@book{AST_2011__338__1_0,
author = {Arone, Greg and Ching, Michael},
title = {Operads and chain rules for the calculus of functors},
series = {Ast\'erisque},
year = {2011},
publisher = {Soci\'et\'e math\'ematique de France},
number = {338},
mrnumber = {2840569},
zbl = {1239.55004},
language = {en},
url = {https://www.numdam.org/item/AST_2011__338__1_0/}
}
Arone, Greg; Ching, Michael. Operads and chain rules for the calculus of functors. Astérisque, no. 338 (2011), 168 p. https://www.numdam.org/item/AST_2011__338__1_0/
[1] - "A generalization of Snaith-type filtration", Trans. Amer. Math. Soc. 351 (1999), p. 1123-1150. | MR | Zbl | DOI
[2] , "The Weiss derivatives of and ", Topology 41 (2002), p. 451-481. | MR | Zbl
[3] , "Derivatives of the embedding functor II : the unstable case", in preparation.
[4] & - "A functorial model for iterated Snaith splitting with applications to calculus of functors", Fields Inst. Commun. 19 (1998), p. 1-30. | MR | Zbl
[5] & - "The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres", Invent. Math. 135 (1999), p. 743-788. | MR | Zbl | DOI
[6] & - "Homology and cohomology of ring spectra", Math. Z. 249 (2005), p. 903-944. | MR | Zbl | DOI
[7] & - "Axiomatic homotopy theory for operads", Comment. Math. Helv. 78 (2003), p. 805-831. | MR | Zbl | DOI
[8] & - Homotopy limits, completions and localizations, Lecture Notes in Math., vol. 304, Springer, 1972. | MR | Zbl
[9] - "Bar constructions for topological operads and the Goodwillie derivatives of the identity", Geom. Topol. 9 (2005), p. 833-933. | MR | Zbl | EuDML | DOI
[10] , "A chain rule for Goodwillie derivatives of functors from spectra to spectra", Trans. Amer. Math. Soc. 362 (2010), p. 399-426. | MR | Zbl | DOI
[11] , "A note on the composition product of symmetric sequences in a symmetric monoidal category", arXiv:math.CT/0510490. | Zbl
[12] & - "Duality and pro-spectra", Algebr. Geom. Topol. 4 (2004), p. 781-812. | MR | Zbl | EuDML | DOI
[13] , , & - Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, Amer. Math. Soc., 1997. | MR | Zbl
[14] & - "Koszul duality for operads", Duke Math. J. 76 (1994), p. 203-272. | MR | Zbl | DOI
[15] & - Simplicial homotopy theory, Progress in Math., vol. 174, Birkhäuser, 1999. | MR | Zbl
[16] - "Calculus. I. The first derivative of pseudoisotopy theory", K-Theory 4 (1990), p. 1-27. | MR | Zbl | DOI
[17] , "Calculus. II. Analytic functors", K-Theory 5 (1991/92), p. 295-332. | MR | Zbl | DOI
[18] , "Calculus. III. Taylor series", Geom. Topol. 7 (2003), p. 645-711. | MR | Zbl | EuDML | DOI
[19] & - "Generalized Tate cohomology", Mem. Amer. Math. Soc. 113 (1995). | MR | Zbl
[20] - "Homotopy theory of modules over operads in symmetric spectra", Algebr. Geom. Topol. 9 (2009), p. 1637-1680. | MR | Zbl | DOI
[21] - "Homological algebra of homotopy algebras", Comm. Algebra 25 (1997), p. 3291-3323. | MR | Zbl | DOI
[22] - Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, Amer. Math. Soc. 2003. | MR | Zbl
[23] - Model categories, Mathematical Surveys and Monographs, vol. 63, Amer. Math. Soc. 1999. | MR | Zbl
[24] - "Calculating limits and colimits in pro-categories", Fund. Math. 175 (2002), p. 175-194. | MR | Zbl | EuDML | DOI
[25] - "The curious history of Faa di Bruno's formula", Amer. Math. Monthly 109 (2002), p. 217-234. | MR | Zbl
[26] - "Basic concepts of enriched category theory", Repr. Theory Appl. Categ. 10 (2005). | MR | Zbl
[27] & - "A chain rule in the calculus of homotopy functors", Geom. Topol. 6 (2002), p. 853-887. | MR | Zbl | EuDML | DOI
[28] - "Model structure on operads in orthogonal spectra", Homology, Homotopy Appl. 9 (2007), p. 397-412. | MR | DOI
[29] - "Tate cohomology and periodic localization of polynomial functors", Invent Math. 157 (2004), p. 345-370. | MR | Zbl | DOI
[30] , "Goodwillie towers and chromatic homotopy: an overview", in Proceedings of the Nishida Fest (Kinosaki 2003), Geom. Topol. Monogr., vol. 10, Geom. Topol. Publ., Coventry, 2007, p. 245-279. | MR | Zbl
[31] - "Is there a convenient category of spectra?", J. Pure Appl. Algebra 73 (1991), p. 233-246. | MR | Zbl | DOI
[32] , , & - Equivariant stable homotopy theory, Lecture Notes in Math., vol. 1213, Springer, 1986. | MR | Zbl
[33] - Higher topos theory, Annals of Math. Studies, vol. 170, Princeton Univ. Press, 2009. | MR | Zbl
[34] , "-categories and the Goodwillie calculus I", preprint arXiv:0905.0462.
[35] - Categories for the working mathematician, Graduate Texts in Math., vol. 5, Springer, 1971. | MR | Zbl
[36] , , & - "Model categories of diagram spectra", Proc. London Math. Soc. 82 (2001), p. 441-512. | MR | Zbl | DOI
[37] , & - Operads in algebra, topology and physics, Mathematical Surveys and Monographs, vol. 96, Amer. Math. Soc., 2002. | MR | Zbl
[38] - The geometry of iterated loop spaces, Lectures Notes in Mathematics, vol. 271, Springer, 1972. | MR | Zbl
[39] & - Parametrized homotopy theory, Mathematical Surveys and Monographs, vol. 132, Amer. Math. Soc., 2006. | MR | Zbl | DOI
[40] - "Dual calculus for functors to spectra", in Homotopy methods in algebraic topology (Boulder, CO, 1999), Contemp. Math., vol. 271, Amer. Math. Soc., 2001, p. 183-215. | MR | Zbl | DOI
[41] - "Spaces of algebra structures and cohomology of operads", Ph.D. Thesis, Massachusetts Institute of Technology, 1996. | MR
[42] - "-modules and symmetric spectra", Math. Ann. 319 (2001), p. 517-532. | MR | Zbl | DOI
[43] & - "Algebras and modules in monoidal model categories", Proc. London Math. Soc. 80 (2000), p. 491-511. | MR | Zbl | DOI
[44] & , "Stable model categories are categories of modules", Topology 42 (2003), p. 103-153. | MR | Zbl | DOI
[45] - "Operads, algebras and modules in general model categories", preprint arXiv.math/0101102. | Zbl
[46] - "Orthogonal calculus", Trans. Amer. Math. Soc. 347 (1995), p. 3743-3796. | MR | Zbl | DOI






