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MORPHISMS, LINE BUNDLES AND MODULI SPACES
IN REAL ALGEBRAIC GEOMETRY

by J. BOCHNAK, W. KUCHARZ and R. SILHOL*

1. Introduction

In the present article we investigate regular maps between real algebraic varieties
and vector bundles on real algebraic varieties. The term real algebraic variety designates
a locally ringed space isomorphic to a Zariski locally closed subset of P"(R), for some =,
endowed with the Zariski topology and the sheaf of R-valued regular functions. Mor-
phisms between real algebraic varieties are called regular maps. An equivalent description
of real algebraic varieties can be obtained using reduced quasiprojective schemes over R.
Given such a scheme %, let Z'(R) denote its set of R-rational points. If Z'(R) is Zariski
dense in %, then we regard it as a real algebraic variety whose structure sheaf is the
restriction of the structure sheaf of Z'; up to isomorphism, each real algebraic variety
is of this form. Note that £ (R) is always contained in an affine open subset of &, and
hence each real algebraic variety is isomorphic to a Zariski closed subvariety of R",
for some n. Every real algebraic variety carries also the Euclidean topology, that is,
the topology induced by the usual metric topology on R. Unless explicitly stated other-
wise, all topological notions related to real algebraic varieties will refer to the Euclidean
topology.

Given two nonsingular real algebraic varieties X and Y, with X always assumed
to be compact, we regard the set Z(X, Y) of all regular maps from X into Y as a subset
of the space ¥*(X, Y) of all ¥ maps from X into Y, endowed with the ¥* topology,
cf. [16]. The main object of our interest is the set

#3(X, Y) = the closure of #(X,Y) in #°(X,Y).

In other words, we investigate which €* maps from X into Y can be approximated
by regular maps. Of course, a precursor of this problem is the classical Stone-Weierstrass

* The first two authors were partially supported by NATO Collaborative Research Grants Programme,
CRG 960011. The second author was partially supported by NSF Grant DMS-9503138. The third author was
partially supported by EC HCM plan ERBCHRXCT 93-408.



6 J. BOCHNAK, W. KUCHARZ AND R. SILHOL

approximation theorem, where Y = R. The set ¥%(X, Y) has already been studied
in [1, 2, 4, 5, 9], and related problems have been addressed in [3, 7, 10, 21]. The case
where Y is the unit circle is completely elucidated in [5]. In this paper we deal almost
exclusively with maps into the unit 2-sphere

St { (5,0, ) eR [ 452 1 A= 1),

The approximation problem for maps into S? is closely tied to the theory of C-line
bundles admitting an algebraic structure. Recall that a topological C-line bundle &
on X is said to admit an algebraic structure if there exists an invertible £(X, C)-module P,
where C is identified with R? and regarded as a real algebraic variety, such that the
C-line bundle £, on X associated with P in the usual way (Serre-Swan [27, 31]) is
topologically isomorphic to §. Equivalently, £ admits an algebraic structure if and only
if it is topologically isomorphic to an algebraic G-vector subbundle of the trivial G-vector
bundle on X with total space X x C* for some & [10]. We denote by VB}(X) the group
of isomorphism classes of topological C-line bundles on X, with group operation induced
by tensor product of C-line bundles. Since X is compact, the subgroup VB_,.(X)
of VBy(X) that consists of the isomorphism classes of topological C-line bundles on X
admitting an algebraic structure is canonically isomorphic to the Picard group
Pic(#(X, C)) of isomorphism classes of invertible £(X, C)-modules [1, Proposi-
tion 12.6.4]. We shall now explain how €%(X, S?) and VB;_,,(X) are related to
the Néron-Severi group.

Given an n-dimensional smooth projective scheme ¥~ over C, we regard its set
of C-rational points ¥°(C) as a complex manifold and denote by Hj (¥(C), Z) the
subgroup of H2(¥"(C), Z) that consists of the cohomology classes Poincaré dual to the
homology classes in H,,_,(¥"(C), Z) represented by divisors on ¥. As usual,
H:, (7" (C), Z) is identified with the Néron-Severi group of ¥ If Z is a smooth projective
scheme over R, we put o =% Xz C and do not distinguish between Z'¢((C) and
the set Z'(C) of C-rational points of &. Thus, in particular, the group HZ_(%(C), Z)
is defined. Note that Z'(R) can be viewed as the set of fixed points of the action of the
Galois group Gal(C/R) on Z(C). By the resolution of singularities theorem [15], there
exists a smooth projective scheme Z over R such that X and Z'(R) are isomorphic as
real algebraic varieties. Identifying X with Z(R), we set

H_ (X, Z) = H?(i) (Hg, (2/(C), 2)),

where i : X < Z'(C) is the inclusion map. Throughout the paper, given a nonnegative
integer # and a continuous map ¢:S — T between topological spaces, we let
H*(¢) : H¥(T, Z) — H¥(S, Z) denote the induced homomorphism. One easily sees that
the subgroup H _,.(X, Z) of H*(X, Z) does not depend on the choice of & [10, p. 278].
The importance of the group Hj_,, (X, Z) stems from the following, already known
result [10, Remark 5.4], [9, Proposition 2.2].
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Theorem 1.0. — Let X be a compact nonsingular real algebraic variety. Then the canonical
isomorphism
¢, : VBY(X) - H¥(X, Z),

induced by the first Chern class, maps VBg_ . (X) onto Hg_, (X, Z). Furthermore, given a
€° map f: X — S? the following conditions are equivalent:

a) fis in €3(X, S?);

b) f is homotopic to a regular map from X into S2;

¢) B f)(x) is in HE_,;(X, Z), where x is a generator of H*(S% Z) =~ Z.

Let us examine more closely the case where X is a surface, which will play a special
role in our considerations. Denote by n*(X) the set of homotopy classes [ f] of ¥* maps
f:X — S% By Hopf’s theorem, the map

hy i n*(X) > H¥(X, Z), Ax([f]) =H(f)(x)

is bijective and we endow n*(X) with group structure so that iy becomes an isomorphism.
The group =*(X) is known in topology as the second cohomotopy group of X, cf. [17].
It follows from Theorem 1.0 that the image of

(X)) ={[f]ler*(X) |fe2(X, 8}

under /Ay is precisely H _,. (X, Z). In particular, n%(X) is a subgroup of n*(X) that
determines completely €5(X, S?). If X is connected and orientable, then =*(X) is
isomorphic to Z and, in turn, the subgroup n%(X) is determined completely by a single
numerical invariant 5(X), which is a unique nonnegative integer satisfying

b(X) n3(X) = 7%(X).

Clearly, 5(X) = 1 if and only if the set Z(X, S*) is dense in %> (X, S?). Similarly,
b(X) = 0 if and only if every regular map from X into S? is null homotopic. More
generally, a €° map f: X — S* belongs to ¥3(X, S?) if and only if the topological
degree deg(f) of f, computed with respect to some fixed orientations on X and S2
is a multiple of 5(X).

Before stating new results of this paper, let us briefly review a few known facts
concerning €3(X, §?) and VB_,.(X) in order to give the reader an idea of diversity
of occurring phenomena. Recall that a nonsingular real algebraic variety diffeomorphic
to a ¥ manifold M is called an algebraic model of M. Every closed € manifold admits
uncountably many pairwise biregularly nonisomorphic algebraic models [6]. The
following facts are known:

(i) Every closed ¥® manifold M has an algebraic model X such that #Z(X, S%)
is dense in ¥*(X, S?) and VB_,,(X) = VB(X) [8, Theorem 1.2].

(ii) A closed connected €* surface M has the property that for every algebraic
model X of M the set Z(X, S?) is dense in ¥°(X, S?) if and only if M is nonorientable
and of odd genus [4, Theorem 2].
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(iii) For every closed connected orientable ¥~ surface M and every nonnegative
integer b there exists an algebraic model X of M with #(X) = & [9, Theorem 1.1].
(iv) Orientable algebraic surfaces X in P?(R) with n%(X) = 0 are generic in
the following sense. Let 2 be a smooth subscheme of P% defined by a homogeneous
polynomial of degree at least 4, whose all coefficients are algebraically independent
over Q. By [11], the Néron-Severi group HZ (% (C), Z) of % is generated by the
cohomology class of a hyperplane section of Z'¢in P§. It follows that if Z'(R) is nonempty
and orientable, then H§_,.(Z'(R), Z) = 0 [10, Lemma 4.5], and hence n%(Z (R)) = 0.

(v) If S,, is the Fermat 2-dimensional sphere of degree 2z, that is,

Sen ={ (%, 2) eR? I X" +)’2” + 2 =1 }s
then £(8S,,, S?) is dense in #*(S,,, S*) [4, Theorem 4.5]. In particular, ¢ generic ”
cannot be omitted in (iv).

(vi) If F, is the real Fermat curve in P?R) defined by % 4 y* = 2%
then b(F, x F;) =b(Fy x F,) =0, 6(F, xF,) =1 if £ is odd and 2> 1, and
1< b(F, x F,)<2if kis even and 2> 2 [9, Example 1.14]. We shall show in this
paper that actually 6(F, X Fy) = 2, cf. Example 4.17.

(vii)) Let X =& ,R) X ... x &,(R), where &, ..., &, are elliptic curves
over R, n > 2. Both VB;_,.(X) and %%(X, S?) are explicitly described in [7, 9]. For
instance, VB}_,.(X) =0 and £(X,S?) contains only null homotopic maps if the
elliptic curves &y, ..., &,c over G are pairwise nonisogenous. In particular, these
conditions hold for a ¢ generic” n-tuple (&, ..., &,). On the other hand, if one
identifies isomorphic elliptic curves over R, then VB{_,.(X) = VBy(X), or equi-
valently, #(X, S*) is dense in ¥*(X, S*) for countably many  exceptional > n-tuples
(&4, ..., &,), explicitly described by certain arithmetic conditions on periods of the &,.

In this paper we are especially interested in Abelian varieties over R and algebraic
curves over R.

Let & be a g-dimensional Abelian variety over R. Then X = #(R) is a commu-
tative real algebraic group with 2" connected components for some integer r satisfying
0 < r< g (as & varies, all values of r with 0 € 7 < g do occur) [14, 26, 29]. Each connected
component of X is diffeomorphic to the real torus R?/Z? [14, 26, 29]. Given a point x
in X, let ¢,: X — X denote the translation by x, that is, £,(2) = x 4 z for z in X. Set

H*(X,Z)™ = {u e H¥(X, Z) | H*(2,) (4) = u for all x in X},
VBy(X)™ ={aeVByX)|#(«) =« for all x in X},

where £ : VBL(X) — VB{(X) is the isomorphism induced by pullback of GC-line
bundles under ¢,.

Proposition 1.1. — With the notction cs above, VBL(X)™ and H2(X, Z)™ are free
Abelian groups of rank (g — 1) g/2, which sctisfy
A (VBY(X)™) = HE(X, Z)™,
VB;_ . (X) = VBy(X)™, H;

C—alg

(X, Z) = H¥(X, Z),
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Proposition 1.1, whose proof is quite simple, provides a natural ‘ upper bound *’ for
the size of the groups VBj_,.(X) and H_, (X, Z). Clearly, H (X, Z)™ = H*(X, Z)
is equivalent to the connectedness of X, and hence, in view of Proposition 1.1, X is
connected if VBg_,,(X) = VBy(X). Interjecting into this argument Theorem 1.0
and the fact that the group H2(X, Z) is generated by the elements of the form H2( f) (x),
where f: X — S% is a ¥ map, we also conclude that density of %#(X, $?) in #*(X, S?)
implies connectedness of X.

Explicit computations that we intend to do will be in terms of a period matrix
of Z. Let Q be a complex g X 2g matrix such that the Z-submodule [Q] of C? generated
by the columns of Q has rank 2g and is mapped onto itself by the complex conjugation
of C°. The complex conjugation of C’ gives rise to group action of Gal(C/R) on the
complex torus C?/[Q]. If there exists a Gal(G/R)-equivariant isomorphism between
the complex Lie groups C/[Q] and Z'(C), then Q is said to be a period matrix of Z. It
is known that & admits a period matrix of the form (Z, I ), where Z is a complex
g X g matrix and I, is the identity g X g matrix [26, 29]. Denote by Re Z and Im Z
the real and the imaginary part of Z, respectively. One easily sees that then the matrix
2 Re Z has always integer entries, which justifies why below it is slightly more convenient
to work with 2 Re Z instead of Re Z.

If A is a matrix, then ‘A will stand for its transpose. Denote by Mat,(Z) the
Z-module of all g X g matrices with entries in Z. Let Alt,(Z) denote the Z-submodule
of Mat,(Z) of all antisymmetric matrices; as usual, a matrix A is said to be antisymmetric
if A= —"A.

Given an arbitrary complex g X g matrix Z, define

G(2)

to be the submodule of Alt,(Z) that consists of all matrices C for which there exist
matrices A in Alt,(Z) and B in Mat,(Z) such that for M =2ReZ and T =ImZ,
the following conditions are satisfied:

‘'MCM — 4'TCT = 2(BM — ‘M ‘B) — 4A

1.2
(1.2) ‘MCT + ‘TCM = 2(BT — ‘T 'B).

Significance of G(Z) is explained by the following.

Theorem 1.3. — Let & be a g-dimensional Abelian variety over R and let X = Z(R).
If Q = (Z, 1)) is a period matrix of Z, then every Gal(C/[R)-equivariant isomorphism of complex
Lie groups ¢ : C°|[Q] — X (C) gives rise to a group isomorphism
7, HA(X, Z)™ — Alt,(Z)
satisfying
To(He —ae(X, Z)) = G(Z).
Theorem 1.3 is a crucial ingredient in the proof of our next result, whose part (i)
is motivated by Proposition 1.1.
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Theorem 1.4. — Let X = Z'(R), where X is a g-dimensional Abelian variety over R,
and let (Z,1,) be a period matrix of &. Then:

(i) VBG_,x(X) = 0 if and only if the equation *(Im Z) C(Im Z) = D, withk C and D
in Alt,(Z), has only the trivial solution G = D = 0.

(ii) rank VBi_,.(X) = (g — 1) g/2 if and only if every 2 X 2 minor determinant
of the matrix Im Z is a rational number.

An orientation of X = Z'(R), where & is an Abelian variety over R, is said to
be tnvariant if it is preserved by every translation #,: X — X for x in X. Clearly, there
are precisely two invariant orientations, regardless of the number of the connected
components of X. This definition leads to a particularly simple interpretation of our
results for Abelian surfaces.

Example 1.5. — Let X = Z(R), where & is an Abelian surface over R. By Propo-
sition 1.1, the groups H3(X, Z)™ and VBg(X)™ are isomorphic to Z and there exists
a unique nonnegative integer 5(X) satisfying

H_ (X, Z) = b(X) H¥(X, Z)™, VB{_ . (X) = 8(X) VBy(X)™.

We shall now give a characterization of the set €3(X, S%) in terms of 5(X). To this
end, endow X with an invariant orientation and fix an orientation on S% Let X, ..., X,
be the connected components of X (recall that s = 1, 2 or 4, depending on the choice
of ). A € map f: X — 8% is in ¥Z(X, S?) if and only if

deg(f]X,) = ... = deg(f| X,) = kb(X)

for some integer %. Indeed this assertion follows from Theorem 1.0 and the first displayed
equality in this example. In particular, rank n%(X) < 1, whereas rank n*(X) =s. Of
course, if X is connected, then the invariant 5(X) considered here coincides with the
invariant 5(X) introduced subsequently to the definition of n5(—).

If (Z,1,) is a period matrix of &, then Theorem 1.3 implies

C(Z) = b(X) Alty(Z).

Furthermore, in view of Theorem 1.4, 5(X) # 0 if and only if det(Im Z) is a rational
number. The explicit computation of #(X) is a difficult task due to the complexity of
equations (1.2). This has been done in the case of Z equal to the product of two elliptic
curves over R [9]. The formulas for 5(X) strongly depend on the arithmetical properties
of periods of the elliptic curves in question. As the elliptic curves vary, all nonnegative
integers occur as values of 5(X).

Let us again consider Abelian varieties of arbitrary dimension. Theorem 1.4 (i)
implies that VBg_, (' (R)) = 0 for a “ generic ”’ Abelian variety & over R. We shall
make this vague remark precise for principally polarized Abelian varieties over R.
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Recall that the moduli space </§ of g-dimensional principally polarized Abelian
varieties over R is a topological space (even a stratified space with nonsingular real
analytic strata [29, 30]), whose underlying set consists of the isomorphism classes [#]
of g-dimensional principally polarized Abelian varieties % over R. It follows from the
local compactness of 24§ that it is a Baire space, that is, the intersection of any countable
family of open and dense subset of 27§ is dense in &/§. Clearly, such an intersection
is an uncountable set if g> 1.

Theorem 1.6. — Let g be a positive integer. Then:
(i) The set

{[¥] e | VBe_wo(?(R)) = 0}

is the intersection of a countable family of open and dense subsets of 3.
(ii) The set

{[#] e g | rank VBg_ (¥ (R)) = (¢ — 1) g/2}
is uncountable and dense in L.

Recall that the number of the connected components of %% is equal to the integer
part of (3g + 2)/2, cf. [26, Theorem 6.1]. In particular, 2/ has 4 connected components
and we have the following result, in which #(—) stands for the invariant introduced
in Example 1.5.

Theorem 1.7. — The intersection of the set
{[@]lep[b(FR)) =1}
with each connected component of g ts uncountable.

It is interesting to compare Theorem 1.7 with (vii) in our review of known facts
above.

All results announced here dealing with Abelian varieties over R are proved in
Section 2, which also contains some additional information on regular maps into S*
and into unit spheres of dimension greater than 2.

We shall now describe our results concerning regular maps from X into S% where
X is the product of compact nonsingular real algebraic curves X,, .. , X, with n> 2.
Since the group HE_,.(X; X ... X X,,Z) is canonically isomorphic to the direct
sum of the groups Hj _, (X, X X,,Z) for 1< i< j< n [9, Proposition 5 1], in view
of Theorem 1.0, we restrict our attention to the case n = 2. Then the set €3(X; X X,, S%)
is completely determined by the group n%(X; X X,), which is used as a main device

in our presentation. The interested reader may himself recast the results in terms of
C-line bundles.
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For convenience, a projective smooth scheme £ over R of dimension 1 such that
Z ¢ is irreducible will be called an algebraic curve over R. We denote by g(Z) (resp. s(%))
the genus of & (resp. the number of the connected components of Z'(R)). Recall that
either Z(C)\Z (R) is connected, in which case & is said to be nondividing, or Z(C)\Z (R)
has precisely 2 connected components and then % is said to be dividing. If & is non-
dividing (resp. dividing), then 0< s(%¥)< g(¥) (resp. 1< s(Z)<g(%)+ 1 and
S(Z) = g(%) + 1(mod 2)). In particular, s(Z) = g(Z) (resp. s(Z) = g(£) + 1) implies
that & is always nondividing (resp. dividing). These facts were essentially already
known to F. Klein. For details the reader may refer to [14, 24, 26] and the literature
cited there. For & nondividing with s(Z) > 1 (resp. & dividing or & with (%) = 0)
we set €(Z) = 1 (resp. (%) = 2).
Let us recall that the moduli space g of algebraic curves over R of genus g is a
topological space (actually, even a stratified space with nonsingular real analytic strata
[26, 30]), whose underlying set consists of the isomorphism classes [Z'] of algebraic curves &
over R of genus g. It is well known that the family { A% | (s,€) e A, U{(0,2)}},
where
A, = AL UAL
Al={(s,1)|seZ,1<s< g},
A;={(s52)|s€eZ,1<s<g+1,s=g+ 1(mod?2)},
My ={[Z] e | (s(X), () = (5,¢) },

is the set of connected components of .#%. Furthermore,

dim A — g for 0<gx1
3¢ —3 forg>2
for all (s,¢) in A, U{(0,2)}.
In most cases, algebraic curves Z over R with Z(R) empty (and hence the entire
connected component 4 %?) will be of little interest to us.
Let &, be an algebraic curve over R with X, = Z,(R) nonempty for 2 =1, 2.
Obviously, n%(X; X X,) is a free Abelian group satisfying

rank 73(X; X X,) = §(Z31) s(Z2) < (¢(F1) + 1) (@(%2) + 1)

Proposition 1.8. — With the notation as above,
rank 75 (X; X X,) < (s(%1) — &(%1) + 1) (5(&2) — &(%,) + 1)
< g(%1) g(%y).

The reader will find a slightly more detailed result in Proposition 3.8. An immediate
consequence of Proposition 1.8 is that if &, is dividing with X, connected for 2 = 1
or k = 2, then n%(X; X X,) = 0. Other cases are much harder to handle. We investigate
them by means of period matrices of Z’; and Z,.
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It is useful to define first a certain Z-module, which will play a similar role to
the one defined by equations (1.2). Denote by Mat(g, X g;, Z) the Z-module of all

g, X g, matrices with entries in Z. Let Z, be a complex g, X g, matrix for 2 = 1, 2.
We define

C(Z,, Z,)

to be the submodule of Mat(g, X g,, Z) that consists of all matrices G for which there
exist matrices Gy, G,, Hin Mat(g, X g,, Z) suchthatfor M;, = 2ReZ,and T, = Im Z,,
k = 1,2, the following conditions are satisfied:

‘M; CM, — 4 ‘T, CT, = 2(G; M, — ‘M, G,) — 4H

1.9
(1-9) ‘M, CT, + ‘T; CM,; = 2(G, T, — 'T, G,).

Theorem 1.10. — Let &, be an algebraic curve over R of genus g, with X, = Z,(R)
nonempty for k = 1, 2. Let (Z,,1,) be a period matrix of the Facobian variety of %,. Then
there exists a homomorphism

v : Mat(g, X g5, Z) — w%(X; X X,)

satisfying
T(C(Zy, Zy)) = 75Xy X Xy).

In particular, 7% (X, X X,) is isomorphic to (C(Z,, Z;) + Ker <)/Ker ©. Furthermore, if
1< g.< 2 and if Z,, is suitably chosen for k =1, 2, then Ker v and +(M(gy X g5, Z)) can
be explicitly described. ' '

We shall now elaborate on the last, vague statement in Theorem 1.10.

Let H, be the space of all complex symmetric g X g matrices Z such that 2 Re Z
has integer entries and Im Z is positive definite; H, is a subspace of the classical Siegel
upper half space, suitable for the study of Abelian varieties over R and algebraic curves
over R, cf. [14, 26, 29, 30]. Every element Z in H, determines in the usual way a princi-
pally polarized Abelian variety over R, denoted by %,. By construction, %,(C) = C’/[Q],
where Q = (Z, 1,), and the principal polarization on %, is determined by the alternating
bilinear form E,: [Q] X [Q] — Z with matrix
( Q. I,) '

—1I, 0
with respect to the Z-basis for [Q] formed by the columns of Q, cf. [14, 26, 28]. We say

that Z is a period matrix of an algebraic curve Z over R of genus g if %, and the Jacobian
variety of 2 are isomorphic as polarized Abelian varieties over R.
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It is well known that every algebraic curve over R of genus 1 has a unique period
matrix in the subset

M1=‘%+V—lt|t>0}u{\/—lt]t>0}

of H,, cf. [14, 26, 29] and Example 4.2. An analogous result for curves of genus 2 is
new, interesting in its own right, and important in connection with Theorem 1.10.

Theorem 1.11. — There exists a subspace M? of H,, described by a finite collection of
explicitly known inequalities, such that every algebraic curve & over R of genus 2 has a unique period
matrix Z in M2, The correspondence & — Z gives rise to a homeomorphism u : Mg — M>.

Referring to the last statement in Theorem 1.10, we say that a period matrix
of an algebraic curve over R of genus g, with 1< g< 2, is suitably chosen, provided
that it belongs to M.

For example,

1/1 O by ¢
u( M) = _( ) +v-—1 (u 12) €H, |[0<t,< by < oy |,
210 1 tis ton
and u(#g>*®) can be described in a similar way for all (s, €) in A, U{(0,2) }.
If [Z,] is in A2V, X, =%, (R), and Z, = u([Z,]) for k = 1,2, then the
homomorphism = of Theorem 1.10 satisfies 1(M(2 X 2, Z)) = =¥(X; X X,) = Z and

Kert={C = (¢;) e Mat(2 X 2,Z) | ¢y + ¢35 + €1 + ¢op = 0 }.

In all other cases, for curves of genus 1 or 2, a similar explicit description is known.
Complete details related to Theorems 1.10 and 1.11 are given in Theorems 3.9, 4.3,
4.6, 4.7, and Examples 4.2, 4.5; Theorem 1.11 is included in Theorem 4.3.

We shall now describe a few results concerning the size of the subgroup n%(—)
of n*(—). Proposition 1.8 implies that the set

{([Z1], [Za]) € A0 X M2 "% | rank (21 (R) X Zy(R))
> (s —e+1) (s —e +1)}

is empty for ((s;,¢1), (53, €)) in A, X A, . The remaining possibilities for the rank
of n%(—) are examined below in the case 1 < g, <2 for k=1, 2.

Theorem 1.12. — Let (s, 8,) be in A, , where 1< g,< 2 for k = 1,2, and let r be
an integer satisfying 0< r< (s, — & + 1) (s, — &g + 1). Then the set
{([Z1), [Z3]) € A0 X Mg 00 | rank w (T (R) X Zy(R)) =7}

is uncountable and dense in MV X M2 Furthermore, the set corresponding to

r =0 (that is, n%(—) = 0) is the intersection of a countable family of open and dense subsets
qf '”1(101' 8,¢) X d”l(‘ﬂz, 8, &) .
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Actually much more is known about the structure of the sets studied in Theorem 1.12.
Each of them is described, in the sense made precise in Theorem 4.8, by inequalities
involving a countable family of explicity known quadratic polynomials. Although each
set is uncountable and dense, only the one corresponding to r = 0 is really “ large .
The meaning of this last remark is clear since 45 X #3, due to its local compactness,
is a Baire space. We conjecture that Theorem 1.12 is valid for curves of arbitrary
genus.

Let us take a closer look at the case where [%,] = [Z,] = [Z] is in %"
Recall that then rank n%(Z(R) X FR))< (s —e+ 1)< g% and s—e+ 1 =g is
equivalent to s > g.

Theorem 1.13. — For every (s,¢) in A, with 1 < g< 2 the set

{[Z] e M9 | n(ZTR) X Z(R)) =0}

is the intersection of a countable family of open and dense subsets of MY *® , whereas the set

{[Z] e M % | rank % (ZF(R) X F(R)) = (s —e + 1)*}
is dense in MT . Furthermore, this last set is countable if and only if s > g.

Let us mention that Theorem 1.13 is included in Theorem 4.9.

We have seen above that rank n%(Z'(R) X Z(R)) < g for every algebraic curve &
over R of genus g. The curves for which this maximum rank is attained are very special
and it is not known whether they exist for g > 4, cf. Proposition 3.11 and the remark
following its proof. On the other hand, according to Theorem 1.13, there are up to
isomorphism precisely countably many such curves of genus g with g =1 or g = 2.

As it transpires from our considerations above, the most common, ¢ generic ”,
situation for a pair (%,, &,) of algebraic curves over R of genus 1 or 2 is when
Z(Z,(R) X Z5R), S?) contains only null homotopic maps, that is,

Ta(Z1(R) X ZyR)) = 0.

We shall now consider the other extreme case, where Z(Z,(R) X Z,(R), S?) is dense
in €°(Z,(R) X Z,(R), S?) or, equivalently, where

ma(Z1(R) X Z3(R)) = n*(Z1(R) X Z,(R)).

The existence of such a pair of curves of given genera is far from obvious. It follows
from Proposition 1.8 that both &'y and &', must be nondividing, thatis, e(%,) = &(%,) = 1.
We shall see that this is the only restriction, at least for curves of genus 1 or 2. In fact
our result is much stronger.
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Theorem 1.14. — (i) For 1 < g< 2 and 1 < s< g the set
{[Z] et > | €ZXR) X Z(R), %) = €°(ZR) x Z(R), 5%}
is infinite. It is countable if and only if s = g.
(ii) For 1< g, <2 and 1< 5,< g, k= 1,2, the set
{(IZ1), [Z2]) e Mg oe? X Mg 2P | GZ(Z1(R) X Zy(R), §7)
= €°(Z1(R) x Z,(R), $?) }
ts infinite. Furthermore, it is countable if (s, s3) = (g1, &2), and in all other cases, except perhaps

when g, = g, = 5,5, = 2, it is uncountable.

Theorem 1.14 is equivalent to combined Theorems 4.10 and 4.11, whose proofs
are quite long and use all main results of Sections 3 and 4.

2. Abelian varieties over R, line bundles, and regular maps

Let & be an Abelian variety over R, let X = Z'(R), and let X, be the connected
component of X containing the identity element of the group X. Let i: X — Z'(C)
and j : X, < X be the inclusion maps. For each nonnegative integer %, set

H¥X, Z)™ = {u e H¥X, Z) | H*(t,) (v) = u for every x in X}
and define |
o H¥(X, Z)™ — H¥X,, Z)

to be the restriction of the homomorphism H*(j) : H¥X, Z) - H¥X,, Z).

Proposition 2.1. — With the notation as above:
(i) H¥X, Z)™ = H*() (H*%'(C), 2)),
(i) o* is an isomorphism.

Proof. — We shall first show that ¢* is a monomorphism, that is, if H*(j) (x) = 0
for some » in H¥(X, Z)™, then u = 0. To this end, let S denote a connected component
of X, jg:S < X the inclusion map, x a point in S, and ¢,: X, — S the restriction of
the translation ¢,. Since £,0j = jg o ¢,, we obtain

H*(g,) (H*(js) () = H*(jg o ¢,) () = H*(, 05) (u)
= H¥(j) (H*(,) () = HYj) () = 0.
Clearly, ¢, is a homeomorphism and hence H*(jg)(x) = 0. This implies u = 0, the
connected component S of X being arbitrary.

We now observe that H¥(i) (H¥(Z'(C), Z)) = H¥(X, Z)™. Indeed let i : X « Z(C)
be the inclusion map. For each point y in £(C) the translation <, : £(C) — Z(C) by »
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is homotopic to the identity map of %'(C). Since 7,0 = i o 4, for » in X, the inclusion
in question is satisfied.
To complete the proof of (i) and (ii) it suffices to show

HY(j) (H*G) (H*Z(C), Z))) = HX,, Z).

This however follows at once, provided that we can find a retraction r: £ (C) — X,.
Since & has a period matrix of the form Q = (Z, 1)), the pairs (Z(C), X,) and
(C°[[Q], R?(Z°) are homeomorphic, where R’ < €’ Z° =[Q] N R’ and RYZ‘ is
regarded as a subspace of C’/[Q]. Thus a retraction r : Z(C) - X, exists. O

Proof of Proposition 1.1. — It follows directly from the definitions of VBy(X)™"
and H*(X, Z)™ that ¢,(VBg(X)™) = H*(X, Z)™. Furthermore,
H; _..(X,Z) = H}(X, Z)™
is a consequence of the definition of H}_, (X, Z) and Proposition 2.1 (i), and therefore

VB _ (X) = VBy(X)™.
Since X, is homeomorphic to R?/Z?, Proposition 2.1 (ii) implies

rank H3(X, Z)™ = rank H*(X,, Z) = (g — 1) g/2.

Thus the proof is complete. O

Given a Z-module A, we let Alt*(A) denote the Z-module of all alternating bilinear
forms A X A - Z.

Proof of Theorem 1.3. — Let Q = (Z,1,) be a period matrix of Z and let
¢ : C[Q] - Z(C) be a Gal(C/R)-equivariant isomorphism of complex Lie groups.
Note that R’ n [Q] = Z¢ is a lattice in R? and regard the real torus R?/Z° as embedded
in the complex torus C?/[Q]. Since ¢(R?/Z7) = X,, where X, is the connected component
of X containing the identity element of X, and the restriction ¢,: R/Z° — X, of ¢
is a homeomorphism, it follows that

H?(g,) : H¥(X,, Z) — H*(R°/Z¢, Z)
is an isomorphism. Let
e: HX(R?/Z%, Z) — Alt*(Z°)
be the usual identification isomorphism, cf. [20], and let
«: Alt3(Z7) — Alt,(Z)
be the isomorphism which assigns to every alternating bilinear form in Alt*(Z?%) its
matrix with respect to the canonical basis for Z?. Define

5, s HY(X, Z)™ — Alt,(Z)



18 J. BOCHNAK, W. KUCHARZ AND R. SILHOL

to be the composition
T, = a0 &0 H¥(qg) o g%
where p*: H¥(X, Z)™ — H*(X,, Z) is the isomorphism of Proposition 2.1 (ii) with
= 2. By construction, t, is an isomorphism, and hence it remains to show that
7,(Hi _ (X, Z)) = C(Z).
To this end we first recall how the Néron-Severi group HZ (%' (C), Z) of the Abelian
variety & over G can be described in terms of the period matrix Q = (Z, 1)) of %,
which obviously is also a period matrix of Z.
Let
¢* : H¥(Z(C), Z) — Alt,,(Z)
be the isomorphism obtained by composing the induced isomorphism
H*(9) : H¥(Z(C), Z) -~ HX(C’/[Q], Z),
the usual identification isomorphism (cf. [20])
eq : H¥(CY/[Q], Z) — Al*([Q]),
and the isomorphism
ag ¢ Al3([Q]) — Alt,,(Z),

which assigns to every alternating bilinear form in Alt*([Q]) its matrix with respect
to the Z-basis for [Q] formed by the columns of Q. Thus, explicitly,

of = «q 0 g9 0 H¥(9).
Denoting by NS(Q) the submodule of Alt,,(Z) that consists of all matrices of the form

A B)
(—‘B c/

where A, C are in Alt,(Z), B is in Mat,(Z) and
A —BZ +'Z'B +'ZCZ = 0,
one obtains trom [20, p. 43, Exercise 4]
¥ (H,(Z(C), Z)) = NS(Q).
It is now easy to complete the proof. A direct computation demonstrates

7,0 H(i) =1, 0 ¢¥ and r,(NS(Q)) = CG(Z), where i: X < Z(C) is the inclusion map
and 7, : Alt,,(Z) — Alt,(Z) is the epimorphism defined by

(s d)-s
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for A, C in Alt,(Z) and B in Mat,(Z). Hence, keeping in mind the definition of
H_ (X, Z),

To(Ho—ue(X; Z)) = 7,(H(i) (Hz,(Z(C), Z)))

= 1,(s*(H2,(Z (C), 2)))
= 1,(NS(@))
= C(Z)

and the proof is finished. O

In connection with Theorem 1.3 a natural problem arises: given a complex
g X g matrix Z compute G(Z) or, at least, rank G(Z). Below we shall give, in particular,
an explicit characterization of these matrices Z for which rank G(Z) is the largest
possible, that is, equal to (g — 1) g/2 = rank Alt,(Z). It is useful to define first another
Z-submodule D(Z) of Alt,(Z) by

D(Z) ={ C e Alt,(Z) | ‘(Im Z) C(Im Z) € Alt,(Z) }.

Lemma 2.2, — Let Z be a complex g X g matrix.

(i) If 2ReZ has integer entries (which is always satisfied if (Z, 1)) is a period matrix
of an Abelian variety over R), then 4D(Z) < G(Z) and 4C(Z) < D(Z), and hence
rank C(Z) = rank D(Z).

(il) C(Z) = D(Z), provided that ReZ has integer entries.

(iii) rank D(Z) = (g — 1) g/2 if and only if every 2 X 2 minor determinant of the
matrix Im Z is a rational number.

Proof. — Let M =2ReZ and T =ImZ.

If C is in D(Z), then taking A = — ‘MCM + 4 'TCT and B = 2 ‘MC in (1.2),
we see that 4C is in C(Z). Hence 4 D(Z) = G(Z), and the proof of (i) is finished since
4C(Z) < D(Z) is obvious.

Assume that ReZ has integer entries, that is, M is in 2 Mat,(Z). Then it is clear
that C(Z) = D(Z). If C is in D(Z), take A = — ‘—1} ‘MCM + 'TCM and B = -;— ‘MC
in (1.2), which shows that C belongs to CG(Z). Thus (ii) is proved.

(iii) follows, by direct computation, from the equality rank Alt,(Z) = (g — 1) g/2
and the fact that the g X g matrices A;;, 1 <1< j< g, with the (7, 7)th (resp. (j, #)th)
entry 1 (resp. — 1) and all other entries 0, generate Alt,(Z). O

We have not been able to find an explicit characterization of all complex g X g
matrices Z such that (Z,I) is a period matrix of some Abelian variety over R and
CG(Z) = Alt,(Z). However, [9] which deals with products of elliptic curves over R,
Lemma 2.2 (ii), and the proof of Theorem 1.7 given later on in this section are rich
sources of examples with G(Z) = Alt,(Z) satisfied. In connection with this remark,



20 J. BOCHNAK, W. KUCHARZ AND R. SILHOL

let us recall that if (Z, I,) is a period matrix of an Abelian variety Z over R, then Z(R)
has 2~ " connected components, where r is the rank of the matrix obtained by reducing
modulo 2 all entries of 2 ReZ (as we already know, 2 ReZ has integer entries), cf. [26, 29].
Thus Lemma 2.2 (ii) corresponds to the case in which Z'(R) has 2 connected components.

Corollary 2.3. — Let X = Z(R), where & is a g-dimensional Abelian variety over R.
If (Z,1) is a period matrix of &, then

rank VB;_,.(X) = rank D(Z).
In particular, VBg_,..(X) = 0 if and only if D(Z) = 0.
Proof. — It suffices to apply Theorem 1.3 and Lemma 2.2 (i). O

Proof of Theorem 1.4. — The conclusion follows immediately from Corollary 2.3
and Lemma 2.2 (iii). O

At this point it would be possible to give proofs of Theorems 1.6 and 1.7. First,
however, we wish to deduce from the results already proved some consequences concerning
regular maps into the unit p-sphere

Sp={<xo,'-~:xp)€Rp+1|x§+ —l—xizl},

Fix once and for all an orientation of S? and the corresponding generator x, of
H?(S?, Z) ~ Z. For X = Z(R), where & is an Abelian variety over R, set

€2(X,8%) ={fe€°(X,8”) | H*(f) (x,) e H*(X, Z)"" }.
One easily generalizes some observations made in Section 1 for p = 2.

Lemma 2.4. — With the notation as above:
(i) H*(X, Z)"™ is generated by H*( f) (x,) as f runs through €7 (X, S?).
(i) If 1<p<dimX, then the equality €7 (X,S?) = €°(X,S?) is equivalent to the
connectedness of X.
(iii) If p is even, then (X, S?) = € (X, S?).

Proof. — (i) is obvious since every connected component of X is diffeomorphic
to a real torus.

In view of (i), €7 (X, S?) = €~ (X, S?) is equivalent to H?(X, Z)"" = H*(X, Z).
The last equality holds if and only if X is connected. Thus (ii) is proved.

It follows from [4, Proposition 1.2] that if p is even and f is in #(X, S?), then
H”(f) (x,) belongs to H?(z) (H?(Z(C), Z)), where 7 : X < Z(C) is the inclusion map.
By Proposition 2.1 (i), the proof of (iii) is complete. O

Corollary 2.5. — If X is endowed with an invariant orientation, X, ..., X, are the
connected components of X, and g = dim X is positive and even, then

deg(f| Xy) = ... = deg(f] X,)
Jor every regular map f: X — S°.
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Proof. — The conclusion follows from Lemma 2.4 (iii). O

It should be mentioned that Corollary 2.5 is no longer valid if g is odd. Indeed,
ifdim X = gisodd and 4,, ..., d, are even integers, then arguing as in [3, Theorem 2.1]
one can find a regular map f: X — S? with deg(f|X;) =d, for I<i<s.

For X as above and an integer 7, define 7y : X — X by ny(x) = nx for all x in X.
Obviously, ny is a regular map.

Corollary 2.6, — Let X = Z(R), where & is a g-dimensional Abelian variety over R,
and let (Z,1,) be a period matrix of %. Then:
(i) The equality D(Z) = O implies
Ca(X,8%) ={fe€°(X,8%) | H*(f)(x;) = 0},

and the converse is true if 1< g< 3.
(i1) Given a nonnegative integer n, the following conditions are equivalent:
a) fong is in €p(X, S?) for every f in €2 (X, S?);
b) H(ny) (H*(X, Z)™) = Hy_ (X, Z);
¢) n*Alt,(Z) < G(Z).

Furthermore, the existence of a positive integer n for which a), b), ¢) are satisfied is equivalent
to the fact that every 2 X 2 minor determinant of Im Z s a rational number.

Proof. — (i) It follows from Lemma 2.2 (i) that D(Z) = 01is equivalent to G(Z) = 0.
Therefore by Theorems 1.0 and 1.3, if D(Z) =0 and % is in ¥3(X, S?), then
H?(%) (x,) = 0, which proves the inclusion

C2(X,8%) = {fe €*(X,5%) | H*(f)(x;) =0}.

It follows from Theorem 1.0 that this inclusion is an equality. On the other hand,
Theorem 1.3 also implies that there exists a nonzero element z in Hg_,.(X, Z),
provided that D(Z) #+ 0. If « = H?(¢) (x,) for some €* map ¢ : X — S?, then applying
Theorem 1.0, we obtain that ¢ is in €5(X, S?). Thus the last part of the conclusion
follows since for 1 < g < 3 every element of H*(X, Z) is of the form H?({) (x,) for some €*
map ¢ : X — S%

(ii) We claim that H%(ng) (v) =n*2 for all » in H*X, Z)™. Indeed, define
Ny : Z(C) - Z(C) by ng(y) =ny for all y in Z(C). Since Z(C) is isomorphic
to a complex torus, it follows that H2(ng,) (w) = n* w for all w in H3(Z(C), Z). Hence,
by Proposition 2.1 (i), the claim holds.

The claim implies that H?( fo ny) = n* H*( f) on H*(S?%, Z) for every fin (X, S?),
and hence a) is equivalent to 5) in view of Lemma 2.4 (i). The equivalence of 4) and ¢)
follows from the claim and Theorem 1.3. The last assertion in (ii) is a consequence
of Lemma 2.2 (iii) and the equality rank Alt(Z) = (¢ — 1) g/2. O

One can deduce from Corollary 2.6 some results concerning regular maps into S
for £ > 2. Here we confine ourselves to only the following.
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Proposition 2.7T. — Let X = Z(R), where X is a g-dimensional Abelian variety over R.
Let (Z,1,) be a period matrix of &. Assume that every 2 X 2 minor determinant of Im Z is a
rational number. Then for each integer k, 2 < 2k < g, there exists a regular map f: X — S%
such that the induced homomorphism H™( f) : H*(S*, Z) — H*(X, Z) is nonzero and hence,
in particular, f is not null homotopic.

Progf. — Denote by Y the k-fold product S® x ... x S% Since each
connected component of X is diffeomorphic to R?/Z°, we can find a %¥° map
F=F,....,F):X —>Y such that H*(¥):H*(Y,Z) -H*(X,Z) is a mono-
morphism and F; belongs to (X, S? for 1<j< k. The assumption and Corol-
lary 2.6 (ii) imply that F o ny belongs to €%(X, Y) for some nonzero integer z. It is
well known that there exists a regular map G:Y — S* with H*(G) # 0, cf. [21] or
[, Lemma 13.5.4]. By construction, f= GoFong:X —S* is a regular map.
Moreover,

H?*(f) = H*(G o F o ng) = H*(nx) o H*(F) o H*(G)
= n*(H*(F) - H*(G))

and hence H*(f) + 0 (the reader should observe that H*(ny)(v) = n* v for all »
in H*(X, Z)™; cf. the proof of Corollary 2.6 (ii) for 2 =1). O

We shall now deal with the moduli space 2 of principally polarized g-dimensional
Abelian varieties over R. With the notation introduced between the statements of
Theorems 1.10 and 1.11 in Section 1, the correspondence Z — %, gives rise to a sur-
jective map

n,: H, — 2.

The topology on % is induced via =, from the topology on H,. Actually, a more precise
result is well known, cf. [29, 30]. Let I, be the group of matrices of the form

A B
(0 *A-l)’

acting on H, via

A B
( ).Z=A.Z‘A+B‘A,
0 ‘A

where A is in Gl ,(Z), B is in Mat,(Z), and B ‘A is symmetric. The map =, is constant
on the orbits of I, and induces a homeomorphism between the quotient I'’'\H, and 2/§.

Proof of Theorem 1.6. — (i) One easily sees that the set
G={ZeH,|D(Z) =0}

is dense in H,.
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Choose a family { K, |n € Z* } of compact subsets of H,, whose union is equal
to H,. Given C and D in Alt,(Z), C + 0, set

K,op={ZeK,|(ImZ)C(ImZ) =D}
Then K, ¢ p is a compact subset of H, and

G= N ([H\K, )

(n,C,DEL
where L = Z* Xx (Alt,(Z)\{0}) X Alt,(Z). Since G is the union of orbits of I';, we
obtain

m(G) = M (#\n,(K, qp))-

(n,C,D)EL

Obviously, each set o\=,(K, o p) is open in . Furthermore, since G is dense
in H,, it follows that =, (G) is dense in «/f, and therefore /{\~,(K, ;) is dense
in 4. In order to complete the proof it suffices to show

7o(G) ={[¥] e | VB;_ o (#(R)) =0}
This however readily follows from Theorems 1.0 and 1.3, and Lemma 2.2 (i).
(ii) By Lemma 2.2 (iii), the set
E={ZeH,|rankD(Z) = (g — 1) g/2}
is uncountable and dense in H,. Since Theorems 1.0 and 1.3, and Lemma 2.2 (i)
imply
n,(E) ={[¥] € o4 | rank VB{_,.((R)) = (g — 1) g/2},
the proof of (ii) is complete. O

Let us recall an explicit description of &g given in [29, 30]. The following topo-
logical subspaces of H, are connected:

-~

11

t12
: )ltHER’Ostlzgt11<t225t11t22'—tf2>0|,
12 ‘22

1/0 1 t, ¢
5( )-I— — (= 12)|¢“eR,0<tu<t22,0<2t12<tu},

t12 22

1/1 O —(t, &
5( )+\/_1 g 1j)|t“6R,0<t12<tu,0<2t12<t22,tu>0,t22>0},

'tl2 2.

2 3
A%0D |4/ ] (“ ‘j) [ 4, €R,0< b, < by, 0< 2pn < 1) }
t2
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Furthermore, if

2 __ 2,2,1) 2,2,2) 2,1,1) 2,0,2)
A2 = ABZLD g ABZY y ABLD y AG02)

then m, | A?*: A? - o/ is a homeomorphism [29, 30] (note that our notation is somewhat
different than in [29, 30]). Hence the family { 2429}, where &% = m,(A®%9)
and (¢4, ) belongs to { (2, 1), (2, 2), (1, 1), (0,2)}, is the set of connected components
of /2. As mentioned above, if [#] is in &4&%®, then #(R) has 22~/ connected
components.

Proof of Theorem 1.7. — Set
Féo = {Z e A%%9 | Q(Z) = Alt,(Z) }.
By Theorems 1.0 and 1.3, and Example 1.5,
ry(F4%) = 60 0 ([9] e o [ B@R)) = 1),

Hence it suffices to show that each set F*® is uncountable.
Let ¢ be a real number, > 1. Set

1
2
{ 0 t 4 t
ST ,
A/4t2————t 5t—2J4t2—1
1
zi“’-—%( )+\/_—~IZ‘ :
0 ¢
1 0 t t—Ve—1
Z(tl,1)=l( )_|_\/_.—1 — b
20 o t—Ve—1 2(t—vVe—1)

1
VA vV_-1 t

Note that Z%® belongs to A%, We shall now show that Z{® is in F** for (¢, ¢)
in {(2,1), (2,2), (1,1), (0,2)}. Our argument is based on equations (1.2) and the
obvious fact that the matrix

(1 o
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generates Alt,(Z). Indeed, Z®" is in F*" since (1.2) holds for M = 2ReZ&?,
T=ImZk", A=0,

1 1 0 1
A B
1 0 —1 0
Similarly, Z{#® is in F%® for (¢,¢) in {(2,2), (1,1), (0,2)} since (1.2) holds for
M =2ReZ®, T = Im Z/?,

0 1 1 0
A B C B ( ), B B ( ).
—1 0 0 0
Hence the proof is complete. O

3. Products of real algebraic varieties

Given topological spaces T; and T,, we set
A(Ty, Ty) = BXT, X Ty, Z)/(H*(pry) (H(T4, Z)) + H2(pry) (H¥(T,, Z))),

where pr,: Ty X Ty — T, is the canonical projection, & = 1,2. If f;: T, - S, and
f2: Ty =S, are continuous maps of topological spaces, then we define

A(f1s2) + A(S1, Sp) — A(Ty, Ty)
to be the homomorphism induced by
H2(f; X f;) : H2(S; X Sy, Z) -~ H*(T, x T,, Z).

Let ¥ and ¥, be projective smooth irreducible schemes over C. Denote by
Ay (71(C), ¥3(C)) the image of HZ (¥3(C) X #5(C),Z) under the canonical
epimorphism

H*(731(C) x 73(C), Z) — A(¥1(C), ¥5(C)).

For future reference, let us observe that A, (77(C), ¥3(C)) is canonically isomorphic
to the group Corr(¥7,¥,) of divisorial correspondences on ¥ X;¥%,. Indeed,
letting ¢, : 77 X¢ ¥, — ¥, denote the canonical projection, we have

Corr (73, 73) = Pic(¥; X 73)/(6i(Pic(¥7)) + g:(Pic(¥5))).
The homomorphism

¢yt Pic(¥V] X 7)) — H2(¥1(C) x ¥,(C), Z),
determined by the first Chern class, gives rise to an epimorphism

v : Corr(¥7, 73) — A (71(C), 73(C)).
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It suffices to show that y is an isomorphism or, equivalently, y~*(0) = 0. This, however,
readily follows since ¢;*(0) = Pic®(¥; X #%) is a divisible group and Corr(¥7, ¥5)
is a finitely generated free Abelian group (cf. [18, p. 155]).

Let now X; and X, be compact nonsingular irreducible real algebraic varieties,
and let Ag_, (X;, X;) be the image of Hi_,. (X; X X,,Z) under the canonical
epimorphism

H¥(X,; X X,,Z) - A(Xy, X,).

It is convenient to define in a canonical way a certain intermediate subgroup A, (X;, X,)
between Ay _,..(X;, X,) and A(X;, X,). This is done as follows. Let &, be a projective
smooth irreducible scheme over R with &, (R) biregularly isomorphic to X, for 2 = 1, 2.
Let £, : X, - Z,(R) be a biregular isomorphism and let 7, : £, (R) < %,(C) be the
inclusion map. We assert that the subgroup

At(Xla Xa) = A(i1 ° hl’ iz ° /’z) (A('%‘l(c); .Q"z(C)))

of A(X,, X,) does not depend on %, and £, for £ = 1,2. Indeed, the subgroup
H(z,, o k) (H(Z,(C), Z)) of H(X,, Z) is independent of &, and #, since H'(%,(C), Z)
is a birational invariant of Z,. Furthermore, our assumptions on &, guarantee connected-
ness of £,(C), and hence the Kiinneth formula implies that the cross product in coho-
mology induces a canonical isomorphism from H(%,(C), Z) ®, H(Z',(C), Z) onto
A(Z1(C), Zy(C)) (recall that the cohomology group H(—, Z) is always free). The
assertion follows. As in Section 1, we identify Z',(C) with Z(C), where 2 = £, Xg G,
and thus the group A, (Z,(C), Z(C)) is defined. By definition of HE_, (—, Z),

Ac—m(xu Xz) = A(il ° /’1’ iz ° hz) (Aam(£1(c)s .%'2(0))),
which yields
Ac_ (X, Xp) € A(X;, Xp) € AKX, Xo).

It will also be convenient to define a canonical epimorphism

e: A(X,, X,) - Bil(X,, X,),

where Bil(X,, X,) is the group of all Z-bilinear maps H,(X,, Z) X H,(X,, Z) — Z.
To this end let v be an element of A(X,, X,) and let £ be a cohomology class in
H2%(X, X X,,Z), whose residue class in A(X,, X,) is equal to y. Then for (,, u,) in
H,(X,,Z) X H,(X,, Z), we set

e(n) (uy, up) = <& uy X uy ),

where ¢ , ) is the Kronecker (that is, the scalar) product and X is the cross product
in homology (cf. [12]). Clearly, ¢() does not depend on the choice of &. Since H'(X,, Z)
is canonically isomorphic to Hom(H,(X,, Z), Z), it follows from the Kiinneth formula
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that ¢ is an epimorphism. One easily sees that, in general, ¢ is not an isomorphism,
unless X, and X, are connected. We claim however that the restriction of ¢ to A, (X, X,)
is injective. To see this it is enough to observe that every residue class { in A, (X, X,)
can be represented by a linear combination of cohomology classes of the form &; X &,,
where £, is a cohomology class in HY(X,, Z) for £ = 1,2, and X stands for the cross
product in cohomology. Whenever convenient, we shall make no distinction between
in A,(X;, X;) and the corresponding bilinear map ¢({) (cf. Theorem 3.4 below).

The groups Ag_ . (X;, X,;) and A,(X,, X,) play a crucial role in our study of
regular maps. Clearly, in all considerations involving Ag_,,(X;, X;) and A, (X, X,)
we may assume without loss of generality that X, = %Z,(R) for 2 =1,2. Our goal
in this section is to compute these groups in terms of period matrices of the Albanese
varieties of Z; and %,. To this end we need some preparation.

Given nonnegative integers g, and g,, we define

Tr(ﬂp g3) : Alth"’ﬂg(z) - Mat(gl X 82> Z)

B, C
by oy, 09 ((__ ‘Q B)) = C,

where B, belongs to Alt, (Z) for £ = 1,2, and C belongs to Mat(g, X gz, Z). Clearly,
T4, 0p 1S @D epimorphism.

Lemma 3.1. — Let Z,, be a complex g, X g, mairix for k = 1,2, and let
Z= (Z‘ 02).
0 Z
Then my, ,,(C(Z)) = C(Z,, Z), where C(Z) and C(Z,, Z,) are the Z-modules defined in
Section 1 by equations (1.2) and (1.9), respectively.

Proof. — The conclusion follows from a direct calculation. O

Let o7, be a g,-dimensional Abelian variety over R, £ = 1, 2. Then & = &, Xy %,
is an Abelian variety over R of dimension g; + g,. We shall identify &/(R) and &/(C)
with &7;(R) X #,(R) and &,(C) X &,(C), respectively. Let A, = & (R) and let
et Ay X Ay — A, be the canonical projection, 2 = 1, 2. By Proposition 2.1 (i), we have

A (Ay, Ag) = H3(A; X Ay, Z)™/(H(py) (HX (A, 2)™) + H¥(py) (HA(A,, Z)™)).

Let Q, = (Z,,1,) be a period matrix of & and let ¢,:C%/[Q] - 4(C) be a
Gal(G/R)-equivariant isomorphism of complex Lie groups. Note that Q = (Z, I, ),

> T+ 03
where
()
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is a period matrix of .27, Furthermore, ¢ : C**%/[Q] — o/ (C), defined by
¢((215 22) + [Q]) = (ea(21) + [, P2(22) + [Q])

for (v;,v,) in G X C% = C1% %, is a Gal(CG/R)-equivariant isomorphism of complex
Lie groups. If

To P HA(Ay X Ay, Z)™ — Alt, . (Z)
is the isomorphism of Theorem 1.3, then the kernel of the epimorphism
Ty, ap © To » HE(Ay X Ay, Z)™ — Mat(g; X g3, Z)
can be easily computed, namely,
Ker(my, , o 0 7o) = H(p1) (H*(Ay, Z)™) + H2(p,) (H3(A,, Z)™).
Denote by
Pop.ap - Au(A1, Ay) — Mat(gy X g, Z)

the isomorphism induced by w, ., o T,-

Proposition 3.2. — The isomorphism o, ot A(Ay, Ay) — Mat(gy X go, Z) satisfies
Poy, o (Dc—ag(Ars Ag)) = G(Zy1, Z,).
Progf. — The conclusion follows from Theorem 1.3 and Lemma 3.1. O

We shall now prepare the setup for the main result of this section.

Let #, be a projective smooth irreducible scheme over R with X, = Z,(R)
nonempty. Let 4 be the Albanese variety of %, and A, = & (R). Denote by
i X, o> Z,(C) and j,: A, &(C) the inclusion maps. If «,:%, > o, is the
Albanese morphism corresponding to some point x, in X, (that is, o,(x,) = 0), then
% 0 &, = Jp 0 r, Where oot Z,(C) > (C) and on: X, - A, are the maps
determined by «,. It follows that the diagram

Aoy 0, 2y0)
A(,(C), #4,(C)) ———> A(Z1(C), Z5(C))
A4y, 52)1 A(il,ig)l
Al R, dgR)

A(Ay, Ay) ——— A(X, Xp)
is commutative, and hence
A(oyg, %or) (A(Ag, Ag)) = A(Xy, Xp).
We denote by
Sy, 2 Au(Ars Ag) = A(X, Xp)
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the restriction of A(wjg, ay5). We claim that 34 4, does not depend on the choice
of the point x, in X, to which «, corresponds. Indeed, the induced homomorphism

HY (o40) : H(4,(C), Z) —~ H'(Z(C), Z)

for ¢ > 0 is independent of x, and hence commutativity of the diagram implies the claim.

Since H'(a,g) is an isomorphism for £ = 1, 2, it follows from the Kiinneth formula
that A(eyg, tge) i1s an isomorphism. Using again commutativity of the diagram, we
obtain that 3 4, is an epimorphism.

We know that the groups A, (% (C), (C)) and Corr(sZ, %) (resp.
A, (Z1(C), Z5(C)) and Corr(%Z'yg, £o)) are canonically isomorphic. By the classical
theorem on divisorial correspondences, Corr(¢, %%;) and Corr(% ¢, Z,c) are also
canonically isomorphic (cf. [18, p. 155]). By examining these isomorphisms, we obtain

Afosg, %ac) (Buig(H1(C), #(C))) = Ay (Z:1(C), Z2(C))-
This, together with the obvious equalities
A(J1572) (Bag(H1(C), H(C))) = Ag_ag(Ars Ag),
Aty 22) (Bug(Z1(C); Z3(C))) = Ag_ (X, Xy)s
implies 3g, 4, (Ac_ag(A1s Ag)) = Ag_,(Xy, X,) by virtue of commutativity of the
diagram.
We summarize these observations in the following.
Proposition 3.3. — With the notation as above,
3(9&1,%) PAL(Ag, Ag) = A(Xy, Xp)

s an epimorphism and
Sy, o (Do—ag(A1s Ag)) = Ag_1(Xy, Xp). O

Henceforth, given a nonnegative integer ¢ and a continuous map f:S — T
between topological spaces, we let H (f) : H,(S, Z) — H (T, Z) denote the induced
homomorphism of homology groups.

We shall now describe 34, 4, in terms of period matrices of &/ and &,. Let
& = dim & and let O, = (Z,, I,) be a period matrix of & (as defined in Section 1).
Denote by

g ¢ H,(C*/[Q], Z) —[Q]

the usual identification isomorphism. Let ¢, : G%/[Q] — &4 (C) be a Gal(C/R)-
equivariant isomorphism of complex Lie groups and let

& Hy(X, Z) —Z%
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be the homomorphism defined by
Fe() = s(Hy(pr ' o oy 0 2) (1))

for all u, in H,(X,, Z) (note that the element on the right-hand side of the equality
belongs to [Q,] N R% = Z%; elements of Z% are viewed as g, X 1 matrices). Set

L(Xe> #) = &(Ho(Xy, Z)).
We finally define a homomorphism

oy, ap - Mat(gy X g3, Z) — A(X;, X,)
by setting

oy, 00 = Oy, 2p © (P«pl,%))_l:

where pg o ¢ A(Ay, Ay) - Mat(g, X gp,Z) is the isomorphism of Proposition 3.2.
Since 34, 4, is an epimorphism, it follows that o, ,, is an epimorphism too.

Theorem 3.4. — The epimorphism o, o, Mat(g, X ga, Z) — A(Xy, X,) satisfies

@) *

(C(le Zz)) = Ac—slg(Xu Xz)-

c(¢1 » Pg)

Furthermore, for every matrix G in Mat(g, X g,, Z) the element o, .. (C) of A(X;, X,),
viewed as a bilinear map o, o, (C): Hy(X,, Z) X Hy(X,, Z) - Z, 15 given by

(G(CPI.@g)(C)) (115 up) = '3y (21) CPa(un)
Jor all (uy, uy) in Hy(X;, Z) X Hy(X,, Z). In particular,
Ker o4, o) = {Ce Mat(g, X g, Z) | '\Chy = 0 for all NeL(X;, @), k=1,2}

Proof. — The first assertion,
6(¢1,¢3)(C(Zla Zy)) = Ag_ue(X1s Xs),
follows at once from Propositions 3.2 and 3.3. We shall now prove the second part of
the theorem.
Let C be a matrix in Mat(g, X g,,Z) and let n be an element in
H2(o£,(C) x #,(C), Z) such that A(j1,js) ([1]) = (pe,,e) '(C), where [1] is the

residue class of v in A(%,(C), 22,(C)). Then, using commutativity of the diagram above,
we have

"(w,.cz)(C) = A(yp; %ggr) (A(J152) ([1]))
(3.4.1) = A(iy, 1) (A2 2a0) ([1]))
= [H?(i, X i) (H* (g X g¢) ()],

where the last element on the right-hand side is the residue class in A,(X,, X,).
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Let Z be the matrix in Mat

91+ 92
Z = (Zl 0 .
0 z
Then Q = (Z,1, ,,) is a period matrix of the Abelian variety &/; Xy &, over R,
and ¢: C1+%2[[Q] - o, (C) X ,(C), given by

@((215 22) + [Q]) = (@1(v1 + [Q]), @a(v2 + [Qa]))

for (vy,,) in G X C% = C1*% is a Gal(C/R)-equivariant isomorphism of complex
Lie groups. Let E: [Q] X [Q] —Z be the alternating bilinear form corresponding to
the cohomology class H?*(¢) () in H?*(C%*%/[Q],Z) under the usual identification
of H*(C1*%[[Q], Z) with the group of alternating bilinear forms [Q] X [Q] — Z.

Let u, be a homology class in H,(X,, Z) and let A, = g,(%,) for 2 = 1,2. Then
A, is in [Q] N R% = Z%, and

A\ 0
( and (
0 A
belong to [Q] N R%1+% = Za+%, Regarding o, ,,(C) as a bilinear map,

(C) : Hy(X4, Z) x Hy(Xs, Z) ~Z,

(G) defined by

Oy, @)
and applying (3.4.1), we obtain
(G, 0 (C)) (11, 1) = CEE(iy X i) (E(otyg X tae) (), 1y X 1>
= {m, Hy(oye X agq) (Ho(ty X ) (4, X up)) >
(3.4.2) = <, (Hy(xyg 0 2) (1)) X (Hi(otgg 0 22) (83)) D

-=((5)- G)

Note that the matrix of E with respect to the Z-basis for [Q] formed by the columns
of Q is of the form

—'Q BJ
where P, P, are in Alt, ,,(Z) and Q is in Mat, ,,(Z). Furthermore, since
Peoy, o0 (A(J15J2) ([n])) = G, it follows from the definition of p, ,, that

B, C
n=( g )
_iC B,
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for some B, in Alt,(Z), & = 1, 2. Writing

) and

0 Ay

as Z-linear combinations of the columns of Q and using the matrix representation of E
described above, one readily shows

(0 ()

Hence, by (3.4.2), we obtain
(G(Cpl.fpz)(c)) (uy, ug) = Ny Chg = '3y (uy) CPy(up)

as desired.
The formula for Ker oy, op) is now obvious. O

As a straightforward application, which does not require the full strength of the
above results, we obtain the following.

Corollary 83.5. — Let &, be a projective smooth irreducible scheme over R with X, = Z,(R)
nonempty for k =1,2. If

bi(Z1(C)) b1(Z5(C)) < 4b,(Xy) 6,(Xo),
where by (M) denotes the first Betti number of M, then €5(X; X X,, S?) + ¢°(X; X X,, S?).

Proof. — Let g, be the dimension of the Albanese variety of . It follows from
Theorem 3.4 that

rank Ag_ .. (X;, X,) < rank A (X, X;) < g1 &o-
Since b,(Z,(C)) = 2g,, by assumption we have

8180 < b,(X,) b,(X,) = (rank HY(X,, Z)) (rank H'(X,, Z)),
and hence

rank Ag_,,(X;, X,) < (rank H'(X,, Z)) (rank H'(X,, Z)).
Note that the cohomology cross product induces a monomorphism from

H'(Xy,Z) ®, H'(X,, Z)

into A(X;, X,) and therefore, in view of the last inequality, one can find v, in H'(X,, Z)
for £ = 1, 2 such that »; X v, does not belong to HE_.(X; X X,,Z). Let x (resp. )

C—alg

be a generator of H%*(S?, Z) (resp. H'(S', Z)). Pick #® maps £:S' x S' - S* and
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Ji: X — S such that H?*(%) (x) = p X w in H*(S' x S%, Z), and H'(f) (1) = o, for
k=1,2. Setting f= ko (f; X f), we obtain H*(f) (k) = v; X v, and therefore, by
Theorem 1.0, f does not belong to €5(X; X X,,S%). O

Example 3.6. — (i) With the notation as in Corollary 3.5, if 4, (%',(C)) 4,(Z»(C)) = 0
and b,(X;) 5,(X,) #+ 0, then F3(X; X X,, 8%) + €°(X; X X,, $?).

(ii) Let X be a compact nonsingular real algebraic variety. If 5,(X) % 0, then
CR(X x S, 8%) £ €°(X x S, §%); the assertion follows from (i) and the fact that
S* is biregularly isomorphic to P!(R).

The assumption 4,(X) #+ 0 cannot be omitted as the example of the Fermat
2-sphere

S§n={(x’.y,z)eR3|x2n +y2n+z2n=1}

shows. Indeed, by [10, Proposition 4.8], Hf_,,(S;,, Z) = H*(S:,, Z), and hence
HZ_,,(S%, x SY, Z) = H*(S;, x S, Z) since H'(S},,Z) = 0. It follows from Theo-
rem 1.0 that ¥%(SZ, x S*, S$?) = €°(Sz, x §%, $%). O

The most interesting applications of Theorem 3.4 concern the case dim %, = 1
for k =1, 2 (cf. also Section 4). Of course, then the Albanese variety of %, is just the
Jacobian variety of the curve %,. First, we need some preparation.

Recall that the term algebraic curve over R designates a projective smooth
scheme Z over R of dimension 1 such that & Xy C is irreducible (cf. Section 1). If
Z (R) is nonempty, then the above definition simply means that Z is a projective smooth
irreducible scheme over R of dimension 1. We shall freely use terminology and notations
related to algebraic curves over R introduced in Section 1. In particular, g(%), s(%),
and £(%Z) will be used. Obviously, H,(#(C), Z) and H(Z'(C), Z) are free Abelian
groups of rank 2¢(Z). We shall now record a well known fact concerning the topology
of the pair (Z'(C), Z(R)) (a proof is given for the convenience of the reader).

Lemma 3.T. — Let & be an algebraic curve over R with % (R) nonempty, and
let i: ZR) > X(C) be the inclusion map. Then:
(1) Hy@) (Hy(ZR),Z)) is a free direct summand in H,(Z'(C),Z) of rank
S(Z) — (&) + 1.

(i) HY(Z(R), Z)/H() (HN(Z'(C), Z)) is a free Abelian group of rank (%) — 1.

Proof. — Lets = s(¥) and 7 = s(Z) — (&) + 1. Let Cy, ..., C, be the connected
components of Z(R). Fix an orientation on C; and denote by [C;] the homology class
in H,(Z(C), Z) represented by C;. By construction, H,(z) (H,(Z(R), Z)) is generated
by [Cy], ..., [C,]. It follows that ' (C)\(C,;, v ... U C,) is connected (cf. [28, p. 339])
and hence there exist €* compact oriented curves Dy, ..., D, in & (C) such that the
intersection number C;.D; is the Kronecker delta, that is, C;.D; = 3,;. This implies

5
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that the subgroup of H,(#(C), Z) generated by [C,], ..., [C,] is a free direct summand
in Hy(Z'(C), Z) of rank r. Thus (i) is proved.
A standard topological argument shows that (ii) is a consequence of (i). O

Recall from Section 1 that if X is a compact nonsingular real algebraic surface,
then the isomorphism

by s (X)) - HY(X, Z)
satisfies

hX(Tc.ZQ(X)) = H%—alg(X: Z),

where g ([ f]) = H(f) (k) for every €° map f: X - S% and x is a fixed generator
of the group H3(S% Z) ~ Z.

Assuming that X; and X, are compact nonsingular real algebraic curves, we
observe that

A(X,, X,) = H3(X,, X X,,Z)
and define the subgroup n?(X; X X,) of n*(X; X X,) by

m(Xy X Xp) ={[f] e w(Xy X Xy) | hx, xx,([f]) € Au(Xy, Xp) }.
Since

Ag_ae(X1, Xs) = Hi_ (X X Xy, Z),
we obtain

n5(X; X X,) € m2(X; X X,) € w¥(X; X X,).

The following is a simple but useful consequence of Lemma 3.7.

Proposition 3.8. — Let %, be an algebraic curve over R with X, = Z,(R) nonempty
Jor R =1,2. Then

rank i?(X; X X,) = (s(%) — (&) + 1) (5(%) — (&) + 1)
< 2(%) ¢(Z)-
In particular,
rank n%(X; X X,) < (s(%1) — &(%) + 1) (5(%5) — =(%5) + 1)
< 8(%) 8(%)-
Furthermore, m*(X; X X,)[n?(Xy X X,) is a free Abelian group with
rank(m*(X; X X,)/n3(X; X X,))
= s(Z) s(Z3) — (5(Z2) — &%) + 1) (%) — (&) + 1).
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Proof. — Obviously, HY(X,, Z) is a free Abelian group of rank s(%,) for & = 1, 2.
Thus, by the Kiinneth formula and Lemma 3.7, A(X,, X,)/A,(X;, X,) is a free Abelian
group of rank

$(Z1) (%) — ((Z0) — &(Z0) + 1) (5(Fe) — &(&2) + 1).
The isomorphism kg , x, : 73(X; X Xp) — A(X,, X,) satisfies
hxlxX2(ch(Xl X X,)) = A(Xy, Xp),

and hence the last assertion in the proposition is proved.

The formula for rank n?(X; x X,) follows now at once, while the upper bound
on rank n¥(X,; x X,) is obvious since s(%}) — (%) + 1< g(&,) for £ = 1,2 (cf. Sec-
tion 1). In view of n%(X; X X,) < n%(X; X X,), the upper bound on rank n%(X,; x X,)
also follows. O

We shall now give a version of Theorem 3.4 which is more convenient for the
study of algebraic curves over R.

Let &, be an algebraic curve over R of genus g, (that is, g, = g(%,)) with
X, = Z,(R) nonempty for ¢ =1, 2. Let #, be the Jacobian variety of %, and let
Q, = (4, 1,) be a period matrix of f,. Let ¢, : C%/[Q,] — 4, (C) be a Gal(C/R)-
equivariant isomorphism of complex Lie groups. We have the subgroup L(X,, ¢,)
of Z% for k = 1, 2, and the epimorphism

G(CPIHPz) : Ma't(gl X g2’ Z) g A*(le Xz) < H2(X1 X X2) Z)
(cf. Theorem 3.4). Define
: Mat(gy X g, Z) — mi(Xy X Xp)

Tioy, 00
by setting

Tiop,op(C) = (’lxl,xz)‘l(cwl,w(c))
for G in Mat(g; X g,), Z. By construction, 7, ., is a group epimorphism.

Theorem 3.9. — The epimorphism
: Mat(gy X g5, Z) — mi(X; X X,)

T(QP], %) *

and the subgroup L(X,, @.) of Z% have the following properties:
(i) Ty,09(C(Z1, Zy)) = 1(Xy X X )
(ii) Ker 7 o) = { G e Mat(g; X g, Z) | ‘A Chy =0 for all N e L(X,, @), k= 1,2},
(i) L(X,, @) is a free direct summand in Z% of rank s(%,) — e(Z,) + 1,
(iV) Ty, 0 15 an tsomorphism if and only if s(Z) > g, for k =1, 2.

Proof. — Properties (i) and (ii) follow directly from Theorem 3.4.
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We shall now prove (iii). Note that if «,: %, —.#, is the canonical mor-
phism (that is, the Albanese morphism) corresponding to some point x, in X,
and o, : Z5(C) - #,(C) is the embedding determined by «,, then the induced homo-
morphism Hj («,c) : Hy(2%(C), Z) — H,(#,(C), Z) is an isomorphism. By examining
the definition of L(X,, ¢,) (cf. the paragraph preceding Theorem 3.4) and applying
Lemma 3.7 (i), one readily obtains (iii).

It follows from (ii) and (iii) that = ,, is an isomorphism if and onmly if
(&) — (%) + 1 = g(%,) for k= 1,2. The last condition is satisfied if and only if

(%) = 8(Z,) = g, (cf. Section 1 for the relations between g(%,), s(Z}), and &(Z%)).
Hence (iv) holds. O

For many applications of Theorem 3.9 a certain technical result, Lemma 3.10
below, is very useful.

Let Z, be a complex g, X g, matrix for £ = 1, 2. Clearly,
D(Z,,Z;) ={C e Mat(g X g, Z) | '(Im Z;) C(Im Z,) € Mat(g; X g, Z)}

is a Z-submodule of Mat(g, X g,, Z). We shall give, in particular, an explicit characteriza-
tion of these matrices Z, and Z, for which rank C(Z,, Z,) = g, g, = rank Mat(g; X g,, Z).

Lemma 3.10. — With the notation as above:

(i) If 2 Re Z, has integer entries for k = 1,2, then 4 D(Z,,Z,) < CG(Z,, Z,) and
4CG(Z,,Z,) = D(Z,, Z,), and hence rank C(Z,, Z,) = rank D(Z,, Z,).

(i) CG(Z,, Z,) = D(Z,, Z,), provided that Re Z, has integer entries for k =1, 2.

(iii) rank D(Z,, Z,) = g, & if and only if t34 25 is a rational number for all 1 < « < gy,
1< B< g, 1SY< go, 1<8< gy, where Im Z, = (8g), Im Z, = (83;).

Proof. — The argument is straightforward and we leave it for the reader (cf. the
proof of Lemma 2.2). 0O

By Proposition 3.8, rank n%(Z'(R) X Z(R)) < g% for every algebraic curve &
over R of genus g with Z(R) nonempty. We shall now give a characterization of the
exceptional curves for which this maximum rank is attained.

Proposition 3.11. — Let & be an algebraic curve over R of positive genus g suck that
Z'(R) has s connected components, s > 1. Then rank n%(ZR) X F(R)) = g2 if and only if
s> g and the Facobian variety of the curve & X g G over G is isomorphic over G to the product
of g pairwise isogenous elliptic curves over G with complex multiplication. Furthermore, the set

{[Z] el | ZR) + O and rank n(Z'(R) X Z(R)) = g%}
is at most countable.

Progf. — Recall that an Abelian variety ¥~ over C of positive dimension g is
isomorphic to the product of g pairwise isogenous elliptic curves over G with complex
multiplication if and only if ¥~ admits a period matrix whose all entries belong to the
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imaginary quadratic extension Q (V/ _—_d) of Q for some positive integer d [19]. Obviously,
if all entries of W are in Q (V/ —_d) for some period matrix (W, I,) of ¥, then all entries
of W' are in Q(\/ ?2) for any period matrix (W', I,) of ¥".

Let # be the Jacobian variety of Z and let Z be a period matrix of Z. The Abelian
variety # X g G over C is the Jacobian variety of & Xz C, and (Z,I,) is a period
matrix of # and of # XxyC.

It follows from Proposition 3.8, Theorem 3.9 (iv), and Lemma 3.10 (i), (iii)
that the condition rank n%(Z'(R) X Z'(R)) = g% holds if and only if s > g and all entries
of Z belong to Q(V — d) for some positive integer d.

The first assertion of the proposition is a consequence of the facts listed above.

Since & (R) is nonempty, Torelli’s theorem for algebraic curves over R [14, 22, 26]
implies that £ is determined up to isomorphism by the isomorphism class of its polarized
Jacobian variety. Thus the second assertion of the proposition also follows. O

Since no algebraic curve over C with genus greater than 3 and Jacobian variety
isomorphic to the product of elliptic curves over C is known [13], the question of existence
of an algebraic curve & over R of genus g greater than 3 with rank 7% (Z'(R) X Z(R)) = g2
is, a fortiori, wide open. Gurves of genus 1 or 2 are discussed in this context in the remark
following Theorem 1.13 in Section 1.

4. Algebraic curves over R of small genus

We shall show that the results of Section 3 take a very appealing and concrete
form for algebraic curves over R of genus 1 or 2 (the reader may consult [7, 9] for the
genus 1 case). Towards the end of this section we shall also discuss concrete examples
of curves of higher genus.

We already considered the moduli space 4% (resp. 2%{) of algebraic curves over R
of genus g (resp. principally polarized Abelian varieties over R of dimension g). Let

b My — A

be the Torelli map, that is, ¢,([Z]) = [#] for all [Z] in .#%, where £ is the Jacobian
variety of & endowed with the canonical polarization. If g> 2, then ¢, is injective,
while for ¢ = 0 or 1 the restrictions of ¢, to

(2] ey | ZR) + 0} and {[Z] cl%| Z(R) =0}

are injective [14, 22]. In particular, for every g > 0 the restriction of #, to each connected
component ¢ > of A% is injective (cf. Section 1 for the definition of #**).
Before we state the next general property of #,, recall that a topological embedding
is a continuous, injective map f:S — T between topological spaces such that f maps
homeomorphically S onto f(S) endowed with the topology induced from T.

Proposition 4.1. — If g > 2, then t,: M} — HE is a topological embedding.
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Proof. — Since ¢, is continuous (cf. [26]) and injective, it suffices to prove that
if {&,}is a sequence in 4% (we identify curves and their isomorphism classes) and
{t,(%,) } converges in 2%, then { &, } converges in #%.

Let 4% be the moduli space of stable curves over R (cf. [25]). In particular,
My C MY and MY is a compactiﬁcatiori of #%. We claim that if a subsequence {Z',, }
of {Z,} converges to a curve Z in 4%, then & belongs to 4%, that is, & is smooth
and & Xy C is irreducible. To this end, let %, .#% and 7 denote the complex
counterparts of .#%, .#% and /g, respectively. The map A4 —. M, ¥ - Y x5 C
is continuous and hence the sequence { Z',, Xy C} converges to £ X G in M5, Let
T, : M — ¢ be the Torelli map. Since the map A — o, o — o Xz C is conti-
nuous and T (%', X g C) = £,(Z,) X g G, we conclude that the sequence { T,(Z', Xr C) }
converges in &/¢. By [23, p. 111, 112], T, is a topological embedding, and hence
{Z, xgC}converges in #%. Since A is a Hausdorff space, it follows that & is smooth
and & Xy C is irreducible; thus the claim is proved.

The claim implies that { &, } converges in .#%, and hence the proof of the propo-
sition is finished. O

We proceed to give an explicit description of ¢, (#%) for g< 2. This is trivial if
g = 0 since &7 consists of one point. To deal with the case g > 0, recall from Section 2
(see the text following the proof of Proposition 2.7) that the map
Ty - Ha — g, ng(Z) = [¥,]
is continuous ‘and surjective. Obviously, an element Z of H, is a period matrix of an
algebraic curve 2 over R of genus g if and only if =,(Z) = ¢,([Z]).

Example 4.2. — Set

ALY :{_;_ + \/_—1t|teR,t> 0},

A% — (V1| 1eR, 1> 0),
Al — A(l,l,l) ) A(l,0,2).
It is well known that =, | A': Al — o/ is a homeomorphism (even a real analytic iso-
morphism [14, 29]), and hence
AP = (my | AT) (ADID), 0D = (| AT) (A7)
are the connected components of &7 . Furthermore,
(M) = g,
BMGT) = B0, (M) = Ao,
and the restriction of ¢, to each connected component of .#} is a topological embedding

of this component in /3. Later on in this section we shall make use of the map
Uy = (my | AY) " lo by 1 My — AL
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Every algebraic curve Z over R of genus 1 has a unique period (period matrix, if we
want to conform to general terminology) Z in Al, namely Z = u,([Z]). It will be also
convenient to set

Ml — Al, M(l, Ly A(l, 1, l), and M(l, 2,2) __ A(l, 0, 2). 0

Some preparation is still required to describe #,(.#%). Recall (cf. Section 2, the
paragraph preceding the proof of Theorem 1.7) that =, | A?: A? — /3 is a homeo-
morphism, where

A2 — A(2, 2,1) U A(Z,l, 1) U A(2,0, 2) U A(2,2, 2)

and the A®%* are the connected components of A2, explicitly described in H, by simple
inequalities. The family { 24259 = m,(A®%9)} is the set of connected components
of &/; thus 7 has 4 connected components.

We remember from Section 1 that .#% has 5 connected components & %%,
where (s, €) belongs to { (1, 1), (2, 1), (3, 2), (1, 2), (0, 2) }. It is well known that

t2("ﬂg’l,l)) c MI(‘2,2,1), t2(eﬂ(§,2,l)) c M}(‘Zl,l), tz(%é2,3,2)) c Ml(*2,0,2),
tz(ﬂg,l,%) v t2(‘/ﬂ(§’ 0,2)) c ejyl(‘2,2,2)

(cf. [14, 26]). Define
Uy : My — A*

by u, = (m, | A%)~!o 4. By construction, every algebraic curve Z over R of genus 2
has a unique period matrix Z in A2, namely Z = u,([Z]). It turns out that u,(MA5 **)
can be explicitly described. To this end, set

M®LD = {Z e A®2 | Im Z = (&), t,,> 0},
M(2,2,1) — { YA A(2’1’1) | ImZ = (ti,‘)a t12> 0 }’
M®82 — {Ze A0,2) | ImZ = (t“), tip> 0},

ML — lZ € A®%? | det(Im Z) < %}’

M®02 — {z e A®2%9 | det(Im Z) > %}

M2 — M(‘z, 1,1) v M(z, 2,1) V) M(2,3.2) U M(Z, 1,2) U M(2,0.2).

Theorem 4.3. — The map uy: Ma — A2 is a topological embedding. Moreover,
uy (M%) = M2 and  u(Mp»T) = M® 59

Jor all (s,€) m {(1,1),(2,1),(3,2), (1,2), (0,2) }.
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Proof. — Let % be a principally polarized Abelian surface over R. We shall view
¥, =% xgC as a principally polarized Abelian surface over C and identify, as usual,
% (C) and %((C). Since every algebraic curve of genus 2 is hyperelliptic, it follows
from Torelli’s theorem (cf. the version in [22, Theorem 12.1]) that % is the Jacobian
variety of an algebraic curve over R if and only if &, is the Jacobian variety of an
algebraic curve (projective and smooth) over C. Hence, by [20, p. 348, (8.2)], % is
not the Jacobian variety of an algebraic curve over R if and only if % is isomorphic
as a polarized Abelian variety to &; X &,, where &, and &, are elliptic curves over C
endowed with the canonical polarizations. We identify #(C) with &,(C) X &,(C)
and regard &,(C) as a subset of #(C), 2 =1,2. If ¢: Z(C) - #(C) is the complex
conjugation, then either

(4.3.1) o(6,(C)) = &,(C) for k=1,2,
or
(4.3.2) o(&,(C)) + &(C), where =1 or £ = 2.

If (4.3.1) holds, then there exists an elliptic curve 2, over R such that
&, = 9, xgCfork = 1, 2. It follows that [#] = [, X Z,] in . By example 4.2,
we have n,(Z,) = [2,] for some Z, in A, k£ = 1, 2. Hence (m, | A%)~!([#]) belongs to

P —_ (A(2, 2, 1)\M(2, 1, 1)) U] (A(2,' 1, 1)\M(2, 2, l)) U (A(2, 0, 2)\M(2, 3, 2)) .

Conversely, if (m, | A*)~!([#]) belongs to P, then there exist elliptic curves &, and &,
over C such that #, and &, X &, are isomorphic as polarized Abelian varieties, and
(4.3.1) is satisfied.

If (4.3.2) holds, then by [20, p. 348, (8.1)], there exists an isomorphism of
complex Lie groups %: % (C) - &,(C) X o(&,(C)). Moreover, if % is constructed as
in the proof of [20, p. 348, (8.1)], and A(v) = (v,, v,), where v is in % (C), v, is in &,(C),
v, is in o(&,(C)), then A(s(2)) = (o(v,), 6(2;)). Note that if &, is the conjugate of &,
then &,(C) = o(&,(C)) and £k is induced by an isomorphism %, — & X &, of
polarized Abelian varieties. By [30, Lemma 10.10 and its proof], (w, | A%)~([#])
belongs to

Q= {z e A®22 | det(Im Z) = 71} — AR\ (M®1D G ME0.2),

Conversely, if (n, | A2)~1([#]) belongs to Q , using [30, Lemma 10.10], one readily
shows that (4.3.2) is satisfied.
Summarizing, we have

u2(“l23) = MZ’
uz("/{g’s’:)) = M®*® for (S, a) E{ (l’ l)’ (2> 1)’ (3’ 2) }>

u2(‘”g, 1,2)) U uz(‘ﬁ(ﬁ,o,%) — M(2,1,2) ) M(2,0.2).
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Applying [30, Lemma 10.10] once again, we also get

(2,1,2)\ ___ 2,1,2) (2,0,2)) __ 2, 0,2)
(M=) =M ,  u(Mp®?) =M .

Hence the proof of the theorem is complete. O

Let & be an algebraic curve over R of genus g with X = Z'(R) nonempty, that
is, g(Z) = g and s(%) > 1. Let .# be the Jacobian variety of Z. If Z is a period matrix
of Z, then one can find an isomorphism ® : %, — £ of polarized Abelian varieties
over R. Let @; : #,(C) — F(C) be the map determined by ®. Since #,(C) = C?/[Q],
where Q = (Z,1)), and @ is a Gal(C/R)-equivariant isomorphism of complex Lie
groups, we have the homomorphism

&, H,(X,Z) >2Z°

constructed in the paragraph following Proposition 3.3 (recall that Z? = [Q] N R?,
and elements of Z¢ are viewed as g X 1 matrices) and the subgroup

L(X, @) = Og(H, (X, Z))

of Z°. Explicit computation of L(X, ®;) is crucial for effective applications of Theo-
rem 3.9. Directly from Theorem 3.9 we obtain the following facts for g =1 or 2. If
g=1thenL(X,®;) = Z.If g = 2 and s(Z) > 2 (resp. g = 2 and (s(%), (%)) = (1, 2))
then L(X, ®,) = Z2 (resp. L(X, ®;) = 0). The only remaining case for g = 2, namely
(%), (%)) = (1, 1), is much harder and is dealt with below.

Proposition 4.4. — Let & be an algebraic curve over R of genus 2. Assume that s(Z) = 1
and (%) = 1, that is, [Z] belongs to MgV . If Z = uy([Z]) and & is the Facobian variety
of X, then there exists an isomorphism @ : ¥, — S of polarized Abelian varieties over R such that

L(X, ®,) = z(i)

Proof. — Let & be the space of all polynomials Q of degree 6 with real coefficients
and the leading coefficient 1 such that the complex roots of Q are distinct, and — 1, 1
are the only real roots of Q . It is well known that £ can be given by an affine equation

»* = P(x),
for some P in & (cf. [14, p. 170]). We regard & (C) as the 2-sheeted branched covering
of P1(QC),

n: Z(C) - PYC),

ramified over the roots of P. As usual, we identify PY(C)\{[1:0]} with G, and
Z(C)\="Y([1:0]) with

Ce={(x)) eC*|)* =P(x)}.
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Then =, viewed as a map of C, into G, is given by
n(x,y) = x.

Let 6: Z(C) — Z(C) be the complex conjugation.

We shall now construct a symplectic basis (8;, By, oy, &p) for H;(Z'(C), Z) (o, and B,
will be represented by cycles passing through the ramification points, which is a conve-
nient, for our purposes, modification of the usual construction, cf. for example [20,
p- 345, 346]) such that

(4.4.1) Hi(o) () = B — o, Hi(o)(B) =B, for k=1,2,
(44'2) Y = Bl + ﬁ2>

where vy is the homology class in H,(Z'(C), Z) represented by Z(R) endowed with a
suitable orientation.

To this end, let p,, ..., p; be the roots of P ordered in such a way that p, = 1,
pa= —1, py = ps, b= ps, Imp; >0, Im p,> 0, Rep; > Rep,. Let a; and a, be
the oriented segments from p; to p,, and from p, to p,, respectively. Let b, and b, be
simple oriented arcs in C from p, to p,, and from p, to p,, respectively. We choose &,
so that ©(b,) = b, as sets for 2 = 1, 2, where 7 : C — C is the complex conjugation. Denote
by ¢ the union (— o0, — 1] U [1, o) oriented in such a way that the preferred direction
on (— oo, — 1] (resp. [1, ©)) is from — oo to — 1 (resp. o to 1). Let r; be a ray with
beginning point p,, j =10, ..., 5.

LR x-plane

\

\,
73 \ D2
\

Fic. 1

We choose b,, b,, and r,, ..., 7y as on Figure 1. In particular, the sets we consider
intersect only at the points indicated on Figure 1, and g, is transverse to b, at p, (resp. a,
is transverse to b, at p,).

Note that =~ !(a,), =~ !(b,) are €® curvesin Z'(C) fork = 1, 2, and =~ !(c) = Z(R).
Choose the determination of VP(x) on C\(r, U ... Ur,) such that Im v P(0) > 0.
Clearly, the set

Cif ={(%) eCxeC\(rpU ... Ur), y = VP{))
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is contained in Gp. We pick the orientations on n~'(a,), =~ '(4,), Z(R) in such a way
that the embeddings

n:in Y(a) NCF —a, wn:n"Yb) NnCEH —b,
n: ZR)NCF —¢

preserve the orientations (obviously, we can do this for the first two embeddings, and
the choice of the orientation on ¢ implies that this can be done also for the third embedding).
Let oy, B, and y be the homology classes in H,(#(C), Z) represented by =~ '(a,),
n~1(b,), and Z'(R), respectively. One readily verifies that (8;, By, o5, ) is a symplectic
basis for H,(Z'(C), Z) and (4.4.1) holds. Furthermore, the intersection number of vy
and o is 1 for £ =1, 2, and hence (4.4.2) is also satisfied.
It is now easy to obtain a period matrix of #. Indeed, regard

_dx _xdx

and 7n=—
J J

as holomorphic forms on £(C) (they are linearly independent), and set

[ ] oo S|
A — @ oy B — By B .

i

% g B B2

Since » and % are defined over R, it follows from (4.4.1) that the lattice generated
by the columns of (A, B) is mapped onto itself by the complex conjugation. Thus

Zp=B1A

®

belongs to H, and is a period matrix of #. Furthermore (4.4.2) implies that one can
find an isomorphism ¥ :%,, — £ of polarized Abelian varieties over R such that

(4.4.3) L(X, ¥,) =Z (1)

The proof is not finished, however, because Zp need not be equal to Z = u,([Z]).
In order to complete the proof, we first observe that Z, can be computed by
integrating suitable forms on the x-plane. Let

dx xdx
Wp — ——— —
PV VPG

on C\(rp V... Ur), and

[ o | J
®p ®p
AP — ay az , BP — by

f Np f p
ay az

~

er“”P
by

N f")
P bgp}
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Then A = 2A,, B = 2B, and
(4.4.4) Z, = B5' A,.

We shall now consider a particular algebraic curve &'y over R given by the equation
% = Py(x), where

Py(x) = x% — 1.
We claim that
(4.4.5) Zp, = uy([Z,]).
Indeed, we can use the construction described above for the polynomial P,. If

¢=(1/2) + V—1(V/3/2), then p, =¥, j=0,...,5, are the roots of P,. As b,
(resp. b,) we can take the oriented segment from p, to p; (resp. from p, to p,).

xplane

e ¢
4
;3 =-1 bﬂ “ °
(1] =1
vh ¢
a,
¢ [ 4
Fic. 2

All the integrals below are taken along the line segments. If

1 1
r =f wp, and s =f Mgy
0 0

then an obvious change of variables yields
2 o

(4.4.6) f wp,=¢'r and f Np, =G s
0 0

for j=0,...,5. Using (4.4.6), we can easily express the integrals of wp, and np,
along g, and b, in terms of ¢, 7, s. For example,

go 1 g
a gt [} 0
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For the other integrals one gets analogous formulas, which leads to
r(l =8¢ —r(1 4+
i (s(l —) (1 — )
B, — (f @ -7 (- C‘))
s@ =1 s -1
Hence, by (4.4.4),

=-2\/—_1\/§(: _r).

A

11
10 | v3 2v3
ZP0=BI_’01AP0=%( )+ —1 :

0 1 11

243 V3

Clearly, Zp is in M®1? and therefore (4.4.5) is proved. In view of (4.4.3), the
proposition is proved for &,.

We shall now consider the general case. Let S,(R) be the vector space of all real
symmetric 2 X 2 matrices and let S} (R) be the cone in S,(R) of the positive definite
matrices,

1. 2
%mw{@‘”%&mnm>mm%—@>0-

12 t22
Observe that the space & is connected, the map
F:# ~H, FQ)=Z,

is continuous, and 2 Re F(P;) = 2 Re Z, = I,. It follows that
F(&) §-12-12+V— 1S5 (R).

Set

2 2
R=[(u 12)58; R)[0<t,< ty < tzz}:

bie B2
n 1 —n
nf )
14+n —n
0 1
So =R UG, R'C, (of course, C0=’Co=( )),

S, =0C,S'C,, S.=0,S, C.
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Clearly, S, = S;. Moreover, S, is the convex subset of S;(R) bounded by the planes
in S,(R) passing through the pairs of the lines

R (l 1)’ R( n2 n(n + l))’ R ((n — 12 n(n— 1))
11 n(n+1) (n+ 1)2 n(n — 1) n?

Note that the plane V, passing through the last two lines is of the form

V,=0GC,V,C,,
where
tll t12
Voz{( )Esz(R)ltm:O}-
t12 t22
Set
V., =G, V, ‘C,.

If L is the plane in S,(R) defined by
t 2
L={(“ ) €Sy(R) |ty = — tyy + 1},
tl2 t22

then the intersection S} (R) N L is an open disc. The sets S, NL, S, NnL, V, nL,
V, N L are shown on Figure 3 for n = 0, 1, 2. One can verify that

Ss=Us,uus,

n=0 n=0
is a convex open subset of S (R) with boundary @S contained in

V= U V,u U V.

n=0 n=0

Plane L

s, NL=S NL

Vv, NL v, NL

Fic. 3



MORPHISMS, LINE BUNDLES AND MODULI SPACES IN REAL ALGEBRAIC GEOMETRY 47

We assert that

(4.4.7) F(2) < é I, + vV — 1S.

Indeed, let us consider the action of the group I', on H, (cf. Section 2, the paragraph
preceding the proof of Theorem 1.6 for the definition of I'y and its action on H,).
Observe that if C belongs to Gl,(Z), then

1

c 5 (‘fa'—Q
K =
0 (Ot
belongs to I'y, and the action of K on W = é I+ — 1T in H, is given by

(K, W) > K.W = % I, + vV — ICT ‘C.

Recall that %y and %y  are isomorphic as polarized Abelian varieties over R. It is
obvious that no matrix in 3 I, + V— 1V, is a period matrix of an algebraic curve

over R (cf. the proof of Theorem 4.3), and hence no matrix in V is a period matrix
of an algebraic curve over R. Since dS = V, £ is connected, F is continuous, F(P,)

belongs to %Ig +4/— 18, and F (Q) = Z, is a period matrix of an algebraic curve

over R for all Q in &, it follows that (4.4.7) is satisfied.
By (4.4.7), the period matrix Z, of & is of the form

c 1('0—1—0)
(4.4.8) Z, = 2 .z

0 tc—l

where Z’ belongs to %Iz +4/— 1R = M®!? and either C = G, or C = C,C, for

some n> 0. Since Z’' is a period matrix of & and Z is in M®"", we must have
Z' =7 = uy([Z]). It follows from (4.4.8) that there exists an isomorphism

G: Y%, -¥%, =%,
of polarized Abelian varieties over R such that the map
Gg: #5(C) = C[(Zp, I,)] = #,(C) = C¥[(Z, 1,)]

determined by G is induced by the linear isomorphism

C2-C, o»->C1o
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Recall that we already constructed the isomorphism ¥': &, — . of polarized Abelian
varieties over R such that (4.4.3) is satisfied. Note that

D:VoG W, > S

is an isomorphism of polarized Abelian varieties over R, and since
1 1
o)=L
1 1

L(X, &) =2 (i)

we obtain

Thus the proof of the proposition is finished. O

We are now in a position to give a very explicit description of 7%(X; X X,),
where X, = Z,(R) and %, is an algebraic curve over R of genus 1 or 2 for 2 = 1, 2.
In particular, the map u,: #§ — A’ for g = 1, 2 (cf. Example 4.2 and the paragraph
preceding Theorem 4.3) will be used. We begin with the simplest case, g(%;) =1
for k=1,2.

Example 4.5. — Let &, be an algebraic curve over R of genus 1 with X, = Z,(R)
nonempty, 2 = 1, 2. Let Z, = u,([%,]) for £ = 1, 2. Then there exists an isomorphism

Tyt Mat(l x 1, Z) - n3(X; x X,)

such that
11(C(Zy, Z,)) = n%(X;y X Xp).

This follows immediately from Theorem 3.9. Of course, Mat(l x 1,Z) = Z, and we
should mention that the subgroup G(Z,, Z,) of Z is explicitly computed in [9] (note
that the notation in [9] is somewhat different than here). O

The case g(%,) = k for k = 1, 2 is considerably more difficult and requires, among
other things, Proposition 4.4.

Theorem 4.6. — Let &, be an algebraic curve over R of genus k with X, = Z,(R)
nonempty, k = 1,2, Let Z, = w,([%Z,]) for k = 1,2. Then there exists an epimorphism

et Mat(l X 2, Z) - 73(X; X X,)

such that
(1) 712(C(Zy, Zy)) = ma(Xy X Xy),
(i) Typ s an isomorphism if s(%,) > 2,
(iii) Ker iy ={ (c1,¢5) € Mat(l X 2,Z) | ¢ + ¢, = 0} if (s(%), &(F,)) = (1, 1),
(iv) Ker 1,5 = Mat(l x 2, Z), that is, n*(X, X X,) = 0 if (s(Z>,), (X)) = (1, 2).
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Proof. — The existence of 7, satisfying (i) and (ii) follows from Theorem 3.9,
while in order to obtain (iii) one applies also Proposition 4.4. Condition (iv) is a conse-
quence of Proposition 3.8. O

We shall now consider the last case, g(%,) = 2 for £ = 1, 2. Of course, without
loss of generality we may assume that s(%,) < s(%5).

Theorem 4.7. — Let &, be an algebraic curve over R of genus 2 with X, = Z,(R)
nonempty, k = 1, 2. Let Z, = uy([Z,])) for B = 1, 2. Then there exists an epimorphism
Tag . Mat(z X 2, Z) —> ch(Xl X Xz)
such that
(1) 722(C(Zy, Zy)) = mg(Xy X Xy),

(ii) 799 o5 an isomorphism if s(%,) = 2 for k =1,2,
(ii) Ker tgy ={ (c;;) e Mat(2 X 2,Z) |61y + €1 =0, 15+ 62 =0}

Y (5(Z2), e(F1) = (1, 1) and 5(%,) > 2,
(iv) Ker 7o ={ (6;;) € Mat(2 X 2,Z) | ¢yy + 612 + €1 + €22 =0}

i (s(Ze) e(ZW) = (1, 1) for k= 1,2,
(v) Ker 7y = Mat(2 X 2, Z), that is, 72(X; X X5) = 0 if (s(Z,), e(¥y)) = (1,2) for

t=1o0t=2.

Progf. — As in the proof of Theorem 4.6, the existence of t,, satisfying (i) and (ii)
follows from Theorem 3.9. To obtain (iii) and (iv), one applies in addition Propo-
sition 4.4. Condition (v) follows from Proposition 3.8. O

Before stating our next result, let us recall from Section 1 that
{AR"7 | (55¢) €A, V{(0,2) }}
is the set of connected components of 4.
By Proposition 3.8, if ([Z1], [£,]) is in AZv 0 X Ag %% with (s, g)
in A, for k=1, 2, then
rank 7% (% (R) X Z,(R)) < rank 72(Z,(R) X Z,4(R))
S(—e+1)(—g+1).
Given a nonnegative integer 7, we put
'@r(gl) S15 815 825 25 82)
= {([Z1], [&,]) e Mg+ X Mg> "2 | rank wa(Z3(R) X Zy(R)) =1}
In particular, for » = 0 we have
Ro(g1> 515 €15 Gas 52> €2)
= {([#4], [£;]) e Mg0 0 X M | ng(Z1(R) X Zy(R)) = O}
In order to describe the sets Z,(gy, 51, &3 &2, S35 &), it is convenient to denote by S,(R)

the R-vector space of all real, symmetric » X n matrices. Our next result is a more
detailed version of Theorem 1.12.
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Theorem 4.8. — Let (s,5) be in A,, where 1< g,<2 for k=1,2. Let
p= (51— e + 1) (s — sy + 1). Then there exists a chain of sets
SeR) X 5, (R) =V,DV,;>...0V, DV, ., =9
such that

(1) for each integer ¢ satisfying 1 < ¢ < p, the set V, is the union of a countable family of algebraic
subsets of V,,

() VNV, ., is dense in V, (in the meiric topology) for all 0< r< p,

(iii) the set U n (V\<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>