@incollection{AST_1994__222__389_0,
author = {Shishikura, Mitsuhiro},
title = {The boundary of the {Mandelbrot} set has {Hausdorff} dimension two},
booktitle = {Complex analytic methods in dynamical systems - IMPA, January 1992},
editor = {Camacho C. and Lins Neto A. and Moussu R. and Sad P.},
series = {Ast\'erisque},
pages = {389--405},
year = {1994},
publisher = {Soci\'et\'e math\'ematique de France},
number = {222},
mrnumber = {1285397},
zbl = {0813.58047},
language = {en},
url = {https://www.numdam.org/item/AST_1994__222__389_0/}
}
TY - CHAP AU - Shishikura, Mitsuhiro TI - The boundary of the Mandelbrot set has Hausdorff dimension two BT - Complex analytic methods in dynamical systems - IMPA, January 1992 AU - Collectif ED - Camacho C. ED - Lins Neto A. ED - Moussu R. ED - Sad P. T3 - Astérisque PY - 1994 SP - 389 EP - 405 IS - 222 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_1994__222__389_0/ LA - en ID - AST_1994__222__389_0 ER -
%0 Book Section %A Shishikura, Mitsuhiro %T The boundary of the Mandelbrot set has Hausdorff dimension two %B Complex analytic methods in dynamical systems - IMPA, January 1992 %A Collectif %E Camacho C. %E Lins Neto A. %E Moussu R. %E Sad P. %S Astérisque %D 1994 %P 389-405 %N 222 %I Société mathématique de France %U https://www.numdam.org/item/AST_1994__222__389_0/ %G en %F AST_1994__222__389_0
Shishikura, Mitsuhiro. The boundary of the Mandelbrot set has Hausdorff dimension two, dans Complex analytic methods in dynamical systems - IMPA, January 1992, Astérisque, no. 222 (1994), pp. 389-405. https://www.numdam.org/item/AST_1994__222__389_0/
[B] , Iteration of Rational Functions, Springer Verlag, 1991. | MR | Zbl
[DH1] and , Étude dynamique des polynômes complexes, Publ. Math. d'Orsay, 1er partie, 84-02 ; 2me partie, 85-04. | Zbl
[DH2] and , On the dynamics of polynomial-like mappings, Ann. sient. Ec. Norm. Sup., 4e série, 18 (1985), p. 287-343. | MR | Zbl | EuDML | Numdam | DOI
[La] , Systèmes dynamiques holomorphes: explosion de points periodiques paraboliques, Thèse de doctrat de l'Université de Paris-Sud, Orsay, France, 1989.
[Ma] , On the dynamics of Iterated maps V : Conjecture that the boundary of the -set has a fractal dimension equal to , p. 235-238, Choas, Fractals and Dynamics, Eds. Fischer and Smith, Marcel Dekker, 1985. | MR | Zbl
[Mc1] , Area and Hausdorff dimension of Julia sets of entire functions, Trans. AMS, 300 (1987) p.329-342. | MR | Zbl | DOI
[Mc2] , Geometric limits: from hyperbolic -manifolds to the boundary of the Mandelbrot set, in the Proceedings of the Conference: Topological Methods in Modern Mathematics, June 1991, Stony Brook.
[Mi] , Dynamics in one complex variables: Introductory lectures, Preprint SUNY Stony Brook, Institute for Mathematical Sciences, 1990. | Zbl | MR
[MSS] , , and , On the dynamics of rational maps, Ann. scient. Ec. Norm. Sup., (4) 16 (1983) p.193-217. | MR | Zbl | EuDML | Numdam | DOI
[Sh] , The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Preprint SUNY Stony Brook, Institute for Mathematical Sciences, 1991. | MR | Zbl
[T] , Similarity between the Mandelbrot set and Julia sets, Commun. Math. Phys., 134 (1990) p.587-617. | MR | Zbl | DOI







