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ABSTRACT

Let f be a cuspidal Hecke eigenform of level 1. We prove the automorphy of the symmetric power lifting Symn f
for every n ≥ 1.

We establish the same result for a more general class of cuspidal Hecke eigenforms, including all those associated
to semistable elliptic curves over Q.
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Introduction

Context. — Let F be a number field, and let π be a cuspidal automorphic repre-
sentation of GLn(AF). Langlands’s functoriality principle [Lan70, Question 5] predicts
the existence, for any algebraic representation R : GLn → GLN, of a functorial lift of π
along R; more precisely, an automorphic representation R(π) of GLN(AF) which may
be characterized by the following property: for any place v of F, the Langlands param-
eter of R(π)v is the image, under R, of the Langlands parameter of πv . The Langlands
parameter is defined for each place v of F using the local Langlands correspondence for
GLn(Fv) (see [Lan89, HT01, Hen00]).

The simplest interesting case is when n = 2 and R = Symm is the mth symmetric
power of the standard representation of GL2. In this case the automorphy of Symm π was
proved for m = 2 by Gelbart and Jacquet [GJ78] and for m = 3,4 by Kim and Shahidi
[KS02, Kim03].

More recently, Clozel and the second author have proved the automorphy of
Symm π for m ≤ 8 under the assumption that π can be realised in a space of Hilbert
modular forms of regular weight [CT14, CT15, CT17]; equivalently, that the number
field F is totally real and the automorphic representation π is regular algebraic, in the
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sense of [Clo90b]. This includes the most classical case of automorphic representations
arising from holomorphic modular forms of weight k ≥ 2. We also mention the work of
Dieulefait [Die15], which shows automorphy of the 5th symmetric power for cuspidal
Hecke eigenforms of level 1 and weight k ≥ 2.

On the other hand, the potential automorphy (i.e. the existence of the symmetric
power lifting after making some unspecified Galois base change) of all symmetric powers
for automorphic representations π associated to Hilbert modular forms was obtained by
Barnet-Lamb, Gee and Geraghty [BLGG11] (the case of elliptic modular forms is due to
Barnet-Lamb, Geraghty, Harris and Taylor [BLGHT11]).

Results of this paper. — In this paper, we prove the automorphy of all symmetric
powers for cuspidal Hecke eigenforms of level 1 and weight k ≥ 2. More precisely:

Theorem A. — Let π be a regular algebraic cuspidal automorphic representation of GL2(AQ)

of level 1 (i.e. which is everywhere unramified). Then for each integer n ≥ 2, the symmetric power lifting

Symn−1 π exists, as a regular algebraic cuspidal automorphic representation of GLn(AQ).

In fact, we establish a more general result in which ramification is allowed:

Theorem B. — Let π be a regular algebraic cuspidal automorphic representation of GL2(AQ)

of conductor N ≥ 1, which does not have CM.1 Suppose that for each prime l|N, the Jacquet module of

πl is non-trivial; equivalently, that πl is not supercuspidal. Then for each integer n ≥ 2, the symmetric

power lifting Symn−1 π exists, as a regular algebraic cuspidal automorphic representation of GLn(AQ).

The class of automorphic representations described by Theorem B includes all
those associated to holomorphic newforms of level �0(N), for some squarefree integer
N ≥ 1; in particular those associated to semistable elliptic curves over Q. We can therefore
offer the following corollary in more classical language:

Corollary C. — Let E be a semistable elliptic curve over Q. Then, for each integer n ≥ 2, the

completed symmetric power L-function �(Symn E, s) as defined in e.g. [DMW09], admits an analytic

continuation to the entire complex plane.

We remark that the meromorphic, as opposed to analytic, continuation of the com-
pleted L-function �(Symn E, s) was already known, as a consequence of the potential au-
tomorphy results mentioned above. Potential automorphy results were sufficient to prove
the Sato–Tate conjecture, but our automorphy results make it possible to establish effective

versions of Sato–Tate (we thank Ana Caraiani and Peter Sarnak for pointing this out to
us). See, for example, [Tho14b] for an unconditional result and [Mur85, BK16, RT17]
for results conditional on the Riemann Hypothesis for the symmetric power L-functions.

1 In other words, there is no quadratic Hecke character χ such that π ∼= π ⊗ χ .
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Strategy. — Algebraic automorphic representations of GLn(AF) are conjectured to
admit associated Galois representations [Clo90b]. When F is totally real and π is a
self-dual regular algebraic automorphic representation, these Galois representations are
known to exist; their Galois deformation theory is particularly well-developed; and they
admit p-adic avatars, which fit into p-adic families of overconvergent automorphic forms.
We make use of all of these tools. We begin by proving the following theorem:

Theorem D. — Let n ≥ 2 be an integer and suppose that the nth symmetric power lifting exists for

one regular algebraic cuspidal automorphic representation of GL2(AQ) of level 1. Then the nth symmetric

power lifting exists for every regular algebraic cuspidal automorphic representation of GL2(AQ) of level 1.

We sketch the proof of Theorem D, which is based on the properties of the
Coleman–Mazur eigencurve Ep. We recall that if p is a prime, the eigencurve Ep is a
p-adic rigid analytic space that admits a Zariski dense set of classical points correspond-
ing to pairs (f , α) where f is a cuspidal eigenform of level 1 and some weight k ≥ 2 and
α is a root of the Hecke polynomial X2 − ap(f )X + pk−1. The eigencurve admits a map
κ : Ep → Wp = Hom(Z×

p ,Gm) to weight space with discrete fibres; the image of (f , α) is
the character x �→ xk−2.

We first show that for a fixed n ≥ 1, the automorphy of Symn f is a property which
is “constant on irreducible components of Ep”. (Here we confuse f and the automor-
phic representation π that it generates in order to simplify notation.) More precisely, if
(f , α) and (f ′, α′) determine points on the same irreducible component of Ep, then the
automorphy of Symn f is equivalent to that of Symn f ′. This part of the argument, which
occupies §2 of this paper, does not require a restriction to cusp forms of level 1 – see Theo-
rem 2.33. It is based on an infinitesimal R = T theorem on the eigenvariety associated to
a definite unitary group in n variables. Kisin (for GL2) [Kis03] and Bellaïche–Chenevier
(for higher rank) [BC09] have observed that such theorems are often implied by the van-
ishing of adjoint Bloch–Kato Selmer groups. We are able to argue in this fashion here
because we have proved the necessary vanishing results in [NT20].

To exploit this geometric property, we need to understand the irreducible com-
ponents of Ep. This is a notorious problem. However, conjectures predict that Ep has a
simple structure over a suitably thin boundary annulus of a connected component of
weight space Wp (see e.g. [LWX17, Conjecture 1.2]). We specialise to the case p = 2,
in which case Buzzard–Kilford give a beautifully simple and explicit description of the
geometry of Ep “close to the boundary of weight space” [BK05].

More precisely, E2 is supported above a single connected component W+
2 ⊂ W2,

which we may identify with the rigid unit disc {|w| < 1}. The main theorem of [BK05]
is that the pre-image κ−1({|8| < |w| < 1}) decomposes as a disjoint union 
∞

i=1Xi of
rigid annuli, each of which maps isomorphically onto {|8| < |w| < 1}. Moreover, Xi has
the following remarkable property: if (f , α) ∈ Xi is a point corresponding to a classical
modular form, then the p-adic valuation vp(α) (otherwise known as the slope of the pair
(f , α)) equals ivp(w(κ(f , α))).
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We can now explain the second part of the proof of Theorem D, which occupies
§3 of the paper. Since each irreducible component of E2 meets κ−1({|8| < |w| < 1}), it
is enough to show that each Xi contains a point (f , α) such that Symn f is automorphic.
This property only depends on f and not on the pair (f , α)! Moreover, the level 1 form f

determines two points (f , α), (f , β) of κ−1({|8| < |w| < 1}), which lie on components Xi

and Xi′ satisfying i + i′ = (k −1)/vp(w(κ(f , α))). Starting with a well-chosen initial point
on a given annulus Xi , we can jump to any other Xi′ in a finite series of swaps between
pairs (f ′, α′), (f ′, β ′) and moves within an annulus. We call this procedure playing ping
pong, and it leads to a complete proof of Theorem D.

We remark that for this second step of the proof it is essential that we work with
level 1 forms, since it is only in the level 1, p = 2 case that the eigencurve Ep admits such a
simple structure (in particular, the eigencurve is supported above a single connected com-
ponent of weight space and every Galois representation appearing in E2 admits the same
residual representation, namely the trivial 2-dimensional representation of Gal(Q/Q)

over F2). We note as well that it is necessary to work with classical forms which may be
ramified at the prime 2 in order for their weight characters to lie in the boundary annulus
of W+

2 . We have suppressed this minor detail here.
Theorem D implies that to prove Theorem A, it is enough to prove the following

result:

Theorem E. — For each integer n ≥ 2, there is a regular algebraic cuspidal automorphic repre-

sentation π of GL2(AQ) of level 1 such that Symn−1 π exists.

As in the previous works of Clozel and the second author [CT14, CT15, CT17],
we achieve this by combining an automorphy lifting theorem with the construction of
level-raising congruences. We aim to find f and an isomorphism ι : Qp → C such that
(writing rf ,ι : GQ → GL2(Qp) for the p-adic Galois representation associated to f ) the
residual representation

Symn−1 rf ,ι : GQ → GLn(Fp)

is automorphic; then we hope to use an automorphy lifting theorem to verify that
Symn−1 rf ,ι is automorphic, and hence that Symn−1 f is automorphic. In contrast to the
papers just cited, where we chose rf ,ι to have large image but p to be small, in order to
exploit the reducibility of the symmetric power representations of GL2 in small charac-
teristic, here we choose rf ,ι to have small image, and p to be large.

More precisely, we choose f to be congruent modulo p to a theta series, so that
rf ,ι

∼= Ind
GQ

GK
ψ is induced. In this case Symn−1 rf ,ι|GK is a sum of characters, so its residual

automorphy can be verified using the endoscopic classification for unitary groups in n

variables. The wrinkle is that the automorphy lifting theorems proved in [ANT20] (gen-
eralizing those of [Tho15]) require the automorphic representation π of GLn(AK) (say)
verifying residual automorphy to have a local component which is a twist of the Steinberg
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representation. To find such a π we need to combine the endoscopic classification with
the existence of level-raising congruences.

In fact, we combine two different level-raising results in order to construct the
desired congruences. The first of these, original to this paper, suffices to prove Theorem E
in the case that n is odd. The argument is based on a generalization of the following simple
observation, which suffices to prove Theorem E in the case n = 3: let q be an odd prime
power, and let U3(q) denote the finite group of Lie type associated to the outer form of
GL3 over Fq. Let p be a prime such that q (mod p) is a primitive 6th root of unity. Then
the unique cuspidal unipotent representation of U3(q) remains irreducible on reduction
modulo p, and this reduction occurs as a constituent of the reduction modulo p of a
generic cuspidal representation of U3(q) (see Proposition 1.15). Using the theory of depth
zero types, this observation has direct consequences for the existence of congruences
between automorphic representations of U3. Similar arguments work for general odd n,
for carefully chosen global data. We leave a discussion of the (quite intricate) details to §4.

The second level-raising result, proved by Anastassiades in his thesis, allows us to
pass from the existence of Symn−1 f to the existence of Sym2n−1 f . We refer to the paper
[AT21] for a more detailed discussion.

It remains to extend Theorem A to the ramified case, and prove Theorem B. For
this we induct on the number of primes dividing the conductor, and use an argument
of ‘killing ramification’ as in the proof of Serre’s conjecture [KW09]. Thus to remove a
prime l from the level we need to be able to move within a family of l-adic overconvergent
modular forms to a classical form of the same tame level, but now unramified at l. This
explains our assumption in Theorem B that the Jacquet module of πl is non-trivial for
every prime l: it implies the existence of a point associated to (a twist of) π on an l-adic
eigencurve for every prime l.

In a sequel to this paper [NT], we prove a new kind of automorphy lifting theorem
for symmetric power Galois representations. This allows us to finally prove a version of
Theorem B where the hypothesis that no local component πl is supercuspidal is removed.
The arguments of [NT] use only fixed weight classical automorphic forms (as opposed to
overconvergent automorphic forms) but do require the results of this paper (in particular,
Theorem B) as a starting point.

Organization of this paper. — We begin in §1 by recalling known results on the clas-
sification of automorphic representations of definite unitary groups. We make particular
use of the construction of L-packets of discrete series representations of p-adic unitary
groups given by Mœglin [Mœg07, Mœg14], the application of Arthur’s simple trace for-
mula for definite unitary groups as explicated in [Lab11], and Kaletha’s results on the
normalisation of transfer factors (in the simplest case of pure inner forms) [Kal16].

In §2 we study the interaction between the existence of symmetric power liftings of
degree n with the geometry of the eigenvariety associated to a definite unitary group in n

variables. The basic geometric idea is described in §2.1. In §3 we combine these results
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with the explicit description of the tame level 1, p = 2 Coleman–Mazur eigencurve to
complete the proof of Theorem D.

We then turn to the proof of Theorem E, which rests upon two level-raising results,
only the first of which is proved here. The proof of this result is in turn split into two
halves; first we give in §4 an automorphic construction of level-raising congruences using
types, in the manner sketched above. Then in §6 we establish level-raising congruences
of a different kind using deformation theory for residually reducible representations, as
developed in [Tho15, ANT20]. These two results are applied in turn to construct our
desired level-raising congruences for odd n (Proposition 7.4). A key intermediate result is
a finiteness result for certain Galois deformation rings, established in §5, and which may
be of independent interest. We use this to control the dimension of the locus of reducible
deformations.

Finally, we are in a position to prove our main theorems. In §7 we combine the
preceding constructions with the main theorem of [AT21] in order to prove Theorem E
and therefore Theorem A. In §8, we carry out the argument of ‘killing ramification’ in
order to obtain Theorem B. The main technical challenge is to manage the hypothesis of
‘n-regularity’ which appears in our analytic continuation results (see especially Theorem
2.33). To do this we prove a result (Proposition 8.3) which takes a given automorphic
representation π and constructs a congruence to an n-regular one π ′. This may also be
of independent interest.

Notation. — If F is a perfect field, we generally fix an algebraic closure F/F and
write GF for the absolute Galois group of F with respect to this choice. We make the
convention that a soluble extension F′/F is a (finite) Galois extension with soluble Galois
group Gal(F′/F).

When the characteristic of F is not equal to p, we write ε : GF → Z×
p for the p-adic

cyclotomic character. We write ζn ∈ F for a fixed choice of primitive nth root of unity (when
this exists). If F is a number field, then we will also fix embeddings F → Fv extending the
map F → Fv for each place v of F; this choice determines a homomorphism GFv

→ GF.
When v is a finite place, we will write OFv

⊂ Fv for the valuation ring, 
v ∈ OFv
for a

fixed choice of uniformizer, Frobv ∈ GFv
for a fixed choice of (geometric) Frobenius lift,

k(v) = OFv
/(
v) for the residue field, and qv = #k(v) for the cardinality of the residue

field. When v is a real place, we write cv ∈ GFv
for complex conjugation. If S is a finite

set of finite places of F then we write FS/F for the maximal subextension of F unramified
outside S and GF,S = Gal(FS/F).

If p is a prime, then we call a coefficient field a finite extension E/Qp contained
inside our fixed algebraic closure Qp, and write O for the valuation ring of E, 
 ∈O for
a fixed choice of uniformizer, and k = O/(
) for the residue field. If A is a local ring,
we write CA for the category of complete Noetherian local A-algebras with residue field
A/mA. We will use this category mostly with A = E or A = O. If G is a profinite group
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and ρ : G → GLn(Qp) is a continuous representation, then we write ρ : G → GLn(Fp) for
the associated semisimple residual representation (which is well-defined up to conjugacy).

If F is a CM number field (i.e. a totally imaginary quadratic extension of a totally
real number field), then we write F+ for its maximal totally real subfield, c ∈ Gal(F/F+)
for the unique non-trivial element, and δF/F+ : Gal(F/F+) → {±1} for the unique non-
trivial character. If S is a finite set of finite places of F+, containing the places at which
F/F+ is ramified, we set FS = F+

S and GF,S = Gal(FS/F).
We write Tn ⊂ Bn ⊂ GLn for the standard diagonal maximal torus and upper-

triangular Borel subgroup. Let K be a non-archimedean characteristic 0 local field, and
let � be an algebraically closed field of characteristic 0. If ρ : GK → GLn(Qp) is a con-
tinuous representation (which is de Rham if p equals the residue characteristic of K),
then we write WD(ρ) = (r,N) for the associated Weil–Deligne representation of ρ, and
WD(ρ)F−ss for its Frobenius semisimplification. We use the cohomological normalisation
of class field theory: it is the isomorphism ArtK : K× → Wab

K which sends uniformizers
to geometric Frobenius elements. When � = C, we have the local Langlands correspon-
dence recK for GLn(K): a bijection between the sets of isomorphism classes of irreducible,
admissible C[GLn(K)]-modules and Frobenius-semisimple Weil–Deligne representations
over C of rank n. In general, we have the Tate normalisation recT

K of the local Lang-
lands correspondence for GLn as described in [CT14, §2.1]. When � = C, we have
recT

K(π) = recK(π ⊗ | · |(1−n)/2).
If G is a reductive group over K and P ⊂ G is a parabolic subgroup and π is an

admissible �[P(K)]-module, then we write IndG(K)

P(K) π for the usual smooth induction. If
� = C then we write iG

P π for the normalised induction, defined as iG
P π = IndG(K)

P(K) π ⊗
δ

1/2
P , where δP : P(K) → R>0 is the character δP(x) = |det(Ad(x)|Lie NP)|K (and NP is the

unipotent radical of P).
If ψ : K× → C× is a smooth character, then we write Spn(ψ) = (r,N) for the

Weil–Deligne representation on Cn = ⊕n
i=1C · ei given by r = (ψ ◦ Art−1

K ) ⊕ (ψ | · |−1 ◦
Art−1

K )⊕ · · ·⊕ (ψ | · |1−n ◦ Art−1
K ) and Ne1 = 0, Nei+1 = ei (1 ≤ i ≤ n − 1). We write Stn(ψ)

for the unique irreducible quotient of i
GLn

Bn
(ψ ◦ det)δ−1/2

Bn
= IndGLn(K)

Bn(K) ψ ◦ det. We have
recT

K(Stn(ψ)) = Spn(ψ).
If F is a number field and χ : F×\A×

F → C× is a Hecke character of type A0 (equiv-
alently: algebraic), then for any isomorphism ι : Qp → C there is a continuous character

rχ,ι : GF → Q
×
p which is de Rham at the places v|p of F and such that for each finite

place v of F, WD(rχ,ι) ◦ ArtFv
= ι−1χ |F×

v
. Conversely, if χ ′ : GF → Q

×
p is a continuous

character which is de Rham and unramified at all but finitely many places, then there
exists a Hecke character χ : F×\A×

F → C× of type A0 such that rχ,ι = χ ′. In this situation
we abuse notation slightly by writing χ = ιχ ′.

If F is a CM or totally real number field and π is an automorphic representation of
GLn(AF), we say that π is regular algebraic if π∞ has the same infinitesimal character as
an irreducible algebraic representation W of (ResF/Q GLn)C. We identify X∗(Tn) with Zn
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in the usual way, and write Zn
+ ⊂ Zn for the subset of weights which are Bn-dominant. If

W∨ has highest weight λ = (λτ )τ∈Hom(F,C) ∈ (Zn
+)

Hom(F,C), then we say that π has weight λ.
When F is CM, the automorphic representation π is said to be conjugate self-dual

if π c ∼= π∨. We refer to [BLGGT14, §2.1] for the more general notion of a polarizable
automorphic representation. Note that if π is conjugate self-dual, then (π, δn

F/F+) is po-
larized and therefore π is polarizable.

If π is cuspidal, regular algebraic, and polarizable, then for any isomorphism ι :
Qp → C there exists a continuous, semisimple representation rπ,ι : GF → GLn(Qp) such
that for each finite place v of F, WD(rπ,ι|GFv

)F−ss ∼= recT
Fv
(ι−1πv) (see e.g. [Car14]). (When

n = 1, this is compatible with our existing notation.) We use the convention that the
Hodge–Tate weight of the cyclotomic character is −1. Thus if π is of weight λ, then for
any embedding τ : F → Qp the τ -Hodge–Tate weights of rπ,ι are given by

HTτ (rπ,ι) = {λιτ,1 + (n − 1), λιτ,2 + (n − 2), . . . , λιτ,n}.
For n ≥ 1, we define a matrix

�n =

⎛
⎜⎜⎜⎜⎜⎝

1
−1

. .
.

(−1)n−1

⎞
⎟⎟⎟⎟⎟⎠
.

If E/F is a quadratic extension of fields of characteristic 0 then we write θ = θn :
ResE/F GLn → ResE/F GLn for the involution given by the formula θ(g) = �nc(g)

−t�−1
n .

We write Un ⊂ ResE/F GLn for the fixed subgroup of θn. Then Un is a quasi-split unitary
group. The standard pinning of GLn (consisting of the maximal torus of diagonal matri-
ces, Borel subgroup of upper-triangular matrices, and set {Ei,i+1 | i = 1, . . . , n−1} of root
vectors) is invariant under the action of θ and defines an F-pinning of Un, that we call its
standard pinning. If F is a number field or a non-archimedean local field, then we also
write Un for the extension of Un to a group scheme over OF with functor of points

Un(R) = {g ∈ GLn(R ⊗OF OE) | g = �n(1 ⊗ c)(g)−t�−1
n }.

When F is a number field or a local field, we identify the dual group LUn = GLn(C)�WF,
where WE acts trivially on GLn(C) and an element wc ∈ WF − WE acts by the formula
wc · g = �ng

−t�−1
n (therefore preserving the standard pinning of GLn(C)).

Given a partition of n (i.e. a tuple (n1, n2, . . . , nk) of natural numbers such that
n1 + n2 + · · · + nk = n), we write L(n1,...,nk) for the corresponding standard Levi sub-
group of GLn (i.e. the block diagonal subgroup GLn1 × · · · × GLnk

⊂ GLn), and P(n1,...,nk)

for the corresponding standard parabolic subgroup (i.e. block upper-triangular matrices
with blocks of sizes n1, . . . , nk ). If E is a non-archimedean characteristic 0 local field and
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π1, . . . , πk are admissible representations of GLn1(E), . . . , GLnk
(E), respectively, then we

write π1 × π2 × · · · × πk = i
GLn

P(n1,...,nk )
π1 ⊗ · · · ⊗ πk . We write π1 � · · · � πk for the irre-

ducible admissible representation of GLn(E) defined by recE(�k
i=1πi) ∼= ⊕k

i=1recE(πi); it
is a subquotient of π1 × · · · × πk .

Given a tuple (n1, n2, . . . , nk) of natural numbers such that 2(n1 +· · ·+nk−1)+nk =
n, we write M(n1,...,nk) for the Levi subgroup of Un given by block diagonal matrices with
blocks of size n1, n2, . . . , nk−1, nk, nk−1, . . . , n1. Then M(n1,...,nk) is a standard Levi subgroup
(with respect to the diagonal maximal torus of Un), and projection to the first k blocks gives
an isomorphism M(n1,...,nk)

∼= (ResE/F GLn1 ×· · ·×ResE/F GLnk−1)×Unk
. We write Q(n1,...,nk)

for the parabolic subgroup given by block upper triangular matrices (with blocks of the
same sizes). If F is a non-archimedean characteristic 0 local field and π1, . . . , πk−1,πk are
admissible representations of GLn1(E), . . . , GLnk−1(E), Unk

(F), respectively, then we write
π1 × π2 × · · · × πk = i

Un

Q(n1,...,nk )
π1 ⊗ · · · ⊗ πk .

1. Definite unitary groups

In this paper we will often use the following assumptions and notation, which we
call the “standard assumptions”:

• F is a CM number field such that F/F+ is everywhere unramified. We note
this implies that [F+ : Q] is even (the quadratic character of (F+)×\A×

F+/Ô×
F+

cutting out F has non-trivial restriction to F+
v for each v|∞ but is trivial on

(−1)v|∞ ∈ (F+
∞)×).

• p is a prime. We write Sp for the set of p-adic places of F+.
• S is a finite set of finite places of F+, all of which split in F. S contains Sp.
• For each v ∈ S, we suppose fixed a factorization v = ṽṽc in F, and write S̃ = {̃v |

v ∈ S}.
Let n ≥ 1 be an integer. Under the above assumptions we can fix the following data:

• The unitary group Gn = G over F+ with R-points given by the formula

(1.0.1) G(R) = {g ∈ GLn(R ⊗F+ F) | g = (1 ⊗ c)(g)−t}.
We observe that for each finite place v of F+, GF+

v
is quasi-split, while for each

place v|∞ of F+, G(F+
v ) is compact. We use the same formula to extend G to

a reductive group scheme over OF+ (this uses that F/F+ is everywhere unrami-
fied).2

2 The authors apologize for using the same notation GL to denote both an extension of scalars of the algebraic
group G and an absolute Galois group. We hope no confusion will arise.
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• The inner twist ξ : Un,F → GF, given by the formula

ξ(g1, g2) = (g1,�
−1
n g2�n)

with respect to the identifications

Un,F = {(g1, g2) ∈ GLn × GLn | g2 = �ng
−t
1 �−1

n }
and

GF = {(g1, g2) ∈ GLn × GLn | g2 = g−t
1 }.

• A lift of ξ to a pure inner twist (ξ, u) : Un,F → GF. We recall (see e.g. [Kal11])
that by definition, this means that u ∈ Z1(F+,Un) is a cocycle such that for
all σ ∈ GF+ , we have ξ−1σ ξ = Ad(uσ ). When n is odd, we define u to be the
cocycle inflated from Z1(Gal(F/F+),Un(F)), defined by the formula u1 = 1,
uc = (�n,�n). When n is even, we choose an element ζ ∈ F× with trF/F+(ζ ) = 0
and define u to be the cocycle inflated from Z1(Gal(F/F+),Un(F)), defined by
the formula u1 = 1, uc = (ζ�n, ζ

−1�n). (In fact, we will make essential use of this
structure only when n is odd.)

• We also fix a choice of continuous character μF = μ : F×\A×
F → C× such that

μ|A×
F+ = δF/F+ ◦ ArtF+ and such that if v is any place of F which is inert over F+,

then μ|F×
v

is unramified.

If v is a finite place of F+, then the image of the cocycle u in H1(F+
v ,Un) is trivial (this

is true by Hilbert 90 if v splits in F, and true because det uc ∈ NFṽ/F+
v
F×
ṽ if v is inert

in F, cf. [Rog90, §1.9]). Our choice of pure inner twist (ξ, u) therefore determines a
Un(F+

v )-conjugacy class of isomorphisms ιv : G(F+
v ) → Un(F+

v ) (choose g ∈ Un(F
+
v ) such

that g−1cg = uc; then ιv is the map induced on F+
v -points by the map Ad(g) ◦ ξ−1 : GF

+
v

→
U

n,F
+
v
, which descends to F+

v ). If v splits v = wwc in F, then we have an isomorphism ιw :
G(F+

v ) → GLn(Fw) (composite of inclusion G(F+
v ) ⊂ (ResF/F+ GLn)(F+

v ) and canonical
projection (ResF/F+ GLn)(F+

v ) → GLn(Fw)).
If L+/F+ is a finite totally real extension, then we will use the following standard

notation:

• We set L = L+F.
• If T is a set of places of F+ then we write TL for the set of places of L+ lying

above T. If w ∈ TL lies above v ∈ T and v splits v = ṽṽc in F (in particular, we
suppose that we have made a choice of ṽ|v), then we will write w̃ for the unique
place of L which lies above both w and ṽ (in which case w splits w = w̃w̃c in L).
We write e.g. S̃L for the set of places of the form w̃ (w ∈ SL).

We note that formation of G is compatible with base change, in the sense that the group
GL+ is the same as the one given by formula (1.0.1) relative to the quadratic extension
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L/L+. The same remark applies to the pure inner twist (ξ, u). When we need to compare
trace formulae over F+ and its extension L+/F+ (a situation that arises in §4), we will use
the character μL = μF ◦ NL/F.

1.1. Base change and descent – first cases. — In the next few sections we summarise
some results from the literature concerning automorphic representations of the group
G(AF+). We first give some results which do not rely on an understanding of the finer
properties of L-packets for p-adic unitary groups at inert places of the extension F/F+.

Theorem 1.2. — Let σ be an automorphic representation of G(AF+). Then there exist a parti-

tion n = n1 + · · · + nk and discrete, conjugate self-dual automorphic representations

π1, . . . , πk

of

GLn1(AF), . . . ,GLnk
(AF),

respectively, with the following properties:

(1) Let π = π1 � · · · � πk . Then for each finite place w of F below which σ is unramified, πw is

unramified and is the unramified base change of σw|F+ .

(2) For each place v = wwc of F+ which splits in F, πw
∼= σv ◦ ι−1

w .

(3) For each place v|∞ of F, πv has the same infinitesimal character as ⊗τ :Fv→CWτ , where Wτ is

the algebraic representation of GLn(Fv) ∼= GLn(C) such that σv
∼= Wτ |G(F+

v ).

Proof. — This follows from [Lab11, Corollaire 5.3]. �

We call π the base change of σ . If ι : Qp → C is an isomorphism, we say that σ is
ι-ordinary if π is ι-ordinary at all places w|p in the sense of [Ger19, Definition 5.3]. We
note that this depends only on πp and the weight of π (equivalently, on σp and σ∞).

Corollary 1.3. — Let ι : Qp → C be an isomorphism. Then there exists a unique continuous

semisimple representation rσ,ι : GF → GLn(Qp) with the following properties:

(1) For each prime-to-p place w of F below which σ is unramified, rσ,ι|GFw
is unramified.

(2) For each place v ∈ Sp, rσ,ι|GFṽ
is de Rham.

(3) For each place v = wwc of F+ which splits in F, WD(rσ,ι|GFw
)F−ss ∼= recT

Fw
(σv ◦ ι−1

w ).

Proof. — This follows from the classification of discrete automorphic representa-
tions of GLni

(AF) [MW89], together with the known existence of Galois representations
attached to RACSDC (regular algebraic, conjugate self-dual, cuspidal) automorphic rep-
resentations of GLni

(AF) (cf. [AT21, Corollary 3.4]). �
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We remark that if rσ,ι|GF(ζp)
is multiplicity free, then the base change of σ is π =

π1 � · · ·�πk , where each πi is a cuspidal automorphic representation of GLni
(AF). Indeed,

[MW89] shows that a non-cuspidal πi would contribute a direct sum of copies of a single
Galois representation twisted by powers of the cyclotomic character to rσ,ι, which gives a
factor with multiplicity > 1 in rσ,ι|GF(ζp)

. In particular, if rσ,ι|GF(ζp)
is multiplicity free then

π is tempered (as each πi is, by the results of [Shi11, Clo13, Car12]).

Theorem 1.4. — Let π be a RACSDC automorphic representation of GLn(AF). Suppose that

π is unramified outside S. Then there exists an automorphic representation σ of G(AF+) with the

following properties:

(1) For each finite place v �∈ S of F, σ
ι−1
v (Un(OF+

v
))

v �= 0.

(2) π is the base change of σ .

Proof. — This follows from [Lab11, Théorème 5.4]. �

1.5. Endoscopic data and normalisation of transfer factors. — To go further we need to
use some ideas from the theory of endoscopy, both for the unitary group G and for the
twisted group ResF/F+ GLn �θ . We begin by describing endoscopic data for G (cf. [Lab11,
§4.2], [Rog90, §4.6]). The equivalence classes of endoscopic data for G are in bijection
with pairs (p, q) of integers such that p + q = n and p ≥ q ≥ 0. Define μ+ = 1, μ− = μ.
We identify μ± with characters of the global Weil group WF using ArtF. Then we can
write down an extended endoscopic triple E = (H, s, η) giving rise to each equivalence
class as follows:

• The group H is Up × Uq.
• s = diag(1, . . . ,1,−1, . . . ,−1) (with p occurrences of 1 and q occurrences of

−1).
• η : LH → LG is given by the formulae:

η : (g1, g2) � 1 �→ diag(g1, g2) � 1 ∈ GLn(C) = Ĝ,

(g1, g2) ∈ GLp(C)× GLq(C) = Ĥ;
(1p,1q) � w �→ diag(μ(−1)q(w)1p,μ(−1)p(w)1q) � w (w ∈ WF)

(1p,1q) � wc �→ diag(�p,�q)�
−1
n � wc,

where wc ∈ WF+ − WF is any fixed element.

As described in [Lab11, §4.5], a choice of extended endoscopic triple E determines a
normalisation of the local transfer factor �E

v (v a place of F+) up to non-zero scalar. We
will fix a normalisation of local transfer factors only when n is odd, using the following
observations:
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• The quasi-split group Un, with its standard pinning, has a canonical normal-
isation of transfer factors. Indeed, in this case the Whittaker normalisation of
transfer factors defined in [KS99, §5] is independent of the choice of additive
character and coincides with the transfer factor denoted �0 in [LS87].

• Our choice of pure inner twist (ξ, u) : Un → G defines a normalisation of the
local transfer factors for G. This normalisation of local transfer factors satisfies
the adelic product formula (a very special case of [Kal18, Proposition 4.4.1]).

A local transfer factor having been fixed, one can define what it means for a function
f H ∈ C∞

c (H(F+
v )) (resp. f H ∈ C∞

c (H(AF+))) to be an endoscopic transfer of a function
f ∈ C∞

c (G(F+
v )) (resp. f ∈ C∞

c (G(AF+))). After the work of Waldspurger, Laumon, and
Ngô, any function f ∈ C∞

c (G(F+
v )) (resp. C∞

c (G(AF+))) admits an endoscopic transfer
(see [Lab11, Théorème 4.3] for detailed references).

We next discuss base change, or in other words, endoscopy for the twisted
group ResF/F+ GLn � θn. We will only require the principal extended endoscopic
triple (Un,1n, η), where η : LUn → L ResF/F+ GLn is defined as follows: first, identify
L ResF/F+ GLn = (GLn(C) × GLn(C)) � WF+ , where WF+ acts through its quotient
Gal(F/F+) and an element wc ∈ WF+ − WF acts by the automorphism (g1, g2) �→
(�ng

−t
2 �−1

n ,�ng
−t
1 �−1

n ). Then η : LUn → L ResF/F+ GLn is given by the formulae:

η : (g) � 1 �→ diag(g, tg−1) � 1 ∈ GLn(C)× GLn(C);
(1n) � w �→ diag(1n,1n) � w, (w ∈ WF);
(1n) � wc �→ diag(�n,�

−1
n ) � wc.

Following [Lab11, §4.5], we fix the trivial transfer factors in this case. By [Lab11, Lemme
4.1], each function φ ∈ C∞

c (ResF/F+ GLn(F+
v ) � θn) admits an endoscopic transfer φUn ∈

C∞
c (Un(F+

v )), and every function in C∞
c (Un(F+

v )) arises this way. We will follow op. cit. in
using the following notation: if f ∈ C∞

c (Un(F+
v )) (or more generally, if Un is replaced by a

product of unitary groups) then we write f̃ ∈ C∞
c (ResF/F+ GLn(F+

v )� θn) for any function
that admits f as endoscopic transfer (with respect to the principal extended endoscopic
triple defined above).

If E = (H, s, η) is one of the extended endoscopic triples for G as above then,
following [Lab11, §4.7], we set MH = ResF/F+ HF, and write M̃H for the twisted space on
MH associated to the non-trivial element of Gal(F/F+). Then we may canonically identify
MH = ResF/F+ GLp × GLq and M̃H = (ResF/F+ GLp × GLq) � (θp × θq). We will use the
same notation to describe stable base change for MH. In particular, if f ∈ C∞

c (H(AF+)),
then we will use f̃ ∈ C∞

c (M̃H(AF+)) to denote a function whose endoscopic transfer (with
respect to the principal extended endoscopic triple for MH, defined as above) with respect
to the trivial transfer factors is f (cf. [Lab11, Proposition 4.9]).

Having fixed the above normalisations, we can now formulate some simple propo-
sitions.
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Proposition 1.6. — Let n ≥ 1 be odd, and let v be an infinite place of F+. Suppose given

an extended endoscopic triple E = (H, s, η) as above and a Langlands parameter ϕH : WF+
v

→ LH
such that η ◦ ϕH is the Langlands parameter of an irreducible representation σv of G(F+

v ). Let π be

the (necessarily tempered, θ -invariant) irreducible admissible representation of H(Fṽ) associated to the

Langlands parameter ϕH|WFv
, and let fv ∈ C∞(G(F+

v )) be a coefficient for σv . Then there is a sign

ε(v,E, ϕH) ∈ {±1} such that the identity π̃ (̃f H
v ) = ε(v,E, ϕH)σv(fv) = ε(v,E, ϕH) holds, where

the twisted trace is Whittaker normalised (cf. [Lab11, §3.6]).

Proof. — Let �(ϕH) be the L-packet of discrete series representations of H(F+
v )

associated to ϕH. According to the main result of [Clo82], there is a sign ε1 ∈ {±1} such
that π̃ (̃f H

v ) = ε1
∑

σv,H∈�(ϕH) σv,H(f
H
v ). According to [Kal16, Proposition 5.10], there is

a sign ε2 ∈ {±1} such that ε2
∑

σv,H∈�(ϕH) σv,H(f
H
v ) = σv(fv). We may take ε(v,E, ϕH) =

ε1ε2. �

The sign in Proposition 1.6 depends on our fixed choice of pure inner twist (be-
cause it depends on the normalisation of transfer factors). We make the following basic
but important remark, which is used in the proof of Proposition 4.6: let L+/F+ be a finite
totally real extension, and let L = L+F. Then GL+ satisfies our standard assumptions, and
comes equipped with a pure inner twist by base extension. If v is an infinite place of L+,
then we have the identity ε(v,EL+, ϕH|WL+

v
) = ε(v|F+,E, ϕH).

Proposition 1.7. — Let n ≥ 1 be odd, let v be a finite place of F+, and let fv ∈ C∞
c (G(F+

v )).

Suppose given an extended endoscopic triple E = (H, s, η).

(1) Suppose that v is inert in F and that fv is unramified (i.e. G(OF+
v
)-biinvariant). Suppose given an

unramified Langlands parameter ϕH : WF+
v

→ LH and let σv,H, σv be the unramified irreducible

representations of H(F+
v ), G(F+

v ) associated to the parameters ϕH, η ◦ ϕH, respectively. Let π be

the unramified irreducible representation of MH(F+
v ) associated to ϕH|WFṽ

. Then there are identities

π̃ (̃f H
v ) = σv,H(f

H
v ) = σv(fv), where the twisted trace is normalised so that θ fixes the unramified

vector of π . (If π is generic, this agrees with the Whittaker normalisation of the twisted trace.)

(2) Suppose that v = ṽṽc splits in F. Suppose given a bounded Langlands parameter ϕH : WF+
v

→ LH
and let σv,H, σv be the representations of H(F+

v ), G(F+
v ) associated to the parameters ϕH, η ◦ϕH,

respectively (by the local Langlands correspondence recFṽ
for general linear groups). Let πv be the

irreducible representation of MH(F+
v ) associated to ϕH|WFṽ

. Then there is an identity π̃v(̃f
H
v ) =

σv,H(f
H
v ) = σv(fv), where the twisted trace is Whittaker normalised.

Proof. — It is well-known that these identities hold up to non-zero scalar, which
depends on the choice of transfer factor; the point here is that, with our choices, the scalar
disappears. In the first part, the identity π̃ (̃f H

v ) = σv,H(f
H
v ) is the fundamental lemma for

stable base change [Clo90a]. The identity σv,H(f
H
v ) = σv(fv) is the fundamental lemma

for standard endoscopy [LN08], which holds on the nose because our transfer factors are
identified, by the isomorphism ιv : G(F+

v ) → Un(F+
v ), with those defined in [LS87] with
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respect to our fixed pinning of Un,F+
v
; this is the ‘canonical normalisation’ of [Hal93]. If π

is generic then a Whittaker functional is non-zero on the unramified vector, which gives
the final assertion of the first part of the proposition.

In the second part, the equality π̃v(̃f
H
v ) = σv,H(f

H
v ) is the fundamental lemma for

stable base change in the split case, cf. [Rog90, Proposition 4.13.2] (where the result is
stated for U(3) but the proof is valid in general). The equality σv,H(f

H
v ) = σv(fv) holds

because σv can be expressed as the normalised induction of a character twist of σv,H

(after choosing an appropriate embedding HF+
v

→ GF+
v

and a parabolic subgroup of GF+
v

containing HF+
v
) and because the correspondence fv �→ f H

v can in this case be taken to be
the corresponding character twist of the constant term along HF+

v
(cf. [Rog90, Lemma

4.13.1] and [Shi11, §§3.3–3.4], noting that our normalisation of transfer factors at the
place v in this case agrees on the nose with the analogue of the factor written as �0

v in loc.

cit., as follows from the definition in [LS87]). �

1.8. L-packets and types for p-adic unitary groups. — Let v be a place of F+ inert in F.
In this section we follow Mœglin [Mœg07, Mœg14] in defining L-packets of tempered
representations for the group G(F+

v ) (equivalently, given our choice of pure inner twist,
Un(F+

v )).
We write A(GLn(Fṽ)) for the set of isomorphism classes of irreducible admissible

representations of GLn(Fṽ) over C, and At(GLn(Fṽ)) for its subset of tempered rep-
resentations. We define A(Un(F+

v )) and At(Un(F+
v )) similarly. We write Aθ (GLn(Fṽ))

and Aθ
t (GLn(Fṽ)) for the respective subsets of θ -invariant representations (so e.g.

Aθ (GLn(Fṽ)) is the set of irreducible representations of GLn(Fṽ) such that πθ := π ◦ θ ∼=
π ). Using the local Langlands correspondence recFṽ

for GLn(Fṽ) (and the Jacobson–
Morozov theorem), we can identify A(GLn(Fṽ)) with the set of GLn(C)-conjugacy classes
of Langlands parameters, i.e. the set of GLn(C)-conjugacy classes of continuous homo-
morphisms ϕ : WFṽ

× SL2(C) → GLn(C) satisfying the following conditions:

• ϕ|WFṽ
is semisimple;

• ϕ|SL2(C) is algebraic.

Then At(GLn(Fṽ)) is identified with the set of parameters ϕ such that the ϕ(WFṽ
) is

relatively compact, and Aθ (GLn(Fṽ)) is identified with the set of conjugate self-dual pa-
rameters. We write Aθ

t (GLn(Fṽ))+ ⊂ Aθ
t (GLn(Fṽ)) for the subset of parameters ϕ which

extend to a homomorphism ϕF+
v

: WF+
v

× SL2(C) → LUn. Such an extension, if it ex-
ists, is unique up to GLn(C)-conjugacy (see e.g. [GGP12, Theorem 8.1]). The existence
of such an extension ϕF+

v
can be equivalently phrased as follows: fix a decomposition

ϕ = ⊕i∈Iρ
li
i ⊕j∈J σ

mj

j ⊕k∈K (τk ⊕ τ
wc∨
k )nk , where:

• The integers li , mj , nk are all non-zero.
• Each representation ρi, σj , τk is irreducible and no two are isomorphic.
• For each i we have ρi

∼= ρ
wc,∨
i and for each j we have σj

∼= σ
wc,∨
j . For each k we

have τk �∼= τ
wc,∨
k .
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• For each i, ρi is conjugate self-dual of sign (−1)n−1 and for each j, σj is conjugate
self-dual of sign (−1)n, in the sense of [GGP12, p. 10].

Then an extension ϕF+
v

exists if and only if each integer mj is even. If the extension ϕF+
v

is discrete, in the sense that Cent(GLn(C), imϕF+
v
) is finite, then li = 1 for each i ∈ I

and the sets J, K are empty. If the parameter ϕF+
v

corresponding to a representation
π ∈Aθ (GLn(Fṽ))+ is discrete, then we say that π is θ -discrete.

Let Sn denote the set of equivalence classes of pairs ((n1, . . . , nk), (π1, . . . , πk)),
where (n1, . . . , nk) is a partition of n and π1, . . . , πk are supercuspidal representations of
GLn1(Fṽ), . . . , GLnk

(Fṽ), respectively. Two such pairs are said to be equivalent if they
are isomorphic after permutation of the indices {1, . . . , k}. Thus we may think of an
element of Sn as a formal sum of supercuspidal representations. We recall (see e.g. [BZ77])
that to any π ∈ A(GLn(Fṽ)) we may associate the supercuspidal support sc(π) ∈ Sn,
defined by the condition that π occurs as an irreducible subquotient of the representation
π1 × π2 × · · · × πk (notation for induction as defined at the beginning of this paper).

Mœglin associates to any element τ ∈ At(Un(F+
v )) its extended cuspidal support

esc(τ ) ∈ Sn. We do not recall the definition here but note that its definition can be re-
duced to the case where τ is supercuspidal, in the following sense: suppose that τ is a
subquotient of a representation

π1 × · · · × πk−1 × τ0 = i
Un

Q(n1,...,nk )
π1 ⊗ · · · ⊗ πk−1 ⊗ τ0,

where τ0 is a supercuspidal representation of Unk
(F+

v ). Then esc(τ ) = sc(π1) + · · · +
sc(πk−1)+ esc(τ0)+ sc(πθ

k−1)+ · · · + sc(πθ
1 ).

Proposition 1.9. — If τ ∈At(Un(F+
v )) then there is a unique element πτ ∈Aθ

t (GLn(Fṽ))+
such that esc(τ ) = sc(πτ ).

Proof. — [Mœg07, Lemme 5.4] states that there is a unique element π =
πτ ∈ Aθ

t (GLn(Fṽ)) such that esc(τ ) = sc(π). We need to explain why in fact π ∈
Aθ

t (GLn(Fṽ))+. [Mœg07, Théorème 5.7] states that this is true when τ is square-
integrable. In general, we can find a Levi subgroup M(n1,...,nk) ⊂ Un and an irreducible
square-integrable representation π1 ⊗ · · · ⊗ πk−1 ⊗ τ0 of M(n1,...,nk)(F

+
v ) such that τ is

a subquotient of i
Un

Q(n1,...,nk )
π1 ⊗ · · · ⊗ πk−1 ⊗ τ0 (see [Wal03, Proposition III.4.1]). Then

πτ = (π1 × πθ
1 ) × (π2 × πθ

2 ) × · · · × (πk−1 × πθ
k−1) × πτ0 , so the result follows from the

square-integrable case. �

According to the proposition, there is a well-defined map

BC :At(Un(F+
v )) →Aθ

t (GLn(Fṽ))+

defined by BC(τ ) = πτ (which might be called stable base change).
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Proposition 1.10. — The map BC is surjective, and it has finite fibres.

Proof. — The image of BC contains the θ -discrete representations, and the fibres
of BC above such representations are finite, by [Mœg07, Théorème 5.7]. The general
case can again be reduced to this one. �

If π ∈ Aθ
t (GLn(Fṽ))+, then we define �(π) = BC−1(π). By definition, the sets

�(π) partition At(Un(F+
v )) and therefore deserve to be called L-packets. The following

proposition is further justification for this.

Proposition 1.11. — Let π ∈ Aθ
t (GLn(Fṽ))+, and fix an extension π̃ to the twisted group

GLn(Fṽ) � θ . Then there are constants cτ ∈ C× such that for any f ∈ C∞
c (GLn(Fṽ) � θ):

π̃(f ) =
∑

τ∈�(π)

cτ τ (f
Un).

Proof. — When π is θ -discrete, this is the content of [Mœg07, Proposition 5.5]. In
general, �(π) admits the following explicit description: decompose π = π1 × π2 × πθ

1 ,
where π1 ∈At(GLn1(Fṽ)) and π2 ∈Aθ

t (GLn−2n1(Fṽ))+ is θ -discrete. Then �(π) is the set
of Jordan–Hölder factors of the induced representations π1 × τ2 as τ2 varies over the set
of elements of �(π2). Using the compatibility of transfer with normalised constant terms
along a parabolic (see [Mor10, Lemma 6.3.4]) we thus have an identity

π̃(f ) = (π1 × π2 × πθ
1 )

∼(f ) =
∑

τ2∈�(π2)

cτ2(π1 × τ2)(f
Un)

for some constants cτ2 ∈ C×. To prove the proposition, it is enough to show that if τ2, τ
′
2 ∈

�(π2) are non-isomorphic then the induced representations π1 × τ2, π1 × τ ′
2 have no

Jordan–Hölder factors in common. This follows from [Wal03, Proposition III.4.1]. �

We now introduce some particular representations of Un. These are built out of
depth zero supercuspidal representations of U3. Accordingly we first introduce some cus-
pidal representations of the finite group of Lie type U3(k(v)):

• We write τ(v) for the unique cuspidal unipotent representation of U3(k(v)) (see
[Lus77, §9]).

• Let k3/k(v) be a degree 3 extension, and define

C = ker(Nk3k(̃v)/k3 : Resk3k(̃v)/k(v) Gm → Resk3/k(v) Gm).

Then there is a unique U3(k(v))-conjugacy class of embeddings C → U3,k(v) (as
can be proved using e.g. [DL76, Corollary 1.14]).

Let p be a prime such that qv is a primitive 6th root of unity modulo p,
and let θ : C(k(v)) → C× be a character of order p. Then we write λ(v, θ)
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for the (negative of the) Deligne–Lusztig induction −RU3,k(v)
C θ . Then λ(v, θ) is a

cuspidal irreducible representation of U3(k(v)) (note that C is not contained in
any proper k(v)-rational parabolic of U3,k(v)).

We define C̃ = Resk3k(̃v)/k(̃v) Gm. Then the homomorphism C̃(k(̃v)) → C(k(v)), z �→ z/zc,
is surjective, and we define a character θ̃ : C̃(k(̃v)) → C× of order p by θ̃ (z) = θ(z/zc).
There is a unique GL3(k(̃v))-conjugacy class of embeddings C̃ → GL3,k(̃v), and we write
λ̃(̃v, θ̃ ) for the Deligne–Lusztig induction RGL3,k(̃v)

C̃ θ̃ . Then λ̃(̃v, θ̃ ) is a cuspidal irreducible
representation of GL3(k(̃v)).

We now assume that the residue characteristic of k(v) is odd.

Proposition 1.12. — (1) Let τv = c-IndU3(F+
v )

U3(OF+
v
) τ (v) (compact induction). Then τv is a su-

percuspidal irreducible admissible representation of U3(F+
v ) and BC(τv) = St2(χ) � 1, where

χ : F×
ṽ → C× is the unique non-trivial quadratic unramified character.

(2) Let λv(θ) = c-IndU3(F+
v )

U3(OF+
v
) λ(v, θ). Then λv(θ) is a supercuspidal irreducible admissible repre-

sentation of U3(F+
v ).

(3) Extend λ̃(̃v, θ̃ ) to a representation of F×
ṽ GL3(OFṽ

) by making F×
ṽ act trivially, and let λ̃ṽ(θ̃ ) =

c-IndGL3(Fṽ )

F×
ṽ GL3(OFṽ )

λ̃(̃v, θ̃ ). Then λ̃ṽ(θ̃ ) is a supercuspidal irreducible admissible representation of

GL3(Fṽ), and BC(λv(θ)) = λ̃ṽ(θ̃ ).

Proof. — If μ0 is a cuspidal irreducible representation of U3(k(v)), then
c-IndU3(F+

v )

U3(OF+
v
) μ0 is a supercuspidal, irreducible admissible representation of U3(F+

v ) (see

[MP96, Proposition 6.6] – we will return to this theme shortly). The essential point there-
fore is to calculate the extended cuspidal support in each case, which can be done using
the results of [LS20] (which require the assumption that k(v) has odd characteristic).
Indeed §8 in op. cit. explains how to compute the reducibility points Red(π) (defined in
[Mœg07, §4]) of a depth 0 supercuspidal representation, at least up to unramified twist.
We compute that Red(τv) = {(1,3/2), (χ,1)} or {(1,1), (χ,3/2)} which corresponds
to BC(τv) = St2(1) � χ or BC(τv) = St2(χ) � 1. Since BC(τv) ∈ Aθ

t (GL3(Fṽ))+, the
second alternative holds. For λv(θ), we deduce that Red(λv(θ)) = {(ρ,1)}, where ρ is
a conjugate self-dual unramified twist of λ̃ṽ(θ̃ ). We again conclude by sign considera-
tions. �

Corollary 1.13. — Let n = 2k + 1 be an odd integer, and consider a representation

π = St2(χ)� 1 � (�2k−2
i=1 χi) ∈Aθ

t (GLn(Fṽ))+,

where χ : F×
ṽ → C× is the unique non-trivial quadratic unramified character and for each i =

1, . . . ,2k − 2, χi : F×
ṽ → C× is a character such that χi|O×

Fṽ
has order 2. We can assume, after

relabelling, that χi = χ
wc,∨
2k−1−i (i = 1, . . . , k − 1), and then �(π) contains each irreducible subquo-

tient of the induced representation χ1 × χ2 × · · · × χk−1 × τv .
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Proof. — First we explain why we can relabel the characters so that χi = χ
wc,∨
2k−1−i .

Considering the explicit description of Aθ
t (GLn(Fṽ))+, we need to explain why conjugate

self-dual characters must appear with even multiplicity amongst the χi . Suppose χ1 is
conjugate self-dual. We know that χ1|O×

Fṽ
is the non-trivial quadratic character, so there

are two possibilities for χ1 determined by χ1(
v) = −1 or 1 (this value is also the sign of
χ1). If the sign is −1, the multiplicity of χ1 is one of the even exponents mj . If the sign is
+1, dimension reasons force its multiplicity to be even. The rest of the Corollary follows
from the definition of �(π) in terms of extended supercuspidal supports. Note that we
do not claim that �(π) contains only the subquotients of this induced representation –
this is not true even when k = 1. �

To exploit Corollary 1.13 we need to introduce some results from the theory of
types. We state only the results we need, continuing to assume that n = 2k + 1 is odd.
Let pv denote the standard parahoric subgroup of Un(OF+

v
) associated to the partition

(1,1, . . . ,1,3); in other words, the pre-image under the reduction modulo 
v map
Un(OF+

v
) → Un(k(v)) of Q(1,1,...,1,3)(k(v)). Projection to the Levi factor gives a surjective

homomorphism pv → M(1,1,...,1,3)(k(v)) ∼= (k(̃v)×)k−1 × U3(k(v)).
Given a cuspidal representation σ(v) of M(1,1,...,1,3)(k(v)) ∼= (k(̃v)×)k−1 ×U3(k(v)),

the pair (pv, σ (v)) defines a depth zero unrefined minimal K-type in the sense of
[MP96]. In this case we write E(σv) for the set of irreducible representations of (F×

ṽ )
k−1 ×

U3(OF+
v
) ⊂ M(1,1,...,1,3)(F+

v ) whose restriction to M(1,1,...,1,3)(OF+
v
) = (O×

Fṽ
)k−1 × U3(OF+

v
)

is isomorphic to (the inflation of) σ(v). We have the following result.

Proposition 1.14. — Let σ(v) be a cuspidal irreducible representation of M(1,1,...,1,3)(k(v)).

Then:

(1) For any σ ′ ∈ E(σ (v)), the compact induction c-IndM(1,1,...,1,3)(F+
v )

(F×
ṽ )k−1×U3(OF+

v
)
σ ′(v) is irreducible and su-

percuspidal.

(2) Let π be an irreducible admissible representation of Un(F+
v ). Then π |pv

contains σ(v) if and only

if π is a subquotient of an induced representation

i
Un

Q(1,1,...,1,3)
c-IndM(1,1,...,1,3)(F+

v )

(F×
ṽ )k−1×U3(OF+

v
)
σ ′(v)

for some σ ′ ∈ E(σ (v)).

Proof. — See [MP96, Proposition 6.6] and [MP96, Theorem 6.11]. �

We now describe explicitly the two types that we need. Recall that we are assuming
that the characteristic of k(v) is odd. Let ω(̃v) : k(̃v)× → {±1} denote the unique non-
trivial quadratic character of k(̃v)×.

• The representation τ(v, n) of pv inflated from the representation

ω(̃v)⊗ · · · ⊗ω(̃v)⊗ τ(v)

of M(1,1,...,1,3)(k(v)).
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• The representation λ(v, θ, n) of pv inflated from the representation

ω(̃v)⊗ · · · ⊗ω(̃v)⊗ λ(v, θ)

of M(1,1,...,1,3)(k(v)) (where θ as above is a character of C(k(v)) of order p, and
we assume qv mod p is a primitive 6th root of unity).

These types are introduced because they are related by a congruence modulo p, because
of our assumption that qv mod p is a primitive 6th root of unity:

Proposition 1.15. — Fix an isomorphism Qp → C and use this to view τ(v, n) and

λ(v, θ, n) as representations with coefficients in Qp. Then:

(1) τ(v, n) is irreducible.

(2) λ(v, θ, n) contains τ(v, n) as a Jordan–Hölder factor with multiplicity 1.

(As usual, overline denotes semi-simplified residual representation over Fp.)

Proof. — The modular irreducibility of cuspidal unipotent representations is a gen-
eral phenomenon (see [DM18]). The proposition is a statement about representations
of U3(k(v)), which can be proved by explicit computation with Brauer characters; see
[Gec90, Theorem 4.2] (although note that there is a typo in the proof: the right-hand
side of the first displayed equation should have χ̂1 in place of χ̂q2−q). �

The following proposition will be a useful tool for exploiting the type (pv,λ(v,θ,n)).
We introduce an associated test function φ(v, θ, n) ∈ C∞

c (Un(F+
v )): it is the function sup-

ported on pv and inflated from the character of λ(v, θ, n)∨. If π is an admissible rep-
resentation of Un(F+

v ), then π(φ(v, θ, n)) is (up to a positive real scalar depending on
normalisation of measures) the dimension of the space Hompv

(λ(v, θ, n),π |pv
).

Proposition 1.16. — Assume that the characteristic of k(v) is greater than n. Let φ =
φ(v, θ, n), and let E = (H, s, η) be one of our fixed endoscopic triples for Un, with H = Up × Uq.

Suppose given representations πp, πq in Aθ
t (GLp(Fṽ))+, Aθ

t (GLq(Fṽ))+, respectively, such that

(πp ⊗πq)
∼(φ̃H) �= 0. Then sc(πp)+ sc(πq) = λṽ(θ̃)+χ1 +· · ·+χ2k−2, where χ1, . . . , χ2k−2 :

F×
ṽ → C× are characters such that for each i = 1, . . . ,2k − 2, χi|O×

Fṽ
= ω(̃v).

Proof. — By Proposition 1.11, there is an identity

(πp ⊗ πq)
∼(φ̃H) =

∑
τp∈�(πp)

τq∈�(πq)

cτp
cτq
(τp ⊗ τq)(φ

H)

for some constants cτp
, cτq

∈ C×. Now, [KV12, Theorem 2.2.6] shows that φH can be

taken to be a weighted sum of inflations to H(OF+
v
) of characters RHk(v)

Ci
(θ−1 ⊗ω(̃v)⊗(k−1))
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associated to conjugacy classes of embeddings Ci : C×Resk(̃v)/k(v) Gk−1
m → Hk(v). (Our ap-

peal to this reference is the reason for the additional assumption on the characteristic of
k(v) in the statement of the theorem.) If (πp ⊗ πq)

∼(φ̃H) �= 0, then there exists a sum-
mand on the right-hand side such that τp ⊗ τq contains the inflation to H(OF+

v
) of the

(irreducible) representation with character −RHk(v)

Ci
(θ ⊗ω(̃v)⊗(k−1)). Taking into account

the compatibility between parabolic induction and Deligne–Lusztig induction, the tran-
sitivity of Deligne–Lusztig induction [Lus76], and Proposition 1.14, we see that for one
of the representations τp, τq (the one for the factor of even rank), the extended cuspidal
support is a sum of characters of F×

ṽ , each of which is the twist of an unramified character
by a ramified quadratic character; and for the other of the representations τp, τq, the ex-
tended cuspidal support is a sum of such characters, together with λṽ(θ̃). This completes
the proof. �

1.17. Types for the general linear group. — In this section we record some analogues of
the results of the previous section for general linear groups. Let 2 ≤ n1 ≤ n be an integer.
Let ṽ be a finite place of F. We assume that the characteristic of k(̃v) is odd. We have
already introduced the notation ω(̃v) for the unique non-trivial quadratic character of
k(̃v)×. We introduce a further representation of the finite group GLn1(k(̃v)) of Lie type:

• Let kn1/k(̃v) be an extension of degree n1, and suppose that qṽ mod p is a prim-
itive nth

1 root of unity modulo p. Let � : k×
n1

→ C× be a character of order p.
Then � is distinct from its conjugates by Gal(kn1/kṽ), and we write λ̃(̃v,�) =
(−1)n1−1R

GLn1
Reskn1 /k(̃v) Gm

� for the Deligne–Lusztig induction. Then λ̃(̃v,�) is an
irreducible representation of GLn1(k(̃v)).

The notation λ̃(̃v,�) thus generalises that introduced in the previous section (where
n1 = 3 and � = θ̃ ).

Proposition 1.18. — Let π be an irreducible admissible representation of GLn1(Fṽ), and let

Fṽ,n1/Fṽ denote an unramified extension of degree n1. Then the following are equivalent:

(1) The restriction of π to GLn1(OFṽ
) contains λ̃(̃v,�).

(2) There exists a continuous character χ : F×
ṽ,n1

→ C× such that χ |O×
Fṽ,n1

= � and recFṽ
π ∼=

Ind
WFṽ
WFṽ,n1

(χ ◦ Art−1
Fṽ,n1

). In particular, π is supercuspidal.

Proof. — This follows from the results of [Hen92] (see especially §3.4 of that paper)
and [MP96]. �

Let n2 = n − n1. We write qṽ ⊂ GLn(OFṽ
) for the standard parahoric subgroup as-

sociated to the partition (n1, n2), i.e. the pre-image under the reduction modulo 
ṽ map
GLn(OFṽ

) → GLn(k(̃v)) of P(n1,n2)(k(̃v)). We write λ̃(̃v,�, n) for the irreducible repre-
sentation of qṽ inflated from the representation λ̃(̃v,�) ⊗ (ω(̃v) ◦ det) of L(n1,n2)(k(̃v)).



22 JAMES NEWTON, JACK A. THORNE

We write rṽ ⊂ qṽ for the standard parahoric subgroup associated to the partition
(n1,1,1, . . . ,1). Then we have the following analogue of Proposition 1.14:

Proposition 1.19. — Let π be an irreducible admissible representation of GLn(Fṽ). Then the

following are equivalent:

• π |rṽ contains λ̃(̃v,�, n)|rṽ .
• sc(π) = π1 +χ1 +· · ·+χn2 , where π1 satisfies the equivalent conditions of Proposition 1.18

and χ1, . . . , χn2 : F×
ṽ → C× are characters such that for each i = 1, . . . , n2, χi|O×

Fṽ
=

ω(̃v).

Proof. — This once again follows from the results of [MP96]. �

The pair (qṽ, λ̃(̃v,�, n)) is not in general a type (because λ̃(̃v,�, n) is not a cus-
pidal representation of L(n1,n2)(k(̃v)) unless n2 = 1). Nevertheless, we have the following
proposition:

Proposition 1.20. — Let π be an irreducible admissible representation of GLn(Fṽ). Then the

following are equivalent:

(1) The restriction of π to qṽ contains λ̃(̃v,�, n).

(2) There exist irreducible admissible representations πi of GLni
(Fṽ) (i = 1,2) such that π = π1 �

π2, the restriction of π1 to GLn1(OFṽ
) contains λ̃(̃v,�), and the restriction of π2 to GLn2(OFṽ

)

contains ω(̃v) ◦ det.

We note that in the situation of the proposition, π2 is the twist of an unramified
representation by a quadratic ramified character.

Proof. — Let P = P(n1,n2), L = L(n1,n2), and let NP denote the unipotent radical of P.
Abbreviate λ̃ = λ̃(̃v,�, n) and λ̃NP = λ̃|L(OFṽ )

. If π is an irreducible admissible repre-
sentation of GLn(Fṽ) then we define πλ̃ = Homqṽ (̃λ,π |qṽ ). We first show that for any

admissible representation π of GLn(Fṽ), the natural projection πλ̃ → π
λ̃NP
NP

(restriction of
projection to unnormalised Jacquet module) is an isomorphism. Indeed, it is surjective
by [Vig98, II.10.1, 1)]. To show that it is injective, let μ̃ = λ̃|rṽ and let R = P(n1,1,1,...,1),
NR the unipotent radical of R. Then the pair (rṽ, μ̃) is a depth zero unrefined minimal
K-type in the sense of [MP96]. We now have a commutative diagram

πλ̃ π
λ̃NP
NP

πμ̃ π
μ̃NR
NR

,
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where the left vertical arrow is the natural inclusion and the right vertical arrow is the
natural projection to co-invariants. The lower horizontal arrow is an isomorphism, by
[Mor99, Lemma 3.6]. We conclude that the top horizontal arrow is injective, and there-
fore an isomorphism.

Suppose now that π is an irreducible admissible representation of GLn(Fṽ) and
that πλ̃ �= 0. Then πμ̃ �= 0, so by Proposition 1.19, π is an irreducible subquotient of an
induced representation π ′ = π1 × χ1 × · · · × χn2 , where the inducing data is as in the
statement of that proposition. Computation of the Jacquet module (using the geometric
lemma [BZ77, Lemma 2.12]) shows that (π ′)̃λ has dimension 1; therefore π must be
isomorphic to the unique irreducible subquotient of π ′ which contains λ̃. This is π1 ×π2,
where π2 is the unique irreducible subquotient of χ1 × · · · × χn2 such that π2|GLn2 (OFṽ )

contains ω(̃v) ◦ det (note that π1 × π2 is irreducible, by [Zel80, Proposition 8.5]).
Suppose instead that π = π1 �π2 = π1 ×π2, with π1, π2 as in the statement of the

proposition. Then the geometric lemma shows that π
λ̃NP
NP

�= 0, hence πλ̃ �= 0. �

We now introduce the local lifting ring associated to the inertial type which is the
analogue, on the Galois side, of the pair (qṽ, λ̃(̃v,�, n)) introduced above. We recall that
kn1/k(̃v) is an extension of degree n1, qṽ mod p is a primitive nth

1 root of unity modulo p,
and � : k×

n1
→ C× is a character of order p. Let ι : Qp → C be an isomorphism, so that

ι−1� : k×
n1

→ Q
×
p is a character with trivial reduction modulo p. Fix a coefficient field

E and suppose given a representation ρṽ : GFṽ
→ GLn(k) of the form ρv = σ ṽ,1 ⊕ σ ṽ,2,

where:

• Let Fṽ,n1/Fṽ be the unramified extension of degree n1 and residue field kn1 . Then
there is an unramified character ψṽ : GFṽ,n1

→ k× and an isomorphism σ ṽ,1
∼=

Ind
GFṽ
GFṽ,n1

ψṽ .

• σ ṽ,2|IFṽ
⊗ω(̃v)◦Art−1

Fṽ
is trivial. (In other words, σ ṽ,2 is the twist of an unramified

representation by a ramified quadratic character.)

We recall that CO denotes the category of complete Noetherian local O-algebras with
residue field O/
 = k.

Lemma 1.21. — Let R ∈ CO and let ρṽ : GFṽ
→ GLn(R) be a continuous lift of ρṽ (i.e. a

continuous homomorphism such that ρṽ mod mR = ρṽ). Then there are continuous lifts σṽ,i : GFṽ
→

GLni
(R) of σ ṽ,i (i = 1,2) with the property that σṽ,1 ⊕ σṽ,2 is 1 + Mn(mR)-conjugate to ρṽ .

Moreover, each σṽ,i is itself unique up to 1 + Mni
(mR)-conjugacy.

Proof. — The splitting exists and is unique because the groups
Hi(Fṽ,Hom(σ ṽ,1, σ ṽ,2)) and Hi(Fṽ,Hom(σ ṽ,2, σ ṽ,1)) vanish for i = 0,1. Compare
[Sho18, Lemma 2.3]. �
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Let R�
ṽ ∈ CO denote the universal lifting ring, i.e. the representing object of

the functor of all continuous lifts of ρṽ . We write R(̃v,�,ρṽ) for the quotient of
R�

ṽ associated by [Sho18, Definition 3.5] to the inertial type τṽ : IFṽ
→ GLn(Qp),

τṽ = ⊕n1
i=1(ι

−1�qi−1
ṽ ◦ Art−1

Fṽ
) ⊕ (ω(̃v) ◦ Art−1

Fṽ
)⊕n2 . We record the following properties of

R(̃v,�,ρṽ).

Proposition 1.22. — (1) The ring R(̃v,�,ρṽ) is reduced, p-torsion-free, and is supported on

a union of irreducible components of R�
ṽ . In particular, Spec R(̃v,�,ρṽ) is O-flat and equidi-

mensional of dimension 1 + n2.

(2) Let x : R�
ṽ → Qp be a homomorphism, and let ρx : GFṽ

→ GLn(Qp) be the pushforward of

the universal lifting, with its associated direct sum decomposition ρx
∼= σx,1 ⊕ σx,2. Then x factors

through R(̃v,�,ρṽ) if and only if there is an isomorphism σx,1
∼= Ind

GFṽ
GFṽ,n1

ψx for a character

ψx : GFṽ,n1
→ Q

×
p such that ψx|IFṽ,n1

◦ ArtFṽ,n1
= ι−1� and σx,2|IFṽ

⊗ω(̃v) ◦ Art−1
Fṽ

is trivial.

(3) Let σṽ,1 : GFṽ
→ GLn1(R(̃v,�,ρṽ)) be the representation associated to the universal lifting by

Lemma 1.21. There exists αṽ ∈ R(̃v,�,ρṽ)/(
) such that for any Frobenius lift φṽ ∈ GFṽ
,

det(X − σṽ,1(φ
n1
ṽ )) ≡ (X − αṽ)

n1 mod 
 .

(4) Let Lṽ/Fṽ be a finite extension such that τṽ|ILṽ
is trivial, and let R�

Lṽ
denote the universal lifting ring

of ρ|GLṽ
. Then the natural morphism R�

Lṽ
→ R(̃v,�,ρṽ) (classifying restriction of the universal

lifting to GLṽ
) factors over the quotient R�

Lṽ
→ Rur

Lṽ
that classifies unramified liftings of ρṽ|GLṽ

.

Proof. — The first two properties follow from [Sho18, Proposition 3.6]. For the
third, let φṽ be a Frobenius lift. We note that det(X−σṽ,1(φṽ)) = Xn1 +(−1)n1 detσṽ,1(φṽ).
Indeed, this can be checked at Qp-points, at which σṽ,1 is irreducible, induced from
a character of GFṽ,n1

which extends ι−1� ◦ Art−1
Fṽ,n1

. Reducing modulo 
 and apply-
ing Hensel’s lemma, we find that there is an element α′

ṽ ∈ R(̃v,�,ρṽ)/(
) such that
det(X − σṽ,1(φṽ)) ≡∏n1

i=1(X − qi−1
ṽ α′

ṽ) mod 
 . If αṽ = (α′
ṽ)

n1 then det(X − σṽ,1(φ
n1
ṽ )) =

(X − αṽ)
n1 . For the fourth part of the lemma, we need to show that the universal lifting is

unramified on restriction to GLṽ
. Since R(̃v,�,ρṽ) is reduced, it suffices to check this at

each geometric generic point. At such a point σṽ,1 is irreducible, induced from a charac-
ter of GFṽ,n1

, while σṽ,2 is a quadratic ramified twist of an unramified representation. The
result follows. �

1.23. Algebraic modular forms. — Finally, we define notation for algebraic modular
forms on the group G. Retaining our standard assumptions, fix a coefficient field E ⊂ Qp

containing the image of each embedding F → Qp, with ring of integers O, and let Ĩp

denote the set of embeddings τ : F → E inducing a place of S̃p. Given λ = (λτ )τ ∈ (Zn
+)̃

Ip ,
we write Vλ for the E[∏v∈Sp

GLn(Fṽ)]-module denoted Wλ in [Ger19, Definition 2.3];
it is the restriction to GLn(Fṽ) of a tensor product of highest weight representations of
GLn(E). We write Vλ ⊂ Vλ for the O[∏v∈Sp

GLn(OFṽ
)]-submodule denoted Mλ in loc.

cit.; it is an O-lattice.
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In this paper we will only consider algebraic modular forms with respect to open
compact subgroups U ⊂ G(A∞

F+) which decompose as a product U =∏v Uv , and such
that for each v ∈ Sp, Uv ⊂ ι−1

ṽ GLn(OFṽ
). Given such a subgroup, together with a finite

set � of finite places of F+ and a smooth O[U�]-module M, finite as O-module, we
define Sλ(U,M) to be the set of functions f : G(F+)\G(A∞

F+) → Vλ ⊗O M such that for
each u ∈ U and g ∈ G(A∞

F+), u · f (gu) = f (g). (Here U acts on Vλ ⊗O M via projection to
Up × U� .) If λ = 0, we drop it from the notation and simply write S(U,M).

We recall the definition of some useful open compact subgroups and Hecke oper-
ators (see [Ger19, §2.3] for more details):

• For any place v of F+ which splits v = wwc in F, the maximal compact subgroup
GLn(OFw

). If v �∈ �∪Sp, Uv = ι−1
w GLn(OFw

), and 1 ≤ j ≤ n, then the unramified
Hecke operator Tj

w given by the double coset operator

Tj
w =

[
ι−1
w

(
GLn(OFw

)

(

wIdj 0

0 Idn−j

)
GLn(OFw

)

)
× Uv

]

acts on Sλ(U,M).
• For any place v of F+ which splits v = wwc in F, the Iwahori subgroup Iww ⊂

GLn(OFw
) of matrices which are upper-triangular modulo 
w.

• For any place v ∈ Sp and c ≥ b ≥ 0 with c ≥ 1, the subgroup Iwṽ(b, c) ⊂
GLn(OFṽ

) of matrices which are upper-triangular 
 c
ṽ and unipotent upper-

triangular modulo 
 b
ṽ . If Uv = ι−1

ṽ Iwṽ(b, c) for each v ∈ Sp and 1 ≤ j ≤ n,
then the re-normalised Hecke operator Uj

ṽ,λ of [Ger19, Definition 2.8] acts
on Sλ(U,M). (This Hecke operator depends on our choice of uniformizer 
ṽ .
However, the ordinary part of Sλ(U,M), defined below using these operators, is
independent of choices.)

• For any place v of F+ which splits v = wwc in F, the principal congruence
subgroup Kṽ(1) = ker(GLn(OFṽ

) → GLn(k(̃v))).

When Uv = ι−1
ṽ Iwṽ(b, c) for each v ∈ Sp, there is a canonical direct sum decomposition

Sλ(U,M) = Sord
λ (U,M) ⊕ Sn−ord

λ (U,M) with the property that Sord
λ (U,M) is the largest

submodule of Sλ(U,M) where each operator Uj

ṽ,λ (v ∈ Sp, j = 1, . . . , n) acts invertible
([Ger19, Definition 2.13]).

We recall some basic results about the spaces Sλ(U,M). We say that U is suffi-
ciently small if for g ∈ G(A∞

F+), the group G(F+)∩ gUg−1 is trivial. We have the following
simple lemma (cf. [Ger19, p. 1351]):

Lemma 1.24. — Suppose that U is sufficiently small and that M is O-flat. Then for any

c ≥ 1, the natural map Sλ(U,M)⊗O O/
 c → Sλ(U,M/(
 c)) is an isomorphism.

After fixing an isomorphism ι : Qp → C, we can describe the spaces Sλ(U,M) in
classical terms ([Ger19, Lemma 2.5]):
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Lemma 1.25. — Let ι : Qp → C be an isomorphism. Then there is an isomorphism

Sλ(U,M)⊗O,ι C ∼= ⊕σm(σ )HomU((M ⊗O,ι C)∨, σ∞)

respecting the action of Hecke operators at finite places away from � ∪ Sp, where the sum runs over

automorphic representations σ of G(AF+) such that for each embedding τ : F → C inducing a place v

of F+, σv is the restriction to G(F+
v ) of the dual of the irreducible algebraic representation of GLn(C)

of highest weight λι−1τ .

Part I: Analytic continuation of functorial liftings

The first part of this paper (§§2 – 3) is devoted to the proof of Theorem D from
the introduction, which shows that the automorphy of the nth symmetric power for one
cuspidal Hecke eigenform of level 1 implies the automorphy of the nth symmetric power
for all cuspidal Hecke eigenforms of level 1.

As described in the introduction, the proof has two main ingredients. The first,
which is the main result of §2, is that automorphy of symmetric powers can be prop-
agated along irreducible components of the Coleman–Mazur eigencurve. The second
ingredient, which is explained in §3, uses the main result of [BK05] and has already been
sketched in the introduction.

Here we make some further introductory remarks on §2. By making a suitable (in
particular, soluble) base change to a CM field, we translate ourselves to the setting of
definite unitary groups. We start from a classical point z0 of an eigenvariety for a rank
2 unitary group, E2, such that the nth symmetric power of the associated Galois repre-
sentation is known to be automorphic. We use Emerton’s construction of eigenvarieties
(involving his locally analytic Jacquet functor), and our point of view on eigenvarieties
and Galois representations is particularly influenced by those of [BC09] and [BHS17].
Like the authors of [BHS17], we rely in an essential way on the results of [KPX14],
which make it possible to spread out pointwise triangulations to global triangulations. We
consider the diagram:

E2

i2

Xps,2 × T2

Symn

En+1

in+1

Xps,n+1 × Tn+1

Here, En is an eigenvariety for a rank n + 1 unitary group, Xps,d is a certain rigid space
of d-dimensional p-adic Galois pseudocharacters and Td is a rigid space parameterising
characters of a p-adic torus. Our eigenvarieties come equipped with maps to these char-
acter varieties as part of their construction; combining this with the existence of a family
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of Galois pseudocharacters over the eigenvariety interpolating the global Langlands cor-
respondence at classical points gives the closed immersions id appearing in the diagram.
The map Symn corresponds to taking the nth symmetric power of the 2-dimensional pseu-
docharacter.

Our task is to show that if C is an irreducible component of E2 containing z0, then
Symn(i2(C)) is contained in the image of in. A classicality result (Lemma 2.30) will then
be used to show that for another classical point z1 of C, its symmetric power Symn(i2(z1))

is actually the image of a classical point of En+1.
To show that Symn(i2(C)) is indeed contained in the image of in, we combine a

simple lemma in rigid geometry (Lemma 2.2) with information coming from the local ge-
ometry of a certain natural locally closed neighbourhood of Symn(i2(z0)) in Xps,n+1 ×Tn+1

which contains open subspaces of both En+1 and Symn(i2(C)). This subspace is essentially
the trianguline variety, but since we work with spaces of pseudocharacters instead of rep-
resentations we restrict to open neighbourhoods in which our pseudocharacters are abso-
lutely irreducible and hence naturally lift to representations. Our results on the vanishing
of adjoint Selmer groups [NT20] are used to compare En+1 and the trianguline variety.
We proceed in a similar way to the proof of [BC09, Corollary 7.6.11], which shows that
vanishing of an adjoint Selmer group implies that in+1 induces an isomorphism between
completed local rings of the eigenvariety and the trianguline variety.

2. Trianguline representations and eigenvarieties

Throughout this section, we let p be a prime and let E ⊂ Qp be a coefficient field.
We write Cp for the completion of Qp. If X is a quasi-separated E-rigid space we let
X (Qp) =⋃E′⊂Qp

X (E′), where the union is over finite extensions of E. We can naturally

view X (Qp) as a subset of the set of closed points of the rigid space XCp
(where base ex-

tension of a quasi-separated rigid space is as defined in [BGR84, §9.3.6], see also [Con99,
§3.1]).

2.1. An ‘analytic continuation’ lemma. — Suppose given a diagram of E-rigid spaces

Y
β

G X
α

,

where α is a closed immersion. We identify X with a subspace of G. Let x ∈ Y be a point
such that β(x) ∈X .

Lemma 2.2. — Suppose that β−1(X ) contains an affinoid open neighbourhood of x. Then for

each irreducible component C of Y containing x, we have β(C) ⊂X .
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Proof. — We observe that β−1(X )∩C is a Zariski closed subset of C which contains
a non-empty affinoid open subset. This forces β−1(X ) ∩ C = C (apply [Con99, Lemma
2.2.3]), hence β(C) ⊂X . �

2.3. A Galois deformation space. — Let F, S, p be as in our standard assumptions (§1).
We assume that E contains the image of every embedding τ : F → Qp.

2.3.1. Trianguline deformations – infinitesimal geometry. — This section has been
greatly influenced by works of Bellaïche and Chenevier [BC09, Che11]. We use the
formalism of families of (ϕ,�Fṽ

)-modules, as in [KPX14]. Thus if v ∈ Sp and X is an
E-rigid space, one can define the Robba ring RX,Fṽ

; if V is a family of representations of
GFṽ

over X, then the functor D†
rig of [KPX14, Theorem 2.2.17] associates to V the family

D†
rig(V) of (ϕ,�Fṽ

)-modules over X which is, locally on X, finite free over RX,Fṽ
. We refer

to [HS16, §2] for the definitions of these objects, as well as more detailed references. If
X = Sp A, where A is an E-affinoid algebra, we write RX,Fṽ

=RA,Fṽ
. If δ : F×

ṽ → A× is a
continuous character, we have a rank one (ϕ,�Fṽ

)-module RA,Fṽ
(δv) defined by [KPX14,

Construction 6.2.4]. We will also have cause to mention the (ϕ,�)-cohomology groups
H∗

ϕ,γFṽ
(−) which are defined in [KPX14, §2.3].
Let v ∈ Sp, and let ρv : GFṽ

→ GLn(E) be a continuous representation. If δv =
(δv,1, . . . , δv,n) : (F×

ṽ )
n → E× is a continuous character, we call a triangulation of ρv of

parameter δv an increasing filtration of D†
rig(ρv) by direct summand (ϕ,�Fṽ

)-stable RE,Fṽ
-

submodules such that the successive graded pieces are isomorphic to RE,Fṽ
(δv,1), . . . ,

RE,Fṽ
(δv,n). We say that ρv is trianguline of parameter δv if it admits a triangulation of

parameter δv . If δv satisfies δv,i(
ṽ) ∈ O× for each i, then we say that δv is an ordinary
parameter. Equivalently, δv is ordinary if δv,i ◦ Art−1

Fṽ
extends to a continuous character of

GFṽ
for each i. For an ordinary parameter δv , ρv is trianguline of parameter δv if and only

if ρv has a filtration with successive graded pieces isomorphic to δv,1 ◦ Art−1
Fṽ
, . . . , δv,n ◦

Art−1
Fṽ

.
We say that the character δv is regular if for all 1 ≤ i < j ≤ n, we have δv,i/δv,j �= xav

for any av = (av,τ )τ ∈ Z
HomQp (Fṽ ,E)

≥0 , where by definition xav (y) =∏τ τ (y)
av,τ . Note that the

characters xav satisfy |xav (p)|p = p−∑τ av,τ , so there is an affinoid cover of the rigid space
Hom(F×

ṽ ,Gm) with each open containing only finitely many xav .
We define Tv = Hom((F×

ṽ )
n,Gm), a smooth rigid space over E, and write T reg

v ⊂
Tv for the Zariski open subspace of regular characters (Zariski open by the finiteness
observation in the preceding paragraph). We define Wv = Hom((O×

Fṽ
)n,Gm) and write

rv : Tv →Wv for the natural restriction map.

Lemma 2.4. — Let ρv : GFṽ
→ GLn(E) be a continuous representation. Then for any δv ∈

T reg
v (E), ρv admits at most one triangulation of parameter δv . If such a triangulation exists, then ρv is

strictly trianguline of parameter δv in the sense of [KPX14, Definition 6.3.1].
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Proof. — Suppose ρv admits a triangulation of parameter δv , so D†
rig(ρv) is

equipped with an increasing filtration Fil•. Following [KPX14, Definition 6.3.1], we need
to show that for each 0 ≤ i ≤ n the cohomology group H0

ϕ,γFṽ

((
D†

rig(ρv)/Fili
)
(δv,i+1)

−1
)

is one-dimensional. It follows from [KPX14, Proposition 6.2.8] that

H0
ϕ,γFṽ

(
grj

(
D†

rig(ρv)
)
(δv,i)

−1
)

vanishes when i < j and is one-dimensional when i = j.
The vanishing holds precisely because δv is regular. A dévissage completes the proof. �

Definition 2.5. — If δ : F×
ṽ → E× is a continuous character (hence locally Qp-analytic) we let

the tuple (wtτ (δ))τ∈HomQp (Fṽ ,E) be such that the derivative of δ is the map

Fṽ → E

x �→
∑

τ∈HomQp (Fṽ ,E)

−wtτ (δ)τ (x).

We can extend this discussion to Artinian local rings. Let C ′
E denote the category

of Artinian local E-algebras with residue field E. If A ∈ C ′
E, then RA,Fṽ

= RE,Fṽ
⊗E A. If

ρv : GFṽ
→ GLn(A) is a continuous representation, then D†

rig(ρv) is a free RA,Fṽ
-module.

If δv ∈ Tv(A), we call a triangulation of ρv of parameter δv an increasing filtration of
D†

rig(ρv) by direct summand (ϕ,�Fṽ
)-stable RA,Fṽ

-submodules such that the successive
graded pieces are isomorphic to RA,Fṽ

(δv,1), . . . , RA,Fṽ
(δv,n).

If ρv : GFṽ
→ GLn(E) is a continuous representation and Fv is a triangulation of

parameter δv ∈ Tv(E), then we write Dρv,Fv,δv : C ′
E → Sets for the functor which associates

to any A the set of equivalence classes of triples (ρ ′
v,F ′

v, δ
′
v), where:

• ρ ′
v : GFṽ

→ GLn(A) is a lifting of ρv , continuous with respect to the p-adic topol-
ogy on A.

• δ′
v ∈ Tv(A) is a lifting of δv .

• F ′
v is a triangulation of ρ ′

v of parameter δ′
v which lifts Fv (note that there is a

canonical isomorphism D†
rig(ρ

′
v) ⊗A E ∼= D†

rig(ρv), as D†
rig commutes with base

change).

Triples (ρ ′
v,F ′

v, δ
′
v), (ρ

′′
v ,F ′′

v , δ
′′
v ) are said to be equivalent if there exists g ∈ 1 + Mn(mA)

which conjugates ρ ′
v to ρ ′′

v and takes F ′
v to F ′′

v .
We write Dρv for the functor of equivalence classes of lifts ρ ′

v : GFṽ
→ GLn(A).

Thus forgetting the triangulation determines a natural transformation Dρv,Fv,δv →Dρv .

Proposition 2.6. — Suppose that δv ∈ T reg
v (E). Then the natural transformation Dρv,Fv,δv →

Dρv is relatively representable, and injective on A-points for every A ∈ C ′
E. If ρv is absolutely irreducible,

then both functors are pro-representable, in which case there is a surjective morphism Rρv → Rρv,Fv,δv

of (pro-)representing objects.

Proof. — If Fṽ = Qp, this is contained in [BC09, Proposition 2.3.6] and [BC09,
Proposition 2.3.9]. The general case is given by [Nak13, Lemma 2.35, Proposition 2.37,
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Corollary 2.38] (noting that Nakamura works with Berger’s category of B-pairs, which is
equivalent to the category of (ϕ,�)-modules over the Robba ring). �

A consequence of Proposition 2.6 is that when δv is regular, Dρv,Fv,δv (E[ε]) can be
identified with a subspace of Dρv (E[ε]) = H1(Fṽ,adρv). Since Fv is moreover uniquely
determined by δv (Lemma 2.4), this subspace depends only on δv , when it is defined. We
write H1

tri,δv
(Fṽ,adρv) for this subspace. We observe that there is a natural transforma-

tion Dρv,Fv,δv → Spf ÔWv,rv(δv), which sends a triple (ρ ′
v,F ′

v, δ
′
v) to the character rv(δ

′
v).

Evaluating on E[ε]-points, we obtain an E-linear map

H1
tri,δv

(Fṽ,adρv) → Trv(δv)Wv,

where Trv(δv)Wv denotes the Zariski tangent space of Wv at the point rv(δv). This map
appears in the statement of the following lemma:

Lemma 2.7. — Let ρv : GFṽ
→ GLn(E) be a continuous representation. Suppose that:

(1) ρv is de Rham.

(2) ρv is trianguline of parameter δv ∈ T reg
v (E).

(3) For each τ ∈ HomQp
(Fṽ,E), we have

wtτ (δv,1) < wtτ (δv,2) < · · · <wtτ (δv,n).

We note that the labelled weights wtτ coincide with the labelled Hodge–Tate weights of ρv (cf. [KPX14,

Lemma 6.2.12]).

Then the natural map

ker
(
H1

tri,δv
(Fṽ,adρ) → Trv(δv)Wv

)→ H1(Fṽ,adρ)

has image contained in

H1
g (Fṽ,adρ) = ker(H1(Fṽ,adρ) → H1(Fṽ,adρ ⊗Qp

BdR)).

Proof. — We must show that if (ρ ′
v,F ′

v, δ
′
v) ∈ Dρv,Fv,δv (E[ε]) is an element in the

kernel of the map to Trv(δv)Wv , then ρ ′
v is de Rham. When Fṽ = Qp, this follows from

[BC09, Proposition 2.3.4]; in general it follows from modifying their argument as in
[HS16, Proposition 2.6] (the coefficients in this latter result are assumed to be a field,
whilst we need coefficients E[ε], but the same proof works with any Artin local E-algebra
as coefficient ring). �

We say that a triangulation of a representation ρv : GFṽ
→ GLn(Qp) of parameter

δv is non-critical if for each τ ∈ HomQp
(Fṽ,E), the labelled weights are an increasing

sequence of integers:

wtτ (δv,1) < wtτ (δv,2) < · · · <wtτ (δv,n).
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In other words, if δv satisfies condition (3) of Lemma 2.7.
We now give a criterion for a de Rham representation to have a triangulation

satisfying this condition. This generalizes [HS16, Lemma 2.9], which treats the crystalline
case.

Lemma 2.8. — Let v ∈ Sp, and let ρv : GFṽ
→ GLn(Qp) be a de Rham representation

satisfying the following conditions:

(1) There exists an increasing filtration of the associated Weil–Deligne representation WD(ρv) (by sub-

Weil–Deligne representations) with associated gradeds given by characters χv,1, . . . , χv,n : WFṽ
→

Q
×
p .

(2) For each embedding τ : Fṽ → E, the τ -Hodge–Tate weights of ρv are distinct.

(3) For each embedding τ : Fṽ → E, let kτ,1 < · · · < kτ,n denote the strictly increasing sequence of

τ -Hodge–Tate weights of ρv . Then we have for all τ ∈ HomQp
(Fṽ,E):

vp(χv,1(p)) < kτ,2 +
∑
τ ′ �=τ

kτ ′,1

and for all i = 2, . . . , n − 1:

vp((χv,1 . . . χv,i)(p)) < kτ,i+1 +
∑
τ ′ �=τ

kτ ′,i +
∑
τ ′

i−1∑
j=1

kτ ′,j.

Then ρv is trianguline of parameter δv , where for each i = 1, . . . , n, δv,i : F×
ṽ → Q

×
p is defined by the

formula δv,i(x) = (χv,i ◦ ArtFṽ
(x))

∏
τ τ (x)

−kτ,i . In particular, the pair (ρv, δv) satisfies condition

(3) of Lemma 2.7.

Proof. — The filtration of WD(ρv) determines an increasing filtration 0 = M0 ⊂
M1 ⊂ M2 ⊂ · · · ⊂ Mn = Dpst(ρv) of Dpst(ρv) by sub-(ϕ,N,GFṽ

)-modules (via the equiv-
alence of categories of [BS07, Proposition 4.1]). The main result of [Ber08] states that
there is an equivalence of tensor categories between the category of filtered (ϕ,N,GFṽ

)-
modules and a certain category of (ϕ,�Fṽ

)-modules (restricting to the usual equivalence
between weakly admissible filtered (ϕ,N,GFṽ

)-modules and (ϕ,�Fṽ
)-modules associated

to de Rham representations). We thus obtain a triangulation of the associated (ϕ,�Fṽ
)-

module of ρv .
A filtered (ϕ,N,GFṽ

)-module M of rank 1 is determined up to isomorphism
by its associated character χ : WFṽ

→ Q
×
p and the (unique) integers aτ such that

graτ (MFṽ
⊗Fṽ⊗Qp Qp,τ⊗id Qp) �= 0. The corresponding rank-1 (ϕ,�Fṽ

)-module is the one

associated to the character δ : F×
ṽ → Q

×
p given by the formula δ = x−av (χ ◦ ArtFṽ

) (cf.
[KPX14, Example 6.2.6(3)]). What we therefore need to verify is that if aτ,i ∈ Z are the
integers for which graτ,i(Mi/Mi−1 ⊗Fṽ,0,τ Qp) �= 0, then aτ,i = kτ,i .
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This follows from hypothesis (3) of the lemma, together with the fact that Dpst(ρv)

is a weakly admissible filtered (ϕ,N,GFṽ
)-module, as we now explain. We show by induc-

tion on i that the jumps in the induced Hodge–de Rham filtration of Mi are as claimed.
For M1, if these jumps are kτ,jτ then we have for each τ

1
[Fṽ : Qp]

⎛
⎝kτ,2 +

∑
τ ′ �=τ

kτ ′,1

⎞
⎠>

1
[Fṽ,0 : Qp]vp(χv,1(
v))

= tN(M1) ≥ tH(M1) = 1
[Fṽ : Qp]

∑
τ ′

kτ ′,jτ ′ .

Since the sequences kτ,i are strictly increasing, this is possible only if jτ = 1 for each τ . In
general, if the jumps of Mi−1 are as expected and Mi/Mi−1 has jumps kτ,jτ then we have
for each τ

1
[Fṽ : Qp]

⎛
⎝kτ,i+1 +

∑
τ ′ �=τ

kτ ′,i +
∑
τ ′

i−1∑
j=1

kτ ′,j

⎞
⎠> tN(Mi)

≥ tH(Fili) = 1
[Fṽ : Qp]

⎛
⎝∑

τ ′
kτ ′,jτ ′ +

∑
τ ′

i−1∑
j=1

kτ ′,j

⎞
⎠ .

Once again this is possible only if jτ = i for each τ . �

Definition 2.9. — We say that a character δv ∈ Tv(Qp) is numerically non-critical if it satisfies

the following conditions:

(1) For each τ ∈ HomQp
(Fṽ,E), the labelled weights wtτ (δv,1), . . ., wtτ (δv,n) are an increasing

sequence of integers.

(2) For each τ ∈ HomQp
(Fṽ,E), and for each i = 1, . . . , n − 1, we have

vp((δv,1 . . . δv,i)(p)) < wtτ (δv,i+1)−wtτ (δv,i).

Following [BC09, Remark 2.4.6], we may reformulate Lemma 2.8 as follows: let
ρv : GFṽ

→ GLn(Qp) be a Hodge–Tate regular de Rham representation, and suppose
that WD(ρv) is equipped with an increasing filtration such that the associated gradeds are
given by characters χv,1, . . . , χv,n : WFṽ

→ Q
×
p . Let kτ,1 < · · · < kτ,n be the strictly increas-

ing sequences of τ -Hodge–Tate weights, and let δv ∈ T (Qp) be the character defined by
the formula δv,i(x) = (χv,i ◦ ArtFṽ

(x))
∏

τ τ (x)
−kτ,i . Then if δv is numerically non-critical,

the representation ρv admits a non-critical triangulation with parameter δv .
The most important case for us is that of 2-dimensional de Rham representations

of GQp
, and their symmetric powers. In this case the possible triangulations admit a par-
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ticularly explicit description (cf. [Col08]; this description can be easily justified, including
the case p = 2, using the results of [Ber08]):

Example 2.10. — Let ρ : GQp
→ GL2(Qp) be a de Rham representation with Hodge–Tate

weights k1 < k2 such that WD(ρ)ss = χ1 ⊕ χ2 with χi : WQp
→ Q

×
p . Assume for simplicity that

χ1 �= χ2. Then we have the following possibilities:

(1) If ρ is not potentially crystalline, then we can choose χ1, χ2 so that χ1 = χ2(| · |p ◦ Art−1
Qp
). In

this case ρ has a unique triangulation. It is non-critical, of parameter

δ = (x−k1χ1 ◦ ArtQp
, x−k2χ2 ◦ ArtQp

).

(2) If ρ is potentially crystalline and irreducible, or reducible and indecomposable, ρ has two triangula-

tions. Both of these are non-critical, and their respective parameters are

δ = (x−k1χ1 ◦ ArtQp
, x−k2χ2 ◦ ArtQp

)

and

δ = (x−k1χ2 ◦ ArtQp
, x−k2χ1 ◦ ArtQp

).

(3) If ρ is decomposable, we can assume ρ ∼= ψ1 ⊕ ψ2 where ψi has Hodge–Tate weight ki and

WD(ψi) = χi . In this case ρ admits two triangulations. The non-critical triangulation has pa-

rameter

δ = (x−k1χ1 ◦ ArtQp
, x−k2χ2 ◦ ArtQp

)

and the critical triangulation has parameter

δ = (x−k2χ2 ◦ ArtQp
, x−k1χ1 ◦ ArtQp

)

(see for example [Ber17, Example 3.7] for the crystalline case).

We now consider the global situation. We define T =∏v∈Sp
Tv , T reg =∏v∈Sp

T reg
v ,

and W =∏v∈Sp
Wv . We write r =∏v∈Sp

rv : T →W for the product of restriction maps.
Let Gn = (GLn × GL1)� {±1} denote the group scheme defined in [CHT08, §2.1], νGn

:
Gn → GL1 its character, and suppose given a continuous homomorphism ρ : GF+,S →
Gn(E) such that νGn

◦ ρ = ε1−nδn
F/F+ . We write adρ for the E[GF+,S]-module given by

adjoint action of Gn on the Lie algebra of GLn. We write Dρ : C ′
E → Sets for the functor

which associates to each A ∈ C ′
E the set of ker(GLn(A) → GLn(E))-conjugacy classes of

lifts ρ ′ : GF+,S → Gn(A) of ρ such that νGn
◦ ρ ′ = ε1−nδn

F/F+ .
If � ⊂ GF,S is a subgroup, then ρ(�) ⊂ G◦

n (E) = GLn(E)×GL1(E), and we follow
[CHT08] in writing ρ|� : � → GLn(E) for the projection to the first factor. If v ∈ S, then
there is a natural functor Dρ →Dρ|GFṽ

, given by restriction ρ ′ �→ ρ ′|GFṽ
.
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Let δ = (δv)v∈Sp
∈ T reg(E) be such that for each v ∈ Sp, ρv = ρ|GFṽ

is trianguline of
parameter δv . We define a functor

Dρ,F ,δ =Dρ ×∏
v∈Sp

Dρv

∏
v∈Sp

Dρv,Fv,δv

and H1
tri,δ(FS/F+,adρ) =Dρ,F ,δ(E[ε]) ⊂ H1(FS/F+,adρ).

Proposition 2.11. — Keeping assumptions as above, suppose further that the following conditions

are satisfied:

(1) For each v ∈ Sp, ρv is de Rham.

(2) For each v ∈ S, WD(ρ|GFṽ
) is generic, in the sense of [All16, Definition 1.1.2].

(3) For each v ∈ Sp and for each τ ∈ HomQp
(Fṽ,E), we have

wtτ (δv,1) < wtτ (δv,2) < · · · <wtτ (δv,n).

In other words, the triangulation of ρv with parameter δv is non-critical.

(4) H1
f (F

+,adρ) = 0.

Then dimE H1
tri,δ(FS/F+,adρ) ≤ dimE W .

Proof. — Our assumption that WD(ρ|GFṽ
) is generic means that for each v ∈ Sp,

H1
f (Fṽ,adρ) = H1

g (Fṽ,adρ) and for each v ∈ S − Sp, H1
f (Fṽ,adρ) = H1(Fṽ,adρ) (see

[All16, Remark 1.2.9]). Lemma 2.7 then implies that the map H1
tri,δ(FS/F+,adρ) →

Tr(δ)W is injective (its kernel being contained in H1
f (F

+,adρ) = 0). �

2.11.1. Trianguline representations – global geometry. — We fix a continuous pseu-
docharacter τ : GF,S → k of dimension n ≥ 1 which is conjugate self-dual, in the sense
that τ ◦ c = τ∨ ⊗ ε1−n. (We define pseudocharacters following Chenevier [Che14], where
they are called determinants. For a summary of this theory, including what it means for
a pseudocharacter of GF,S to be conjugate self-dual, see [NT20, §2].) Let Rps denote
the universal pseudodeformation ring representing the functor of lifts of τ to conjugate
self-dual pseudocharacters over objects of CO (cf. [NT20, §2.19]). If v ∈ Sp, let Rps,v de-
note the pseudodeformation ring of τ |GFṽ

. We write Xps for the rigid generic fibre of
Rps, and Xps,v for the rigid generic fibre of Rps,v . Then there is a natural morphism
Xps → Xps,p =∏v∈Sp

Xps,v of rigid spaces over E. We recall that to any representation
ρ : GF,S → GLn(E) such that trρ = τ , and which is conjugate self-dual in the sense that
ρc ∼= ρ∨ ⊗ ε1−n, is associated a closed point trρ ∈ Xps(E). Conversely, if t ∈ Xps(E), then
there exists a semi-simple conjugate self-dual representation ρ : GF,S → GLn(Qp) such
that trρ = t, and this representation is unique up to isomorphism.

If ρ : GF,S → GLn(E) is an absolutely irreducible representation such that ρc ∼=
ρ∨ ⊗ ε1−n, then there is a homomorphism ρ1 : GF+,S → Gn(E) such that ρ1|GF,S = ρ and
νGn

◦ ρ1 = ε1−nδa
F/F+ . The integer a ∈ {0,1} is uniquely determined by ρ, and any two
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such extensions are conjugate by an element of GLn(Qp). (See [CHT08, Lemma 2.1.4].)
The following lemma extends this to objects of CE:

Lemma 2.12. — Let ρ : GF,S → GLn(E) be an absolutely irreducible representation such that

ρc ∼= ρ∨ ⊗ ε1−n, and fix an extension ρ1 as in the previous paragraph. Let A ∈ CE. Then the following

sets are in canonical bijection:

(1) The set of ker(GLn(A) → GLn(E))-conjugacy classes of liftings ρ ′ : GF,S → GLn(A) of ρ

such that trρ ′ ◦ c = tr(ρ ′)∨ ⊗ ε1−n.

(2) The set of ker(GLn(A) → GLn(E))-conjugacy classes of liftings ρ ′
1 : GF+,S → Gn(A) of ρ1

such that ν ◦ ρ ′
1 = ε1−nδa

F/F+ .

Proof. — There is an obvious map sending ρ ′
1 to trρ ′

1|GF,S . We need to check that
this is bijective (at the level of conjugacy classes). To check injectivity, let ρ ′

1, ρ
′′
1 : GF+,S →

Gn(A) be two such homomorphisms and suppose that ρ ′
1|GF,S , ρ ′′

1 |GF,S are ker(GLn(A) →
GLn(E))-conjugate. We must show that ρ ′

1, ρ ′′
1 are themselves conjugate. We may suppose

that in fact ρ ′
1|GF,S = ρ ′′

1 |GF,S . In this case Schur’s lemma (cf. [CHT08, Lemma 2.1.8]),
applied to ρ ′

1(c)
−1ρ ′′

1 (c), shows that ρ ′
1, ρ ′′

1 are equal.
Now suppose given ρ ′ : GF,S → GLn(A) lifting ρ, and such that trρ ′ ◦ c = tr(ρ ′)∨ ⊗

ε1−n. Let J ∈ GLn(E) be defined by ρ1(c) = (J,−νGn
◦ ρ1(c))j (cf. [CHT08, Lemma

2.1.1]), so that ρ(σ c) = Jρ(σ)−tJ−1 ⊗ ε1−n for all σ ∈ GF,S. Then [Che14, Example 3.4]
implies the existence of a matrix J′ ∈ GLn(A) lifting J such that ρ ′(σ c) = J′(ρ ′(σ ))−t(J′)−1

for all σ ∈ GF,S. By [CHT08, Lemma 2.1.1], this implies the existence of a homo-
morphism ρ ′

1 : GF+,S → Gn(A) lifting ρ1 and such that ρ ′
1|GF,S = ρ ′. This completes the

proof. �

There is a Zariski open subspace X v−irr
ps,v ⊂Xps,v consisting of those points at which

the universal pseudocharacter is absolutely irreducible. We write X p−irr
ps,p =∏v∈Sp

X v−irr
ps,v

and X p−irr
ps for the pre-image of X p−irr

ps,p . Thus again there is a canonical morphism
X p−irr

ps → X p−irr
ps,p . According to [Che14, §4.2], there exists an Azumaya algebra A over

X v−irr
ps,v and a homomorphism ρu

v : GFṽ
→ A× such that trρu

v is the universal pseudochar-
acter.

Lemma 2.13. — Let ρv : GFṽ
→ GLn(E) be an absolutely irreducible representation, cor-

responding to a point z = trρv ∈ X v−irr
ps,v (E). Then there exists an affinoid open neighbourhood

z ∈ U ⊂X v−irr
ps,v (E) and an isomorphism A|U ∼= Mn(OU).

Proof. — Let U be an open affinoid neighbourhood of z. The stalk OU ,z is a
Henselian local ring ([FvdP04, Proposition 7.1.8]). Thus the stalk Az is an Azumaya
algebra over a Henselian local ring which is split over the closed point; it is therefore split,
i.e. there exists an isomorphism Az

∼= Mn(OU ,z). After shrinking U , this extends to an
isomorphism A(U) ∼= Mn(O(U)), as desired. �
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Lemma 2.14. — (1) Let z ∈ X p−irr
ps,p (E) be the closed point corresponding to the isomorphism

class of a tuple (ρv)v∈Sp
of absolutely irreducible representations ρv : GFṽ

→ GLn(E). Then there

is a canonical isomorphism

TzX p−irr
ps,p

∼= ⊕v∈Sp
H1(Fṽ,adρv).

(2) Let z ∈X p−irr
ps (E) be the closed point determined by a representation ρ : GF+,S → Gn(E) such that

for each v ∈ Sp, ρ|GFṽ
is absolutely irreducible. Then there is a canonical isomorphism

TzX p−irr
ps

∼= H1(GF+,S,adρ),

which has the property that the diagram

TzX p−irr
ps H1(GF+,S,adρ)

TzX p−irr
ps,p ⊕v∈Sp

H1(Fṽ,adρv)

commutes.

Proof. — The first part follows from [Che14, §4.1], which states that the completed
local ring of X v−irr

ps,v at the E-point corresponding to an absolutely irreducible represen-
tation ρv : GFṽ

→ GLn(E) pro-represents the functor Dρv . The second follows from this
and Lemma 2.12. �

Proposition 2.15. — Let v ∈ Sp, and let ρv : GFṽ
→ GLn(E) be an absolutely irreducible

representation which is trianguline of parameter δv ∈ T reg
v (E). Let z ∈X v−irr

ps,v ×T reg
v be the closed point

corresponding to the pair (ρv, δv). Then:

(1) There exists an affinoid open neighbourhood Uv ⊂ X v−irr
ps,v × T reg

v of z over which there exists a

universal representation ρu
v : GFṽ

→ GLn(O(Uv)). Let Vv ⊂ Uv denote the set of points (ρ ′
v, δ

′
v)

such that ρ ′
v is trianguline of parameter δ′

v , and let Zv ⊂ Uv denote the Zariski closure of Vv . Then

Vv is the set of points of a Zariski open subspace of Zv .

(2) The Zariski tangent space of Zv at z is contained in the subspace H1
tri,δv

(Fṽ,adρv) of the Zariski

tangent space of X v−irr
ps,v × T reg

v at z.

Proof. — By Lemma 2.13, there is an affinoid neighbourhood Uv ⊂ X v−irr
ps,v × T reg

v

of z over which there exists a universal representation ρu
v : GFṽ

→ GLn(O(Uv)). We can
assume without loss of generality that Uv is connected. By [KPX14, Corollary 6.3.10],
there is a reduced rigid space Z ′ over E and a proper birational morphism f : Z ′ → Zv

having the following properties:
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• For every point z′ ∈ Z ′, the absolutely irreducible representation ρf (z′) is trian-
guline.

• There is an increasing filtration 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = D†
rig(f

∗(ρu))) by
coherent (ϕ,�Fṽ

)-stable RZ ′,Fṽ
-submodules.

• There exists a Zariski closed subset Z ′
b ⊂ Z ′ such that Z ′

b ∩ f −1(Vv) = ∅ and
for each z′ ∈ Z ′ − Z ′

b, the pullback of F• to D†
rig(ρf (z′)) is a triangulation of

parameter δf (z′).
• Over Z ′ − Z ′

b, F• is in fact a filtration by local direct summand RZ ′,Fṽ
-

submodules.
• The map f factors through a proper birational morphism f̃ : Z ′ → Z̃v , where
Z̃v is the normalisation of Zv . Moreover, f̃ factors as the composition of a se-
quence of proper birational morphisms between normal rigid spaces

Z ′ =Zm →Zm−1 → ·· ·Z1 = Z̃v

where each morphism Zi → Zi−1 is glued, locally on the target, from analyti-
fications3 of birational projective schemes over Spec(A), with Sp(A) ⊂ Zi−1 an
affinoid open.

Note that the final point is a consequence of the construction in the proof of [KPX14,
Theorem 6.3.9]. The third point actually implies that Z ′ = Z ′

b 
 f −1(Vv), hence Zv =
f (Z ′

b) 
 Vv . Since f is proper this shows that Vv is Zariski open in Zv .
Let z̃1, . . . , z̃m ∈ Z̃v be the closed points of the normalisation with image in Zv

equal to z. For each 1 ≤ j ≤ m, let z′
j be a closed point of the preimage of z̃j in Z ′.

We denote by zj the image of z′
j in any of the Zi , for 1 ≤ i ≤ m. We claim that the map

ÔZ̃v,z̃j
→ ÔZ ′,z′

j
on completed local rings is injective; indeed, it follows from the final point

in the itemized list above that we need to show injectivity for each map ÔZi,zj
→ ÔZi+1,zj

.
Each of these maps coincides with the map on complete local rings Âx → ÔX,x associated
with a (projective, birational) morphism of schemes X → Spec(A), where A is the ring
of functions on an open affinoid neighbourhood of zj ∈ Zi , x ∈ Spec(A) is the maximal
ideal given by zj and x′ ∈ X is a closed point mapping to x. The complete local ring Âx

is a domain (by normality and excellence of Ax) and the map Ax → OX,x is injective (by
dominance of X → Spec(A)), so [GD71, Corollaire 3.9.8] gives the desired injectivity.
The map ÔZv,z →∏m

i=1 ÔZ̃v,z̃i
is the normalisation of ÔZv,z, so it is also injective. Putting

everything together, we have shown that the map ÔZv,z →∏m

i=1 ÔZ ′
v,z

′
i
is injective.

After possibly extending E, we can assume that all of the points z′
i in Z ′ have

residue field E. The existence of a global triangulation over Z ′ − Z ′
b implies that for

each i = 1, . . . ,m, there is a classifying map Rρv,Fv,δv → ÔZ ′,z′
i
, where Fv is the unique

3 Here we mean the relative analytification defined by Köpf [Köp74], see also [Con06, Example 2.2.11].
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triangulation of ρv of parameter δv . This implies the existence of a commutative diagram

ÔUv,z ÔZv,z

Rρv,Fv,δv

∏m

i=1 ÔZ ′,z′
i
,

where the left vertical arrow is surjective (Proposition 2.6) and the top horizontal arrow
is surjective. We have already noted that the right vertical arrow is injective. These facts
together imply that the top horizontal arrow factors through a surjective map Rρv,Fv,δv →
ÔZv,z. This implies the desired result at the level of Zariski tangent spaces. �

Remark 2.16. — Prompted by a referee, we note that the definition of ‘Zariski
dense’ given in [KPX14, Definition 6.3.2] is somewhat non-standard. In this paper (and
in other references we cite such as [BHS17]), a subset Z of a rigid space X is called Zariski
dense if the smallest closed analytic subset of X which contains Z is X. In [KPX14,
Definition 6.3.2] the stronger condition is imposed that Z is Zariski dense (in the usual
sense) in each member of some admissible affinoid cover of X.

When we apply [KPX14, Corollary 6.3.10] in the above proof, we have a Zariski
dense subset of an affinoid, so there is no discrepancy between the definitions in this case.
Eugen Hellmann has explained to us that the crucial result [KPX14, Theorem 6.3.9]
does in fact hold with the weaker, standard definition of Zariski dense. Since it may be of
interest, we sketch the argument.

We start with X, δ, M as in [KPX14, Theorem 6.3.9] and suppose we have a
Zariski dense (in the usual sense) subset Xalg ⊂ X satisfying the assumptions of loc. cit. We
may assume that X is normal and connected, and will show that Xalg can be enlarged to
a subset which is Zariski dense in the stronger sense of [KPX14].

There are coherent sheaves Hi
ϕ,γK

(M∨(δ)), Hi
ϕ,γK

(M∨(δ)/tσ ) on X, which are lo-
cally free over a non-empty (hence dense) Zariski open subset U ⊂ X. At points z in
the Zariski dense subset Xalg ∩ U, the fibre H0

ϕ,γK
(M∨(δ)) ⊗OX k(z) ∼= H0

ϕ,γK
(M∨

z (δz))

has dimension one and the map Mz → Rk(z)(πK)(δz) dual to a non-zero element of
this fibre is surjective. The latter condition is equivalent to non-vanishing of the map
H0

ϕ,γK
(M∨(δ)) ⊗OX k(z) → H0

ϕ,γK
(M∨(δ)/tσ ) ⊗OX k(z) for every p-adic embedding σ .

These conditions hold over a Zariski open subset U′ ⊂ U. Since U′ contains Xalg ∩ U,
it is also Zariski dense in X. Moreover, U′ contains a Zariski dense subset of every affi-
noid open V ⊂ X. Indeed, the intersection V ∩ U with the Zariski open and dense subset
U contains an affinoid open subset of V. Repeating this step, the intersection V ∩ U′

also contains an affinoid open subset of V. We have shown that we obtain the desired
enlargement of Xalg by adjoining U′.
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2.17. The unitary group eigenvariety. — Now let F,S, p,G = Gn be as in our standard
assumptions (§1). We continue to assume that E contains the image of every embedding
τ : F → Qp. In particular, the reductive group ResF+/Q Gn splits over E.

Let Un =∏v Un,v ⊂ Gn(A∞
F+) be an open compact subgroup such that for every

finite place v �∈ S of F+, Un,v is hyperspecial maximal compact subgroup of Gn(F+
v ). We

define TS
n =O[T1

w, . . . ,Tn
w, (T

n
w)

−1] ⊂O[US
n\Gn(A

∞,S
F+ )/US

n ] to be the algebra generated
by the unramified Hecke operators at split places v = wwc of F+ not lying in S. These
operators were defined in §1.23.

We write Tn ⊂ Bn = TnNn ⊂ GLn for the usual maximal torus and upper triangular
Borel subgroup, and define E-rigid spaces

Wn = Hom(
∏
v∈Sp

Tn(OFṽ
),Gm)

and

Tn = Hom(
∏
v∈Sp

Tn(Fṽ),Gm).

Restriction of characters determines a morphism r : Tn → Wn of rigid spaces. Note that
the spaces Tn, Wn may be canonically identified with the spaces T , W of the previous
section.

We fix a choice of isomorphism ι : Qp → C. If π is an automorphic represen-
tation of Gn(AF+) with πUn �= 0, there is a corresponding semisimple Galois represen-
tation rπ,ι : GF,S → GLn(Qp) (cf. Corollary 1.3), which satisfies local-global compati-
bility at each place of F. The space ι−1(π∞)Un is naturally an isotypic TS

n -module,
which therefore determines a homomorphism ψπ : TS

n → Qp. We call an accessible re-

finement of π a choice χ = (χv)v∈Sp
for each v ∈ Sp of a (necessarily smooth) character

χv : Tn(Fṽ) → Q
×
p which appears as a subquotient of the normalised Jacquet module

ι−1rNn
(πv) = ι−1(πv,Nn(Fṽ )δ

−1/2
Bn

); equivalently, for which there is an embedding of πv into
the normalised induction i

GLn

Bn
ιχv . Note that χ ∈ Tn(Qp).

Lemma 2.18. — Let π be an automorphic representation of Gn(A
+
F ), and let χ = (χv)v∈Sp

be an accessible refinement of π . Then for each v ∈ Sp, there is an increasing filtration of recT
Fṽ
(ι−1πv)

by sub-Weil–Deligne representations with graded pieces

χv,1| · |(1−n)/2 ◦ ArtFṽ
, . . . , χv,n| · |(1−n)/2 ◦ ArtFṽ

.

Proof. — Since πv admits an accessible refinement, it is a subquotient of a principal
series representation. Suppose that recFṽ

(πv) = ⊕k
i=1 Spni

(ψi| · |(ni−1)/2) for some charac-
ters ψi : F×

ṽ → C×. By the Langlands classification, πv is isomorphic to a subquotient of
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the normalised induction

� = i
GLn

P Stn1(ψ1)⊗ · · · ⊗ Stnk
(ψk),

where P ⊂ GLn is the standard parabolic subgroup corresponding to the partition n =
n1 + n2 + · · · + nk . It will therefore suffice to show the stronger statement that if α =
α1 ⊗ · · · ⊗ αn is a subquotient of the normalised Jacquet module of �, then there is an
increasing filtration of ⊕k

i=1 Spni
(ψi| · |(ni−1)/2) by sub-Weil–Deligne representations with

graded pieces given by α1 ◦ ArtFṽ
, . . . , αn ◦ ArtFṽ

. We recall that each Spni
(ψi| · |(ni−1)/2)

comes with a standard basis e1, e2, . . . , eni
. We concatenate and relabel these bases so that

e1, e2, . . . , en is a basis for ⊕k
i=1 Spni

(ψi| · |(ni−1)/2) with e1+∑j−1
i=1 ni

, . . . e∑j

i=1 ni
the standard basis

for Spnj
(ψj| · |(nj−1)/2).

We first treat the case k = 1, n1 = n. After twisting we can assume that ψ = 1. Then
the normalised Jacquet module of Stn equals | · |(n−1)/2 ⊗ · · · ⊗ | · |(1−n)/2, while there is a
unique invariant flag of Spn(| · |(n−1)/2) given by Fili = span(e1, . . . , ei) (i = 1, . . . , n) which
has the desired graded pieces.

Now we return to the general case. Using [Zel80, Theorem 1.2], we see that the
irreducible subquotients of the normalised Jacquet module of � are precisely the charac-
ters βw−1(1) ⊗ · · · ⊗ βw−1(n), where w ∈ Sn is any permutation which is increasing on each
of the sets {1, . . . , n1}, {n1 + 1, . . . , n1 + n2}, . . . , {n1 + · · · + nk−1 + 1, . . . , n1 + · · · + nk},
and (β1, . . . , βn) is the concentration of the tuples (ψi| · |(ni−1)/2, . . . ,ψi| · |(1−ni)/2) for
i = 1, . . . , k.

We see that the increasing filtration of

⊕k
i=1 Spni

(ψi| · |(ni−1)/2)

given by Filj = span(ew−1(1), . . . , ew−1(j)) is a filtration by sub-Weil–Deligne representations
which has the desired property. This completes the proof. �

If χ is an accessible refinement of π , then we write ν(π,χ) ∈ Tn(Qp) for the char-
acter

(2.18.1) ν(π,χ) = κ(π) · (χvι
−1δ

−1/2
Bn

)v∈Sp
,

where κ(π) ∈ Tn(E) is the (Bn-dominant) Qp-algebraic character which is the highest
weight of ι−1π∞. If κ(π)v = (κτ,1 ≥ κτ,2 ≥ · · · ≥ κτ,n)τ :Fṽ→Qp

then the labelled Hodge–
Tate weights of rπ,ι|GFṽ

, in increasing order, are (−κτ,1 < −κτ,2 + 1 < · · · < −κτ,n + n −
1)τ :Fṽ→Qp

.
We write jn : Tn → Tn for the map defined by the formula

jn(ν)v = νv · (1, ε−1 ◦ ArtFṽ
, . . . , ε1−n ◦ ArtFṽ

).

The reason for introducing this map is that if π is an automorphic representation of
Gn(AF+) and χ is an accessible refinement, then the parameter δ associated to χ | · |(1−n)/2
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by the formula of Lemma 2.8 satisfies jn(ν(π,χ)) = δ. We call the accessible refinement
χ numerically non-critical or ordinary if δ is. Note that this property depends on the pair
(π,χ) and not just on χ .

2.18.1. Emerton’s eigenvariety construction. — We now describe the construction, fol-
lowing Emerton [Eme06b], of the (tame level Un) eigenvariety for Gn. We use Emerton’s
construction because we do not want to restrict to considering π with Iwahori-fixed vec-
tors at places in Sp (as is done, for example, in [BC09]) and it seems to us that Emerton’s
representation-theoretic viewpoint is the most transparent way to handle this level of
generality.

We recall the set-up of §1.23, so for each dominant weight λ we have a module
Sλ(Un,O/
 n) of algebraic modular forms, which has a natural action of TS

n . When λ is
trivial we omit it from the notation.

We define

S̃(Up
n,O) := lim←−

s

(
lim−→
Up

S(Up
nUp,O/
 s)

)

and

S̃(Up
n,E) := S̃(Up

n,O)⊗O E,

so S̃(Up
n,E) is an E-Banach space (with unit ball S̃(Up

n,O)), equipped with an admissible
continuous representation of Gn(F+

p ). For dominant weights λ, we can consider the space
of locally V∨

λ -algebraic vectors S̃(Up
n,E)V∨

λ −alg . We have a (Gn(F+
p )× TS

n )-equivariant iso-
morphism

lim−→
Up

Sλ(Up
nUp,O)⊗O V∨

λ
∼= S̃(Up

n,E)V∨
λ −alg

(see [Eme06b, Corollary 2.2.25]). We can also consider the space of locally Qp-analytic
vectors S̃(Up

n,E)an, and apply Emerton’s locally analytic Jacquet functor JBn
to this locally

analytic representation of Gn(F+
p ). We thereby obtain an essentially admissible locally

analytic representation JBn
S̃(Up

n,E)an of
∏

v∈Sp
Tn(Fṽ), and by duality a coherent sheaf

Mn on Tn, equipped with an action of TS
n . We denote by An ⊂ End(Mn) the coherent

OTn
-algebra subsheaf generated by TS

n . Now we can define the eigenvariety, an E-rigid
space, as a relative rigid analytic spectrum

En := SpTn
An

ν′−→ Tn

equipped with the canonical finite morphism ν ′.
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We define another finite morphism ν : En → Tn by twisting ν ′ by δ−1
Bn

(see Remark
2.21). By construction, we also have a ring homomorphism ψ : TS

n →O(En), so we obtain
a map on points:

ψ∗ × ν : En(Qp) → Hom(TS
n ,Qp)× Tn(Qp).

For E′/E finite (with E′ ⊂ Qp), a point (ψ0, ν0) ∈ Hom(TS
n ,E′)×Tn(E′) is in the image of

ψ∗ × ν if and only if the eigenspace

JBn

(̃
S(Up

n,E′)an
) [ψ0, ν0δBn

]
is non-zero, or in other words if there is a non-zero

∏
v∈Sp

T(Fṽ)-equivariant map

ν0δBn
→ JBn

(̃
S(Up

n,E′)an
) [ψ0].

We define the subset Zn ⊂ En(Qp) of classical points to be those for which there is more-
over a non-zero map to the Jacquet module of the locally algebraic vectors:

ν0δBn
→ JBn

(̃
S(Up

n,E′)alg
) [ψ0].

Lemma 2.19. — For any characters ψ : TS
n → E and χ :∏v∈Sp

T(Fṽ) → E×, we have

Hom∏
v∈Sp

T(Fṽ )

(
χ, JBn

(̃
S(Up

n,E)an
) [ψ])

= Hom∏
v∈Sp

T(Fṽ )

(
χ, JBn

(̃
S(Up

n,E)an[ψ])) .

Proof. — This can be seen using Emerton’s canonical lift [Eme06a, Proposition
3.4.9], which identifies both sides of the equality with the same eigenspace in S̃(Up

n,E)an.
Alternatively, we can use the left exactness of the Jacquet functor. In the latter argument
we need to use the fact that TS

n acts on S̃(Up
n,E)an via a Noetherian ring and we then

deduce that passing to an eigenspace for a (finitely generated) ideal in this ring commutes
with the Jacquet functor. �

We now relate the classical points Zn to refined automorphic representations. Let

An denote the set of automorphic representations π of Gn(AF+) such that (π∞)U
Sp
n �= 0,

let RAn denote the set of pairs (π,χ) where π ∈ An and χ is an accessible refine-
ment of π , and let Zn ⊂ Hom(TS

n ,Qp) × Tn(Qp) denote the set of points of the form
(ψπ, ν(π,χ)), where (π,χ) ∈RAn. We note in particular the existence of the surjective
map γn :RAn →Zn.

Lemma 2.20. — The map ψ∗ × ν restricts to a bijection Zn →Zn.
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Proof. — If z ∈ Zn ∩ En(E′) is a classical point defined over E′, it follows from the
above discussion on locally algebraic vectors that z arises from a non-zero map

ν(z)δBn
→ JBn

(
lim−→
Up

Sλ(Up
nUp,E′)[ψ∗(z)] ⊗E′ V∨

λ

)

for some dominant weight λ. It follows from [Eme06a, Prop. 4.3.6] that such maps cor-
respond bijectively with non-zero maps

ν(z)δBn
(λ∨)−1 → JBn

(
lim−→
Up

Sλ(Up
nUp,E′)[ψ∗(z)]

)
,

where λ∨ is the highest weight of V∨
λ .

By Lemma 1.25, we have (π,χ) ∈ RAn where π∞ has highest weight ιλ∨, ψπ =
ψ∗(z) and ν(z) = λ∨χδ−1/2

Bn
= ν(π,χ). This shows that we do indeed have an induced

map Zn →Zn, and it is easy to see that this is a bijection. �

Remark 2.21. — An accessible refinement χ is numerically non-critical if and only
if for every v ∈ Sp the character ν(π,χ)vδBn

= κ(π)vχvδ
1/2
Bn

has non-critical slope, in the
sense of [Eme06a, Defn. 4.4.3]. The renormalisation (replacing χvδ

−1/2
Bn

with χvδ
1/2
Bn

) ap-
pears in Emerton’s eigenvariety construction because χvδ

1/2
Bn

is a smooth character ap-
pearing in the (non-normalised) Jacquet module ι−1πv,Nn(Fṽ ), whilst Bellaïche–Chenevier
normalise things to be compatible with the Hecke action on Iwahori-fixed vectors (see
[BC09, Prop. 6.4.3]).

Our next task is to recall some well known properties of the eigenvariety En

(cf. [Bre15, §7]), variants of which are established by numerous authors in slightly differ-
ent contexts (e.g. [Che04, Buz07, Eme06b, Loe11]). We follow the exposition of [BHS17]
which establishes these properties for the patched eigenvariety. In order to at least sketch
the proofs of these properties in our context, we first introduce a ‘spectral variety’ which
will turn out to be a Fredholm hypersurface over Wn.

We fix the element z = (zv)v∈Sp
∈∏v∈Sp

Tn(Fṽ) with zv = diag(
 n−1
ṽ , . . . ,
ṽ,1),

and let Y be the closed subgroup of
∏

v∈Sp
Tn(Fṽ) generated by

∏
v∈Sp

Tn(OFṽ
) and z.

The rigid space Ŷ = Hom(Y,Gm) is then identified with Wn × Gm. As in [BHS17, §3.3],
it follows from [Eme06a, Proposition 3.2.27] that JBn

S̃(Up
n,E)an has dual equal to the

space of global sections of a coherent sheaf Nn on Wn × Gm. We define Yz to be the
schematic support (cf. above Définition 3.6 in [BHS17]) of Nn(δ

−1
Bn
). This rigid space

comes equipped with a closed immersion Yz ↪→ Wn × Gm. The twist in the definition of
Yz is there to ensure that this closed immersion is compatible with the map ν. Indeed, the
map from En given by composing ν with the restriction map to Wn × Gm factors through
a finite map f : En → Yz, giving us a commutative diagram:
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En

ν

f

Tn

Yz Wn × Gm

Now we state our proposition summarising the key properties of the eigenvari-
ety En.

Proposition 2.22. — The tuple (En,ψ, ν,Zn) has the following properties:

(1) En is a reduced E-rigid space, equipped with a finite morphism ν : En → Tn. We write κ for the

induced map κ : En →Wn.

(2) Zn ⊂ En(Qp) is a Zariski dense subset which accumulates at every point of Zn (in other words, each

point of Zn admits a basis of affinoid neighbourhoods V such that V ∩ Zn is Zariski dense in V),

and the map ψ∗ × ν : En(Qp) → Hom(TS
n ,Qp)× Tn(Qp) restricts to a bijection Zn →Zn.

(3) For any affinoid open V ⊂ Tn, the map TS
n ⊗O(V) →O(ν−1V) is surjective.

(4) En is equidimensional of dimension equal to dimWn. For any irreducible component C ⊂ En, κ(C)
is a Zariski open subset of Wn.

(5) Let z ∈ En(Qp) be a point, and suppose that δ = jn(ν(z)) factors as δ = δalgδsm, where δalg is a

strictly dominant algebraic character and δsm is smooth, and that δ is numerically non-critical. Then

z ∈ Zn.

(6) ψ takes values in the subring O(En)
≤1 of bounded elements.

Proof. — First we note that a tuple satisfying the first three properties is unique – we
will not actually use this fact, but it can be proved in the same way as [BC09, Proposition
7.2.8] (our context is slightly different, as we equip our eigenvarieties with a map to Tn

instead of Wn × Gm). We also note that it is not essential for our purposes to show that En

is reduced (this is the most delicate of the listed properties); we could instead replace En

with its underlying reduced subspace.
Now we summarise how to verify these properties. Property (5) follows from Emer-

ton’s ‘classicality criterion’ for his Jacquet functor [Eme06a, Theorem 4.4.5] (cf. Remark
2.21). Property (3) holds by construction.

Property (4) can be established as in [BHS17, §3.3] using the spectral variety Yz.
More precisely, (the proof of) Lemma 3.10 in this reference shows that the closed analytic
subset of Wn × Gm underlying Yz is a Fredholm hypersurface, and Yz has an admisible
cover by affinoids (U′

i)i∈I on which the map to Wn is finite and surjective with image an
open affinoid Wi ⊂ Wn. Moreover, each U′

i is disconnected from its complement in the
inverse image of Wi and �(U′

i,Nn) is a finite projective OWn
(Wi)-module.

Having established the existence of a good affinoid cover of the spectral variety,
we set Ui = f −1(U′

i). Since f is a finite map, (Ui)i∈I is an admissible affinoid cover of
En. It can then be shown, as in [BHS17, Proposition 3.11], that each affinoid OEn

(Ui) is
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isomorphic to a OWn
(Wi)-algebra of endomorphisms of the finite projective OWn

(Wi)-
module �(Ui,Mn). We can now prove Property (4) as in [BHS17, Corollaire 3.12]: this
shows that En is equidimensional of dimension equal to Wn, without embedded compo-
nents, and each irreducible component maps surjectively to an irreducible component of
Yz. Since irreducible components of Fredholm hypersurfaces are again Fredholm hyper-
surfaces, the image of such an irreducible component is Zariski open in Wn (cf. [BHS17,
Corollaire 3.13]).

Now to establish property (2), using property (5), it suffices to show that points z ∈
En(Qp) with numerically non-critical δ = jn(ν(z)) accumulate at any point z0 with κ(z0)

locally algebraic (cf. [BHS17, Théorème 3.19]). Using the good affinoid cover described
in the previous paragraph, we have an affinoid neighbourhood U of z0 which is a finite
cover of an affinoid W ⊂Wn. In fact, such U form a neighbourhood basis at z0 (cf. [Taï16,
Theorem 2.1.1, Lemma 2.1.2]). The valuations vp(δv,i(p)) are bounded as z varies in U
(with δ = jn(ν(z))). It follows from the description in Definition 2.9 that there is a subset
� of Wn accumulating at κ(z0) such that κ−1(�) ∩ U consists entirely of points with
numerically non-critical δ. The subset κ−1(�)∩ U is Zariski dense in U.

Finally, to establish property (1) it remains to prove that En is reduced. Since we
showed that En is without embedded components, it suffices to prove that every irre-
ducible component of En contains a reduced point. Using (4) and the Zariski density of
algebraic characters in Wn, it suffices to show that En is reduced at every point z0 with
κ(z0) algebraic. We use a good affinoid neighbourhood U = Sp(B) of z0 as in the pre-
vious paragraph, with W = κ(U) = Sp(A). The finite A-algebra B is identified with a
sub-A-algebra of EndA(M), where M = �(U,Mn) is a finite projective A-module. As
in the proof of [Che05, Proposition 3.9], it now suffices to show that for w in a Zariski
dense subset of W, the Hecke algebra TS

n and
∏

v∈Sp
Tn(Fṽ) act semisimply on the fibre

M ⊗A k(w) — we use the fact that an endomorphism of a projective A-module which
vanishes in the fibres at a Zariski dense subset of points in W necessarily vanishes. The
proof of [BHS17, Corollaire 3.20] shows that we can achieve this by choosing w so that
their pre-images in U have très classique associated characters δ [BHS17, Définition 3.17]
(this is a condition on characters with algebraic image in Wn which can be guaranteed
by a ‘numerical’ condition as in the proof of [BHS17, Théorème 3.19], in particular it
gives a Zariski-dense and self-accumulating subset of En). We can replace the reference
to [CEG+16] in the proof with the well-known assertion that the Hecke algebra TS

n acts
semisimply on lim−→Up

Sλ(Up
nUp,E) for dominant λ. Finally, property (6) follows from the

fact that the TS
n -action stabilizes the unit ball S̃(Up

n,O) ⊂ S̃(Up
n,E). �

The properties established in Proposition 2.22 imply the existence of a conjugate
self-dual Galois pseudocharacter Tn : GF,S → O(En) with the property that for any point
z ∈ Zn corresponding to a pair (π,χ), Tn,z = tr rπ,ι. This is proved as in [BC09, Proposi-
tion 7.5.4] and [Che04, Proposition 7.1.1]. The key points are that O(En)

≤1 is compact
[BC09, Lemma 7.2.11] and the map O(En)

≤1 →∏
z∈Zn

Cp given by the evaluation maps
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at each z ∈ Zn is a continuous injection (by Zariski density of Zn and reducedness of En).
Then [Che14, Example 2.32] is used to glue together the pseudocharacters tr rπ,ι to form
the continuous pseudocharacter Tn.

The pseudocharacter Tn determines an admissible cover En = 
τ n
En(τ n) as a dis-

joint union of finitely many open subspaces indexed by Gk-orbits of pseudocharacters
τ n : GF,S → Fp, over which the residual pseudocharacter satisfies the condition Tn,z = τ n

(cf. [Che14, Theorem 3.17]).
Fix a pseudocharacter τ n : GF,S → Fp. Extending E if necessary, we may assume

that τ n takes values in k. We recall some of the E-rigid spaces of Galois representations
defined in §2.11.1, now decorated with n subscripts. Thus Xps,n is the space of conjugate
self-dual deformations of τ n, X p−irr

ps,n is its Zariski open subspace of pseudocharacters which
are irreducible at the p-adic places. We also have the subspace X irr

ps,n of pseudocharacters
which are (globally) irreducible. The existence of Tn determines a morphism λ : E(τ n) →
Xps,n, and the morphism in = λ × (j ◦ ν) : En(τ n) → Xps,n × Tn is a closed immersion, by
point (3) in the list of defining properties of En.

Now assume that n ≥ 3, and let τ 2 : GF,S → Fp be a conjugate self-dual pseu-
docharacter of dimension 2. Let τ n = Symn−1 τ 2; then τ n is a conjugate self-dual pseu-
docharacter of GF,S of dimension n. Taking symmetric powers of pseudocharacters de-
termines a morphism σn,g : Xps,2 → Xps,n. On the other hand, we can define a map
σn,p : T2 → Tn by the formula

((δv,1, δv,2))v∈Sp
�→ ((δn−1

v,1 , δn−2
v,1 δv,2, . . . , δ

n−1
v,2 ))v∈Sp

.

We write σn = σn,g ×σn,p :Xps,2 ×T2 →Xps,n ×Tn for the product of these two morphisms.
We have constructed a diagram

E2(τ 2)
σn◦i2

Xps,n × Tn En(τ n).
in

Compare Lemma 2.2.

Definition 2.23. — Let π be an automorphic representation of G2(AF+), let χ = (χv)v∈Sp
be

an accessible refinement of π , and let n ≥ 2. We say that χ is n-regular if for each v ∈ Sp the character

χv = χv,1 ⊗ χv,2 satisfies (χv,1/χv,2)
i �= 1 for 1 ≤ i ≤ n − 1.

Theorem 2.24. — Let (π2, χ2) ∈ RA2 satisfy tr rπ2,ι = τ 2, and let z2 = γ2(π2, χ2) ∈
E2(τ 2)(Qp). Suppose that:

(1) The refinement χ2 is numerically non-critical and n-regular.

(2) There exists (πn, χn) ∈RAn such that (σn ◦ i2)(z2) = in(zn), where zn = γn(πn, χn).

(3) For each v ∈ Sp, the Zariski closure of rπ2,ι(GFṽ
) (in GL2/Qp) contains SL2.

Then each irreducible component C of E2(τ 2)Cp
containing z2 satisfies (σn ◦ i2)(C) ⊂ in(En(τ n)Cp

).

Proof. — Extending E (the field over which E2 is defined) if necessary, we may as-
sume that z2 ∈ E2(τ 2)(E) and rπ2,ι takes values in GL2(E). By [Con99, Theorem 3.4.2]
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(which says that an irreducible component of E2(τ 2)Cp
is contained in the base change of

an irreducible component of E2(τ 2)), it suffices to show that each irreducible component
C of E2(τ 2) containing z2 satisfies (σn ◦ i2)(C) ⊂ in(En(τ n)). By Lemma 2.2, it is enough to
show that (σn ◦ i2)

−1(in(En(τ n))) contains an affinoid open neighbourhood of z2. To prove
this, we will use a number of the results established so far.

Since χ2 is a numerically non-critical refinement, the parameter δ2 of the associ-
ated triangulation is non-critical, in the sense that for each τ ∈ Hom(F,E), the sequence
of τ -weights of δ2 is strictly increasing (Lemma 2.8). Passing to symmetric powers, we see
that rπn,ι is trianguline of parameter δn = σn,p(δ2), and that δn is non-critical (although it is
not necessarily numerically non-critical).

The n-regularity of χ2 implies that δn ∈ T reg
n (E). We are going to apply Propo-

sition 2.11 to conclude that dimE H1
tri,δn

(FS/F+,ad rπn,ι) ≤ dimWn = dimEn(τ n). Note
that if v ∈ S then WD(rπn,ι|GFṽ

) is generic, because it is pure: the base change of πn

to GLn(AF) exists (for example, by [Lab11, Corollaire 5.3]) and is cuspidal (because
rπn,ι is irreducible), so we can appeal to the main theorem of [Car12] (which estab-
lishes the general case; under various additional hypotheses, purity was established in
[HT01, TY07, Shi11, Clo13]). If v ∈ Sp, let us write fv : Xps,n × Tn → Xps,n,v × Tv for
the natural restriction map. By Proposition 2.15 and Lemma 2.14, we can find for each
v ∈ Sp an affinoid open neighbourhood Uv ⊂Xps,n,v × Tv of the point fv(zn) such that the
following properties hold:

• In fact, Uv ⊂X v−irr
ps,n,v ×T reg

v and there exists a universal representation ρu
v : GFṽ

→
GLn(O(Uv)) over Uv .

• Let Zv ⊂ Uv denote the Zariski closure of the set Vv ⊂ Uv of points correspond-
ing to pairs (ρv, δv) such that ρv is trianguline of parameter δv . Then the Zariski
tangent space of Zv at fv(zn) is contained in H1

tri,δv
(Fṽ,ad rπn,ι|GFṽ

).

We can then find an affinoid open neighbourhood U ⊂ Xps,n × Tn of the point zn such
that the following properties hold:

• U ⊂ ∩v∈Sp
f −1
v (Uv) and there exists a universal representation ρu : GF,S →

GLn(O(U)) over U .
• Let Z = U ∩ (∩v∈Sp

f −1
v (Zv)). Then Z is a closed analytic subset of U and the

Zariski tangent space of Z at the point zn is contained in H1
tri,δ(FS/F+,ad rπn,ι).

By the main theorem of [NT20], we have H1
f (F

+,ad rπn,ι) = 0, so Proposition
2.11 implies that the Zariski tangent space of Z at point zn has dimension at
most dimWn.

Let U ′ = En(τ n) ∩ U . Then U ′ is an affinoid open neighbourhood of zn in En(τ n). We
note that if z′

n = γn(π
′
n, χ

′
n) ∈ U ′, where χ ′

n is a numerically non-critical refinement, then
z′

n ∈ Z (by Lemma 2.8, and the definition of Z ). Such points accumulate at zn, implying
that every irreducible component of U ′ containing the point zn is contained in Z . In
particular, Z contains an affinoid open neighbourhood of zn in U ′, so we have dimZ ≥
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dimEn(τ n) = dimWn. It follows that dimZ = dimWn, that ÔZ,zn
is a regular local ring,

and that Z is smooth at the point zn. Consequently, U ′ and Z are locally isomorphic
at zn, En(τ n) is smooth at the point zn, and En(τ n) has a unique irreducible component
passing through zn. Applying Lemma 2.2, we can also deduce that the unique irreducible
component Z ′ of Z containing zn is contained in U ′.

Now let U ′′ = (σn ◦ i2)
−1(U), and let g = (σn ◦ i2)|U ′′ : U ′′ → U . Then U ′′ is an

admissible open of E2(τ 2), and g−1(Z) ⊂ U ′′ is a non-empty closed analytic subset. Let
(π ′

2, χ
′
2) ∈RA2 be a pair such that χ ′

2 satisfies the analogue of property (1) in the theorem.
Arguing again as in the second paragraph of the proof, we see that if the point (σn ◦
i2)(γ2(π

′
2, χ

′
2)) lies in U , then it in fact lies in Z . Since such points accumulate at z2,

we see that g−1(Z ′) contains each irreducible component of U ′′ which passes through z2

(and hence contains an affinoid open neighbourhood of z2). Since Z ′ ⊂ U ′ we deduce
that (σn ◦ i2)

−1(En(τ n)) contains an affinoid open neighbourhood of z2. This completes
the proof. �

Remark 2.25. — Note that assumption (3) on the image of the local Galois rep-
resentation ensures that all symmetric powers remain locally irreducible. We need this
to apply the results of §2.11.1. The authors expect that, with some effort, this material
could be adjusted to allow locally reducible (but globally irreducible) families of Galois
representations.

We also prove a version of this result in the ordinary case. We first note a well-
known consequence of Hida theory:

Lemma 2.26. — The Zariski closure of the classical points with ordinary refinements

En(τ n)
ord ⊂ En(τ n) is a union of connected components of En(τ n) which are finite over Wn, and every

classical point of En(τ n)
ord has an ordinary refinement. All points of En(τ n)

ord with dominant locally

algebraic image in Wn are classical.

Proof. — We can identify En(τ n)
ord with the generic fibre of the formal spectrum of

Hida–Hecke algebra (a localization of the ring denoted by T̃S,ord(Un(p
∞),O) in [Ger19,

§2]), since this is naturally a Zariski closed subspace of Xps,n × Tn in which the classical
points with ordinary refinements are Zariski dense. We deduce from Hida theory that
En(τ n)

ord is finite over Wn and equidimensional of dimension dimWn. Moreover, the map
ν : En(τ n)

ord → Tn factors through the open subspace T ◦
n ⊂ Tn classifying unitary charac-

ters of
∏

v∈Sp
Tn(Fṽ).

On the other hand, we claim that every point of En(τ n) ×ν,Tn
T ◦

n is contained in
En(τ n)

ord . Assuming this, these (reduced) subspaces of En(τ n) are equal and En(τ n)
ord is

an open and closed subspace of En(τ n). The final part of the lemma follows from the
classicality theorem in Hida theory [Ger19, Lemma 2.25].

It remains to show the claimed inclusion of En(τ n) ×ν,Tn
T ◦

n in En(τ n)
ord . Suppose

z is an E-point of En(τ n) ×ν,Tn
T ◦

n (extending scalars deals with the general case). The
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character ν(z)δBn
then appears in the eigenspace

(
JBn

S̃(Up
n,E)an

) [ψ∗(z)]. This charac-
ter therefore also appears in JBn

(̃
S(Up

n,E)an[ψ∗(z)]), by Lemma 2.19. Applying [Sor17,
Corollary 6.4] to S̃(Up

n,O)[ψ∗(z)] (note that Sorensen’s Jacquet modules are twisted by
δ−1

Bn
compared to ours), we deduce that the unitary character ν(z) appears in the ordinary

part OrdBn
S̃(Up

n,O)[ψ∗(z)]. This shows that z is a point of En(τ n)
ord . �

Theorem 2.27. — Let (π2, χ2) ∈ RA2 satisfy tr rπ2,ι = τ 2, and let z2 = γ2(π2, χ2) ∈
E2(τ 2)(Qp). Suppose that:

(1) The refinement χ2 is ordinary.

(2) There exists (πn, χn) ∈RAn such that (σn ◦ i2)(z2) = in(zn), where zn = γn(πn, χn).

(3) The Zariski closure of rπ2,ι(GF) contains SL2.

Then each irreducible component C of E2(τ 2)Cp
containing z2 satisfies (σn ◦ i2)(C) ⊂ in(En(τ n)Cp

).

Proof. — Extending E if necessary, we may assume that z2 ∈ E2(τ 2)(E) and rπ2,ι

takes values in GL2(E). We denote by T HT−reg
n ⊂ Tn the Zariski open subset where for each

v ∈ Sp and τ ∈ HomQp
(Fṽ,E) the labelled weights wtτ (δn,v,i) are distinct for i = 1, . . . , n.

By Lemma 2.12 and (a global variant of) Lemma 2.13, there is an open affinoid
neighbourhood

zn = (tr rπn,ι, δn) ∈ U ⊂X irr
ps,n × T reg

n

and a universal representation ρu : GF,S → GLn(O(U)) such that the induced representa-
tion (ρu)̂zn

: GF → GLn(O(U )̂zn
) with coefficients in the completed local ring at zn extends

to a homomorphism (ρu)̂zn
: GF+,S → Gn(O(U )̂zn

) with νGn
◦ (ρu)̂zn

= ε1−nδn
F/F+ .

Since χ2 is ordinary, the parameter δn = σn,p(δ2) is ordinary. We denote by
FLp(On

U)
α−→ U the rigid space (equipped with a proper map to U ) classifying Sp-tuples

(Fv)v∈Sp
of full flags in On

U . We consider the closed subspace

Z ord ⊂FLp(On
U)

whose points z correspond to flags Fv which are GFṽ
-stable (under the ρu-action) for each

v ∈ Sp and the action of GFṽ
on gri(Fv) is given by δz,v,i ◦ Art−1

Fṽ
where δz is the parameter

of α(z). Since our parameters lie in T HT−reg
n , Z ord → U is a closed immersion (it is a

proper monomorphism).
Using the existence of (ρu)̂zn

, we can view the tangent space Tzn
Z ord as a sub-

space of H1(GF+,S,ad rπn,ι). By a similar argument to Proposition 2.11, it follows from e.g.
[Ger19, Lemma 3.9] (which gives the analogue of Lemma 2.7 in the ordinary case) and
the main theorem of [NT20] that the map Tzn

Z ord → Tr(δn)Wn is injective. On the other
hand, En(τ n)

ord ∩ U , a subspace of Z ord containing zn, is equidimensional of dimension
dimWn. We deduce that Z ord is smooth at zn, and that En(τ n) is locally isomorphic to Z ord

at zn. We complete the proof in the same way as Theorem 2.24. �
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We restate Theorem 2.24 and Theorem 2.27 in a way that does not make explicit
reference to En.

Corollary 2.28. — Let (π2, χ2), (π
′
2, χ

′
2) ∈ RA2, and let z2, z′

2 ∈ E2(Qp) be the corre-

sponding points of the eigenvariety. Suppose that one of the following two sets of conditions are satisfied:

(1) The refinement χ2 is numerically non-critical and n-regular.

(2) For each v ∈ Sp, every triangulation of rπ ′
2,ι

|GFṽ
is non-critical. The refinement χ ′

2 is n-regular.

(3) For each v ∈ Sp, the Zariski closures of the images of rπ2,ι|GFṽ
and rπ ′

2,ι
|GFṽ

contain SL2.

(4) There exists an automorphic representation πn of Gn(AF+) such that

Symn−1 rπ2,ι
∼= rπn,ι.

(5) The points z2, z′
2 lie on a common irreducible component of E2,Cp

;4

or

(1ord) The refinement χ2 is ordinary.

(2ord) The Zariski closure of the image of rπ2,ι|GF contains SL2.

(3ord) There exists an automorphic representation πn of Gn(AF+) such that

Symn−1 rπ2,ι
∼= rπn,ι.

(4ord) The points z2, z′
2 lie on a common irreducible component of E2,Cp

(this implies that the refinement

χ ′
2 is also ordinary, by Lemma 2.26).

Then there exists an automorphic representation π ′
n of Gn(AF+) such that

Symn−1 rπ ′
2,ι

∼= rπ ′
n,ι
.

Proof. — Choose Un ⊂ Gn(A∞
F+) so that (π∞

n )U
Sp
n �= 0 and take τ 2 = tr rπ2,ι. Then

(σn ◦ i2)(z2) ∈ in(En(τ n)(Qp)). We claim that setting χn,v = χ n−1
2,v,1 ⊗χ n−2

2,v,1χ2,v,2 ⊗· · ·⊗χ n−1
2,v,2

for v ∈ Sp defines an accessible refinement χn of πn. Fix v ∈ Sp. To temporarily simplify
notation, we write χ = χ1 ⊗ χ2 for χ2,v . The representation π2,v is isomorphic to either
St2(ιχ1| · |−1/2) or to an irreducible parabolic induction i

GL2
B2

ιχ . In the first case,

recT
F+
v
(ι−1πn,v) ∼= Symn−1 recT

F+
v
(ι−1π2,v) ∼= Spn(χ

n−1
1 | · |(1−n)/2)

and χn,v is the unique accessible refinement of πn,v. In the second case,

recT
F+
v
(ι−1πn,v) ∼= Symn−1 recT

F+
v
(ι−1π2,v) ∼=

n−1⊕
i=0

χ n−1−i
1 χ i

2| · |(1−n)/2 ◦ Art−1
F+
v
.

4 By [Con99, Theorem 3.4.2], this assumption is equivalent to requiring that there is a finite extension of coefficient
fields E′/E such that z2, z′

2 lie on a common geometrically irreducible component of E2,E′ .
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Note that πn,v is generic (the base change of πn to GLn(AF) is cuspidal, since rπn,ι is irre-
ducible). We can now use the characterisation of generic representations in the Bernstein–
Zelevinsky classification [Zel80, Theorem 9.7] and the compatibility with local Lang-
lands [Rod82, §4.4]. It follows that no pair of characters in the above direct sum decom-
position have ratio equal to the norm character, so the parabolic induction i

GLn

Bn
ιχn,v is

irreducible and isomorphic to πn,v . In particular, χn,v is an accessible refinement of πn,v .
Taking the above discussion into account, it is straightforward to see that (σn ◦

i2)(z2) is associated to the pair (πn, χn) ∈RAn. Thus the hypotheses of Theorem 2.24 or
2.27 are satisfied, and for any (π ′

2, χ
′
2) as in the statement of the corollary there exists a

point z′
n ∈ En(τ n)(Qp) such that Tn,z′ = tr Symn−1 rπ ′

2,ι
. It remains to show that z′

n ∈ Zn, or
in other words that z′

n is associated to a classical automorphic representation.
In the ordinary case, this follows from Lemma 2.26. In the remaining case, Lemma

2.29 shows that for each v ∈ Sp, every triangulation of Symn−1 rπ ′
2,ι

|GFṽ
is non-critical. It

follows from Lemma 2.30 that z′
n ∈ Zn. �

Lemma 2.29. — Let v ∈ Sp, and let ρv : GFṽ
→ GL2(Qp) be a continuous, regular de Rham

representation such that WD(ρv) has two distinct characters χ1, χ2 as Jordan–Hölder factors, which

satisfy (χ1/χ2)
i �= 1 for each i = 1, . . . , n − 1. Suppose moreover that every triangulation of ρv is

non-critical. Then every triangulation of Symn−1 ρv is non-critical.

Proof. — We begin by describing the data of the triangulation of ρv in a bit more
detail. Let K = Fṽ and let L/K be a Galois extension over which ρv becomes semi-stable.
Let L0 be the maximal unramified extension of L/Qp. After enlarging E, we can assume
that every embedding of L in Qp lands in E, and that ρv is defined over E. The filtered
(ϕ,N,Gal(L/K))-module D associated to ρv consists of the following data:

(1) A free L0 ⊗Qp
E-module D of rank 2, equipped with a σ ⊗ 1-semilinear endomor-

phism ϕ.
(2) An L0 ⊗Qp

E-linear endomorphism N of D satisfying the relation Nϕ = pϕN.
(3) An L0-semilinear, E-linear action of the group Gal(L/K) on D that commutes with

the action of both ϕ and N.
(4) A decreasing, Gal(L/K)-stable, filtration Fil• DL of DL = D ⊗L0 L.

For each embedding τ : L → E, we write lτ ⊂ Dτ = DL ⊗L⊗E,τ E for the image of the
rank 1 step of the filtration Fil•. We can define an action of the group WK on D by the
formula g · v = (g mod WL) ◦ ϕ−α(g), where α(g) is the power of the absolute arithmetic
Frobenius induced by g on the residue field of K.

This action preserves the factors of the product decomposition D =∏t Dt , where
t ranges over embeddings t : L0 → E and Dt = D ⊗L0⊗E,t E. Moreover, the isomorphism
class of the Weil–Deligne representation Dt is independent of t. The data of a triangu-
lation of ρv is equivalent to the data of a choice of character appearing in some (hence
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every) Dt . If N is non-zero on Dt , then there is a unique N-stable line in Symn−1 Dt .
Hence there is a unique triangulation of Symn−1 ρv , induced by the unique (non-critical)
triangulation of ρv , and it is also non-critical. From now on we assume that N = 0, and
we proceed as indicated in [Che11, Example 3.26].

We can choose a basis e1, e2 for D as L0 ⊗Qp
E-module such that the projection of

the vectors e1, e2 to each Dt is a basis of eigenvectors for the group WK.
Having made this choice of basis, each line lτ is spanned by a linear combination

of e1, e2. Our assumption that every triangulation of ρv is non-critical is equivalent to the
requirement that lτ may be spanned by a vector e1 + aτ e2, where aτ ∈ E× for all τ . Indeed,
if lτ is spanned by ei for some i, then the triangulation corresponding to the submodule
of D spanned by ei will fail the condition required for non-criticality with respect to the
embedding τ .

Having made these normalisations, the condition that every triangulation of
Symn−1 ρv be non-critical is equivalent to the following statement: let I ⊂ {0, . . . , n − 1}
be a subset, and let

∑
i∈I aix

i ∈ E[x] be a polynomial, which is equal to (1 + aτx)|I|Q(x)

for some polynomial Q(x) ∈ E[x] of degree at most n − 1 − |I|, then Q(x) = 0. Polyno-
mials of the latter form correspond to elements of the |I|th step of the Hodge filtration
on Symn−1 Dτ and the statement implies that this Hodge filtration is in general position
compared to the filtration induced by every triangulation. Replacing the variable x with
−aτx, we can assume that aτ = −1. As in [Che11, Example 3.26], the vanishing of the
|I| successive derivatives at 1 of

∑
i∈I aix

i gives a non-degenerate linear system of |I| equa-
tions satisfied by the ai , and therefore the ai are all zero. Non-degeneracy is checked
by noticing that the determinant of the linear system is the Vandermonde determinant∏

i<j∈I(i − j). �

Lemma 2.30. — Let z ∈ En(τ n)(Qp) be a point with in(z) = (tr rz, δ) ∈ X p−irr
ps,n (Qp) ×

T reg
n (Qp). Suppose that δ = jn(ν(z)) = δalgδsm with δalg algebraic and δsm smooth. Suppose moreover

that, for each v ∈ Sp, every triangulation of rz|GFṽ
is non-critical. Then z ∈ Zn (in particular, δalg is

strictly dominant).

Proof. — After extending E, we may assume that z ∈ En(τ n)(E) and rz takes values
in GLn(E). We note that, since δ is locally algebraic, it follows from property (5) of the
eigenvariety that the subset of numerically non-critical classical points in i−1

n (X p−irr
ps,n ×T reg

n )

accumulates at z. It follows from [KPX14, Corollary 6.3.10], applied as in Proposition
2.15, that there is a connected affinoid neighbourhood U of z in i−1

n (X p−irr
ps,n × T reg

n ), over
which there exist representations ρu

v : GFṽ
→ GLn(O(U)) for each v ∈ Sp with trace equal

to the restriction to GFṽ
of the universal pseudocharacter and a non-empty Zariski open

and dense subspace V ⊂ U such that for every z′ ∈ V with in(z
′) = (tr r′, δ′), r′ is trian-
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guline of parameter δ′. Now we can apply [BHS17, Lemme 2.11]5 to deduce that δalg is
strictly dominant and rz is trianguline of parameter δ.

We now argue as in [BHS17, Prop. 3.28] (which is itself similar to the argument
of [Che11, Prop. 4.2]). The idea of the argument is to show that failure of classicality
would entail the existence of a ‘companion point’ to z, with the same associated Galois
representation and a locally algebraic weight which is not strictly dominant. This would
contradict [BHS17, Lemma 2.11].

Let η = ν(z)δBn
= ηalgηsm, with ηalg dominant algebraic (since δalg is strictly domi-

nant) and ηsm smooth. By the construction of En and Lemma 2.19 we have a non-zero
space of morphisms

0 �= Hom∏
v∈Sp

Tn(Fṽ )

(
η, JBn

(̃
S(Up

n,E)an[ψ∗(z)])) .
Now we use some of the work of Orlik–Strauch [OS15], with notation as in [Bre15,
§2]. We denote by gn the Qp-Lie algebra of

∏
v∈Sp

Gn(F+
v )

∼= ∏
v∈Sp

GLn(Fṽ) and de-

note by bn ⊂ gn the lower triangular Borel. We define a locally analytic representation
of
∏

v∈Sp
Gn(F+

v ) (see [Bre15, Thm. 2.2] for the definition of the functor FGn

Bn
):

FGn

Bn
(ηδ−1

Bn
) :=FGn

Bn

((
U(gn,E)⊗U(bn,E)

η−1
alg

)∨
, ηsmδ

−1
Bn

)
.

Note that
(
U(gn,E)⊗U(bn,E)

η−1
alg

)∨
has a unique simple submodule (isomorphic to the

unique simple quotient of U(gn,E)⊗U(bn,E)
η−1

alg ), the algebraic representation V(ηalg)
∨ with

lowest (with respect to Bn) weight η−1
alg . It follows from [Bre15, Thm. 2.2] that FGn

Bn
(ηδ−1

Bn
)

has a locally algebraic quotient isomorphic to V(ηalg)⊗E IndGn

Bn
ηsmδ

−1
Bn

.
By [Bre15, Thm. 4.3], there is a non-zero space of morphisms

0 �= Hom∏
v∈Sp

Gn(F
+
v )

(
FGn

Bn
(ηδ−1

Bn
), S̃(Up

n,E)an[ψ∗(z)]
)
.

The Jordan–Hölder factors of FGn

Bn
(ηδ−1

Bn
) can be described using [Bre15, Thm. 2.2]

and standard results on the Jordan–Hölder factors of Verma modules (see [Bre15,
Cor. 4.6]). Suppose λ ∈ Tn(E) is an algebraic character. Denote by Mλ the unique simple
submodule of the dual Verma module

(
U(gn,E)⊗U(bn,E)

λ−1
)∨

. Then the Jordan–Hölder
factors of FGn

Bn
(ηδ−1

Bn
) are all of the form

JH(w,π) =FGn

Pn

(
Mw·ηalg

,π
)

with Pn a parabolic subgroup of
∏

v∈Sp
Gn(F+

v ) containing Bn, π a Jordan–Hölder factor

of the parabolic induction of ηsmδ
−1
Bn

from Bn to the Levi of Pn, and w an element of the

5 We caution the reader that the version of this paper currently available on the arXiv contains a less general result
than the published version, to which we appeal here. In particular, it restricts to Galois representations which are known
in advance to be crystalline.
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Weyl group of (ResF+/Q Gn) ×Q E, acting by the ‘dot action’ on ηalg . Here Pn is maximal
for Mw·ηalg

, in the sense of [Bre15, §2].
We claim that there cannot be a non-zero morphism JH(w,π)→S̃(Up

n,E)
an[ψ∗(z)]

for w �= 1. Suppose, for a contradiction, that there is such a map. It follows from [Bre16,
Cor. 3.4] that we have ψ∗(z) = ψ∗(z′) (and hence an isomorphism of Galois represen-
tations rz

∼= rz′ ) for a point z′ ∈ En(τ n)(E) with jn(ν(z
′)) locally algebraic but not strictly

dominant (its algebraic part matches the algebraic part of jn(w · ηalg)). The argument in
the first paragraph of this proof, using [BHS17, Lemma 2.11], then gives a contradiction.

We deduce from this that any map

FGn

Bn
(ηδ−1

Bn
) → S̃(Up

n,E)an[ψ∗(z)]

factors through the locally algebraic quotient V(ηalg) ⊗E IndGn

Bn
ηsmδ

−1
Bn

. Applying [Bre15,
Thm. 4.3] again, we deduce that we have equalities

Hom∏
v∈Sp

Tn(Fṽ )

(
η, JBn

(̃
S(Up

n,E)an[ψ∗(z)]))

= Hom∏
v∈Sp

Gn(F
+
v )

(
FGn

Bn
(ηδ−1

Bn
), S̃(Up

n,E)an[ψ∗(z)]
)

= Hom∏
v∈Sp

Gn(F
+
v )

(
FGn

Bn
(ηδ−1

Bn
), S̃(Up

n,E)alg[ψ∗(z)]
)

= Hom∏
v∈Sp

Tn(Fṽ )

(
η, JBn

(̃
S(Up

n,E)alg[ψ∗(z)])) .
In particular, our point z arises from a non-zero map

η → JBn

(̃
S(Up

n,E)alg[ψ∗(z)]) .
Applying [Eme06a, Prop. 4.3.6] and computing locally algebraic vectors as in §2.18.1
we see that such a map corresponds to a non-zero map of smooth representations

ηsm → JBn

(
lim−→Up

Sη∨
alg
(Up

nUp,E)[ψ∗(z)]
)

and hence a pair (πn, ι ◦ ηsmδ
−1/2
Bn

) ∈ RAn with

corresponding classical point equal to z. We therefore have z ∈ Zn. �

2.31. Application to the eigencurve. — Thus far in this section we have found it conve-
nient to phrase our arguments in terms of automorphic forms on unitary groups. Since
our intended application will rely on particular properties of the Coleman–Mazur eigen-
curve for GL2, we now show how to deduce what we need for the eigencurve from what
we have done so far.

We first introduce the version of the eigencurve that we use. Fix an integer N ≥ 1,
prime to p. Let T0 = Hom(Q×

p /Z×
p ×Q×

p ,Gm); it is the E-rigid space parameterising char-
acters χ0 = χ0,1 ⊗ χ0,2 of (Q×

p )
2 such that χ0,1 is unramified. Let W0 = Hom(Z×

p ,Gm),
and write r0 : T0 → W0 for the morphism given by r0(χ0,1 ⊗ χ0,2) = χ0,1/χ0,2|Z×

p
=
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χ−1
0,2 |Z×

p
. We denote the map r0 ◦ ν0 : E0 → W0 by κ . Let TpN

0 = O[{Tl,Sl}l�pN] de-
note the polynomial ring in unramified Hecke operators at primes not dividing Np.
Here Tl and Sl are the double coset operators for the matrices

(
l 0
0 1

)
and

(
l 0
0 l

)
. Let

U1(N) =∏l U1(N)l ⊂ GL2(Ẑ) =∏l GL2(Zl) be defined by

U1(N)l =
{(

a b

c d

)
∈ GL2(Zl) : c, d − 1 ∈ NZl

}
.

The eigencurve is a tuple (E0,ψ0, ν0,Z0), where:
(1) E0 is a reduced E-rigid space, equipped with a finite morphism ν0 : E0 → T0.
(2) ψ0 : TpN

0 → O(E0) is a ring homomorphism, which takes values in the subring
O(E0)

≤1 of bounded elements.
(3) Z0 ⊂ E0(Qp) is a Zariski dense subset which accumulates at itself.
The following properties are satisfied:
(1) E0 is equidimensional of dimension dimW0 = 1. For any irreducible component C ⊂

E0, κ(C) is a Zariski open subset of W0.
(2) Let A0 denote the set of cuspidal automorphic representations π0 of GL2(AQ) such

that (π∞
0 )U1(N)p �= 0 and π0,∞ has the same infinitesimal character as (Symk−2 C2)∨ for

some k ≥ 2 (in which case we say π0 has weight k), and let RA0 denote the set of pairs
(π0, χ0), where π0 ∈ A0 and χ0 = χ0,1 ⊗ χ0,2 is an accessible refinement of π0,p such
that χ0,1 is unramified. As in the unitary case we considered above, for (π0, χ0) ∈ RA0

we have a homomorphism ψπ0 : TpN
0 → Q

×
p determined by the action of the Hecke

operators on ι−1(π∞
0 )U1(N)p

. There is also a character ν0(π0, χ0) ∈ T0(Qp) defined
in exactly the same way as in the unitary case (2.18.1). An explicit formula appears
below (2.31.1). Our assumption that χ0,1 is unramified implies that this character
does indeed give a point of T0. Now we can let Z0 ⊂ Hom(TpN

0 ,Qp)× T (Qp) denote
the set of points of the form (ψπ0, ν0(π0, χ0)), where (π0, χ0) ∈ RA0. Then the map
ψ∗

0 × ν0 : E0(Qp) → Hom(TpN
0 ,Qp)× T0(Qp) restricts to a bijection Z0 →Z0.

(3) For any affinoid open V0 ⊂ T0, the map TpN
0 ⊗O(V0) →O(ν−1

0 V0) is surjective.
The uniqueness of the tuple (E0,ψ0, ν0,Z0) follows from [BC09, Proposition 7.2.8]. Its
existence can be proved in various ways. A construction using overconvergent modular
forms is given in [Buz07]. We note that in this case, in contrast to the unitary group case,
the map RA0 → Z0 is bijective – a consequence of the strong multiplicity one theorem.
We will therefore feel free to speak of the cuspidal automorphic representation π0 ∈ A0

associated to a point lying in Z0. As in the unitary group case, there is a Galois pseu-
docharacter t : GQ,Np → O(E0) with the property that for z ∈ Z0 associated to (π0, χ0),
tz = tr rπ0,ι.

Let us describe explicitly the link with more classical language. We are using the
normalisations of [DI95, §11]. If (π0, χ0) ∈ A0, then there is a cuspidal holomorphic
modular form f = q +∑n≥2 an(f )q

n of level �1(Npr) (for some r ≥ 1) which is an eigen-
form for all the Hecke operators Tl (l � Np) and Up, in their classical normalisations, and
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we have the formulae

al(f ) = eigenvalue of Tl on π
GL2(Zl )

0,l , p−1/2ap(f ) = ιχ0,1(p).

Note that the central character of π0 is a Hecke character ψπ0 with ψπ0|R>0(z) =
z2−k . So ψπ0 |Q×

p
= ι(χ0,1χ0,2) is a finite order twist of the character z �→ |z|2−k . To con-

vince the reader that these formulae are correct, we observe that if π0,l is a normalised
induction i

GL2
B2

μ1 ⊗μ2, then the eigenvalue of Tl on π
GL2(Zl )

0,l is l1/2(μ1(l)+μ2(l)) [DI95,
(11.2.4)], whilst considering the central character shows that μ1(l)μ2(l) has (complex)
absolute value lk−2. This is compatible with the fact that al(f ) is a sum of numbers with
absolute values l(k−1)/2.

We can define a map s : E0(Qp) → R, called the slope, by composing the projection
to T0(Qp) with the map χ �→ vp

(
χ
(

p 0
0 1

))
. Note that if (π0, χ0,1 ⊗ χ0,2) ∈RA0 we have

(2.31.1) ν0(π0, χ0)
(

t1 0
0 t2

)= t2−k
2 χ0,1(t1)χ0,2(t2)

∣∣∣∣
t1

t2

∣∣∣∣
−1/2

p

so the slope map sends (π0, χ0,1 ⊗ χ0,2) ∈RA0 to 1/2 + vp(χ0,1(p)).
In particular, at a point z0 ∈ Z0 corresponding to a classical holomorphic modular

form f , s(z0) equals the p-adic valuation of ι−1ap(f ). Note that the corresponding pair
(π0, χ0) is numerically non-critical exactly when s(z0) < k −1 and ordinary exactly when
s(z0) = 0. The classicality criterion of Coleman [Col96, Col97] shows that a point z ∈
E0(Qp) with κ(z) restricting to t �→ tk−2 on a finite index subgroup of Z×

p and s(z) < k −1
is necessarily in Z0.

Let Zpc

0 ⊂ Z0 denote the subset of points corresponding to pairs (π,χ) where πp

is not a twist of the Steinberg representation (pc stands for potentially crystalline). We now
define a ‘twin’ map τ : Zpc

0 → Zpc

0 . Let (π0, χ0) be the pair corresponding to a point
z ∈ Zpc

0 . Write χ0 = χ0,1 ⊗ χ0,2. Since π0,p is not a twist of the Steinberg representation,
π0,p equals the full normalised induction i

GL2
B2

ιχ0, which is irreducible. Let ψ : Q×\A×
Q →

Z
×
p be the unique finite order character which is unramified outside p and such that

ψ |Z×
p

= χ0,2|−1
Z×

p
. Then the character χ0,2ψ |Z×

p
is unramified and χ ′

0 = χ0,2ψ |Z×
p
⊗χ0,1ψ |Z×

p

is an accessible refinement of the twist π0 ⊗ ιψ . We therefore have a point τ(z) ∈ Zpc

0
corresponding to the pair τ(π0, χ0) = (π0 ⊗ ιψ,χ ′

0), that we call the twin of z. Note that
τ 2 = 1 and if π0,p is unramified then τ(z) is the usual companion point appearing in the
Gouvea–Mazur construction of the infinite fern [Maz97, §18]. The following lemma is
an easy computation.

Lemma 2.32. — Let z ∈ Zpc

0 , and let z′ = τ(z). Let s, s′ denote the slopes of these two points,

and κ(z), κ(z′) ∈ W0(Qp) their images in weight space. Then s + s′ = k − 1 and vp(κ(z)(1 +
q)− 1) = vp(κ(z

′)(1 + q)− 1), where q = p if p is odd and q = 4 if p is even.

Here is the main result of §2.
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Theorem 2.33. — Let (π0, χ0), (π
′
0, χ

′
0) ∈ RA0 and let n ≥ 2. Let z0, z′

0 ∈ Z0 be the

corresponding points. Suppose that one of following two sets of conditions are satisfied:

(1) The refinement χ0 is numerically non-critical and n-regular.

(2) The refinement χ ′
0 is n-regular.

(3) The Zariski closures of rπ0,ι(GQp
) and rπ ′

0,ι
(GQp

) contain SL2.

(4) Symn−1 rπ0,ι is automorphic;

or

(1ord) The refinement χ0 is ordinary.

(2ord) π0 and π ′
0 are not CM (so the Zariski closures of rπ0,ι(GQ) and rπ ′

0,ι
(GQ) contain SL2).

(3ord) Symn−1 rπ0,ι is automorphic.

If the points z0, z′
0 lie on a common irreducible component of E0,Cp

, then Symn−1 rπ ′
0,ι

is also automor-

phic.

Proof. — We want to apply Corollary 2.28. We first need to specify suitable data F,
S, G2, U2. Let F′/Q be an abelian CM extension satisfying the following conditions:

• Each prime dividing Np splits in F′.
• [(F′)+ : Q] is even.
• The extension F′/(F′)+ is everywhere unramified.

After extending E, we may assume that z0, z′
0 ∈ E0(E) and that there is an irre-

ducible component C ⊂ E0 containing the points z0, z′
0. Moreover, by the first part of

[Con99, Theorem 3.4.2], we may assume that C is geometrically irreducible. Let W de-
note the unique connected component of W0 containing κ(C). We can find a character
χ : GQ → O(W)× such that the determinant of the universal pseudocharacter over C
equals ε−1χ (χ is the product of a finite order p-unramified character and the compo-
sition of ε with the universal character Z×

p → O(W0)). By Lemma 2.34, we can find a
finite étale morphism η : W̃ → W and a character ψ : GF′ →O(W̃)×, unramified almost
everywhere, such that ψψ c = χ |GF′ , and such that for each place v|p of (F′)+, there is a
place ṽ|v of F′ such that ψ |GF′̃

v

is unramified. We now let F/Q be a soluble, Galois, CM
extension, containing F′, such that:

• Each prime dividing Np splits in F.
• The extension F/F+ is everywhere unramified.
• The character ψ |GF is unramified away from p.

Let S denote the set of places of F+ dividing Np. Fix as usual a set of factori-
sations v = ṽṽc for v ∈ S. Fix the unitary group G2 as in our standard assumptions
(§1). Then for each v ∈ S, there is an isomorphism ι̃v : G2(F+

v ) → GL2(Fṽ). We let
U2 =∏v U2,v ⊂ G(A∞

F+) be an open subgroup with the property that U2,v is hyperspecial
maximal compact if v �∈ S, and U2,v is the pre-image under ι̃v of the subgroup U1(N)l of
GL2(Ql) if v ∈ S has residue characteristic l (in which case Fṽ = Ql ).
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We recall that T2 =∏v∈Sp
Hom((F×

ṽ )
2,Gm). Let T̃ = T0 ×W0 W̃, with κ̃ : T̃ → W̃

the projection map. If χ u = χ u
1 ⊗ χ u

2 ∈ T0(T0) denotes the universal character, then the
tuple of characters

((χ u
1 ◦ NFṽ/Qp

·ψ−1|GFṽ
◦ ArtFṽ

)⊗ (χ u
2 ◦ NFṽ/Qp

·ψ−1|GFṽ
◦ ArtFṽ

))v∈Sp

in T2(T̃ ) determines a morphism bp : T̃ → T2. Writing X0,ps for the rigid space of 2-
dimensional pseudocharacters of GQ, unramified outside Np, there is a base change
morphism b : X0,ps × T̃ → X2,ps × T2 covering bp and sending a pair (τ,μ) to (τ |GF ⊗
ψ−1

κ̃(μ), bp(μ)). This leads to a diagram of rigid spaces

X0,ps × T̃
b

X2,ps × T2

E0 ×T0 T̃

ĩ

E2

i2

.

Let C̃ = C ×W W̃ = C ×T0 T̃ . Then the morphism C̃ → C is finite étale. In particular,
each irreducible component of C̃ maps surjectively to C. Choose E′/E so that the ir-
reducible components of C̃E′ are geometrically irreducible (we apply [Con99, Theorem
3.4.2] again). Since C is geometrically irreducible, we still know that each irreducible
component of C̃E′ maps surjectively to CE′ . Consequently, we can find points z1, z′

1 of C̃E′

lifting z0, z′
0 and lying on a common geometrically irreducible component C̃ ′ of C̃E′ . We

next wish to show that b ◦̃ i(C̃ ′) ⊂ i2(Ẽ2,E′), or equivalently that (b ◦̃ i)−1(i2(E2,E′)) contains
C̃ ′. Since i2 is a closed immersion, it suffices to show that Z̃′

0, the pre-image of Z0 in C̃ ′,
satisfies b ◦ ĩ(Z̃′

0) ⊂ i2(E2(Qp)) (the accumulation property of Z̃′
0 in C̃ ′ is inherited from

the corresponding property of the subset Z0 ∩ C ⊂ C).
To see this, we note that for any (π,χ) ∈ Z0, with lift z̃′ ∈ Z̃′

0, the base change
πF (which exists since F/Q is soluble) is still cuspidal. Indeed, if not then rπ,ι|GF would
be reducible, implying that π was automorphically induced from a quadratic imaginary
subfield K/Q of F/Q. This is a contradiction, since we chose F so that all primes dividing
Np split in F, yet K must be ramified at at least one such prime. The descent of πF ⊗ ιψ−1

z̃′
to G2 (which exists, by [Lab11, Théorème 5.4]) gives (together with bp(ν0(π,χ))) a point
of E2 which equals the image of z̃′ under the map b ◦ ĩ.

We can now complete the proof. Indeed, the points b ◦ ĩ(z1), b ◦ ĩ(z′
1) lie on a

common geometrically irreducible component of E2,E′ , by construction. They satisfy
the conditions of Corollary 2.28 (in particular, Example 2.10 shows that our assump-
tion on rπ ′

0,ι
(GQp

) in the non-ordinary case implies that all of its triangulations are non-
critical). We therefore conclude the existence of an automorphic representation π ′

n of
Gn(AF+) such that Symn−1 rπ ′

0,ι
|GF

∼= rπ ′
n,ι

. Our assumptions (cf. Lemma 3.5(2)) imply
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that Symn−1 rπ ′
0,ι

|GF is irreducible, and therefore that the base change of π ′
n is a cuspi-

dal automorphic representation of GLn(AF). Soluble descent for GLn now implies that
Symn−1 rπ ′

0,ι
is itself automorphic. �

Lemma 2.34. — Let F be a CM number field. Suppose that each p-adic place of F+ splits

in F, and let S̃p be a set of p-adic places of F such that S̃p 
 S̃c
p is the set of all p-adic places of F.

Let W be a connected E-rigid space, and let χ : GQ → O(W)× be a continuous character (continuity

defined by demanding that the induced characters with values in O(U)× are continuous for all affinoid

admissible opens U ⊂ W, as in [Buz04, §2]), unramified almost everywhere. Then we can find a finite

étale morphism η : W̃ → W and a continuous character ψ : GF → O(W̃)× such that the following

properties hold:

(1) ψ is unramified almost everywhere.

(2) For each ṽ ∈ S̃p, ψ |GFṽ
is unramified.

(3) ψψ c = η∗(χ)|GF .

Proof. — We first claim that we can find a finite étale morphism W′ → W and a
continuous character λ : GF →O(W′)× with the following properties:

• λ is unramified almost everywhere.
• χ |GFλλ

c has finite order.

Indeed, let L :∏w|p O×
Fw

→O(W)× be defined by the formula

L((uw)w) =
∏
ṽ∈̃Sc

p

χ |−1
GF

◦ ArtFṽ
(uṽ).

Then L is continuous, and trivial on a finite index subgroup of O×
F (it is trivial on the

norm 1 units in O×
F+ ). It follows from Chevalley’s theorem [Che51, Théorème 1] that

there is a compact open subgroup Up of
∏

w�p O×
Fw

such that L is trivial on �(Up) :=(
Up ×∏w|p O×

Fw

)
∩O×

F .
Note that if H is a product of a finite abelian group and a finite Zp-module, and

H′ ⊂ H is a finite index subgroup, then the natural map Hom(H,Gm) → Hom(H′,Gm)

of rigid spaces is finite étale. Maps of rigid spaces W → Hom(H,Gm) biject with contin-
uous characters H →O(W)×.

It follows that we may extend L to a continuous character L′ : F×\A∞,×
F →

O(W′)×, for some finite étale morphism W′ → W. Indeed, we apply the preceding re-
mark with H′ the quotient of

∏
w|p O×

Fw
by the closure of �(Up) and H the quotient of

F×\A∞,×
F by the closure of the image of Up (cf. the discussion in [Buz04, §2]).
We define λ by λ ◦ ArtF = L′. The character χ |GFλλ

c has finite order because it
factors through the Galois group of an abelian extension of F which is unramified at all
but finitely many places and unramified at the primes above p.
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Replacing W′ by a connected component, we may suppose that W′ is connected,
in which case the character χ |GFλλ

c is constant (i.e. pulled back from a morphism W′ →
Sp E′, for a finite extension E′/E). Applying [BLGGT14, Lemma A.2.5], we may find a
finite extension E′′/E′ and a continuous character ϕ : GF → (E′′)× of finite order such
that χ |GFλλ

c = ϕϕc. The proof is complete on taking W̃ = W′
E′′ and ψ = ϕλ−1. �

We conclude this section with a lemma that will be used in §8. It uses the existence
of the universal pseudocharacter t over E0.

Lemma 2.35. — Fix n ≥ 1, and let Z ⊂ E0 denote the set of points x satisfying one of the

following conditions:

(1) tx is absolutely reducible;

(2) tx = trρx for an absolutely irreducible representation ρx : GQ → GL2(Qp), and the Zariski

closure of the image of ρx does not contain SL2.

(3) There exists a prime l|N such that tx|GQl
= χ1 + χ2 for characters χi : GQl

→ Q
×
p such that

(χ1/χ2)
i = 1 for some i = 1, . . . , n − 1.

Then Z is Zariski closed.

Proof. — The discussion in [Che14, §4.2] shows that the locus where tx is absolutely
reducible is Zariski closed. If ρx : GQ → GL2(Qp) is irreducible, then the Zariski closure
of the image of ρx contains SL2 if and only if Sym6 ρx is irreducible. Indeed, the Zariski
closure of the image of ρx contains SL2 if and only if the Zariski closure Gx of the image
of the associated projective representation Projρx : GQ → PGL2(Qp) is PGL2. There are
two possibilities for the group Gx, which is a (possibly disconnected) reductive group: the
first is that it is finite, hence either dihedral or conjugate to one of A4, S4, or A5. In any of
these cases Sym6 ρx is reducible. The next is that Gx has a non-trivial identity component,
which therefore contains a maximal torus of PGL2. The only possibilities are therefore
that either Gx equals the normaliser of this maximal torus (in which case Sym6 ρx is again
reducible) or that Gx = PGL2 (in which case Sym6 ρx is irreducible).

This shows that the set Z12 of points satisfying conditions (1) or (2) of the Lemma
is Zariski closed. Finally, if l|N and i = 1, . . . , n − 1, let Z3,l,i denote the set of points x

such that tx|GQl
= χ1 +χ2 for some characters χ1, χ2 such that (χ1/χ2)

i = 1. It remains to
show that Z3,l,i is Zariski closed. Its complement is the set of points such that either tx|GQl

is absolutely irreducible, or tx|GQl
is absolutely reducible and there exists g ∈ GQl

such
that the discriminant of the characteristic polynomial of gi under the pseudocharacter tx
is non-zero. This is a union of Zariski open sets. �

3. Ping pong

In this section we use the rigid analytic results of §2 to prove the following theorem.
We recall that we say that an automorphic representation π of GL2(AQ) has “weight k”
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for an integer k ≥ 2 if π∞ has the same infinitesimal character as the dual of the algebraic
representation Symk−2 C2.

Theorem 3.1. — Fix an integer n ≥ 2. Let π0 be a cuspidal automorphic representation of

GL2(AQ) which is everywhere unramified and of weight k, for some k ≥ 2. Suppose that Symn−1 rπ0,ι

is automorphic for some (equivalently, any) prime p and isomorphism ι : Qp → C. Then for any every-

where unramified cuspidal automorphic representation π of GL2(AQ) of weight l ≥ 2, Symn−1 rπ,ι is

automorphic.

To prove Theorem 3.1, we will use the properties of the eigencurve E0, as defined
in §2.31. More precisely, we henceforth let p = 2, N = 1, and let E0 denote the eigencurve
defined with respect to this particular choice of parameters. We fix an isomorphism ι :
Q2 → C. E0 is supported on the connected component W+

0 ⊂W0 defined by χ(−1) = 1.
We write χ u : Z×

2 → O(W0) for the universal character. We have the following explicit
result of Buzzard and Kilford on the geometry of the morphism κ : E0 → W+

0 and the
slope map s : E0(Qp) → R:

Theorem 3.2. — Let w ∈O(W0) denote the function χ u(5)− 1. Then:

(1) w restricts to an isomorphism between W+
0 and the open unit disc {|w| < 1}.

(2) Let W0(b) ⊂ W+
0 denote the open subset where |8| < |w| < 1, and let E0(b) = κ−1(W0(b)).

Then there is a decomposition E0(b) = 
∞
i=1Xi of E0(b) as a countable disjoint union of admissible

open subspaces such that for each i ≥ 1, κ|Xi
: Xi →W0(b) is an isomorphism.

(3) For each i = 1,2, . . ., the map s◦κ|−1
Xi

:W0(b)(Qp) → Xi(Qp) → R equals the map ivp ◦w.

Proof. — This is almost the main theorem of [BK05], except that here we are using
the cuspidal version of the eigencurve. However, if E1 denotes the full eigencurve used in
[BK05], then there is a decomposition E1 = E ord

1 
 E non−ord
1 as a union of open and closed

subspaces. This follows from the fact that the ordinary locus E ord
1 in the eigencurve can

also be constructed using Hida theory (see [Pil13, §6]), so is finite over W0. Since E1 is
separated the open immersion E ord

1 ↪→ E1 is therefore also finite, hence a closed immer-
sion. In our particular case (p = 2,N = 1), we have E ord

1
∼= W+

0 (the unique ordinary
family is the family of Eisenstein series) and therefore E non−ord

1 = E0, giving the statement
we have here. See Lemma 7.4 of the (longer) arXiv version of [BC05] for an alternative
argument.

We note as well that in our normalisation, the trivial character in W0 corresponds
to forms of weight 2, whereas in the notation of [BK05], the character x2 corresponds to
forms of weight 2. However, this renormalisation does not change the region W0(b). �

Before giving the proof of Theorem 3.1, we record some useful lemmas.

Lemma 3.3. — Let z ∈ Zpc

0 ∩ E0(b), and suppose z ∈ Xi . Let z′ = τ(z) be the twin of z.

Then z ∈ Xi′ , where i′ satisfies the relation i + i′ = (k − 1)/vp(w(z)).
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Proof. — By Lemma 2.32, z′ lies in E0(b), so in Xi′ for a unique integer i′ ≥ 1.
Writing s, s′ for the slopes of these two points and k for their weights, we have k − 1 =
s + s′ = ivp(w(z))+ i′vp(w(z)), hence i + i′ = (k − 1)/vp(w(z)). �

As a sanity check, we observe that in the context of the proof of Lemma 3.3, (k −
1)/vp(w(z)) is always an integer. Indeed, κ(z) satisfies κ(z)(5) = 5k−2ζ2m for some k ≥ 2
and m ≥ 0. This weight lies in W0(b) if and only if either k is odd, or k is even and m ≥ 1.
If m ≥ 1, then vp(w(z)) = 21−m. If m = 0 and k is odd, then vp(w(z)) = 2. In either case
we see that (k − 1)/vp(w(z)) is an integer.

Lemma 3.4. — Let π be an everywhere unramified cuspidal automorphic representation of

GL2(AQ) of weight k ≥ 2. Every accessible refinement of π is numerically non-critical and n-regular

for every n ≥ 2 (recall that we have fixed p = 2 and these notions refer to the local factor at 2, π2).

Proof. — Numerical non-criticality of every refinement is immediate from the fact
that there are no cusp forms of level 1 that are ordinary at 2. For regularity, if we fix
a refinement χ = χ1 ⊗ χ2 then α = p1/2ιχ1(p) and β = p1/2ιχ2(p) are the roots of the
polynomial X2 − a2X+2k−1, with a2 the T2-eigenvalue of the level 1 weight k normalised
eigenform f associated to π . We need to show that α/β is not a root of unity.

Suppose α/β = ζ is a root of unity. If we fix ι5 : Q5
∼= C, the semisimplified mod 5

Galois representation rf ,ι5 arises up to twist from a level 1 eigenform of weight ≤ 6 (i.e. the
level 1 Eisenstein series of weight 4 or 6). This shows that ι−1

5 (ζ ) ≡ 23 or 25 mod mZ5
,

and therefore ζ is the product of a 5-power root of unity and ±i (since 2 has order 4 in
F×

5 ). Applying a similar argument at the prime 7 with ι7 : Q7
∼= C, we see that ι−1

7 (ζ ) ≡
23,25 or 27 mod mZ7

and therefore ζ is the product of a 7-power root of unity and a cube
root of unity. This gives the desired contradiction. (We thank Fred Diamond for pointing
out this argument to us, and thank an anonymous referee for explaining how to avoid
using Hatada’s congruence which appeared in the first version of this argument.) �

Lemma 3.5. — Let π be a cuspidal automorphic representation of GL2(AQ) of weight k ≥ 2.

We temporarily let p be an arbitrary prime. Then:

(1) rπ,ι|GQp
is reducible if and only if π is ι-ordinary.

(2) Suppose either that rπ,ι|GQp
is irreducible and πp admits a 3-regular refinement, or that k > 2 and

rπ,ι is not potentially crystalline. Then the Zariski closure of rπ,ι(GQp
) (in GL2/Qp) contains SL2.

(3) Suppose again that p = 2, and that π is everywhere unramified. Then the Zariski closure of

rπ,ι(GQ2) contains SL2.

Proof. — For the first part, ι-ordinarity implies reducibility by local-global com-
patibility at p, as in [Tho15, Theorem 2.4]. For the converse, if rπ,ι|GQp

is reducible,
then its Jordan–Hölder factors are de Rham characters of GQp

and therefore have the
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form ψiε
−ki , where the ψi are Z

×
p -valued characters with finite order restriction to in-

ertia and the ki are the Hodge–Tate weights (we can assume k1 = 0 and k2 = k − 1
in our situation). The Weil representation part of WD(rπ,ι|GQp

) is therefore equal to
ψ1 ⊕ψ2| · |1−k ◦ Art−1

Qp
. Since WD(rπ,ι|GQp

) = recT
Qp
(ι−1πp), πp is a subquotient of the nor-

malised induction i
GL2
B2

(ιψ1 ◦ ArtQp
| · |1/2 ⊗ ιψ2 ◦ ArtQp

| · |3/2−k). It follows from [Tho15,
Lemma 2.3] that π is ι-ordinary.

For the second part, we note that rπ,ι|GQp
is irreducible. Indeed, if rπ,ι|GQp

is re-
ducible then the first part of the lemma shows that π is ι-ordinary, and [Tho15, Lemma
2.3] implies that πp is a subquotient of i

GL2
B2

χ1 ⊗ χ2 with vp

(
ι−1(χ1/χ2(p))

) = 1 − k. If
rπ,ι is not potentially crystalline then WD(rπ,ι|GQp

) has N �= 0 and local-global compat-

ibility implies that if πp is a subquotient of i
GL2
B2

χ1 ⊗ χ2, then χ1/χ2 = | · |±1. This is a
contradiction if k > 2.

Thus rπ,ι|GQp
is irreducible and the Zariski closure H of its image is a reductive

subgroup of GL2. Let T be a maximal torus of H. Since rπ,ι is Hodge–Tate regular, T is
regular in GL2 (i.e. its centralizer is a maximal torus of GL2) by [Sen73, Theorem 1]. If H
does not contain SL2, then it is contained in the normaliser of a maximal torus of GL2 and
rπ,ι|GQp

is induced from a character of an index two subgroup. This forces WD(rπ,ι|GQp
)

to likewise be induced, so any refinement χ = χ1 ⊗ χ2 of πp satisfies χ 2
1 = χ 2

2 , and this
Weil–Deligne representation has N = 0. This is a contradiction, since we are assuming
either that there exists a 3-regular refinement or that N is non-zero.

For the third part, we have already observed (see the proof of Theorem 3.2) that
there are no cusp forms of level 1 that are ordinary at 2, so rπ,ι|GQ2

is irreducible. Suppose

that rπ,ι|GQ2
is induced. Then WD(rπ,ι|GQ2

) = Ind
WQ2
WK

ψ for some quadratic extension

K/Q2 and character ψ : WK → Q
×
2 . Since this Weil–Deligne representation must be

unramified, we see that K and ψ are both unramified, and therefore that ψ extends to
a character ψ : WQ2 → Q

×
2 such that WD(rπ,ι|GQ2

) = ψ ⊕ (ψ ⊗ δK/Q2). In particular,
the T2-eigenvalue (which equals the trace of Frobenius in this representation) is 0, but, as
shown in the proof of Lemma 3.4, this is impossible. �

Lemma 3.6. — Let i ≥ 1 be an integer, and let z ∈ Z0 ∩ Xi(Qp) be the point corresponding

to a pair (π,χ). Suppose that χ is n-regular. Let z′ ∈ Z0 ∩ Xi(Qp) be any other point, corresponding

to a pair (π ′, χ ′), with χ ′ n-regular. If Symn−1 rπ,ι is automorphic, then Symn−1 rπ ′,ι is also.

Proof. — We can assume n ≥ 3. We apply Theorem 2.33 (note that Xi,Cp
∼=

W0(b)Cp
is irreducible): since there are no ordinary points in E0, χ is numerically non-

critical and Lemma 3.5 implies that the Zariski closures of rπ,ι(GQp
) and rπ ′,ι(GQp

) con-
tain SL2 (the first part of the lemma shows that we are in the locally irreducible and
3-regular case of the second part of the lemma). �
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Lemma 3.7. — Let π be a cuspidal, everywhere unramified automorphic representation of

GL2(AQ) of weight k ≥ 2, and let χ be a choice of accessible refinement. Then there exists an in-

teger mπ ≥ 1 such that for any integer m ≥ mπ , we can find a cuspidal automorphic representation π ′ of

GL2(AQ) satisfying the following conditions:

(1) π ′ is unramified outside 2.

(2) π ′ admits two accessible refinements of distinct slopes (in particular these refinements are n-regular

for every n ≥ 2).

(3) There is an accessible refinement χ ′ of π ′ such that (π,χ) and (π ′, χ ′) define points z, z′ on the

same irreducible component of E0,Cp
.

(4) κ(z′) ∈ W0(b). In particular, z′ ∈ Xi for some i ≥ 1 (notation as in the statement of Theorem

3.2).

(5) Set z′′ = τ(z′), and let (π ′′, χ ′′) ∈ Zpc

0 be the associated pair.6Then z′′ ∈ X2m−1.

(6) The automorphy of any one of the three representations

Symn−1 rπ,ι,Symn−1 rπ ′,ι,Symn−1 rπ ′′,ι

implies automorphy of all three.

Proof. — We use Theorem 3.2. Extending E if necessary, we may assume that
z ∈ E0(E) and every irreducible component of E0 containing z is geometrically irre-
ducible. Fix one of these irreducible components and fix i such that this irreducible
component contains Xi (such an i exists, because every irreducible component of E0 has
Zariski open image in W+

0 , hence intersects E0(b) and therefore contains a non-empty
union of irreducible components of E0(b)). We define mπ to be least integer mπ ≥ 1 satis-
fying the inequality

(2i + 2mπ+1 − 3)/2 > 2i.

Given m ≥ mπ , we choose z′ ∈ Xi(Qp) to be the point such that κ(z′)(5) = 5k′−2, where
k′ = 2i + 2m+1 − 1. Then (k′ − 2)/2 > 2i = s(z′). By Coleman’s classicality criterion,
z′ ∈ Z0. If z′ was not in Zpc

0 , its slope would be (k′ − 2)/2. So z′ ∈ Zpc

0 and if (π ′, χ ′)
denotes the corresponding pair, then the two accessible refinements of π ′ have distinct
slopes (2i and k′ − 1 − 2i).

Let z′′ = τ(z′) denote the twin point, and (π ′′, χ ′′) the corresponding pair. Then
z′′ lies on Xi′ , where i′ = (k′ − 1)/2 − i = 2m − 1, by Lemma 3.3. We’re done: the first 5
properties of (π ′, χ ′) follow by construction, whilst the 6th follows from Theorem 2.33,
Lemma 3.4 and Lemma 3.5. �

We can now complete the proof of Theorem 3.1.

6 Bouncing from z′ to its twin point z′′ reminded the authors of a game of ping pong, whence the section title.
Earlier versions of the argument involved longer rallies!
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Proof of Theorem 3.1. — Let π0, π ′
0 be everywhere unramified cuspidal automor-

phic representations of GL2(AQ) of weights k0, k′
0 ≥ 2, respectively. Define integers mπ0 ,

mπ ′
0

as in Lemma 3.7 and fix an integer m ≥ max(mπ0,mπ ′
0
). Combining Lemma 3.7 and

Lemma 3.6 (applied with i = 2m − 1) we see that the automorphy of Symn−1 rπ0,ι implies
that of Symn−1 rπ ′

0,ι
. Since π ′

0 was arbitrary, this completes the proof. �

Part II: Raising the level

Most of the remainder of this paper (§§4 – 7) is devoted to the proof of Theorem E
from the introduction, namely the existence for each n ≥ 2 of a single regular algebraic,
cuspidal, everywhere unramified automorphic representation π of GL2(AQ) such that
Symn−1 π exists. As a guide to what follows, we now give an expanded sketch of the proof
of this theorem.

Fix, for the sake of argument, a regular algebraic, cuspidal, everywhere unrami-
fied automorphic representation π of GL2(AQ). We will try to establish the existence of
Symn−1 π by proving the automorphy of one of the Galois representations Symn−1 rπ,ι
associated to a choice of prime p and isomorphism ι : Qp → C, using an automor-
phy lifting theorem. First, if K/Q is an imaginary quadratic extension then we can
find (using e.g. [BLGGT14, Lemma A.2.5]) a (de Rham) character ω : GK → Q

×
p

such that ωωc = (det rπ,ιε
−1)n−1. Then the representation ρ = ω ⊗ Symn−1 r|GK satisfies

ρc ∼= ρ∨ ⊗ ε1−n, so has the potential to be associated to a RACSDC automorphic repre-
sentation of GLn(AK). This means we can use an automorphy lifting theorem adapted to
such automorphic representations. (The automorphy of ρ will imply that of Symn−1 rπ,ι
by quadratic descent.)

We need to select π and ι so that the residual representation ρ is automorphic. For
“most” ι (say, for all but finitely many primes p) the image of rπ,ι will contain a conjugate
of SL2(Fp) and Symn−1 ρ will be irreducible, and it is not clear how to proceed. We
therefore want to avoid this generic case. Here we choose π and ι so that there is an
isomorphism rπ,ι ∼= Ind

GQ

GK
χ for some imaginary quadratic extension K/Q and character

χ : GK → F
×
p . Then there is an isomorphism

ρ ∼= ⊕n
i=1ωχ

n−i(χ c)i−1.

In particular, this residual representation is highly reducible, being a sum of n characters.
Most automorphy lifting theorems in the literature require the residual representation
to be irreducible; we will apply [ANT20, Theorem 1.1], an automorphy lifting theorem
that does not have this requirement, but that does have some other stringent conditions.
These conditions include the requirement that there exist a RACSDC automorphic rep-
resentation � of GLn(AK) such that r�,ι

∼= ρ, and satisfying the following:

• � is ι-ordinary (and so is π ).
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• There exists a prime l �= p and a place v|l of K such that both πl and �v are
twists of the Steinberg representation (of GL2(Ql) and GLn(Kv), respectively).

It is easy to arrange that the first requirement be satisfied, by choosing p to be a prime
which splits in K. The second is more difficult. First it requires that π is ramified at l,
whereas we have to this point asked for π to be everywhere unramified. We will thus first
find a ramified π for which Symn−1 π exists, and eventually remove the primes of ramifi-
cation using the l-adic analytic continuation of functoriality results proved in the first part
of the paper. The main problem is then to find a � verifying the residual automorphy
of ρ such that �v is a twist of the Steinberg representation. This is what will occupy us
in §§4 – 6 below. The above argument is then laid out carefully in §7 in order to finally
prove Theorem E.

Here is how we get our hands on �. By choosing an appropriate lift of the charac-
ter χ , we can choose characters X1, . . . ,Xn : K×\A×

K → C× such that �0 = X1 � · · ·�Xn

is a regular algebraic and conjugate self-dual (although not cuspidal!) automorphic rep-
resentation of GLn(AK) whose associated residual representation is ρ. If G is a definite
unitary group in n variables associated to the extension K/Q, quasi-split at finite places,
then we can hope that �0 transfers to an automorphic representation of G(AQ). There is
a slight wrinkle here in that such a group G does not exist if n is even, and even in the case
that n is odd there is a potential obstruction to the existence of this transfer given, at least
conjecturally, by Arthur’s multiplicity formula. Both of these obstacles can be avoided
by replacing Q with a suitable soluble totally real extension F/Q. In order to avoid in-
troducing additional notation in this sketch, we pretend they can be dealt with already
in the case F = Q. (Actually, we will find it convenient to take �0 to be the box sum of
two cuspidal automorphic representations of GL2(AK) and GLn−2(AK), respectively. This
means that the final form of the proof of Theorem E will be a kind of induction on n.)

We thus find ourselves with an automorphic representation �0 of G(AQ), whose
base change (in the sense of Theorem 1.2) is �0. Say for the sake of argument that l splits
in K, so that we can identify G(Ql) with GLn(Kv). If we can find another automorphic
representation �1 of G(AQ), congruent modulo p to �0 and such that �1,v is a twist of
the Steinberg representation, then we will have solved our problem. We can therefore
now focus on this problem of level-raising for the definite unitary group G.

There are differing approaches to this problem in the literature. First there is the
purely automorphic approach, pioneered by Ribet for GL2(AQ) [Rib84]. Some gener-
alisations to higher rank groups of this statement do exist (see for example [Tho14a]),
but nothing that is applicable in the level of generality considered here. Then there is the
purely Galois theoretic approach, based on the powerful automorphy lifting theorems
which are now available for Galois representations in arbitrary rank (see for example
[Gee11]). We can not directly apply such results here because the only automorphy lifting
theorems applicable in the residually reducible case (namely those of [ANT20]) require
the existence of at least one place at which the starting automorphic representation is
sufficiently non-degenerate.
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We solve the problem here by combining aspects of these approaches. A similar
combination of techniques is used in the paper [CT17]: the idea is to first use an auto-
morphic technique to replace �0 with a representation �′

0 such that �′
0,v is so ramified

that, in conjunction with other conditions in place, �′
0 is forced to be stable (i.e. its base

change is cuspidal). (The possibility of doing this is the reason for choosing �0 to in fact
be a box sum of two cuspidal factors, as mentioned above.) This situation is reflected
in the deformation theory, where one finds that (in the big ordinary Galois deformation
ring) the locus of reducible deformations is small enough that something like the tech-
niques of [Gee11] can be applied to construct an automorphic lift of ρ with the required
local properties. These Galois theoretic arguments are carried out in §§5, 6.

What remains to be explained then is the automorphic level-raising technique de-
veloped in §4. The approach to creating congruences here is based on types. We recall
(using the language of [BK98]) that if s is an inertial equivalence class of G(Ql) (i.e. a
supercuspidal representation of a Levi factor of G(Ql), up to unramified twist), then an
s-type is a pair (U, τ ), where U is an open compact subgroup of G(Ql) and τ is an irre-
ducible finite-dimensional representation of U such that for each irreducible admissible
representation σv of G(Ql), the supercuspidal support of σv is in class s if and only if σv|U
contains τ .

It can sometimes happen that two inertial equivalence classes s, s′ admit types
(U, τ ) and (U′, τ ′) with the property that U = U′, the reduction modulo p τ of ι−1τ

is irreducible, and the reduction modulo p τ ′ of ι−1τ ′ contains τ as a Jordan–Hölder
factor. This situation might be called a congruence of types. If this is the case then the
theory of algebraic modular forms implies that any automorphic representation � of
G(AQ) such that �l is of type s is congruent to another �′ such that �′

l is of type s′. The
existence of such global congruences is explained in [Vig01, §3]. It gives an efficient way
to construct congruences between automorphic representations �, �′ such that �l , �′

l

are in different inertial equivalence classes, although it is not usually possible to change
the Levi subgroup underlying the inertial equivalence class. Since G(Ql) ∼= GLn(Kv) and
the initial representation �0 is certainly not supercuspidal at l, it is not immediately clear
how to use this.

We therefore instead introduce an auxiliary imaginary quadratic extension E/Q in
which l is inert, as well as an associated definite unitary group G′, and carry out the first
step of the automorphic part of the level-raising argument using algebraic modular forms
on G′. The importance of the group G′ is that there are conjugate self-dual irreducible
admissible representations of GL3(El) which are not supercuspidal, but for which the
associated L-packets of representations of U3(Ql) contain supercuspidal elements. For
carefully chosen local data, we can find use the method of types to find congruences to
supercuspidal representations of U3(Ql) whose base change to GL3(El) is supercuspidal.
We have already constructed such congruences of types in §1.8. In terms of automorphic
representations of GLn(AE), this will allow us to change the Levi subgroup underlying
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the inertial equivalence class at l from the maximal torus of GLn(El) to the group GL3 ×
GLn−3

1 . This will be enough for our intended application.

4. Raising the level – automorphic forms

Let n = 2k + 1 ≥ 3 be an odd integer, and let F, p,S,G = Gn etc. be as in our
standard assumptions (see §1). Suppose given cuspidal, conjugate self-dual automorphic
representations π2 of GL2(AF) and πn−2 of GLn−2(AF) with the following properties:
(1) π = π2 � πn−2 is regular algebraic.
Consequently, π2| · |(2−n)/2 and πn−2 are regular algebraic and the representations ρ2 =
rπ2|·|(2−n)/2,ι, ρn−2 = rπn−2|·|−1,ι are defined. We set ρ = rπ,ι = ρ2 ⊕ ρn−2. Moreover, π2 and
πn−2 are both tempered, cf. the remark after Corollary 1.3.
(2) π is ι-ordinary.
(3) We are given disjoint, non-empty sets T1, T2, T3 of places of F+ with the following

properties:
(1) For all v ∈ T = T1 ∪ T2 ∪ T3, v �∈ S and qv is odd. The representation π is unram-

ified outside S ∪ T. If ṽ is a place of F lying above a place in T then, as in §§1.8,
1.17, we write ω(̃v) : k(̃v)× → C× for the unique quadratic character.

(2) For each v ∈ T1, v is inert in F, qv mod p is a primitive 6th root of unity, and
the characteristic of k(v) is greater than n. There are characters χṽ,χṽ,0, χṽ,1, . . . ,

χṽ,2k−2 : F×
ṽ → C× such that χṽ , χṽ,0 are unramified and for each i = 1, . . . ,2k−2,

χṽ,i|O×
Fṽ

= ω(̃v). We have π2,̃v
∼= St2(χṽ) and πn−2,̃v

∼= �2k−2
i=0 χṽ,i .

(3) For each v ∈ T2, v splits v = ṽṽc in F, qv mod p is a primitive 2nd root of unity,
π2,̃v|GL2(OFṽ )

contains λ̃(̃v,�ṽ) (for some order p character �ṽ as in §1.17, with
n1 = 2), and πn−2,̃v|GLn−2(OFṽ )

contains ω(̃v) ◦ det. Thus πṽ satisfies the equivalent
conditions of Proposition 1.20, and πṽ|qṽ contains λ̃(̃v,�ṽ, n).

(4) For each v ∈ T3, v splits v = ṽṽc in F, qv mod p is a primitive (n−2)th root of unity,
πn−2,̃v|GLn−2(OFṽ )

contains λ̃(̃v,�ṽ) (for some order p character �ṽ as in §1.17, with
n1 = n − 2), and π2,̃v|GL2(OFṽ )

contains ω(̃v) ◦ det. Thus πṽ satisfies the equivalent
conditions of Proposition 1.20, and πṽ|qṽ contains λ̃(̃v,�ṽ, n).

Let T̃ = {̃v | v ∈ T}. We fix for each v ∈ T1 a character θv : C(k(v)) → C× of order p

(notation as in Proposition 1.12). In the rest of this section, we will prove the following
theorem.

Theorem 4.1. — With hypotheses as above, let L+/F+ be a totally real S ∪ T-split quadratic

extension, and let L = L+F. Then there exists a RACSDC automorphic representation � of GLn(AL)

with the following properties:

(1) � is ι-ordinary, and unramified at any place not dividing S ∪ T.

(2) r�,ι
∼= rπ,ι|GL .

(3) For each place v ∈ T1,L, �ṽ|rṽ contains the representation λ̃(̃v, θ̃v|F+ , n)|rṽ (thus satisfying the

equivalent conditions of Proposition 1.19).
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(4) For each place v ∈ T2,L ∪ T3,L, �ṽ|qṽ contains the representation λ̃(̃v,�ṽ|F, n) (thus satisfying

the equivalent conditions of Proposition 1.20 with n2 = 2 if v ∈ T2,L and n2 = n−2 if v ∈ T3,L).

Remark 4.2. — The places v ∈ T2 ∪ T3 play a role in ensuring that � is cuspidal
(using Lemma 4.5 below). Our set-up is adapted to the proof of Proposition 7.4, which
uses an induction on the dimension to construct automorphic representations with an
unramified twist of Steinberg local factor which are congruent to some very special odd-
dimensional symmetric powers.

We begin with two important observations.

Lemma 4.3. — Let v be a finite place of F+ which is inert in F. Then πṽ ∈Aθ
t (GLn(Fṽ))+.

Proof. — The representation πṽ is tempered because both π2,̃v and πn−2,̃v are tem-
pered. By the main theorem of [BC11], rπ,ι extends to a homomorphism r : GF+ →
Gn(Qp) such that ν ◦ r = ε1−nδn

F/F+ . Restricting to WF+
v

and twisting by an appropri-
ate character, we see that the Langlands parameter of πṽ extends to a parameter
WF+

v
× SL2 → LG. �

Remark 4.4. — A consequence of this lemma is that for v ∈ T1 the character χṽ is
non-trivial quadratic and the character χṽ,0 is trivial.

Lemma 4.5. — Suppose given a partition n = n1 + · · · + nr and cuspidal, conjugate self-

dual automorphic representations π ′
1, . . . , π

′
r of GLni

(AF) such that π ′ = π ′
1 � · · · � π ′

r is regular

algebraic. Suppose moreover that the following conditions are satisfied:

(1) There is an isomorphism rπ ′,ι ∼= rπ,ι.

(2) If v ∈ T2 ∪ T3 then π ′
ṽ|qṽ contains λ̃(̃v,�ṽ, n).

Then one of the following two statements holds:

(1) We have r = 1, n1 = n, and so π ′ is cuspidal.

(2) After re-ordering we have r = 2, n1 = n − 2, n2 = 2. If v ∈ T2 then π ′
1,̃v|GLn−2(OFṽ )

contains

ω(̃v) ◦ det and π ′
2,̃v|GL2(OFṽ )

contains λ̃(̃v,�ṽ), while if v ∈ T3 then π ′
1,̃v|GLn−2(OFṽ )

contains

λ̃(̃v,�ṽ) and π ′
2,̃v|GL2(OFṽ )

contains ω(̃v)◦det. We have isomorphisms of semisimplified residual

representations rπ ′
1|·|−1,ι

∼= ρn−2 and rπ ′
2|·|(2−n)/2,ι

∼= ρ2.

Proof. — Before beginning the proof, we observe that the representations ρ2, ρn−2

have the following properties:

• If v ∈ T2, then ρ2|ssGFṽ
is unramified and ρn−2|ssGFṽ

is unramified after twisting by
a ramified quadratic character. (The character �ṽ has order p.)

• If v ∈ T3, then ρ2|ssGFṽ
is unramified after twisting by a ramified quadratic char-

acter and ρn−2|ssGFṽ
is unramified.
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We can suppose without loss of generality that r ≥ 2. Fix places v2 ∈ T2, v3 ∈ T3.
By Proposition 1.20, we can assume after relabelling that π ′

1,̃v3
|GLn1 (OFṽ3

) contains

λ̃(̃v3,�ṽ3, n1) (and in particular, n1 ≥ n − 2), in which case (π ′
2,̃v3

� · · · �π ′
r ,̃v3

)|GLn−n1 (OFṽ3
)

contains ω(̃v3) ◦ det. There is an isomorphism

rπ ′,ι = ⊕r
i=1rπ ′

i |·|(ni−n)/2,ι
∼= ρ2 ⊕ ρn−2,

hence

⊕r
i=1rπ ′

i |·|(ni−n)/2,ι|ssGFṽ3

∼= ρ2|ssGFṽ3
⊕ ρn−2|ssGFṽ3

.

Since ⊕r
i=2rπ ′

i |·|(ni−n)/2,ι|ssGFṽ3
contains no unramified subrepresentation, we conclude that

rπ ′
1|·|(n1−n)/2,ι contains ρn−2 as a subrepresentation.

We now look at the place v2. There are two possibilities for the representation
π ′

1,̃v2
: either π ′

1,̃v2
|GLn1 (OFṽ2

) contains λ̃(̃v2,�ṽ2, n1), or it contains ω(̃v2) ◦ det. We claim
that the first possibility does not occur. Indeed, in this case arguing as above shows that
⊕r

i=2rπ ′
i |·|(ni−n)/2,ι|ssGFṽ2

contains no unramified subrepresentation, and therefore that ρ2 is a
subrepresentation of rπ ′

1|·|(n1−n)/2,ι. This forces n1 = n and r = 1, a contradiction. Therefore
we must have r = 2, n2 = 2, and π ′

2,̃v2
|GL2(OFṽ2

) contains λ̃(̃v2,�ṽ2). Since v2, v3 were
arbitrary, this completes the proof. �

We now commence the proof of the theorem. Let U =∏v Uv ⊂ G(A∞
F+) be an

open compact subgroup with the following properties:

• For each v ∈ S, πι̃v(Uv)

ṽ �= 0.
• If v �∈ S ∪ T, then Uv = G(OF+

v
).

• If v ∈ Sp, then Uv = ι−1
ṽ Iwṽ(c, c) for some c ≥ 1 such that π Iwṽ (c,c),ord

ṽ �= 0 (notation
as in [Ger19, §5.1]) and Uv contains no non-trivial torsion elements (note this
implies that U is sufficiently small).

• If v ∈ T1 then Uv = ι−1
v pv (notation as in §1.8).

• If v ∈ T2 ∪ T3 then Uv = ι−1
ṽ qṽ (notation as in §1.17, defined with n1 = 2 if

v ∈ T2 and n1 = n − 2 if v ∈ T3).

We define τg = ⊗v∈T1τ(v, n)⊗v∈T2∪T3 λ̃(̃v,�ṽ, n), where τ(v, n), λ̃(̃v,�ṽ, n) are the rep-
resentations of pv , qṽ defined in §1.8, §1.17 respectively. Thus τg is an irreducible C[UT]-
module, which we view as a C[U]-module by projection to the T-component. Similarly
we define λg = ⊗v∈T1λ(v, θv, n)⊗v∈T2∪T3 λ̃(̃v,�ṽ, n). Fixing a sufficiently large coefficient
field, we can choose O-lattices τ̊g and λ̊g in ι−1τg and ι−1λg , respectively.

If L+/F+ is an S ∪ T-split totally real quadratic extension, then we define an open
compact subgroup UL =∏v UL,v ⊂ G(A∞

L+) and representations τg,L, λg,L by the same
recipe (where we now replace the sets S, Ti by their lifts SL, Ti,L to L+).
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Proposition 4.6. — Let L+/F+ be an S ∪ T-split totally real quadratic extension and let

L = L+F. Then either there exists an automorphic representation σ of G(AF+) with the following

properties:

(1) π is the base change of σ (cf. Theorem 1.2);

(2) For each place v �∈ T, σUv
v �= 0;

(3) σT|UT contains τg .

or there exists an automorphic representation σ of G(AL+) with the following properties:

(1) Let πL denote the base change of π with respect to the quadratic extension L/F. Then πL is the base

change of σ ;

(2) For each place v �∈ TL, σ
UL,v
v �= 0;

(3) σTL|UL,TL
contains τg,L.

Proof. — By [Lab11, Théorème 5.1], there is an identity

(4.6.1) TG
disc(f ) =

∑
H

ι(G,H)TM̃H

disc (̃f
H),

for any f = f ∞ ⊗ f∞ ∈ C∞
c (G(AF+)) such that f∞ is a pseudocoefficient of discrete series.

Here the sum on the right-hand side is over representatives for equivalence classes of
endoscopic data for G, represented here by the associated endoscopic group H (recall
that we have fixed representative endoscopic triples in §1). The coefficients ι(G,H) are
given in [Lab11, Proposition 4.11], while the expression TM̃H

disc (̃f
H) is given in [Lab11,

Proposition 3.4] as a formula

(4.6.2)
∑

L∈L0/WMH

∑

s∈WM̃H
(L)reg

∑
π̃L∈�disc (̃Ls)

(|det(s −1 | aL/aMH)||WMH
(L)|)−1 tr IQ(π̃

L)(̃f H),

where (summarizing the notation of op. cit.):

• M̃H is a twisted space on a Levi of ResF/F+ GLn, as in §1.5;
• L0 is the set of standard Levi subgroups of MH;
• WM̃H

(L)reg is the quotient by the Weyl group WL of the set of elements s in
the twisted Weyl group WM̃H = WMH

� θMH which normalise L and such that
det(s−1 | aL/aMH) �= 0, where a? denotes the Lie algebra of the maximal Q-split
subtorus of the centre of a reductive group.

• �disc(̃Ls) is the set of isomorphism classes of irreducible representations of the
twisted space L̃s(AF+) which appear as subrepresentations of the discrete spec-
trum of L.

• IQ(π̃
L)(̃f H) is a certain intertwining operator, with Q a parabolic subgroup with

Levi L.

We fix our choice of f∞ so that it only has non-zero traces on representations of G(F+
∞)

whose infinitesimal character is related, by twisted base change, to that of π . The argu-
ment of [Shi11, Proposition 4.8] then shows that for each L ∈ L0/WMH

, there is at most
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one element s ∈ WM̃H
(L)reg for which the corresponding summand in (4.6.2) can be non-

zero (and a representative for s can be chosen which acts as conjugate inverse transpose
on each simple factor of L). Using Proposition 1.7, linear independence of characters, the
description of the discrete spectrum of general linear groups [MW89], and the Jacquet–
Shalika theorem [JS81], we can combine (4.6.1) and (4.6.2) to obtain a refined identity

(4.6.3)
∑

i

m(σi)σi(f ) = 1
2

(
π̃ (̃f )+ (πn−2 ⊗ (π2 ⊗μ−1 ◦ det))∼(̃f Un−2×U2)

)
,

where:

• The sum on the left-hand side is over the finitely many automorphic represen-
tations σi of G(AF+) which are unramified at all places below which π is unram-
ified, have infinitesimal character related to that of π∞ by twisted base change,
and which are related to π by (either unramified or split) base change at places
v �∈ T1 of F+, each occurring with its multiplicity m(σi).

• The twisted traces on the right-hand side are Whittaker-normalised. (These two
terms arise from H = Un, L = ResF/F+ GLn−2 × GL2 and H = Un−2 × U2, L =
MH, respectively. The same argument as in [Lab11, Proposition 3.7] shows that
Arthur’s normalisation of the twisted trace, implicit in the term IQ(?) of (4.6.2),
agrees with the Whittaker normalisation on the corresponding terms.)

We remark that the representations π2, πn−2 are tempered and that the representa-
tions σ

T1
i (i.e. prime to T1-part) are isomorphic. If v ∈ T1, then we can find (com-

bining Proposition 1.11 for Un−2 × U2 and e.g. [Hir04, Proposition 4.6]) a finite set
{λv,i} of irreducible admissible representations of G(F+

v ) and scalars dv,i ∈ C such that
(πn−2,v ⊗ (π2,v ⊗μ−1

v ◦ det))∼(̃f Un−2×U2
v ) =∑i dv,iλv,i(fv). By Proposition 1.6, Proposition

1.7 and Proposition 1.11, we therefore have an identity:

∑
i

m(σi)σi,T1(fT1) = 1
2

(∏
v|∞

ε(v,Un, ϕUn
)
∏
v∈T1

∑
τ∈�(πv)

cτ τ (fv)

+
∏
v|∞

ε(v,Un−2 × U2, ϕUn−2×U2)
∏
v∈T1

∑
i

dv,iλv,i(fv)

)
,

Choose for each v ∈ T1 a representation τv ∈ �(πv) such that τv|Uv
contains τ(v, n) (this

is possible by Corollary 1.13 and Proposition 1.14). We can assume that for each v ∈ T1,
λv,1 = τv (possibly with dv,1 = 0). We conclude that there is at most one automorphic
representation σ of G(AF+) with the following properties:

• σ is unramified outside S ∪ T, and is related to π by split or unramified base
change at all places v �∈ T1;

• If v ∈ T1, then σv
∼= τv .
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The representation σ occurs with multiplicity

m(σ ) = 1
2

(∏
v|∞

ε(v,Un, ϕUn
)
∏
v∈T1

cτv

+
∏
v|∞

ε(v,Un−2 × U2, ϕUn−2×U2)
∏
v∈T1

dv,1

)
.

We note that the numbers cτv are all non-zero, by Proposition 1.11. If m(σ ) is non-zero,
then we’re done (we are in the first case in the statement of the proposition). Otherwise,∏

v∈T1
c2
τv

=∏v∈T1
d2
v,1, which we now assume.

In this case, let L+/F+ be a totally real quadratic S∪T-split extension, let L = L+F,
and let πL denote the base change of π with respect to the quadratic extension L/F. If
v ∈ T1,L, let τv = τv|F+ . Then repeating the same argument shows that there is at most
one automorphic representation σ of G(AL+) with the following properties:

• σ is unramified outside SL ∪ TL, and is related to πL by split or unramified base
change at all places v �∈ T1,L;

• If v ∈ T1,L, then σv
∼= τv .

Using the remark after Proposition 1.6, we see that the representation σ occurs with
multiplicity

m(σ ) = 1
2

⎛
⎝ ∏

v∈T1,L

cτv +
∏

v∈T1,L

dv,1

⎞
⎠=

∏
v∈T1

c2
τv
.

This is non-zero, so we’re done in this case also (and we are in the second case of the
proposition). �

We now show how to complete the proof of Theorem 4.1, assuming first that we
are in the first case of Proposition 4.6. We let σ be the automorphic representation of
G(AF+) whose existence is asserted by Proposition 4.6. Let λ ∈ (Zn

+)
Hom(F,Qp) be such

that σ contributes to Sord
λ (U, ι−1τg) under the isomorphism of Lemma 1.25. Let T ⊂

EndO(Sord
λ (U, ι−1τg)) be the commutative O-subalgebra generated by unramified Hecke

operators Tj
w at split places v = wwc �∈ S of F+, and let m ⊂ T be the maximal ideal

determined by σ .
Then Sord

λ (U, τ̊g ⊗O k)m is non-zero, by Lemma 1.24, hence (using the exactness of
Sord
λ (U,−) as a functor on k[U]-modules, together with Proposition 1.15) Sord

λ (U, λ̊g ⊗O
k)m �= 0, hence Sord

λ (U, λ̊g)m �= 0. Applying Lemma 1.25 once again, we conclude the
existence of an automorphic representation � of Gn(AF+) with the following properties:

• r�,ι
∼= rπ,ι.
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• �T|UT contains λg .
• � is ι-ordinary and is unramified outside S ∪ T.

Let � denote the base change of �, let L+/F+ be a quadratic totally real extension as
in the statement of Theorem 4.1, and let �L denote base change of � with respect to
the extension L/F. We claim that �L satisfies the requirements of Theorem 4.1. The
only points left to check are that �L is cuspidal and that if v ∈ T1,L then �L,v satisfies
condition (3) in the statement of Theorem 4.1. In fact, it is enough to show that � is
cuspidal and that if v ∈ T1 then �ṽ|rṽ contains λ̃(̃v, θ̃v, n)|rṽ . We first show that � is cus-
pidal. If � is not cuspidal, then Lemma 4.5 shows that � = �n−2 ��2 where �n−2, �2

are cuspidal, conjugate self-dual automorphic representations of GLn−2(AF), GL2(AF),
respectively. Arguing as in proof of Proposition 4.6, we obtain an identity

(4.6.4)
∑

i

m(�i)�i(f ) = 1
2

(
�̃(̃f )+ (�n−2 ⊗ (�2 ⊗μ−1 ◦ det))∼(̃f Un−2×U2)

)
,

where the sum on the left-hand side is over the finitely many automorphic representations
�i of G(AF+) which are unramified at all places below which � is unramified, have in-
finitesimal character related to that of �∞ by twisted base change, and which are related
to � by (either unramified or split) base change at places v �∈ T1 of F+.

Fix v ∈ T1, and consider a test function of the form f = fv ⊗ f∞ ⊗ f v,∞, where:

• f∞ is a coefficient for �∞.
• fv is the test function denoted φ in the statement of Proposition 1.16.
• f v,∞ is the characteristic function of an open compact subgroup of G(A∞

F+).
• �(f ) �= 0.

Then �i(f ) is non-negative for any i, and the left-hand side of (4.6.4) is non-zero. We
conclude that at least one of the terms �̃(̃f ) and (�n−2 ⊗ (�2 ⊗ μ−1 ◦ det))∼(̃f Un−2×U2)

is non-zero. In either case Proposition 1.16 implies that the cuspidal support of �ṽ , and
therefore �n−2,̃v , contains a supercuspidal representation # of GL3(Fṽ) such that the
semisimple residual representation attached to recT

Fṽ
(ι−1#) is unramified. This contra-

dicts Lemma 4.5, which implies that r�n−2|·|−1,ι|ssGFṽ
is the sum of an unramified character

and the twist of an unramified representation by a quadratic ramified character.
Therefore � is cuspidal, and a similar argument now gives an identity

(4.6.5)
∑

i

m(�i)�i(f ) = �̃(̃f ).

With the same choice of test function we have �̃(̃f ) �= 0, so another application of Propo-
sition 1.16 shows that �ṽ has the required property. This completes the proof of Theorem
4.1, assuming that the first case of Proposition 4.6 holds. If the second case holds, the ar-
gument is very similar, except that there is no need to replace � by its base change with
respect to a quadratic extension L/F. In either case, this completes the proof.
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5. A finiteness result for Galois deformation rings

In this section we prove that certain Galois deformation rings are finite over the
Iwasawa algebra (Theorem 5.2), and use this to give a criterion for a given deformation to
have an irreducible specialization with useful properties (Theorem 5.7). These technical
results form the basis for the arguments in §6, where we will apply our criterion to the
Galois representation valued over a big ordinary Hecke algebra.

The novelty of the results proved in this section is that we assume that the residual
representation is reducible (in fact, to simplify the exposition we assume that this repre-
sentation is a sum of characters). The main tools are the automorphy lifting theorems
proved in [ANT20] and the idea of potential automorphy, for which we use [BLGGT14]
as a reference. The notation and definitions we use for Galois deformation theory in the
ordinary case are summarized in [ANT20, §3], and we refer to that paper in particu-
lar for the notion of local and global deformation problem, and the definitions of the
particular local deformation problems used below.

Before getting stuck into the details, we record a useful lemma. If � is a profinite
group, k is a field with the discrete topology, and ρ : � → GLn(k) is a continuous rep-
resentation, we say that ρ is primitive if it is not isomorphic to a representation of the
form Ind�

�′ σ for some finite index proper closed subgroup �′ ⊂ � and representation
σ : �′ → GLn/[�:�′](k). This condition appears as a hypothesis in the automorphy lifting
theorem proved in [ANT20].

Lemma 5.1. — Suppose that ρ = χ 1 ⊕· · ·⊕χ n, for some continuous characters χ i : � → k×

such that for each i �= j , χ i/χ j has order greater than n. Then ρ is primitive.

Proof. — Suppose that there is an isomorphism ρ ∼= Ind�
�′ σ . Then Frobenius reci-

procity implies that σ contains each character χ i|�′ . These n characters are distinct: if
χ i|�′ = χ j|�′ , then (χ i/χ j)

[�:�′] = 1, which would contradict our assumption that χ i/χ j

has order greater than n if i �= j. Thus σ must have dimension at least n, implying that
� = �′. It follows that ρ is primitive. �

Now let n ≥ 2 and let F, S, p be as in our standard assumptions (see §1), and
let E ⊂ Qp be a coefficient field. We recall the definition of the Iwasawa algebra �. If
v ∈ Sp, then we write �v = O�(Iab

Fṽ
(p))n�, where Iab

Fṽ
(p) denotes the inertia subgroup of

the Galois group of the maximal abelian pro-p extension of Fṽ . We set � = ⊗̂v∈Sp
�v ,

the completed tensor product being over O. For each v ∈ Sp and i = 1, . . . , n there is
a universal character ψ i

v : Iab
Fṽ
(p) → �×

v . At times we will need to introduce Iwasawa
algebras also for extension fields F′/F and for representations of degree n′ �= n, in which
case we will write e.g. �F′,n′ for the corresponding Iwasawa algebra, dropping a subscript
when either F′ = F or n′ = n.

Let μ : GF+,S → O× be a continuous character which is de Rham and such that
μ(cv) = −1 for each place v|∞ of F+. Fix an integer n ≥ 2, and suppose given characters
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χ 1, . . . , χ n : GF,S → k× such that for each i = 1, . . . , n, χ iχ
c
i = μ|GF,S . We set ρ = ⊕n

i=1χ i ;
then ρ extends to a homomorphism r : GF+,S → Gn(k) such that νGn

◦ r = μ, by setting
r(c) = (1n,1)j ∈ Gn(k). We suppose that for each v ∈ Sp, r|GFṽ

is trivial.
Let � be a set of finite places of F+ split in F and disjoint from S, and �̃ a lift of

� to F. If for each v ∈ �, qv ≡ 1 mod p and r|GFṽ
is trivial, then we can define the global

deformation problem

S� = (F/F+,S ∪�, S̃ ∪ �̃,�, r,μ, {R�
v }v∈Sp

∪ {R�
v }v∈S−Sp

∪ {RSt
v }v∈�).

(For the convenience of the reader, we summarize the notation from [ANT20, §3]. Thus
the local lifting ring R�

v represents the functor of ordinary, variable weight liftings; R�
v

the functor of all liftings; and RSt
v the functor of Steinberg liftings.) If r is Schur, in the

sense of [CHT08, Definition 2.1.6], then the corresponding global deformation functor
is represented by an object RS�

∈ C�. If � is empty, then we write simply S = S∅.

Theorem 5.2. — Suppose that the following conditions are satisfied:

(1) p > 2n.

(2) For each 1 ≤ i < j ≤ n, χ i/χ j|GF(ζp)
has order greater than 2n. (In particular, r is Schur.)

(3) [F(ζp) : F] = p − 1.

(4) � is non-empty.

Then RS�
is a finite �-algebra.

Proof. — We will compare RS�
with a deformation ring for Galois representations

to G2n. First, fix a place vq of F prime to S ∪�, lying above a rational prime q > 2n which
splits in F. After possibly enlarging k, we can find a character ψ : GF → k× satisfying the
following conditions:

• ψψ
c = ε1−2nμ|−1

GF
.

• For each v ∈ S ∪�, ψ |GFṽ
is unramified.

• q divides the order of ψ/ψ
c
(IFvq

).

Using the formulae in [BLGGT14, §1.1], we can write down a character

(ψ, ε1−2nμ−1δF/F+) : GF+ → G1(k),

the tensor product representation

r ⊗ (ψ, ε1−2nμ−1δF/F+) : GF+ → Gn(k),

which has multiplier ε1−2n, and the representations

r1 = I(r ⊗ (ψ, ε1−2nμ−1δF/F+)) : GF+ → GSp2n(k)

and

r2 = (̂r1)GF
: GF+ → G2n(k).
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These representations have the following properties:

• The multiplier character of r1 equals ε1−2n.
• The multiplier character νG2n

◦ r2 equals ε1−2n.
• The representations r1|GF and r2|GF are both conjugate in GL2n(k) to ρ ⊗ ψ ⊕

ρc ⊗ψ
c
.

Let ρ2 = r2|GF . We observe that the following conditions are satisfied:

• ζp �∈ F
ker adρ2 and F �⊂ F+(ζp).

• ρ2 is primitive.
• The irreducible constituents of ρ2|GF(ζp)

occur with multiplicity 1.

Indeed, the condition F �⊂ F+(ζp) holds because [F(ζp) : F] = p − 1. We have F
ker adρ2 ⊂

F({χ i/χ j}i �=j,ψ/ψ
c
, {χ iχ jμ

−1}i,j) = M, say, and c acts on Gal(M/F) as −1. It follows that
F(ζp) ∩ M has degree at most 2 over F, showing that ζp �∈ M. To see that ρ2 is primitive,
it is enough (by Lemma 5.1) to show that χ i/χ j has order greater than 2n if i �= j and that
(χ iψ)/(χ c

jψ
c
) has order greater than 2n for any i, j. These properties hold by hypothesis

in the first case and since q > 2n in the second. Finally, the constituents of ρ2 are, with
multiplicity, χ 1 ⊗ ψ, . . . , χ n ⊗ ψ , χ c

1 ⊗ ψ
c
, . . . , χ c

n ⊗ ψ
c
. Our hypotheses include the

condition that χ i ⊗ ψ |GF(ζp)
�= χ j ⊗ ψ |GF(ζp)

if i �= j. If χ i ⊗ ψ |GF(ζp)
= χ c

j ⊗ ψ
c|GF(ζp)

then

ψ/ψ
c|IFvq

is trivial, a contradiction.

Fix an isomorphism ι : Qp → C. By [BLGGT14, Theorem 3.1.2], we can find a
Galois totally real extension L+/F+ and a regular algebraic, self-dual, cuspidal, automor-
phic representation π of GL2n(AL+), with the following properties:

• Let L = FL+. Then L/F is linearly disjoint from the extension of F(ζp) cut out

by ρ2|GF(ζp)
. In particular, [L(ζp) : L] = p − 1, ζp �∈ L

ker adρ2|GL , and L �⊂ L+(ζp).
• There is an isomorphism rπ,ι ∼= r1|GL+ .
• π is ι-ordinary. More precisely, π is of weight 0 and for each place v|p of L+, πv

is an unramified twist of the Steinberg representation.
• ρ2|GL is primitive.
• The irreducible constituents of ρ2|GL(ζp)

occur with multiplicity 1.
• For each place v of L+ lying above a place of �, πv is an unramified twist of the

Steinberg representation.

More precisely, [BLGGT14, Theorem 3.1.2] guarantees the existence of L+ satisfying the
first condition and an essentially self-dual π satisfying all the remaining conditions (except
possibly the last one). The last paragraph of the proof notes that the π constructed is in
fact self-dual and πv is an unramified twist of the Steinberg representation for each place
v|p of L+. We can moreover ensure that π is Steinberg at the places of L+ lying above �

by inserting the condition “t(P) < 0 for all places v|� of L+” in the first list of conditions
on [BLGGT14, p. 549].
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After possibly adjoining another soluble totally real extension of F+ to L+, we can
assume that the following further conditions are satisfied:

• ρ2|GL is unramified at those finite places not dividing SL ∪�L.
• Each place of L at which πL is ramified is split over L+.
• For each place v ∈ SL ∪�L, ψ |GLṽ

is trivial.
• For each place v ∈ Sp,L, [Lṽ : Qp] > 2n(2n − 1)/2 + 1 and ρ2|GLṽ

is trivial.

Here πL denotes the base change of π . It is a RACSDC automorphic representation of
GL2n(AL). By construction, then, πL satisfies the hypotheses of [ANT20, Theorem 6.2].
Therefore, if we define the global deformation problem

S ′ = (L/L+,SL ∪�L, S̃L ∪ �̃L,�L,2n, r2|GL+ , ε
1−2n,

{R�
v }v∈Sp,L ∪ {R�

v }v∈SL−Sp,L ∪ {RSt
v }v∈�L}),

then RS ′ is a finite �L,2n-algebra. (Here we have written �L,2n to distinguish from � =
�F,n used above.)

We now need to relate the rings RS ′ and RS�
. In fact, it will be enough to construct

a commutative diagram

RS ′/(
) RS�
/(
)

�L,2n/(
) �F,n/(
)

where the top horizontal morphism is finite. We first specify the map �L,2n/(
) →
�F,n/(
). It is the map that for each place w ∈ S̃p,L lying above a place ṽ of F classi-
fies the tuple of characters

(ψv
1 |ILw

, . . . ,ψv
n |ILw

,ψv
n |−1

ILw
, . . . ,ψv

1 |−1
ILw

).

This endows the ring RS�
/(
) with the structure of �L,2n-algebra. To give a map

RS ′/(
) → RS�
/(
), we must give a lifting of r2|GL+ over RS�

/(
) which is of type S ′.
To this end, let r denote a representative of the universal deformation (of r) to RS�

/(
),
and let r′ = I(r ⊗ (ψ, ε1−2nμ−1δF/F+))∧GF

|GL+ (notation as in [BLGGT14, §1.1]). Then r′

is a lift of r2 and r′|GL is the restriction of r|GF ⊗ψ ⊕ rc|GF ⊗ψ
c

to GL. We need to check
that for each v ∈ Sp,L, r′|GLṽ

is of type R�
v ; and that for each v ∈ �L, r′|GLṽ

is of type RSt
v .

These statements can be reduced to a universal local computation.
It follows that r′ is of type S ′, and so determines a morphism RS ′/(
) →

RS�
/(
). To complete the proof, it will be enough to show that this is a finite ring map.
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We can enlarge the above commutative diagram to a diagram

RS ′/(
) RS�
/(
)

Q t2|GL
/(
)⊗̂O�L,2n/(
) Q t/(
)⊗̂O�F,n/(
),

where Q t2|GL
is the complete Noetherian local O-algebra classifying pseudocharacters of

GL,SL∪�L lifting the restriction of t2 = tr r2|GF to GL, Q t is defined similarly with respect
to the pseudocharacter t = tr r|GF of GF,S∪� , and the map Q t2|GL

/(
) → Q t/(
) is the
one classifying the natural transformation sending a pseudocharacter t lifting t to the
pseudocharacter (t|GL ⊗ ψ) + (tc|GL ⊗ ψ

c
). We deduce from [Tho15, Proposition 3.29]

that the vertical arrows are finite ring maps. The map �L,2n → �F,n is also finite, so it’s
enough finally to show that the map Q t2|GL

/(
) → Q t/(
) is finite. This map can in
turn be written as a composite

Q t2|GL
/(
) → Q t2|GF

/(
) → Q t/(
),

where the first map classifies restriction of pseudocharacters from GF to GL. Since r2|GF is
multiplicity free, [ANT20, Proposition 2.5] (specifically, the uniqueness of the expression
as a sum of pseudocharacters) implies that the second map is in fact surjective. We finally
just need to show that the first map is finite, and this follows from the following general
lemma. �

Lemma 5.3. — Let � be a topologically finitely generated profinite group, let � be a closed

subgroup of finite index, and let t be a pseudocharacter of � with coefficients in k of some dimension n.

Let Q t be the complete Noetherian local O-algebra classifying lifts of t. Then the map Q t|� → Q t

classifying restriction to � is a finite ring map.

Proof. — It suffices to show that Q t/(mQ t|� ) is Artinian. If not, we can find a prime
ideal p of this ring of dimension 1; let A be its residue ring (which is a k-algebra), and let
tA be the induced pseudocharacter of � with coefficients in A. Let N = [� : �]. If γ ∈ �

then γ N! ∈ �. If we factor the characteristic polynomial of X−γ under t as
∏n

i=1(X−αi)

for some elements αi in the algebraic closure of Frac A, then the characteristic polyno-
mial of γ N! under t, namely

∏n

i=1(X − αN!
i ), lies in k[X] and equals the characteristic

polynomial of γ N! under t. This shows that the elements αi are in fact algebraic over k,
and thus (using [Che14, Corollary 1.14]) that tA can be defined over k, and must in fact
equal t. This is a contradiction. �

Corollary 5.4. — With hypotheses as in Theorem 5.2, fix λ ∈ (Zn
+)

Hom(F,Qp) such that for

each i = 1, . . . , n and τ ∈ Hom(F,Qp), we have λτ c,i = −λτ,n+1−i . Suppose further that for each
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v ∈ Sp, [Fṽ : Qp] > n(n −1)/2+1. Then there exists a homomorphism r : GF+,S → Gn(Zp) lifting

r such that r|GF,S is ordinary of weight λ, in the sense of [Tho15, Definition 2.5].

Proof. — We observe that [Tho15, Proposition 3.9, Proposition 3.14] show that for
each minimal prime Q ⊂ RS�

, dim RS�
/Q = dim�; consequently, there is a minimal

prime Q� of � and a finite injective algebra morphism �/Q� → RS�
/Q. The corollary

follows on choosing any prime of RS�
/Q[1/p] lying above a maximal ideal of �/Q�[1/p]

associated to the weight λ as in [Ger19, Definition 2.24]. �

Corollary 5.5. — With hypotheses (1) – (3) of Theorem 5.2, choose a place v0 �∈ S of F+ split

in F and a lift ṽ0 to F such that qv0 ≡ 1 mod p and r|GFṽ0
is trivial. Consider the quotient

A = RS∅/(
, {tr rS∅(Frobi
ṽ0
)− n}i=1,...,n).

Then A is a finite �-algebra. Consequently, dim RS∅/(
) ≤ n[F+ : Q] + n.

Proof. — It suffices to verify that the quotient of RS∅ where the characteristic poly-
nomial of Frobṽ0 equals

∏n

i=1(X − q1−i
v0

) is a quotient of RS{v0} . This in turn means check-
ing that the quotient Av0 of the local unramified lifting ring Rur

v0
where the characteristic

polynomial of Frobenius equals
∏n

i=1(X − q1−i
v0

) is a quotient of RSt
v0

. Since Av0 is flat over
O, this follows from the definition of RSt

v0
(see [Tay08, §3]). �

For the statement of the next proposition, suppose given a surjection RS/(
) → A
in C�, where A is a domain, and let r : GF+,S → Gn(A) denote the pushforward of (a
representative of) the universal deformation. Suppose given the following data:

• A decomposition r = r1 ⊕ r2, where the ri : GF+,S → Gni
(A) satisfy νGni

◦ ri =
νGn

◦ r. (In other words, r|GF = r1|GF ⊕ r2|GF and if ri(c) = (Ai,1)j then r(c) =
diag(A1,A2)j .)

• A subset R ⊂ S − Sp (consisting of places of odd residue characteristic) with the
following property: for each v ∈ R we are given an integer 1 ≤ nṽ ≤ n such that
qṽ mod p is a primitive nth

ṽ root of unity and there is a decomposition r|GFṽ
=

σ ṽ,1 ⊕ σ ṽ,2, where σ ṽ,1 = Ind
GFṽ
GFṽ,ñv

ψṽ with Fṽ,nṽ /Fṽ the unramified extension of

degree nṽ and ψṽ an unramified character of GFṽ,ñv
, and σ ṽ,2 is the twist of an

unramified representation of GFṽ
of dimension n − nṽ by a ramified quadratic

character.
• An isomorphism ι : Qp → C and for each v ∈ R, a character �ṽ : O×

Fṽ,ñv
→ C×

of order p. Thus the lifting ring R(̃v,�ṽ, n) is defined (notation as in §1.17).

Proposition 5.6. — With the above assumptions on RS/(
) → A, suppose that the following

additional conditions are satisfied:
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(1) p > 2n.

(2) For each 1 ≤ i < j ≤ n, χ i/χ j|GF(ζp)
has order greater than 2n. (In particular, this character is

non-trivial and r is Schur.)

(3) For each v ∈ Sp, [Fṽ : Qp] > n(n − 1)/2 + 1.

(4) [F(ζp) : F] = p − 1.

(5) For each v ∈ R, both r1|GFṽ
and r2|GFṽ

admit a non-trivial unramified subquotient and the composite

map R�
v → RS → A factors over R(̃v,�ṽ, n).

Let LSp
denote the maximal abelian pro-p extension of F unramified outside Sp, and let � =

Gal(LSp
/F)/(c + 1). Let dR denote the Zp-rank of the subgroup of � generated by the elements Frobṽ ,

v ∈ R. Then dim A ≤ n[F+ : Q] + n − dR.

Proof. — Fix a place ṽ0 of F split over F+, prime to S, and such that qṽ0 ≡ 1 mod p

and r|GFṽ0
is trivial. Let I denote the ideal of A generated by the coefficients of the poly-

nomial det(X − r|GF,S(Frobṽ0)) − (X − 1)n. Then dim A/I ≥ dim A − n. After replacing
A by A/p, where p ⊂ A is a prime ideal minimal among those containing I, we can as-
sume that r|GF,S(Frobṽ0) is unipotent, and must show dim A ≤ n[F+ : Q] − dR. Consider
the deformation problems (i = 1,2):

Si = (F/F+,S ∪ {v0}, S̃ ∪ {̃v0},�ni
, ri,μ, {R�

v }v∈Sp
∪ {R�

v }v∈S−Sp
∪ {RSt

v0
}).

Let K = Frac A. We now repeat the argument of [ANT20, Lemma 3.6]: if v ∈ Sp, then
(since we assume [Fṽ : Qp] > n(n − 1)/2 + 1) we can appeal to [Tho15, Corollary 3.12],
which implies the existence of an increasing filtration

0 ⊂ Fil1v ⊂ Fil2v ⊂ · · · ⊂ Filnv = K
n

of r|GFṽ
⊗A K by GFṽ

-invariant subspaces, such that each gri Fil•v = Filiv /Fili−1
v (i =

1, . . . , n) is 1-dimensional, and such that the character IFṽ
(p) → K

×
afforded by gri Fil•v

agrees with the pushforward of the universal character ψ i
v : IFṽ

→ �×
v . Using the de-

composition r = r1 ⊕ r2, we obtain induced filtrations Fil•v ∩(Kn1 ⊕ 0n2) of r1|GFṽ
⊗A K

and Fil•v ∩(0n1 ⊕ K
n2
) of r2 ⊗A K and, applying [Tho15, Corollary 3.12] once more, we

see that we can find an isomorphism �n1⊗̂�n2
∼= � = �n such that, endowing A with

the induced �i-algebra structure, ri is a lifting of ri of type Si for each i = 1,2. We de-
duce the existence of a surjective �-algebra homomorphism RS1⊗̂ORS2 → A. We ob-
serve that Theorem 5.2 applies to the deformation problems S1 and S2, showing that
dim RSi

/(
) ≤ ni[F+ : Q].
Let ψi : GF,S → O× denote the Teichmüller lift of ψ i = det ri|GF,S , and let Rψi

Si
de-

note the quotient of RSi
over which the determinant of the universal deformation equals

ψi . Then [Tho15, Lemma 3.36] states that there is an isomorphism RSi
∼= Rψi

Si
⊗̂OO���.

In particular, dim Rψi

Si
/(
) ≤ (ni − 1)[F+ : Q]. To complete the proof, it is enough to

show that if A′ = A/(mR
ψ1
S1

,m
R
ψ2
S2

), then dim A′ ≤ 2[F+ : Q] − dR = dim k��×�� − dR.
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To this end, we observe that by construction there is a surjection k��×�� → A′.
If #1,#2 : GF,S → k�� × ��× are the two universal characters, then the third part of
Proposition 1.22 (together with our assumption that both r1|GFṽ

and r2|GFṽ
admit an un-

ramified subquotient) implies that the relation #1(Frobṽ)
nṽ = #2(Frobṽ)

nṽ holds in A′

for each v ∈ R. Since � is a pro-p group, this implies that #1(Frobṽ) = #2(Frobṽ) in
A′, and hence that the map k�� × �� → A′ factors over the completed group alge-
bra of the quotient of � × � by the subgroup topologically generated by the elements
(Frobṽ,−Frobṽ)v∈R. This completes the proof. �

We are now in a position to prove the main theorem of this section, which guarantees the
existence of generic primes in sufficiently large quotients of a certain deformation ring.
For the convenience of the reader, we state our assumptions from scratch.

Thus we take F, S, p as in our standard assumptions (see §1). We assume that
[F(ζp) : F] = (p − 1). We let E be a coefficient field, and suppose given an isomorphism
ι : Qp → C and a continuous character μ : GF+,S → O× which is de Rham and such
that μ(cv) = −1 for each place v|∞ of F+. We fix an integer 2 ≤ n < p/2 and characters
χ 1, . . . , χ n : GF,S → k× such that for each i = 1, . . . , n, χ iχ

c
i = μ|GF,S . We set ρ = ⊕n

i=1χ i ;
then ρ naturally extends to a homomorphism r : GF,S → Gn(k) such that νGn

◦ r = μ. We
suppose for each 1 ≤ i < j ≤ n, χ i/χ j|GF(ζp)

has order greater than 2n. This implies that r

is Schur. We suppose that for each v ∈ Sp, r|GFṽ
is trivial and [Fṽ : Qp] > n(n − 1)/2 + 1.

We suppose given a subset R = R1 
 R2 ⊂ S − Sp (consisting of places of odd
residue characteristic) and integers 1 ≤ nṽ ≤ n (v ∈ R) such that for each v ∈ R, qṽ mod p

is a primitive nth
ṽ root of unity, and there is a decomposition r|GFṽ

= σ ṽ,1 ⊕ σ ṽ,2, where

σ ṽ,1 = Ind
GFṽ
GFṽ,ñv

ψṽ is induced from an unramified character of the unramified degree nṽ

extension of Fṽ , and σ ṽ,2 is the twist of an unramified representation of dimension n − nṽ
by a ramified quadratic character. We fix for each v ∈ R a character �ṽ :O×

Fṽ,ñv
→ C× of

order p.
Assuming (as we may) that E is large enough, we may then (re-)define the global

deformation problem

S = (F/F+,S, S̃,�, r,μ, {R�
v }v∈Sp

∪ {R(̃v,�ṽ, n)}v∈R ∪ {R�
v }v∈S−(Sp∪R)).

Following [ANT20, Definition 3.7], we say that a prime p ⊂ RS of dimension 1 and
characteristic p is generic at p if it satisfies the following conditions:

• Let A = RS/p, and let rp : GF+,S → Gn(A) be the pushforward of (a representa-
tive of) the universal deformation. Then for each v ∈ Sp, the (pushforwards from
� of the) universal characters ψv

1 , . . . ,ψ
v
n : Iab

Fṽ
(p) → A× are distinct.

• There exists v ∈ Sp and σ ∈ Iab
Fṽ
(p) such that the elements ψv

1 (σ ), . . . ,ψ
v
n (σ ) ∈

A× satisfy no non-trivial Z-linear relation.

We say that p is generic if it is generic at p and if rp|GF,S ⊗A Frac A is absolutely irreducible.
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Theorem 5.7. — With assumptions as above, let RS → B be a surjection in C�, where B is

a finite �/(
)-algebra. Let LSp
denote the maximal abelian pro-p extension of F unramified outside

Sp, and let � = Gal(LSp
/F)/(c + 1). Let dRi

denote the Zp-rank of the subgroup of � topologically

generated by the elements Frobṽ , v ∈ Ri .

Suppose that the following conditions are satisfied:

(1) Each irreducible component of Spec B has dimension strictly greater than sup({n[F+ : Q] + n −
dRi

}i=1,2, {n[F+ : Q] − [Fṽ : Qp]}v∈Sp
).

(2) For each direct sum decomposition r = r1 ⊕ r2 with rj : GF+,S → Gnj
(k) (j = 1,2) and n1n2 �= 0,

there exists i ∈ {1,2} such that for each v ∈ Ri , both r1|GFṽ
and r2|GFṽ

admit a non-trivial

unramified subquotient.

Then there exists a prime p ⊂ RS of dimension 1 and characteristic p, containing the kernel of RS → B,

which is generic.

Proof. — After passage to a quotient by a minimal prime, we can assume that B is
a domain. The argument is now very similar to that of [ANT20, Lemma 3.9]. Indeed, by
[ANT20, Lemma 3.8], we can find countable collection (Ii)i≥1 of ideals Ii ⊂ �/(
) such
that for all i ≥ 1, dim�/(
, Ii) ≤ sup{n[F+ : Q]− [Fṽ : Qp]}v∈Sp

and if p ⊂ RS is a prime
of dimension 1 and characteristic p which is not generic at p, then IiRS ⊂ p for some i ≥ 1.
Let Ired

S ⊂ RS be the reducibility ideal defined just before [ANT20, Lemma 3.4], and let
I0 = (Ired

S ,
)RS . Proposition 5.6 shows that dim RS/I0 ≤ sup{n[F+ : Q] + n − dRi
}i=1,2.

Since B is a finite �/(
)-algebra, we have dim B/Ii ≤ sup{n[F+ : Q] − [Fṽ :
Qp]}v∈Sp

. We also have dim B/I0 ≤ sup{n[F+ : Q]+n−dRi
}i=1,2. The existence of a generic

prime p containing the kernel of the map RS → B thus follows from [Tho15, Lemma
1.9]. �

We conclude this section with a result concerning the existence of automorphic lifts
of prescribed types, under the hypothesis of residual automorphy over a soluble extension.
It only uses the results of [ANT20] and not the results proved earlier in this section, and
is very similar in statement and proof to [BG19, Theorem 5.2.1].

We begin by re-establishing notation. We therefore let F0 be an imaginary CM field
such that F0/F+

0 is everywhere unramified. We fix a prime p and write S0,p for the set of
p-adic places of F+

0 . We fix a finite set S0 of finite places of F+
0 containing S0,p. We assume

that each place of S0,p splits in F0, but not necessarily that each place of S0 − S0,p splits in
F0. We choose for each v ∈ S0 a place ṽ of F0 lying above v, and write S̃0 = {̃v | v ∈ S0}.
We fix a coefficient field E ⊂ Qp. Fix an integer n ≥ 2, and suppose given a continuous
representation ρ : GF0,S0 → GLn(k) satisfying the following conditions:

• There is an isomorphism ρ ∼= ⊕r
i=1ρ i , where each representation ρ i is absolutely

irreducible and satisfies ρc
i
∼= ρ∨

i ⊗ ε1−n. Moreover, for each 1 ≤ i < j ≤ r, we
have ρ i �∼= ρ j .
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Proposition 5.8. — Fix disjoint subsets T0,�0 ⊂ S0 consisting of prime-to-p places which

split in F0. We assume that for each v ∈ �0, we have qṽ ≡ 1 mod p and ρ|GFṽ
is trivial. We fix for

each v ∈ T0 a quotient R�
v → Rv of the universal lifting ring of ρ|GFṽ

corresponding to a non-empty

union of irreducible components of Spec R�
v [1/p]. We suppose that if v ∈ S0 and v is inert in F0, then

ρ(IF0,̃v ) is of order prime to p. Fix a weight λ ∈ (Zn
+)

Hom(F0,Qp) such that for each i = 1, . . . , n and

τ ∈ Hom(F0,Qp), λτ c,i = −λτ,n+1−i , and suppose that for each v ∈ S0,p, ρ|GF0,̃v
admits a lift to

Zp which is ordinary of weight λṽ , in the sense of [Ger19, Definition 3.8]. Suppose that there exists a

soluble CM extension F/F0 such that the following conditions are satisfied:

(1) p > max(n,3). For each place v|p of F, we have [Fv : Qp] > n(n − 1)/2 + 1 and ρ|GFv
is

trivial.

(2) F(ζp) is not contained in F
ker adρ

and F is not contained in F+(ζp). For each 1 ≤ i < j ≤ r,

ρ i|GF(ζp)
is absolutely irreducible and ρ i|GF(ζp)

�∼= ρ j|GF(ζp)
. Moreover, ρ|GF is primitive and ρ(GF)

has no quotient of order p.

(3) There exists a RACSDC automorphic representation π of GLn(AF) and an isomorphism ι : Qp →
C such that rπ,ι ∼= ρ|GF . Moreover, π is ι-ordinary and there exists a place v of F lying above �0

such that πv is an unramified twist of the Steinberg representation.

(4) If S denotes the set of places of F+ lying above S0, then each place of S splits in F.

Then there exists a RACSDC automorphic representation π0 of GLn(AF0) satisfying the following

conditions:

(1) π0 is unramified outside S0 and there is an isomorphism rπ0,ι
∼= ρ.

(2) π0 is ι-ordinary of weight ιλ.

(3) For each place v ∈ T0, rπ0,ι|GF0,̃v
defines a point of Rv .

(4) For each place v ∈ �0, π0,̃v is an unramified twist of the Steinberg representation.

(5) For each place v ∈ S0 which is inert in F0, reduction modulo p induces an isomorphism

rπ0,ι(IF0 ,̃v) → rπ0,ι(IF0 ,̃v).

Proof. — Let v ∈ S0,p, and let ρv : GF0,̃v → GLn(Zp) be the lift of ρ|GFṽ
which is

ordinary of weight λṽ and which exists by assumption. Thus ρv is conjugate over Qp to

an upper-triangular representation with the property that if αv,1, . . . , αv,n : GF0,̃v → Q
×
p

are the characters appearing on the diagonal, then for each i = 1, . . . , n the character
αv,i is equal, on restriction to some open subgroup of IF0,̃v , to the character

χλṽ,i : σ ∈ IF0,̃v �→ ε(σ )1−i
∏

τ :F0,̃v→Qp

τ(Art−1
F0,̃v

(σ ))−λτ,n−i+1 .

After enlarging E, we can assume that each character αv,i takes values in O. We use the
restricted characters αv,i|IF0,̃v (p)

: IF0,̃v (p) → O× (v ∈ S0,p, i = 1, . . . , n) to define a homo-
morphism �F0 →O.

Let βṽ,i = αv,iχ
−1
λṽ,i

. Then τṽ = ⊕n
i=1βṽ,i is an inertial type and the type τṽ , Hodge

type λṽ lifting ring Rλṽ,τṽ
ṽ is defined and equidimensional of dimension 1 + n2 + n(n −
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1)[F0,̃v : Qp]/2 (see [Kis08, Theorem 3.3.4]). When τṽ is trivial, [Ger19, Lemma 3.10]
shows that there is a minimal prime ideal of Rλṽ,τṽ

ṽ such that, writing Rv for the corre-
sponding quotient, the following properties are satisfied:

• Rv is O-flat of dimension 1 + n2 + n(n − 1)[F0,̃v : Qp]/2.
• The map Rλṽ,τṽ

ṽ → Qp determined by ρv factors through Rv .
• For every homomorphism Rv → Qp, the corresponding Galois representation

GF0,̃v → GLn(Qp) is ordinary of weight λṽ , in the sense of [Ger19, Definition
3.8].

• The homomorphism R�
v ⊗̂O�v → Rv (completed tensor product of the tauto-

logical quotient map R�
v → Rv and the composite �v →O → Rv ) factors over

the quotient R�
v ⊗̂O�v → R�

v (defined in e.g. [Tho15, §3.3.2]).

In fact, the same proof shows that these properties hold also in the case that τṽ is non-
trivial.

Our hypotheses imply that we can extend ρ to a continuous homomorphism r :
GF+

0 ,S0
→ Gn(k) with the property that ν ◦ r = ε1−nδn

F0/F+
0
. Let Runiv denote the deformation

ring, defined as in [BG19, Corollary 5.1.1], of ε1−nδn

F0/F+
0
-polarised deformations of r,

where the quotients of the local lifting rings for v ∈ S0 are specified as follows:

• If v ∈ S0,p, we take the quotient Rv defined above.
• If v ∈ T0, take Rv .
• If v ∈ �0, take the Steinberg lifting ring RSt

v .
• If v ∈ S0 and v is inert in F0, take the component corresponding to the functor

of lifts r of r|GF+
0,v

such that the reduction map induces an isomorphism r(IF+
0,v
) →

r(IF+
0,v
).

We can invoke [BG19, Corollary 5.1.1] to conclude that Runiv has Krull dimension at
least 1. We remark that this result includes the hypothesis that r|GF0(ζp)

is irreducible, but
this is used only to know that the groups H0(F+

0 ,ad r) and H0(F+
0 ,ad r(1)) vanish, which is

true under the weaker condition that r|GF+
0 (ζp)

is Schur, which follows from our hypotheses.
(The vanishing of these groups implies that the deformation functor is representable and
that the Euler characteristic formula gives the correct lower bound for its dimension.)

We consider as well the deformation problem

S=(F/F+,S, S̃,�F, r|GF, ε
1−nδn

F/F+, {R�
v }v∈Sp

∪{R�
v }v∈S−(Sp∪�)∪{RSt

v }v∈�),
where we define S, T, � to be the sets of places of F+ above S0, T0, �0, respectively. Then
there is a natural morphism RS → Runiv of �F-algebras, which is finite (apply Lemma 5.3
and [Tho15, Proposition 3.29(2)]). By [ANT20, Theorem 6.2], RS is a finite �F-algebra.
The map �F → Runiv factors through a homomorphism �F → O (by construction), so
Runiv is a finite O-algebra (of Krull dimension at least 1, as we have already remarked).
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We deduce the existence of a lift r : GF+
0 ,S0

→ Gn(Zp) of r arising from a homo-
morphism Runiv → Zp. We can now apply [ANT20, Theorem 6.1] and soluble descent
to conclude that r|GF0

is automorphic, associated to an automorphic representation π0 of
GLn(AF0) with the desired properties. �

6. Raising the level – Galois theory

This section is devoted to the proof of a single theorem that will bridge the gap
between Theorem 4.1 and our intended applications. Let F, S, p, G be as in our standard
assumptions (see §1), and let n ≥ 3 be an odd integer such that p > 2n. Fix an isomorphism
ι : Qp → C. We suppose given a RACSDC automorphic representation π of GLn(AF),
and that the following conditions are satisfied:
(1) π is ι-ordinary.
(2) [F(ζp) : F] = p − 1.
(3) There exist characters χ 1, . . . , χ n : GF → F

×
p and an isomorphism rπ,ι ∼= χ 1 ⊕ · · · ⊕

χ n, where for each i = 1, . . . , n, we have χ c
i = χ∨

i ε
1−n and for each 1 ≤ i < j ≤ n,

χ i/χ j|GF(ζp)
has order strictly greater than 2n.

(4) For each v ∈ Sp, rπ,ι|GFṽ
is trivial and [Fṽ : Qp] > n(n − 1)/2 + 1.

(5) There is a set R = R1 
 R2 ⊂ S − Sp with the following properties:
(a) The sets R1 and R2 are both non-empty and for each v ∈ R, the characteristic of

k(v) is odd. As in §1.17, we write ω(̃v) : k(̃v)× → {±1} for the unique quadratic
character.

(nb) If v ∈ R1, then qv mod p is a primitive 3rd root of unity, and there exists a character
�ṽ : k×

3 → C× of order p such that πṽ|qṽ contains λ̃(̃v,�ṽ, n) (notation as in §1.17,
this representation of qṽ defined with respect to n1 = 3).

(c) If v ∈ R2, then qv mod p is a primitive (n − 2)th root of unity, and there exists a
character �ṽ : k×

n−2 → C× of order p such that πṽ|qṽ contains λ̃(̃v,�ṽ, n) (notation
as in §1.17, this representation of qṽ defined with respect to n1 = n − 2).

(d) For each non-trivial direct sum decomposition rπ,ι = ρ1 ⊕ρ2, there exists i ∈ {1,2}
such that for each v ∈ Ri , ρ1|GFṽ

and ρ2|GFṽ
both admit a non-trivial unramified

subquotient.
(This is the situation we will find ourselves in after applying Theorem 4.1. The sets of
places R1 and R2 here will correspond to the sets T1 and T3 respectively from §4, and
it will be possible to label the characters χ i so that we have the following ramification
properties:

• If v ∈ R1, then χ 1, χ 2, χ 3 are unramified at ṽ and χ 4, . . . , χ n are ramified at ṽ
(and the image of inertia under each of these characters has order 2).

• If v ∈ R2, then χ 1, χ 2 are ramified at ṽ (and the image of inertia under each of
these characters has order 2) and χ 3, . . . , χ n are unramified at ṽ.
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These properties imply condition 5(d) above, which is what we actually need for the proofs
in this section.)

The theorem we prove in this section is the following one:

Theorem 6.1. — With assumptions as above, fix a place vSt of F lying above S−(Sp ∪R) such

that qvSt
≡ 1 (mod p) and rπ,ι|GFvSt

is trivial. Then we can find a RACSDC ι-ordinary automorphic

representation π ′ of GLn(AF) satisfying the following conditions:

(1) There is an isomorphism rπ ′,ι ∼= rπ,ι.

(2) For each embedding τ : F → Qp, we have

HTτ (rπ ′,ι) = HTτ (rπ,ι).

(3) π ′
vSt

is an unramified twist of the Steinberg representation.

Our proof of this theorem follows a similar template to the proof of [CT17, Theo-
rem 5.1]. Briefly, we use our local conditions at the places of R, together with Theorem
5.7 to show that (after a suitable base change) we can find a generic prime in the spec-
trum of the big ordinary Hecke algebra. This puts us in a position to use the “Rp = Tp”
theorem proved in [ANT20], which is enough to construct automorphic lifts of rπ,ι (or its
base change) with the desired properties.

We now begin the proof. Let Fa/F denote the extension of F(ζp) cut out by rπ,ι|GF(ζp)
,

and let Ya be a finite set of finite places of F with the following properties:

• For each place v ∈ Ya, v is split over F+, prime to S, and πv is unramified.
• For each intermediate Galois extension Fa/M/F such that Gal(M/F) is simple,

there exists v ∈ Ya which does not split in M.

Then any Ya-split finite extension L/F is linearly disjoint from Fa/F. After conjugation,
we can find a coefficient field E such that rπ,ι is valued in GLn(O), and extend it to a
homomorphism r : GF+,S → Gn(O) such that ν◦r = ε1−nδn

F/F+ . We write r : GF+,S → Gn(k)

for the reduction modulo 
 of r.

Lemma 6.2. — Let L/F be an Ya-split finite CM extension. Then:

(1) r|GL+(ζp)
is Schur.

(2) r|GL is primitive.

(3) Suppose moreover that L/F is soluble. Then the base change of π with respect to the extension L/F
is cuspidal.

(4) More generally, suppose that L/F0/F is an intermediate field with L/F0 soluble, and let � be a

RACSDC automorphic representation of GLn(AF0) such that r�,ι
∼= r|GF0

. Then the base change

of � with respect to the extension L/F0 is cuspidal.

Proof. — For the first part, it is enough to check that L �⊂ L+(ζp) and χ i/χ j|GL(ζp)
is

non-trivial for each 1 ≤ i < j ≤ n. We have [L(ζp) : L] = p − 1, which implies L �⊂ L+(ζp),
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while χ i/χ j(GL(ζp)) = χ i/χ j(GF(ζp)), so this ratio of characters is non-trivial. The second
part follows from Lemma 5.1 and the fact that χ i/χ j|GL has order greater than 2n for any
i �= j, because L/F is linearly disjoint from the extension Fa/F.

The third part is a special case of the fourth part, so we just prove this. Suppose
for contradiction that the base change of � with respect to the extension L/F0 is not
cuspidal. Then we can find intermediate extensions L/F2/F1/F0 such that there is a tower
F1 = Mm/Mm−1/ . . . /M0 = F0, where each extension Mi+1/Mi is cyclic of prime degree;
F2/F1 is cyclic of prime degree l; the base change �F1 of � to F1 (constructed as the
iterated cyclic base change with respect to the tower Mm/Mm−1/ . . . /M0) is cuspidal; but
the base change of �F1 to F2 is not cuspidal. We will derive a contradiction. By the
second part of the lemma, r|GF1

is primitive. Let σ ∈ Gal(F2/F1) be a generator. Since
the base change of �F1 with respect to the extension F2/F1 is not cuspidal, there exists a
cuspidal automorphic representation $ of GLn/l(AF2) such that the base change of �F1

is $�$σ � · · · �$σ l−1
(see [AC89, Theorem 4.2]). We claim that $ is in fact conjugate

self-dual. The representation $| · |(n/l−n)/2 is regular algebraic (by [AC89, Theorem 5.1]).
Since �F1 is conjugate self-dual, [AC89, Proposition 4.4]) shows that $�$σ � · · ·�$σ l−1

is also conjugate self-dual. The classification of automorphic representations of GLn then
implies that there is an isomorphism $c,∨ ∼= $σ i

for some 0 ≤ i < l. If w is an infinite
place of F2, then the purity lemma ([Clo90b, Lemma 4.9]) implies that $w

∼= $c,∨
w , hence

$w
∼= $σ i

w . Since $ � $σ � · · · � $σ l−1
is regular algebraic, this is possible only if i = 0

and $ is indeed conjugate self-dual.
Therefore r$|·|(n/l−n)/2,ι is defined and there is an isomorphism

r�F1 ,ι
∼= Ind

GF1
GF2

r$|·|(n/l−n)/2,ι.

This contradicts the second part of the lemma, which implies that r�F1 ,ι
is primitive. This

contradiction completes the proof. �

Combining Lemma 6.2 and Proposition 5.8, we see that Theorem 6.1 will follow
provided we can find a soluble CM extension L/F with the following properties:

• L/F is Ya-split.
• There exists a RACSDC ι-ordinary automorphic representation π ′′ of GLn(AL)

and a place v′′ of L lying above vSt such that rπ ′′,ι ∼= rπ,ι|GL and π ′′
v′′ is an unram-

ified twist of the Steinberg representation.

After first replacing F by a suitable Ya ∪ R-split soluble extension, we can assume in
addition that S = Sp ∪ R ∪ {vSt|F+} and that π is unramified outside Sp ∪ R (use the
Skinner–Wiles base change trick as in [CHT08, Lemma 4.4.1]).

Lemma 6.3. — There exist infinitely many prime-to-S places ṽa of F with the following prop-

erty: ṽa does not split in F(ζp) and r(Frobṽa
) is scalar.
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Proof. — By the Chebotarev density theorem, it is enough to find τ ∈ GF such that
r(τ ) is scalar and ε(τ ) �= 1. We can choose any τ0 ∈ GF such that ε(τ0)

2 �= 1, and set
τ = τ0τ

c
0. �

Choose a place ṽa of F as in Lemma 6.3 which is absolutely unramified and of odd
residue characteristic. We set Sa = {̃va|F+} and S̃a = {̃va}.

We will need to consider several field extensions L/F and global deformation prob-
lems. We therefore introduce some new notation. We define a deformation datum to be
a pair D = (L, {Rv}v∈X) consisting of the following data:

• A Ya ∪ S̃a-split, soluble CM extension L/F.
• A subset X ⊂ S − Sp, which may be empty. We write X̃ for the pre-image of X

in S̃.
• For each v ∈ X, one of the following complete Noetherian local rings Rv , repre-

senting a local deformation problem:
– For any v ∈ RL such that ṽ is split over F, the ring Rv = R(̃v,�ṽ, r|GLṽ

) (no-
tation as in Proposition 1.22 – we define �ṽ = �ṽ|F ).

– For any v ∈ SL such that qv ≡ 1 mod p and r|GLṽ
is trivial, the unipotently

ramified local lifting ring Rv = R1
v considered in [Tho15, §3.3.3].

– For any v ∈ SL such that qv ≡ 1 mod p and r|GLṽ
is trivial, the Steinberg local

lifting ring Rv = RSt
v considered in [Tho15, §3.3.4].

If D = (L, {Rv}v∈X) is a deformation datum, then we can define the global deformation
problem

SD = (L/L+,Sp,L ∪X, S̃p,L ∪X̃,�L, r|GL+ , ε
1−nδn

L/L+,{R�
v }v∈Sp,L ∪{Rv}v∈X).

We write RD = RSD ∈ C�L for the representing object of the corresponding deformation
functor.

Lemma 6.4. — If D = (L, {Rv}v∈X) is a deformation datum, then each irreducible component

of RD has dimension at least 1 + n[L+ : Q].

Proof. — This follows from [Tho15, Proposition 3.9], noting that the term
H0(L+,ad r(1)) vanishes because r|GL+(ζp)

is Schur (cf. [CHT08, Lemma 2.1.7]). �

Given a deformation datum D, we define an open compact subgroup UD =∏
v∈SL−Sp,L

UD,v ⊂ ∏
v∈SL−Sp,L

GLn(OFṽ
) and a smooth O[UD]-module MD =

⊗v∈SL−Sp,LMD,v as follows:

• If v �∈ X, then UD,v = GLn(OLṽ
) and MD,v =O.

• If v ∈ X∩RL and Rv = R(̃v,�ṽ, r|GLṽ
), then UD,v = qṽ and MD,v is an O-lattice

in ι−1̃λ(̃v,�ṽ, n)∨ (notation as in §1.17).
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• If v ∈ X and Rv = R1
v or RSt

v , then UD,v = Iwṽ and MD,v =O.

We now define a Hecke algebra TD associated to any deformation datum D =
(L, {Rv}v∈X). It is to be a finite �L-algebra (or zero). If c ≥ 1, let U(D, c) ⊂ G(A∞

L+)

be the open compact subgroup defined as follows:

U(D, c) =
∏
v∈Sp,L

ι−1
ṽ Iwṽ(c, c)× (

∏
v∈SL−Sp,L

ι−1
ṽ )UD

×
∏
v∈Sa,L

ι−1
ṽ Kṽ(1)× G(ÔSL∪Sa,L

L+ )

(here we are using the notation for open compact subgroups established in §1.23). Note
that U(D,1) is sufficiently small, because of our choice of va. We write

Tord(D, c) ⊂ EndO(Sord(U(D, c),MD))

for the O-subalgebra generated by the unramified Hecke operators Tj
w at split places

v = wwc �∈ SL ∪ Sa,L and the diamond operators 〈u〉 for u ∈ Iwṽ(1, c) (v ∈ Sp,L).
Following [Ger19, §2.4], we define Tord(D) = lim←−c

Tord(D, c) and Hord(D) =
lim←−c

Hom(Sord(U(D, c),MD),O). We endow Tord(D) with a �L-algebra structure using
the same formula as in [Ger19, Definition 2.6.2]. We then have the following result.

Proposition 6.5. — Hord(D) is a finite free �L-module and Tord(D) is a finite faithful �L-

algebra, if it is non-zero.

Proof. — This can be proved in the same way as [Ger19, Proposition 2.20] and
[Ger19, Corollary 2.21]. The proof uses that U(D,1) is sufficiently small. �

We write mD ⊂ Tord(D) for the ideal generated by m�L and the elements Tj
w −

qj(j−1)/2
w tr∧j r(Frobw) (w a split place of L/L+ not lying above a place of SL ∪ Sa,L). It

is either a maximal ideal with residue field k, or the unit ideal. In either case we set
TD = Tord(D)mD, which is either a finite local �L-algebra or the zero ring. (In the cases
we consider, it will be non-zero, but this will require proof.)

For any deformation datum D, we write PD for the �L-subalgebra of RD topo-
logically generated by the coefficients of the characteristic polynomials of elements of GL

in (a representative of) the universal deformation rSD . By [Tho15, Proposition 3.26], the
group determinant det rSD |GF is valued in PD, and PD is a complete Noetherian local
�L-algebra. By [Tho15, Proposition 3.29], RD is a finite PD-algebra.

Lemma 6.6. — Let D = (L, {Rv}v∈X) be a deformation datum, and suppose that Rv �= RSt
v

for all v ∈ X. Then there is a natural surjective morphism PD → TD of �L-algebras.
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Proof. — The proof is the essentially the same as the proof of [Tho15, Propo-
sition 4.12], but we give the details for completeness. It is enough to construct maps
PD → Tord(D, c)mD which are compatible as c ≥ 1 varies. Let �(D, c) denote the set of
automorphic representations σ of G(AL+) with the following properties:

• rσ,ι ∼= r|GL .
• σ∞ is the trivial representation.
• The subspace

HomU(D,c)(M∨
D, ι

−1σ∞)ord ⊂ HomU(D,c)(M∨
D, ι

−1σ∞)

where all the Hecke operators Uj

ṽ,0 (v ∈ Sp, j = 1, . . . , n) act with eigenvalues
which are p-adic units is non-zero.

Then there is an injection

(6.6.1) Tord(D, c)mD ⊗O Qp → ⊕σ∈�(D,c)Qp

which sends any Hecke operator to the tuple of its eigenvalues on each (ι−1σ∞)U(D,c).
We can find a coefficient field Ec/E with ring of integers Oc and for each σ ∈ �(D, c), a
homomorphism rσ : GL+,S → Gn(Oc) lifting r and such that rσ |GL

∼= rσ,ι (apply [CHT08,
Lemmas 2.1.5, 2.1.7]).

Let Ac ⊂ k ⊕⊕σ∈�(D,c)Oc be the subring consisting of elements (a, (aσ )σ ) such
that for each σ , aσ mod 
c = a. Then Ac is a local ring containing the image of the map
(6.6.1), and the representation r × (×σ∈�(D,c)rσ ) is valued in Gn(Ac) and is of type SD
(by our choice of deformation problems and level structures). Writing QSL ∈ CO for the
ring classifying pseudocharacters which lift tr r|GL,SL

, we see that there is a commutative
diagram

RD Ac

QSL⊗̂O�L Tord(D, c)mD

The ring PD is equal to the image of the map QSL⊗̂O�L → RD. The proof is thus com-
plete on noting that the right vertical arrow is injective and the bottom horizontal arrow
is surjective. �

We define JD = ker(PD → TD); this is a proper ideal if and only if TD �= 0.
We now fix a place vSt of F above vSt . If L/F is a CM extension, we write vSt,L =

vSt|L.

Lemma 6.7. — We can find a deformation datum D1 = (L1,∅) with the following properties:
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(1) TD1 �= 0.

(2) There exists a prime ideal p1 ⊂ RD1 of dimension 1 and characteristic p which is generic, such that

JD1 ⊂ p1, and such that rp1 |GL1,vSt,L1
is the trivial representation.

Proof. — We first claim that we can find an R̃∪Ya ∪{̃va}-split soluble CM extension
L0/F with the following properties:

• For each i ∈ {1,2}, let L0,Sp
denote the maximal abelian pro-p extension of L0

unramified outside Sp,L0 , and let �L0 = Gal(L0,Sp
/L0)/(c + 1). Let dRi,L0

denote
the Zp-rank of the subgroup of �L0 topologically generated by the elements
Frobṽ , v ∈ Ri,L0 . Then dRi,L0

> n + n2.
• For each v ∈ Sp,L0 , [L0,̃v : Qp] > n2.
• For each v ∈ SL0 − (Sp,L0 ∪ RL0), r|GL0,̃v

is trivial, and qv ≡ 1 mod p.

The third property is automatic, since SL0 − (Sp,L0 ∪ RL0) consists of primes above vSt|F+ .
We can construct an extension satisfying the first two properties using a similar idea to the
proof of [ANT20, Theorem 7.1]. Indeed, we can find, for any odd integer d ≥ 1, a cyclic
totally real extension Md/F+ which is R ∪ {v|F+ | v ∈ Ya} ∪ Sa-split and in which each
place v ∈ Sp is totally inert. If d > n2 and L0 = Md · F then L0/F will be a R̃ ∪ Ya ∪ {̃va}-
split soluble CM extension which also satisfies the second point above. We need to explain
how to arrange that the first point is also satisfied. By class field theory, dRi,L0

is equal to the
Zp-rank of the subgroup of (OL0 ⊗Z Zp)

× topologically generated by (O×
L0,Ri,L0

)c=−1. Since

Oc=−1
L0,Ri,L0

⊗Z Qp decomposes as a Qp[Gal(L0/F+)]-module with multiplicity 1, [Mai02,
Proposition 19] shows that this rank equals the Z-rank of (O×

L0,Ri,L0
)c=−1, which is d|Ri|.

Choosing any d > n + n2 therefore gives an extension with the desired properties.
Let π0 be the base change of π with respect to the extension L0/F. It is cuspi-

dal by Lemma 6.2. Let D0 = (L0, {R(̃v,�ṽ, r|GL0,̃v
)}v∈RL0

). Then D0 is a deformation
datum and the existence of π0, together with Theorem 1.4, shows that TD0 �= 0. Let
B = RD0/(JD0,mRur

vSt,L0
). Then dim B ≥ n[L+

0 : Q] − n2, and we may apply Theorem 5.7
to conclude the existence of a generic prime p0 ⊂ RD0 of dimension 1 and characteristic
p which contains (JD0,mRur

vSt,L0
).

We now make another base change. Let L1/L0 be a CM extension with the follow-
ing properties:

• L1/F is soluble and Ya ∪ {̃va}-split.
• For each v ∈ RL1, the natural morphism R�

ṽ → R(̃v,�ṽ, r|GL0,̃v
) factors over the

unramified quotient R�
ṽ → Rur

ṽ (cf. Proposition 1.22).
• For each v ∈ SL1 − Sp,L1 , qv ≡ 1 mod p and r|GL1,̃v

is trivial.

Let π1 denote the base change of π0 to L1. Then π1 is a RACSDC, ι-ordinary automor-
phic representation of GLn(AL1) which is unramified outside Sp,L. Thus D1 = (L1,∅) is a
deformation datum and TD1 �= 0.
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To complete the proof, it is enough to produce a commutative diagram

RD1 PD1 TD1

RD0 PD0 TD0 .

Indeed, then we can take p1 to be the pullback of p0 along the map RD1 → RD0 . The
only arrow which has not already been constructed is the arrow TD1 → TD0 . This may be
constructed in exactly the same way as [Tho15, Proposition 4.18], using the construction
of the Hecke algebra as an inverse limit as in the proof of Lemma 6.6, provided we
can prove the following statement: for any automorphic representation σ0 of G(AL+

0
)

satisfying the following conditions:

• There exists c ≥ 1 such that HomU(D0,c)(M
∨
D0
, ι−1σ∞

0 )ord �= 0;
• σ0,∞ is trivial;
• There is an isomorphism rσ0,ι

∼= rπ,ι|GL0
;

(in other words, such that σ0 contributes to Sord(U(D, c),MD)mD0
for some c ≥ 1), there

exists an automorphic representation σ1 of G(AL+
1
) satisfying the following conditions:

• There exists c ≥ 1 such that HomU(D1,c)(M
∨
D1
, ι−1σ∞

1 )ord �= 0;
• σ1,∞ is trivial;
• There is an isomorphism rσ1,ι

∼= rσ0,ι|GL1
.

To see this, we first show that the base change of any such σ0 to L0 (in the sense of
Theorem 1.2) must be cuspidal. We will show that in fact rσ0,ι is irreducible. Suppose
that there is a decomposition rσ0,ι

∼= ρ1 ⊕ ρ2. By assumption, there exists v ∈ RL such
that both ρ1|GL0 ,̃v

and ρ2|GL0 ,̃v
admit an unramified subquotient. However, local-global

compatibility (together with Proposition 1.20) shows that rσ0,ι|GL0 ,̃v
∼= ρ ′

1 ⊕ ρ ′
2, where ρ ′

1 is
an irreducible representation of GL0,̃v with unramified residual representation and ρ ′

2 is a
representation of GL0,̃v such that ρ ′

2 is a sum of ramified characters. This is a contradiction
unless one of ρ1 and ρ2 is the zero representation. If μ0 denotes the base change of σ0, a
RACSDC ι-ordinary automorphic representation of GLn(AL0), then the base change of
μ0 with respect to the soluble extension L1/L0 is also cuspidal, by Lemma 6.2, and the
existence of σ1 follows from Theorem 1.4. This completes the proof. �

We can now complete the proof of Theorem 6.1. We recall that it is enough
to construct a RACSDC, ι-ordinary automorphic representation π ′′ of GLn(AL1) such
that rπ ′′,ι ∼= r|GL1

and π ′′
vSt,L1

is an unramified twist of the Steinberg representation.
Let D1 and p1 be as in the statement of Lemma 6.7. Consider the deformation data
D1,a = (L1, {RSt

vSt,L1
}) and D1,b = (L1, {R1

vSt,L1
}). Then there are surjections RD1,b → RD1,a
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and RD1,b → RD1 and the prime p1 lies in intersection of Spec RD1 and Spec RD1,a in
Spec RD1,b . We see that the hypotheses of [ANT20, Theorem 4.1] are satisfied for RD1,b

(in the notation of loc. cit., we set R = {vSt,L1}, χvSt,L1
= 1, S(B) = ∅), and conclude

that for any minimal prime Q ⊂ RD1,b contained in p1, we have JD1,b ⊂ Q. In particu-
lar, dim RD1,b/Q = dim�L1 . (We remark that the essential condition for us in applying
[ANT20, Theorem 4.1] is that there is no ramification outside p; this is the reason for
proving Lemma 6.7.)

Lemma 6.4 and Theorem 5.2 show together that each minimal prime of RD1,a has
dimension equal to dim�L1 . Let Qa ⊂ RD1,a be a minimal prime contained in p1. Then
Qa is also a minimal prime of RD1,b , JD1,b ⊂ Qa, and there exists a minimal prime Q0 of
�L1 such that RD1,a/Qa is a finite faithful �L1/Q0-algebra. If Q1 = Qa ∩ PD1,a , then there
are finite injective algebra maps

�L1/Q0 → PD1,a/Q1
∼= TD1,b/Q1 → RD1,a/Qa.

Using [Ger19, Lemma 2.25] and Theorem 1.2, we conclude the existence of an auto-
morphic representation π ′′ of GLn(AL1) with the required properties.

7. Level 1 case

The goal of this section is to prove Theorem E, using the level-raising results es-
tablished in the last few sections. Combining this with the results of §§2 – 3, we will then
be able to deduce Theorem A.

Our starting point is σ0, the cuspidal automorphic representation of GL2(AQ) of
weight 5 associated to the unique normalised newform

f0(q) = q − 4q2 + 16q4 − 14q5 − 64q8 + . . .

of level �1(4) and weight 5; it is the automorphic induction from the quadratic exten-
sion K = Q(i) of the unique unramified Hecke character with ∞-type (4,0). For any
prime p ≡ 1 mod 4 and isomorphism ι : Qp → C, σ0 is ι-ordinary. We observe that rσ0,ι

∼=
Ind

GQ

GK
ψ for a character ψ : GK → Q

×
p (which depends on p) and det rσ0,ι = δK/Qε

−4,
where δK/Q : GQ → {±1} is the quadratic character with kernel GK.

The main technical result of this section is the following theorem:

Theorem 7.1. — Let n ≥ 3 be an integer. Suppose given the following data:

(1) A prime p ≡ 1 (mod 48n!) and an isomorphism ι : Qp → C.

(2) A prime q �= p.

(3) A finite set X0 of places of K, each prime to 2pq.

(4) A de Rham character ω : GK → Q
×
p such that ωωc = ε3 and ω|GKv

is unramified if v ∈ X0.

Then there exists a soluble CM extension F/K with the following properties:
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(1) F/K is X0-split.

(2) There is a RACSDC, ι-ordinary automorphic representation � of GLn(AF) with the following

properties:

(a) There is an isomorphism

r�,ι
∼= ωn−1|GF ⊗ Symn−1 rσ0,ι|GF .

(b) For each embedding τ : F → Qp, we have

HTτ (r�,ι) = HTτ (ω
n−1|GF ⊗ Symn−1 rσ0,ι|GF).

(c) There exists a place v|q of F such that �v is an unramified twist of the Steinberg representation.

The following lemma will be used repeatedly.

Lemma 7.2. — Let n ≥ 3 be an integer, and let p ≡ 1 (mod 48n!). Let ω : GK → Q
×
p be

a de Rham character such that ωωc = ε3.

Let F/K be a finite CM extension which is linearly disjoint from the extension of K(ζp) cut out by

rσ0,ι|GK(ζp)
, and set χ i = ωn−1 ⊗ψ

n−i
(ψ

c
)i−1, ρ = χ 1 ⊕ · · · ⊕ χ n, so that there is an isomorphism

ρ ∼= ωn−1 ⊗ Symn−1 rσ0,ι|GK .

Then:

(1) [F(ζp) : F] = p − 1.

(2) ψ/ψ
c|GF(ζp)

has order greater than 2n(n − 1) and for each 1 ≤ i < j ≤ n, χ i/χ j|GF(ζp)
has order

greater than 2n.

(3) For each 1 ≤ i ≤ n, χ iχ
c
i = ε1−n.

(4) ζp �∈ Fker adρ and F �⊂ F+(ζp).

(5) ρ|GF is primitive.

Proof. — We have [F(ζp) : F] = p − 1 because F/K is disjoint from K(ζp)/K. To
justify the second point, let L/K denote the extension cut out by ψ/ψ

c
. We must show

that [L · F(ζp) : F(ζp)] > 2n(n − 1). We note that [L : K] ≥ (p − 1)/4, because the re-
striction of ψ/ψ

c
to an inertia group at p has order (p − 1)/4. Moreover, L ∩ K(ζp)

has degree at most 2 (since c acts as 1 on Gal(K(ζp)/K) and as −1 on Gal(L/K)), so
[L(ζp) : K] ≥ (p − 1)2/8.

Since F/K is supposed disjoint from L(ζp)/K, we have [F ·L(ζp) : K] ≥ (p−1)2[F :
K]/8. Since [F(ζp) : F] = p − 1, we have [F(ζp) : K] = (p − 1)[F : K]. Putting these to-
gether we find

[F · L(ζp) : F(ζp)] = [F · L(ζp) : K]
[F(ζp) : K] ≥ (p − 1)/8.
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Since we assume p ≡ 1 (mod 48n!), we in particular have p−1 ≥ 48n!, hence (p−1)/8 >

2n(n − 1).
If 1 ≤ i < j ≤ n then χ i/χ j = (ψ

c
/ψ)i−j , so this shows the second point of the

lemma. For the third point we compute

χ iχ
c
i = (ωωc|GF)

n−1(ψψ
c|GF)

n−1 = ε1−n.

We now come to the fourth point. To show that ζp �∈ Fker adρ , we must find τ ∈ GF such
that ρ(τ) is scalar but ε(τ ) �= 1. We can choose τ = τ0τ

c
0 for any τ0 ∈ GF such that

ε(τ0)
2 �= 1. Such a τ0 exists because [F(ζp) : F] = p − 1, and ρ(τ) is scalar by the third

part of the lemma. If F ⊂ F+(ζp) then F(ζp) = F+(ζp) and [F(ζp) : F] = [F+(ζp) : F+]/[F :
F+] = (p − 1)/2, contradicting the first part of the lemma.

For the fifth point it is enough, by Lemma 5.1, to show that for each 1 ≤ i < j ≤ n,
χ i/χ j has order greater than n. This follows from the second point. �

Before giving the proof of Theorem 7.1, we give a corollary which establishes the
existence of the automorphic representations necessary for the proof of Theorem 7.6.

Corollary 7.3. — Let n ≥ 3 be an integer. Then there exists a cuspidal automorphic representa-

tion σ of GL2(AQ) of weight 5 with the following properties:

(1) σ is unramified away from 2 and a prime q ≡ 3 mod 4.

(2) σ2 is isomorphic to a principal series representation i
GL2
B2

χ1 ⊗ χ2, where χ1 is unramified and χ2

has conductor 4.

(3) σq is an unramified twist of the Steinberg representation.

(4) For any prime p and any isomorphism ι : Qp → C, Symn−1 rσ,ι is automorphic.

Proof. — Choose a prime p ≡ 1 (mod 48n!) and an isomorphism ι : Qp → C. It
suffices to construct σ as in the statement of the corollary such that Symn−1 rσ,ι is auto-
morphic for our fixed choice of ι.

Let Favoid/Q denote the extension cut out by rσ0,ι ⊕ ε, and choose a prime q sat-
isfying q ≡ 3 mod 4 (so aq(f0) = 0) and q ≡ −1 mod p. This implies that σ0 satisfies the
level-raising congruence at q. By a level-raising result for GL2(AQ) (e.g. [Dia89, Corol-
lary 6.9]), we can find an ι-ordinary cuspidal automorphic representation σ of GL2(AQ)

satisfying the following conditions:

• σ has weight 5, and rσ,ι ∼= rσ0,ι.
• σ is unramified at primes not dividing 2q; σ2 is isomorphic to a principal series

representation i
GL2
B2

χ1 ⊗χ2, where χ1 is unramified and χ2 has conductor 4; and
σq is an unramified twist of the Steinberg representation.

Let ω : GK → Q
×
p be a character crystalline at p and unramified at q and such that

ωωc = ε3. Then (ψω)(ψω)c = ε−1. We take X0 be a set of prime-to-2pq places of K at
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which ω is unramified, and with the property that any X0-split extension of K is linearly
disjoint from Favoid/K.

Let F/K and π be the soluble CM extension and RACSDC automorphic repre-
sentation of GLn(AF) whose existence is asserted by Theorem 7.1. Thus in particular π

is ι-ordinary, is an unramified twist of Steinberg at some place v|q of F, and there are
isomorphisms

rπ,ι ∼= ω|n−1
GF

⊗ (⊕n
i=1ψ

n−i
(ψ

c
)i−1|GF)

∼= ωn−1|GF ⊗ Symn−1 rσ,ι|GF .

We now want to apply [ANT20, Theorem 6.1] (an automorphy lifting theorem) to con-
clude that the representation ωn−1 ⊗Symn−1 rσ,ι|GF is automorphic. This will in turn imply,
by soluble descent, that Symn−1 rσ,ι is automorphic. The hypotheses of [ANT20, Theo-
rem 6.1] may be checked using Lemma 7.2. This concludes the proof. �

We first prove Theorem 7.1 in the case where n = 2k + 1 is an odd integer, using
the results of §§4 – 6.

Proposition 7.4. — Theorem 7.1 holds when n = 2k + 1 is odd.

Proof. — We prove the proposition by induction on odd integers n = 2k + 1. Let p,
q, X0, ω be as in the statement of Theorem 7.1. Let Z denote the set of rational primes
below which ω is ramified, together with 2, p, q. Let Favoid/K denote the extension of K
cut out by rσ0,ι ⊕ ε. We fix a finite set X of finite places of K with the following properties:

• X contains X0.
• If v ∈ X then v is prime to Z. In particular, ω|GKv

is unramified.
• For each subextension M/K of Favoid/K with Gal(M/K) simple and non-trivial,

there exists v ∈ X which does not split in M.

Let q0 be a prime not in Z and which does not split in K, and let Y denote the set of
rational primes dividing q0 or an element of X. We make the following observations:

• If F/K is a finite X-split extension, then F/K is linearly disjoint from Favoid/K.
• If F0/Q is a finite Y-split extension, then F0/Q is linearly disjoint from Favoid/Q

and F0K/K is linearly disjoint from Favoid/K.

Note in particular that Y-split extensions are linearly disjoint from K/Q. We can find
distinct rational primes q1, q2, q3 satisfying the following conditions:

• For each i = 1,2,3, we have qi �∈ Y ∪ Z and qi splits in K. In particular, qi is odd.
• We have q1 > n and q1 mod p is a primitive 6th root of unity. The eigenvalues

of Frobq1 on Ind
GQ

GK
ψ

2k
have ratio q±1

1 mod p, while the eigenvalues of Frobq1 on

Ind
GQ

GK
ψ have ratio which is a primitive 12kth root of unity in F×

p .
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• We have q2 ≡ −1 mod p and the eigenvalues of Frobq2 on Ind
GQ

GK
ψ

2k
have ratio

−1.
• The number q3 mod p is a primitive (n − 2)th root of unity and the eigenvalues

of Frobq3 on Ind
GQ

GK
ψ have ratio q±1

3 mod p.

To construct q1, q2, q3 we use the Chebotarev density theorem. After conjugation, we can
assume that rσ0,ι|GK = ψ ⊕ ψ

c
is diagonal. Consideration of the restriction of rσ0,ι|GK to

the inertia groups at p shows that (rσ0,ι ⊕ ε)(GK) contains the subgroup

{(diag(a4, (c/a)4), c−1) | a, c ∈ F×
p } ⊂ GL2(Fp)× F×

p .

We assume p ≡ 1 (mod 48n!), hence in particular p ≡ 1 (mod 96k). Let z ∈ F×
p be an

element of order 96k, and let x1 = z1+8k , y1 = z16k . Then y1 is a primitive 6th root of
unity and x16k

1 = y1+8k
1 . If the prime q1 is chosen so that q1 > n and (rσ0,ι ⊕ ε)(Frobq1) =

(diag(x4
1, (y1/x1)

4), y−1
1 ), then the eigenvalues of Frobq1 in Ind

GQ

GK
ψ have ratio x8

1/y4
1 =

z8+64k−64k = z8, a primitive 12kth root of unity, while the eigenvalues of Frobq1 in Ind
GQ

GK
ψ

2k

have ratio

z16k = y1 = ε−1(Frobq1) ≡ q1 (mod p).

We can choose the prime q2 so that (rσ0,ι ⊕ ε)(Frobq2) = (diag(x4
2, x−4

2 ),−1),
where x2 ∈ F×

p satisfies x16k
2 = −1; and we can choose q3 so that (rσ0,ι ⊕ ε)(Frobq3) =

(diag(x4
3, (y3/x3)

4), y−1
3 ), where x3, y3 ∈ F×

p , y3 is a primitive (n − 2)th root of unity, and x3

is chosen so that x8
3 = y3

3. These choices of xi, yi are again possible because of the congru-
ence p ≡ 1 mod 48n!.

We fix real quadratic extensions Mi/Q (i = 1,2,3) with the following properties:

• M1 is Y ∪ {p, q, q1, q2}-split, and q3 is ramified in M1.
• M2 is Y ∪ {p, q, q3}-split, and q1, q2 are ramified in M2.
• M3 is Y ∪ {p, q, q1, q3}-split, and q2 is ramified in M3.

We write ωi : GQ → {±1} for the quadratic character of kernel GMi
.

By a level-raising result for GL2(AQ) (e.g. [DT94, Theorem A], we can find a
cuspidal, regular algebraic automorphic representation τ of GL2(AQ) with the following
properties:

• τ is unramified outside 2, q1, q2.
• There is an isomorphism rτ,ι ∼= Ind

GQ

GK
ψ

2k
and det rτ,ι = det Ind

GQ

GK
ψ2k =

ε−8kδK/Q.
• τq1 is an unramified twist of the Steinberg representation, and there is an iso-

morphism recQq2
τq2

∼= Ind
WQq2
WQ

q2
2

χq2 , where χq2 |IQq
is a character of order p. In

particular, τq2 is supercuspidal.
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• τ is ι-ordinary and rτ,ι has the same Hodge–Tate weights as Ind
GQ

GK
ψ2k .

For the ordinary condition in the last point, note that since p > 8k and rτ,ι has Hodge–
Tate weights (0,8k) and reducible local residual representation rτ,ι|GQp

at p, τ is neces-
sarily ι-ordinary [Edi92, Theorem 2.6].

By induction, there exists a soluble CM extension F−1/K with the following prop-
erties:

• F−1/K is X-split.
• There exists a RACSDC, ι-ordinary automorphic representation π of

GLn−2(AF−1) with the following properties:

(1) There is an isomorphism

rπ,ι ∼= ωn−3|GF−1
⊗ Symn−3 rσ0,ι|GF−1

.

(2) For each embedding τ : F−1 → Qp, we have

HTτ (rπ,ι) = HTτ (ω
n−3|GE ⊗ Symn−3 rσ0,ι|GE).

(3) There exists a place v−1|q of F−1 such that πv−1 is an unramified twist of the
Steinberg representation.

We can find a soluble CM extension F0/Q with the following properties:

• F0 is Y-split.
• The prime q1 is split in F+

0 , and each place of F+
0 above q1 is inert in F0. The

primes q2, q3 split in F0.
• F0/F+

0 is everywhere unramified.
• For each place v|p of F0, v is split over F+

0 and [F0,v : Qp] > n(n − 1)/2 + 1.
• For each place v|q of F0, v is split over F+

0 and qv ≡ 1 mod p.
• There exists a crystalline character ω0 : GF0 → Q

×
p , unramified outside p, such

that ω0ω
c
0 = ε3δK/Q|GF0

. (Use [BLGGT14, Lemma A.2.5].)
• For each place v|pq of F0, the representations rσ0,ι|GF0,v

and ω0|GF0,v
are trivial.

Define

ρ0 = ωn−3
0 ⊗

(
ω2 ⊗ (⊕k−1

i=1 (Ind
GQ

GK
ψ

2k−i−1
ψ

c,i−1
))⊕ω3ε

−4(k−1)
)

|GF0
.

Then for each place v|pq of F0, ρ0|GF0,v
is trivial.

We now apply Proposition 5.8 with the following choices:

• F1 = F−1 · F0 · M1 · M2 · M3.
• ρ0 is the residual representation defined above.
• �0 is the set of places of F+

0 lying above q; T0 is the set of places of F+
0 lying

above q2 or q3; and S0 is the set of places of F+
0 lying above p, q, q1, q2, or q3.



100 JAMES NEWTON, JACK A. THORNE

• If v|q2, then Rv is the fixed type deformation ring (defined as in [Sho18, Defini-
tion 3.5]) associated to the inertial type ⊕2k−2

i=0 ω(v) ◦ ArtF0,v |−1
O×

F0,v

(where as usual,

ω(v) denotes the unique quadratic character of k(v)× provided that k(v) has
odd characteristic). If v|q3, then there is a character �v :O×

F0,v,n−2
→ C× of order

p such that Rv is the fixed type deformation ring associated to the inertial type

⊕2k−2
i=0 ι−1�

qi−1
v
v ◦ ArtF0,v,n−2 |−1

O×
F0,v,n−2

(where F0,v,n−2/F0,v is an unramified extension

of degree n − 2).
• π1 is the twist of the base change of π with respect to the soluble CM extension

F1/F−1 by the character ιωn−3
0 |GF1

/ωn−3|GF1
.

(Note that F1/K is X-split, so Lemma 7.2 may be applied to rπ1,ι.) We conclude the exis-
tence of a RACSDC, ι-ordinary automorphic representation π0 of GLn−2(AF0) satisfying
the following conditions:

• There is an isomorphism rπ0,ι
∼= ρ0.

• π0 is unramified outside S0.
• For each place v|q of F0, π0,v is an unramified twist of the Steinberg representa-

tion.
• For each place v|q1 of F0, there are characters χv,0, χv,1 . . . , χv,2k−2 : F×

0,v → C
such that π0,v

∼= χv,0 � χv,1 � · · · � χv,2k−2, χv,0 is unramified,and for each i =
1, . . . ,2k − 2, χv,i|O×

F0,v
= ω(v).

• For each place v|q2 of F0, π0,v|GLn−2(OF0,v )
contains ω(v) ◦ det.

• For each place v|q3 of F0, π0,v|GLn−2(OF0,v )
contains the representation λ̃(v,�v)

(notation as in Proposition 1.18).

Let Ti denote the set of places of F+
0 lying above qi , and let T = T1 ∪ T2 ∪ T3. Let τ0

denote the base change of τ to F0, and let π2 = τ0 ⊗| · |(n−2)/2ιω1ω
n−1
0 . Let πn−2 = π0 ⊗| ·

|−3ιω2
0. We see that the hypotheses of Theorem 4.1 are now satisfied, and we conclude the

existence of a T-split quadratic totally real extension L+
0 /F+

0 and a RACSDC ι-ordinary
automorphic representation �0 of GLn(AL0) satisfying the following conditions:

• The extension L0/Q is soluble and Y-split.
• There is an isomorphism

r�0,ι
∼= ωn−1

0

∣∣
GL0

⊗ (ω1 ⊗ Ind
GQ

GK
ψ

2k ⊕ω2 ⊗ (⊕k−1
i=1 (Ind

GQ

GK
ψ

2k−i
ψ

c,i
))

⊕ω3ε
−4k
)∣∣

GL0
.

• For each place v|q1 of L0, there exists a character �v : O×
L0,v,3

→ C× of order p

such that �0,v|rv contains λ̃(v,�v, n)|rv (notation as in §1.17).
• For each place v|q3 of L0, �0,v|qv contains the representation λ̃(v,�v, n) (where

we define �v = �v|F0
).
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In fact, �0 has the following stronger property:

• For each place v|q1 of L0, �0,v|qv contains λ̃(v,�v, n).

To see this, it is enough to check that no two eigenvalues α,β ∈ F
×
p of the representation

(Symn−3 Ind
GQ

GK
ψ)(Frobq1) satisfy (α/β)2 = q2

1 (recall that if v|q1 is a place of L0, then
L0,v/Qq1 is an unramified quadratic extension). Recalling the numbers x1, y1 ∈ F×

p , we see
that we must check that (y8

1/x16
1 )i �= y±2

1 for i = 1, . . . ,2k − 2. However, by construction
y2

1 is a primitive 3rd root of unity and y8
1/x16

1 is a primitive 6kth root of unity, so we cannot
have (y8

1/x16
1 )3i = 1 if 1 ≤ i < 2k.

Let L1 = L0K. Then the following conditions are satisfied:

• The extension L1/K is soluble and X-split.
• Let �1 denote the base change of �0 with respect to the quadratic extension

L1/L0. Then �1 is RACSDC and ι-ordinary. (It is cuspidal because L1/L0 is
quadratic and n is odd, cf. [AC89, Theorem 4.2].)

• For each place v of L1 of residue characteristic q1, q3, v is split over L0 and over
L+

1 . (The prime qi splits in K.)

Thus the hypotheses of Theorem 6.1 are satisfied with R1 (resp. R2) the set of places of
L+

1 of residue characteristic q1 (resp. q3), and we conclude the existence of a RACSDC ι-
ordinary automorphic representation �′

1 of GLn(AL1) satisfying the following conditions:

• There is an isomorphism r�′
1,ι

∼= r�0,ι|GL1
.

• There exists a place v|q of L1 such that �′
1,v is an unramified twist of the Stein-

berg representation.

Finally, let F = L1M1M2M3, and let �′ be the base change of �′
1 with respect to the

extension F/L1. We see that the conclusion of Theorem 7.1 holds with � = �′ ⊗
ι(ω|GF/ω0|GF)

n−1. �

Proof of Theorem 7.1. — If n is odd then the statement reduces to Proposition 7.4.
Let m ≥ 1 be an odd integer. We will prove by induction on r ≥ 0 that the conclusion of
Theorem 7.1 holds for all integers of the form n = 2rm.

The case r = 0 is already known. Supposing the theorem known for a fixed r ≥ 0
(hence n = 2rm), we will now establish it for r + 1 (hence n′ = 2r+1m = 2n). Fix data p, q,
X0, ω as in the statement of Theorem 7.1. In particular p ≡ 1 (mod 48n′!). Once again
we enlarge X0 so that any X0-split extension F/K is forced to be linearly disjoint from the
fixed field of ker(rσ0,ι ⊕ ε).

By induction, we can find a soluble CM extension F/K and a RACSDC automor-
phic representation π of GLn(AF) such that the following conditions are satisfied:

• π is ι-ordinary. There is an isomorphism rπ,ι ∼= ωn−1|GF ⊗ Symn−1 rσ0,ι|GF .
The representations rπ,ι and ωn−1|GF ⊗ Symn−1 rσ0,ι have the same Hodge–Tate
weights (with respect to any embedding τ : F → Qp).
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• There exists a place v|q such that πv is an unramified twist of the Steinberg
representation.

• F is X0-split.

After possibly enlarging F, we can assume that the following additional conditions are
satisfied:

• qv ≡ 1 mod p and rσ0,ι(Frobv) is trivial.
• Each place of F which is either p-adic or at which π is ramified is split over F+.

Let �,# : K×\A×
K → C× be the Hecke characters of type A0 with r�,ι = ω and r#,ι = ψ .

Define π1 = π ⊗ (| · |n/2(�# ◦ NF/K)
n), π2 = π ⊗ (| · |n/2(�# c ◦ NF/K)

n). We make the
following observations:

• π1 and π2 are cuspidal, conjugate self-dual automorphic representations of
GLn(AF).

• Let π0 = π1 � π2 and define rπ0,ι = rπ1|·|−n/2,ι ⊕ rπ2|·|−n/2,ι. Then π0 is regular alge-
braic and ι-ordinary. Moreover, for each finite place v of F there is an isomor-
phism WD(rπ0,ι|GFv

)F−ss ∼= recT
Fv
(π0,v), and there is an isomorphism

rπ0,ι
∼= ω2n−1|GF ⊗ Sym2n−1 rσ0,ι|GF .

• There are unramified characters ξi : F×
v → C× such that πi

∼= Stn(ξi) and
ι−1ξ1/ξ2(
v) ≡ qn

v mod mZp
.

• rπ0,ι is not isomorphic to a twist of 1 ⊕ ε−1 ⊕ · · · ⊕ ε1−2r+1m.

We justify each of these points in turn. Since π is conjugate self-dual, the first point
follows from the fact that (�#)(�#)c = | · |−1 (in turn a consequence of the identity
(ωψ)(ωψ)c = ε−1). The second follows from the identity

Sym2n−1 rσ0,ι|GK
∼= ψ2n−1 ⊕ψ2n−2ψ c ⊕ · · · ⊕ (ψ c)2n−1

∼= (ψ n ⊕ (ψ c)n)⊗ Symn−1 rσ0,ι|GK .

The third point holds by construction (qv ≡ 1 (mod p) and rπ0,ι(Frobv) is scalar). The
fourth holds since otherwise rπ0,ι|GF(ζp)

would be a twist of the trivial representation, con-
tradicting part 2 of Lemma 7.2.

We see that the hypotheses of [AT21, Theorem 5.1] are satisfied. This theorem
implies that we can find a quadratic CM extension F′/F such that F′/K is soluble X0-
split, as well as a RACSDC automorphic representation π ′ of GLn′(AF′) satisfying the
following conditions:

• π ′ is ι-ordinary, and there is an isomorphism

rπ ′,ι ∼= ωn′−1|GF′ ⊗ Symn′−1 rσ0,ι|GF′ .
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• The weight of π ′ is the same as that of π0.
• There exists a place v′|v of F′ such that π ′

v′ is an unramified twist of the Steinberg
representation.

This existence of F′ and π ′ completes the induction step, and therefore the proof of the
theorem. �

Remark 7.5. — We observe that the results of [AT21] already suffice to prove The-
orem 7.1 (and hence Theorem 7.7) when n is a power of two, without using the level
raising results of Sections 4–6.

We can now put everything together to deduce our main results on automorphy of
symmetric powers.

Theorem 7.6. — Let n ≥ 3. Then there exists a cuspidal, everywhere unramified automor-

phic representation π of GL2(AQ) of weight k ≥ 2 such that, for any isomorphism ι : Qp → C,

Symn−1 rπ,ι is automorphic.

Proof. — By Corollary 7.3, we can find odd primes p �= q, with q ≡ 3 mod 4, and
a cuspidal automorphic representation σ of GL2(AQ) of weight 5 satisfying the following
conditions:

• σ is unramified at primes not dividing 2q; σ2 is isomorphic to a principal series
representation i

GL2
B2

χ1 ⊗χ2, where χ1 is unramified and χ2 has conductor 4; and
σq is an unramified twist of the Steinberg representation.

• For any isomorphism ιp : Qp → C, Symn−1 rπ,ιp is automorphic.

Now we choose an isomorphism ιq : Qq → C. By the second part of Lemma 3.5, the
Zariski closure of rσ,ιq(GQq

) contains SL2. Since σq is an unramified twist of Steinberg
it has a unique (q-adic) accessible refinement, which is numerically non-critical and n-
regular. We can therefore apply Theorem 2.33 to the point of the q-adic, tame level 4
eigencurve associated to σ with its unique accessible refinement. Using the accumula-
tion property of the eigencurve to find a suitable classical point in the same (geometric)
irreducible component as this point, we deduce the existence of a cuspidal automorphic
representation σ ′ of GL2(AQ) of weight k > 2 satisfying the following conditions:

(1) σ ′ is unramified outside 2, and σ ′
2 is isomorphic to a principal series representation

i
GL2
B2

χ1 ⊗ χ2, where χ1 is unramified and χ2 has conductor 4.
(2) The weight of σ ′ satisfies k ≡ 3 mod 4 (this is possible because q ≡ 3 mod 4, and we

can choose any k ≡ 5 mod (q − 1)qα for sufficiently large α).
(3) Symn−1 rσ ′,ιq is automorphic.



104 JAMES NEWTON, JACK A. THORNE

Let ι : Q2 → C be an isomorphism. These conditions imply that the Zariski closure of
rσ ′,ι(GQ2) must contain SL2. Indeed, we have already observed in §3 that there are no 2-
ordinary cusp forms of tame level 1, so (invoking Lemma 3.5) if this Zariski closure does
not contain SL2 then rσ ′,ι|GQ2

must be irreducible and induced from a quadratic extension
of Q2, implying that both refinements of σ ′ at the prime 2 have slope (k − 1)/2, an odd
integer. However, Theorem 3.2 implies that there are no newforms of level 4 and odd
slope (see [BK05, Corollary of Theorem B]); a contradiction. The same argument shows
that the refinement χ1 ⊗ χ2 is n-regular, since the two refinements of σ ′ have distinct
slopes.

We see that (σ ′, χ1 ⊗ χ2) satisfies the hypotheses of Theorem 2.33. Using the ac-
cumulation property of the (tame level 1, 2-adic) eigencurve, we deduce the existence of
a cuspidal, everywhere unramified automorphic representation π of GL2(AQ) such that
Symn−1 rπ,ι is automorphic. This completes the proof. �

Combining Theorem 7.6 with Theorem 3.1, we deduce:

Theorem 7.7. — Let n ≥ 3, and let π be a cuspidal, everywhere unramified automorphic rep-

resentation of GL2(AQ) of weight k ≥ 2. Then for any isomorphism ι : Qp → C, Symn−1 rπ,ι is

automorphic.

8. Higher levels

In this section we extend our main theorem to higher levels as follows:

Theorem 8.1. — Let π be a cuspidal automorphic representation of GL2(AQ) of weight k ≥ 2
satisfying the following two conditions:

(1) For each prime l, πl has non-trivial Jacquet module (equivalently, πl admits an accessible refinement).

(2) π is not a CM form.

Then for any n ≥ 3 and any isomorphism ι : Qp → C, Symn−1 rπ,ι is automorphic.

For example, these conditions are satisfied if π is associated to a non-CM cuspidal
eigenform f of level �1(N) for some squarefree integer N ≥ 1; in particular, if k = 2 and
π is associated to a semistable elliptic curve over Q.

Fix n ≥ 3 for the remainder of this section. We first prove the following special case
of Theorem 8.1:

Proposition 8.2. — Let π be a cuspidal automorphic representation of GL2(AQ) of weight

k ≥ 2 satisfying the following conditions:

(1) For each prime l such that πl is ramified, πl has an accessible refinement which is n-regular, in the

sense of Definition 2.23.

(2) π is not a CM form.

Then for any isomorphism ι : Qp → C, Symn−1 rπ,ι is automorphic.
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Proof. — We prove the proposition by induction on the number of primes r divid-
ing the conductor N of π . The case r = 0 (equivalently, N = 1) is Theorem 7.7.

Suppose therefore that r > 0 and that the theorem is known for automorphic rep-
resentations of conductor divisible by strictly fewer than r primes. Let π be a cuspidal
automorphic representation as in the statement of the proposition. Fix a prime p at which
π is ramified, and an isomorphism ι : Qp → C. Factor N = Mps, where (M, p) = 1.

Suppose first that rπ,ι|GQp
is reducible. Then π is ι-ordinary and π admits an

ordinary refinement χ . After twisting by a finite order character, we can assume that
(π,χ) ∈RA0 (here we use the notation established for the Coleman–Mazur eigencurve
in §2.31). Let C be an irreducible component of the (tame level M, p-adic) eigencurve
E0,Cp

containing the point x corresponding to (π,χ), and let Z ⊂ E0 denote the Zariski
closed set defined in Lemma 2.35. Our hypotheses imply that x �∈ZCp

.
We can therefore find a point x′′ ∈ C −ZCp

such that the image of x′′ in W0,Cp
is a

character of the form y �→ yk′′−2 for some integer k′′ ≥ 2. Indeed, since the image of C in
W0,Cp

is Zariski open, we can find such a point in C. There is an affinoid neighbourhood
U′′ of this point which maps in a finite and surjective fashion onto an affinoid open in
W0,Cp

. The image of ZCp
∩U′′ in this affinoid open is Zariski closed, and we can therefore

find another such point x′′ ∈ C −ZCp
. (In fact, the ordinary component C surjects onto a

connected component of W0,Cp
, but we will apply the same argument for a non-ordinary

component.)
Choosing another point in a sufficiently small affinoid neighbourhood of x′′ in C −

ZCp
and applying the classicality criterion, we can find a point x′ ∈ C−ZCp

corresponding
to an ι-ordinary cuspidal automorphic representation π ′ of GL2(AQ) of weight k′ ≥ 2
with the following properties:

(1) Let χ ′ denote the ordinary refinement of π ′. Then (π ′, χ ′) determines a point on the
same irreducible component of the (tame level M, p-adic) eigencurve E0,Cp

as (π,χ).
(2) The level of π ′ is prime to p.
(3) For each prime l|M, each accessible refinement of π ′

l is n-regular.
(4) The Zariski closure of rπ ′,ι(GQ) (in GL2/Qp) contains SL2.

(The latter two properties follow from the definition of the set Z in Lemma 2.35. In fact
we can take x′ = x′′, since ordinary points of classical weights are classical; however, we
will repeat the same argument in the next paragraph also for a non-ordinary component
of the eigenvariety, in which case two steps are required.) By induction, Symn−1 rπ ′,ι is
automorphic. We may then apply the ordinary case of Theorem 2.33 to conclude that
Symn−1 rπ,ι is automorphic.

Suppose instead that rπ,ι|GQp
is irreducible, and let χ be an accessible, n-regular

refinement. The existence of χ implies that the Zariski closure of rπ,ι(GQp
) in GL2/Qp

contains SL2, by Lemma 3.5. Again, after twisting by a finite order character, we can
assume that (π,χ) ∈ RA0. Repeating the same argument as in the ordinary case, we
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can find a cuspidal automorphic representation π ′ of GL2(AQ) of weight k′ ≥ 2 with the
following properties:

(1) π ′ admits a non-ordinary refinement χ ′ which is numerically non-critical and n-
regular. (This again implies that the Zariski closure of rπ ′,ι(GQp

) contains SL2.)
(2) The pair (π ′, χ ′) determines a point on the same irreducible component of the (tame

level M, p-adic) eigencurve E0,Cp
as (π,χ).

(3) For each prime l|M, each accessible refinement of π ′
l is n-regular.

(4) The level of π ′ is prime to p.

By induction, Symn−1 rπ ′,ι is automorphic. We can then appeal to Theorem 2.33 to con-
clude that Symn−1 rπ,ι is automorphic.

In either case we are done, by induction. �

To reduce the general case of Theorem 8.1 to Proposition 8.2, we establish the
following intermediate result.

Proposition 8.3. — Let π be a cuspidal automorphic representation of GL2(AQ) of weight

k ≥ 2, without CM. Suppose that for each prime l, πl has non-trivial Jacquet module. Then we can

find a prime p, an isomorphism ι : Qp → C, and another cuspidal automorphic representation π ′ of

GL2(AQ) of weight k with the following properties:

(1) p > max(2(n + 1), (n − 1)k).
(2) The image of rπ,ι contains a conjugate of SL2(Fp).

(3) Both πp and π ′
p are unramified.

(4) There is an isomorphism rπ,ι ∼= rπ ′,ι.
(5) For each prime l, π ′

l has non-trivial Jacquet module. If π ′
l is ramified, then each accessible refinement

of π ′
l is n-regular.

Proof. — We use Taylor–Wiles–Kisin patching. The idea is that if all the automor-
phic representations congruent to π mod p fail to have n-regular refinements at l then
the patched module will be supported on a codimension one quotient of the local defor-
mation ring at l, which contradicts the numerology of the Taylor–Wiles–Kisin method.

Let M denote the conductor of π . We can choose a prime p satisfying (1) and (2),
p > M, such that πp is unramified, and satisfying the following additional condition:

• For each prime l �= p such that πl is ramified, the universal lifting ring classifying
lifts of rπ,ι|GQl

of determinant equal to det rπ,ι is formally smooth.

Indeed, it is sufficient that for each such prime l, the group H0(Ql,ad0 rπ,ι(1)) vanishes.
Such a prime exists thanks to [Wes04, Proposition 3.2, Proposition 5.3].

Fix an additional prime qa > p such that πqa
is unramified and such that the uni-

versal lifting ring classifying lifts of rπ,ι|GQqa
of determinant equal to det rπ,ι is formally

smooth. This is possible by e.g. [DT94, Lemma 11].
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Fix a coefficient field E/Qp, large enough that there is a conjugate ρ : GQ →
GL2(k) of rπ,ι and such that χ = det rπ,ι takes values in O. We assume moreover that
for each σ ∈ GQ, the roots of the characteristic polynomial of ρ(σ) lie in k. Let S denote
the set of primes at which rπ,ι is ramified (equivalently, at which ρ is ramified), together
with qa. We consider the global deformation problem (in the sense of [Tho16, Definition
5.6])

S = (ρ,χ,S, {O}v∈S, {Dv}v∈S),

where Dp is the functor of lifts of ρ|GQp
of determinant χ which are Fontaine–Laffaille

with the same Hodge–Tate weights as rπ,ι, and if l ∈ S − {p} then Dl is the functor of
all lifts of ρ|GQl

of determinant χ . Since ρ is absolutely irreducible, the functor of de-
formations of type S is represented by an object RS ∈ CO (cf. [Tho16, Theorem 5.9]).
We may choose a representative ρS : GQ → GL2(RS) of the universal deformation.
We set H = H1(YU1(Mqa),Symk−2 O2), where U1(Mqa) is the open compact subgroup
of GL2(A∞

Q ) defined in §2.31 and YU is the modular curve of level U (denoted Ỹ(U) in
[Eme06b, §4.1]). We write TS ⊂ EndO(H) for the commutative O-subalgebra generated
by the unramified Hecke operators Tl , Sl for l �∈ S. Then there is a unique maximal ideal
m ⊂ TS with residue field k such that for each prime l �∈ S, the characteristic polynomial
of ρ(Frobl) equals X2 − TlX + lk−1Sl mod m. The localization Hm is a finite free O-
module, and there is a unique strict equivalence class of liftings ρm : GQ → GL2(TS

m
) of

type S such that for each prime l �∈ S, the characteristic polynomial of ρm(Frobl) equals
the image of X2 − TlX + lk−1Sl in TS

m
[X]. (See [Tho16, Proposition 6.5] for justification

of a very similar statement in the context of Shimura curves.) In particular, there is an
O-algebra morphism RS → TS

m
classifying ρm, which is surjective.

Suppose given a finite set Q of primes satisfying the following conditions:

(a) Q ∩ S = ∅.
(b) For each q ∈ Q, q ≡ 1 mod p and ρ(Frobq) has distinct eigenvalues αq, βq ∈ k.

In this case we can define the following additional data:

• The group �Q =∏q∈Q(Z/qZ)×(p) (i.e. the maximal p-power quotient of the
product of the units in each residue field).

• The augmented global deformation problem

SQ = (ρ,χ,S ∪ Q, {O}v∈S∪Q, {Dv}v∈S∪Q),

where for each q ∈ Q, Dq is the functor all lifts of ρ|GQq
of determinant χ .

The labelling of αq, βq for each q ∈ Q determines an algebra homomorphism
O[�Q] → RSQ in the following way: if ρSQ is a representative of the universal
deformation, then ρSQ|GQq

is conjugate to a representation of the form Aq ⊕ Bq,
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where Aq : GQq
→ R×

SQ
is a character such that Aq mod mRSQ

is unramified
and Aq mod mRSQ

(Frobq) = αq (and similarly for Bq). Then Aq ◦ ArtQq
|Z×

q
fac-

tors through a homomorphism (Z/qZ)×(p) → R×
SQ

. These homomorphisms for
q ∈ Q collectively determine the algebra homomorphism O[�Q] → RSQ.

• The cohomology module HQ = H1(YU1(Mqa)∩U2(Q),Symk−2 O2), where we de-
fine

U2(Q) =
⎧⎨
⎩
(

a b

c d

)
∈ GL2(Ẑ) : c ≡ 0 mod (

∏
q∈Q

q), ad−1 �→ 1 ∈ �Q

⎫⎬
⎭ ,

and commutative O-subalgebras TS∪Q ⊂ TS∪Q
Q ⊂ EndO(HQ). By definition,

TS∪Q is generated by the unramified Hecke operators Tl , Sl for l �∈ S ∪ Q and
TS∪Q

Q is generated by TS∪Q
Q and the operators Uq for q ∈ Q. There are maximal

ideals mQ ⊂ TS∪Q and mQ,1 ⊂ TS∪Q
Q with residue field k defined as follows: mQ is

the unique maximal ideal such that for each prime l �∈ S ∪ Q, the characteristic
polynomial of ρ(Frobl) equals X2 − TlX + lk−1Sl mod mQ. The ideal mQ,1 is
generated by mQ and the elements Uq − αq for q ∈ Q. There is a unique strict
equivalence class of liftings ρmQ : GQ → GL2(T

S∪Q
mQ ) of type SQ such that for

each l �∈ S ∪ Q, the characteristic polynomial of ρmQ(Frobl) equals the image of
X2 − TlX + lk−1Sl in TS∪Q

mQ [X]. There is an O-algebra morphism RSQ → TS∪Q
mQ

classifying ρmQ , which is surjective. Moreover, if we view HQ,mQ,1 as an RSQ-
module via this map, then the two O[�Q]-module structures on HQ,mQ,1 , one
arising from RSQ, the other arising from the action of �Q via Hecke oper-
ators, coincide. (These statements in turn may be justified as in the proof of
[Tho16, Lemma 6.8].) Finally, HQ,mQ,1 is a free O[�Q]-module and there is an
isomorphism HQ,mQ,1 ⊗O[�Q] O ∼= Hm of RSQ ⊗O[�Q] O ∼= RS -modules. (This
is again proved in a similar way to [Tho16, Lemma 6.8], using the fact that
Hi(YU1(Mqa)∩U0(Q),Symk−2(O/
)2) is Eisenstein for i �= 1, together with [KT17,
Corollary 2.7], to justify the freeness.)

If l ∈ S, let Rl ∈ CO denote the universal lifting ring representing the local deformation
problem Dl . By construction (if l �= p) or arguing as in [CHT08, §2.4.1] (if l = p) Rl is
a formally smooth O-algebra; if l �= p, then Rl is formally smooth over O of relative
dimension 3, while Rp has relative dimension 4. We set T = S − {p, qa} and AT

S = ⊗̂l∈TRl

(the completed tensor product being over O). The T-framed deformation rings RT
S and

RT
SQ

are defined (see [Tho16, §5.2]) and there are canonical homomorphisms AT
S → RT

S
and AT

S → RT
SQ

.
By the argument of [Kis09, Proposition 3.2.5] and [Tho16, Proposition 5.10], we

can find an integer q0 ≥ 0 with the following property: for each N ≥ 1, there exists a set
Q = QN of primes satisfying conditions (a), (b) above and also:
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(c) |QN| = q0.
(d) For each q ∈ QN, q ≡ 1 mod pN.
(e) The algebra map AT

S → RT
SQN

extends to a surjective algebra homomorphism
AT
S�X1, . . . ,Xg� → RST

QN
, where g = q + |T| − 1.

We choose for each N ≥ 1 a representative ρSQN
of the universal deformation over RSQN

which lifts ρS . This choice determines an isomorphism RT
SQN

∼= RSQN
⊗̂OT , where T is a

power series ring over O in 4|T| − 1 variables. We set HT
QN

= HQN,mQN,1⊗̂OT . It is a free
T [�QN]-module, and there is an isomorphism HT

QN
⊗T [�QN ] O ∼= Hm of RST

QN
⊗T [�QN ]

O ∼= RS -modules.
We now come to the essential point of the proof. Let l ∈ S−{p}, and fix a Frobenius

lift φl ∈ GQl
.

Lemma 8.4. — With our current assumptions, there is a principal ideal Il ⊂ Rl with the

following property: for any homomorphism f : Rl → Qp, the resulting homomorphism ρf : GQl
→

GL2(Qp) has the property that the eigenvalues αl , βl of ρf (φl) satisfy (αl/βl)
i = 1 for some i =

1, . . . , n − 1 if and only if f (Il) = 0. Moreover, the quotient Rl/Il has dimension strictly smaller than

the dimension of Rl .

Proof. — Let (r,N) = recT
Ql
(ι−1πl), a Weil–Deligne representation that we may as-

sume is defined over E. The proof will use the fact that the Jacquet module of πl is
non-trivial (equivalently, that the Weil–Deligne representation (r,N) is reducible).

We recall that the ring Rl is a formally smooth O-algebra of relative dimension 3.
Let runiv

l : GQl
→ GL2(Rl) be the universal lifting. We can take Il to be the ideal generated

by the discriminant of the characteristic polynomial of Symn−1 runiv
l (φl). To complete the

proof of the lemma, we need to show that dim Rl/Il < dim Rl . Since Rl is an integral
domain, it is equivalent to show that Il is not the zero ideal.

To show this, we split into cases. If πl is a twist of the Steinberg representation
then the discriminant of the characteristic polynomial of Symn−1 r(φl) is non-zero (as the
eigenvalues of r(φl) have eigenvalues whose ratio is a non-zero power of l), so we see that
Il is not the zero ideal in this case. Otherwise, N = 0 and r = χ1 ⊕ χ2 is a direct sum of
two characters of WQl

. Let ψ : WQl
→ E�T� be the unramified character which sends ψ

to 1 + T; then r′ = χ1ψ ⊕ χ2ψ
−1 is a deformation of r to E�T� of determinant χ with

the property that the discriminant of the characteristic polynomial of Symn−1 r′(φl) is
non-zero in E�T�. The existence of this deformation, together with [Gee11, Proposition
2.1.5], implies that Il cannot be the zero ideal in this case either. �

We set I =∏l∈S−{p} IlAT
S ⊂ AT

S . Then dim AT
S/I = dim AT

S − 1.
Suppose for contradiction that for each automorphic representation π ′ contribut-

ing to HQN for some N ≥ 1, there is a prime l ∈ S such that π ′
l is ramified and there is an
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accessible refinement of π ′
l which is not n-regular. Then IHT

QN
= 0. On the other hand,

a standard patching argument (cf. [Tho12, Lemma 6.10]) implies the existence of the
following objects:

• A ring S∞ = T �S1, . . . ,Sq0� and an algebra homomorphism S∞ → R∞ =
(AT

S/I)�X1, . . . ,Xg�.
• A finite R∞-module H∞, which is finite free as S∞-module.

This is a contradiction. Indeed, [KT17, Lemma 2.8] shows that the dimension of H∞
is the same, whether considered as R∞- or S∞-module. By freeness, its dimension as
S∞-module is dim S∞ = 4|T| + q0. On the other hand, its dimension as R∞-module is
bounded above by dim R∞ = dim AT

S − 1 + g = 4|T| + q0 − 1.
We conclude that there exists an automorphic representation π ′ contributing to

HQN for some N ≥ 1 such that for each prime l ∈ S such that π ′
l is ramified, each acces-

sible refinement of π ′
l is n-regular. To complete the proof, we just need to explain why π ′

q

is n-regular for each prime q ∈ QN such that πq is ramified. However, our construction
shows that rπ ′,ι|IQq

has the form Cq ⊕ C−1
q , where Cq : IQq

→ Q
×
p has order a power of p.

Since p > 2n, by hypothesis, this is a fortiori n-regular. This completes the proof. �

We can now finish the proof of Theorem 8.1.

Proof of Theorem 8.1. — Let π be a cuspidal automorphic representation of
GL2(AQ) of weight k ≥ 2, without CM, and such that each local component πl admits
an accessible refinement. Let p, ι, and π ′ be as in the statement of Proposition 8.3. Then
Symn−1 rπ ′,ι is automorphic, by Proposition 8.2.

On the other hand, our assumptions imply that the residual representation
Symn−1 rπ,ι ∼= Symn−1 rπ ′,ι is irreducible. We can therefore apply [BLGGT14, Theorem
4.2.1] to conclude that Symn−1 rπ,ι is automorphic. This completes the proof. �
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