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o. Global introduction

The purpose of this paper is to apply the results of [12], to the global study of
p-adic etale cohomology and the associated p-adic Galois representations. We fix a
field K of characteristic o which is complete with respect to a discrete valuation, with
residue field % of characteristic p > o and valuation ring A. The generic (resp. special):
point of S = Sp A is denoted 7 (resp. s). We consider a diagram of schemes

V=X, 5 X «— X, =Y
o L |

SpK=%n ——> S=SpA «— s=Spk

with all vertical arrows smooth and proper. A bar will either indicate algebraic or
integral closure (viz. K, A) or base extension (X = X;=X x5S, V=Vg,...).
Finally, G = Gal(K/K) and C, = K, the completion of K. -

* Partially supported by the NSF.
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108 SPENCER BLOCH AND KAZUYA KATO

The basic global objects are the etale cohomology groups Hz,(V, Q,), which we
study using the spectral sequence

(0.2) Ep' = H(Y, i R'(Z)p" Z)) = HH'(V, Zjp* Z).

This spectral sequence induces a G-stable filtration

(0.3) F*(H;,(V, Z,))

such that FOH? = H? and F"H!= (0) for n> ¢ + 1. We write
(0.4) gr" H? = F" HYF"+*1 H,

Recall that one also has the de Rham-Witt cohomology [3], [10]
H* (Y, WQy)
and the crystalline cohomology [2]
Y/W(k)) (W(k) = Witt vectors over %),

crys(

which depend only on the special fibre Y and are linked via the slope spectral sequence

(0.5) Ep' = H(Y, WQ') = HZ/(Y/W(R)).
H;,,, has a canonical endomorphxsm F (Frobenius) and we write
(0.6) Heo(Y/W(E))Q)

for the p*-eigenspace of F on HZ ,® Q. Roughly speaking we will say Y is ordinary
if the rank of (0.6) equals the rank of the %-vector space (Hodge group)

H—{(Y, QF)
for all ¢ and ¢. (This definition is not quite correct in the presence of torsion in Hy,,.
For a more detailed discussion see § 7 below.) An abelian variety of dimension d is
ordinary if and only if it has p? geometric points of order p.

By Deligne (unpublished but cf. [20], p. 143), ordinary hypersurfaces of any given
degree make up an open dense set in the moduli space.

Theorem (0.7). — Let notation be as above and assume Y is ordinary. Then there exist
Sunctorial G-module isomorphisms
() grr " HY(V, Q,) = HE,, (Y/W(R)§(— )
(ii) gt HY(V, Q,) @7, W(k) = HI(Y, W) (—d)q
(iii) gr'*HL(V, Q,) ®Q C, ~ H™Y(V, Q}) ® C,(— i).

(The notation (— ) means twist ¢ times by the dual of the p-adic cyclotomic character
on G. Also G acts in the natural way on G,.)

Recall that a Q [G]-module M is said to admit a Hodge-Tate decomposition if
the module M ®, C, with semi-linear G-action is isomorphic to a direct sum

D M, (n
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p-ADIC ETALE COHOMOLOGY 109

with M, ~ C» as a G-module. Assume now % is perfect. Tate has shown [18] that
the Tate module of a p-divisible group admits a Hodge-Tate decomposition. By using
this fact, Tate and Raynaud proved that H.,(V, Q,) has the Hodge-Tate decomposition

Hy(V, Q,) ® C, = [H(V, Oy) & C,] ® [H(V, Q}) ® C,(— 1)]

for any smooth proper variety V over K.

Corollary (0.8). — Assume Y ordinary and k perfect. Then for all q,
HL(V,Q,) = © (H¥(V, Qf) O Cy(— 1)),

1

so HY,(V) has a Hodge-Tate decomposition.

The proof is straightforward from (o.7) (iii) together with the result of Tate:

(0.9) If n+o, HYG,C)(n) =0. If k& is perfect and n=+ o, then
HY(G, C,(n)) = o.

We continue to assume now that Y is ordinary, and we suppose in addition that
the residue field % is separably closed (not necessary perfect). There is some geometric
interest in considering the extensions

(o0.10) o —>grttH! - FHYF*?H? - gr H? — o.

If H; ,(Y) is torsion free, the isomorphisms of (0.7) exist before being tensored by Q
(see (9.6)). Thus the extension class lies in

(0.11) Homy, (HY,,,(¥) 7, Hi,,,(V)=~1) @, H!(G, Z,(1)).

One has (cf. [19], prop. (2.2))
H(G, Z,(1)) = lim K*/K**" = K",

the p-adic completion of the multiplicative group of K. If a basis f; for the Hom
in (o.11) is fixed, one gets (dual) functions

liftings of Y
y - R,
over A

This situation is understood in the case of abelian varieties (Katz [13]) and also K-g sur-
faces (Deligne-Illusie [6]). It should be the case that the image of f; lands in the group
of principal units U"CK*. The f; could then reasonably be thought of as p-adic
modular functions, i.e. as p-adic functions on the moduli space (in fact, on the * period
space ' !?).

Briefly, the content of the various sections of the paper are as follows. Sections 1-6
are local. § 1 describe the local setup and states the main local results, (0.4) (0.5).
In section 2 we identify the mod p Milnor K-theory of a field in characteristic p with
the group of logarithmic Kahler differentials. § 3 contains a lemma about Galois
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110 SPENCER BLOCH AND KAZUYA KATO

cohomology which enables us to prove in § 5 that the Galois cohomology of a henselian
field is expressed by Milnor K-theory. § 4 is preparatory, giving elementary properties
of symbols which will be used in later sections. § 6 ¢ sheafifies ”’ these results. Sections 7,
8 and g are global. 1In § 7 we discuss ordinary varieties in characteristic . We charac-
terize these by the vanishing of all cohomology groups of sheaves of locally exact diffe-
rentials. Finally, § 8 and § 9 are devoted to the proof of the main global result (0.7).

A summary of this work is published in [5].

The authors would like, first and foremost, to thank O. Gabber. His results on
vanishing cycles [7], [8] played an essential role in this work. Further, he read the
manuscript carefully giving us much valuable advice.

The authors would also like to thank L. Illusie, N. Katz, N. Nygaard, A. Ogus,
and M. Raynaud for helpful conversations and encouragement.

1. Local results

(x.x) Recall the situation of (0.1)

vV . x iy

.

SpK — SpA «— Spk

but do not assume vertical arrows proper. In the local study § 1-§ 6, we are principally
interested in the structures of the étale sheaves on Y;

M; = " R (Z[p"Z(q)) (n, ¢ 2 0).

These are localizations on Y of the p-adic étale cohomology of V in suitably twisted
coefficients. For y €Y, the stalk M. is isomorphic to the étale cohomology group

Hq(Sp ((DX,,7 [i]),l/p” Z(q)), where Oy ; denotes the strict henselization of Oy ,.

In the case X is proper over A, the spectral sequence (0.2) relates the limit
M¢ = ¢ qu(Z/p”Z(q)) of M¢ to the p-adic étale cohomology H*(V, Z) of V.

We study M? by using symbols and a natural filtration. We shall see that M}
is related to differential modules on X and Y, and to the De Rham-Witt complex on Y.

(x.2) First, we define the symbols. The exact sequence of Kummer on V
0o —>Z}p"Z(1) —> Oy Z> 0 —> 0
induces an exact sequence on Y
i, 0y L5 i*j, 0y —> M} —> o.
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p-ADIC ETALE COHOMOLOGY I

For local sections xy, ..., x, of ©*j, Oy, let {x,, ..., x,} be the local section of M{ defined
as the cup product of the images of x; (1 <7<g¢) in M!. Then,

{x, —x}=0, {x}+{rx}=0, {z,1—2}=0

for any local sections ¥, », z such that 1 — z is invertible. (The proofs of these iden-
tities are essentially the same as Tate’s proof of the existence of the cohomological
symbol K, - HZ,( ,Z/p"Z(2)) for fields. They also follow from Soulé¢’s Chern
class homomorphism K, — H2( , Z[p" Z(2)) for rings and the corresponding identities
in K, (cf. [17], [19]).)

Next we define the filtration of M2. For m > 1, let U™ M? be the subsheaf
of M! generated locally by local sections of the form {x;,...,%} such that
%, — 1 en™i" Og, where n is a prime element of K. It is possible to compute the
subquotients

/U1 M¢ -
grm(M;I,) —_ Mn/ n (m 0)
U MUt ME (m > 1)
for those m such that o <m< ¢ = Jf—, where ¢ denotes the absolute ramification

index of K. If n =1, U"M{=o0 for m > ¢ and thus we obtain a precise picture
of M{. The result is very similar to the structure theorems of the K-theoretic
sheaf SCKq(QY) and of the De Rham-Witt complex of Y (cf. Bloch [3], Illusie [10]).
Indeed, if o< m<¢,

gr™(M;) = gr™(SC, K (Oy)[p" SCy, K, (0y))
for the filtration {U”SC, K,},,~, on SC, K, which is defined by modifying the
filtration fil* of [g] II, § 4, as

U"S8C, K, =fi""'SC, K, + {fil""'SC, K,_,, T}.
(Cf. also [11] § 2.)

But this precise analogy holds only in this range of m, and the structure of gr™(MY)
for m > ¢ has rather different aspects which are not yet well understood.

(r.3) Let Qy = Qy, be the exterior algebra over Oy of the sheaf Q}, of
absolute differentials on Y. If % is perfect, this coincides with the usual Qj,, but is
bigger than the latter in general. As in [8], [10], define subsheaves Bf and Z{ ( > o)
of Q% such that

o=BICBIC...CZICZ{ = Qf
by the relations

B! = Image(d: Q) — Q%)

Z] = Ker(d: Q% — Q)

¢-1 ¢-1
B{ — B{,/Bi, Z{—>Z{,,/B
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112 SPENCER BLOCH AND KAZUYA KATO
where C~1' is the inverse Cartier operator:
a d d d
QY — Z{[B§; x—&/\ A_J@pr_)j_/\ -
= .yl .yq }'1 .yq
()15 -+ .»9, invertible). Define
QY = Ker(1 — C1: Q4 — Q§/BY).

This is in fact the part of Qf generated étale locally by local sections of the forms

d: d:

—;:—c} i ([10] Th. 02.4.2). Let W, Qj be the De Rham-Witt complex of Y,,
1 xq

and let W, Qf |, be the part of W, Q% generated étale locally by local sections of the

form dlog(x,) ... dlog(x,). Note that, since all local rings of Y are inductive

limits of smooth algebras over F,, the theory of the De Rham-Witt complex over a

perfect base ([10]) applies to W, Q5.

Our results are the following:

Theorem (x.4). — The sheaves MY are generated locally by symbols, and
(1) gro(quc) = wn Q%{, log ® Wn Q!IY,_I;y
(1) For m > 1, there is a surjective homomorphism
Pt QY 1O QL2 > gr™(MY).
(i) Let 1« m<e = _? and let m=mp’, s>o, pi{tmy. Then, for

o< n<s (resp. n>s), the above homomorphism o, induces an isomorphism
Q4 YZ4 © Q4 YZ4~ > gr(M2)
(resp. an exact sequence
0 > Qf7* > OfYBI™ © Q§ BT > (M) o,
where 0(w) = (C™*(dw), (—1)'m C *(w), G *=C"1o...0C™ ! (s times)).
Corollary (x.4.1). — The sheaf M{ has the following structure.
(i) gr'(Mf) = QF 1, ® QY7
(i) If 1<m<e¢ and m is prime to p,
gr(Mf) = QF".
(i) If 1<m<e¢e and p|m,
gr™(Mf) = QY Y/Z{71 © Q§FZ{~*.
(iv) For m> ¢, U™M{=o.
The surjective homomorphism
M - W, Qf 1, ® W, Q{7
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p-ADIC ETALE COHOMOLOGY 13

given by (1.4) (i) is a homomorphism such that
{%, ..., %} (dlog(x) ... dlog(x,), o)
{3, ...,%_4,n} > (0,dlog(x,) ... dlog(x,_,)),

where = is a fixed prime element of K, x,, ..., x, are any local sections of 0%, and %;
are any liftings of x; (1 <¢<gq) to *C%. An analogous homomorphism is given by

Theorem (x.5). — There exists a unique homomorphism M — Qf[p" Q% s which
satisfies ' i if
O P o8 1= S
! ! f 1 f q

{.fl’ ---sfq—-l)c}’—)o

Jor any local sections fy, ..., [, of ©* O and for any ¢ € K*. Here we regard Qi [p" Qs
as a sheaf on Y, in the natural way.

In conclusion, one might say that the p-adic étale cohomology M{, the De Rham-
Witt complex W, Qy, and the De Rham complex Qxj, live in completely different
worlds, and there is no unified cohomology theory at present which combine them in
an intrinsic manner. We must therefore use some presentation of them by symbols in
the study of their relations. It becomes clear that the symbols play important roles
in the algebraic geometry of mixed characteristic, though we do not know from what
world the symbols come.

2. The differential symbol

Let K¥ be the Milnor K-theory of fields [15].
For a field F of characteristic p> o, we write
ky(F) = Ki(F) [pKy(F),
v = Ker(Q2 2255 Q1/d0g-Y),
dx dx
b =90k (F) > v d({x, .. 5)) = x—lA A—x—q.
1 q

The following result was proved independently by O. Gabber.
Theorem (2.x). — ¢ is an isomorphism.

We give here the proof of the injectivity of ¢. The proof of the surjectivity is
similar to the proof of Proposition (2.4) below and is given in [12], § 1.
We fix ¢ so that Theorem (2.1) holds for all ¢' < g. We use the method in [4].

Lemma (2.2). — If {2 is injective for F, it is injective for any purely transcendental extension

of F.

113
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114 SPENCER BLOCH AND KAZUYA KATO

This follows from the commutative diagram of exact sequences

0 —> k(F) —> k(F(t) =28 Lk, ,(F[f)jm) —> o

lby ¢ iby ¢ l{(‘m)m

o — Qfy — Qfy —— ];‘[ Qﬁ‘(z)/qu'[t],,,

where m ranges over all maximal ideals of F[{] and 9, denotes the tame
symbol for each m ([1], Ch. I, §§ 4 and 5). The homomorphism 7, is the compo-
sition of k,_,(F[t]/m) > Qfpym with the canonical injective homomorphism
Qftiymy = QLmy/Qry,» which is defined by

Xodey Ao ndxy_ R dB A .. AdE_ AT dr,
for any xj,...,%,_,€F, any prime element =, at m, and for any lifting % of
#(1<i<g—1).
Corollary (2.2.1). — {2 is injective for K if K is purely transcendental over a perfect field.

(2.3) For a semi-local Dedekind domain R with field of fractions K such that
char(K) = p> o, let '

k(R) = Ker(k(K) 22 — 1k, _,(R/m)),

where m ranges over all maximal ideals of R. Let I be the radical of R, let

ky(R) > R(R[T) = Lk, (R}m)

be the specialization map induced by the homomorphism in Lemma (2.3.2) below,
and let 2,(R, I) be its kernel. Assume R has a p-base so that the Cartier and the inverse
Cartier operators are defined, and let

vk = Ker(1 — G 1: Q% — Q%/d(Q%1)),
V%"I = KCI‘(V% hdd V%{/I).
By Lemma (2.3.2) below, we obtain a diagram (commutative with exact rows)

o — kR,I) — k(R) — k(R/I) —> o

q

(2.3.1) v v ¢

v

q aq q
O —> Vg1 VR VR

Lemma (2.3.2). — Let R be a discrete valuation ring with quotient field K and with
vesidue field F such that char(K) = p > o.
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p-ADIC ETALE COHOMOLOGY 115

(i) &,(R) is generated by symbols {xy, ..., %} (%1, ..., %, € R?).
(i) There is a unique homomorphism k(R) — & (F) such that
{ay, ..., a.}{ay, ..., a,}.
(iii) If R has a p-base, there is a unique homomorphism ¢ :k,(R) —v& such that

- {xg, ...,xq}Hif—lA Ad_xq.

Proof. — (i) follows from [1], I (4.5) ) and (ii) is the & of (loc. cit.) (4.4). The
homomorphism in (iii) is induced by ¢:k,(R) — vk by virtue of (i).

For a finitely generated field F over F, we can find a discrete valuation ring R
which is a local ring of a finitely generated algebra over F,, such that R/m~ F and
such that the field of fractions K of R is purely transcendental over F,. Since k,(R) —v%
is injective by Corollary (2.2.1), the diagram (2.3.1) shows. that to prove (2.1) it
suffices to prove

Proposition (2.4). — Let k be a perfect field of characteristic p> o, let R be a semi-
local Dedekind domain which is obtained as a localization of a finitely generated k-algebra.  Then,

$: k(R I) =g,

is surjective.

Proof of (2.4). — To begin with, k2, has a norm compatible with the trace on v?
and carrying k,(R’, VIR') to k,(R, I} for R’ the normalization of R in a finite exten-
sion K’ of K (cf. for example, [11], § (3.3), Lemma 13). The diagram

E(R,VIR) ¥ v
Norm . f*| |tr

E(R,I) 4> v,

and the formula tr.f* = multiplication by [K': K] reduce us to showing that for a
given A evh; there exists K’ with [K’':K] prime to p such that f*A elIm ¢.
We now follow closely the arguments of [12]. Choose a p-basis 4;, ..., 5, of K
such that &y, ..., 5,_, € R* and these elements mod I form a p-basis for R/I and such
that the valuation of 4, at each maximal ideal is prime to p. Strictly increasing func-
tions s:{1,...,¢}—>{1,...,n} are ordered lexicographically so s< ¢ if for some
ie{1,...,¢} we have s(7') =1¢(i') ¢ <¢ and s(z) <#(z). Write
_ By dbyg)

eee N/,
by b

8
s(q)
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116 SPENCER BLOCH AND KAZUYA KATO

An element Za, o, lies in v§ if and only if
S(a? — a,) o, € dQ} 1.

It lies in v} ; if and only if, in addition, @, eI for all s. The notation Qf , (resp.

Qk, <,) for s:{1,...,7r} >{1, ..., 2} will mean the sub-K-vector space of Qf spanned
by o, for t<s (resp. t<s).

Lemma (2.5). — Let acl and let s:{1,...,q} >{1, ...,n} be strictly increasing.
Assume
(a® — a) o, € Qk ., + dQ§!

Then replacing K by some finite prime to p extension K' whick is a succession of Galois
extensions and replacing R and 1 by R’ and VIR’ as above, there exist yy, ...,y, € K such

d d
that {3y, .93 bR D), a=22n . n2cy,, and ao,—aecQf;n Ok,
where QF ; = Ker(Q} — Q%))). N Yy

Note that this lemma suffices to prove (2.4) and (2.1). Infact, given Za, o, €v§ |
we can by the lemma subtract « € Im(k,(R,I) —v§ ;) and decrease the ‘size” of
the maximal s with g, + o.

Proof of (2.5). — Adjoining the (p — 1)-st root of some element in R we obtain
as in [12]
de
(2.6) an, = a g A — + 7
¢
where s': {1, ...,¢ —1}>{1,...,n}, @) =5+ 1), a €K, veQ ,,
c € K?(by, ..., byy), and
(@7 —d') o, € QL, + dQE2.
We have
de I db,

p 2 'Y.'Ti (vi€K), La=a v,y
Define
J= N o L=0Nm
MOI M>I
Y5(1) € DM mdby
and let R;, R, be localizations, so that JR; and LR, are the Jacobson radicals. Note
that 4’ e LR}, so, by induction on ¢, we may assume
(27) a oy =p+02 B= 4'{)’1) .. -:)'q——l}’ {.yls .. ”.yq—l} Ekq—l(R, L)
BeQk,, veQl,.
Write T = R; n KP(by, ..., byy—y). Let H =R JR; and P=T/J n'T.
dc .
The image of — in Qf  dies in Q}p and is fixed under the Cartier operator. The
diagram
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p-ADIC ETALE COHOMOLOGY 117

o

!

(1 +JRY/[(T" N (1 + JRy)")

d log

0 —_— R‘:]'/,].".l —_—> Qi?q/rr

oo

d log
o— H/P" — Q}{,P

shows that there exists § e 1 + JR; such that
de d3 .
Py + 7 in Q

with n e R;.Im(Qf - Q) € Qk

By (2.6) and (2.7) we get
a3
aw.=(3+v)/\(—8‘+7})+7

4 d ds
=, P, D (mod Qf ,).
N Yg-1 3

Note, quite generally, that if B, €%,(R;,JR;) and B, €k,(Ry, LR;) the product
B,.B, belongs to &, ,(R,I). This is a simple consequence of the fact that

iRy, mR,,) ky(K) S By 3(Rp, mR,).
In particular, {y,...,%,-1,3}€%,(R,I), q.e.d.

Corollary (2.8). — Let F be a field of characteristic p > o. Then the p-primary torsion
subgroup of KY(F) is infinitely divisible, and

KZ(F) [p" KG(F) 2> W, Qf 1
Here W, O\, is the group of global sections of W, Qf, on (S, F),,.

Progf. — For a discussion of W, Qf |, see [10]. In particular we have

Ki®)p — KIF)p* — KFE)p"™" —> o

| t

—_ q > q —_— q
Y QF, log Wn QF, log Wn -1 QF, log

117



118 SPENCER BLOCH AND KAZUYA KATO

where the bottom sequence is exact by op. cit. (5.7.5). The left hand vertical arrow
is an isomorphism by (2.1) and the right hand arrow is an isomorphism by induction.
This establishes the isomorphism. The first assertion follows from the exact sequence

of Tor(K¥, -) applied to o - Z/p - Z[p" - Z[p"~* > o.

3. A basic cohomological lemma

Let K be a field, p a prime number prime to char(K). The cohomological symbol
defined by Tate gives a map [19]
KX (K)[p" KH(K) — Hy(Sp K, Z[p" Z(r)),
which one conjectures to be an isomorphism quite generally. It is useful to formulate

a relative conjecture. Let (Q/Z)' denote the prime to char(K) torsion in Q/Z, let
x € H(Sp K, (Q/(Z)’) and let K’ be the cyclic extension of K corresponding to y.

Conjecture (3.1). — The sequence
KY,(K) — KX (K) 25> H(Sp K, (Q/Z)' (r — 1))

— H'(Sp K', (Q/Z)’ (r — 1))
is exact. Here N is the norm map in Milnor-K-theory [11], § (1.7), and “y U is
the map y — y VhA(y) with

k: K* (K) >H~Y(SpK,Z,(r — 1)), the cohomological symbol.
See [14] for definitive results on these conjectures in the K, case.

The following lemma is taken from [12]. It is the essential tool we will use in

studying these questions.

Lemma (3.2). — Let notation be as above, but take [K':K] = p. Regard y as an
element of H'(Sp K, ZpZ), and let G = Gal(K'/K) =~ Z[pZ. Then

(i) The sequence

(3.2.1) H?~Y(Sp K, Z/pZ) X H(Sp K, Z[pZ) —> H*(Sp K’, Z/[p)
is exact if and only if the sequence :
(3-2.2) H~Y(Sp K, Z)pZ) 2 He-Y(Sp K/, ZpZ) s —> H'=(Sp K, ZpZ)
is exact.
(i1) The sequence
(3-2.3) H—*(Sp K', Z/pZ) —=> H*='(Sp K, Z[pZ) =>> H!(Sp K, Z/pZ)
ts exact if and only if the sequence
(3-2.4) H!(Sp K, Z/pZ) —> H*(Sp K', Z[pZ)¢ =, H(Sp K, Z/pZ)
is exact.
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p-ADIC ETALE COHOMOLOGY 119

(For a G-module M, M¢® = invariants of G acting on M and M, = co-invariants

= M/(Z (1 — g M))

Proof. — We will only prove (i). The proof of (ii) is similar, and it will not be
used in the sequel. Adjoining a p-th root { of 1 involves an extension of degree prime
to p, and hence induces injections on the homology of the complexes (3.2.1) and (3.2.2).
Thus we may assume ¢ e K.

Sublemma (3.3). — Assume ( e€K, and identify Z[pZ > yp, via 1. Thus
HYSp K, Z|pZ) ~ K*/K*? and { e K* gives a class [{] e H(Sp K, Z/pZ). Let
B: HYSpK, Z/pZ) -~ H*(Sp K, Z/pZ)
be the Bockstein associated to the exact sequence

(3-3.1) 0 >ZpZ - Z[p*Z — Z[pZ — o.
Then B(x) = x v [E)-

Proof. — An element ¢ € K* maps to the class a(-) : Gal(K*?/K) — Z/pZ where
ta(O) — (tllp) o /tllp.
Let o =%, 0" =t The cocycle w(o, t) associated to B(¢) is given by
gee7) = 6°°6/6° 67,

Note that
09 = 40, A(s) = a(s) (modp).

From this one gets easily
g™ = (p7[p)) = (p7/p) %

The cohomology class represented by the right side is ¢ U [{], q.e.d.

Sublemma (3.4), — Let S be a profinite group, p a prime number, y, a non-zero element
of H'(S, Z|pZ), and T = Ker(y:S —Z[pZ). Let B:H*(S, Z|pZ) - H*+(S, Z|pZ) be
the Bockstein. For X 5>Y 527 a complex, call Ker(g)/Im(f) the homology.

(1) Let q = 2. Then, the following two complexes have isomorphic homology groups.

(3-4.1) HI~1(S, ZJp) ® H'=*(S, Zjp) X2 Hy(s, Z)p) = HY(T, Zjp).
(3.4.2) HI~4(S, Z[p) —> HIY(T, Zjp)gr —> HI~1(S, Z[p).

(ii) For q = 1, the following two complexes have isomorphic homology groups.
(3-4-3) HI~\(T, Zfp) <> Hi-1(S, Zjp) 2220 He(s, Zjp) @ HO+1(S, Zjp)
(3-4-4) HY(S, Z[p) —> HY(T, Z[p)*" —> H(S, Zp).
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Remark. — These sequences are exact if p = 2, but need not be exact in the case
p *+ 2. For example, let p be an odd prime number, and let S be the semi-direct
product Z,[{] x.Z,, where {, denotes a primitive p-th root of 1 and t is the
homomorphism

Z, > Awt(Z,[L]); ab (xbCa).

Let x:S —~Z, be the homomorphism induced by the second projection S —Z,.
Then, the sequence (3.4.2) is not exact in the case ¢ = 2. Thus, though S is torsion
free, S can not be isomorphic to Gal(k,/k) for any field %.

Proof of (3.4). — Since the proofs of (i) and (ii) are rather similar, we present
here only the proof of (i). Let X be the S-module of all functions S/T — Z/p, s an
element of S such that y(s) = 1, and Y the imageof s —1: X - X. Let g: X —>Y
(resp. h: Y - X, resp. ¢:Z/p —>7Y) be the map induced by s — 1 (resp. the inclusion
map, resp. the embedding as constant functions). Since there is a canonical isomor-
phism HY(S, X) ~ H(T, Z[p) for any ¢, the exact sequences of S-modules

0o—ZpEEX Y 50, o0—Y X Zp_o

(j is defined by j(f) = 2 f(x) for all feX) induce a commutative diagram

; T zeST
H~%(S, Z/p)

Blx)v
?

H YT, Zjp) —= H'"Y(S,Y) —= HY(S, Z/p) == HY(T, Z/pZ)

NN

H'"YT, Z[p) «<— H'7'(S, Z/p)

cor

H'~Y(S, Z/p)

with two long exact sequences. Here 0 denote the connecting homomorphisms. (Note
that the restriction maps and the corestriction maps are induced by 4.z and j, respec-
tively. The commutativity of the diagram follows from (3.5) below.) The assertion (i)
follows from this diagram. This proves (3.2) and (3.4).

Lemma (3.5). — (1) The image of 1eH°(S,Z[p) under the composite map

H(S, Z/p) 2 H(S,Y) 5 H2(S, Z/p) coincides with B(y).
(i1) The image of 1€ H(S, Z[p) under the composite map

HO(S, Zjp) > HY(S, Y) > HX(S, Z/p)
coincides with .
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Proof. — (ii) is easy and so we give here the proof of (i). By functoriality, we
may assume T ={1}. Let feX be the function defined by f(1) =1 and f(6) =0

for o+ 1. Then, j(f)=1. So, (1) e HY(S,Y) is represented by the cocycle
S—>Y, e f,, where
1 if 61 and Tt =0¢""!
fox) =X—1 if 61 and 1=1
o otherwise.
For ¢ €8S, define f;’e X by

(1 ifm+4+n>porifm>1and n=o0
o otherwise

Jin(s") =
0<m<p, o<n<p). Then, g(f)) =fs. So, @9(1) e H¥S, Z[p) is represented
by the cocycle G X G - Z[pC X,

1 fm+n>p

(S,S)Hf;mos—smd-n‘i—j;n: _ lfm+n<p

(0<m<p, o<n<p). But this cocycle also represents B(y) as is easily seen.

4. Filtration on Symbols

In this section, A denotes a ring additively generated by A* (e.g. A local), and =
denotes a non-zero divisor of A contained in the Jacobson radical of A.
Let K¥ (4> 0) be the group

(A [%]'@)...@A[%]')/J

q times

where J denotes the subgroup of the tensor product generated by elements of the form
% ®...®x such that x4+ %=1 or o for some 0<i<j<g. An element
®...®x,mod]J of K¥ will be denoted by {#,...,#}. One has of course
{x,1 —x}=0o0 (x, 1—xeA [-rlc] ), {#, —x}=o0 and also {x,9}=—{»+} In
this section, we give some elementary lemmas concerning the structure of K, which
will be useful in later sections. The arguments are essentially the same as in [3], Ch. II,

§ 3, where Quillen’s K-functor is studied for A = R[[T]] and = =T.
For m > 1, let U™ K} be the subgroup of K generated by symbols of the form

{1 4+ 2™ 3y, o3 -1}

such that x e A and y,, ...,_yq_leA[;t] .
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Lemma (g4.x). — {U'KY, U KM}C U+iKY, .
For a,b € A*, we have

(4.1.1) {1 + ar’, 1 + bn'} = {1 + an'(x + b7%), 1 + bn'} mod U**i
= —{1 + ar'(1 + bnf), — ar'}
= — {1 +ﬂ_i i
- T +a’ A

The lemma follows easily.

For a ring R, Q} will denote the module of (absolute) Kahler differentials of R.
We write Qf = A} Qf. Define the homomorphism

3,: R®(RY)®" - Qr,

d d
by 8,(x®yl®...®_y,)=xﬁ/\.../\l'.
N Jr

Lemma (4.2). — Assume R is additively generated by R* (e.g. R local). Then 3, is
surjective, and Ker 8, is generated by elements of the following types:

(4.2.1) @y ®...08y, withy, =y for some 1 <i<j<r.
m 13
(4.2.2) _le,@x,-@_yl@ . ®y _ — ;lx;@x; ®9®...0y,_,

¢
x;, x; e R, i§1 X% = E‘al X

Proof. — Straightforward and left to the reader.
Let R = A/rA, and for any m > 1, define

(4-3) om: Q1O QL2 — g™ Kf: Ung‘/U""“ K;‘
d d
by Pm(x-ZlA...A.yq——l’o):{l —{—%r’”,j’i,...,_%_l}
N Jg—1
d d
Pm (O’xﬂl\ e qu__z) ={I +§fn_m,5,i’ -..35;—2,75}:
N Jy—-2

X eA, 5eA lifting xeR, y,eR"
The fact that p,, is well defined is an easy consequence of (4.1) and (4.2).
From now on, let p be a prime number and assume that R = A/rA is essentially
smooth over a field of characteristic p. Note that

(4-4) (1 +7"x)? = 1 + =« 2 mod LA
if p e pmp—1+1 A
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Lemma (4.5). — Let m =myp°, s> o0, ptm, and assume that p* e n™P~V+1A,
Then

(i) em(BI"'@BI™?) = (0)

(if) Define 6: Qf* — (Qf'/Bi™") @ (Q4/B{ %)

by B(w) = (C~*(dw), (— 1)7m; C~* ().

Then g, 0 0(Q%™%) = (o).
(See (1.3) for the notation B} and C~1)

Proof. — Let 0 <t<s. Part (i) follows from
{1 4+ 2 77 2} = p{1 + xn™P™" x}mod Um+,
P+ ammr ™k} = — {1 4 anm? (— )7 )
= —{1 47" —1}—p'm{1 + ¥ 7" n} e Unt,

(Use (4.4) with mp in place of m.)
Part (ii) amounts to the assertion

s _ s
{1427 " %91, ey = (— 1) m {1 + X7 7" 9y, 9, W),

ie. {1 + 27 a2 xx™}e UmtL,
This is again straightforward.

Lemma (4.6). — Let m, my and s be as in (4.5) and let o <n<s. Then
o(ZE1®Z1~?) — (o) in grm(KY/p" K¥) — (Um KX + g7 KY)[(Um+1 KX 4 7 KY).

Proof. — Let m’ = mp~". Note that
{1 +xn™, p} = {1 4+ 27 =™ p} mod U™+,

d
Since Z,, is generated by B, together with differentials x*" On, ., the lemma follows.
N
Let m, m; and s be as in (4.5) and let » > o. Define the group "G{ to be
(4-7) (QFYZI~ N @ (721" if n <y,

Coker(Qg~? '(4‘0;)’ (QL~YB,) ® (QL~B,)) if n>s.
We have established surjections "Gf — gr™(K¥/p" KT).

Remark (4.8). — These surjective homomorphisms are in fact bijective. Indeed,
by localization, the question of injectivity is reduced to the case where R is a field. If

char (A [1]) = 0, injectivity will be proved in § 5 and § 6 by using the cohomological
T

symbol. If char (A H) — p, injectivity follows from [3], Ch. I, § 4 (cf. also [11], § 2).
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Note that in the mixed characteristic case, the condition on m in (4.5) is actually
restrictive. The structure of gr™(K¥) for large m such that p? ¢ n™P~DA (this is

equivalent to m > ¢’ =

1 with the notation of § 5, § 6) is not yet known.

5. Galois cohomology

In this section, K denotes a henselian discrete valuation field with residue field F
such that char(K) = o and char(F) =p> o. In the next section, we shall apply
the results of this section to the quotient field of the strict henselian discrete valuation
ring Oy ; where v is the generic point of Y (not to the base field K of § o).

Let

k(K) = K{(K)[pKG(K),
K(K) = H(Sp K, Z[pZ(q)).

The aim of this section is to determine the structures of these groups and to prove that
the cohomological symbol gives an isomorphism

K¥(K)/p" K¥(K) ~ HY(Sp K, Z/p" Z(q))

for all ¢ and =.

We define the filtration U™ K¥(K) (m > 1) asin §4. Here we take the valuation
ring 0g of K as A and a prime element of K as =. Note that the homomorphism
Pm: Q1@ QL% > gr" KY(K) depends upon a choice of a prime element = of K,
which, we will assume, has been fixed.

Let U°K¥(K)=KY. Let U"k(K)Ck(K)(m>o0) be the image of
U"K¥(K), and let U™AY(K)CA(K) be its image under the cohomological symbol
map £,(K) — #(K).

Let ordg be the normalized additive discrete valuation of K, let

UM ={xeK, ordg(x — 1) > m} for m> 1,

4

let ¢ = ordg(p) the absolute ramification index of K, and let ¢ = e

Lemma (5.1). — (i) U™k (K) =0 for m>¢.
(i1) Assume that ¢’ is an integer and let a be the residue class of pr—°. Then, the surjective
homomorphism (4.3)

oot QIO QI - U £ (K)

annihilates (1 + aC) Z17'® (1 + aC) Z972%, where C is the Cartier operator. If F is
separably closed, then U* k (K) = o.

Proof. — (i) follows from
UPMc(K)? ifm>e.
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The proof of (ii) is similar to the proof of (4.6) using
(1 +an?)P = 1 + (" + xpmn~ %) =¥ mod =* *1,
Lemma (5.2). — Let 1 <m< ¢ and let the group "G be as in (4.7) with R = F.
Then,
"Gi =~ gr"k,(K) =~ gr" #(K).

Progf. — By a limit argument we may assume that F is finitely generated over F,
of transcendence degree d. We may also suppose that K contains the p-th roots of 1
(a straightforward reduction using norms, which we leave for the reader). Then the
group U*¢ A#*%(K) is non-zero by [11], § 1, Th. 2 (cf. also [12], page 227). Note

Q4! o<m<eé,pim
" (B{@®Bi~! o< m<¢, p|m.

1

(5.2.1) "Gy

We now consider a diagram of pairings

myg e —myd+2—gq Pm X Pe'-m m pq e —m pd+2
G{ X G —> gr"hI X gr* ™k

(2) cup product

v
Y T I N ¢ pd+2
Qi/Bf — “Git2 — UK

where arrow (1) is the natural surjection which exists because

B¢ = (1 4+ aC) B¢ C (1 + aC) Q8,

and arrow (2) corresponds under the isomorphism (5.2.1) to wedge product of forms
if ptm (resp. to
(doy, dorg) X (dyy, dyy) b 0y dyp + g dyy

if p|m). Itis a simple exercise with symbols (calculated as in (4.1)) to show that
this diagram commutes upto an (F,)*-multiple. Also Qf/B{is a 1-dimensional F, vector
space and (2) is a perfect pairing of F, vector spaces. Injectivity of p, follows. Since
the arrows from left to right in the statement of (5.2) are already known to be surjective,
we are done.

Lemma (5.3). — v§®v§~ ' gr'k (K) = gr® 44(K).

Proof. — Results in [1] give an isomorphism
g10 £, (K) = k,(F) ©F, _,(F)
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so, from (2. 1), we get a map p, defined as the composition
v @i grlk (K) - gr' AY(K).
Let K'DK be the quotient field of a henselian discrete valuation ring 0O O 0 with
the property that K’ is unramified over K, with residue field
F' = Og[n0g = F(2),
where z is transcendental over F. Let % e 0% lift z. Multiplication by 1 4 Zr gives

WOt g (K) T gt (K & Qg

The composition is easily seen to be

% N7 4,
f1A qu f1 qu
#1 dfy_1 f1 41
f1 fquid f1 qu_l.

Injectivity of p, is now immediate.

Our next objective is to prove that %,(K) ~ #/(K). Let Si/(K) = U°r%(K) be
the image of £ (K) in A/(K). We first prove Si'(K) = #(K) in the case F is separably
closed and K contains a primitive p-th root {, of 1. To apply the basic lemma of § 3,
we devote ourselves in (5.4)-(5.11) to proving

Proposition (5.4). — Assume that F is separably closed and ¥,e K. Let b eOg be
such that the image B of b in F is not a p-th power. Let a = bYP be a p-th root of b, L = K(a),
= pY, E =F(a) with G = Gal(L/K). Then, the sequences

(5.4.1) SK(K) > Shi(L)® =% ShY(K)
(5.-4.2) SK(K) == Sh?(L)q —=> Sh1(K)

are exact for all q.

Note that we already know the precise structure of SA!(K) and Si!(L), for
gr' il =o0 by (5.1) (ii).

We begin with some lemmas concerning differentials. Let i:Qf — Qf be the
canonical homomorphism, and let Tr:Qf — Q% be the trace map characterized by

(i) Tr(E.i(Q)) = Tr(dE A i(Q4~Y)) = o

S o
A proof of the existence of Tr is that the norm on SéKq +1 ([13]) induces this homo-
morphism Tr on its subquotient Q% (The assumptions p+ 2 and p> ¢ in [3], II,

§ 4, Th. (4.1) are unnecessary by [11], § 2, Prop. 2.) In (5.5)-(5.9), we need not
assume F separably closed.

(ii) For w e Qi ' and feE*, Tr (z(w) A g) = oA ik
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Lemma (5.5). — (i) For o € Qf, the three conditionsa) w A dB = 0, b) » € Q4™ 1A dB,
c) t(w) = o, are equivalent.
(ii) Let 19 =14(QY) C QL. Then the map
(E®@:19® (E® ") - Q4
defined by
(*®w,0) > x0

do
(0, x® ©) b x A —
o

is an isomorphism.
The proof is left to the reader.

Lemma (5.6). — The sequence
Tr i Tr
Vi —> v§ — v —> v}
is exact.

Proof. — By (2.1), the assertion is equivalent to the exactness of
k(E) =5 k,(F) —> k,(E) =5 (F).
We use the fact that the composite
K¥(E) X5 K¥(F) — K¥(E)

is multiplication by p. This fact is reduced to the case where any finite extension of F
is of degree a power of p. In this case, K¥(E) is generated by elements {#, y;, ..., 5, _1}
such that x eE*, y;,...,9,.1€F* ([1], Ch. I (5.3)).

Now assume % e KJ(E) and N(x) = py, y eK¥(F). Then, px =io N(x) = pi(y).
Since the p-primary torsion part of KX(E) is divisible by (2.8), we have
% —i(y) epKJ(E). This shows the exactness of k(F) —k(E) —k,(F). The exact-
ness of %k (E) -k (F) —£,(E) is proved similarly.

Now, we analyze the sequences (5.4.1) and (5.4.2) using the filtration on SA?

Lemma (5.7). — (i) cor(U™A(L)) CU™A(K) for any m.
(i1) The following diagrams commute.

V@Vt ~ gr® ML) Q- 1eQL? —» gr"AY(L)
Tr oor Tr cor
v
Vot ~ g h(K) QOO —» gr K(K)

(m > 1). Here in the diagram on the right, the horizontal arrows are induced by p,, defined using
the same prime element .

127



128 SPENCER BLOCH AND KAZUYA KATO

Proof. — For m > 1, let T, be the image of
U™ p'(L) ® Sk2~}(K) — Sh(L)
2@y x Ures(y).
By using (5.5) (ii), we can prove easily that
(5.-7.1) For any m > 1, U™AY(L) is generated by T, and
res(Umh~4(K)) u{a},
where {a} denotes the class of a in A'(L).

By using ] )
Nyk(r —#xd') =1 — P8 for 0<i<p and x €K,
we have
(5-7-2) Nyx(UI) CUR? for 1 <m <o -
Npx(U™) c Ulp+9  for mZp .
—1

Note that (5.7.1) and (5.7.2) prove (i). The commutativity of the diagrams in (ii)
follows easily.
Now, for m > o, let S, be the homology group of the complex

gr™ B(K) =25 gr™ h{(L) —> gr™ h(K).
By (5.6) and (5.7), we have
Corollary (5.8). — Sy = (0).
Lemma (5.9). — For 1 <m<¢', we have an isomorphism
(BT~ Y1~ @ (EI¢~%11-%) ~ S,

characterized by

d d
x(ﬁ'A.../\ 'yq—l,o)‘_){l +%m,%)°"’.%—l}
N Jg—1

d d
(O,xﬁl\.../\&:‘z)l—){l +%m9%_a°-'9%—2)1:}
N .yq—Z

Jor x€E and y,, ..., y,_4 €F', where tildas indicate liftings.

Proof. — Assume p|m. By (5.5) (ii), we have a commutative diagram for any ¢
p—1

EIY(I'nZ{ ) ® I o' It I Y(I~! N Z33)) = QYZE

P N ZiE) o QfZfp
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where the upper horizontal isomorphism is

(00, 0"y ") o + (0 + ") A d—a
«

and the lower horizontal injection is #(w) > @ A d—B Now, (5.9) follows from (5.%)
and (5.2) in this case. The prooffor the case p ¢ m is similar and is left to the reader.
To proceed further, we need
Lemma (5.10). — Assume F separably closed. Let ¢ be a generator of Gal(L/K) and

let ¢ = Then,

p—1
(i) U C (LY)°—1.K"
(i) UL C (LY)?.K*

Proof. — Note that p:Uf" - UY) is surjective (cf. [22], § (1.7)). Let
xeUf). Then by (5.7.2), we have N(x) e Uf). Hence there is an element y
of K* such that N(x) = *. Since N(xy~') = 1, we have x e (L*)°~!.K* by Hilbert’s
theorem go. Next, let x eUl?. Then, x°~!'eU{) since o acts on Oyfn*" O,
trivially. Hence there is an element y of U¥") such that x°~!=?. By (5.7.2),
N(y) is a p-th root of 1 contained in Uf’. Since ordg({, — 1) =¢”, we have

N(») = 1. By Hilbert’s theorem go, x°~!= (2°"!)? for some zeL’, and thus we
obtain xz7? e K"

(5.xx) Now we can prove (5.4). First we consider the sequence (5.4.1). Leto
and ¢’ be as in (5.10). We have

(6 — 1) (UmR(L))CU™**" (L) for m>o
and this induces ¢ —1:S, > S,,,,., m>o0. We claim
(5.1x.1) 6—1:8,—>S, .
is an isomorphism for o< m<e.
Indeed, for x € Og and letting §, = o(a)/a, we have
(1 4+ @ 2n™)° = (1 + & § xn™) /(1 + & xn™)
=1+ id’ xn™({, — 1) mod n"*¢ *1,
Our claim follows from this and from (5.9).
Now assume x € SA/(L)® and cor(x) = 0. We prove x eres(SA(K)). We are
reduced to the case x e UlA/(L) by (5.8), and then to the case x e U°AYL) by
(5.11.1). Then we have x € T, by (5.9) (T, is as in (5.7)). But T, Cres(SA/(K))

by (5.10) (ii).
Next we consider the sequence (5.4.2). Assume x e SAhY(L) and cor(x) = o.
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We shall prove x eres(ShYK)) + (¢ — 1) SA/(L). We are reduced to the case
x e ULSAY(L) by (5.8). We prove

(5.11.2) If xeT,+URL) with 1<m<¢' and (m—1)p<i<mp,
; and if cor(x) = o, then xeT, + U'tta(L).
(5.1x.3) If xeT,, +U™A(L) with 1 <m<e¢” and if cor(x) = o, then

x eres(UA(K)) + T, ., + U™+ R (L).
Once we have these assertions, we are reduced to the case
- xeT, + U?R(L) =T,

and then we have x eres(SA/(K)) 4 (¢ — 1) SA(L) by (5.10) (i).

The assertion (5.11.2) follows from (5.7.2) and (5.9) easily. To prove (5.11.3),
let ® be a subset of F such that ® u{f} form a p-base of F. For each ¢ €®, we fix
a representative ¢ of ¢ in Ogx. We endow @ with a structure of totally order set. For
g> o0, let ® be the set of all strictly increasing functions {1,...,¢}—>®, and let
E®, be the free E-module with base ®,. We obtain a surjective homomorphism

E®,_,®EQ,_, 01" (1" > nZig?) @' 3/(I* 73 n Z{ 5
»> (T, + U™ K(L))/(T, 1 + U™ 1 RY(L))

r—1 p—1 — ———
((r§ox"°’ a’)weq,q_l, 0,0,0) %{1 + rgox"" a"n” (1), ..., 9(¢g — 1)},

p—1 p—1 — —
(o, (,Z:ox'*“’ “r)qaetbq-z’ 0, 0) - %‘{I + r§0xr,cpar o e(1), ..., o(g — 2), ‘rc},

N - de , da
(0,0, ®, ®') B B,y @A —, o' A—],

where x,,€F. The composite of this homomorphism with
(Tp 4 U™ (L) (T g + U1 A9(L)) —> g™ #(K) = Bf @ B{ 3’
is given by 6,_,®6,_,, where
0,: E®, &I~ /(I*"* n Zi3F") - B{}?
p—1
(( 2 %7, i(w) mod Z{FY)

- ((2 Pi xpcprﬁ'dq)(l) A Aé—(gl) :tdw) /\49.

o r=1" (1) ¢(q) 8

p—1
If (('onw ")y, t(w) mod ZI%') is contained in Ker(0,), since @ is a part of a p-base
®u{a} of E, we have x,, =0 for 0o<7r<p andforall ¢ e®, and we also have

i(w) modZ{3'=o. This proves (5.11.3).
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Theorem (5.12). — Let K be a henselian discrete valuation field with residue field F such
that char(K) = o and char(F) = p> o. Then, the cohomological symbol

Kax : KY(K)[p" K7(K) —H!(Sp K, Z/p" Z(g))
is bijective for any q and any n.

We are reduced to the case n =1 and {, e K by the following general lemma.

Lemma (5.13). — Let k be a field and p a prime number which is invertible in k. Let
E = k(%,) where T, is a primitive p-th root of 1. Fix ¢ > o.

(i) If the cohomological symbol hi g is surjective, hnx is surjective for any n.

(i) If ki is injective and iy is surjective, then hix, is injective for any n.

The proof is identical with the case ¢ = 2 treated in [19].

(5-14) We prove the surjectivity of Al in the case F is separably closed and
¢, € K. Let G(K) be the quotient A%(K)/Sh?(K). For the proof that CG(K) = o, it
is sufficient to show the injectivity of G(K) — G(L) for any extension L/K of the type
of (5.4). Indeed, as an inductive limit of successions of such extensions, one obtains
a henselian discrete valuation field K with algebraically closed residue field. The
cohomological dimension of K is one ([16], Ch. II, (3.3)), whence BE) =0 for
g¢>2. Hence C(K) =0 and this will imply C(K) = o if we prove the injectivity
of G(K) - C(L). Let G = Gal(L/K) and consider the diagram with exact rows

o — SKHK) — BK) — CK) — o

! o

(5.-14.1) o —> SK(L)¢ — A(L)* — C(L)¢
o
(note that corores = 0). By induction on ¢, we may assume A7~ *(K) = Sh7"(K)
and A?7"'(L) = SA*"*(L). Then, by (5.4), the sequence
B=YK) 2> i Y(L) —> k1K)
is exact. Hence, by (3.2), the sequence
(5.14.2) Sh—1(K) 28 pr(R) 5 po(L)
is exact. By the diagram (5.14.1), the injectivity of C(K) — C(L) follows from the
exactness of (5.14.2) and that of (5.4.1).

(5-15) Now we prove the bijectivity of Aly assuming ¢, e K. Note that we
have already
k,(K)[U® k,(K) > SA(K)/U* k(K).
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Let K, denote the maximal unramified extension of K, F, the separable closure of F,
and let Gy = Gal(F,F) = Gal(K,/K). One has Qp = Q;®;F,, whence also
B}, = By ®p F.  In particular by (5.2), gr"A/(K,,) ~ gr"A(K) ®u F? for 1 <m<¢/,
SO HO(Gg, Ut AY(K,)) ~ U 24(K)/U* h(K)

H'(Gg, UL A(K,)) =0 r>o.

The exact sequences (cf. (5.3))
o —> Ut K(K,,) — #(K,) —> v} ® v%:i —s0
0 —>vf —> Z{ =g Qf —o

give
HY(Gy, M(K,)) = SHI(K)/U* B(K) 2 k(K)[U* k(K)
H'(Gy, #(K,,)) = (Q4/(1 — C) Z{ ) ® (Q~'/(1 — C) Z{3")
H'(Gg, (K,)) =0 72> 2.

The spectral sequence with Z/pZ coefficients
H'(Gy, #(Ky)) = A" "(K)
yields exact sequences
(5.15.1) o~ (QY(1 —C) Z{7H) @ (4~*/(1 — C) Z{™?)
- K(K) - k,(K)/U* k,(K) - o.

As in (5.1), let @ be the residue class of pr~°. The congruence

(1 — %) '= —pmod n***

shows that multiplication by the residue class of (1 — ;)¢ gives a morphism
Qi/(1 — C) Z; - Q}/(1 + aC) Z;.

So by (5.1), the exact sequence (5.15.1) shows that U® % (K) ~ U® A(K) and also
k,(K)[U? k(K) ~ K(K)[U" i8(K).

6. The sheaf M?

Our objective in this section is to prove theorems (1.4) and (1.5) describing the
sheaf MZ on Y,,.

We first determine the structure of M{. Let U"M{CM{ (m > 1) be as
in (1.2) and let U°M{ = MJ. Without loss of generality, we may assume that Y is
connected. Let v be the generic point of Y, and let v:v —Y be the canonical map.
Note that the structure of =* M{ is known by the preceeding section, for the stalk Mj-
is isomorphic to the Galois cohomology group of the quotient field of the strictly henselian
discrete valuation ring 0, ;.
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Proposition (6.x). — Let the notation be as above. Then,

(1) M? — 1, v* M? is injective.

(i1) For any m > o, the inverse image of ~, v*(U™ MY) in MY coincides with U™ MY,
(iii) The graded sheaves gr™(Mj) are described as in (1.4.1).

In the first version of this paper, we proved this structure of M{ using an injectivity
theorem of O. Gabber. For y €Y, let O, be the strict henselization, and let K be
the quotient field of the henselization of (x , at the generic point of the special fiber
of Sp 0k ;. Gabber proved that

My = He(sp (6 |5 ). 2 200) ) ~ Hsp &, 2 200)

is injective, as a consequence of his general results [7] [8]. In the case n = 1, this
is nearly (6.1) (i). It is possible to prove (6.1) using this injectivity, but in this paper
we adopt another simpler method found later.

Proof of (6.1). — We first prove the injectivity of M{ — 1, v* M{. Let T be
its kernel. Since the problem is etale local, we may assume that X =P} and % is
separably closed. Furthermore, by induction on 7, we may assume n> 1 and that
the stalk of T at any non-closed point of Py is zero. We may assume also that §, € K,
by a trace argument. Let G = Aut(P}) be the projective general linear group,
Z[G] the group ring, and let I CZ[G] be the augmentation ideal. The ring Z[G]
acts on the cohomology groups H/(P}, Mj). Since T is a skyscraper sheaf,

(o) # T =IN.T(P}, MY) + (0), any N> 1.
On the other hand, by induction on ¢ we may assume that (6.1) holds for M{~*

for any ¢> 1. In particular, M!~¢ will have a filtration stable under G whose graded
pieces are direct sums of sheaves like

Qpr g by dQp.
These are absolute differentials and not relative to %, but Qfs has a filtration stable
under G whose graded pieces are isomorphic to Q;;‘z/k® Q¢—* and there are exact

sequences o
0——> Q1 —— Q1dQr—1 ds o
0 Q1 Q177 Qyaqe-t o,
Thus we will have (since I kills H*(Py, Qfn,))
INH'®Pp, M{™Y) = (0), t>1, N>o.

This implies
IN.E%?+ (0)

in the spectral sequence
Ep! = H'(Py, My) = H'*(Py, Z/pZ).
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But HY(Pg, Z/pZ) maps surjectively on E%? and

H(Py) = © HY(BY) © H~(Sp K)
so INH(PP) = (0) for N> 1.

This contradiction implies T = (o).
Let V™"MICMj{(m>o0) be the inverse image of =,t*U™M! and let
gri(Mf) = V" M/V**+1 M?. By the injectivity of M{ —1,7* M!, we have using

. ¢ .
(5.1) (i) V*M{=o0 for m> ¢ = 7 4 - with ¢ = ¢¢.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>