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RIGIDITY OF QUASI-ISOMETRIES FOR SYMMETRIC SPACES
AND EUCLIDEAN BUILDINGS

by BrRuce KLEINER* and BERNHARD LEEB**

1. INTRODUCTION

1.1. Background and statement of results

An (L, C) quasi-isometry is a map @ : X — X’ between metric spaces such that
for all x,, x, € X we have

(1) L1 d(xy, %) — C< d(D(xy), P(xp)) < Ld(xy, %) + C
and
(2) d(x', Im(®)) < C

for all x’ € X'. Quasi-isometries occur naturally in the study of the geometry of discrete
groups since the length spaces on which a given finitely generated group acts cocompactly
and properly discontinuously by isometries are quasi-isometric to one another [Gro].
Quasi-isometries also play a crucial role in Mostow’s proof of his rigidity theorem: the
theorem is proved by showing that equivariant quasi-isometries are within bounded
distance of isometries.

This paper is concerned with the structure of quasi-isometries between products
of symmetric spaces and Euclidean buildings. We recall that Euclidean spaces, hyperbolic
spaces, and complex hyperbolic spaces each admit an abundance of self-quasi-isometries
[Pan]. For example we get quasi-isometries E? — E? by taking shears in rectangular
(%15 %9) > (%1, x5 + f(x4)) or polar (r,0) — (r, 0 + f(r)/r) coordinates, where f: R — R
and g: [0, ©) - R are Lipschitz. Any diffeomorphism () ® : dH" — dH" of the ideal
boundary can be extended continuously to a quasi-isometry @ : H" — H". Likewise
any contact diffeomorphism (%) @ : 0CH" — 0CH" can be extended continuously to

* The first author was supported by NSF and MSRI Postdoctoral Fellowships and the Sonderforschungs-
bereich SFB 256 at Bonn.

** The second author was supported by an MSRI Postdoctoral Fellowship, the SFB 256 and IHES.
() Any quasi-conformal homeomorphism arises as the boundary homeomorphism of a quasi-isometry by [Tuk].

(%) The boundary of CH" can be endowed with an Isom(CH") invariant contact structure by projecting
the contact structure from a unit tangent sphere S%,"—'l CH" to 8CH" using the exponential map.
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a quasi-isometry @ : CH" -~ CH" [Pan]. Quasi-isometries of the remaining rank 1
symmetric spaces of noncompact type, on the other hand, are very special. They are
essentially isometries:

Theorem1.1.1 ([Pan]). — Let X be either a quaternionic hyperbolic space HH", n> 1, or the
Cayley hyperbolic plane CaH?. Then any quasi-isometry of X lies within bounded distance of an isometry.

Note that Pansu’s theorem is a strengthening of Mostow’s rigidity theorem for
these rank one symmetric spaces X, as it applies to all quasi-isometries of X, whereas
Mostow’s argument only treats those quasi-isometries which are equivariant with respect
to lattice actions. The main results of this paper are the following higher rank analogs
of Pansu’s theorem.

Theorem 1.1.2 (Splitting). — For 1 < i<k, 1< j< k' let each X;, X be either a
nonflat irreducible symmetric space of noncompact type or an irreducible thick Euclidean Tits
butlding with cocompact affine Weyl group (see section 4.1 for the precise definition). Let
X=E"xII*)_, X;, X' =E" x [1¥_, X be metric products (). Then for every L, C
there are constants L, C and D such that the following holds. If ® : X — X' is an (L, C) quasi-
isometry, then n =n', k = k', and after reindexing the factors of X' there are (L, C) quasi-
isometries ®;:X; - X! so that d(p'o®,IID,0p) <D, where p:X —-TI5_, X, and
p X > TIk_, X! are the projections.

A more general theorem about quasi-isometries of products is proved in [KKL].

Theorem 1.1.3 (Rigidity). — Let X and X’ be as in Theorem 1.1.2, but assume in
addition that X is either a nonflat irreducible symmetric space of noncompact type of rank at least 2,
or a thick irreducible Euclidean building of rank at least 2 with cocompact affine Weyl group and
Moufang Tits boundary. Then any (L, Q) quasi-isometry @ : X — X' lies at distance < D
Jrom a homothety ®y : X — X', where D depends only on (L, C).

Theorem 1.1.3 settles a conjecture made by Margulis in the late 1970’s, see [Gro,
p- 179] and [GrPa, p. 73]. It is shown in [Le] that the Moufang condition on the Tits
boundary of X can be dropped.

As an immediate consequence of Theorems 1.1.2, 1.1.3, and [Mos] we have:

Corollary 1.1.4 (Quasi-isometric classification of symmetric spaces). — Let X, X' be
symmetric spaces of noncompact type. If X and X' are quasi-isometric, then they become isometric
after the metrics on their de Rham factors are suitably remormalized.

Mostow’s work [Mos] implies that two quasi-isometric rank 1 symmetric spaces of
noncompact type are actually isometric (up to a scale factor); and it was known by [AS]
that two quasi-isometric symmetric spaces of noncompact type have the same rank.

We will discuss other applications of Theorems 1 1.2 and 1.1.3 elsewhere,
see [KlLe2] and [KlLe3].

() The distance function on the product space is given by the Pythagorean formula.
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1.2. Commentary on the proof

Our approach to Theorems 1.1.2 and 1.1.3 is based on the fact that if one scales
the metrics on X and X’ by a factor A, then (L, CG) quasi-isometries become (L, AC)
quasi-isometries. Starting with a sequence A, -0 we apply the ultralimit construction
of [DW, Gro] to take a limit of the sequence @ : A, X — A; X, getting an (L, 0) quasi-
isometry (i.e. a biLipschitz homeomorphism) @, : X, — X! between the limit spaces.
The first step is to determine the geometric structure of these limit spaces:

Theorem 1.2.1. — The spaces X, and X are thick (generalized) FEuclidean Tits
butldings (cf. section 4.1).

The second step is to study the topology of the Euclidean buildings X , X[ .
We establish rigidity results for homeomorphisms of Euclidean buildings which are
topological analogs of Theorems 1.1.2 and 1.1.3:

Theorem 1.2.2. — Let Y,, Y, be thick irreducible Euclidean buildings with topo-
logically transitive affine Weyl group (cf. section 4.1.1), and let Y =E" x [T*_,Y,,
Y =E" xII¥_,Y;. If ¥:Y —> Y’ is a homeomorphism, then n =n', k = k', and after
reindexing factors there are homeomorphisms W, :Y; - Y, so that p' o ¥ =1V, 0p where
p:Y = TI5_, Y, and p': Y’ —TIE_, Y| are the projecticns.

Theorem 1.2 8. — Let Y be an irreducible thick Euclidean building with topologically

transitive affine Weyl group and rank > 2. Then any homeomorphism from Y to a Euclidean
building is a homothety.

For comparison we remark that if Y and Y’ are thick irreducible Euclidean
buildings with crystallographic (i.e. discrete cocompact) affine Weyl group, then one
can use local homology groups to see that any homeomorphism carries simplices to
simplices. In particular, the homeomorphism induces an incidence preserving bijection
of the simplices of Y with the simplices of Y’, which easily implies that the homeo-
morphism coincides with a homothety on the O-skeleton. In contrast to this, homeo-
morphisms of rank 1 Euclidean buildings with nondiscrete affine Weyl group (i.e. R-trees)
can be quite arbitrary: there are examples of R-trees T for which every homeomorphism
A — A of an apartment ACT can be extended to a homeomorphism of T. However,
we always have:

Proposition 1.2.4. — If X, X' are Euclidean buildings, then any homeomorphism
W : X — X' carries apartments to apartments.

In the third step, we deduce Theorems 1 1 2 and 1.1.3 from their topological
analogs. By using a scaling argument and Proposition 1 2 4 we show that if X and X’
are as in Theorem 1 1 2, and ®: X — X' is an (L, G) quasi-isometry, then the image
of a maximal flat in X under @ lies within uniform Hausdorff distance of a maximal
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flat in X’; the Hausdorff distance can be bounded uniformly by (L, C). In the case
of Theorem 1.1.2 we use this to deduce that the quasi-isometry respects the product
structure, and in the case of Theorem 1.1.3 we use it to show that ® induces a well-
defined homeomorphism o® : 90X — 0X’ of the geometric boundaries which is an
isometry of Tits metrics. We conclude using Tits’ work [Til] (as in [Mos]) that o® is
also induced by an isometry @, : X — X’, and d(®, ®,) is bounded uniformly by (L, C).
The reader may wonder about the relation between Theorems 1.1.2 and 1.1.3
and Mostow’s argument in the higher rank case. An important step in Mostow’s proof
shows that if " acts discretely and cocompactly on symmetric spaces X and X', then
any I'-equivariant quasi-isometry @ : X — X’ carries maximal flats in X to within
uniform distance of maximal flats in X’. The proof in [Mos] exploits the dense collection
of maximal flats with cocompact I'-stabilizer (}). One can then ask if there is a * direct
argument showing that maximal flats in X are carried to within uniform distance of
maximal flats in X’ by any quasi-isometry (2); for instance, by analogy with the rank 1
case one may ask whether any r-quasi-flat (3) in a symmetric space of rank r must lie
within bounded distance of a maximal flat. The answer is no. If X is a rank 2 symmetric
space, then the geodesic cone U, 4 ps over any embedded circle S in the Tits boundary
Orye X 1s @ 2-quasi-flat. Similar constructions produce nontrivial r-quasi-flats in sym-
metric spaces of rank > 2. But in fact this is the only way to produce quasiflats:

Theorem 1.2.5 (Structure of quasi-flats). — Let X be as in Theorem 1.1.2, and let

= rank(X). Given L, G there are D, D’ € N such that every (L, C) r-quasi-flat Q C X lies
within the D-tubular neighborhood Npy(Uy c 5 F) of a union of at most D maximal flats. Moreover,
the limit set of Q is the union of at most D' closed Weyl chambers in the Tits boundary Opy, X.

It follows easily that if L is sufficiently close to 1 (in terms of the geometry of the
spherical Coxeter complex (S, W) associated to X) then any (L, G) r-quasi-flat in X
is uniformly close to a maximal flat. In the special case that X is a symmetric space,
Theorem 1.2.5 was proved independently by Eskin and Farb, approximately one year
after we had obtained the main results of this paper for symmetric spaces.

We would like to mention that related rigidity results for quasi-isometries have
been proved in [Sch].

1.8. Organization of the paper

Section 2 contains background material which will be familiar to many readers;
we recommend starting with section 3, and using section 2 as a reference when needed.
We provide the straight-forward generalization of some well-known facts about Hada-

(1) If Zr ¢ T acts cocompactly on a maximal flat F ¢ X, then Zr will stabilize ®(F) and a flat F’ in X’.
One can then get a uniform estimate on the Hausdorff distance between ®(F) and F’.

(3) Obviously this statement is true by Theorems 1.1.2 and 1.1.3,

(®) An r-quasi-flat is a quasi-isometric embedding ¢ : E* — X; a quasi-isometric embedding is a map
satisfying condition (1), but not necessarily (2).
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mard spaces to the non locally compact case. This is needed when we study the limit
spaces X, which are non locally compact Hadamard spaces.

Sections 3 and 4 give a self-contained exposition of the building theory used
elsewhere in the paper. This exposition has several aims. First, we hope that it will make
building theory more accessible to geometers since it is presented using the language
of metric geometry, and we do not require any knowledge of algebraic groups. Second,
it introduces a new definition of buildings (spherical and Euclidean) which is based on
metric geometry rather than a combinatorial structure such as a polysimplicial complex.
Tits’ original definition of a building was motivated by applications to algebraic groups,
whereas the objectives of this paper are primarily geometric. Here buildings (spherical
and Euclidean) arise as geometric limits of symmetric spaces, and we found that the
geometric definition in sections 3 and 4 could be verified more directly than the stan-
dard one; moreover, the Euclidean buildings that arise as limits are ¢ nondiscrete ,
and do not admit a natural polysimplicial structure. Finally, sections 3 and 4 con-
tain a number of new results, and reformulations of standard results tailored to our
needs.

Section 5 shows that the asymptotic cone of a symmetric space or Euclidean
building is a Euclidean building.

Section 6 discusses the topology of Euclidean buildings, proving Theorems 1.2.2,
1.2.3, 1.2.4.

Section 7 proves that if X, X’ and @ are as in Theorem 1.1.2, then the image
of a maximal flat under @ is uniformly Hausdorff close to a flat (actually the hypotheses
on X and X’ can be weakened somewhat, see Corollary 7.1.5). General quasiflats are
also studied in section 7; we prove there Theorem 1.2.5.

Section 8 contains the proofs of Theorems 1.1.2 and 1.1.3, building on section 7.
There is considerable overlap in the final step of the argument with [Mos] in the
symmetric space case.

1.4. Suggestions to the reader

Readers who are already familiar with building theory will probably find it useful
to read sections 3.1, 3.2 and 4.1, to normalize definitions and terminology.

The special case of Theorem 1.1.2 when X = X’ = H? X H? already contains
most of the conceptual difficulties of the general case, but one can understand the
argument in this case with a minimum of background. To readers who are unfamiliar
with asymptotic cones, and readers who would like to quickly understand the proof in
a special case, we recommend an abbreviated itinerary, see appendix 9. In general,
when the burden of axioms and geometric minutae seems overwhelming, the reader
may read with the Rank 1 X Rank 1 case in mind without losing much of the mathe-
matical content.
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2. PRELIMINARIES

2.1. Spaces with curvature bounded above
General references for this section are [ABN, Ba, BGS].
2.1.1. Definition

If x e R, let M2 be the two-dimensional model space with constant curvature «;
let D(x) = Diam(MZ). A complete metric space (X, | . |) is a GAT(x)-space if
1. Every pair x,, ¥, € X with | #; x, | < D(k) is joined by a geodesic segment.
2. Triangle or Distance Comparison.

Every geodesic triangle in X with perimeter < 2D(x) is at least as thin as the
corresponding triangle in MZ. More precisely: for each geodesic triangle A in X with
sides o;,, 6,, 6, with Perimeter(A) = |o,| 4+ | 6,| + | 63| <2D(x) we construct a

16
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comparison triangle A in M2 with sides G; satisfying |5;| = | 5;|. Each point x on A
corresponds to a unique point ¥ on A which divides the corresponding side in the same
ratio. We require that for all x,, x, € A we have | x;, x5 | < | %, %3 |-

Remark 2.1.1. — Note that we do not require X to be locally compact. Also, X need not
be path connected when x> 0. This is slightly more general than some other definitions in the
literature.

Example 2.1.2. — A complete 1-connected Riemannian manifold with sectional cur-
vature < x < 0 and all its closed convex subsets are GAT (x)-spaces.

In particular, Hadamard manifolds are CAT(0)-spaces. This is why we will also
call CAT(0)-spaces Hadamard spaces.

Example 2.1.3 (Berestovski). — Any simplicial complex admits a piecewise spherical
CAT(1) metric.

Condition 2 implies that any two points x;, x, with | x, x, | < D(k) are connected
by precisely one geodesic; hence we may speak unambiguously of %, x, as the geodesic
segment joining x, to x,. The CAT(x)-spaces for k < 0 are contractible geodesic spaces.

To see that upper curvature bounds behave well under limiting operations, it is
convenient to use an equivalent definition of CAT(k)-spaces which only refers to finite
configurations of points rather than geodesic triangles. If », x, », p € X, and 7, %, 5, § € M2
we say that 7, %, 5, § form a S-comparison quadruple if

1. § lies on %, 7.
2 |Jox| — |TF|| <3, [[op] = [FF[ <8 |lw|—[FFI<3 [la|—[FPI <3,
| =127 <3

By a compactness argument, we note that there exists a function 3 (P, ¢) > 0
such that for every e > 0, and every quadruple of points v, x, y, p in a CAT(x)-space X
satisfying | ox | + | v | + | v | <P < 2D(x), each (P, ¢)-comparison quadruple?, %, 3, §
satisfies | vp | < |79 | + e. We will refer to this condition as the 8 -four-point condition.
It is a closed condition on four point metric spaces with respect to the Hausdorff topology.
A complete metric space X is a CAT(k)-space if and only if it satisfies the 3, -four-point
condition and every pair of points x, y € X with | 2y | < D(x) has approximate midpoints,
i.e. for every € > 0 there is a m e X with | xm |, | my | < | xy |/2 + ¢'. To see this, note
that in the presence of the 3 -four-point condition approximate midpoints are close to
one another, so one may produce a genuine midpoint by taking limits. By taking
successive midpoints, one can produce a geodesic segment.

2.1.2. Coning

Let X be a metric space with Diam(Z) < =. The metric cone C(Z) over X is defined
as follows. The underlying set will be X X [0, )/~ where ~ collapses £ X {0} to
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a point. Given v,, v, € X, we consider embeddings p : { 7;, v, } X [0, c0) — E2 such that
| p(v;,8) = | t]| and ZLy(p(2y, 8), p(925 £5)) = | v, 05 |, and we equip C(Z) with the unique
metric for which these embeddings are isometric. The space CG(Z) is CAT(0) if and
only if ¥ is CAT(1).

2.1.3. Angles and the space of directions of a CAT(«)-space

Henceforth we will say that a triple v, », y defines a triangle A(v, , ) provided

|ox | + | x| + |yv | < 2 Diam(M2). The symbol Zv(x, y) will denote the angle of the
comparison triangle at the vertex 2. If »’, »’ are interior points on the segments vx, 2y,

then Z,,(x', Y < Z,,(x, ). From this monotonicity it follows that lim, ,. ., Zv(x’, )
exists, and we denote it by Z,(x, ). This definition of angle coincides with the notion
of the angle between two segments in the Riemannian case. One checks that one obtains
the same limit if only one of the points x’, ' approaches v:

(3) Ly(x) = lim Z,(x',5);
£, satisfies the triangle inequality. Note that from the definition we have
4 Ly(%9) < £,(%,)-
In the equality case a basic rigidity phenomenon occurs:
Triangle Filling Lemma 2.1.4. — Let x, y, v be as before. If L, (x,y) = Z,,(x, ),
then also the other angles of the triangle A(v, x, ») coincide with the corresponding comparison angles

moreover the region in M2 bounded by the comparison triangle can be isometrically embedded into X
so that corresponding vertices are identified.

The angles of a triangle depend upper-semicontinuously on the vertices:
Lemma 2.1.5. — Suppose v, x, y € X define a triangle, v * x,p, and v, -0, x, — %,
e —>3. Then v, x,, v, define a triangle for almost all k and
lir;l»solo‘lp ka(xk’.yk) < Lv(x’.y)‘
In the special case that v evx, —{v} holds limy L, (%,7) = L,(xp) and
limk—wo Z_,,k(l),)’k) =T — Lv(xa_y)'
Proof. — For ' evx —{v} and ' ey — { v} we can choose sequences of points

%, €y 7y € 7,7, With %, ' and 3} > Then Z,(5,2) < Zoy(%:00) > (%)
and the first assertion follows by letting #,» —o. If v, evx, —{v, %} then

L (%, ) < anglesum(A(o, v, 7)) — £, (2, %) and w — Ly (0, 7) < Ly (%> e) while
lim sup anglesum(A(o, v, %)) < = Sending % to infinity, we get

L,(%,9) < = — liminf Z, (v, 5) < lim inf Z,, (x, )

and hence the second assertion. [J
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The condition that two geodesic segments with initial point » € X have angle
zero at v is an equivalence relation; we denote the set of equivalence classes by X} X.
The angle defines a metric on X} X, and we let 2, X be the completion of Z; X with
respect to this metric. We call elements of X, X directions at v (or simply directions),
and 7% denotes the direction represented by vx. We define the logarithm map as the map
log, = logy x : B,(D(x))\v — %, X which carries x to the direction vx. The tangent
cone of X at v, denoted G, X, is the metric cone G(Z, X); we have a logarithm map
log, = log, x : B,(D(x)) - C, X.

Given a basepoint v € X, x € X with d(v, x) < D(x), and A €0, 1], let mx e X
be the point on vx satisfying |o(Ax) |/|ox| =2A. We define a family of pseudo-
metrics on B,(D(x)) by d.(x,y) = d(ex, ep)/e. They converge to a limit pseudo-
metric d,. The pseudo-metric space (B,(D(x)), d,) satisfies the 8, -four-point condition,
so the limit pseudo-metric space (B,(D(x)), d,) satisfies the §y-four-point condition. But
dy(x, y) = d(log, %, log, ») where log, : B,(D(x)) — G, X is the logarithm defined above,
so we see that the tangent cone G, X satisfies the §j,-four-point condition (C(Z; X)
is dense in C, X, and every four-tuple in G(Z; X) is homothetic to a four-tuple in

log,(B,(D(x))). If z, is the midpoint of the segment (Ax) (Ay), then

d(log, x, log, y) = lim é d(ex, &)

.2 .2
= lim — d(ex, z,) = lim — d(z,, ¢)

> max (ll_l;% 2d (log,, x, % log, zz), 11_{1'(1) 2d (log,, x, é log, zg)).

So G, X also has approximate midpoints. Since C, X is complete, it is a CAT(0)-space;
consequently %, X is a CAT(1)-space. This fact is due to Nikolaev [Nik].

2.2. CAT(1)-spaces

CAT(1)-spaces are of special importance to us, because they will turn up as spaces
of directions and Tits boundaries of Hadamard spaces.

2.2.1. Spherical join

Let B; and B, be CAT(1)-spaces with diameter Diam(B,) < n. Their spherical
join B, o B, is defined as follows. The underlying set will be B; X [0, /2] X B,/~, where
“~ 7 collapses the subsets { b, } X {0} X B, and B; X {®/2} X {b,} to points. Given
b;,b; €B, (i=1,2), we consider embeddings ¢ :{d,, b} X [0, =/2] X { by, b} — S3.
We think of S2 as the unit sphere in C? and require that ¢ > p(,, ¢, b,) and ¢’ — p(b;, ¢, b;)
are unit speed geodesic segments whose initial (resp. end) points lie on the great circle
St x {0} (resp. { 0} X S!) and have distance dg (by, b]) (resp. dg, (s, 4;)). The distance
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of the points in B, o B, represented by (b,, ¢, b,) and (b, ¢, b;) is then defined as the
(spherical) distance of their p-images in S3; it is independent of the choice of p. To see
that B, o B, is again a CAT(1)-space and that the spherical join operation is associative,
observe that the metric cone C(B, o B,) is canonically isometric to G(B;) X C(B,;) and
that the product of CAT(0)-spaces is CAT(0).

The metric suspension of a CAT(1)-space with diameter < = is defined as its spherical
join with the CAT(1)-space { south, north } consisting of two points with distance =.

Lemma 2.2.1. — Let B, and B, be CAT(1)-spaces with diameter = and suppose s is an
isometrically embedded unit sphere in the spherical join B = B, o By. Then there are isometrically
embedded unit spheres s; in B, so that s, o s, contains s.

Proof. — We apply lemma 2.3.8 to the metric cone G(B) =~ G(B;) X G(B,). The
set C(s) is a flat in G(B) and hence contained in the product of flats F, = G(B)),
§; = Opy, F; is a unit sphere in B; and s, 0 5, = Oy, (F; X Fp) 2 05, G(s) = 5. O

2.2.2. Convex subsets and their poles

We call a subset G of a CAT(1)-space B convex if and only if for any two points
0, g € C of distance d(p, ¢) < = the unique geodesic segment pq is contained in C. Closed
convex subsets of B are CAT(1)-spaces with respect to the subspace metric inherited
from B. Basic examples of convex subsets are tubular neighborhoods with radius < /2
of convex subsets, e.g. balls of radius < =/2.

Suppose that CC B is a closed convex subset with radius Rad(C) > =, i.e. for each
p € C exists ¢ € G with d(p, ¢) > n. We define the set of poles for C as

Poles(C) : = {y, eBid(r, )o=7 |-
If Diam(C) > = then G has no pole. If Diam(C) = Rad(C) = = then Poles(C) is closed
and convex, because it can be written as an intersection Poles(C) = [ c ¢ By(E) of
convex balls. The convex hull of G and Poles(C) is the union of all segments joining
points in C to points in Poles(C), and is canonically isometric to G o Poles(C). This
follows, for instance, when one applies the discussion in section 2.3.3 to the parallel
sets of G(C) in the metric cone C(B).

Consider the special case that G consists of two antipodes, i.e. points with distance ,
£ and €. Then the convex hull of { £, £} and Poles({ £, £ }) is exactly the union of mini-
mizing geodesic segments connecting &, & and it is canonically isometric to the metric
suspension of Poles({ £, £ }).

2.3. Hadamard spaces

We will call CAT(0)-spaces also Hadamard spaces, because they are the synthetic
analog of (closed convex subsets in) Hadamard manifolds, i.e. simply connected complete
manifolds of nonpositive curvature, cf. example 2.1.3.
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2.3.1. The geometric boundary

Let X be a Hadamard space. Two geodesic rays are asympiotic if they remain at
bounded distance from one another, i.e. if their Hausdorff distance is finite. Asympto-
ticity is an equivalence relation, and we let 9, X be the set of equivalence classes of
asymptotic rays; we sometimes refer to elements of 9, X as ideal points or ideal boundary
points. For any point x € X and any ideal boundary point £ € 9, X there exists a unique
ray £ starting at x which represents £. The pointed Hausdorff topology on rays emanating
from x € X induces a topology on 9, X. This topology does not depend on the base
point x and is called the cone topology on 9, X; 8, X with the cone topology is called
the geometric boundary. The cone topology naturally extends to X u 9, X. If X is locally
compact, then 9, X and X := X U 8, X are compact and X is called the geometric
compactification of X.

2.3.2. The Tits metric

Earlier we defined the angle between two geodesics vx, gy at » € X by using the
monotonicity of comparison angles Z,,(x', y') as ¥ —> v, ' —v. Now we consider a pair
of rays €, oy, and define their Tits angle (or angle at infinity) by

(%) Layg(8sn) 1=, lim 2, (¥, ")

a'=>E, ¥ >

where x’ € 7€ and »' € 7. Ly, defines a metric on 9, X which is independent of the
basepoint v chosen. We call the metric space oy, X 1= (9, X, Lpy,) the Tits boundary
of X and Z,,, the Tits (angle) metric. The estimate

Zwoy) =7 — Zy(0,5) — Zy(0, )

< £y(E)) i O

Ln
implies, combined with (4):
L&) < L, 9) < LyE ).
Consequently, the Tits angle can be expressed as

(6) L&, M) = tlifg VAN ()

for any geodesic ray r: Rt — X asymptotic to £ or 7, and also as:

(7) Lys(8; M) = sup L,(E, m).
zeX
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Still another possibility (the last one which we will state) to define the Tits angle is as
follows: If 7,: Rt — X are geodesic rays asymptotic to & then

(8) 9 sin é_“i;}_.a_z). _ Jim 2, (&)

t—> o t

The next lemma relates the cone topology on 9, X to the Tits topology. Fix » € X
and consider the comparison angle

Z,: (X\{2}) x (X\{2}) [0, =].

By monotonicity, it can be extended to a function
L, (X\{#}) x (X\{z}) [0, n].
Note that for &,y € 9, X, we have Z o8 M) = Ly (&5 M)

Lemma 2.3.1 (Semicontinuity of comparison angle). — The angle Z s lower semi-
continuous with respect to the cone topology: If %, y,, E, n € X — {0} are such that £ = lim, ,  x,

and = lim,_, , ¥, then Z o(&s M) < liminf, | Z o (%> Vi)

Proof. — We treat the case &, n € 9,, X, the other cases are similar or easier. Since
the segments (or rays) vx,, 7y, are converging to the rays o€, oy respectively, we may
choose #, € 2%, and y;, € oy, such that | %, 2 |, | ;0| — oo and d(x, %€) — 0, d(y, 7n) — 0.
Hence by triangle comparison we have

Zv(xks.yk) = Zu(xl’c,)’;) — Ly(Esm). O
Lemma 2.3.2. — Every pair £, M € 0, X with Ly (&, n) < © has a midpoint.

Proof. — Pick v € X. Take sequences ¥, € o€, % € on with | x| = | ;| > . Let m;

be the midpoint of ¥; y;. Since A(y, x;, ;) is isosceles, i o(%ism) = ya oMy %) < <Z o (%2012,
by lemma 2.3.1 it suffices to show that om; converges to a ray oy, for some p €9, X.

For 1 <j, set A;:=|uvx|/| ox; |. By triangle comparison, we have the following
inequalities:

My
| (0 my) | < N | x5my | = j | %595 s

A
[ i my) | < N | yymy | = ?’ | %55 15

| % my) |+ [ my) | = | %0 |-
Since ;. (| x;9; /| %,9:]) =1 as i,j - 0, we have

| %(N; my) | 1 | (N my) | o1 = | m;(n; my) |
| % m; | | i m; | | % m; |

-0
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and, since Zp, (%, n) < =, this in turn implies:

| my(h;; m;) | -0,

| om, |
Fixing t> 0, if we set #/| om, | = x;, then | (¥;m;) (¥ N;m;) | -0 as 4,j — co. Since
| o(%; m;)| = ¢, this shows that the segments vm; converge in the pointed Hausdorff

topology to a ray ou as desired. O

The completeness of X implies that (9, X, Z,,,) is complete. The metric cone
C(0, X, Lqys) (the Tits cone) is complete and has midpoints. Moreover, since every
quadruple in C(9,, X, Zq,) is approximated metrically (up to rescaling) by quadruples
in X, G(0, X, Lpy,) satisfies the 8y -four-point condition and is therefore a CAT(0)-space.
By section 2.1.1 we conclude:

Proposition 2.3.3. — The Tits boundary of a Hadamard space is a CAT(1)-space.

There is a natural 1-Lipschitz exponential map exp, : G(dg,, X) — X defined as
follows: For [(&, )] € C(Opy X) = 0pyg X X [0, 0)/~, let exp,[(&, t)] be the point on
pE at distance ¢ from p. The logarithm map log, : X —{p } — =, X extends continuously
to the geometric boundary and induces there a 1-Lipschitz map log, : o5, X — X, X.
The Triangle Filling Lemma 2.1.4 implies the following rigidity statement:

Flat Sector Lemma 2 .3.4. — Suppose the restriction of log, : Oy X — X, X to the
subset A < Opy, X ts  distance-preserving. Then the restriction of exp,: G(O, X) > X
to G(A) = C(0py, X) is an isometric embedding.

2.3.3. Convex subsets and parallel sets

A subset of a Hadamard space is convex if, with any two points, it contains the
unique geodesic segment connecting them. Closed convex subsets of Hadamard spaces
are Hadamard themselves with respect to the subspace metric. Important examples of
convex sets are tubular neighborhoods of convex sets and horoballs. We will denote
by HB,(x) the horoball centered at the point § € 9, X and containing x € X in its
boundary.

Let C; and G, be closed convex subsets of a Hadamard space X. Then by (4),
the distance function d(., G,) |Cl = dczlcl :G; >R, is convex and the nearest point
projection TECZICI : G, — G, is distance-nonincreasing; dcz|cl is constant if and only
if 7y |c, is an isometric embedding. In this situation, we have the following rigidity
statement:

Flat Strip Lemma 2 3.5.— Let G, and Cy be closed convex subsets in the Hadamard space X.
If dcz|01 = d then there exists an isometric embedding § : Gy X [0, d] — X such that {(., 0) = id,

and Y(.,d) = nczlcl.
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This is easily derived from the Triangle Filling Lemma 2.1.4, respectively from
the following direct consequence of it:

Flat Rectangle Lemma 2.3.6. — Let x, € X, i € Z|4Z, be points so that for all i holds
Loy(%i—1s % 11) = ©[2. Then there exists an embedding of the flat rectangular region
[0, | xo %1 |1 X [0, | %y x5 |] C E2 into X carrying the vertices to the points x,.

We call the closed convex sets G,, G, < X parallel, G, || C,, if and only if dC,ICl
and dg |, are constant, or equivalently, mg |, and =y |y, are isometries inverse to
each other. Being parallel is no equivalence relation for arbitrary closed convex subsets.
However, it is an equivalence relation for closed convex sets with extendible geodesics,
because two such subsets are parallel if and only if they have finite Hausdorff distance.
(A Hadamard space is said to have extendible geodesics if each geodesic segment is contained
in a complete geodesic.)

Let Y <X be a closed convex subset with extendible geodesics. Then
Rad (0, Y) = w. The parallel set Py of Y is defined as the union of all convex subsets
parallel to Y; Py is closed, convex and splits canonically as a metric product

(9) P, Y x Ny.

Here Ny is a Hadamard space (not necessarily with extendible geodesics) and the
subsets Y X { pt } are the convex subsets parallel to Y. The cross-sections of Py orthogonal
to these convex subsets can be constructed as intersections of horoballs:

(10) {P}xNy=Pyn N HB;(y) VyeY.
EEdTits ¥

Applying the Flat Sector Lemma 2.3.4 one sees furthermore that a,,, Ny is canonically
identified with Poles(dyy,, Y) C Opye X; Opye Py is the convex hull in og,, X of oy, Y
and Poles(dy,, Y) and we have the canonical decomposition:

(11) Orys Py = Opye Y o Poles(dgy, Y).
2.3.4. Products

The metric product of Hadamart spaces X; is defined as usual using the Pythegorean
law. It is again Hadamard and its Tits boundary and spaces of directions decompose
canonically:

(12) . 3ms(X1 X ... X Xn) = 'a,m Xj0...0 Orits Xn,

(13) Ty nan(Xa X oo X X)) =5, Xj0... 03, X,.

Proposition 2.8.7. — If X is a Hadamard space with extendible geodesics then all join
decompositions of Opy, X are induced by product decompositions of X.

17
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Proof. — Assume that the Tits boundary decomposes as a spherical join
Opis X = B;oB_; and consider, for xe€X and i=+1, the convex subsets
Ci(x) := Ngep_, HB(x) obtained from intersecting horoballs. Using extendibility of
geodesics, i.e. Rad I, X = =, one verifies that oy, G, = B;, C, has extendible geodesics
and C_,(x) are orthogonal in the sense that X, C,(x) = Poles(Z, G_,(x)). Furthermore
any two sets G,(x) and G_,(«") intersect in the point mg ,(x") = m,_ (). The assertion
follows by applying the Flat Rectangle Lemma 2.3.6. O

Lemma 2.3.8. — Let X, and X, be Hadamard spaces and suppose that ¥ is a flat in the
product space X = X, X X,. Then there are flats F, = X, so that F; X F, 2 F.

Proof. — Consider unit speed parametrizations ¢, ¢’ : R —-F for two parallel
geodesics v, vy’ in F. Then ¢;:= nz. 0¢ and ¢ := mx, o ¢’ are constant speed parame-
trizations for geodesics v;, y; in X;. Since the distance functions d:= dx(c,¢’) and
d;:= dg(c;, ¢;) are convex, satisfy d* = d} + d; and d is constant, it follows that the 4,
are constant, i.e. y; and y; are parallel. Since this works for any pair of parallel geodesics
contained in F, it follows that myx F is a flat in F;. O

2.3.5. Induced isomorphisms of Tits boundaries

We now show that any (1, A)-quasi-isometric embedding of one Hadamard space
into another induces a well-defined topological embedding of geometric boundaries
which preserves the Tits distance.

Proposition 2.3.9. — Let X, and X, be Hadamard spaces and suppose that ® : X, — X,
is a (1, A)-quasi-isometric embedding. Then there is a unique extension ® : X, — X, such that
1. ®(0, X,) € 9, X,,

2. ® is continuous at boundary poinis,
3. 5|aw x, 1 a topological embedding which preserves the Tits distance.

We let 9, ® = &, .

Proof. — We first observe that there is a function &(R) (depending on A but not
on the spaces X; and X,) with &(R) -0 as R — o0 such that if p, x,y € X, and
d(p, %), d(p,») > R then

(14) | Z0(%3) — Zom(@(x), ®(3) | < £(R)).

Lemma 2.3.10. — Suppose that x; is a sequence of points in X, which converges to a boundary
point &,. Then ®(x;,) € X, converges to a boundary point £,.
Proof of Lemma. — Pick a base point p. There are points y; € px, such that d(p, y;) — o

and lim, ; , ,, Zp( Ji»9;) = 0. By (14), the points ®( y,) converge to a boundary point &,.
Applying (14) again, we conclude that ®(x;) converges to &, as well. O
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Proof of Proposition continued. — From the previous lemma we see that if x; and x;
are sequences in X, converging to the same point in 9, X, then the sequences ®(x;)
and ®(x;) converge to the same point in 9, X,. This allows us to extend ® to a well-
defined map @ : X, — X,.

We now prove that @ is continuous at every boundary point & Let x, € X; be
a sequence of points converging to £ € 9, X;. By the lemma, we may choose y; € X,
with y; € px; so that for every R the Hausdorff distance between @(p) @(y;) N B (®(p))
and ®(p) ®(x;) N Bx(®(p)) tends to zero as R — co. Hence

limg, , ®(x,) = limg_, , ®(y,) = D)

by the lemma.

Another consequence of the lemma is that the image ray ®(p£) diverges sublinearily

from the ray ®(p) ©(£) in the sense that

lim = dy(®(7E 0 By(p)), 2(7) D) N By(@(p)) = 0

R—>o

. P . def —
where dy denotes the Hausdorff distance. This implies that 0, ® = <I)];,OOX1 preserves
the Tits distance and is a homeomorphism onto its image. O

2.4. Ultralimits and asymptotic cones
The presentation here is a slight modification of [Gro], see also [KaLe].

2.4.1. Ultrafilters and ultralimits

Definition 2.4.1. — A nonprincipal ultrafilter is a finitely additive probability measure o
on the subsets of the natural numbers N such that

l. o(S) =0 or 1 for every SCN.
2. o(S) = 0 for every finite subset S C N.

Given a compact metric space X and a map a : N — X there is a unique element
o-lim g € X such that for every neighborhood U of w-lim a, 4~'(U) C N has full measure.
In particular, given any bounded sequence a : N — R, w-lim a4 (or a,) is a limit point
selected by o.

2.4.2. Ultralimits of sequences of pointed metric spaces

Let (X, d;, x;) be a sequence of metric spaces with basepoints *;. Consider
X, ={xell,cx X;| di(x;, %,) is bounded }. Since d(x;,) is a bounded sequence
we may define 7,:X, X X, =R by 4,9 = olimd(x,); d, is a pseudo-
distance. We define the ultralimit of the sequence (X, d;, %;) to be the quotient metric
space (X,,d,), x,€X, denotes the element corresponding to x = (x;) € X,.
*, 1= (%;) is the basepoint of (X, d,).

w) Cw
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Lemma 2.4.2. — If (X, d;, x;) is a sequence of pointed metric spaces, then (X, d,, %)
is complete.

Proof. — Let xi, be a Cauchy sequence in X, where x! = w-lim x{. Let N; = N.
Inductively, there is an c«-full measure subset N; < N;_, such that : eN; implies
| (<%, %) — d,(+% &) | < 1/2%, for 1<k, I<j. For ieN; — N,_,, define y, = .
Then %! —>y,. O

The concept of ultralimits is an extension of Hausdorff limits.

Lemma 2.4.3. — If (X, d;, %;) form a Hausdorff precompact family of pointed metric
spaces, then (X, d,, *,) is a limit point of the sequence (X,, d;, ;) with respect to the pointed
Hausdorff topology.

Proof. — To see this, pick ¢, R, and note that there is an N such that we can find
an N element sequence { x! }_, C X, which is e-dense in X;. The N sequences x! for
1<j< N give us N elements in ! e X, . If y, e X, y, €B. (R), then for w-a.e.
(that is, w-almost every) ¢, d,(y;, ;) <R. Consider d,(,,*}). Given £> 0,
| dy( Do, 22) — di( 3, x]) | < e for w-a.e. i, which implies that d, (y,,*)) <e for
some 1< j< N. Hence we have seen that B, (R) is totally bounded, and for all e> 0
there is an e-net in B, (R) which is a Hausdorff limit point of e-nets in the X/’s. It
follows that (X, d;, ;) subconverges to (X, d,,, %) in the pointed Hausdorff topology. O

In general, the ultralimit X, is not Hausdorff close to the spaces X, in the ¢ approxi-
mating >’ sequence. However, the Hausdorff limits of any precompact sequence of
subspaces Y; C X, canonically embed into X,.

The importance of ultralimits for the study of the large-scale geometry derives
from the following fact: If for each ¢, f,: X; - Y, is a (L, C)-quasi-isometry with
d,( f,(*;), %;) bounded, then the f; induce an (L, C)-quasi-isometry f, : X, - Y,.

It follows that if for each 7, and every pair of points g;, b, € X; the distance d;(a;, b;)
is the infimum of lengths of paths joining g; to b, then every pair of points a,, b, € X,
is joined by a geodesic segment.

Lemma 2.4.4. — If (X,, d;, %;) is a CAT (x)-space for each i, then so is (X, d,, *,).
If d (a,,b,) < D(x), then the geodesic segment a,b, is an ultralimit of geodesic segments.

If x < 0 and each X, has extendible geodesics then each ray (respectively complete geodesic) in X,
is an ultralimit of rays (respectively complete geodesics) in the X,’s.

Proof. — If each (X|, d;, x;) is a CAT(x) length space, then clearly (X, d,, x,)
satisfies the 3, -four-point condition since this is a closed condition. Hence (X, d,, %,,)
is a CAT (k) length space since it is a geodesic space satisfying the § _-four-point condition.

If a,,b, X, with |a,b,| < D(x), then there is a unique geodesic segment
joining @, to b,. On the other hand, if ¢, = w-limg;, b, = w-lim b;, then the ultra-

limit of the geodesic segments g, b, is such a geodesic segment.



RIGIDITY OF QUASI-ISOMETRIES FOR SYMMETRIC SPACES AND EUCLIDEAN BUILDINGS 133

Now suppose a2, al,, ... determine a ray, in the sense that
dw(a‘;,, al:)) = dm(aio’ a,’;,) + dm(ain a’:») for iSjS k.

Let N, = N. Inductively, there is an w-full measure N; € N;_, such that a) g is
within a 1/2%-neighborhood of the segment af 4} for i e N;, 0< /< j. Fori e N; — N, _,
extend the segment 4 a} to a ray af &, with initial point 4?. Then the ultralimit of the

sequence af £; is the ray we started with. The case of complete geodesics follows from
similar reasoning. O

Lemma 2.4.5. — Suppose that there is a D > 0 such that for each i, Isom(X,) has an
orbit whick is D-dense in X;. If ,> 0 and A, — 0, then the ultralimit of (X;, N\ d;, %;) is
independent of the choice of basepoints x;, and has a transitive isometry group.

2.4.3. Asymptotic cones

Let X be a metric space and let x, € X be a sequence of basepoints. We define
the asympiotic cone Cone(X) of X with respect to the non-principal ultrafilter w, the
sequence of scale factors A, with w-lim A, = o and basepoints x,, as the ultralimit
of the sequence of rescaled spaces (X,, d,, x,) := (X, A, !-d, x,). When the sequence
%, = % is constant, then Cone(X) does not depend on the basepoint x and has a
canonical basepoint %, which is represented by any sequence (x,)C X satisfying
w-lim, A, '.d(x,, x) = 0, for instance, by any constant sequence (x).

Proposition 2.4.6. —

o If X is a geodesic metric space, then Cone(X) is a geodesic metric space.

o If X is a Hadamard space, then Cone(X) is a Hadamard space.

o If X is a GAT (x)-space for some x < 0, then Cone(X) is a metric tree.

o If the orbits of Isom(X) are at bounded Hausdorff distance from X, then Cone(X) is
a homogeneous metric space.

o A (L, C) quasi-isometry of metric spaces ¢ :X —Y induces a bilipschitz map
Cone(p) : Cone(X) — Cone(Y) of asymptotic cones.

Assume now that X is a Hadamard space. Let (F,),.x be a sequence of %-flats
in X and suppose that o-lim, A, *.d(F,, x) < co. Then the ultralimit of the embeddings
of pointed metric spaces

(Fm 7_\1' 'dF,,a nFn(*)) hnd (X, )\'l 'dxa 71:li‘,,(*))

~

~ gk

is a k-flat
R* > Cone(X)

in the asymptotic cone. We denote the family of all k-flats in Cone(X) arising in this
way by Z (k).
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3. SPHERICAL BUILDINGS

Our viewpoint on spherical buildings is slightly different from the standard one:
for 'us a spherical building is a CAT(1) space equipped with an extra structure. This
viewpoint is well adapted to the needs of this paper, because the spherical buildings
which we consider arise as Tits boundaries and spaces of directions of Hadamard spaces.
Apart from the choice of definitions and the viewpoint, this section does not contain
anything new; the same results and many more can be found (often in slightly different
form) in [Til, Ron, Brbk, Brnl, Brn2].

3.1. Spherical Coxeter complexes

Let S be a Euclidean unit sphere. By a reflection on S we mean an involutive isometry
whose fixed point set, its wall, is a subsphere of codimension one. If W C Isom(S) is
a finite subgroup generated by reflections, we call the pair (S, W) a spherical Coxeter
complex and W its Weyl group.

The finite collection of walls belonging to reflections in W divide S into isometric
open convex sets. The closure of any of these sets is called a chamber, and is a funda-
mental domain for the action of W. Chambers are convex spherical polyhedra, i.e. finite
intersections of hemispheres. A face of a chamber is an intersection of the chamber with
some walls.

A face (resp. open face) of S is a face (resp. open face) of a chamber of S. Two faces
of S are opposite or antipodal if they are exchanged by the canonical involution of S; two
faces are opposite if and only if they contain a pair of antipodal points in their interiors.
A panel is a codimension 1 face, a singular sphere is an intersection of walls, a kalf-apariment
or oot is a hemisphere bounded by a wall and a regular point in S is an interior point
of a chamber. The regular points form a dense subset. The orbit space

Apoa := SIW
with the orbital distance metric is a spherical polyhedron isometric to each chamber.
The quotient map
(15) 0=0g:S >A,,

is 1-Lipschitz and its restriction to each chamber is distance-preserving. For 8§, 8" € A,
we set

D(3, &) :={dg(x,x') | x,x" €8S, 0x =3, 0x' = §"}
and D*(3) := D(5, 5)\{ 0}.
Note that D" is continuous on each open face of A .

An isomorphism of spherical Coxeter complexes (S, W), (S’, W’) is an isometry
a:S — 8’ carrying W to W’. We have an exact sequence

I > W — Aut(S, W) — Isom(A_,) — 1.
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Lemma 3.1.1. — If g € W, then Fix(g) = S is a singular sphere. If Z CS then the
subgroup of W fixing Z pointwise is generated by the reflections in W which fix Z pointwise.

Progf. — Every W-orbit intersects each closed chamber precisely once. Therefore
the stabiliser of a face 6 C S fixes ¢ pointwise. So for all g € W, Fix(g) is a subsphere
and a subcomplex, i.e. it is a singular sphere. '

By the above, without loss of generality we may assume that Z is a singular
sphere. Let W, be the group generated by reflections fixing Z pointwise. If ¢ is a
top-dimensional face of the singular sphere Z then each W-chamber containing o is
contained in a unique Wj-chamber; therefore W, acts (simply) transitively on the
W-chambers containing ¢. Since W acts simply (transitively) on W-chambers, it follows
that Fixator(Z) = Fixator(s) = W,. O

3.2. Definition of spherical buildings

Let (S, W) be a spherical Coxeter complex. A spherical building modelled on (S, W)
is a CAT(1l)-space B together with a collection & of isometric embeddings ¢:S — B,
called charts, which satisfies properties SB1-2 described below and which is closed under
precomposition with isometries in W. An apartment in B is the image of a chart . : S — B;
¢ is a chart of the apartment (S). The collection &/ is called the atlas of the spherical
building.

SB1. Plenty of apartments. — Any two points in B are contained in a common
apartment.

Lett, , vy, be charts for apartments A;, A,, and let C = A; N A,, C' = [ }(C) CS.
The charts 1,; are W-compatible if v ! ot A2|C, is the restriction of an isometry in W.

SB2. Compatible apartments. — The charts are W-compatible.

It will be a consequence of corollary 3.9.2 below that the atlas ./ is maximal
among collections of charts satisfying axioms SB1 and SB2.

We define walls, singular spheres, half-apartments, chambers, faces, antipodal
points, antipodal faces, and regular points to be the images of corresponding objects
in the spherical Coxeter complex. The building is called thick if each wall belongs to
at least 3 half-apartments. The axioms yield a well-defined 1-Lipschitz anisotropy map (1)

(16) 0:B >S/W =: A 4
satisfying the discreteness condition:
(17) dg(xy, x5) € D(05(%y), 05(%5)) V %, %, € B.
If «: S — S is an automorphism of the spherical Coxeter complex, then we modify

the atlas by precomposing with «; the atlases obtained this way correspond to symmetries
of Apg-

(1) The motivation for this terminology comes from the role Og plays in the structure of symmelric spaces
and Euclidean buildings.
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If &7’ is an atlas of charts : S’ — B giving a (S’, W’) building structure on B,
then this spherical building is equivalent to (B, &) if there is an isomorphism of spherical
Coxeter complexes «: (S, W) — (S, W) so that &' ={i1oa|te s/}

If B and B’ are spherical buildings modelled on a Coxeter complex (S, W), with
atlases &/ and &', an isomorphism is an isometry ¢ : B — B’ such that the correspondence
t — ¢ ot defines a bijection & — &',

3.3. Join products and decompositions

Let B,, i=1,...,n, be spherical buildings modelled on spherical Coxeter
complexes (S;, W;) with atlases &, and spherical model polyhedra A} ,. Then
W:=W; X ... X W, acts canonically as a reflection group on the sphere

S=S;0...08,. We call the Coxeter complex (S, W) the spherical join of the Coxeter
complexes (S;, W,) and write

(18) (S, W) = (S, Wy)o...o(S,, W,).

The model polyhedron A, of (S, W) decomposes canonically as

(19) Apoa = Algao .- 0o Al
The CAT(1)-space
(20) B=B,o...0B

n

carries a natural spherical building structure modelled on (S, W). The charts  for its
atlas &/ are the spherical joins t = ;0 ... o, of charts i, € ;. We call B equipped
with this building structure the spherical (building) join of the buildings B,.

Proposition 3.3.1. — Let B be a spherical building modelled on the Coxeter complex (S, W)
with atlas of and assume that there is a decomposition (19) of its model polyhedron. Then:

1. There is a decomposition (18) of (S, W) as a join of spherical Coxeter complexes so that
S, =05 I(Ainod)‘
2. There is a decomposition (20) of B as a join of spherical buildings so that B, = 05 (Ai ).

Proof. — 1. We identify A, with a W-chamber in S and define S; to be the
minimal geodesic subsphere containing A} ;. Then S; < Poles(S;) for all i+ j and
hence S = S,0 ... oS, for dimension reasons. Each wall containing a codimension-one
face of A, is orthogonal to one of the spheres S; and contains the others. Hence
W=W,; X ... Xx W, where W, is generated by the reflections in W at walls orthogonal
to S;. The group W, acts as a reflection group on S; and the claim follows.

2. Since any two points in B are contained in an apartment, one sees by applying
the first assertion that the B, are convex subsets and B is canonically isometric to the
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join of CAT(1)-spaces B =B, o ...0B,. The collection of charts t|g, t €., forms
an atlas for a spherical building structure on B; and B is canonically isomorphic to the
spherical building join of the B;,. O

We call a spherical polyhedron irreducible if it is a spherical simplex with diameter < /2
and dihedral angles < =/2 or if it is a sphere or a point. Accordingly, we call a spherical
Coxeter complex (1) or a spherical building ¢rreducible if its model polyhedron is irreducible.
The spherical model polyhedron A, has dihedral angles < =/2. A polyhedron of this
sort has a unique minimal decomposition as the spherical join (19) of irreducible spherical
simplices (which may be single points) and, if non-empty, the unique maximal unit
sphere contained in A ;. By Proposition 3.3.1, (19) corresponds to unique minimal
decompositions (18) of the Coxeter complex (S, W) as a join of Coxeter complexes
and (20) of B as a spherical building join. We call these decompositions the de Rham
decompositions of (S, W) and B. The sphere factor in (19) occurs if and only if the fixed
point set of the Weyl group is non-empty. We call the corresponding factor in the de
Rham decomposition the spherical de Rham factor.

If W acts without fixed point, then A, is a spherical simplex (2) and the collection
of chambers in S and B give rise to simplicial complexes.

Lemma 3.3.2. — Let (S, W) be an irreducible spherical Coxeter complex with non-trivial
Weyl group W. Then for each chamber o there is a wall whick is disjoint from the closure G.

Proof. — Let ' be a wall and p €S be a point at maximal distance =/2 from =’.
Pick a chamber ¢’ containing p in its closure. Then ¢’ N t' = @, because Diam(¢") < w/2
due to irreducibility. Since W acts transitively on chambers, the claim follows. O

Proposition 3.3.8. — Assume that B, and B, are CAT(1)-spaces and that their join
B = B, o B, admits a spherical building structure. Then the B, inherit natural spherical building
structures from B. In particular, the spherical building B cannot be thick irreducible with non-trivial
Weyl group.

Proof. — Applying lemma 2.2.1 to apartments in B, we see that there exist
dy, dy € N so that every apartment A < Bsplitsas A = A, o A, where A, is a d,-dimensional
unit sphere in B,. Fix a chart i, in the atlas &/ for the given spherical building structure
on B. Denote by S, the d,-sphere ;! B, in the model Coxeter complex (S, W) and by
S; := Poles(S;) the complementary d;-sphere. The subgroup W; = W generated by
reflections at walls containing S, acts as a reflection group on S,. Consider all charts
ve s with ufg, = "ols,- The collection 7, of their restrictions Llsl forms an atlas for
a spherical building structure on B; with model Coxeter complex (S;, W,).

(*) This definition is slightly different form the usual one, which corresponds to irreducibility of linear
representations.

(2) By [GrBe] [theorem 4.2.4], Ayoq is a simplex if W acts fixed point freely. Observe that having distance
less than w/2 is an equivalence relation on the vertices. This implies the decomposition (19).

18
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If B is thick, then its chambers are precisely the (closures of the) connected
components of the subset of manifold points. Hence the joins o, o 6, of chambers o; C B,
are contained in chambers of B. So the chambers of B have diameter > =/2 and B cannot
be irreducible with non-trivial Weyl group. O

3.4. Polyhedral structure

Let A’ be a face of A4 and let 6: A’ — B be the chart for a face in B, i.e. an
isometric embedding so that 050 0 = id|,.

Sublemma 3.4.1. — The image o(Int A’) is an open subset of 65'(A’).

Progf. — Let x be a point in o(Int A’) and assume that there exists a sequence (x,)
in 63'(A")\o(Int(A")) which converges to x. There are points x, € Im(s) with
05 (x,) = 0g(x,). Since 05 has Lipschitz constant 1 and ¢ is distance-preserving, we have

dp(%ns %) Z dapog(05(%4); 05(%)) = dy(x,, #)
and by the triangle inequality

2.dg (%4, %) > dg(, x,) = DT (05(x,))-
\/_-:/0\/

Since D™ is continuous on Int A’, the right-hand side has a positive limit:

lim D*(0,(x,)) = D* (85(#)) > 0,
a contradiction. OJ

Lemma 3.4.2. — Any two faces of B with a common interior point coincide. Consequently,
the intersection of faces in B is a face in B.

Proof. — To verify the first assertion, consider two face charts o,, 6,: A" — B of
the same type. By Sublemma 3.4.1, {8 € A’ | 6,(8) = 6,(8) } N Int A’ is an open subset
of Int A’. It is also closed, and hence empty or all of Int A’ if A’ is connected. If A’ is
disconnected, it must be the maximal sphere factor of A, and all apartment charts
agree on A’. Hence o]y = 6,|, also in this case.

The intersections of two faces is a union of faces by the above; since it is convex,
it is a face. O

As a consequence, the collection of finite unions of faces of B is a lattice under
the binary operations of union and intersection; we will denote this lattice by #'B. In
the case that the Weyl group acts without fixed point, the chambers of B are simplices,
and J'B is the lattice of finite subcomplexes of a simplicial complex. In general the
polyhedron of this simplicial complex is not homeomorphic to B since it has the weak
topology.
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3.5. Recognizing spherical buildings

The following proposition gives an easily verified criterion for the existence of a
spherical building structure on a CAT(1)-space.

Proposition 3.5.1. — Let (S, W) be a spherical Coxeter complex, and let B be a CAT(1)-
space of diameter ™ equipped with a 1-Lipschitz anisotropy map Oy as in (16) satisfying the
discreteness condition (17). Suppose moreover that each point and each pair of antipodul regular
points is contained in a subset isometric to S. Then there is a unique atlas o/ of charts : S — B
Jorming a spherical building structure on B modelled on (S, W), with associated anisotropy map 6.

Proof. — The discreteness condition (17) implies that, for any face A’ of A,
the restriction of 65 to 63 '(Int A’) is locally distance-preserving and distance-preserving
on minimizing geodesic segments contained in 03 '(Int A’). Therefore, if ACB is a
subset isometric to S, the restriction of 65 to A™:= A Nn65'(IntA,,) is locally
isometric and the components of A™ are open convex polyhedra which project via 05
isometrically onto Int A . (17) implies moreover that A™ is dense in A. Hence A
is tesselated by isometric copies of A, and there is an isometry t, with 0501, = 64
which is unique up to precomposition with elements in W. If A; and A, are subsets
isometric to S, and v, ,t,,:S —> B are isometries as above then A; N A, is convex,
and we see that v, and t,, are W-compatible. We now refer to the isometries 1, : S — B
as charts and to their images as apartments. The collection &7 of all charts will be the
atlas for our spherical building structure.

Since any point lies in some apartment, it lies in particular in a face, i.e. in the
image of an isometric embedding o : A’ — B of a face A’ < A, satisfying 05 0 o = id|,..
Lemma 3.4.2 applies and the faces fit together to form a polyhedral structure on B.
The apartments are subcomplexes.

It remains to verify that any two points with distance less than = lie in a common
apartment. It suffices to check this for any regular points x,, x,, since any point lies
in a chamber and an apartment containing an interior point of a chamber contains
the whole chamber (lemma 3.4.2). There is an apartment A; containing x,. Consider
a minimizing geodesic ¢ joining x, and x,. By sublemma 3.4.1, A, is a neighborhood
of x,. Hence near its endpoint x,, ¢ is a geodesic in the sphere A,. Since B is a CAT(1)-
space, we can extend ¢ beyond x,; inside A; to a minimizing geodesic ¢ of length =
joining x, through x, to a point ¥, € A;. By our assumption, the points x,, X, are contained
in an apartment A,, which contains all minimizing geodesics connecting %, and X,,
because x, is regular. In particular ¢ and therefore both points x;, #, lie in A,. O

From the proof of Proposition 3.5.1 we have:

Corollary 3.5.2. — Let B be a spherical building of dimension d, and let T < B be a subset
isometric to the Euclidean unit sphere of dimension d. Then T is an apartment in B.
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3.6. Local conicality, projectivity classes
and spherical building structure on the spaces of directions

Suppose that the spherical building B has dimension at least 1.

Lemma 3.6.1. — Let (B, 03) be a spherical building modelled on A, and let p,p € B
be antipodal points, i.e. d(p, p) = w. Then the union of the geodesic segments of length w from p
to b is a metric suspension whick contains a neighborhood of { p, b }.

Proof. — By the discussion in section 2.2.1, the union of the geodesic segments
of length = from p to § is a metric suspension. By (17) we can choose p > 0 such that
{g€By,(0) | 05(0) = 05(0) } = {p}, {4 By, ($) | 0a(q) = 05(F) } ={F}. If ¢ € B,(P),
then any extension of pq to a segment pgr of length = will satisfy 6(r) = 6(3), forcing r =
by the choice of p. Likewise, if we extend [7_q to a segment of length =, where ¢ € B,(),
then it will terminate at p. Hence the lemma. O

As a consequence, for sufficiently small positive €, the ball B,(p) is canonically
isometric to a truncated spherical cone of height & over X, B, the isometry given by
the ¢ logarithm map ” at p. In particular, ¥} B = X B. Any face intersecting B,(p)
contains p and the face o, spanned by p.

The lemma implies furthermore that for any pair of antipodes p, § € B there is
a canonical isometry

(21) persp, 5: 2, B - Z;B

determined by the property that all geodesics ¢ of length w joining p and § satisfy
perspp,'i(zp ¢) = Zzec.

Two points in B are antipodal if and only if they have distance n. Two faces o,
and o, are antipodal or opposite if there are antipodal points &, and &, so that &; lies in
the interior of o;; in this case each point in 6, has a unique antipode in o,.

Definition 3.6.2. — The relation of being antipodal generates an equivalence relation and
we call the equivalence classes projectivity classes.

Lemma 3.6.3. — Suppose that the spherical building B is thick. Then every projectivity
class intersects every chamber.

Proof. — Let C; and C, be adjacent chambers, i.e. ®# = G, N C, is a panel. It
suffices to show that for each point in G;, G, contains a point in the same projectivity
class. To see this, pick an apartment A 2 G, U C; and let & be the panel in A opposite
to © (R = = is possible). Since B is thick there is a chamber C with C N A = &. Then
C is opposite to both C, and C, and our claim follows. O

Pick poeS so that 04(p,) = 05(p). Now consider the collection of all apart-
ment charts ., :S —B where ,(p,) =p. These induce isometric embeddings
ZotaiZ, S>3, B Let W, <Isom(Z, S) be the finite group generated by the
reflections in walls passing through p,.
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Proposition 3.6.4. — The space X, B together with the collection of embeddings
Z,tat 2, S =2, B as above is a spherical building modelled on (X, S, W,). If p €B is
an antipode of B, then we have a 1-1 correspondence between apartments (respectively half-apartments)
in B containing {p, p } and apartments (respectively half-apartments) in =, B; I, B is thick
provided B is thick.

Proof. — Any two points pg;, p?_;z € X, B lie in an apartment; namely choose ¢;, ¢,
close to p, then any apartment A containing ¢, ¢, will contain p and pg, € Z,A. So
SB1 holds. The space X, B satisfies SB2 since we are only using charts ¢, : S — B with
ta(po) = p and B itself satisfies SB2. The remaining assertions follow immediately from
the definition of the spherical building structure on £, B. O

3.7. Reducing to a thick building structure

A reduction of the spherical building structure on B consists of a reflection subgroup
W' CW and a subset &’ C &/ which defines a spherical building structure modelled
on (S, W’). The A, 4-direction map 03 can then be factored as = o 05 where

05 :B > WN\S =: A 4

is the A, ,-direction map for the building modelled on (S, W’), and
7wt WAS = Ajoq > Apg = W\S

is the canonical surjection.

Proposition 3.7T.1. — Let B be a spherical building modelled on the spherical Coxeter
complex (S, W), with anisotropy polyhedron A, 4 = WN\S. Then there exists a reduction (W', ")
which is a thick building structure on B; W' is unique up to conjugacy in W and &' is determined
by W'. In particular, the thick reduction is unique up to equivalence, so the polyhedral structure is
defined by the CAT(1) space itself.

The proof will occupy the remainder of this paper.

We set d = dim(B), Ry ={p €B|Z, B is isometric to a standard $*~'}, and
Sy = B\Rg. If p €B and p > 0 is small enough so that B_(p) is a (spherical) conical
neighborhood of p, then Sz N B, (p)\{# } corresponds to the cone over SEPB. It then
follows by induction on dim(B) that Sz N A is a union of A -walls for each apart-
ment A C B.

Consider an apartment A C B, and a pair of walls H,, H,C A contained in Sg.

Lemma 3.7.2. — If H; is the image of H, under reflection in the wall H, (inside the
apartment A), then H; is contained in Sg.

Progf. — To see this, consider an interior point p of a codimension 2 face ¢ of
H, n H,. The space £, B decomposes as a metric join X, 6 o B, where B, is a 1-dimen-
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sional spherical building, and the walls H,, H,, and H} correspond to walls H,, H,,
and Hj in B,; A corresponds to an apartment A in B,. The wall H, is just a pair of
points in B, and this pair of points is joined by at least three different semi-circles of
length 7. These three semi-circles can be glued in pairs to form three different apartments
in B,. Using the fact that an antipodg of a point in SB!, also lies in SBp’ it is clear that
the image of H, under reflection in H, is also in Sg,. Hence the wall Z H,C X, B is
contained in three half-apartments, and proposition 3.6.4 then implies that H; lies
in three half-apartments. O

The reflections in the walls in A N S, generate a group G,, and by [Hum, p. 24]
the only reflections in G, are reflections in walls in A N S;; also, the closures of connected
components of A\Sy are fundamental domains for the action of G, on A.

Sublemma 3.7.3. — Let U = B be a connected component of B\Sy, and suppose U N A + @
Sor some apariment A. Then U = A.

Proof. — The set U N A is open and closed in U, so UNnA =U. O
We claim that the isomorphism class of G, is independent of A. To show this,
it suffices to show that the isometry type of a chamber A2, is independent of A. For

i = 1,2 let A; be an apartment, and let Ay, be a chamber for G,. If A;C B is an

mod

apartment containing an interior point from each AZi,  then the sublemma gives
ALia C Ag. But then the Ajéy are both chambers for G, , so they are isometric. Hence
each pair (A, G,) is isomorphic to a fixed spherical Coxeter complex (S, W) for some
reflection subgroup W® < W. We denote the quotient map and model polyhedron by

B :S — S/WH =: AR .
We call the closure of components of B\Sy, A -chambers. We can identify the
A -chambers with A in a consistent way by the following construction: Let A, < B
be an apartment and p, € Ay N Ry be a smooth point. We define the retraction p : B — A,
by assigning to each point p in the open ball B_(p,) the unique point p(p) € A, for which

the segments p, p and p, p(p) have same length and direction m = po p(p) at py. The
map p extends continuously to the discrete set B\B.(p,) which maps to the antipode
of po in A,. If A is an apartment passing through p, then A N A, contains the A® -
chamber spanned by p, and p| At A — Ay is an isometry which preserves the tesselations
by chambers. Composing p with the quotient map A, — A,/G,, we obtain a 1-Lipschitz
map

(22) 0% : B - AR,
which restricts to an isometry on each chamber. Applying proposition 3.5.1 we see

that B is a spherical building modelled on (S, W*); B is thick since we already verified
in lemma 3.7.2 above that if H C Sy is a wall, then it lies in at least three half-apartments.
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Corollary 3.7.4. — For i = 1, 2 let B, be a thick spherical building modelled on (S;, W;)
with atlas oF,. If ¢ : B, — B, is an tsomeiry then we may identify the spherical Coxeter complexes
by an isometry o : (Sy, Wy) — (Sy, W,) so that ¢ becomes an isomorphism of spherical buildings.

3.8. Combinatorial and geometric equivalences

We recall (section 3.4) that for any building B, 2B is the lattice of finite unions
of faces of B.

Proposition 3.8.1. — Let By, B, be spherical buildings of equal dimension. Then any lattice
wsomorphism A’ B, — A'B, is induced by an isometry B, — B, of CGAT(1)-spaces. This isometry
is unique if the buildings B; do not have a spherical de Rham factor.

Proof. — First recall that lattice isomorphisms preserve the partial ordering by
inclusion since C; C C, < C, U G, = G,.

We first assume that the buildings B, have no de Rham factor and hence the %'B;
come from simplicial complexes. In this case the lattice isomorphism J#'B; — "B, carries
k-dimensional faces of B, to 2-dimensional faces of B,. To see this, note that vertices of B,
are the minimal elements of the lattice J#'B; and k-simplices are characterized (induc-
tively) as precisely those subcomplexes which contain £ + 1 vertices and are not contained
in the union of lower dimensional simplices.

Consider a codimension-2 face ¢ of a chamber C in B,. For an interior point s € o,
2, B, is isometric to the metric join Z, 6 o Bf where By is a l-dimensional spherical
building. The dihedral angle of C along o equals the length of a chamber in the
1-dimensional building BY.

Sublemma 3.8.2. — The chamber length of a 1-dimensional spherical building is determined
combinatorially as 2w|l where [ is the combinatorial length of a minimal circuit.

Proof. — Combinatorial paths in a 1-dimensional spherical building determine
geodesics. Closed geodesics in a CAT(1)-space have length at least 2= since points at
distance < = are joined by a unique geodesic segment. The closed paths of length 2=
are the apartments. O

Proof of Proposition 3.8.1 continued. — As a consequence of the sublemma, the
lattice isomorphism #'B;, — B, induces a correspondence between chambers which
preserves dihedral angles. Since the dihedral angles determine the isometry type of a
spherical simplex [GrBe] [theorem 5.1.2], there is a unique map of CAT(1)-spaces
B, — B, which is isometric on chambers and induces the given combinatorial isomor-
phism. Since the metric on each B, is characterized as the largest metric for which the
chamber inclusions are 1-Lipschitz maps, we conclude that our map B, — B, is an
isometry. In the general case, the buildings B; may have a spherical de Rham factor S;
and split as B, = S, o B;. The lattices #'B; and #'B; are isomorphic: to a subcomplex C;
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of A'B; corresponds the subcomplex S,0C; of #B,. The lattice isomorphism
A'B; =% A'B, - A'B, = A'B; is induced by a unique isometry B; — B, by the discussion
above. It follows that Dim B; = Dim B; and Dim S; = Dim S,. Any isometry S, — S,
gives rise to an isometry B, — B, which induces the isomorphism %#'B, —X%'B,. O

3.9. Geodesics, spheres, convex spherical subsets

We call a subset of a CAT(1)-space convex if with every pair of points with distance
less than 7 it contains the minimal geodesic segment joining them. The following
generalizes corollary 3.5.2.

Proposition 3.9.1. — Let CC B a convex subset which is isometric to a convex subset of
a unit sphere. Then G is contained in an apartment.

Proof. — We proceed by induction on the dimension of B. The claim is trivial
if dim(B) = 0. We assume therefore that dim(B) > 0 and that our claim holds for
buildings of smaller dimension than B.

~ Let A be an apartment so that the number of open faces in A which have non-empty
intersection with C is maximal. Suppose C & A. Let p € C N A and ¢ € C\A be points
with pg ¢ =, A. Denote by V the union of all minimizing geodesics in A which connect p
to its antipode § and intersect C — {p,p }; V is a convex subset of A and canonically
isometric to the suspension of X (C n A) = X C n I A. By the induction assumption,
there is an apartment A’ through p such that = C < £, A’. A’ can be chosen to contain $-
Then CNAc VA and g e X, A’. Hence the number of open sectors in A’ inter-
secting C is strictly bigger than the number of such sectors in A, a contradiction. There-
fore Cc A. O

Corollary 3.9.2. — Any minimizing geodesic in a spherical building B is contained in an
apartment. Any isometrically embedded unit sphere K < B is contained in an apartment. In particular
dim(K) < rank(B) — 1.

3.10. Convex sets and subbuildings

A subbuilding is a subset B’ = B so that { v €& | (S) = B’} forms an atlas for a
spherical building structure; in particular B’ is closed and convex.

Lemma 3.10.1. — Let s C B be a subset isometric to a standard sphere. Then the union B(s)
of the apartments containing s is a subbuilding. There is a canonical reduction (W', ') of the
spherical building structure on B(s); its walls are precisely the W-walls of B(s) which contain s.
When equipped with this building structure, B(s) decomposes as a join of s and another spherical
building which we call Link(s). If p € s then log, maps Link(s) isometrically to the join complement
of Z,5 in X, B(s). Furthermore, if p € s lies in @ W-face o of maximal possible dimension, then
there is a bijective correspondence between W-chambers containing o, W'-chambers of B(s), chambers
of Link(s), and W, -chambers in 3, B.
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Progf. — Let £ and £ be interior points of faces in s with maximal dimension. Then
B(s) is the union of all geodesic segments of length = from £ to £. Proposition 3.6.4
implies that every pair of points in B(s) is contained in an apartment A C B(s).

Pick 1, € o with s S 1,(S), and set &' = {1 e ||y, = t|s, }. Let W = W be
the subgroup generated by reflections fixing s, pointwise. According to lemma 3.1.1,
the coordinate changes for the charts in &/’ are restrictions of elements of W’. Therefore
&' is an atlas for a spherical building structure on B(s) modelled on (S, W’).

Since so< S is a join factor of the spherical Coxeter complex (S, W’), B(s)
decomposes as a join of spherical buildings B(s) = s o Link(s) by section 3.3. Any two
points in Link(s) lie in an apartment s = A C B(s), so log, maps Link(s) isometrically
to the join complement of X, s in X, B(s). The remaining statements follow. O

The building B(s) splits as a spherical join of the singular sphere s and a spherical
building which we denote by Link(s):

B(s) = s o Link(s).

Lemma 3.10.2. — If £ € B and n lies in the apariment A < B, then there is a & e A

with © = d (&, 2) =dE,m) +d(n, 2). If d(§,m) > w2 then & has an antipode in every top-
dimensional hemisphere H C A.

Progf. — When Dim B = 0 the lemma is immediate. If d (€, ) < = then by induction
-IE € Z, B has an antipode in X, A. Therefore we may extend Ey to a geodesic segment Ex?

with ;)TE\C A of length =. The second statement follows by letting » be the pole of the
hemisphere. O

Proposition 3.10.3. — Let C be a convex subset in the spherical building B. If G contains
an apartment then G is a subbuilding of full rank.

Progof. — By the lemma, any point £ € C has an antipode £in C. By lemma 3.6.1,
the union C; ¢ of all minimizing geodesics from & to € which intersect C — {&,£} is
a neighborhood of € in C. In particular, for sufficiently small € > 0, G n B,(£) is a cone
over X, C. Since £ can be chosen to lie in an apartment A, < C by our assumption,
and since the apartment Zg A, in Z¢ G corresponds to an apartment in G; g, we see
that C is a union of apartments. It remains to check that any two points &, € C lie
in an apartment contained in C. Choose an apartment A with n € A = C. For v_;z eX,C

there exists an antipodal direction in X, A and we can extend E?, into A to a geodesic 52
of length n. To the apartment 3z A in Xz C corresponds an apartment A’ = Ggg
containing ing. O

3.11. Building morphisms

We call a map ¢ : B — B’ between buildings of equal dimension a building morphism
if it is isometric on chambers. Later, when looking at Euclidean buildings, we will
encounter natural examples of building morphisms, namely the canonical maps from
the Tits boundary to the spaces of directions.

19
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A building morphism ¢ has Lipschitz constant 1: ¢ maps sufficiently short segments
emanating from a point p isometrically to geodesic segments. Therefore it induces well-
defined maps

(23) Z,9:2,B—>ZX,  B.

(D)
Since the chambers in B containing p correspond to the chambers in X B (with respect
to its natural induced building structure, cf. Proposition 3.6.4), and similarly for B’,

the maps (23) are building morphisms, as well. We call the morphism ¢ spreading if
there is an apartment A, < B so that (p| 4, 18 an isometry.

Lemma 3.11.1. — Let ¢ : B — B’ be a spreading building morphism. Then, if €,, £, € B
are points with ¢(€;) = ¢(&) =: &', the images of Ty ¢ and Zy, ¢ in Xy B’ coincide.

Proof. — If ¢ is spreading then each point £’ € ¢(B) has an antipode &' € ¢(B).
Any points £ e !((’) and £ e (') are antipodes and minimizing geodesics
connecting £ and £ are mapped isometrically to geodesics connecting £’ and &, i.e.
?|pe, 8 : BE, ) > B'(¢, %) is the spherical suspension of the morphism 2 . There
are canonical isometries persp;z:X;B -3z B and persp; ¢ : Z B' > g B,
cf. 3.6.1, and we have:
(24) 3¢ @ o PErspg § = PErspg g o g P.

The assertion follows. O

Lemma 3.11.2. — Let ¢ : B — B’ be a spreading building morphism. Suppose &, € B,
£, €B’ and set ] 1= ¢k;.

Then there is an apartment A < B containing &, such that cp| A IS an isometry and the
apartment A’ 1= @A = B’ contains &,.

Progf. — Let us first assume that &, € A, = A, where A, is an apartment in B

such that ¢| A, 18 an isometry. Then there is a geodesic segment &; &, £ of length = such

that £, 8, C A, (lemma 3.10.2). Let &, € A, be the lift of &,. By proposition 3.6.4, the
subbuilding B(%,, &) contains an apartmcntAA with Zg A = Zg A,. The map cp] 4 18
an isometry, because it is an isometry near &;. By construction, &, € ¢A.

The above argument implies that, since ¢ is spreading by assumption, each point
£, € B lies in an apartment A, so that <p| a, is an isometry. Therefore the assumption
in the beginning of the proof is always satisfied and the proof is complete. O

Corollary 3.11.3. — Let ¢ be as in lemma 3.11.2. Then:
1. 9(B) is a subbuilding in B'.
2. The induced morphisms g ¢ are spreading.
3. For all &, € B, &, € o(B), there exists &y € o™ &, such that
(25) dy(&y, &) = dp(9%;, &)-

4, If €, satisfies (25) then there exists an apartment A < B containing €, , &, such that ¢, is an isometry.
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Proof. — The first three assertions follow immediately from the lemma. We prove
the fourth assertion:

By 1. we find a geodesic segment ] £, &, of length = contained in o(B). By 3. there
exists a lift &, of €] such that dy(E,, &) = dy (%}, &)). Applying the previous lemma
to the morphism %, ¢, which is spreading by 2., we find an apartment A = B(§,, £)

containing the geodesic segment &, £, &, and so that Z, cp[zE a» and therefore also o|,,
. . 1
1S an 1sometry.

Proposition 3.11.4. — Let B and B’ be spherical buildings modelled on A, ,, and let
¢ : B - B’ be a surjective morphism of spherical buildings so that 05 = 05 o @. Suppose © is
a face of B and o' is a face of B’ contained in ¢(B) so that ot < o'. Then there exists a face o

of B with < 6 and ¢o = &'.

Proof. — Let & be an interior point of t and let 5, be a face of B with 9o, = ¢'.
Then o, contains (in its boundary) a point &; with ¢&; = ¢&, and by lemma 3.11.1
there exists a face ¢ containing £ (and therefore t) with g6 = 9oy = o'. O

Corollary 3.11.5. — Let B, B’ and ¢ be as in proposition 3.11.4. If k' C B’ is a half-
apartment with wall m', and m C B lifts m’, then there is a half-apartment h C B containing m
which lifts h'.

Proof. — Let «' C k' be a chamber with a panel ¢’ C m’, and let 6 C m be the lift
of ¢’ in m. Applying proposition 3.11.4 we get a chamber © C B so that the half-apart-
ment % spanned by v um lifts . O

3.12. Root groups and Moufang spherical buildings
A good reference for the material in this section is [Ron].

Definition 3.12.1 ([Ron, p. 66]). — Let (B, A,.,4) be a spherical building, and let
aC B be a root. The root group U, of a is defined as the subgroup of Aut(B, A, ) consisting
of all automorphisms g which fix every chamber G C B with the property that G N a contains a
panel = & oa.

We let Gz C Aut(B, A,,) be the subgroup generated by all the root groups of B.

Proposition 3.12.2 (Properties of root groups). — Let B be a thick spherical building.

1. If U, acts transitively on the apartments containing a for every root a contained in some apart-
ment A, then the group generated by these root groups acts transitively on pairs(C, A) where
C is a chamber in an apartment A < B.

2. Suppose (B, A,,.q) i irreducible and has dimension at least 1. Then the only root group element
g € U, which fixes an apartment containing a is the identity.
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Lemma 3.12.3. — Let A and A’ be apartmenis in the spherical building B. Then there
exist apartments Ag = A, Ay, ..., A, = A’ so that A;_, N A, s a half-apariment containing
ANnA’ for all i.

Proof. — Suppose that A and A’ are apartments which do not satisfy the conclusion
of the lemma and so that the complex A N A’ has the maximal possible number of faces.
We derive a contradiction by constructing an apartment A’ whose intersection with A
respectively A’ strictly contains A N A’.

If AnA’is empty, we choose A" to be any apartment which has non-empty
intersection with both A and A’. If A n A’ is contained in a singular sphere s of
dimension dim(A N A’) < dim(B) we pick a chambers ¢ CA and ¢ CA’ with
dim(¢ Ns) = dim(¢’ N's) = dims. The subbuilding B(s) contains an apartment A"
with s U6 U ¢’ C A” and A” has the desired property. It remains to consider the case
that A N A’ contains chambers and is strictly contained in a half-apartment. Then
there is a half-apartment £ZC A containing A N A’ and so that 92 N A N A’ contains
a panel w. Let ¢'C A’ be a chamber with ¢' " A N A’ = n. The convex hull A” of
kh U ¢’ is an apartment with the desired property. O

Proof of Proposition. — 1. Let G, be the group generated by the root groups U,
where @ runs through all roots contained in an apartment ACB. If ge U, then
G, = G,, because U,, = gU, g~ for all roots aC A. By lemma 3.12.3, given any
apartment A’ there is a sequence A,, ..., A, = A’ such that A;_; N A, is a root.
Hence G, , = G,, = ... = G, and it follows that Gz = G, for all apartments A'.

Let o, and o, be chambers in B which share a panel = = ¢, N o,. Since B is thick,
there is a third chamber ¢ with ¢ N 6; = n. Pick apartments A; containing ¢ U o;.
Applying lemma 3.12.3 again, we see that there is a g € Gy so that g(A;) = A,, and
g fixes o,. Hence go, = o, and we conclude by induction that Gy acts transitively on
chambers.

Let A,, A, be apartments and oy, o, be chambers such that o; = A;. By the above
argument, there exists ¢ € Gz with go; = 6,. By lemma 3.12.3 there is a g’ € Gy with
g'(gA,) = A, and g’ 6, = 6,. Hence Gy acts transitively on pairs CC A as claimed.

2. Since B is irreducible, there is a chamber o contained in the interior of a (see
lemma 3.3.2). Since the convex set B’ = Fix(g) contains the apartment A it is a sub-
building by proposition 3.10.3. Moreover, B’ contains an open neighborhood of ¢ by
the definition of U,. Note that if = and =’ are opposite panels in B’, then B’ contains
every chamber containing = if and only if it contains every chamber containing =’
(lemma 3.6.1). Since for each panel = there is a panel =; C dc in the same projectivity
class (see definition 3.6.2 and lemma 3.6.3) we see that B’ contains every chamber
in B with a panel in B’. When Dim(B) = Dim(B’) = 1 this implies that B’ is open in B,
forcing B’ = B; in general we show by induction that for all p € B’ we have £, B’ = X B,
which implies that B’C B is open and consequently B = B. O
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Definition 3.12.4. — A spherical building (B, A,,) is Moufang if for each root a C B
the root group U, acts transitively on the apariments containing the root a. When B is irreducible
and has rank at least 2, then by 2. above, U, acts simply transitively on apartments containing a.

The spherical building associated with a reductive algebraic group ([Til, chapter 5])
is Moufang. In particular, irreducible spherical buildings of dimension at least 2 are
Moufang.

4. EUCLIDEAN BUILDINGS

There are many different ways to axiomatize Euclidean buildings. For us, the
key geometric ingredient is an assignment of A ,-directions to geodesics segments in a
Hadamard space. Just as with symmetric spaces, A, 4-directions capture the anisotropy
of the space, and they behave nicely with respect to geometric limiting operations such
as ultralimits, Tits boundaries, and spaces of directions.

4.1. Definition of Euclidean buildings
4.1.1. Euclidean Coxeter complexes

Let E be a finite-dimensional Euclidean space. Its Tits boundary is a round sphere
and there is a canonical homomorphism

(26) e : Isom(E) — Isom (0, E)

which assigns to each affine isometry its rotational part. We call a subgroup
W, C Isom(E) an affine Weyl group if it is generated by reflections and if the reflection
group W := o(W,,) C Isom(dyy, E) is finite. The pair (E, W,;) is said to be a Euclidean
Coxeter complex and

(27) Opie(Es Wegr) = (Opys E, W)

is called its spherical Coxeter complex at infinity. Its amisotropy polyhedron is the spherical
dolyhedron

Apoa := (Opys E)[W.

An oriented geodesic segment xy in a E determines a point in o, E and we
call its projection to A, the A, ;-direction of xy.

A wall is a hyperplane which occurs as the fixed point set of a reflection in W4
and singular subspaces are defined as intersections of walls. A half-space bounded by a
wall is called singular or a kalf-apariment. An intersection of half-apartments is a Weyl-
polyhedron. Weyl cones with tip at a point p are complete cones with tip at p for which the
boundary at infinity is a single face in o, E.
‘ Fix a point p € E. By W(p), we denote the subgroup of W, which is generated
by reflections in the walls passing through p; W(p) embeds via p as a subgroup of W.
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A Weyl sector with tip at p is a Weyl polyhedron for the Euclidean Coxeter complex
(E, W(p)); note that a Weyl sector need not be a Weyl cone, and a Weyl cone need
not be a Weyl sector. A subsector of a sector ¢ is a sector ¢’ C ¢ with 9y, 6’ = Oy, 6;
o lies in a finite tubular neighborhood of o’. A Weyl chamber is a Weyl polyhedron for
which the boundary at infinity is a A 4 chamber; Weyl chambers are necessarily Weyl
cones. The Coxeter group W(p) acts on £ E, so we have a Coxeter complex

Z,(E, Weg) := (2, E, W(p))
with anisotropy map by
0,: 2, E—>Z E/W(p) =: A_L.q(p)-

The faces in (2, E, W(p)) correspond to the Weyl sectors of E with tip at p.

We call the Coxeter complex (E, W) trreducible if and only if its anisotropy
polyhedron, or equivalently, its spherical Coxeter complex at infinity is irreducible.
In this case, the action of W on the translation subgroup T < W, forces T to be trivial,
a lattice, or a dense subgroup. In the latter case we say that W, is topologically transitive.

4.1.2. The Euclidean building axioms

Let (E, W,;) be a Euclidean Coxeter complex. A Euclidean building modelled on
(E, W,,) is a Hadamard space X endowed with the structure described in the following
axioms.

EB1. Directions. — To each nontrivial oriented segment xy C X is assigned a A 4
direction 0(xy) € A - The difference in A ;-directions of two segments emanating from the
same point is less than their comparison angle, i.e.

~

(28) d(0(%), 0(x2)) < Ly( 2)-

Recall that given 8,8, € A, ., D(3;,3,) is the finite set of possible distances
between points in the Weyl group orbits 0, g(3;) and 0, g(3,).

EB2. Angle rigidity. — The angle between two geodesic segments xy and xz lies in the finite
set D(8(35), 6(+7)).

We assume that there is given a collection &/ of isometric embeddings ¢: E - X
which preserve A ;-directions and which is closed under precomposition with isometries
in W,,. These isometric embeddings are called charts, their images apartments, and A
is called the atlas of the Euclidean building.

EB3. Plenty of apartments. — Each segment, ray and geodesic is contained in an apartment.

The Euclidean coordinate chart v, for an apartment A is well-defined up to pre-
composition with an isometry « € p™*(W). Two charts v, ,,, for apartments A;, A,
are said to be compatible if 1} ! o 1,, is the restriction of an isometry in W,,. This holds
automatically when W, = o7 }(W).



RIGIDITY OF QUASI-ISOMETRIES FOR SYMMETRIC SPACES AND EUCLIDEAN BUILDINGS 151

EB4. Compatibility of apartments. — The Euclidean coordinate charts for the aperiments
in X are compatible.

It will be a consequence of Corollary 4.6.2 below that the atlas &/ is maximal
among collections of charts satisfying axioms EB3 and EB4.

We define walls, singular flats, half-apartments, Weyl cones, Weyl sectors, and
Weyl polyhedra in the Euclidean building to be the images of the corresponding objects
in the Euclidean Coxeter complex under charts. The set of Weyl cones with tip at a
point x will be denoted by #,. The rank of the Euclidean building X is defined to be
the dimension of its apartments. The building X is thick if each wall bounds at least
3 half-apartments with disjoint interiors. We call X a Euclidean ruin if its underlying
set or the atlas 2/ is empty.

4.1.3. Some immediate consequences of the axioms

Axiom EBI implies the following compatibility properties for the A ,-directions
of geodesic segments.

Lemma 4.1.1. — Let x, y, z be points in X.
1. If y lies on xz, then 0(xz) = 0(xp) = 0(yz).
2. If %), xz € £, X coincide, then 0(xp) = 6(xz).
3. Asymptotic geodesic rays in X have the same A, ,-direction.

We call a segment, ray or geodesic in X regular if its A 4-direction is an interior
point of A .

Lemma 4.1.2. — 1. If p e X and x; € X — p, then the px; initially span a flat triangle
if £,(xy, %) > 0, and they initially coincide if £ ,(x,, x5) = O.
2. If p, e X and &; € Opyy, X, then the rays p, &; are asymptotic to the edges of a flat sector.

Proof. — 1. After extending the segments px, to rays if necessary, we may
assume without loss of generality that x; € oy, X. If z €px;, then 0(zx) = 0(x;) so
L (%1, %3) € D(0(xy), 0(x,)) which is a finite set. But Z,(x;, x;) - £,(%;, %;) mono-
tonically as z — p, which implies that Z,(x;, x5) = Z (%, X3), £,(p, %3) = 7 — L, (%1, %a)
when z is sufficiently close to p. Therefore A(p, z, %,) is a flat triangle (with a vertex
at o) when z is sufficiently close to p.

2. follows from similar reasoning and the property (6) of the Tits distance. O

4.2. Associated spherical building structures

4.2.1. The Tits boundary

The Tits boundary ap,, X is a GAT(1)-space, see 2.3.2. Lemma 4.1.1 implies
that there is a well-defined A ;-direction map

(29) eaT;t,x D Onye X = Dpoq
which is 1-Lipschitz by (28).
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Proposition 4.2.1. — The space 9y, X carries a spherical building structure modelled on
the spherical Coxeter complex (py, E, W) with A, q-direction map (29).

Proof. — We verify that the assumptions of proposition 3.5.1 are satisfied.
Axiom EB2 implies that (29) satisfies the discreteness condition (17). If A is a Euclidean
apartment in X then a,, A is a standard sphere in o5, X. Clearly, any point & € oy, X
lies in a standard sphere. It remains to check that any two points &, and &, in op,, X
with Tits distance = are ideal endpoints of a geodesic in X. To see this, pick p € X and
note that the angle Z,(§,, £,) increases monotonically as z moves along the ray g,
towards &;. But by EB2 Z,(§,, £,) assumes only finitely many values, so when z is
sufficiently far out we have Z,(§,, &) = Zp(61, &2) = 7, and the rays z&; fit together
to form a geodesic with ideal endpoints &; and &,. O

4.2.2. The space of directions

The space of directions X, X is a CAT(1)-space (see section 2.1.3). Lemma 4.1.1
implies that there is a well-defined 1-Lipschitz map from the space of germs of segments
in a point x € X:

(30) On,x : 5 X > Ay

In this section we check that this map induces a spherical building structure on X, X.
By axiom EB2, 6 = 0y y satisfies the discreteness condition (17).

Lemma 4.2.2. — The space 2, X is complete, so T, X = 32, X.

Proof. — Let (x,) be a sequence in X — { x } such that (x%,) is Cauchy in 3} X.
Then 6(#4x,) is Cauchy in A, ; and we denote its limit by §. If A,C X is an apartment
containing xx, then x%, € £, A, C ;X and X, A, contains a spherical polyhedron o,
such that x%, € 6, and 0ls,5 0r = Apoq is an isometry. There is a unique &, € o, with
0(8) = & and we have d(&, #%,) = d,__,(5, 0(%%,)) — 0. Hence () is Cauchy with
0(¢,) = 8 and lim 4%, = lim §, in =, X. The discreteness condition (17) implies that
(%,) is eventually constant and therefore (x%,) has a limit in = X. O

We now apply proposition 3.5.1 to verify that X, X carries a natural structure
as a spherical building modelled on (9, E, W). The only condition which remains
to be checked is that antipodal points #%, and #%, in 2, X lie in a subset isometric to
S = Opy, E. But Z,(%, %) = = implies that x; ¥, = xx; Uxx, and if ACX is an
apartment containing ¥, x, then £, AC ¥, X is a spherical apartment containing x%,
and x%,.

Lemma 4.2.3. — All standard spheres in Z,X are of the form I, A where A is an
apartment in X passing through x.

Progof. — By corollary 3.9.2, standard spheres are A ;-apartments, so we can
find antipodal regular points &, £; € «. Then there is a segment x; x, through » with
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%%, = §,. If A< X is an apartment containing x; %, then T, A Nna 2 {§,,%,} and
the spherical apartments « and X, A coincide because they share a pair of regular
antipodes (lemma 3.6.1). O

There are two natural reductions of the Weyl group which we shall consider.
First, according to section 3. 7 there is a thick spherical building structure with atlas .o/*?(x)
and anisotropy map

(1) 021 5, X — AZ,(x);

This structure is unique up to equivalence. The second reduction is analogous to the
structure constructed in proposition 3.6.4. We postpone discussion of this structure
until 4.4.1 because we do not have an analog of lemma 3.1.1 in the case of nondiscrete
Euclidean Coxeter complexes.

4.3. Product(-decomposition)s
Let X;, :=1,...,n, be Euclidean buildings modelled on Coxeter complexes
(E;, Wis) with atlases &/; and anisotropy polyhedra A! ,. Then
Weei= Wi X ... X Wi

acts canonically as a reflection group on E:=E; X ... X E,. We call the Coxeter
complex (E, W,,) the product of the Coxeter complexes (E;, W.,) and write

(32) (E, Wo) = (B, Wi) X ... X (E,, WE).
There are corresponding join decompositions

(33) (Opies Es W) = (Opys E1s W1) 0 oo v 0 (Opys Eps W)
of the spherical Coxeter complex at infinity and

(34) Apog = Algo - -- 0 Ay

of the anisotropy polyhedron. The Hadamard space

(35) X=X, X ... xX,

carries a natural Euclidean building structure modelled on (E, W,,). The charts for
its atlas &/ are the products . =1, X ... X, of charts v, € ;. We call X equipped
with this building structure the Euclidean building product of the buildings X;.

Proposition4.8.1.— Let X be a Euclidean building modelled on the Coxeter complex (E, W ,¢)
with atlas &/ and assume that there is a join decomposition (34) of its anisotropy polyhedron. Then
1. There is a decomposition (32) of (E, W) as a product of Euclidean Coxeter complexes so that a

segment %y C E is parallel to the factor E, if and only if its A ,-direction 0(xp) lies in A, 4.
2. There is a decomposition (35) of X as a product of Euclidean buildings so that a segment
xy C E s parallel to the factor E, if and only if its A, ;-direction 0(xp) lies in A} ,.

20
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Proof. — 1. Proposition 3.3.1 implies that the spherical Coxeter complex at infinity
decomposes as a join

(36) (Opies By W) = (54, Wy) o ... 0 (S,, W,)

of spherical Coxeter complexes. By proposition 2.3.7, this decomposition is induced
by a metric product decomposition E=E, X ... X E, so that o E, is cano-
nically identified with S; and, hence, a segment xy C E is parallel to the factor E;
if and only if 6(xp) e A} ;. (36) implies that W, decomposes as the product
Wy = Wi X ... X W& of reflection groups Wi, acting on E, thus establishing
the desired decomposition (32).

2. Arguing as in the proof of the first part, we obtain a metric decomposition (35)
as a product of Hadamard spaces so that xy C X is parallel to the factor X if and only
if 8(xy) € A, ;. Furthermore, the 0y, X; carry spherical building structures modelled
on (Op E;, W,) so that the spherical building o5, X decomposes as the spherical
building join of the oy, X;. Each chart +: E - X, € &, decomposes as a product
of Al ,-direction preserving isometric embeddings v;: E; — X;. The collection &; of
all v; arising in this way forms an atlas for a Euclidean building structure on X; and (35)
becomes a decomposition as a product of Euclidean buildings. O

We call a Euclidean building irreducible if its anisotropy polyhedron is irreducible,
compare section 3.3. According to the previous proposition, the unique minimal join
decomposition of the anisotropy polyhedron A, into irreducible factors corresponds
to unique minimal product decompositions of the Euclidean Coxeter complex (E, W)
and the Euclidean building X into irreducible factors. We call these decompositions
the de Rham decompositions and the maximal Euclidean factors with trivial affine Weyl
group the Euclidean de Rham factors.

4.4. The local behavior of Weyl-cones

In this section we study the set #, of Weyl cones with tip at p. The main result
(corollary 4.4.3) is that in a sufficiently small neighborhood of p, a finite union of these
cones is isometric to the metric cone over the corresponding finite union of A ., faces
in £ X. This proposition plays an important role in section 6.

Let W; and W, be Weyl cones in X with tip at p. The Weyl cone W, determines
a face £, W, in the spherical building (2, X, A ).

Sublemma 4.4.1. — Suppose that T, W, =2 W, in T X. Then W; "W, is a
neighborhood of p in W, and W,.

Proof. — According to lemma 4.1.2 each point in the face T, W, =X W, is
the direction of a segment in W; n W, which starts at p. We can pick finitely many
points in X, W, = X W, whose convex hull is the whole face. The convex hull of the
corresponding segments is contained in the convex set W; N W, and is a neighborhood
of pin W; and W,. O
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Locally the intersection of Weyl cones with tip at a point p is given by their
infinitesimal intersection in the space of directions 3, X:

Lemma 4.4.2. — If Wy, WyeW,, then there is a Weyl cone W eW, with
EW=ZX W, nZ W,. For every such W there is an € > 0 so that

W, n W, nB,(p) = W n B,(p).
Hence the intersection of Weyl cones with tip at the same point is locally a Weyl cone.

Proof. — By lemma 3.4.2 the intersection X, W; N3 W, is a A .face and
hence there is a W e #, such that X, W = X W, n X W,. By the previous sublemma,

there are W, e #, with W, = W, and a positive € so that

V4

Wi N B(p) = W, nB,(p) =W N B,(p)

for any such W. If x is a point in W; n'W, different from p then px eX, W, so
pxC W, N W;. Therefore

W, nW,nB,(p) =W, nW; nB,(p) = WnB,(p). O

Corollary 4.4.3. — If Wy, ..., W, €W, then there is an >0 such that
(U; W) n B, () maps isomstrically to (U, C, W;) N B(e) C C, X via log,.

Progf. — Let € denote the finite subcomplex of =, X determined by U, =, W;.
Pick oy, 6, € €. By lemma 4.2.3 these lie in an apartment X, A, , < %, X for some
apartment A, , C X passing through p. If o, is a face of £, W; and o, is a face of
2, W,, then by the sublemma above we may assume without loss of generality that
(Wit U W) nB,(e) € A, ,, where Wit (resp. W2) is the subcone of W; (resp. W))
with 2, Wt = 6, (resp. £, W2 = q,). Since there are only finitely many such pairs
6,, 6, € €, for sufficiently small ¢ > 0, every pair of segments px;, px, = U, W, bounds
a flat triangle provided |px; | <e O

4.4.1. Another building structure on X, X, and the local behavior
of Weyl sectors

Let « C 2, X be a A 4-apartment. By lemma 4.2.3 there is an apartment AC X

with £ X = «, and by corollary 4.4.3 any two such apartments coincide near p.
Hence the walls in A which pass through p define a reflection group W, C Isom(«).

Lemma 4.4.4. — The reflection group W, contains the reflection group W coming from
the thick spherical building structure on X, X.

Progof. — Let mC « be a wall for the A (p) structure. There are apartments
A, C X through p, i =1, 2, 3, so that £  A| = « and the X A, intersect in half-apart-
ments with boundary wall m. By corollary 4.4.3 the pairwise intersections of the A,
are half-spaces near p. Choose charts v, ,1,,,t,, € & and let ¢;; € W, be the unique
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isometry inducing 15! o ¢ aj» Then @i, 0 ¢y 0 ¢y, is a reflection at a wall w passing through
x =13 '(p) and satisfying 2,1, w=m. O

Fixing one apartment o C X, X, we take a chart .: S — o from the atlas /" (p),
and enlarge </™(p) by precomposing each chart ' € &™(p) with elements of
v, '(W,) C Isom(S). Clearly this defines an atlas 7(p) for a spherical building structure
modelled on A_,(p) = «/W,.

Let A, A, C X be apartments so that X, A = «, £, A; = «;, and a N «; contains
a chamber CGC a. If 1,, 1, : E - X are charts from the atlas &/, then since A N A, is
a cone near p by lemma 4.4.3, it follows that 2, (1, o13") 1T, A =« —ay = T, A
carries W, faces in « to W, faces in «;, while at the same time it carries A, () faces
of a to A, 4(p) faces of ;. So every A (p) face sCZ X is a W, face for every
apartment o’ containing o. Since the W,’s are all isomorphic, this clearly implies that
2, Wisa A ,(p) face for every Weyl sector with tip at p. So we have shown:

Proposition 4.4.5. — There is a spherical building structure (X, X, o (p)) modelled on
(S, Apoa(p)) so that A q(p)-faces in X, X correspond bijectively to the spaces of directions of
Weyl sectors with tip at p. In particular, if A C X is any apariment passing through p, then there
is a 1-1 correspondence between walls m C A passing through p and A, 4(p)-walls in the apart-
ment X, A, given by m — X m. When X is a thick building, then o (p) coincides with /™ (p)
Sor every p € X.

Corollary 4.4.6. — Corollary 4.4.3 holds when the W; are Weyl sectors with tip at p.
If A, and A, be apartments in X then Ay N A is either empty or a Weyl polyhedron. In particular,
if Ay N A, contains a complete regular geodesic then A, = A,.

Progf. — Each Weyl sector with tip at p is a finite union of Weyl cones with tip
at p. Hence a finite union of Weyl sectors with tip at p is a finite union of Weyl cones
with tip at p, and the first statement follows.

If A;, A,C X are apartments and p e A} N A,, then 2, Q, NnZ A, is a convex
A,qa(p) subcomplex of 2 A;. Hence there are A 4(p) half apartments 4, ..., £, C 2 A,
so that M, &, = 2, A, nZ A,. By proposition 4.4.5, for each ¢ there is a half-apartment
H, C A with 2, H; = k;. Therefore A; N A, N B, () = (N H) N B,(c) and so A; N A,
is a Weyl polyhedron near p. Consequently A; N A, is a Weyl polyhedron. 0O

4.5. Discrete Euclidean buildings

We call the Euclidean building X discrete if the affine Weyl group W, is discrete
or, equivalently, if the collection of walls in the Euclidean Coxeter complex E is locally
finite.

If p is a point in E then o, denotes the intersection of all closed half-apartments
containing p, i.e. the smallest Weyl polyhedron containing p. By corollary 4.4.6, each
affine coordinate chart v, : E — X maps ¢, to the minimal Weyl polyhedron in X which
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contains t,(p). Hence for any point x € X there is a minimal Weyl polyhedron g,
containing it. We say that x spans o,. o, is the intersection of all half-apartments containing
x and, if X is thick, the intersection of all such apartments. The lattice of Weyl poly-
hedra o, with x € ¢, is isomorphic to the polyhedral complex A%, X.

Proposition 4.5.1. In a discrete Euclidean building X each point x has a neighbor-
hood B, (x) whick is canonically isometric to the truncated Euclidean cone of height € over 2, X.

Proof. — Let v, : E -~ X be a chart with x = 1,(p) and choose £ > 0 so that any
wall intersecting B,(p) contains p. Then for any point y € B,(p), the polyhedron o,
contains ¥ and any apartment intersecting B,(p) passes through x. Hence any two
segments xy and xz of length < ¢ lie in a common apartment and it follows that B,(p)
is isometric to a truncated cone. O

Assume now that W, is discrete and cocompact. Then the walls partition E
into polysimplices which are fundamental domains for the action of W,;. This induces
on X a structure as a polysimplicial complex. The polysimplices are spanned by their
interior points. If X is moreover irreducible, then this complex is a simplicial complex.

4.6. Flats and apartments

Proposition 4.6.1. — Any flat F in X is contained in an apartment. In particular, the
dimension of a flat is less or equal to the rank of X.

Proof. — Among the faces in dp,, X which intersect the sphere o, F we pick
a face o of maximal dimension. Then ¢ N 9y, F is open in oy, F. Let ¢ be a geodesic
in F with ¢(c0) € Int(s) and let A be an apartment containing ¢. Then a5, A contains ¢
and ¢(— o) and convexity implies oy, F < oy, A. Since F N A & ¢, it follows that
F is contained in the apartment A. O

As a consequence, we obtain the following geometric characterization of apartments
in Euclidean buildings:

Corollary 4.6.2. — The r-flats in X are precisely the apartments.

The next lemma says that a regular ray which stays at finite Hausdorff' distance
from an apartment approaches this apartment at a certain minimal rate given by the
extent of its regularity.

Lemma 4.6.3. — Suppose & € 0y, X is regular and that the ray pE remains at bounded
distance from an apartment F. Then every point x € p& with

d(p, F)
sin(dy, 4(08, 2 ALc))

d(x, p) >

lies in F.
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Progf. — Let » be a point on the ray =,(p) &, and let z € py be the point where
the segment py enters A (we may have z = y). By lemma 4.1.2 £, (p, A) > 0, and by
lemma 3.4.1 we have Z,(p, A) > d,__,(0(p2), @ A,.4). The comparison triangle A(a, b, ¢)
in the Euclidean plane for the triangle A(p, w,(p), z) satisfies Z,(a,¢) > =/2 and
28, 5) > dppoa(0(F2), & Ay). Hence d(p, A) > d(p, 2) sin(dyog(8(F7), 0 Ayy)). Since
0(pz) = 0(py) — O(pE) as y € p€ tends to oo, the claim follows. O

Corollary 4.6.4. — Each complete regular geodesic which lies in a tubular neighborhood
of an apartment A must be contained in A. If A, and A, are apartments in X and A, lies in a tubular
neighborhood of A,, then A, = A,.

Another implication of the previous lemma is the following analogue of lemma 4.4.2
at infinity.

Lemma 4.6.5. — If G, C,C X are Weyl chambers with 0Oy Gy = Oy, Gy, then
there s a chamber G = C; N G,.

Progf. — It is enough to consider the case that the building X is irreducible. The
claim is trivial if the affine Weyl group is finite and we can hence assume that W,
is cocompact. If p is a regular geodesic ray in C, then, by the previous lemma, it enters C,
in some point p and C; N C, contains the metric cone K centered at p with ideal boundary
Opys K = Opy, C;. Since W, is cocompact, K clearly contains a Weyl chamber. O

Proposition 4.6.6. — There is a bijective correspondence between apariments in X and
Ops X glven by

Ac X Op, A S oy X

Proof. — We have to show that every apartment K in 0y, X is the boundary
of a unique apartment in X. Since K contains a pair of regular antipodal points, there
is a regular geodesic ¢ whose ideal endpoints lie in K. ¢ is contained in an apartment A.
Since the apartments dp,, A and K have antipodal regular points in common, they
coincide as a consequence of lemma 3.6.1. A is unique by corollary 4.6.4. O

Lemma 4.6.7. — Let A be an apartment in X. If ¢ is a geodesic arriving at p € A, it can
be extended into A.

Proof. — If 7 is the direction of ¢ at p then, by lemma 3.10.2, n has an antipode
in the spherical apartment X, A. Hence ¢ has an extension into A. O

Corollary 4.6.8. — For any point x and any apartment A in X the geodesic cone over A
at x lies in the cone over Oy, A. In particular, it is contained in a finite union of apartments passing
through x.
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Sublemma 4.6.9. Let Y be a Euclidean building with associated admissible spherical
polyhedron A . Then for each direction § e int(A, ) the subset 0~1(8) in the geometric
boundary 9., Y is totally disconnected with respect to the cone topology.

Proof. — Suppose that y,3,»"” €Y so that 6( ') = 6(»”) = 3. Define the
point z by »’' N »” = yz. If z+ y', " then the angle rigidity axiom EB2 implies that
L(Y,Y") 2 agi=2c-dy_4(3,0A,,) and by triangle comparison we obtain:

(¥, 7).

"z2|<
|7z sin o,
As a consequence, for each z € Y the closed subset {£ €9, Y| 0(E) = & and z € )£} of
0~ 1(3) is also open and we see that each point in 6~*(3) has a neighborhood basis consisting
of open and closed sets. O

4.7. Subbuildings

A subbuilding X' < X is by definition a metric subspace which admits a Euclidean
building structure. This implies that X’ is closed and convex and that oy, X' is a
spherical subbuilding of o, X which is closed with respect to the cone topology. We
consider a partial converse:

Proposition 4.T.1. — Let X be a Euclidean building and B < oy, X a subbuilding of
Jull rank. Then the union X' of all apartments A with Op, A < B has the following properties:

o If X' is closed then 1t is a subbuilding of full rank and the subbuilding Op, X' < Opy, X
is the closure B of B with respect to the cone topology. Furthermore, X' is the unique subbuilding
with Oy, X' = B.

o If X is discrete or locally compact then X' is closed.

Progf. — Observe that
X’ U{ A apartment | o, A = B} = U{ A apartment | 9, A = B }.

We first show that X’ is a convex subset. Consider points x,, ¥, € X'. There are apart-
ments A; with x €A, < X’. By lemma 3.10.2, there exist & €dp, A; with
Lo (%3, &) = m. The canonical map ¢: 05y, X - %, X is a building morphism
and satisfies the assumption of proposition 3.11.2. Thus, since Z, (§;, &,) = =, there
is an apartment 9y, A < X’ which contains §;, &, and projects isometrically to =, X
via . This means that x, € A. Consequently x; ¥, C A and X'’ is convex. Similarly, one
shows that any ray and geodesic in X’ lies in an apartment A which is limit of apart-
ments A, with oy, A, =B, ie. 9,,A < B and A < X'. The building axioms are
inherited from X and if X' is a closed subset then it is complete and a Hadamard space.
This proves assertion (i).

(ii) Assume that X is discrete and x € X'. Any point x’ € X' lies in an apartment
A < X', and if &’ is sufficiently close to x then A contains x. Hence X’ is closed in this case.
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Assume now that X is locally compact and that (x,) C X' is Cauchy with limit
x € X. Let p € X’ be some base point. Any segment px, lies in some apartment A, = X’
and we can pick rays px, ¢, in A, so that lim x, = x and 0%, = 0px. After passing to
a subsequence, we may assume that (§,) converges to a point £ e B. Since 6%, = 6%,
lemma 4.1.2 implies that the segments p&, N pE C X’ N pE converge to pE. Hence pE
contains x and lies in X'. O

4.8. Families of parallel flats

Let X be a Euclidean building and F < X a flat. If another flat F’ has finite
Hausdorff distance from F then F and F’ bound a flat strip, i.e. an isometrically embedded
subset of the form F X I with a compact interval I C R. In this case, the flats F and F’
are called parallel. Consider the union Py of all flats parallel to F; Py is a closed convex
subset of X and splits isometrically as

P,>F x Y.

Proposition 4.8.1. — The set Py is a subbuilding of X and Y admits a Euclidean building
Structure.

Proof. — By proposition 4.6.1, Py is the union of all apartments which contain F
in a tubular neighborhood, and 0y, Py is the union of all apartments in dy,, X which
contain the sphere op,, F. The subset oy, Py < 05, X is convex by lemma 4.1.2 and
a subbuilding by proposition 3.10.3. Proposition 4.7.1 implies that P, is a subbuil-
ding of X. As a consequence, the Hadamard space Y inherits a Euclidean building
structure. O

If dim(F) = rank(X) — 1, then Y is a building of rank one, i.e. a metric tree.
Since X, Y is in this case a zero-dimensional spherical building, any two rays v, and jm,
in Y either initially coincide or their union is a geodesic. This implies:

Lemma 4.8.2. — (i) Let H, and H, be two flat half-spaces of dimension rank(X) whose
intersection H, N H, coincides with their boundary flats. Then H, U H, is an apartment.

() If Ay, Ay, Ay = X are apartments, and for each i % j the intersection A, N A, is
a half-apartment, then A, N Ay N Ay is a wall in X.

Lemma 4.8.3. — Let C,, Gy, C3C 0y, X be distinct adjacent chambers, with
n = G, N Gy N Gy their common panel. Then there is a p € X so that if

Cone(p, ) = U{Zg|>‘.’,6n},

then log,.(G,) C Z,, X are distinct chambers for every p’ € Cone(p, =) and any apartment AC X
such that oy, A contains two of the G, must intersect Cone(p, ).

Proof. — Let m C 9y, X be a wall containing the panel . Then each chamber C;
lies in a unique half-apartment %, bounded by m, and pairs of these half-apartments
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form apartments. Let A;; be the apartment in X with oy, A; =5k Uk;. By
lemma 4.8.2, nAﬁ is a wall MC X, and we clearly have oy, M =m. If pe M,
then the half-apartments log, #,C £ X are bounded by log,m = X, M, so they are
distinct; otherwise (1A, + M. Hence the chambers log, G, C log, &, are distinct
chambers.

If AC X is an apartment with C; U G; C oy, A, 7 + j, then there are chambers
G, C,C A nA,; with o, C, = C,, dy C; = C;. The Tits boundary of the Weyl poly-
hedron P = A;; n A contains C; U G;, so it intersects Cone(p, w). O

4.9. Reducing to a thick Euclidean building structure

This subsection is the Euclidean analog of section 3.7.

Definition 4.9.1. — Let X be a Euclidean building modelled on the Euclidean Coxeter
complex (E, W), with atlas &f'. The affine Weyl group may be reduced to a reflection subgroup

Wi C Wy if there is a Wy compatible subset o' C of forming an atlas for a FEuclidean
building modelled on (E, Wg).

In contrast to the spherical building case, the affine Weyl group of a Euclidean
building does not necessarily have a canonical reduction with respect to which it
becomes thick. For example, a metric tree with variable edge lengths does not admit
a thick Euclidean building structure. However, there is always a canonical minimal
reduction, and this is thick when it has no tree factors.

Proposition 4.9.2. — Let X be a Euclidean building modelled on (E, W,g). Then there
is a unique minimal reduction Wi C Wy so that (X, E, Wig) splits as a product 11X, where
each X, is either a thick irreducible Euclidean building or a 1-dimensional FEuclidean building.
The thick irreducible factors are either metric cones over their Tits boundary (when the affine Weyl
group has a fixed point) or their affine Weyl group is cocompact.

Progf. — We first treat the case when (0, X, A,,4) is a thick irreducible spherical
building of dimension at least 1.

Step 1. — FEach apartment A C X has a canonical affine Weyl group G,. If AC X is
an apartment, a wall M C A is sirongly singular if there is an apartment A’ C X so that
A N A’ is a half apartment bounded by M. Since oy, X is thick and irreducible, for
every wall m C oy, A there is a strongly singular wall M C A with oy, M = m.

Sublemma 4.9.3. — The collection M, of strongly singular walls in A is invariant under
reflection in any strongly singular wall in A.

Proof. — Note that a wall M C A is strongly singular if and only if 2, MC I ) X
is a wall with respect to the thick building structure (Z, X, A (p)); this is because
any half-apartment £#C £ X with boundary £, M can be lifted to a half-apartment

21
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H C X with boundary M, £, H = % by applying proposition 3.11.4 to the surjective
spherical building morphism log, : g, X — 2, X.

If M;, M, C A are strongly singular walls intersecting at p € A, then Z, M, is a
A a(p) wall in £, ACXE X, and so if we reflect £, M, in I, M, (inside the apart-
ment X A), we get another AP (p) wall which is then the space of directions of the
desired strongly singular wall Mj.

Now suppose that M;, M, € #, are parallel. A, is irreducible so there is a
strongly singular wall M, intersecting both M, at an acute angle. Reflect M, in M,
to get M, reflect Mj in M, to get M;, and M, in M, to get M, and finally reflect M,
in M; to get a wall which is the image of M, under reflection in M;. The walls M; are
all in #,, so we are done. O

Proof of Proposition 4.9.2 continued. — Hence for every apartment AC X the
collection of strongly singular walls in A gives us a group G, C Isom(A) which is gene-
rated by reflections.

Step 2. — The group G, is independent of A. Since 0y, G, C Isom(dp,, A) is an
irreducible Coxeter group, it follows that G, is either a discrete group of isometries
or it has a dense orbit. When G, is discrete, it is generated by the reflections in the
strongly singular walls which intersect a given G,-chamber in codimension 1 faces.
When G, has a dense orbit, it is generated by all the reflections in strongly singular
walls passing through any open set. If two apartments A; and A, intersect in an open
set, it follows that G, is isomorphic to G,,; therefore G, is independent of A. So there
is a well-defined Coxeter complex (E, W) attached to X.

Step 3. — Finding (E, W) apartment charts. If Z is a convex domain in an apart-
ment AC X and v: U — Z is an isometry of an open set U C E onto an open set in Z,
then there is a unique extension of ¢ to an isometry of a convex set Z C E onto Z.

Pick an apartment Ay C X and an isometry v, : E — A, which carries W, C Isom(E)

to G, . Then restrict to a W, chamber G, C E and its image C, = to(Gy) C A,. Given
any chamber G C X, there is an apartment A, containing subchambers of C and G,.
There is a unique isometry v, : E — A, so that ;! and ;! agree on the subchambers
C, N A,C A,, and a unique isometry t;: E D G — C so that 5! and ! agree on the
subchamber C N A,;. If A, is another apartment with oy, Gy, gy, G C Opy, Ay, we get
another isometry i,: E — A,; but the convex set A; N A, contains subchambers of
C, and C, so +;! and ;! agree on a subchamber of C. Therefore i, is independent of

the choice of apartment asymptotic to G, U C.

Sublemma 4.9.4. — Let AC X be an apartment, and let C,, Gy C Oy, A be adjacent
Apoq-chambers (Cy 0 Cy is a panel). For i = 1,2 we let v, (A):E > A be the unique
isometric extension of 5, where C,C A is a Wig-chamber with 0y, C; = C;. Then
tg, (A) o 1o (A) € Wi
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Proof. — For i =1,2 let A;;C X be an apartment with Cy U G, C ap, A;. If
C, is contained in the convex hull of G, U C; (or C,C ConvexHull(C, U C,)) then
C; U G, C 05(A N Ay), so the sublemma follows from the fact that 1 *(A) restricted
to A N A, coincides with 1!, a,- 50 we may assume that there is a chamber
C;3 C Opye Ay N Opyy Ay which meets C;, and C, in the panel = = C, nG,. By
lemma 4.8.3 (applied to the original Euclidean building (X, E, W,;)), there is a
point p € A; N A, so that Cone(p, =) C A; N A, and log, (G;) C Z, X are distinct chambers
fori = 1, 2, 3. Therefore ;! and 1; * agree on Cone(p, ). Hence the isometries 5 *(A), 15!
agree on Cone(p, ), which means that i15'(A) oy (A) : E—~E is a reflection. But
since X (Cone(p, w)) = log,(C;) N log,(C,) N log,(C;), Cone(p, ) spans a strongly
singular wall in A and so the reflection 15 (A) o1 (A) € Wy, O

Proof of Proposition 4.9.2 continued. — By sublemma 4.9.4, we see that for each
apartment AC X, there is a canonical collection of isometries «: E —~ A which are
mutally W, compatible, and which are compatible with the i : G — C for every
chamber GC A. We refer to such isometries as W,g-charts, and to the collection of
W, g-charts (for all apartments) as the (E, Wy,) atlas «&7'.

Sublemma 4.9.5. — Let A, A,C X be apartments with d-dimensional intersection
P = A, nA,. If p €P is an interior point of the Weyl polyhedron P, then there is an apartment
A C X so that Ay contains a neighborhood of p € P, and Az N A, contains a Weyl chamber.

Proof. — We have 2, A; NnZ A, =2 P by lemma 4.4.3. Let 6;CXZ P be a
d — l-dimensional face of X P, and let o, be the opposite face in Z_ P. If v, C X A,
is a chamber containing o¢;, then we may find an opposite chamber t,C I  A,. But
then t, contains a face opposite o,, and this must be o, since each face in an apartment
has a unique opposite face in that apartment. Let C;C oy, A; be the chamber such
that log, C; = 7;. Then there is a unique apartment A;C X with G; U G, C py, Ag.
Z,PC I, A;, so A; has the properties claimed. O

Proof of Proposition 4.9.2 continued. — If A,, A,C X are apartments with A; N A, + 0,
then any W, charts ,: E - A, are W, compatible since by sublemma 4.9.5 we
have a third apartment A; C X so that v, and 1, are both W, compatible with v; : E — A,
on an open set UC A; N A,. Hence &’ gives X the structure of a Euclidean building
modelled on (E, W_,). From the construction of Wy, it is clear that (X, &’) is thick.

Step 4. — The case when X is a 1-dimensional Euclidean building, i.e. a metric tree. Let
Ao C X be an apartment, 9y, Ag ={n;, My }. For each peX let =, (p) € A, be the
nearest point in A,, and p, €A, be a point (there are at most two) with
d(pa,> ©a () = d(p, A,). Let # C A, be the set of points P4, where p € X is a branch
point: | Z X | > 3; let GC Isom(A,) be the group generated by reflections at points
in.#. For each § € 9y, X\, there is a unique isometry v, from the apartment Ay = 7, 7,
to the apartment », § which is the identity on the half-apartment 7, 3, N 7, & If &, + &,,
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then we have two isometries 1, 1, : Ay — &, &, where 1! agrees with tg; on mE NEE,.
By inspection 1; !0t € G. Hence for each apartment AC X we have a well-defined
set of isometries Ay — A. As in step 3 it follows that these isometries are G-compatible,
so they define an atlas &/’ for a Euclidean building structure on X.

Step 5. — X is an arbitrary Euclidean building modelled on (E, W), Let W = Omits Wases
and let W' C W C Isom (0, E) be the canonical reduced Weyl group of &, X given

by section 3.7. Let W, C Isom(E) be the inverse image of W’ under the canonical
def

homomorphism Isom(E) — Isom(dy, E). Let 0': 05, X — Al 4 =S/W' be the
A, -anisotropy map. We may define A ;,-directions for rays x£C X by the formula
0'(x€) = 0'(£) € ALq- We define the A] ,-direction of a geodesic segment xy C X by
setting 0'(xy) = 0'(x,) for any ray %, extending xy; if 1€, is another ray extending ¥y
then &, € oy, X and &, € oy, X are both antipodes of 7 € 0y, X where yn is a ray
extending yx, so 0'(xy) is well-defined. The remaining Euclidean building axioms follow
easily from the fact that any two segments px, py initially lie in an apartment AC X
(corollary 4.4.3) and for our compatible (E, W,,) apartment charts we may take all
isometric embeddings i: E — X for which O, ¢: 0y E — 05, X is an apartment
chart for (g, X, Ap.q)-

We may now apply proposition 4.3.1 to see that (X, E, W,;;) splits as a product
of Euclidean buildings (X, E, W,;) = (IIX,, IIE;, IIWi,) so that each ap, X; is
irreducible. Let (Wi;)'C Wi, o, be the canonical subgroup and atlas constructed
in steps 1-4, and set W, = II(Wi,)’' C Isom(E), &’ = [l.&,. Then (X, E;, (Wi,)’, &)
has the properties claimed in the proposition. Fix an apartment A, C X and a chart
ta, E. If Ay, ..., Ay = A, is a sequence of apartments so that A;_, N A; is a half-
apartment for each i, then there is a unique isometry g;: A;,_, — A, so that g, is the
identity on A; ; N A;. Axiom EB4 implies that g0 ... o g o1, €& for each 4, so in
particular g = geo ... 0 g €1,,,(W,y). From the construction of (W,)' it is clear
that the group of all such isometries g: A, — A, contains v, (W,¢) C Isom(A,) where
ta, € ' So W C Wy is a minimal reduction of W, O

4.10. Euclidean buildings with Moufang boundary
This is a continuation of section 3.12.

Proposition 4.10.1 (More properties of root groups). — Let B be a thick irreducible spherical

building of dimension at least 1, and let X be a Euclidean building with Tils boundary B.

1. For every root group U, C Aut(B, A,,,) and every g € U, there is a unique automorphism
8gx: X = X 50 that oy, gx = g In other words, if G is the group generated by the root
groups, then the action of G on gy, X ¢ extends * to an action on X by building automorphisms.
Henceforth we will use the same notation to denote this extended action.

2. Suppose g € U, is nontrivial. If A = X is an apartment such that dp, A D a, then g(A) N A
is a half-apartment; moreover Fix(g) N A = g(A) N A.
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Proof. — See [Ron, Affine buildings II, esp. prop. 10.8], or [Ti2, p. 168].

For the remainder of this section X will be a thick, nonflat irreducible Euclidean
building of rank > 2. Therefore A, is a spherical simplex with diameter < n/2 and
the faces of oy, X define a simplicial complex.

Lemma 4.10.2. — Let AC X be an apartment, py € X, p € A the nearest point in A,
and a C dA a root. Then the stabilizer of pg in the root group U, fixes p.

Proof. — Using lemma 3.10.2 extend the geodesic segment p,p to a geodesic
ray po & = fo p U PE so that the ray € lies in the half apartment Cone(p, a) C A. If g € U,
fixes p,, then it fixes the ray p, £, and hence the half-apartment Cone(p, a). O

We now assume that the spherical building (0p X, A,.q) is Moufang. Pick
peX, and let (3, X, A% () denote the thick spherical building defined by the space

of directions X, X with its reduced Weyl group (see section 3.7). Suppose H, C X

is a half-apartment whose boundary wall passes through p, &, « 2 H, CZ Xisa

Apa(p) root, and let a, = oy, H, C oy, X. If U, is the root group associated
to a,, and V, CU, is the subgroup fixing p, then we have a homomorphism
Z,:V,, = Aut(Z, X, AR (p)).

Lemma 4.10.3. — The image of V,_is the root group U, associated with h, , and this
acts transitively on apartments in X, X containing h, . In particular, (3, X, A% (p)) is a thick
Moufang spherical building.

Proof. — By corollary 3.11.5, if 1_C X X is a A® (p) root with
oh_ = oh, =X (0H,),

then there is a half-apartment H_ C X so that H_ and H, have the same boundary
and X  H_ = &_. Given two such A ,(p) roots £: , k2 C X X so that A Uk, forms
an apartment in I, X, we get two half apartments H* so that H*. U H, forms an apart-
ment in X. Since (Op, X, Apyq) is Moufang, the root group U, C Aut(dgy, X, Aye)
contains an element which carries H'. to H%. By 3.12.2, g “ extends ”’ uniquely to an
isometry g : X — X which carries the apartment H:. U H__ to the apartment H> VH_,
fixing H, (see 4.10.1). It remains only to show that the isometry 2 ¢g: 3 X - X X
is contained in the root group U, C Aut(Z, X, AR,(p)). Clearly Z g fixes k,. Let
CCX,X be a A (p) chamber such that G N £, contains a panel = with = ¢ 9k, .
Using proposition 3.11.4 we may lift C to a (subcomplex) C C 8y, X so that G N da +
maps isometrically to G N 9k, under l