@incollection{SB_1990-1991__33__421_0,
author = {Mathieu, Olivier},
title = {Bases des repr\'esentations des groupes simples complexes [d'apr\`es {Kashiwara,} {Lusztig,} {Ringel} et al.] },
booktitle = {S\'eminaire Bourbaki : volume 1990/91, expos\'es 730-744},
series = {Ast\'erisque},
note = {talk:743},
pages = {421--442},
year = {1991},
publisher = {Soci\'et\'e math\'ematique de France},
number = {201-202-203},
mrnumber = {1157850},
zbl = {0755.17002},
language = {fr},
url = {https://www.numdam.org/item/SB_1990-1991__33__421_0/}
}
TY - CHAP AU - Mathieu, Olivier TI - Bases des représentations des groupes simples complexes [d'après Kashiwara, Lusztig, Ringel et al.] BT - Séminaire Bourbaki : volume 1990/91, exposés 730-744 AU - Collectif T3 - Astérisque N1 - talk:743 PY - 1991 SP - 421 EP - 442 IS - 201-202-203 PB - Société mathématique de France UR - https://www.numdam.org/item/SB_1990-1991__33__421_0/ LA - fr ID - SB_1990-1991__33__421_0 ER -
%0 Book Section %A Mathieu, Olivier %T Bases des représentations des groupes simples complexes [d'après Kashiwara, Lusztig, Ringel et al.] %B Séminaire Bourbaki : volume 1990/91, exposés 730-744 %A Collectif %S Astérisque %Z talk:743 %D 1991 %P 421-442 %N 201-202-203 %I Société mathématique de France %U https://www.numdam.org/item/SB_1990-1991__33__421_0/ %G fr %F SB_1990-1991__33__421_0
Mathieu, Olivier. Bases des représentations des groupes simples complexes [d'après Kashiwara, Lusztig, Ringel et al.], dans Séminaire Bourbaki : volume 1990/91, exposés 730-744, Astérisque, no. 201-202-203 (1991), Exposé no. 743, 22 p.. https://www.numdam.org/item/SB_1990-1991__33__421_0/
[BLM] , et - A geometric setting for quantum groups, Duke Math. J. 61 (1990), 655-. | Zbl | MR
[BZ] et - Tensor product multiplicities and convex polytopes in partition space, preprint (1989). | MR
[DJM] , et - Representation of Uqgln(C) at q = 0 and the Robinson-Shensted correspondence Phys. and Math. of strings (vol. à la mémoire de V. Kniznik) W. Sc., Singapour (1990), 185-211. | Zbl | MR
[DK] et - Special bases for Sn and GLn, Isr. J. Math. 40 (1981), 416-432. | Zbl
[Dr] - Hopf algebras and the Yang-Baxter equations, Soviet Math. Dokl. 32 (1985), 254-258. | Zbl
[Gi] - Lagrangian constructions of the enveloping algebra of U(sln), preprint (1990).
[Ji] - A q-difference of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69. | Zbl | MR
[Ka1] - Crystallizing the q-analog of universal enveloping algebras, Comm. Math. Phys. 133 (1990), 249-260. | Zbl | MR
[Ka2] - On crystal bases of the Q-analog of universal enveloping algebras, preprint (1990). | MR
[Ka3] - Crystallizing the q-analogue of universal enveloping algebras, Proceedings ICM 90 (Kyoto). | Zbl
[KN] et - Crystal graphs of the q-analog of classical Lie algebras, RIMS preprint.
[KMN1] , , , , et - Affine crystal and vertex models (en préparation). | Zbl
[KMN2] , , , , et - Perfect crystals of quantized enveloping algebras (en préparation).
[LMS] , et - Geometry of G/P IV, Proc. Ind. Acad. Sc. 99 (1979), 279-362. | Zbl | MR
[L] - Standard monomial theory for SLn, preprint (1991). | MR
[LS] et - Geometry of G/P V, J. of Algebra 100 (1986), 462-557. | Zbl | MR
[Li] - A generalization of the Littlewood-Richardson rule, preprint (1987). | MR
[Lu1] - Canonical bases arising from quantized enveloping algebras I, Journal of A.M.S. 3 (1990), 447-498. | Zbl | MR
[Lu2] - Canonical bases arising from quantized enveloping algebras II, preprint (1990). | MR
[Lu3] - Quivers, perverse sheaves and quantized enveloping algebras, preprint. | MR
[Lu4] - Quivers, perverse sheaves and quantized enveloping algebras, preprint. | MR
[Ma] - Good bases for G-modules, Geometrica Dedicata (Tits volume) 36 (1990), 51-66. | Zbl | MR
[MM] et - Crystal basis for the basic representation of Uq(sln), preprint.
[N] - A basis of symmetric tensor representations for the quantum analogue of the Lie algebras An, Bn, Cn, Dn, Publ. RIMS, Kyoto Univ. 26 (1990), 723-733. | Zbl | MR
[Ri] - Hall algebras and quantum troups, Inv. Math. 101 (1990), 583-592. | Zbl | MR
[St] - A general Clebsch-Gordan theorem, Bull. Amer. Math. Soc. 67 (1961), 406-407. | Zbl | MR







