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BIFURCATIONS DE POINTS FIXES ELLIPTIQUES

1. — COURBES INVARIANTES
par Aarx CHENCINER
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A Laurent Schwartz.

o.1. Introduction générale

Cet article constitue la premiére partie d’une étude consacrée aux propriétés
dynamiques de certaines familles & deux paramétres génériques de germes de difféomor-
phismes de R2,

Le phénoméne que nous mettons en évidence est illustré trés heuristiquement
par la figure 1 (la figure 2 représente dans le méme esprit une classique « bifurcation
de Hopf ») : « le long » d’une certaine courbe I' de I’espace des paramétres, on retrouve
« déployée » toute la complexité que présente, au voisinage d’un point fixe elliptique,
la dynamique d’un germe de difféomorphisme générique de R? préservant les aires
(dans le cas de Hopf, remplacer ce dernier par le difféomorphisme « solution au temps 1 »
d’un germe de champ hamiltonien).

Qu’un tel phénoméne soit possible est rendu manifeste par la remarque suivante,
que nous avons systématisée : dans ’étude locale d’un difféomorphisme de R? au voi-
sinage d’un de ses points fixes elliptiques, la condition de conservation de l’aire, bien
que de codimension infinie, joue le réle d’une condition de codimension 1 (la codimension
infinie se retrouve en ce que ce role est joué pour chaque ensemble invariant, c’est-a-dire
une infinité de fois). Ceci était au moins connu depuis la démonstration de Riissmann
du théoréme de Kolmogorov-Arnold-Moser (recherche d’une couibe « translatée »
et annulation de la translation a cause de la conservation de ’aire, voir [15], [20]); nous
montrerons dans les articles suivants qu’il en est de méme pour le théoréme de Zehnder
sur Pexistence générique de points homoclines [23] (le paramétre sera ici un frottement
dans P’équation différentielle du pendule [3], [10]), pour le théoréme géométrique de
Poincaré-Birkhoff (qui peut étre & bon droit considéré comme un théoréme concernant
certaines familles & un paramétre d’homéomorphismes de I’anneau, voir [4] et [5]),
et pour le théoréme d’Aubry-Mather (voir [6], [9]).

Le lecteur habitué aux difféomorphismes conservatifs aura reconnu dans ces
exemples les théorémes fournissant respectivement des courbes invariantes de nombre
de rotation diophantien, des points homoclines relatifs a des points périodiques de
« petites » périodes, des points périodiques de « grandes » périodes, et des ensembles de
Cantor invariants de nombre de rotation de Liouville.

Les résultats que nous démontrons précisent ceux annoncés dans [1], [2], [3],
[4]; [5], [6], [7]; le contexte et la philosophie ont été en partie discutés dans [7] et [8].

Ce premier article traite des courbes invariantes et donne aux résultats de [1],
[2] leur forme définitive : on s’est en particulier débarrassé des hypothéses diophantiennes
parasites sur ey.
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BIFURCATIONS DE POINTS FIXES ELLIPTIQUES 69

0.2. Courbes invariantes et courbes translatées

La persistance, sous de petites perturbations, d’un point fixe d’un difféomorphisme
s’obtient en général comme conséquence du théoréme classique des fonctions implicites.
Il n’en est plus de méme pour des variétés invariantes de dimension supérieure 4 o qui
ne persistent systématiquement que si elles sont « normalement hyperboliques » ([16],
[17]) (la méthode des « transformées de graphe » permet alors de les obtenir comme
point fixe d’une contraction dans un espace fonctionnel bien choisi). Cette derniére
propriété est largement utilisée en théorie des bifurcations (de Hopf par exemple ([19],
[11])), le probléme étant d’évaluer Iordre de grandeur de I’attractivité normale d’une
variété invariante d’une « forme normale tronquée » N par rapport a celui de la dis-
tance a N du difféomorphisme P considéré.

Une telle méthode ne permet de comparer les diagrammes de bifurcation d’une
famille de difféomorphismes et de la famille de « formes normales tronquées » associée
qu’en dehors de certains voisinages, infiniment effilés a P’origine, des hypersurfaces de
bifurcation de cette derniére (ces voisinages ne se réduisent a I’hypersurface elle-méme
que lorsque la bifurcation se fait a partir d’un point fixe) (fig. 5).

Le présent article étudie ces voisinages effilés dans le cas particulier de la collision
de deux courbes fermées invariantes au voisinage d’une bifurcation de Hopf dégénérée
qui les crée simultanément : ’espace des paramétres (p, a) est de dimension deux, et le
long d’une courbe T issue de (0, 0) (fig. 4) nait un cercle invariant non normalement
hyperbolique (« saddle-node ») de la forme normale tronquée N, ,. Nous montrons
que dans une famille générique proche P, ,, T est remplacée par un ensemble de Cantor r
(les points ¥, de la figure 10) de valeurs des paramétres pour lesquelles P, , posséde
une courbe fermée invariante non normalement hyperbolique. Le role joué précédemment
par lattractivité normale des courbes invariantes d’une forme normale tronquée est
maintenant tenu par le cisaillement tangentiel (twist) le long d’une telle courbe, et le

N

théoréme de point fixe céde a son tour la place 4 un théoréme de fonctions implicites
(celui de Nash, Moser, Hamilton) ([13], [15]).

Plus précisément, nous utilisons le théoréme de la courbe translatée, dit a Riiss-
mann ([20], [15]), qui implique le théoréme du « twist » de Kolmogorov, Arnold, Moser,
et n’est autre qu’un théoréme du « twist » non conservatif. Alors que la propriété de
conservation de I’aire implique directement qu’une courbe fermée envoyée sur sa trans-
latée est invariante, c’est ici la présence d’un parameétre transverse a I' qui nous permet
d’affirmer que pour certaines valeurs de ce dernier la translation est nulle.

Notons que la recherche de courbes fermées translatées semble bien naturelle
dans I’étude des bifurcations de familles de difffomorphismes de (R% o) : dans le cas
elliptique, les formes normales qui interviennent laissent invariant le feuilletage des
cercles centrés a Porigine et appliquent ces cercles les uns sur les autres par des rotations
dont I’angle varie en général avec le rayon du cercle (« twist » non conservatif).
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70 ALAIN CHENCINER

0.3. Bulles

Ce travail a pris naissance lors d’un colloque sur les systémes dynamiques et la
turbulence organisé en juillet 1980 par I’Université de Warwick. Une question de Jack
Hale sur la possibilité de remplacer dans les familles & deux paramétres considérées ici
le voisinage effilé de la courbe de bifurcation I' de la famille de formes normales par une
infinité de bulles a été séminale : dans les premiéres versions de ce travail je doutais de
la justesse de cette intuition et ce n’est que tout récemment [7] que je me suis apercu
de la possibilité de prouver I'existence de ces bulles a I'extérieur desquelles P, , « res-
semble » a une forme normale (fig. 11) : & presque tout chemin de ’espace (., @) passant
par un des pointsy,, de r correspond une famille de difféomorphismes P, , se comportant
comme la famille de formes normales N, , associée & un chemin transverse a T', c’est-a-dire
présentant de maniére franche le phénoméne de disparition par collision d’un couple
de courbes invariantes. La preuve nécessite une nouvelle étude de bifurcation a partir
des points de T; elle peut étre considérée comme un prolongement de [11] et montre en
particulier que certaines des situations étudiées dans ce dernier article se présentent plus
souvent qu’on n’aurait pu le croire.

Dans optique de Pintroduction, ensemble de Cantor T est ’analogue de ensemble

(s

déployé en

déployé en {( > 1L

Fic. 2
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BIFURCATIONS DE POINTS FIXES ELLIPTIQUES 71

de Cantor de courbes invariantes fourni dans la situation conservative par le théoréme
de K.A.M.; quant aux bulles, ce sont les analogues des domaines d’instabilité de Bir-
khoff : nous verrons dans [g] et [10] que leur structure est tout aussi fascinante.

Des discussions avec Michel Herman sur les « petits twists » ont été fondamentales
(ainsi que son cours a ’E.N.S.); il sait combien je lui en suis reconnaissant.

Quelques notations :

¢ € RX o désigne un paramétre voisin de o dans RX,

f:A,a—B,b désigne une application f définie sur un voisinage de a, & valeurs
dans B, et vérifiant f(a) = b.

T" = R"/Z". ‘

C¥(N, R) est I’espace des fonctions de classe C* sur N & valeurs dans R muni,
si N est compacte, de la topologie de la convergence uniforme des dérivées jusqu’a
Pordre % dans les cartes d’un atlas.

Diff¥ (T") est I’espace des difféomorphismes de classe C¥, Ct-isotopes 2 Iidentité,
de T"

On identifiera & un voisinage de I’Identité dans Diff* (T') un voisinage de o dans
C¥T, R) par application ¢ Id + ¢.

L’application inverse est k> 2 — Id, ol on note encore 4 un relévement de %
en un difflfomorphisme de R.

Enfin, si o eR, R, eDiff (T') désigne la rotation 6 6 4+ » (mod. 1), et
lisse signifie G*.

Principales notations définies dans le texte :

Noaw Poo, T, ¥, 2, flu, a,NX), gl a, X), (s, X) o §1.2
Nos Yo = (Bas G0)s Pas Caus Ca vt vorrre ittt ittt 1.3
r(w, u, a), (0, &, @), 7,, (v, €) = Ay (1, @), (0, 11, 8), Dy, € pg +ovvrvvven- 1.4
v, e, s, %‘o, " "+ o e s e et esaesenet s et anetteanenattentaasetoatastens 2.1
0 AT 2.2
R /N A 2.3
(s @), S(y @)y T(Bs @)y O(y @) v oo v v ittt e i i e e e 3.1

1.1. Points fixes elliptiques

Soit P : R% 0 —R? 0 un difféomorphisme local C* de R? fixant 0; on suppose
que les valeurs propres de la dérivée DP(0) sont de la forme 2y, A9, Ag = €™ non
réel (I'origine est un point fixe elliptique); on suppose également que A + 1 pour

1<¢<aon-+3, ou, ce qui revient au méme, que w, =i=§ pour 1< ¢g<on+4 3

(Porigine est un point fixe « suffisamment » non résonnant) : les résultats qui suivent
seront valables dés que 2 > 15.
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72 ALAIN CHENCINER

La théorie des formes normales (voir [8] chapitre II) fournit une identification
locale (polyndmiale) de R? a C dans laquelle

(1) P(2) = 2D + 2. |2¥] + O(z[*),

ou les ¢; sont des nombres complexes et le reste une fonction C* de z et 2.
Une écriture plus agréable (coordonnées polaires) est

(2 P(2) = al1 +S(|2F) + O]z +)] &m0l
ou encore
P(re#™®) = Ré¥™°,
(3) ® =0+ g(r*) + O(™™?),
R =r(1 +f(r) + O(r™*?)),
formules dans lesquelles f et g sont des polyndmes de degré n a coefficients réels de la
forme
(4) X)) =aX+aX24 ... 4+ a,X",
X)) =0 +6, X+ ... + 5, X"
Le lecteur vérifiera que les fonctions R (6, ) et ®(0, r) sont définies et C® sur tout

un voisinage de T' X {o} dans T' X R (et pas seulement pour 7> 0 comme il pour-
rait le croire).

Remarque. — o, étant un nombre réel, les formules (3) et (4) définissent un relé-
vement de la restriction P |R?* —{o} au revétement universei R X R, de
R2 — {0} @ T x R,. Tous les reléevements de déformations de P seront définis par
continuité & partir de celui-ci. Nous parlerons donc sans ambiguité de nombres de rotation réels.

1.2. Déformations

Nous considérons maintenant des familles P,, C* en p e R* o, de difféomor-
phismes locaux déployant P, = P.

Puisque le spectre de DP(0) ne contient pas 1, on déduit du théoréme usuel des
fonctions implicites que toute perturbation C! de P posséde encore un point fixe proche

de o. Si p est assez proche de o dans R, les valeurs propres A,, A, de la dérivée de P,
en ce point fixe vérifient encore Al #+ 1 pour 1< ¢< 2n - 3; aprés P’application
éventuelle d’une famille & deux paramétres de changements de coordonnées C*®, on

peut donc écrire le germe de déformation P, sous la forme
(5) P,(2) = 21 +f(w, |2]") + O(| 23] f=lou =) voetin,

ou f et g sont des polynémes de degré n en la deuxiéme variable a coefficients réels dépen-
dant différentiablement des parameétres
(6) S, X) = ap(p) + ar(w) X + ... +4,(p) X, 4(0) =o,
g, X) = bo(p) + by(w) X + ... + 5,(1) X7, bp(0) = @
72



BIFURCATIONS DE POINTS FIXES ELLIPTIQUES 73

L’écriture de (5) sous la forme
P,(2) = N,(2) + O(|z[""*?),
Nu(2) = z[1 + f(g, | 2[})] emotel=P),

fait apparaitre la famille P, comme une perturbation de la famille N, de « formes nor-
males » (tronquées).

La propriété caractéristique des difféomorphismes locaux de la famille N, est
I’équivariance sous ’action du groupe des rotations, qui se traduit par les deux propriétés
suivantes :

(7)

(1) le feuilletage des cercles de centre o est invariant (le cercle |z| =7
est envoyé sur le cercle |z| =r(1 + f(w, r%));
(8) (ii) un cercle de centre o est envoyé sur un autre cercle de centre o
par une rotation (pour le cercle de rayon 7, la rotation est d’un
angle de 2mg(w,7?)).

L’étude de la dynamique de tels difféomorphismes se réduit donc & un probléme
en dimension 1, la variable angulaire n’intervenant que de fagon triviale.
Supposons qu’il existe K <z tel que

a(0) = ay(0) = ... = ag_,(0) =o,

(9) ag(0) + o (cette condition implique que o est un attracteur ou un
répulseur pour N, et pour P,y).

Nous dirons que P, est formellement de codimension K (référence 4 la seule variable
radiale). Pour une famille générique P, dépendant de K paramétres (i.e. d’un para-
métre @ = (Yo, ..., kg_q) € RX,0) Dapplication de RK o dans RX o

e (g(@), o5 ag_1(w))

est un difféomorphisme local; on peut donc prendre a,(@), ..., ax_,(p) comme para-
métres locaux de la déformation. Dans la suite, nous noterons p. = (p, a, a,, ..., ax_,) eR¥, 0
ces paramétres, ce qui donne

S X) =p + aX + .o+ X 4 ag(w) X5+ oL+ g (w) X7,
aK(o)*Oa

(10)

et mous supposerons ag(0) = — 1 : a conjugaison linéaire pres, cela revient a supposer
que ag(o) < o. Le lecteur transposera aisément nos résultats aux cas ol ag(0) > o.
Dans ces conditions, il est facile de déterminer les courbes fermées invariantes
(proches de 0) de N, : d’une part la propriété caractéristique (8) (i) implique qu’une telle
courbe est nécessairement un cercle de centre o; d’autre part les rayons r des cercles
invariants sont les solutions de ’équation f(w, 7?) = o.
Lorsque K =1, on retrouve la classique bifurcation de Hopf des difféomor-

phismes ([1g], [8]).
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74 ALAIN CHENINCER

Lorsque K = 2, cas auguel nous nous limiterons désormais, les formules (6), (7), (10)
deviennent

Pu.,a(z) = Nu.,a(z) + O(I z|2n+3)’
N,o(2) = 2[1 + f(p, a, | 2[})] oz,
(11) Sl a, X) = p + aX + ay(p, a) X2+ ... + g,(p, a) X",
43(0,0) = — 1,
g(w, a, X) = bo(u, a) + by(i, ) X + ... + b,(w, 0) X',

bo(o, 0) = Wg.

Les figures 3 et 4 indiquent la forme de la surface d’équation f(u,a,r?) = o dans
R? X R, le nombre de cercles invariants par N, , en fonction de la position de g = (u, a)
dans R? et la dynamique de N, ,; on n’oubliera pas en lisant ces figures que tout est
local au voisinage de (w, a,r) = (o, 0, 0).

La demi-droite w = o0, a< o (resp. u = 0, a> o) correspond a des bifurcations
de Hopf génériques supercritiques (resp. sous-critiques) : pour p> o l'unique cercle
invariant est un attracteur.

La courbe TI' obtenue en éliminant X entre les équations

(12) foeX) =0, L (waX) =0, a>o,

correspond aux situations o deux cercles invariants viennent se confondre. Remar-
quons que I' est lisse et tangente en (0, 0) & p = 0; on déduit en effet du théoréme des
fonctions implicites que I' est donnée par une équation de la forme

a2
(13) u=—z+0(|a|3), a2 o.

flét,a,r’) =0
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BIFURCATIONS DE POINTS FIXES ELLIPTIQUES 75
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Fic. 4

Cette courbe I' n’est autre que celle mentionnée dans I’introduction : le long de T,
'unique cercle laissé invariant par N, , n’est pas normalement hyperbolique, ce qui lui
laisse une chance de courir des aventures hamiltoniennes dans la perturbation P, ,
de N, ,.

C’est plus précisément dans un voisinage effilé ¥~ de ' que se situe notre intérét :
si p est un nombre réel positif, on définit = par

(14’) jl;i(f’v a, X) =f(fl'> a, X) + XP.
Dans la partie du plan des z définie par f,"(u, q, |2|?) < 0 ou f (@, 4, |2]?) = o,
IN, .(2)| — | 2] = |%f(, a, |2]?)| Pemporte sur la perturbation O(|z[**%); la dyna-

mique radiale de P, , y est donc analogue a celle de N, ,. Notons I'f le contour apparent
(privé de ’axe p. = 0) de la surface f* =o0. Si u<o0 et a<o0 ousi u<o, a=>o0
et (u, a) est en dessous de I';}, tout point z vérifie f;"(u, g, |z]?) < 0 et o estun attracteur
global pour P, , (pour un énoncé précis, voir la partie 0) du théoréme 4). Si pn <o,
a> o et(p,a)est au-dessus de I';, les deux équations f," > o, f.” < o définissent deux
anneaux hors desquels les dynamiques radiales de N, , et P, , sont analogues; entre I}
et I, au contraire, ces deux anneaux se fondent en un seul, d’équation f;" > o.

Soit ¥~ le voisinage effilé de T' défini par I et I',_, (figure 5). Nous montrerons
dans le paragraphe g (théoréme 4) que son complémentaire J# dans un voisinage de o
est un domaine d’hyperbolicité normale au sens de ([8] chap. III) : dans 5, ’hyperbolicité
normale (attractivité ou répulsivité) des cercles invariants de N, , est assez forte pour
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76 ALAIN CHENCINER

que ceux-ci résistent & la perturbation que représente le passage de N, , 4 P, ,; dans un
voisinage uniforme de o dans R? P, , a alors autant de courbes fermées invariantes que

N, , et les partitions en bassins d’attraction ou de répulsion sont analogues.

f)(ua,r)=0
fluar=0

fo3lu,a,r)=0

A _
”’ -~‘\\
7~ ~
rd ~
7 N
’ RS
/ \
/ \
/ \
/ H )
] | W
\ v
]
! !
\ /
r- 7
\ n-3¢
. '-# 7/
\ I+
\ "/’/"V
N P
~ P
~ g
\\ ’l
~ ——
FiG. 5

Remarque 1. — L’identification locale de R2 a C dans laquelle P, prend la forme (5)
n’est pas uniquement déterminée; cependant, la notion de codimension formelle est
définie sans ambiguité : si dans un syst¢éme de coordonnées P, s’écrit

(15) ( Po(2) = 2(1 + a; |2[*) ™00 + O(|2[*+7),
> t a GR, a; * o,
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BIFURCATIONS DE POINTS FIXES ELLIPTIQUES 77

Pentier % et le signe de g, sont des invariants de conjugaison C® locale. On peut le voir,
par exemple, en remarquant qu’une conjugaison locale entre deux difféomorphismes

du type (15) s’écrit nécessairement
(16) h(z) = zu(|2[?) 0 + O(| 2[*+2).
De méme si

(|2 = ©g + b |2 4 O(| 2 ),
(17) b,GR, bl*0>
t<k,

Pentier ¢ et le signe de b, sont des invariants de conjugaison C* locale (le couple (g, b,)
est en fait bien défini & la multiplication prés de chacun de ses éléments par le méme
nombre réel positif).

Remarque 2. — Dans une famille & K parameétres « générique » de difféomorphismes
d’une surface, on pourra rencontrer, pour des valeurs isolées des parameétres, des difféo-
morphismes dont le germe en I'un de leurs points fixes soit de codimension formelle K.

Dans la suite de cet article, on considére uniquement le cas ot K = 2.

1.3. Les ensembles C, et Em

L’étude de P, , pour (w,a) € ¥~ exige qu’on s’intéresse aux nombres de rotation
il sera commode d’introduire la notation

golws a, X) = g(u, 2, X) — w, c’est-a-dire

(18) Nu.,a(z) = ¢ Z[I +f([d., a, Izlz)] 2l ]21?)

En éliminant X > o entre les équations
(19) f(l“w a, X) =0, gm(y', a, X) =0,

on obtient 'ensemble G, des valeurs de (u, a) pour lesquelles le difféomorphisme local N, :
posséde, au voisinage de o, un cercle invariant €, , , sur lequel il induise la rotation R,
(ceci suppose que o soit proche de w,). Par analogie, on définit G, comme Pensemble
des valeurs de (w, a) pour lesquelles le difféomorphisme local P, , posséde une courbe
fermée invariante continue, coupant chaque demi-droite issue de o en un seul point,
sur lequelle il induise un homéomorphisme de nombre de rotation w.

A partir de maintenant on fait les hypothéses (génériques) suivantes :

bi(0,0) = 0 (rappelons qu'on a déja supposé a,(0,0) = — 1),

20 ob
(20) 7)032'5£(O,O)+b1(0:0)*0§

(Ces hypothéses jouent le réle de ’hypothése de « twist » dans la théorie K.A.M.)
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C,, est alors une courbe lisse et ’enveloppe des diverses courbes G, pour o voisin

I
de wy, — (@ — wy) > 0, n’est autre que I' : pour démontrer ceci, on commence par
No

remarquer qu’en un point (u,a) € I' le rayon r de I'unique cercle invariant proche

de o de N, , vérifie

(21) = g + O(|a]y.
La rotation induite par N, , sur ce cercle a donc pour angle
by (u, a I
(22) 27 [bo(f‘-s a) + -1(‘};_—) a+ O(|a]2)] =27 ["’o + 2 od + O(|a[?) |.

e . I . .
Ainsi, si Mg+ 0 et — (o — wy) > o, lintersection I' " G, est formée d’un
Mo

unique point vy, de coordonnées

@ =a, == (6 — ) + O o — 2,
Mo
(23)

I
b=t == (0 — w0 + Oflo — wyf?).
0

Notant F, = (f, g,) : R® > R?, on peut décrire G, comme la projection sur
le plan (p, a) de
C, =F;'0,0) n{(p, a,X) | X>0}CRS
D’aprés (21), v,, est la projection d’un unique point y,, de G, proche de l’origine,
dont les coordonnées sont
a

=+ O(|a, ).

2 __
Bos Cus Pu '——;

L’ensemble C est lisse au voisinage de y;, car
, 14+ O(Jo —wl?) O — ) O(le — )
(24) DF,(v.) = ( )
O(1) v O(1) 5,(0, O) + O(| @ — &)

est de rang 2, et la dérivée en vy,, de ’application (y, a, X) - (F,, 1, a) de R3? dans R*
8o 1~

est de rang maximum car 7X (Yo) = b1(0,0) + O(|o — o)) £ 0 : C, est donc lisse

en v,. Enfin, C], rencontre en v, le lieu critique I de la projection sur le plan (u, a)
de la surface f~'(0) CR3? ce qui montre que G, est tangente en y, a I.

0
Plus généralement, les évaluations de det DF (u, a, X) et de %’ (us @, X) au

voisinage de (o, 0, 0) montrent qu’il existe un voisinage #” de (o, o) dans le plan (y, a)
et un voisinage Q de o, dans R tels que C, N #  soit lisse dés que w € Q.
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Les figures 6.1 & 6.7 indiquent, dans le cas o b,(0, 0) = 1, les différentes situations
. . b -
qui se présentent en fonction de la valeur de 3—0 (0, 0). Les valeurs particuliéres — 1
a

et 0 apparaissent lorsqu’on étudie la concavité en (o, 0) de la courbe C, ; pour les trois
PP q o3 P

I s . ey
valeurs — 1, — 7 0 nous avons représenté une situation non générique particuliérement

simple a étudier.

0Ob,
E(o,o) >0, < wy<w

Cw,

%

Cw,

by(0,a’) = w,; (cercle de rayon o)
by(0,a”) + a” + o(a’?) = w; (cercle de rayon a” + o(a’’2))

Fic. 6.1

aa—?(o,o)=o, wy < Wy

S, a,X) = p 4+ aX — X2

exemple non générique g 2oty 8, X) = 00— & + X

u
o

: TN

(Cercles de rayon nul)

Y

w,

Fic. 6.2
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1 0by
—-;<—5;(o,o) <0, W< wy<w

o
A
a'/—-\a >xa
\ sz
le
Cw,
r\ G
Fic. 6.3
b 1
5;"(0,0) =—z @ < Wy <
Sflp,a,X) = p + aX — X2
Exemple non générique g 3, X) = 00g — _g o+ X
I
A
"2((&)“0)0) 2(w-w,)
||’/——\"”
a a > a
Cow,
Cuw,

F= Cwo

(Cercles de rayon% )

Fic. 6.4
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0Ob, 1
—1 <%-(o,o) <—;, 0y < Wy < 6y

Fic. 6.5

b,
a—:(o,o)=—1, Wy < Wy < Wy

Exemple non générique

7

A

Cw

S(p,a,X) = p + aX — X2
gm((’-,ﬂ,x) =1.o°—a—-o>+X

Cw, - a

FiG. 6.6

Y o,

S
(Cercles de rayon a)

Cw

11
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0by
%(o,o)<—x, 0, < Wy < 0

/ Con

by(0,a’) = wy (cercle de rayon o)
by(0,a”) + a” 4+ O(a’?) = w, (cercle de rayon a” + O(a’?))

Fic. 6.7

Un résultat essentiel du présent article est que, pourvu que « satisfasse une cer-
taine condition diophantienne et soit assez proche de w, (ces conditions sont compa-
tibles), I’ensemble C_ est une courbe lisse connexe proche de G, et correspond a des

valeurs de (, a) telles que P, , posséde une courbe fermée lisse invariante %ﬁ,’ u,a Proche
de €, , sur laquelle il induise un difféomorphisme C®-conjugué a la rotation R,
(corollaire du théoréme 5).

Nous commengons par ’étude de (”3(,, N ¥, plus difficile, et reléguons a I’appen-

dice I'étude de G, .

1.4. Systémes de coordonnées adaptés a un w

La propriété caractéristique des difféomorphismes de la famille N, , est d’appli-

w,a
quer chaque cercle |z| = r sur un cercle |z| =7 4 { par une rotation; la rotation
et la translation § associées, pour N, ,, au cercle de rayon r sont données par
(25) o =g, a,7") = bo(w, @) + by, @) ©* + ... + by(u, 8) ™,
(26) C=1f(w,a,7) =rlu+ a + ay(w, a) 7 + ... + a,(u, 6) "],

Si on fixe maintenant ® # w, proche de o, et (u, a) proche de (o, 0), I’équation (25)
définit au plus un cercle €, , , proche de o, dont on note le rayon r(w, , a) et la trans-
lation associée {(w, p, a); avec les notations de (18) on a donc :

(27) 8o(s a, 7(0, 1, @)°) = o,
(28) C(w’ & a) = r((‘)’ & a)f(("', a, 7((‘), 1) a)z)'
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Bien entendu, on ne s’intéresse qu’aux triplets (o, &, ) tels que 7(w, ., a) soit réel,
c’est-a-dire (d’aprés (27))

(20) N%mw=ﬁi&%ﬁ+0mw—%HﬂM+MM2a

Puisque r(o, @, 4,)? = @& = 4+ O(]® — @,|?) * 0, ceci est toujours vérifié
(]

pour (u, a) assez voisin de v, (o> o, si 79> 0, o < w, sinon). Notons que la fonc-
tion (o, u,a)>r(w,w, a)? est de classe G® au voisinage de (w,,0,0) puisque

9
% (0, 0, 0) = by(0, 0) * 0.
Afin d’étudier N, , et P, , au voisinage du cercle €, ,,, on pose
(30) 2=1  r=r(0,pa VI +o,
ov r exemple e[ ! -|—I]
U, pa ple, ¢ > T2l
Notons v, §, 5, 7 les fonctions C* de w, i, a définies par
S 8, 7(o, g, a)?) = v(o, y, a),
of -
7 (B 6 7(0, p, 6)?) (o, u, a)? = §(w, y, 4),
X
1 0% -
(31) 5)%; (1 a, 7(o, @, 8)?) (o, p, a)t = s(o, u, a) < o,

0
% (15 a, 7(0, p, 0)%) r(0, p, )% = 7(w, , a) + 0.

Le plongement (6, ) = (0, Z) (encore noté N, ;) de T! X [— 2 ZI’] dans T! X R
défini par

ro,p,a) V1 + 2% =N, , (r(co, w,a) V1 + o &™)

A

est donné par les formules suivantes obtenues a partir du développement de Taylor
en X au point 7(w, p, @) des fonctions f(u, a, X) et g (u, a, X) :

0 =04+ o+ t(w, p,a) 6 + (o, w, 6)* T(w, p, g, o)
2 =2v(e,wa) + v (o, u, a) + [1 + 2v(o, , a)
(32) + V%0, 1, @) + 23(0, 1, @) (1 + V(o, 1, a)] o
+{[5(o, p, @) + 23(o, g, Q)] [1 + V(, p, a)] + 8%, p, 4) } o
~+ r(w, w, a)* S(w, u, a, 6);
S(o, u, @, 6) et T(w, u, a, 6) sont des polyndmes en o a coefficients C° en (o, , a),

commencant respectivement par des termes en ¢ et o2
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Quant a P,,, il définit un plongement de T x [— % 1] dans TIxR de
la forme
(33) P,.a(8; 0) = N, 4(8, o)

+ (r(w’ “” a)2”+2 u((l), P" a’ e) 6)) r(o")’ ('L, a)2”+2 v(w, y” a, e’ c))
ou u, v sont des fonctions C* de o, u, a, 7(o, u, @), 0, o; les deux composantes du
reste P, ,(0,0) — N, ,(6,0) sont donc seulement des fonctions de classe C*** des

variables o, ., a (elles sont évidemment C*® en tous les points ol 7(w, w, @) ne s’annule pas).
y [ P s [ Y

Bien entendu, (32) et (33) définissent en fait les relevements de N, , et P, , au
I 1

. I I . .
revétement universel R X [— 2’ E] de T!x [—— > 5] dont il est question dans la

remarque qui clot le paragraphe 1.1.

Les formules (32) rendent naturelle I’étude de I’application A, : (R2% v,) — (R% 0)
définie au voisinage de ¥y, par

Am(l“" a) = (V(")a W, a), 5(‘-‘)’ sy a)) = (V, e)‘a
(34) v =2v(w, g, a) + v¥(o, p, a),
e=v + 25(w, &, a) (1 + V(w, p, a)).
En vue du paragraphe 2.3 on posera également
(34 bis) s = s(o, p, 8) = [s(o, y, @) + 2‘5("", w a)][1 + V(o, u, a)] + 3\2(")’ i, a).

L’application A, se révele étre un difféomorphisme local C® : elle s’écrit en effet
A,=A,o®,, ou les applications

Q,(w a) = (v(w, u, a), 5("‘), ©, @),
A,(3,8) = (2v + V&, v + 23(1 + V),

ont respectivement pour dérivées

(35)

1 + O(p) el + O(ph)
DO, (i, a,) = N> G0) J
(9] 2 2 I\ (9] 4
(36) (Pa) ° (0 2) + O(po)
A 2 O

D m(oa O) = (2 2)’

ou
ab,

(37) N(w, a) = by(w, a) — 2a,(p, a) 2 (u, a).

Puisque la dépendance de ®, en « est C* au voisinage de w,, la différence

det DO, (s, a,) — o, w2 %)

o7 admet une majoration uniforme du type
l(p'm) aw)
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(constante X p,); si o est assez proche de w,, Det D A (g, a,) est donc différent de o
dés que 7(0,0) =1, + 0, ce qu’on a supposé.
La figure 7 donne, sous des hypothéses analogues 2 celles faites pour la figure 6.1

3‘19 (0,0) >0 et b,(0,0) = I) , lallure du systéme de coordonnées locales v, ¢ ainsi

défini au voisinage de v, .

f( © > W,
V>0
Cw
(v=0)
V<0

N\

\ ™) /
[

€<0 €=0 ' r

L
=<
Y

rfw,ma)z0

Fic. 7

Nous donnons maintenant les estimations qui, lorsque [v] et |s| sont assez
petits, font apparaitre la restriction de P,, 4 I'anneau — - < G < ~  (C’est-a-dire

f r(o, p,a) < |z] < f r(w, &, @)) comme perturbation d’un dlfféomorphlsme « twist »

I 1
préservant les aires de ’anneau T? X [—— 2’ E]’ il est important de remarquer que

la partie de cette perturbation dépendant effectivement de la coordonnée angulaire est
d’ordre p?'*2, Plutét que p,, nous avons choisi comme parameétre la « distorsion »

7, de N, (dans les coordonnées 6, 6) au voisinage de son unique cercle invariant.
«

Lemme 1. — Si o est assez proche de wq et si (., a) = A (v, €) appartient au « carré » D,

défini par |v| < ¢8, |e| < %, les plongements N, , et P, ,de T X [— 2, 2] dans T' x R

s*écrivent

(38) N,.0,0) =0+ o + 1,0+ 75 A, ,.0),c+ B, ,.)),
P,4(0,0) = N, ,(0,0) + (4"« m,u.,a(e’ 0); Tt " Bu,ua(85 0))s

ot T, = (@, Py, 4,) = b1(tes 8,) 05 + O(ph), A et B sont des polyndmes en o, o et B
des fonctions C® de 0, o, et oit les fonctions A, B, o, B sont bornées en norme C¥ (pour tout k)

I I . \ S, N S
sur T x [— -, —] uniformément par rapport & o, w., a dans le domaine considéré.
2’ 2
0B
E’!ﬁn’ m L, a(o) = 09 T Bm “, a(o) =9V et Tﬁ) 2;:,“ (O) =&
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Démonstration. — Les conditions sur ¢ et v définissent un voisinage de y,, dans lequel
r(w, u, a) differe peu de p,; plus précisément, montrons qu’il existe une constante C,
indépendante de o, p, a, telle que, si (w,u,a) est assez voisin de (g, 0,0) et si
(v e) = Ay(w, @) vérifie |v| <¢f, |e| < ¢, on ait
(39) |r(‘°s ) 0)2 - P?ol S CP:'

Puisque r(o, p, a)2 = 93» + x(0, @, @) (1 — w,) +21(0, @, a) (@ — a,), avec X151
fonctions C* de w, p, a4, il suffit de majorer |p — p,| + |2 —a,| en fonction de
|v| + |e], c’est-a-dire de majorer ||D A, (w,a)"!||. En écrivant

/)

B a1l 1, 0)%) = 520, 1,0) (1 — 1) + (0 1 0) (0 — ),

avec x,,y, fonctions C* de w, @, a4, on voit qu’il existe une constante ¢ telle que

|det D@, (1, a) | > fzblijo,o) P
lo— ol +la—a,[ <o}, et |v| <o, |e] <pin

Mais alors, sous cette hypothése, il existe une constante D telle que

e — ol + 06 |6 —a, | <D(|v| + |€]);

puisque 2, = A ([— ¢%, ¢%]%) est connexe, on en déduit que 9, est contenu (pour o
assez proche de w,) dans le domaine |p — p,| + ¢% |2 — a,| < 2 Dg¥, d’ot suit (39).

En particulier, le « carré » 2, est tout entier situé dans le quart de plan pu< o,
a>o.

On déduit de (39) une estimation analogue pour 7(w, &, a) : il existe une constante F
indépendante de ®, p, a telle que, si (o, 1, 4) est assez voisin de (wg, 0,0) et si
IV < pes lel <eh, on ait

® dés que (o, p,a), assez voisin de (w,,0,0), vérifie

(40) lT("‘)’ Q) a) - Tml S FP:)’
ainsi que
(4‘1) le - bl(p‘m’ am) pil S Fpt)

(on suppose bien entendu que o est assez proche de «, pour que |b,(u,, @,)| soit, par
. I 2
exemple, compris entre 2 | 61(0, 0)| et 3 | 51(0, 0) ]).

La démonstration du lemme 1 est alors évidente a partir des formules (32), (33),
(34), (34 bis), qui font apparaitre P, , comme une perturbation du plongement

(42) 0,06) 0+ o+ t(,u,8) 06, v+ (14 ¢)o+ se?).

2.1. Courbes fermées invariantes de P, , lorsque (u, a) est voisin de vy,

Nous faisons dans ce qui suit les hypothéses du lemme 1. Le plongement N, ,
applique le cercle €,, , , d’équation ¢ = o sur le cercle d’équation ¢ = 3, B, , ,(0) =v
par la rotation R,.
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Nous allons montrer que la perturbation P, , de N, , posséde une propriété ana-
logue, 4 condition que ® soit « suffisamment » mal approché par les rationnels (dans
un sens précisé plus loin).

Il sera commode de faire un ultime changement de coordonnées : le difféomor-
phisme (dépendant de (o, ., a))

(4‘3) (e, 6) = (0, p=go + To Am,u,a(o) + T’o‘) “m,u.,a(e’ 0’))
est bien défini sur un voisinage de T! X [— %, é] pour o assez proche de w,; il trans-
forme P, , en un plongement de T! X [—- —21;, é] dans T! X R de la forme

(44) Poa(®p) = (0 + o+ 70, p + 7 Iy alp) + 70 Ca,a(0s 0))-

Si|v|<¢%, |e| <8, r(w, u, @) ne s’annule pas (voir (39) : on suppose ® F w,
proche de ) ; le polynéme II et la fonction C* ¢, , , ont donc une dépendance C*
en p,a pour o * w, fixé. De plus, I, , , et {, , ., sont bornés en norme C* (pour

o, 1,6

tout &) sur T! X [—— %, 2] uniformément par rapport & , w., a dans le domaine considéré.

Nous considérerons P, , comme une perturbation de

®,a

N, a8 p) = 0+ & + 7,00 + 7 Iy, 4 op))
=04+o+r,pvV+O+e)p+sp2+...),
(45) ?oﬁ Y =1 +0(1), 14¢=(1+e +v0(x)),
¢ = s(x + O(z,)

(il s’agit du transformé de N, , par (6,0) (0,p = 6 + 7, A, , 4(0)), tronqué au
degré n).

Le théoréme suivant est analogue au « théoréme de la courbe translatée » de
Riissmann [15] & ceci prés que N, , est non conservatif, que la taille de la perturba-
tion 1}, §,, , , est liée a celle de la « distortion » et de la « constante diophantienne »,
et qu’on s’intéresse a la dépendance différentiable en p, @ de la translation.

La question de la taille de la perturbation se rencontre déja dans le probléme de
la stabilité¢ des points fixes elliptiques dans le cas conservatif, mais non la dépendance
différentiable en des paramétres, fondamentale ici.

Théoréme 1. — Fixons C> o0 et B> 0. Soit o F wy, proche de w,, tel que

1) = (0 — wy) > o,

No

| Clr,l
m.—_—_

> :
q"‘lql“‘3

2) pour tout nombre mtionnelg ((p, q) = 1), on ait
q
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Il existe <(C,B)> o0 tel que, si n> 11, (n,a) €9D,, et |o— wy| <e(C,B), i

) — 11 . .

existe ¢, , , € G® (T‘, [— > E] ), owa ER, ke DIff?(T') ayant les propriétés

sutvantes :

1) la courbe fermée %‘0’ u o @ équation o = Em’ u,a(8) @ pour image par P, , la courbe « trans-
latée » d’équation =~Xm,u,a + G a(0),

2) la restriction de P, , & ¥, , , est conjuguée par_lzw, wa @ la rotation R, :00 4 o, ce
qui signifie que, pour tout 0 € T', 6 + o + 7,9, , ,(0) = kol o R, ok, , 4(0),

3) il existe un entier R et, pour tout m, une constante C,, indépendante de w, ., a vérifiant les hypo-
theses, tels que

(85) Tmlxm,u,a- W, i, a l+”hwua“‘Ide<C To 3“Cmua”m+R’
4) pour o fixé, Papplication
(V-; a) B (@m, w,a?’ Xm,u.,a’ hm, u.,a)

est de classe G sur son domaine de définition; considérée (via AL') comme fonction de (v, €)
elle vérifie les majorations suivantes, ot S est un entier et, pour tout m, C,, une constante indépendante
de o, p, a vérifiant les hypothéses :

N o, a
T 'Tu‘_-(wﬂ": )‘ ‘ —l
v m
(93) o
<c, (ﬂr:*r“’-ncm,u,an,.+s oy Bl )
v m+ 8,
\
(les normes || ||,, se rapportent aux variables 0, p).

On a des majorations analogues pour les dérivées par rapport a e.

Corollaire 1. — Sous les hypothéses du théoréme 1, si n> 14 et si | — w,y| est assez
petit, il existe unme fonction t,:[— ¢%,05] = [— %, 05] de classe C° telle que, si
(v,e) = A (u, a) vérifie |e| < b, v=1,(), P,, laisse invariante la courbe €, , , et

y induise un difféomorphisme conjugué @ la rotation R . De plus Pintersection avec ¥V~ de G, est
exactement Uintersection avec ¥~ du graphe de t,.

Démonstration du théoréme 1

Nous suivrons la démonstration de Herman [15] du théoréme de Riissmann :
basée sur la version du théoréme des fonctions implicites de Nash-Moser donnée par
Hamilton ([13], [15]) elle fournit automatiquement la dépendance C* des paramétres.

Le probléme principal est d’évaluer la taille des perturbations auxquelles s’applique
la méthode.

Pour faciliter la lecture de ce qui suit, nous omettrons temporairement les
indices ®, y, a; nous noterons donc

(4.6) P(e P) = (0 + o+ 1,0 + 7 H(p) + 7" <(67 P)):
N, ) = (0 + & + 7p, p + 7 II(p)).
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Sans changer { sur T! X [— i, —;—] , on peut supposer que { est définie sur T! x R

tout entier et Z-périodique en p, c’est-a-dire { € G*(T? R). On peut de méme supposer
que II e C*(T%, R) (fonction indépendante de 6).

On cherche A, ¢, &, respectivement proches de o, o, Identité, tels que
£8) = 0+ & + 74(6) = k~*o R, 0 h(0),

$(0) + = TL(H(8)) + =" £(6, $(8)) = X + $(S(9)).

Posons, ce qui revient a faire le changement de variables r = 7p,

(48) $(0) = 7¢(8),

A = TA.

(47)

Les équations deviennent

f0) =0+ o + $(0) = Ao R, o k(0),

§O) + 2 I(29(0)) + =17 (0,2 40)) =2+ USO)).
La deuxiéme s’écrit encore
(50) F(@I + g% ¢) =o,

ou lapplication F: C¥TZ% R) x R x C¥T4 R) — C¥T, R) est définie, pour tout %,
par

(51) Fle, b 4)(0) = 4(0) — $(/18) — 2 + =5 (8, 5 4(0)).

On notera G:C*T?%R) x R x Diff*(T'") — C¥(T', R) Dapplication définie,
pour tout %, par

(49)

G(e, A, h) = F(o, 2, ¢),

(52) $(0) = A toR, oh(0) — 6 — c.

On se limitera bien sir 2 un voisinage de ’identité dans Diff* (T"), qui sera identifié
A un voisinage de o dans C¥(T!, R) par l’application A+>k — Id (aprés choix conve-
nable d’un relévement de % en un difféomorphisme de R).

L’application ¢ : C*°(T?% R) x R x Diff2(T") - C*(T?% R) x C*(T, R) définie

par

(53) G(e, M h) = (9, G(os M 7))

est une « bonne » application de classe G2 (voir [15]) qui vérifie
(54) (=% 11, =2 I1(0), Identité) = (<2 II, o).

Il s’agit de prouver que c’est un difffomorphisme d’un voisinage de
(+2 II, =2 II(0), Identité) sur un voisinage de (2 II, o) d’une taille suffisante pour qu’il
contienne les couples de la forme (7*II 4 "%, 0) dés que 7 est assez petit.
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La démonstration de Hamilton [13] montre que cette taille dépend de la norme
« tame » dans une certaine topologie C* (% fini) de D%, D* ¢, (D%)~*

Lemme 2. — II existe un nombre réel positif «, un entier positif ¢ et, pour tout m, une cons-
tante G, indépendante de © (et de o vérifiant les hypothéses du théoréme 1), tels que les estimations
sutvantes sotent vérifides dés que

el <ear, [A[<ar, |[&—Id|<
Aol <1, [[A@|[<1, [[Ak|l<1, [AR|,<T,
[[An[l, <1 :
(55) [ID% (¢, , k) (Ao, A%, AR)||,,
S Calllellmes + 112 — Id|lmss + || Ap|lm + | O] + || AR, + 1),

[ID* (e, 2, £) [(Ag, Ad, AR), (A 3, A", A B)]],
I
(56) < Co |2 (1o lhnra + 115 = 11l o) + 180 lnss + 14" 2l
1 by + 18 Bl s+ 1]

(57) ID% (9, %, k)" (Ag, An) ||,

Cw
S Ulellmse+ M+ 112 = 1d]lnsr+ (180 lmse + 1| A0 ]lms e + 1]

Ces inégalités expriment que D%, D* ¢, (D¥) !sont de « bonnes » applications,
ce qui est montré dans [15]. Notre seul probléme est de suivre la dépendance en © des
constantes lors des diverses estimations; c’est pourquoi nous explicitons lesdites appli-
cations.

L’application K:k ¢ =k 'oR, 0k — R, = K(k) est une bonne appli-
cation de classe C* d’un voisinage de I'identité dans Diff?(T") (identifié par k& — Id
3 un voisinage de o dans C*(T', R)) & valeurs dans C*(T", R); k, Ak, A’ k étant donnés,
nous noterons ¢ = K(k), A¢ = DK(%) Ak, A’ ¢ = DK(k) A’ k.

Avec ces notations, on a les formules suivantes :

(58) Ay = (Dh~*o R, o h)[Ah — Ahoh~to R, o k],

K(k) (Ak, A B)
S — (DA *oR, o )(Ak— AhohtoR, 0 h) (A h— A hok~"oRy, o k)
(50) — (DE 'R, oh)2(D AkokhToR, o k) (A'k — A hok'oR, k)
) — (Dh'oR, 0B (DA hoh=oRy,ok) (A — Akoh~'oR, o k),
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D% (e, ) k) (Ap, A\, Ak) = (Ag, DG(9, A, k) (Ag, A, Ah)),
DG(9, 2, k) (Ag, Ah, Ak) = DF (9, A, §) (Ap, Ah, Ad)

(60) =¢A¢(-,—E¢)—A7\+XA¢——A¢OJ’, on

X(0) = 1= DY) + % (0,240, S0 =0+ 0+
(Pinterprétation de X est donnée dans la formule (g6)).
D2 % (o, A, k) [(Ag, AN, AR), (A" @, A’ A, A’ k)]
= (0, D2 G(o, A, k) [(Aq, AN, Ak), (A" ¢, A", A" B)]),
D2 G(g, A, k) [(Ag, AN, AR), (A" @, A’ A\, A k)]
= D2 F(g, A, ¢) [(Ap, AX, Ad), (A" @, A"2, A" §)]
+ 2% (9% ) L(D* K (A) (&, & )]

J
R =3(j7‘°)(-,§¢).w+-3%;i)(-,§¢).A¢+Y.A¢.A'¢
— [(DAY) of].A"§ — [(D A’ §) o f].AY
+ % (0% $)[DK () (A, A’ B)],  ob
¥(0) = — D*4(s0) + 2 52 (e,§¢(e>), SO =8 + o + 4(0).

(Dg(q% A, h))—l (A(Pa A")) = (A(P> A, Ah): ou

(&%, AR) = (a—(i% (e, h))_ (An — < Ag (—4»))

Nous allons démontrer le lemme 2 a partir des formules ci-dessus par application
répétée des inégalités qui expriment que la composition, le passage a I'inverse et la mul-
tiplication sont de « bonnes » (= tame) applications au sens de Hamilton ([13], [15]),
a savoir

(62)

I fogllm < CalllS [lm-11&11T + I ls- 112 11m 4 111lo)s
(63) [~ —1d ||, < Cu(l|f — Id]||n + 1) si[[A—1d|; <1,

1f-&llm < Gl flm- 118 1lo =+ 1S o112 11m) 5

ces derniéres se démontrent par récurrence en utilisant les inégalités de convexité de
Hadamard ([15]).

Dans ce qui suit, C,, désigne une constante dépendant de m et indépendante de r,
mais pouvant changer d’une formule a ’autre (il suffira a la fin de prendre la plus grande
du nombre fini ainsi écrit).
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Tout d’abord, puisque K ne fait pas intervenir =, les constantes intervenant dans
les majorations « tame » de K, DK, D2 K sont indépendantes de . Plus précisément,

sillh—TId[,<1, [|Ak,<1, ona

[ A¢[ln < Culll2 — 1|y + || Ak]]m + 1),
(65) si|lh—1Id|l;< 1, ona |[¢]ln< Cnllh—Idp,,.

(64)

On obtient (65) a partir de (64) en utilisant le théoréme 4 de [13]. De méme,
silh—Id|l;<1, [[M]l,<1, [[AR,<1, ona
(66) |ID* K (k) (Ak, A’ B,
S Culllh —1d||mys + [| Akl sy + || A Bl sy + 1).

Pour majorer DF et D? F, on commence par majorer X et Y définis dans les for-
mules (60), (61); on trouve que

o % lola<% Nolh<s Nolb<r ona
X m < Culll@llmses + ”4’“m+1 4+ 1), et
si llells<z  |[¢li<7 |[[¢ls<1, ona

(68)

1¥1ln < Co[ 2 Ulellmes + 1141) + 11 llnea + 1],

\

d’out on déduit
si flell<® [¢li<m |[4l<1, [[A¢][i<1, [[A}][;<1, ona
(69) || DF(9, A, ¢) (Ag, AA, Ad) ||,
S Gulllollmss + dllmes + (1A |l + [AN] + || Ad ]| + 1),

si flells<7 |[¢]h<w Ndlls<1, A<,
18 el <t A<t 1A $[,<1, ona
(70) 1D F (e, 2, ) (80, 8%, A, (&' 5, &3, &' )]
< Cu[2 1 lhnes + 11411a) + 11 ¥lars + 180 lnes + 14" ellns
1O + 18 s + 1]

On voit facilement que (64), (65), (66), (69), (70) impliquent (55) et (56)
(avec ¢ = 4).

" ( ’h)

seules différences concernent :
1° la présence de T dans I’expression de X, qui ne fait pas probléme a cause de la
majoration (67);

-1
(o> A h)] pour qui on suit les calculs de [15]; les deux
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2° la présence de v dans la constante de la condition diophantienne sur w, qui, elle,
intervient inéluctablement chaque fois qu’on doit résoudre une équation aux différences;
on en déduit que, si on note

G -1
(A%, AF) = [a(i—h) (o, h)} (&),

il existe un entier /, un nombre réel positif «, et pour tout m un nombre
réel positif C,, tels que si ||o||, < ar, ||z —Id||, < ar, || L arT,
[[An]]; <1, on ait

(71) | AN + || Ak]],

Cn
S llellmee + 1M A 12— Td ]l r 4 || A0 lln i + 1.

Quitte a remplacer ¢ par ¢ + 1 a cause de la perte d’une dérivée dans la majo-
ration lipschitzienne (65), on déduit (57) de (62) et (71), ce qui termine la démonstra-
tion du lemme 2.

Afin d’exploiter ce lemme, nous utiliserons les notations suivantes :
E = C*(T% R) x R x Diff7(T"), F = C*(T% R) x C*(T, R),
%= (P II,7? (o), Id) € E, y,= (i*1I,0) eF,
x=(p,Nh) €L, y=(p,7) €F,
Ul = lelln + 1M+ [12 = 1d|lms (2]l = ll@lln + (|2 ]ln:
Rappelons que %(x,) = 9,.

On déduit du lemme 2, aprés homogénéisation et modification des constantes C,,

(comparer au théoréme g de [13]), que ¥:E —F vérifie

IDF(x) ullw < Conlll *|lms2 [[# 2 4[] 2]m)
(ici ||u||, peut étre remplacé par [|u],),

(72)

ID* 4(x) (4, 2) ||,

C
(73) [ e | 1 e T Y [

IDF() ]l < 2 (5l s + 2]l
\ deés que ||x||, < ot
Puisque IT = II,, , est borné en norme C! sur T? uniformément par rapport
A o, W, a (pourvu que o soit proche de w,y, |v| < % et |e| <pl), ||%]l < gr des
que o est assez proche de w,, ce que nous supposerons. Les inégalités (73) sont donc
valables pour les x € E tels que |[x — x|, < gr.
Avec les inégalités (73), la démonstration de Hamilton montre seulement que ¥
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est un « bon » difféomorphisme d’un voisinage de x, sur un voisinage de y, dont la taille
est exponentiellement petite en © (voir [13], lemmes 1 et 2), ce qui ne lui permet pas
de contenir les couples (12 IT 4 "¢, 0) qui nous intéressent. Heureusement, une astuce
due 2 Michel Herman va nous permettre d’améliorer cette conclusion : au lieu d’appli-
quer le théoréme de Hamilton & ¥, on l'applique a

(74) #(x) = DY ()™ 5 [I(xo + 7 5) — I(x)],

ou p est un entier que I'on choisira ultérieurement (noter que 5# : E — E).
On déduit de la formule de Taylor les formules :
H(x) = x + P DY(x;) ! f: D? G(x, + t<° %) (x, %) dt,
D (x) u = u + * DY (x)~* f: D? G(x, + t3 2) (u, %) dt,
D2 #(x) (1, ) = * DY (%))~ * D® F(xo + <* x) (1, ),
Do (%)~ (w) = w + f:D(D?(xo + to* %)~ DY (x,) w) (x) dt;

(75)

d’autre part,

6 D(D%(xy + tPx) "' D% (x,) w) (x) = — DY (xy + t1°x) "' D? 9 (x, + t17x)
(76) (D% (x, + t°x)~ D% (x,) w, x).
De (73), (75), (76) découlent Ies propriétés suivantes de S (les constantes D,
dépendent de m mais non de ) :

”D'}f(x) u”m_<_ Dm‘rp_4(||x|lm+l+3 ”u”2 + ”u”m+l+l)’
| 1D #(x) (# 2) [l < D ([ %[l £5 || ]l2 1121
el s rssll2lle + l2lle [[2]lnr244)s
1D (%)~ wlly < Dy 7 (|2 lmr 21 @ lle 42 + [ 20]lmse11)
dés que ||x]];.2 < 1 (ne pasoublier que ¢ est certainement supérieur
a 2).

Si p> 7, D#, D*#, et Do#'~ ! vérifient donc, pour ||x]||,,, < 1, des estimations
« tame » avec des constantes indépendantes de ©; H# est donc un difféomorphisme d’un
voisinage de o sur un voisinage de o de la forme ||z||L <8, o2 § est indépendant de .
Revenant en arriére, on constate que ¥ est un difféomorphisme d’un voisinage de x,
sur un voisinage de y, de la forme ||y — yollp ., < ¥ w73 Si p=17% et n> 11, un
tel voisinage contient les couples (7% II + "¢, 0) qui nous occupent dés que T est assez
petit. (Se rappeler que || ||, est borné indépendamment de o, p, a pourvu que  soit
proche de ay, [v] <6t |¢| < o0

La premiére partie du théoréme 1 est ainsi démontrée; en ce qui concerne la dépen-
dance C® en (u, a) & o fixé, c’est une conséquence directe du théoréme de Hamilton :
il est en effet évident que % est une « bonne » application G® (noter qu’on n’a plus a

(77)
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s’'inquiéter de la dépendance en 7 des constantes intervenant dans les estimations « tame »
de D3¢, D* &, etc.). Quant aux estimations lipschitziennes, nous les démontrerons en
méme temps que le corollaire 1.

La figure 8 résume schématiquement notre connaissance de I’application ¥ :

%o = A(®o)
= (t%m, v®n(0), Id)
x =A(p) ™ k) o= (527, 0)
M [—’ = (x4, 0)
=9

[fonctions @

i e
L indépendantes de 6]

‘7
I
I,,

Po="T'T

o =tinw 4 "¢ T
i
|
'
!

Union des domaines de
la forme

Hy —dpllp e < &7

Domaine sur lequel ¢ est un
difféomorphisme sur son image :
llolle<ar, [M<os, [|h—Id]l<as
Frc. 8
Estimations lipschitziennes et démonstration du corollaire 1. — La restriction de ¥~

aux couples de la forme (72 II 4 " ¢, 0) définit une « bonne » application C*
o> L(9) = (\ h) telle que G(o, (p)) =0 (cest-a-dire F~ (9, 0) = (p, Z(9))).

Le couple (A, , 4k, ., dont le théoréme 1 affirme l’existence est défini par
(78) (Tm Xm,u.,a’ hw,y., a) = M(Ti Hm, w,a + T:) Cm, u.,a)'
Nous noterons A, et H, les applications C® définies sur [— g%, p%]? par

N
©, 1, a3 ou

A v, € =R pas Hy(v,€) = £
(79) (( )= )

a) = AZ'(v,e).
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Si P, , est remplacé par N, , défini en (45) (ce qui revient a faire { = o) les
applications A, et H, correspondantes sont données par

A, e) = v =v(1 + O})),

(80)
H? (v, €) = Identité.

(Le O(p2) est uniforme en o, p, @ dans leur domaine de variation.)
Nous allons montrer que Aj'(0) est « suffisamment » proche de

(A)7H(0) ={(v, ) e[~k 0% v = 0}

dés que o est assez proche de w,.

Tout d’abord, 5 est un « bon » difféomorphisme C®, satisfaisant, ainsi que ses
dérivées, des estimations « tame » dont les constantes sont indépendantes de 7. D’aprés
le théoréme de Hamilton, il en est de méme de s~ 1.

En particulier, # ! a des estimations lipschitziennes de la forme suivante (com-
parer [13] théoréme 4 ou lemme 6)

(81) ”‘%_1(;) - %—l(z)“mS Cm(”? - z”m+s + I|Z||m+s H/‘; - z”r)
dés que ||z]|, <38, ||Z||L<3, cClest-a-dire

I ~ -

7 [97 (0 + L DF(x0) 7) — 97 (1 + 7 DY () 2)]

S CalllZ = 2llnss + N 2llmss 17— 2]I,)-

m

(82)

Choisissons

;; = D% (x) (57" 0) (o0 L =70, , )

2 = 0.

(83)

On déduit de (73)
N7 = zlln = IZ1ln < Co 7™ (| %ollmse 11l + [1E]lm+0)s
qu’aprés un changement de constante on peut écrire
(84) 17— 2lln = |7l < Cu 5677 * {[Clm e
=G, ||Cllnyee sin=11, p=1.

On déduit alors de (82) (en changeant encore de constante et en posant R = ¢ + )
que

(85) lTu Km(v, E:) — Te K?o("’ S)I + ”Hoo(vs E) - Id”ms Cm T:h_s ”Cm,u,a”m+R)

qui est la premiére estimation lipschitzienne du théoréme 1.
En particulier, si #> 11 et si » est assez proche de e,

| (s &) =[x + O(e)]] < cste. 7], < — ol
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on peut donc assurer que

(86) si (v, €) e./_Xojl(O), [v] < pi2.

oA
Il nous faut contréler de méme -—a—i" (v,e); on a
v

dp A, oH,, o o
) T WL &) /W =\7"> D&/ o
(3v o oy () ov v e)) (3v (2) 6v)

(87) = D% (9, 0) (g? 0), ou
v

e=T, M+ 150 (M=1,,.,%="C,. (wae =A7"¢),

que 'on va comparer a ’expression analogue lorsque { = o,

I A° HO I
(58) (25w e 09, B 9] = (2.5 s + 0L o)

Sy
(le O(p2) est uniforme en ®, w, a dans leur domaine de définition : utiliser pour faire

D
ce calcul la majoration ||DA,(u,a)"'||< = obtenue dans la démonstration du

lemme 1). ©

On procéde comme précédemment : Papplication (z, ) > Do#~(z) u satisfait
des estimations « tame » dont les constantes ne dépendent pas de =, et a donc des esti-
mations lipschitziennes de la forme

[ |Dot=Y(Z) & — DA™ !(2) || < CulllZ — 2llmrs, + (|7 — [y,
+ (HZ”m+a, + “u”m+s,) (”;_— z”r. + ||E— u”rl)]'
On choisit 7’ et z comme en (83), et

~ 31—[0) a acw a
Su = D% (x,)"* (‘rﬁ, —av’"’ + ————a;'"’ s 0) s

(89)

!

0
(90) o
u =D (xy) ' |12 —=222 o].
ov

On obtient, en utilisant (73), (84), (89) et en changeant encore de constantes

oA oH ol o
H(@_q)’ T, — (v, €), —= (v, s))—(’c2 —_— 1 v o)
ov ov

ov Co oy’ m
e aes || 9
(91) S Cm[Tg p=3 “C”m+l—¥-sl + 7 3 3_
Viim+2¢+s,
oIl oIl o
+ T WEller, + 7074 || o Yy ]
O || mttss o O ||lm+tt+a ||| t+n
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Il reste & remarquer que, par construction, II,, , , est G* en g, a pour (o, , a)
voisin de (w,, 0, 0), alors que §, , , est C* en y, q, r(w, u, @) (voir (32) et (33)), et que
r(w, ., a)? est C° en p, a.

A Taide de la majoration de || D A, (i, @) !|| qui vient d’étre rappelée on en déduit
Pexistence pour tout 2 d’une constante G, indépendante de o, p., a telle que

<o 5 <&
(92) N | P M Po
si |@ — wy| est assez petit, et |v]| <8, |e| < gf.
Finalement, aprés un dernier changement de constantes, et faisant p = 7, S = ¢ + s,,
oA, G oH
T, ——"’(v,e)——v— + || == (v, €)
ov ov ov m
(93) %
<G s+ 2| 5| ),
o m+ 8

qui est la deuxiéme estimation lipschitzienne du théoréme 1.
Si n> 14, on en déduit que, pour w assez proche de ,,

(04) l% (5, 9) — (1 + O(eL)

I
< cste X 7, < —.
2

Le début du corollaire 1 est évident a partir de (86) et (94) par application du
théoréme des fonctions implicites usuel. Quant & P’assertion concernant G, N ¥, elle
est démontrée dans un cadre plus général dans [9, § 2] : on commence par voir que
éw N ¥ est contenu dans Pintérieur de 2, puis qu’un point (u, a) de 2, n’appar-
tenant pas au graphe de ¢, ne peut appartenir a ('\J'u; ce dernier fait découle, via la
remarque 4.1.5 du chapitre III de [14], de ’existence pour un tel (@, a) de la courbe
effectivement translatée ‘zw, s o (nON invariante) et de la propriété de distorsion vérifiée
par P, ,.

2.2, Courbes invariantes non normalement hyperboliques

Les courbes v = v, qui correspondent aux couples (u, a) pour lesquels il existe
(dans les coordonnées (6, 6)) un cercle soumis par N, , a la rotation R, et la trans-
lation vy ont donc leur équivalent pour P, , (dans les coordonnées (0, p)) & condition
que o soit assez proche de w, et suffisamment irrationnel, et v, assez petit.

Nous montrons maintenant que, sous des hypothéses analogues, les courbes & = ¢,
d’ « équihyperbolicité » du cercle translaté par N,
pour P, ;; on en déduit en particulier le

. ont également leur analogue
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Corollaire 2. — Sous les hypothéses du théoréme 1, si n> 15 et si | — o, est assez
petit, il existe une unique valeur e, € [— o2, 05 de < telle que la courbe invariante %7@’ Az Mtole,) )
de PAz)l(,m(Eo)’eo) ne soit pas normalement hyperbolique.

On notera ¥, = A7(¢,(c,), €); bien entendu ¥, eC, N ¥

Démonstration. — Dans les conditions d’application du théoréme 1 le difféomor-
phisme local (dépendant de w, u, a)

(95) (e’ P) g (g = hw,u,a(e)’ X =p— :P-o),u.,a(e))
transforme P, , en un plongement de T X [— é, é] dans T! X R de la forme
(96) Poa€ %) =€+ o + O(2]), Xy 0 + Ko a5 1,0(8) # + O %)),
\ T n acpm, , G n
ou Xowa0) = 1= 7.D¢g . a(0 + © + 7, 4,,4.4(0)) + ap“ (0, bo, ,4(9))

a été défini dans la formule (60), et ¢, , , =, , ,+ %, .o (ne pas oublier
que ¢ = 7}). .
Rappelons que,  étant irrationnel, la courbe fermée invariante €, Az )

(c’est-a-dire x = 0) de Pj_1y,) . est normalement hyperbolique si et seulement si
Xa(t(e), €) + 0, o

(97) %o &) = [exp [ log X, (k54 (8)) €] — 1,

avec toujours (v,e) = A, (p,a) (voir [11], § IT : 1 + %,(¢(c),c) n’est autre que le
rayon du spectrographe associé au cercle invariant x = 0 de Pp_1yq) ¢))-
Soit J,:[— ¢%, e5]> — R?® lapplication définie par

(98) JM(V, 8) = (Km(v) e): Xm(v> e))

SiP, ,est remplacé par N, ,, c’est-a-dire si { = o, le changement de variables (95)
devient l'identité et J, est remplacé par le difféomorphisme J° défini par

(99) Jo(v, &) = (v, &) = (v, &) + v(O(pc), O(pe))-

Nous allons montrer que, sous les hypothéses du corollaire 2, J, est assez proche
de J?, pour (i) étre un difféomorphisme sur son image, (ii) contenir (o, o) dans son image.
Le corollaire 2 sera ainsi démontré, le point ¥, = (¢,(<,), €,) cherché étant J (o, o).

Pour majorer |J,(v,€) —J0(v,¢)| et |detJ,(v,e) — detJ (v, €)| il nous reste

. N . - Moo .
a obtenir des majorations lipschitziennes sur y,(v, €) et —;(— (v, €) (les majorations sur
_ v
oA '

oA, @ ,
— et — sont analogues a celles sur — et Ko respectivement).
O O ov ov
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Des formules

(100) DX(e, 4) (Ap, A) = — D2 ¢(R, + ¢) MI — D AY(R,, + ¢)
T p T p Ta
et

D2 X (o, ¢) [(Ag, AY), (A" ¢, A" ¢)] = — DP¢(R,, + ¢) A A" ¢

3
+ fo(~, ‘ ¢)A¢A'¢ DA (R, + ¢) Ay
er —DEAY(R, + ) A+ 32;,?;?(-,1%) Ay

%A
RTINS
T, Op?

\ [0
on déduit des estimations lipschitziennes « tame » pour les applications
(2 4) > X(os¢) et (9, ¢, Ag, A) > DX(g, ¢) (Ag, AY)
de la forme suivante (les constantes C,, dépendent de || @y |lmr3> || Yollmsss || APollm +25
[ Adg|ln+2, et les formules valent si [[@[l, <7 [[golle <7 [[$[li <7 [[dolle<7)
G
(102) [1X(9: 4) — X (90, bo) [ln = — (Il & — @olln+2 + (|4 — bollm+a)s

[IDX (9, ¢) (Mg, Ay) — DX (@, $o) (Apg; Ad) lm

Co
(103) S ‘T? [”‘P - (P0”m+3 + ”4‘ - %”m+3 + ”A(P - A‘P0”m+2
+ | Ay — A || 2]

Puisque les estimations « tame » de A ¢ = K(%) et ses dérivées ont des cons-
tantes indépendantes de 7, on a des formules analogues a4 (102), (103) pour X(¢, K(%)),
a condition de remplacer ||¢ — $o||. par || — hg|lwi1- On en déduit des formules
analogues pour y (défini en (97)) considéré comme fonction de ¢ et de £, et donc

C
(104) k0l &) — &1 < 2 (53 11Tl + 1 Ho ) — Td I,
N o¢’
(105) l—a‘v—(‘B €) W

(O
< ;2—[ s 4 [|Ho (v &) — Id||, + <

(6]

sl

all

N o¢’
e (v,e) — —

et de méme pour .
O
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Utilisant (85) et (93), on obtient enfin des constantes (notées C) telles que
(106) PACD RS S ¢ | 4]

o o¢’ ¢
N 77 < n—14 n—"711_2
g e 2 < C[rm elhes 2|5 ]
(107) ? s iy %
Yo € n—14 -7
o T« n =
%% <clz b+ 5] ]
3+8
et donc
S | det Jo,(v, €) — det Jo(v, )| = [det J,(v, &) — (1 + O(el)) |
108 _ _ _ (Il 9¢ 8
0o8) | <l e+ |5 =)
v 3+8 € 3+ 8
Si > 15 et si o est assez proche de ,, on aura
(109) 1Ja(v, &) — (v, &) || < (Cry, Crg) < (p55 03)
(110) |det Jo(v €) — (1 + O(&))| < Cr, < -,

ce qui démontre le corollaire 2.
La figure g résume les deux corollaires.

[Cm = graphe de v = o.
C, = AZ'(0) = graphe de v = t,(e).

Fic. 9
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II nous reste & montrer que des o satisfaisant aux hypothéses du théoréme 1 et
de ses corollaires existent effectivement, c’est-a-dire qu’on peut choisir les constantes C
et B du théoréme 1 telles que ’ensemble des w satisfaisant les hypothéses 1 et 2 du théo-
réme admette w, comme point d’accumulation (c’est bien entendu un ensemble de Cantor).
En particulier, Pensemble T des points ¥, fournis par le corollaire 2 est un ensemble
de Cantor contenant (o, 0).

L’argument est classique et se trouve par exemple dans ([21], § 33). Fixons > o
et notons

(111) A= {0 I(m—wo)>0i<[<,o—o)0|<a'§
No
Puisque (voir (23) et la définition de t,)
(112) o= 22 0~ 09 + Off0 — w0l
0

il suffit de considérer Pintersection avec A; de ’ensemble

| 2C|by(0,0)|

|2 ——— (0 — &)
g lg[**®n, ’

ou encore de majorer la mesure de Lebesgue de I’intersection avec A; de son complé-
mentaire ou, a fortiori, de majorer la mesure de Lebesgue de lintersection avec A; de

(113) A=

o)]‘v’g,
q

P p‘ Clbl(0,0)Id
II =leld o —~| < —F——1.
() i gl 1gP** ol
Mais, ¢ étant fixé, dés que G < l—bl(?)o—]o)l et d<1, ilyaauplus ¢4 1 entiers p tels
I\Y
Clb d
que Pintervalle centré en%J de largeur El—qllzi(%lo){— rencontre A;; on en déduit I'iné-
Y
galité °
e 2C |b,(0,0)| d
(115) mesure (A; N Z,) < ‘é (g + 1) —Izi‘;‘a——
a=1 LgP*% o]
et donc
d 8 ]5,(0, 0)| o
116 mesure (A, — A, NZ)> - |1 — —222C(X
( ) u ( d d d) =9 [ 7o (| X ‘qll.f.p)]

. . d .
qui peut étre rendu aussi proche de 5 que P’on veut par un bon choix de C.

A chaque choix de C correspond §; = (G, 8) (tendant vers o avec C) tel que le
théoréme 1 et ses corollaires soient vrais pour |w — o] < 8;. On déduit de (116)
que la densité des » auxquels s’appliquent leurs conclusions tend vers 1 lorsqu’on

s’approche de o, (du coté ot — (0 — ©g) > o).

"o
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La figure 10 montre une partie de ensemble des courbes G, N 2, ci-dessus,
c’est-a-dire des valeurs de (w, @) proches de I' pour lesquelles on peut assurer que P, ,
posséde au moins une courbe fermée C® invariante (normalement hyperbolique si
(1, a) Nest pas un des points ¥, de Iensemble de Cantor TY).

=

Fic. 10

Résumons les résultats obtenus sous la forme d’un théoréme :

Théoréme 2. — On considére la famille & deux paramétres de difféomorphismes
locaux P, , de (R 0) définie par la formule (11). On suppose que by(0,0) + o et
ob
No = 2 -B—zf (0, 0) + b4(0, 0) & 0; on suppose de plus que n> 15, ce qui est licite dés que

wqy = by(0, 0) n’est pas un nombre rationnel 4 de dénominateur q < 33. Il existe alors un ensemble

de Cantor T voisin de la courbe T et contenu dans un petit voisinage de (0, 0), tel que, si (u, a) € T,
P, , posséde une courbe fermée C* invariante non normalement~ hyperbolique. Par chacun des points ¥,
de cet ensemble de Cantor passe un morceau de courbe lisse (C, N D) correspondant & des valeurs
de (w, a) pour lesquelles P, , posséde une courbe fermée CG* invariante normalement hyperbolique
(attractante si (., a) est d’un c6té de Y, répulsive s’il est de Pautre).

Remarque. — Nous verrons en fait dans le paragraphe suivant que, si (4, a) appar-
tient a ’'une des courbes G, N &, ci-dessus (ou méme simplement & G, voir le para-

N

graphe 3), la dynamique de P, , ressemble a celle de N, , pour un (u’, ') appar-

, G

tenant & C,; en particulier, si ¥, € T la dynamique de Pz ressemble a celle de N, .

2.3. Bons chemins de bifurcation transverses a T

Nous montrons dans ce paragraphe et le suivant (théoréeme g et théoréme 4) que
I’ensemble 4" des valeurs de (u, a) proches de (o, 0) pour lesquelles P, , « ressemble »
a une forme normale N, , ((4’ @) proche de (y, a)) contient la réunion des courbes C,
(o satisfaisant aux hypothéses du théoréme 1 et du théoréme 2), donc en particulier

103



104 ALAIN CHENCINER

Pensemble de Cantor I' du théoréme 2, ainsi que le complémentaire d’une infinité de
« bulles » adhérentes & T' et contenues dans ¥~ (fig. 11). Par « ressemble » il faut entendre
ici que P, , et N, , ont le méme nombre de courbes fermées invariantes au voisinage
de o et la méme décomposition en bassins d’un voisinage uniforme (indépendant de
(1, @)) de o. Bien entendu, la dynamique sur les courbes invariantes est différente, géné-
rique dans un cas et rotation dans ’autre, ainsi que la régularité des courbes, C* ou méme
seulement lipschitzienne dans un cas et analytique dans I’autre. Puisqu’il découle de [3]
et [10] qu’en général le complémentaire & de A" contient effectivement une infinité
d’ouverts disjoints (« bulles »), on peut considérer la figure 11 comme assez représen-
tative de la décomposition réelle d’un voisinage de (o, 0) dans le plan (u, @) pour une
famille P, , générique du type décrit dans la formule (11).

u
A
——— N——>a
= ~ < ~ ~
TR §pel
=
< “bulle’ contenant une
\A( composante de €
“bon” chemin >

de bifurcation

N A )

Fic. 11

Tout chemin ¢ passant par un point ¥, €I' sans rencontrer les bulles correspond 4 une famille de difféomor-
phismes présentant de maniére franche le phénoméne d’élimination d’un couple de courbes invariantes (i.e. admet ¥,
pour unique point de bifurcation).

Nous étudions dans ce paragraphe A" N ¥, en fait les diverses intersections
N NP, pour les w satisfaisant aux hypothéses des théorémes 1 et 2, et laissons pour
le paragraphe suivant la démonstration, plus facile, de I'inclusion # C.4",

Nous avons déja remarqué (§ 1.2, définition de ¥”) que les dynamiques de P, ,
et N, , se « ressemblent » & ’extérieur de 'anneau A, (u, a) défini dans les coordonnées z, Z
par

(117) A:(f"" a) ={z’.f;s+(y-> a, Izlz) > o}

On voit facilement (comparer au § 3.1) que I’épaisseur radiale de cet anneau est majorée
6

par C 329 = Cp2 (C est une constante indépendante de w) dés que (u, a) € Z,,
Po

en effet, les estimations de la démonstration du corollaire 1 au § 1.4 fournissent
[ — po| < Gl et |a—a,| < Ce.
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Pour tout point (y,a) €2, la restriction de P, , & un anneau de largeur de
Pordre de p,,, donc contenant A (u, a), est définie dans le systéme de coordonnées (£, x)
par la formule suivante, obtenue en précisant (96) (on a supprimé ces indices w, ., a,
par exemple k=4, , ., f(0) =0 + & + 7, {,,.(0), etc. et on a noté 6 = ~1(£)).

P, o8 %) = [A(A'(E + @) + 7, %), $(0) — $(f(6) + 7, %)
. + % + (6, §(6) + x)]
=[E+ o+ Z BO, a8 # + O(, [F[#[<74), % +

K
+ 2 AQo8) 5 + O, [ 2 <+,

(18) T T
BUE) = DUAGIE + ), AV(E) = 5 XO0),

XO(8) = — <& D'G(f(0)) + 3;9? 0.5(0), en particulicr

1 4+ X(B) = X(6) défini dans la formule (g6),
2 <K< n

Si la perturbation { (voir (44)) est identiquement nulle, P,
qui s’écrit

4 coincide avec N, ,

(IIIIQ) NoEr)=E4+0Ft,0V +(1+e)x+548 +.-§3“" x), on

(45) V~y d~e S =0, 4| <Clr,|["! pour 3<i<nm.

On déduit d’estimations lipschitziennes analogues a celles utilisées pour démon-
trer les corollaires 1 et 2 que les fonctions (de ) A, B¥ _ sont C™proches de leurs
analogues pour la forme normale N
(dépendant de o, w, a) :

“B(o},)u,a - Tw”m_<_ Cm ITm|n_2’

sa> Cest-a-dire presque égales a des constantes

HBﬁZu,a”m Scmlfwln—3+i> 2__<_l_<_K,
”Ag,)p.,a - s’”m § Cm lTwln_4’
(120) (2) ! n—4
HAm,u,a s HmSleTml ’
AL, e — dilln S Culml™ 3<i<K,

ou les constantes C, dépendent de m.

L’application P, , s’écrit comme la composée
(121) P,=€,,05,,

®,a
d’une application £, , laissant le cercle x = o invariant et de la translation
(122) g;,a(‘i: x) = (Ea x + X&,u,a);
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106 ALAIN CHENCINER
les hypotheses sur  impliquent I’existence d’une unique solution G b, , ,(§) de I’équa-

tion suivante (x,(v,¢) est défini en (97)) :

bo,u,q(8 + ©)
bw,u,a(g)

Le changement de variables

(123) (1 + %Al ))) = Xy a(bal a(€))s b a(0) = 1.

(124) &) (a,y -5 )

transforme £, , en une application de la forme
K
FuaE2) = €+ o+ Z () + O(w[* [, (1 + 1)
K
+ B €)' + Ol [[y[<F),  ob

= 1B, @) = & + O(| 7, ™), w(E) =5’ + O(| =, ["¥),
w(€) = af + O(|%, ") pour 3<i<K, (&) =1, + O(lx[""*),
Bi(E) = O(| 7, |""**%) pour 2 < i< K.

(125)

Les estimations sont valables dans les topologies C™ (mais dépendent de m). En effet’
la résolution de I’équation aux différences satisfaite par log &, , ,(&) fournit

”bm,u.a'—_ I ”m< D “Ag)u a e,“m+m' (Oil m’, > 2 + ﬁ)'

Iml

De méme, il existe une unique solution C*, v, , ,(§) = y(€), dépendant diffé-
rentiablement de (u, 4) par Pintermédiaire de x, de I’équation

(r26) (X4 02 YE + 0) — (1 +2) ¥(E) + a(8) =% = [, 0a(8) dE
= 5"+ O(| [

cette solution vérifie ”Ym " ollm < D. Aty — & [lnsn (od m'>2 + 8). Le chan-
gement de variables l n)l

(127) &) P Ey + v(E)?

remplace dans £, , le coefficient «y(§) par la constante (dépendant de o, y, a) a,. Plus
généralement, en composant des changements de variables de la forme

(128) (E0) = (2 + Y)Y,
12 .. . _ 1
1+ 0 YIE + o) — (4070 +a) =5 = [ n®) dE, et
(120) (&) = (& + 29E) 5 ),
1
* (1 + 0 0 + o) — w98 + 82) = B = [ B®) &2,
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on rend indépendants de & tous les coefficients «;(€) et B;(E) :

/

K
Fraln ) = (14 0+ 2 Fiad + Ol <[4, (1 + 1) u

K
+ 3 G + O(| 5, [ <+,

(130) El = To + O(l‘rw In—4) #* 0, Ez' = O(|Tm ln—4) pour 2 S lS_ K’
x=¢ 4 O(l%, "),
% =s5+O0(7["""), a=a+0(7""") =0(|""" + ||
pour 3 < :< K.

(Remarquons qu’on aurait eu a résoudre moins d’équations aux différences si on avait
d’abord remplacé la premiére composante de £, , par & 4+ o 4 7, x a l'aide d’un
changement de variables analogue a (43)).

Lorsque (w, a) parcourt G, N 9,, P, , coincide avec £, , et nous sommes dans
une situation analogue a la situation résonante étudiée dans ([11], Théoréme IV.2.2).

Généralisant cet article, nous allons démontrer par une étude de bifurcation a
partir de Pz, le théoréme suivant (rappelons que d’aprés la démonstration du corol-
laire 2, (x, A) est un syst¢éme de coordonnées dans 2,) :

Théoréme 3. — On fait les hypothéses du corollaire 2. Soient <, et B, les deux parties
de 9, (fig. 12) définies par
&’m:{(x,x)e%, X2_252X_<_0}:
%, ={(x,i)€9‘“ 12—5&27\—20}'
Si (u,a) e, U B, P,,«ressemble » a une forme normale ayant o, 1, ou 2 cercles invariants

suivant que (w,a) e, —{Y,}, (wa) =Y,, ou (w,a)eB, —{Y,}. Autrement dit,
A, 0 B, CAH.
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Le corollaire suivant du théoréme 3 (et du théoréme 4, § 3) dit simplement que
C,C A" pour tous les o satisfaisant aux hypothéses des théorémes 1 et 2; il n’en est pas
moins étonnant (il rend en particulier caduque le résultat de [5], mais non celui de [6]

et [9]) :

Corollaire. — Si P, , posséde une courbe fermée invariante continue coupant chaque demi-
drotte issue de o en un seul point, sur laquelle 1l induit un homéomorphisme dont le nombre de rotation
satisfait aux hypothéses des théorémes 1 et 2, P, , « ressemble » & une forme normale. En parti-
culier, si ladite courbe est normalement hyperbolique, P, , en possede nécessairement une seconde,
également normalement hyperbolique, et de stabilité opposée.

Démonstration du théoréme 3.

A

1) Py« ressemble » & N, . La démonstration est évidente & partir de (130) :
au pointy,,ona P, , =S,  (ie. A=0) et y =o; dans ’anneau A} (y, a) défini

K
en (117), X ;' + O(|7,[¥|u|®*T) <o dés que u+ o0 (ie. si on n’est pas sur la
iz2

courbe invariante).

2) Lorsque (u, @) n’appartient pas a ﬁm (.. si X + 0), il ne semble pas possible
de mettre P, , sous une aussi jolie forme que 4, ..

L’idée de notre méthode est d’utiliser toute la force du théoréme d’existence
dans 2,, de la fonction de translation A : nous faisons sur P, , les changements de coor-
données que nous venons de décrire pour £, ,, et ce, méme si (u, a) n’appartient pas
a C,. Nous obtenons ainsi une expression de P, , qui se réduit a (130) si (u, @) appar-
tient & G, : en particulier, toute la dépendance angulaire des coefficients de ', i < K, s’annule
avec X.

Plus précisément, on obtient pour P, , une expression de la forme

Pu,a("): u) = (', u'),
K
(131) ”"=n1+0o +i§13i"’ + O(IX] 76" 7% + |70 [ 2 [<*),
K

W =X+ (1 +yu+ ;2&1'“’. + O(X] |70 "5 + |7 < |2 [F+Y),
dans laquelle la dépendance non triviale en I’angle est tout entiére dans les termes O(. . .)
qui s’écrivent Ath~® p(n, u) + v u* T g(m, u), les fonctions p et ¢ étant C™-bornées
indépendamment de: (p, a) dans 'anneau |u| < % (et les bornes ne dépendant de

que par 'intermédiaire des constantes diophantiennes C et 8 du théoréme 1).
Il ne reste plus qu’a moissonner les conséquences de (131).
Calculons

( W —u =K1 + O(|%[""%] + [x + XO(| 7, ["~%)] u
(132) + [0 + XO(| 7, ["~%)] @ + O(| 7 [2 | ).
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Dans Af(u, a) (qui est contenu dans un anneau de la forme |[u]| < Cp,), u’ — u est
négatif dés que o est assez proche de o, et

(133) A1+ O[] + bt +30( = [" )] u + 22002 < o3

_ 245(Y.) 2a5(Y,,) . —2
bi(va) bi(vo)  bi(o,0)
Ceci est en particulier réalisé si le discriminant du trinéme (133) est négatif pour
tout v (la variable v apparait dans les O(| 7, |* %)), c’est-a-dire

(134) [x + 2O(| 7, ") — 3xa A1 4+ O(| 7, [" %1 < o,

qui est a fortior: vérifié si (u, a) appartient & &7, —{¥,}. On notera que ’annulation
avec A des termes en O(| 1, |" %) est fondamentale : on n’atteindrait autrement qu’une
région n’allant pas jusqu’a ¥, et se trouvant méme en dehors de ¥7, ce qui dterait tout
intérét a la démarche.

Supposons enfin que (u,a) appartienne 3 %, —{Y,} et notons N, , la forme

normale

(dans 9, ay=ay(0, ., a) 2+ O(|r,[°) avec + O(|co——a)0|)<0).

’ K K
(135) Np.,a(ﬂ) u) = (7) + w + ‘glﬁiu" X + (I + X) u + ,gzo_ciui)
dont P, , est de facon naturelle une perturbation dans I’anneau A} (@, a). On a les esti-
. o I oy A L
mations > — 42, A>0 et — - < —— < 1. En particulier,
: 47— 4m ) P

lag A < x* — 42,3,
|_ p A= '\/Xz_ 4§2X| < (I +\/g) '\/Xg_ 4%, N
Si (u, @) appartient 3 %, —{Y,}, N, , poss¢de deux cercles invariants, u = u*
et 4 =u", dont on peut estimer la taille :
O(| 7o *| 45 ) — 1+ VP — 4o,)
P00y, wp = EEVEZ 4L
\/X - 4&2 )\ 2“2

(136)

(137) ut =uy +

(Ces formules sont naturelles : si par exemple % = 0, A =0 donc z* = o; de plus,
trouver toujours deux cercles ne doit pas nous étonner puisque les estimations du para-
graphe 1.4 montrent que 9, est dans la partie p <o, a> o du plan (g, a).)

On commence par définir deux anneaux, voisinages respectifs de ces deux cercles,
hors desquels il est évident que P, , « ressemble » & N,, ,, puis on conclut dans ces sous-
anneaux par la méthode des transformées de graphes : cette démarche est analogue a
celle qui a permis de définir ¥ et est utilisée également dans ’appendice (dans une situa-
tion plus simple). Les bords des deux sous-anneaux sont de la forme u = u,, ol %, est
une racine de I'une des équations

K
(138%) X+ B @k (|7 K] + |7, K [ufF+Y), p<n—6.
i=2
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Dans P’anneau A (y, a), le terme |z [P |X]| + |7, [~ % |u|®** Pemporte sur la per-
turbation O(|A] |7, |""® + |7, % |#[**™"), ce qui permet de contréler la composante
radiale de la dynamique a I’extérieur des deux sous-anneaux (comparer au § 3.1).
La figure 13 (2 comparer a la figure 5) montre les sous-anneaux pour les différentes
valeurs de (u,a) €4, et indique la dynamique radiale dans leur complémentaire
(tout étant invariant par rotation, on n’a pas représenté la variable angulaire).

~X>-5ai=0

Fic. 13

Une évaluation simple montre que I’épaisseur E* de chacun des sous-anneaux
admet une majoration de la forme

|70 17 K] A [ 5, <4 ot <4

(139) Ex<C —
V¥ — gar

(C est une constante) ;

on en déduit, en utilisant (136) et (41), que

(140) E* < Cp, V2 — 4%, A

K—1
dés que ng— et (y2— 42,%) ® < C|r,[E*2.

Puisque || et |X| sont majorés dans @, par C |7, |3 (140) est vérifié dés que

p>= et K>4, ce que 'on supposera.

N o

Pour appliquer la méthode des « transformées de graphes » (voir par exemple [12]
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ou [19], ainsi que le paragraphe 3) on fait un dernier changement de variables. Soit
n(u) le polyndme défini par

(14) ) = ) = Nolw) —w = 4+ 5 Ea
6n note w'(u) sa dérivée, c’est-a-dire

(142) w'(u) =y + .-i %0 =y + 2@y u + O(7, #2),
et on pose

(143) u = u* 4 n'(u*) w.

On déduit de (137) que

(144) m(ut) = £V — gmg X + O(2 |45 )

qui, grace a (136) et a la majoration |uf| < Cp, valable dans 4, , s’écrit
(145) m(0%) = £ Vot — gz} + O (o, V22 — 42:1).
Remarquons qu’une évaluation analogue fournit

\/Xz — 4&23 .
- = 1>

20,

. \/Xz — 4% A
20ty

(146) wt—u + O (pm
Si on compare (143) au changement de variables plus classique (A4) du para-

graphe 3, on constate que le rayon du cercle invariant de la forme normale est main-

tenant remplacé par la distance entre les deux cercles invariants de la forme normale;

celle-ci définit en effet la taille des bassins d’attraction ou de répulsion de ces cercles.
Dans P'anneau |w|< 1, le difféomorphisme P, , s’écrit

Pu,a(na w) = (7],’ w’),
7 =7+ o+ O*) + O(|7, ='(u*)|) + O] |7,["°

(147) + 7 [F | *F),
: NN A A N Ul
[— + ES
w = (I_I_Tc(u ))w+0(|1‘iﬂ:(u )|)+O( Inl(ui)l lnl(ui)l

De majorations identiques a celles faites pour E* on déduit quesi > 8 et K> 4, ona
(148) 7 =n+ o+ 0@F) + O, | ='(#%) ),
14
w' = (1 + ='(4¥)) w + Ofp,, | ' (%) ).

La méthode s’applique alors sans difficulté dans ’anneau |w| < 1 et fournit au voisi-
nage de u~ (resp. 4™) une courbe fermée invariante de P, , dont le bassin d’attraction
(resp. répulsion) contient ’anneau |w| < 1 (comparer au § 3). La comparaison de (145)
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a (140) montre que cet anneau contient, si w est assez proche de w,, ’anneau d’épais-
seur E~ (resp. E*) introduit en (138%); le théoréme 3 est donc démontré.

Remarque. — Les courbes invariantes ainsi obtenues sont de classe C™ avec m
d’autant plus grand que o est proche de o, (ne pas oublier que dans les estimations (148)
les O(...) sont valables dans toute topologie C™ mais avec des majorations dépendant
de m).
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ArpeEnDIcE. COURBES INVARIANTES
NORMALEMENT HYPERBOLIQUES
OBTENUES PAR LA METHODE
DES « TRANSFORMEES DE GRAPHES »

3.1. Existence et bassins

Il s’agit d’étudier P, , (défini en (11)) pour des valeurs de (p, a) appartenant & 5
(figure 5) et de montrer que P, , « ressemble » 4 la forme normale N, , au sens du
§ 2.3 : contrairement a ce qu’on a fait dans #”, c’est bien pour la méme valeur de (., a)
qu’on compare les applications P et N; bien entendu ceci n’est possible que parce que
nous ne comparons que les dynamiques normales et non les dynamiques sur les courbes
invariantes.

La méthode étant classique (voir par exemple [12] ou [19]), nous ne donnons,

comme au § 2.3, que de rapides indications.

N.B. — Comme précédemment, « courbe lipschitzienne » (resp. « courbes C* »)

désigne le graphe dans R?2 — {O} ~ T! X R d’une application lipschitzienne (resp. CF)
de T! dans R.

Théoréme 4. — n > 6 étant fixé, il existe un voisinage %, de (0, o) dans le plan (u., a)
et un voisinage Q, de o dans C = R? ayant les propriétés suivantes :

o) 8t (w,a) €%, est en dessous de la région limitée par la demi-droite p. = o, a<o
et la courbe T (voir figure 5), et si z € Q,, il en est de méme de P, ,(2) et liT Py .(2) =o0:
4 m—> + o 4

en particulier P, , ne posséde aucune courbe fermée invariante non triviale dans Q,.

1) St (u,a) €%, vérifie p.> o, P, , possede dans Q, une courbe fermée lipschitzienne
tnvariante normalement hyperbolique et attractante dont le bassin d’attraction contient Q, — {o}.

2) St (w, a) € %, est contenu dans Uintérieur de la région bordée par la demi-droite p. = o,
a> o et la courbe T, g4, P, . posséde dans Q, deux courbes fermées lipschitziennes invariantes
normalement hyperboliques, I'une attractante, Iautre répulsive, et la réunion du bassin d’attraction
de la premiére et du bassin de répulsion de la deuxiéme conti<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>