@incollection{SB_1990-1991__33__89_0,
author = {Gramain, Andr\'e},
title = {Rapport sur la th\'eorie classique des n{\oe}uds (2\`eme partie)},
booktitle = {S\'eminaire Bourbaki : volume 1990/91, expos\'es 730-744},
series = {Ast\'erisque},
note = {talk:732},
pages = {89--113},
year = {1991},
publisher = {Soci\'et\'e math\'ematique de France},
number = {201-202-203},
zbl = {0752.57003},
language = {fr},
url = {https://www.numdam.org/item/SB_1990-1991__33__89_0/}
}
TY - CHAP AU - Gramain, André TI - Rapport sur la théorie classique des nœuds (2ème partie) BT - Séminaire Bourbaki : volume 1990/91, exposés 730-744 AU - Collectif T3 - Astérisque N1 - talk:732 PY - 1991 SP - 89 EP - 113 IS - 201-202-203 PB - Société mathématique de France UR - https://www.numdam.org/item/SB_1990-1991__33__89_0/ LA - fr ID - SB_1990-1991__33__89_0 ER -
%0 Book Section %A Gramain, André %T Rapport sur la théorie classique des nœuds (2ème partie) %B Séminaire Bourbaki : volume 1990/91, exposés 730-744 %A Collectif %S Astérisque %Z talk:732 %D 1991 %P 89-113 %N 201-202-203 %I Société mathématique de France %U https://www.numdam.org/item/SB_1990-1991__33__89_0/ %G fr %F SB_1990-1991__33__89_0
Gramain, André. Rapport sur la théorie classique des nœuds (2ème partie), dans Séminaire Bourbaki : volume 1990/91, exposés 730-744, Astérisque, no. 201-202-203 (1991), Exposé no. 732, 25 p.. https://www.numdam.org/item/SB_1990-1991__33__89_0/
[A] - On the subdivision of a 3-space by a polyhedron, Proc. Nat. Acad. Sci. USA, 10 (1924), 8-10. | JFM
[BZ] , - Eine Kennzeichnung der Torusknoten, Math. Annalen, 167 (1966), 169-176. | Zbl | MR
- Knots, Walter de Gruyter, Berlin New-York (1985). | Zbl
[CF] , - Essential embeddings of annuli and Möbius bands in 3-manifolds, Trans. AMS, 215 (1976), 219-239. | Zbl | MR
[CGLS] , , , - Dehn surgery on knots, Ann. of Math.,125 (1987), 237-300. | Zbl | MR
[F] - On the torus theorem and its applications, Trans. AMS, 217 (1976), 1-43. | Zbl | MR
[FW] , - Groups and complements of knots, Can. J. of Math., 30 (1978), 1284-1295. | Zbl | MR
[Ga] - Foliations and the topology of 3-manifolds, III, J. Diff. Geom., 18 (1987), 479-536. | Zbl | MR
[GL] , - Knots are determined by their complements, Journal of AMS, 2 (1989), 371-415. | Zbl | MR
[Gr] - Rapport sur la théorie classique des nœuds (1ère partie), Sém. Bourbaki, exposé n° 485, 1975-76, Lect. Notes in Math. n° 567, Springer (1977), 222-237. | Zbl | Numdam
[H] - 3-manifolds, Ann. of Math. Studies n° 86 (1976), Princeton Univ. Press. | Zbl | MR
[Ja] - Lectures on Three-Manifolds Theory, Reg. Conf. in Math. n° 43, AMS (1980). | Zbl | MR
[Jo] - Homotopy equivalence of 3-manifolds with boundaries, Lect. Notes in Math. n° 761, Springer (1979). | Zbl | MR
[F] - Topologie de la Dimension 3, Astérisque n° 12, S.M.F., Paris (1974). | Zbl | Numdam
[M] - Geometric Topology in Dimensions 2 and 3, Graduate Texts in Math. 47, Springer (1977). | Zbl | MR
[N] - Über den Aussenraum von Produktknoten und die Bedeutung der Fixgruppen, Math. Zeit., 101 (1967), 131-141. | Zbl | MR
[P] - On Dehn's lemma and the asphericity of knots, Ann. of Math., 66 (1957), 1-26. | Zbl | MR
[Scha] - Smooth spheres in R4 with four critical points are standard, Invent. Math., 70 (1985), 125-141. | Zbl | MR
[Schu] - Knoten und Vollringe, Acta Mat., 90 (1953), 131- 286. | Zbl | MR
[Sc] - A new proof of the annulus and torus theorem, Amer. J. of Math., 102 (1980), 241-277. | Zbl | MR
[Si] - An algebraic classification of knots in S3, Ann. of Math., 97 (1973), 1-13. | Zbl | MR
[ST] - On fibering certain 3-manifolds, in Topology of 3- manifolds and related topics (Proceedings of the 1961 Topology Conference, Univ. of Georgia), Prentice-Hall (1962). | MR
[Wa] - Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten, Topology 6 (1967), 505-517. | Zbl | MR
- On irreducible 3-manifolds which are sufficiently large, Ann. of Math., 87 (1968), 56-88. | Zbl | MR
[Wh] - Algebraic and geometric characterizations of knots, Invent. Math., 26 (1974), 259-270. | Zbl | MR
- Knots complements and groups, Topology, 26 (1987), 41-44. | Zbl | MR







