQ is generated by T;UQ and the operators U, for ¢ € Q, There are maximal

ideals mg C TSVYQ and mg,; C TSQUQ with residue field £ defined as follows: mq 1s
the unique maximal ideal such that for each prime / ¢ SU Q), the characteristic
polynomial of p(Frob,) equals X? — T, X + *'S, mod mq. The ideal mq; is
generated by mq and the elements U, — «, for ¢ € Q. There is a unique strict
equivalence class of liftings pm, : Gg = GLQ(TiU(S) of type Sq such that for
each [ & SU Q), the characteristic polynomial of pm, (Frob;) equals the image of
X? — T, X + 7'S; in T {X]. There is an O-algebra morphism R, — Tong>
classifying pum,, which is surjective. Moreover, if we view Hg m,,, as an Rg,-
module via this map, then the two O[Ag]-module structures on HQmQ ., one
arising from Rg,, the other arising from the action of Ay via Hecke oper-
ators, coincide. (These statements in turn may be justified as in the proof of
[Thol6, Lemma 6.8].) Finally, Hg,m,,, 1s a free O[Ag]-module and there is an
isomorphism Hg g, ®0jaq) O = Hnm of Rs, ®01ag) O = Rs-modules. (This
1s again proved in a similar way to [Thol6, Lemma 6.8], using the fact that
H (Yu, atgnnto@s Sym*2(O/ar)?) is Eisenstein for i # 1, together with [KT17,
Corollary 2.7], to justify the freeness.)

If €S, let R, € Cp denote the universal lifting ring representing the local deformation
problem D,. By construction (if / # p) or arguing as in [CHTO08, §2.4.1] (if [ =p) R, 1s
a formally smooth O-algebra; if [ # p, then R, is formally smooth over O of relative
dimension 3, while R, has relative dimension 4. We set T =S — {p, ¢,} and AL = ®,1R,
(the completed tensor product being over O). The T-framed deformation rings R§ and
RgQ are defined (see [Thol6, §5.2]) and there are canonical homomorphisms A§ — R§
and Ag — Rg, .

By the argument of [Kis09, Proposition 3.2.5] and [Thol6, Proposition 5.10], we
can find an integer ¢y > 0 with the following property: for each N > 1, there exists a set
Q = Qx of primes satistying conditions (a), (b) above and also:
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(c) 1QxI = q0. )
(d) For each ¢ € Qy, ¢= 1 mod p~.
(e) The algebra map Ag — R;g% extends to a surjective algebra homomorphism

AS[Xi, . X ] —>R5;5N,whereg:q+ |'T| — 1.

We choose for each N > 1 a representative PSoy of the universal deformation over RSQN
which lifts ps. This choice determines an isomorphism RgQN = Ry, ®o0 T, where T isa
power series ring over O in 4|T| — 1 variables. W? §et HEN = Hox,moy. Q0T . Itis a free
TT1Aqgy]-module, and there is an isomorphism Hé\l Q710 O =H, of R‘SEN ®Tlagy !
O = Rs-modules.

We now come to the essential point of the proof. Let / € S — {p}, and fix a Frobenius
lift ¢[ € GQ/

Lemma 8.4. — With our current assumptions, there is a principal ideal 1, C R, with the
Jollowing property: for any homomorphism [ : R, — Q}, the resulting homomorphism ps : Gg, —
GL, (Qp) has the property that the eigenvalues o, B; of ps(¢;) satisfy (a;/ B! =1 for some i =
l,....n—1¢fand only if f (I;) = 0. Moreoves, the quotient R, /1, has dimension strictly smaller than
the dimension of R;.

Progof — Let (r,N) = reca (t7'7r;), a Weil-Deligne representation that we may as-
sume 13 defined over E. The proof will use the fact that the Jacquet module of 7; is
non-trivial (equivalently, that the Weil-Deligne representation (r, N) is reducible).

We recall that the ring R, is a formally smooth O-algebra of relative dimension 3.
Let 7"V : Gg, = GLy(R)) be the universal lifting. We can take I, to be the ideal generated
by the discriminant of the characteristic polynomial of Sym"~' 7"(¢,). To complete the
proof of the lemma, we need to show that dimR,/I;, < dimR,. Since R, is an integral
domain, it is equivalent to show that I, is not the zero ideal.

To show this, we split into cases. If ; is a twist of the Steinberg representation
then the discriminant of the characteristic polynomial of Sym"™' 7(¢,) is non-zero (as the
eigenvalues of 7(¢;) have eigenvalues whose ratio is a non-zero power of /), so we see that
I, is not the zero ideal in this case. Otherwise, N = 0 and r = x; @ x» is a direct sum of
two characters of Wg,. Let ¥ : Wo, — E[T] be the unramified character which sends ¥
to 1 + T; then ¥ = ;¥ @ xo ' is a deformation of 7 to E[T] of determinant x with
the property that the discriminant of the characteristic polynomial of Sym"™' 7 (¢,) is
non-zero in E[T]. The existence of this deformation, together with [Geel I, Proposition
2.1.5], implies that I; cannot be the zero ideal in this case either. UJ

T T AT AT
We set I =[],c5_( IiAs C Ag. Then dimAg/I=dimAg — 1.
Suppose for contradiction that for each automorphic representation 7’ contribut-
ing to Hg, for some N > 1, there is a prime / € S such that 7] is ramified and there is an
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accessible refinement of 7r; which is not n-regular. Then IHgN = 0. On the other hand,
a standard patching argument (cf. [Thol2, Lemma 6.10]) implies the existence of the
following objects:

e A ring S = T[Si,...,S,] and an algebra homomorphism So, — Ry =
(AE/I)[[Xl, o X
e A finite Ry.-module Hy,, which is finite free as S,,-module.

This is a contradiction. Indeed, [KT17, Lemma 2.8] shows that the dimension of Hy
is the same, whether considered as R- or So-module. By freeness, its dimension as
Seo-module 18 dim S, = 4|T| 4 ¢y. On the other hand, its dimension as R,,-module is
bounded above by dimR = dimA§ — 1 +g=4|T|+ ¢ — 1.

We conclude that there exists an automorphic representation 7’ contributing to
Hg, for some N > 1 such that for each prime / € S such that 7} is ramified, each acces-
sible refinement of 7/ is n-regular. To complete the proof, we just need to explain why 7,
is n-regular for each prime ¢ € Qy such that 7, is ramified. However, our construction

shows that rﬂr,[h% has the form C, ® Cq_l, where C, : IQq — 6; has order a power of p.
Since p > 2n, by hypothesis, this is a fortiori n-regular. This completes the proof. 0J

We can now finish the proof of Theorem 8.1.

Proof of Theorem 8.1. — Let m be a cuspidal automorphic representation of
GLy(Ag) of weight £ > 2, without CM, and such that each local component 7; admits
an accessible refinement. Let p, ¢, and 7" be as in the statement of Proposition 8.3. Then
Sym"~! 7.+, is automorphic, by Proposition 8.2.

On the other hand, our assumptions imply that the residual representation
Sym"™' 7., = Sym""' 7./, is irreducible. We can therefore apply [BLGGT14, Theorem
4.2.1] to conclude that Sym"~' r,, is automorphic. This completes the proof. O
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