@incollection{AST_2008__322__39_0,
author = {Bismut, Jean-Michel},
title = {A survey of the hypoelliptic {Laplacian}},
booktitle = {G\'eom\'etrie diff\'erentielle, physique math\'ematique, math\'ematiques et soci\'et\'e (II) - Volume en l'honneur de Jean-Pierre Bourguignon},
editor = {Hijazi Oussama},
series = {Ast\'erisque},
pages = {39--69},
year = {2008},
publisher = {Soci\'et\'e math\'ematique de France},
number = {322},
mrnumber = {2521653},
zbl = {1180.58001},
language = {en},
url = {https://www.numdam.org/item/AST_2008__322__39_0/}
}
TY - CHAP AU - Bismut, Jean-Michel TI - A survey of the hypoelliptic Laplacian BT - Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon AU - Collectif ED - Hijazi Oussama T3 - Astérisque PY - 2008 SP - 39 EP - 69 IS - 322 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_2008__322__39_0/ LA - en ID - AST_2008__322__39_0 ER -
%0 Book Section %A Bismut, Jean-Michel %T A survey of the hypoelliptic Laplacian %B Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon %A Collectif %E Hijazi Oussama %S Astérisque %D 2008 %P 39-69 %N 322 %I Société mathématique de France %U https://www.numdam.org/item/AST_2008__322__39_0/ %G en %F AST_2008__322__39_0
Bismut, Jean-Michel. A survey of the hypoelliptic Laplacian, dans Géométrie différentielle, physique mathématique, mathématiques et société (II) - Volume en l'honneur de Jean-Pierre Bourguignon, Astérisque, no. 322 (2008), pp. 39-69. https://www.numdam.org/item/AST_2008__322__39_0/
[1] & - "Quillen metrics and higher analytic torsion forms", J. reine angew. Math. 457 (1994), p. 85-184. | MR | Zbl | EuDML
[2] - "Koszul complexes, harmonic oscillators, and the Todd class", J. Amer. Math. Soc. 3 (1990), p. 159-256. | MR | Zbl | DOI
[3] , "The hypoelliptic Laplacian on the cotangent bundle", J. Amer. Math. Soc. 18 (2005), p. 379-476. | MR | Zbl | DOI
[4] , "The hypoelliptic Laplacian and Chern-Gauss-Bonnet", in Differential geometry and physics, Nankai Tracts Math., vol. 10, World Sci. Publ., Hackensack, NJ, 2006, p. 38-52. | MR | Zbl | DOI
[5] , "The hypoelliptic Dirac operator", in Geometry and dynamics of groups and spaces, Progr. Math., vol. 265, Birkhäuser, 2008, p. 113-246. | MR | Zbl | DOI
[6] , "Loop spaces and the hypoelliptic Laplacian", Comm. Pure Appl. Math. 61 (2008), p. 559-593. | MR | Zbl | DOI
[7] & - "Complex immersions and Quillen metrics", Publ. Math. I.H.É.S. 74 (1991). | MR | Zbl | EuDML | Numdam
[8] & , The hypoelliptic Laplacian and Ray-Singer metrics, Annals of Mathematics Studies, vol. AM-167, Princeton University Press, 2008. | MR | Zbl
[9] & - "An extension of a theorem by Cheeger and Müller", Astérisque 205 (1992), p. 235. | MR | Zbl | Numdam
[10] & , "Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle", Geom. Funct. Anal. 4 (1994), p. 136-212. | MR | Zbl | EuDML | DOI
[11] - "Analytic torsion and the heat equation", Ann. of Math. 109 (1979), p. 259-322. | MR | Zbl | DOI
[12] & - "Puits multiples en mécanique semi-classique. IV. Étude du complexe de Witten", Comm. Partial Differential Equations 10 (1985), p. 245-340. | MR | Zbl | DOI
[13] - "Harmonic spinors", Advances in Math. 14 (1974), p. 1-55. | MR | Zbl
[14] - "Hypoelliptic second order differential equations", Acta Math. 119 (1967), p. 147-171. | MR | Zbl | DOI
[15] - "Zufällige Bewegungen (zur Theorie der Brownschen Bewegung)", Ann. of Math. 35 (1934), p. 116-117. | MR | Zbl | DOI
[16] - "Analytic torsion and -torsion of Riemannian manifolds", Adv. in Math. 28 (1978), p. 233-305. | MR | Zbl
[17] - "Determinants of Cauchy-Riemann operators on Riemann surfaces", Functional Anal. Appl. 19 (1985), p. 31-34. | MR | Zbl | DOI
[18] , "Superconnections and the Chern character", Topology 24 (1985), p. 89-95. | MR | Zbl | DOI
[19] & - "-torsion and the Laplacian on Riemannian manifolds", Advances in Math. 7 (1971), p. 145-210. | MR | Zbl
[20] - "Supersymmetry and Morse theory", J. Differential Geom. 17 (1982), p. 661-692. | MR | Zbl | DOI







